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ABSTRACT1
Tradable Credit Schemes (TCS) are gathering increasing attention in the transportation sector as2
an alternative to traditional pricing measures. TCS could foster the shift to more sustainable modes3
and limit the production of negative externalities while promoting social justice and equity. Cur-4
rent research has a strong focus on modeling market equilibrium prices, charging designs, social5
acceptance, and equity aspects. However, most modeling approaches have to make assumptions6
about user preferences due to a lack of empirical evidence on user’s behavior in such a system.7

This paper presents the results of a stated mode choice experiment with over 1,000 par-8
ticipants conducted in Munich, Germany, to examine the trade-offs between travel time, private9
and external travel costs, and other level-of-service attributes within a TCS. A Mixed Multinomial10
Logit (MMNL) model applied to the data collected revealed three main findings. First, the re-11
sults confirm that the participants seem to understand the TCS in spite of its complexity and they12
behave rationally. Secondly, respondents reacted more sensitively to credit charges the smaller13
their monthly remaining credit budget was and the more days of the month were left. Finally, the14
variance of the associated values of travel times was found to be largest for cars, indicating higher15
mean values and hence greater discomfort when considering their external costs. To conclude, this16
paper sheds light on mode choice preferences in the context of a hypothetical TCS and suggests17
directions for future research.18

19
Keywords: Tradable credit scheme, Tradable mobility credits, discrete mode choice experiment,20
choice modeling21
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INTRODUCTION1
Over the past century, the transport sector has become a key economic activity providing countless2
benefits to society and sustaining millions of jobs worldwide. However, mobility-related activities3
also have significant negative impacts on human life and the ecosystem, such as their contribution4
to global warming, air and water pollution, accidents, and sprawl (1). The prominence of the effects5
of climate change and the growing social demands to address them are pushing governments to6
develop ambitious plans to radically reduce the externalities of the transport sector, promote the7
shift to more sustainable transport modes, and internalize external costs, thus ensuring that the full8
cost of their transport is borne by the users rather than by the society as a whole (2).9

In urban areas, a wide variety of strategies have been proposed and implemented to mit-10
igate the environmental impacts of transport, reduce traffic congestion, and enhance liveability.11
These strategies include informative, regulative, and economic measures. The latter categories are12
particularly promising and can be subdivided into two groups: price control measures and quantity13
control measures. Congestion charging, for example, is a price control mechanism that consists14
of charging travelers an amount equal to the marginal externalities they impose on society (3–6).15
Conversely, quantity control measures, such as Tradable Credits Schemes (TCS), aim at influ-16
encing individual demand for motorized trips and regulating traffic flows by limiting the allowed17
production of externalities.18

TCS are cap-and-trade policy instruments that originated in the field of environmental eco-19
nomics for pollution control (7). They consist of the introduction of property rights for the afore-20
mentioned production of externalities, which are valued and circulated in a market to achieve opti-21
mal allocation. In the urban transportation field, (8) and (9) were among the first to investigate the22
possibilities of TCS to reduce emissions and mitigate congestion. As an example, we illustrate the23
fundamentals of TCS based on the so-called MobilityCoins system, a TCS proposed in (10) –and24
further developed in (11–13)– in which this research is framed. In a nutshell, in the MobilityCoins25
system eligible users receive periodically a credit budget, which accounts for a given amount of26
transport externalities (e.g., CO2 equivalent emissions). When a user undertakes a trip, the cor-27
responding credit amount is subtracted from her budget. This amount is decided by the agency28
issuing the coins depending on the transport mode, engine type, route, and period of the day of the29
trip. Importantly, the usual ownership and operational costs (e.g., lease, fuel, vehicle maintenance,30
and public transport tickets) are paid as normal with coins on top. If users require additional credits31
to meet their mobility needs, or if they have a credit surplus, they can trade with other citizens on32
the MobilityCoins market. As a distinctive aspect with respect to other proposed credit schemes,33
the MobilityCoins system incentivizes the shift to active-mobility modes by rewarding bicycle trips34
with a small amount of credits (i.e., substantially lower than the credit charge for an equivalent mo-35
torized trip, but high enough to influence mode choice). Trips by foot are excluded of this incentive36
as this would require digital tracking and processing of all pedestrian movements, as well. Addi-37
tionally, the MobilityCoins system introduces the novel idea of giving the users the possibility to38
invest their remaining credits on infrastructure improvements through crowdfunding, e.g., to build39
additional cycle lanes or to increase the frequency of a given bus line. Thus, the public’s role in the40
transport planning process shifts from passive to active, and a balancing mechanism is introduced41
between the transportation demand and supply sides (14).42

