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Abstract— Traffic state estimation is an essential task in
traffic engineering. It requires observations of traffic that are,
so far, even with emerging technologies, only partially available
at large, as neither Eulerian nor Lagrangian observations are
available everywhere at all times. We propose a methodology
to fuse both observation types using physics informed deep
learning that is based on the Lighthill-Whitham-Richards
(LWR) model to estimate traffic states at locations without
observations, in particular to infer traffic density. We use
two types of fundamental diagrams: Greenshields’ parabola
and a differentiable version of the trapezoidal fundamental
diagram in the estimation. In the latter, we estimate from the
observations the collective impact of all, even immeasurable,
factors that lead to a reduction in traffic performance. We
apply it to real-world data from the German motorway A9,
where we find that it provides an opportunity to improve the
estimation and understanding of traffic density by data fusion.

I. INTRODUCTION
Deep learning has undoubtedly changed the world of

data [1], [2], most notably due to the understanding of
parameter estimation in large neural networks [3]. Human
mobility has always been a field with large-scale availabil-
ity of data (e.g., [4], [5]) that naturally benefits from the
methodology advances in deep learning. An essential task
in traffic engineering is the estimation of traffic states. A
traffic state commonly refers to the information on vehicle
density, speed and flow at a specific location in space and
time. Its estimation usually relies on partial observations as
full information is impossible or too costly to obtain. Various
methods have been proposed to estimate full traffic states
from partial observations (c.f. [6] for a comprehensive re-
view). There are two categories of approaches for traffic state
estimation. First, analytical models, e.g. [7], [8], [9]. Second,
empirical models, e.g., [10], [11]. Another important aspect
in traffic state estimation is the data source for the partial
observations. As many different measurement techniques,
e.g., loop detectors, floating car data, camera data, exist,
the task of data fusion is to combine heterogeneous data
sources to improve traffic state estimation. There are different
data fusion methods present in literature, c.f. [12], [13] for
reviews, however, the focus seems to be primarily on travel
times or speeds, and less on traffic density estimation. Lately,
Cvetek et al. [14] emphasized that data fusion for traffic state
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estimation has seen a shift from pure statistical approaches
towards machine learning, in particular deep learning with
neural networks, e.g., [15], [16].

A key feature of neural networks is that they can model
almost any function. When working with physical systems,
there are usually constraints attached, e.g., speeds cannot be
negative or flows cannot be at their peak at jam density. These
constraints are not reflected in the neural network structure
per se, unless they are part of the learning data, but which can
be noisy or biased. Recently, advances in numerical methods
for physical system modeling with deep learning emerged
[17], [18], [19], [20] that allow to regularize the learning
process with the information embedded in the differential
equations governing the physical system. Traffic flow is such
a physical system [21]. Consequently, these methodological
advances were applied to traffic state estimation [22], [23],
[24], [25], where Shi et al. [26], [27] and Yuan et al.
[24] have shown that a physics-informed deep learning
(PIDL) can outperform conventional methods for short road
segments from a speed perspective.

Importantly, although some previous works already im-
plicitly discussed data fusion (loop detector and floating car
data), they all assume that traffic density is directly measured
or can be uniquely derived from either speed or flow. How-
ever, neither of both is possible. First, traffic density cannot
be measured with widely used measurement equipment,
only speeds and vehicle flows are. Second, empirical data
shows that flow (or speed) and density relationships are not
smooth and exhibit scatter, e.g., resulting from hysteresis
and capacity drop phenomena [28], [29] or heterogeneous
traffic [30], either as different vehicle types are present or
vehicles drive at different desired speeds. As traffic density is
a key variable in the most common traffic flow models, e.g.,
the Lighthill-Whitham-Richards (LWR) model [31], [32], a
discussion of this issue is important. As the previous work
already showed the general benefits of PIDL for traffic state
estimation, the next step is therefore to address the estimation
of traffic density in real-world problems, where data from
different sources is available. Note that traffic state estimation
as defined here is a posteriori and is not a prediction of future
traffic states.

In this paper, we contribute with a phyics-informed deep
learning approach for traffic state estimation that addresses
data fusion for traffic density estimation as well as the
heterogeneity in traffic states. We build upon the advances
by Raissi et al. [19] and its early application to traffic state
estimation by Shi et al. [26], [27]. We apply the proposed
approach to empirical data from a motorway section on the



A9 in Germany. Comparing it to the adaptive smoothing
method (ASM) and an unconstrained neural network, we find
that simple PIDL estimates traffic states as good as ASM, but
provides an opportunity to improve traffic density estimation
from data fusion, while ASM and PIDL outperform an
unconstrained neural network.

II. METHODOLOGY

A. Model structure

We propose to estimate the traffic state on the motorway
section using separate neural networks for speed and flow
as shown in Figure 1. The entire space-time domain is
discretized into a grid with G elements (points or cells),
where each element is uniquely identified by (x, t). Flow
measurements are taken at Oq ∈ G, resulting in Nq = |Oq|
measurements in total. Similarity, speed measurements from
floating car data are available at Ov ∈ G, resulting in
Nv = |Ov| measurements in total. Location i for both type
of measurements is defined by

(
xi, ti

)
.

We use the flow observations q (x, t) with (x, t) ∈ Oq to
learn parameters θq that predict flow q̂ at all locations (x, t).
These parameters are estimated or learnt in the common
fashion by minimizing the loss between the observed and
predicted values.

Lq =
∑

(x,t)∈Oq

|q̂ (x, t)− q (x, t)|2 (1)

Similarly, we learn the parameters θv to predict v̂ at all
locations (x, t) from the speed observations v (x, t) with
(x, t) ∈ Ov and minimizing the L2 norm between observed
and predicted speeds at Ov .

Lv =
∑

(x,t)∈Ov

|v̂ (x, t)− v (x, t)|2 (2)

Importantly, these two measurement models are trained to
predict speed and flows only at the locations where each of
them is observed, i.e., Oq and Ov , respectively. However,
the parameters θq and θv should be able to predict speed
and flow at all points G in a physically consistent manner.
We ensure physical consistency by forcing predictions q̂ and
v̂ for all points G to comply the Lighthill, Witham and
Richards (LWR) model [31], [32]. In a basic formulation,
the LWR model is the continuity equation as given by Eqn.
3 together with an assumption of a density-flow relationship
q (ρ).

∂ρ (x, t)

∂t
+
∂q (ρ (x, t))

∂x
= 0 (3)

This model requires an estimation of traffic density ρ̂ at all
grid points G that is obtained from the fundamental equation
of traffic flow ρ̂ = q̂/v̂. The predictions of flow q̂ and speed
v̂ result from the neural networks. This logic is shown in
Figure 1. The physical consistency of the parameter estimates
θq and θv for all points G is ensured by adding Eqn. 3 as a
constraint. As illustrated in Figure 1, the numerical gradients
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Fig. 1. Structure of the proposed model to fuse loop detector and floating
car data using a physics informed neural network (PIDL).

∂ρ (x, t) /∂t and ∂q (ρ (x, t)) /∂x are computed first. Then,
the residual r of Eqn. 3 is derived as formulated by Eqn. 4.

r (x, t) =
∂ρ (x, t)

∂t
+
∂q (ρ (x, t))

∂x
(4)

The closer r is to zero, the better the estimates θq and
θv satisfy the physical consistency formulated by the LWR
model at all points G.

LLWR =
∑

(x,t)∈G

|r (x, t)|2 (5)

B. Fundamental diagram

Previous work used for the fundamental diagram either
Greenshields’ seminal q-ρ parabola or a differentiable ver-
sion of the triangular (piece-wise linear) flow-density rela-
tionship [26], [27]. Greenshields fundamental diagram as
formulated in Eqn. 6 requires the road capacity qmax and
the jam density ρmax as parameters.

q (ρ) =
4qmax

ρmax
(k − k2

ρmax
) (6)