Numerous publications have discussed the strengths of TCS in comparison to alternative43
travel demand management measures such as congestion pricing or license plate rationing (15, 16).44
First, TCS do not only reduce the attractiveness of using motorized vehicles, but they also provide45
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direct incentives to users of sustainable modes (i.e., citizen who travel sustainably will have credit1
surplus, which can be sold on the market). Besides, TCS outperform congestion pricing in terms2
of social justice, since they avoid imposing a high tax burden on the poor while only marginally af-3
fecting the wealthy, and equity, as the revenue generated within the system is redistributed among4
the users. Interestingly, advocates of TCS argue that these schemes could enjoy greater social ac-5
ceptance due to their government budget-neutrality and the initial free allocation of credits (17).6
Finally, a crucial key strength of TCS is that they allow a better quantity control of the system’s7
goal –e.g., the overall emissions– in a context of uncertainty over the agent’s price response func-8
tions (18, 19). On the downside, the complexity of the system is one of the main drawbacks of9
TCS, making them difficult to implement and hard for the public to understand (20).10

Existing literature on TCS has mostly focused on aspects such as the pricing of credits11
and the influence on emissions (21, 22), market design (23), modeling of user and market equilib-12
rium (24), and public acceptance and equity aspects of such schemes (17, 20, 25). The interested13
reader is referred to (16) for a comprehensive review of different schemes and to (26) for a frame-14
work guiding their practical implementation. However, the empirical behavior of the users within a15
TCS has remained largely unstudied. Among the exceptions, (15, 27) conducted surveys in Beijing16
and the Netherlands to analyze the likelihood of changing car use in response to a TCS. Recently,17
(28) provided the first real-life evidence of TCS’s ability to manage actual scheduling decisions.18
As illustrated, existing research lacks a disaggregated analysis of the potential impacts of TCS19
on mode choice. In this paper, we seek to address this gap by presenting the results of a stated20
mode choice (SC) experiment conducted to examine the trade-offs between travel time, private21
and external travel costs, and other level-of-service attributes in a multimodal TCS.22

The remainder of this paper is organized as follows: Section 3 provides an exposition of23
the methodology and modeling framework employed to investigate the disparities in mode choice24
preferences in a situation where a TCS is absent or present. Section 4 presents a summary of the25
findings from a Mixed Multinomial Logit (MMNL) model and examines the sensitivity of external26
travel costs as well as the corresponding values of travel time (VTT). Lastly, Section 5 provides a27
conclusion that highlights the novel insights gained, limitations of the proposed method, and future28
research directions.29

METHODOLOGY30
This section outlines the methodological approach to investigate peoples’ mode choices and at-31
tributes that drive their decisions when trading-off between different means of transport for various32
trip purposes. With regards to the challenges the transport sector has been confronted with, many33
hypotheses evolve around the choice of a mode not only in an existing, but rather hypothetical34
transport system, such as TCS for example. SP surveys therefore often contain a stated choice35
(SC) experiment, which allows to introduce and test the effect of such a scenario on mode choice.36
As such, SP data are rich in attribute trade-off information and hence useful for forecasting changes37
in behavior, but may be limited by the imposed (lack of) realism of the choice context (29). The38
main features of the survey discussed in this paper are two experiments - the first one resembles39
the choice of modes in a status quo scenario (SQ), the second accounts for the introduction of the40
mobility budget and TCS to understand the differences between these regimes.41
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Survey1
The survey software (Qualtrics) was used to implement and conduct the survey online (this includes2
mobile phones). The questionnaire was divided into six parts:3

1. Socio-demographic profile on personal and household level (e.g., age, gender, educa-4
tion, occupation, household composition/-income, residential location, etc.)5

2. Mobility tool ownership and behavior:6
• Tools: Public transport subscriptions, driver’s license, car ownership and availability7
• Behavior: Simplified travel diary, distance classes for work/education, leisure, errands8

3. Attitudes and personality9
4. Mode choice experiment 1 (status quo; SQ)10
5. Introduction of TCS:11

• Mobility budget and allocation12
• Willingness-to-pay (WTP) and willingness-to-sell (WTS)13

6. Mode choice experiment 2 (TCS)14
In part 5, the TCS framework was introduced formally and user preferences as well as15

behavioral responses to a TCS were measured. It included questions on designs of the initial16
credit allocation (mobility budget) and the WTP/WTS for extra/excess credits (see (11) for de-17
tailed results). Last but not least, the respondents were then presented with another mode choice18
experiment, similar to part 4, but under the constraint of a mobility budget for external costs.19

Experimental design20
As previously mentioned, the survey contained two experiments in order to account for the exis-21
tence of different scales of choices (i.e., variance in choices) between the two regimes. Therefore,22
two sets of designs were created. For each regime there are 8 designs according to 4 trip distance23
classes (0-3, 3-6, 6-12 and longer than 12 kilometers) and the respondent’s car availability (i.e.,24
ownership of a driver’s license and actual household car availability). Furthermore, and based on25
the distance class, 4 alternatives were available or not: walking, cycling, car, and public transport26
(PT). The variation of attribute levels increased with the underlying length of a reference trip to27
create reasonable trade-offs between the alternatives, and to have trip lengths that slightly overlap.28
Moreover, three trip purposes were distinguished: work/education, errands, and other leisure ac-29
tivities. These are so-called "scenario" variables and were not explicitly included as an attribute30
since they were constant between different choice tasks of an individual, but varied between them.31