Previous work did not use the piece-wise linear trape-
zoidal fundamental diagram as given in Eqn. 7 as used by
[33] because it is not differentiable, although its physically
meaningful parameters could be of value for learning. In
addition to the parameters qmax and ρmax already introduced
for Eqn. 6, this fundamental diagram also considers the free
flow speed umax and the backward wave speed w on the link.
Despite the additional parameters, this fundamental diagram
is still a one-regime traffic model.

q (ρ) = min{ρ · umax, qmax, w (ρmax − ρ)} (7)

We make this function differentiable and maintain its
parameters’ physical interpretation by using the λ approxi-
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Fig. 2. The trapezoidal fundamental diagram with λ smoothing. The pa-
rameters for the trapezoidal fundamental diagram are umax = 33.6 [m/s],
qmax = 0.61 [veh/s], ρmax = 0.15 [veh/m] and w = 5.55 [m/s].

mation as proposed by [34] for the macroscopic fundamental
diagram. Eqn. 8 provides this smoothing to Eqn. 7.

q (ρ) = −λ log

(
exp

(
−ρ · umax

λ

)
+ exp

(
−qmax

λ

)
+ exp

(
−w (ρmax − ρ)

λ

))
(8)

In Figure 2 we show the trapezoidal fundamental diagram
as well as two smooth approximations with different values
of λ. Note that in applications of this function, λ must not
be constant and can vary over space and time according
to traffic conditions. The parameter λ offers an additional
degree of freedom, while the continuity equation for ρ is still
satisfied. λ can capture heterogeneous traffic that results from
the mixing of different vehicle classes or vehicles driving at
different desired seeds. Importantly, λ can be estimated in
the learning process, either as a constant value for the entire
space-time domain or for small patches in space-time and
thus can generate additional insights into the actual traffic
behavior.

C. Loss function

Last, the loss function for the physical consistent learning
process is the weighted sum of the three single loss elements
as formulated in Eqn. 9. The parameters are estimated by
minimizing the total loss Ltotal. Note that we added λ to
LLWR which means that λ is estimated in the entire learning
procedure that minimizes Ltotal. However, λ must not be
present, either when Greenshields’ fundamental diagram
from Eqn. 6 is used or λ is fixed. The parameters αq , αv

and αLWR correspond to weights for the importance in the
learning procedure.

Ltotal (θq, θv, λ) =
αq

|Oq|
Lq (θq)

+
αv

|Ov|
Lv (θv) +

αLWR

|G|
LLWR (λ) (9)

III. PIDL-BASED DATA FUSION APPLICATION

We test the proposed PIDL-based data fusion algorithm
using data from a German motorway. We analyze its per-
formance with respect to the two discussed fundamental
diagram and compare the proposed algorithm to the adaptive
smoothing method (ASM) (see [35] for details) and a simple
neural network (NN) without physical constraint.

A. Data

We use traffic data from the northbound section of the
A9 motorway from Munich to Nuremberg in Germany. This
motorway section has a total length of 159 kilometers. In
this analysis we focus on traffic data from May 29, 2019, on
the first 30 kilometers north of Munich, where a rather high
density of stationary detector location exists. The considered
road section has a lane layout as shown in Figure 3a.
The observed floating car and loop detector data is shown
in 3c, respectively. A detailed description on the floating
car data is given in [36] and for the loop detector data
in [37]. We aligned the spatio-temporal resolution of both
sources to have joint resolution of one minute in time and
one hundred meters in space1. Thus, the resulting space-
time grid for the evaluation of the physical consistency has
in total 119’498 points, where for May 29, 2019, speed
measurements from floating car data is available at 45.9 %
and flow measurements from loop detectors at 4.3 % of all
points. Note that the available speed measurements provide
the average speed of a subset of all vehicles, while the flow
measurements are based on counting all vehicles.

B. Setup

For the parameters of the fundamental diagram we set
umax = 130 [km/h], ρmax = 100 [veh/km], qmax =
2500 [veh/h] and w = 5 [km/h]. These values are typical for
German motorways [38]. Each of the two neural networks
as shown in Figure 1 has three layers, each with 100 fully
connected neurons. The hidden layers have a tanh activation
function and the output is a softplus layer for strictly positive
output. The learning procedure is implemented in python
using the tensorflow framework, based on Raissi’s seminal
work [19]2 using the ADAM optimizer and is initialized with
Xavier. The iteration limit is set to 40’000 and the weights
are αq = 2, αv = 1 and αLWR = 100. The ASM is
parametrized according to [11].

To compare the four approaches, we divide the available
data as shown in Figure 3 into training and a test samples.

1The individual trajectories of a vehicle reporting location and speeds are
converted into travel-times per grid cell of a 100m and 60s. In the case that
multiple vehicles passed a grid cell, the respective mean of the travel times
is used

2https://github.com/maziarraissi/PINNs
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Fig. 3. Summary of the data used in this study from the German Motorway A9, bound from Munich to Nuremberg. Panel a shows the layout of the road
section in terms of lane configuration; b depicts the available speed measurements from floating car data; c depicts the available flow measurements.

Fig. 4. Schematic representation of space-time distribution of data used for
training (marked as circles, for both stationary loop detector and floating car
data); and respective data for testing (marked as ’x’) using raw speed and
flow observations as well as regularly placed test locations (G) evaluating
the physical compliance with the given FD.

The set of all available trajectories is split in half, using one
half of the contained speeds for training of the network, and
the other half for testing. Flow data of every second detector
position along the road is used as test data. This gives the
entire approach the structure as shown in Figure 4 with
observation points as well as the grid evaluation points G for
the physical compliance of the neural networks measurement
models with the chosen fundamental diagram. We train the
network on a machine with Intel Xeon CPU, 64GB RAM
and an Nvidia Quatro RTX 4000. One training run takes
approximately one hour.

C. Results

The estimation results of flow q̂ and speed v̂ in the entire
considered space-time domain with the four methods (ASM,
NN, PIDL-Greenshields and PIDL-trapezoidal) is shown
in Figure 5. The results are based on the predictions on
grid G using the trained network. Speed and flow errors
are computed using the test data sets. The density error
is computed using space-times for which test speeds as
well as test flows are available, which allows to estimate

a density. Although the first impression suggests that overall
all four methods result in similar results, differences are
clearly visible. The traffic state estimation in Figure 5a-b
based on ASM [35] clearly estimates traffic states along
the propagation directions of free-flow and congested traffic
states. The unconstrained neural network approach in Figure
5c-d that learns θq and θv without physical constraints
by minimizing Lq + Lv shows many inconsistencies in
space-time, where locally large estimations errors could be
expected. Contrary, the results of traffic state estimation with
PIDL with Greenshields’ fundamental diagram (Figures 5e-
f) and with the trapezoidal fundamental diagram (Figures
5g-h) do not only show less inconsistencies in space-time,
but also appear to have smoother transition phases. For the
trapezoidal fundamental diagram from Eqn. 8, the learning
based on minimizing Eqn. 9 finds λ = 0.251. Comparing
ASM and PIDL, we find that especially for flow, PIDL
appears to be less sensitive for small variations that lead
to fine trails in ASM, but are dispersed in PIDL. Using the
predictions for speed v̂ and flow q̂, the predicted density ρ̂
in the entire space-time domain can be computed. Figure
6 shows the estimation for the trapezoidal fundamental
diagram. We find the expected, smoothed pattern, but im-
portantly we can observe a remarkable difference between
the two jams occurring at 10 km and 20 km that are not
directly apparent from Figure 5. The first jam is associated
with an accident near a motorway interchange, while the
second stop-and-go jam is most likely resulting from the
negotiations of the motorway interchange at 20 km. However,
according to Figure 6, the mega jam at 10 km can be split
into two phases from 13:10 to 14:10 and 14:10 to 15:10.
Consequently, the PIDL-based data fusion as used here for
traffic density estimation allows to advance the understanding
and evaluation of congestion.

To understand the estimation results from another perspec-
tive, we derive the fundamental diagram for each estimation
method for the entire space-time domain. The resulting
fundamental diagrams are shown in Figure 7. While we find



Method RMSEv RMSEq RMSEρ
[km/h] [1/min] [1/km]

ASM 13.432 3.44799 12.975
Standard NN 14.465 6.43162 16.525
Greenshields FD 13.106 5.68028 13.239
Trapezoidal FD 12.673 4.98380 12.781

TABLE I
EVALUATION OF THE ESTIMATION ERRORS OF THE FOUR TRAFFIC

ESTIMATION METHODS FOR SPEED v, FLOW q AND DENSITY ρ.

that all four methods recover a convincing free-flow branch
from the data, the congested branch exhibits substantial
differences. First, from all four methods, the ASM in Figure
7a recovered, as expected from its design, the upper limit of
the congested branch convincingly. Second, the other three
methods exhibit substantial scatter with the NN approach in
Figure 7b having the most observations above the underlying
fundamental diagram’s upper limit. However, this is as
expected as there is no constraint or limit imposed that could
ensure such a behavior in the estimation. Third, the two
PIDL approaches in Figures 7c-d still exhibit scatter. Future
research will investigate likely causes for this behavior. It can
be concluded that the PIDL approaches lead to a reduction
in scatter compared to an unconstrained neural network and
that in the present problem formulation the ASM’s physical
constraints seem to regularize the traffic state estimation too,
if not better than the rather simple PIDL approaches.

Last, using the test data of stationary loop detector and
floating car data (10 % of the entire sample), we can com-
pare the accuracy of the reconstructed speed and flow in
t and x as LTest

q and LTest
v of each estimation method.

Table I summarizes the mean errors for flow, speed and
density. We find that the standard NN approach has the
worst performance, while ASM outperforms in the flow
estimation and the two PIDL approaches provide the best
speed and density estimates. The increased flexibility by the
smoothed trapezoidal fundamental diagram lead to a decrease
in the speed and density error. We expect that relaxing the
constraint of a uniform λ in space and time will improve the
estimation further. To summarize, we find that the proposed
data fusion approach based on PIDL is at least as good as
the existing the ASM approach, with chances to outperform
especially in the speed and density estimation.

IV. CONCLUSIONS

In this paper we showed how advances in deep learning
with physical constraints can be used for traffic state es-
timation, in particular for fusing stationary loop detectors
(Eulerian observations) and floating car data (Lagrangian
observations) to reconstruct traffic density along a long
road section. We tested the physical-informed deep learn-
ing (PIDL) approach using Greenshields and a trapezoidal
fundamental diagram to satisfy the continuity equation of
traffic flow. We found that PIDL performs as least as good
as ASM, but provides an opportunity to improve traffic
density estimation. In particular, the integration of the LWR

model in deep learning shows that PIDLs integrates valuable
information into the data fusion problem: qualitatively as
the results are less prone to overfitting as well as the
moving jams are reconstructed more accurately. This finding
is confirmed by a quantitative evaluation of the estimated
speed and flow values. Further, we found that using the
smoothed trapezoidal fundamental diagram achieves higher
values than the simpler Greenshields model. Arguably, using
a flexible λ, the smoothed trapezoidal fundamental diagram
is able to calibrate to the prevailing situation.

Future research will investigate how the traffic density
estimation can be improved by allowing λ to vary over space
and time. We expect that this will not only improve the
quality of estimation, but also provides new ways to assess
motorway performance. This can range from section control
to effects of heterogeneous traffic. Further, the possibility to
integrate existing standard data fusion approaches, e.g., [12],
[13], deep convolutional neural nets, e.g., [39], or higher
order macroscopic traffic flow models [21], [26] should
be scrutinized. Finally, possibilities to use physics-informed
deep learning for online traffic state prediction as well as
congestion type identification should be explored as such an
approach increases the compliance of results with physics.

In closing, we have shown in this paper that the oppor-
tunities provided by deep learning can prove useful for the
analysis of traffic flow. In particular, as traffic density, almost
immeasurable at large scale, can be inferred, but it has to be
accepted that many parameters are estimated that bare any
physical interpretation, at least for the time being.
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