In the end, 16 D-efficient pivot designs were implemented using NGene (30, 31). Weak32
priors were used for travel time and cost attributes. Each design was divided into 4 to 5 blocks. In33
total, a respondent was faced with 12 choice tasks - 6 mode choice tasks in each regime.34

The participants were assigned to one block of an experimental design for each regime.35
However, in order to have an approximately even distribution of trip lengths over the whole sample,36
the trip distance class was chosen randomly for each respondent. The trip purpose assignment was37
partially random, but dependent on the employment status. Only designs with a car alternative38
available could be assigned to respondents actually owning a driver’s license and having access to39
a car in their household.40

Design of reference values in a TCS system. For both studied regimes, reasonable values41
for the private costs as well as a reasonable TCS design must be presented to the respondents in42
order to obtain meaningful choices. Thus, the following assumptions are made:43

• TCS scheme is implemented in the city of Munich. Hence, the following values are as-44

https://www.qualtrics.com/uk/core-xm/survey-software/
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sumed: average travel distance of 40 kilometers per day and 3.2 trips per day. The modal1
share in terms of kilometers is 56% private transport, 36% public transport, 5% cycling,2
and 3% walking (32). The kilometer cost for private transport is 0.5 Euro, 1.30 Euro for3
public transport trips shorter than 1.5 kilometers, and 2.50 Euro for public transport trips4
longer than 1.5 kilometers.5

• The target of the scheme is to reduce car travel in terms of kilometers by 15%.6
• A monthly budget is set at 1,000 credits for every citizen, divided by the monthly total7

travel production, this results in approximately 5/6 credits per travel-km.8
• The assigned budget suffices to make all trips using public transport during a month9

without buying any additional credits on the market.10
• A ratio of 2:1 is set between the credit charges for cars and public transport trips based11

on their external costs in Munich (33).12
Then, the following steps are taken to generate the reference values for the attribute levels13

in the designs. First, representative trips between the 25 city districts of Munich are queried using14
Google’s directions web service. For every trip, the mode alternatives walking, cycling, driving,15
and public transport are requested and their values stored. Second, the reference travel time at-16
tribute levels are defined as the values obtained from the web service, while the reference levels for17
the private cost attributes are calculated using the trip distance and the assumed values (see above).18
Third, the trip credit charges as well as market prices are calculated as follows:19

(i) the target per-capita travel production (i.e., modal share) is computed based on the20
15% reduction factor for car travel, assuming that half of the reduction is shifted to21
cycling and half to public transport;22

(ii) the credit charges for all public transport trips obtained from Google’s directions23
web service are set to the trip distance times 5/6 credits per travel-km, i.e., the initial24
1,000 monthly credit budget divided by the monthly travel production per capita to25
ensure that all public transport travel does not require any additional credits.26

(iii) the charges for car trips are computed by using the assumed 2:1 ratio. The charges27
for bicycle trips, in this case subsidy, are set to 10% of the public transport charge.28
The charges for walking trips are set to zero.29

(iv) the market price for credits is obtained using a discrete mode choice model built30
using values for Munich and the German value of time (34, 35), where the credit31
charges enter the generalized cost of travel through their market price and the value32
of time. We then search for each origin-destination pair for the credit market price33
where the observed credit spending equals the available budget, i.e., market clearing34
balance. This leads to a distribution of market prices with an average market price of35
around 0.5 Euro per credit. To account for the possibility of varying market prices,36
the price was pivoted as well. As such, three market price levels were implemented:37
0.25, 0.5 (reference price), and 1.25 Euros per credit.38

Furthermore, two attributes with respect to the mobility budget in a TCS are of interest: the39
remaining budget of MobilityCoins (in percentage) in a given month and the number of days into40
a month. Both are likely to have an impact on cost sensitivity in the decision-making process and41
should therefore be controlled for. In this sense, we expect that –ceteris paribus– the disincentive42
to use credit-demanding modes (i.e., car and PT) is stronger as the remaining budget decreases and43
more days of the month are left. The levels of the remaining share of budget left at a given day44
into a month were 25, 50, and 75%, while those for the days into month attribute were 15, 20, and45
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25 days.1
Fig. 1 presents an example choice task for both the status quo and the TCS regime to2

illustrate the outcome of an experimental design.3

Sample recruitment4
In the survey, we contacted a representative sample of 10,000 inhabitants of Munich, Germany.5
Their postal addresses were provided by Munich’s registry office, and each of them received an6
invitation letter with a unique code they could use to access an online form. Upon completion of7
the survey, respondents received a 15 EUR voucher as an incentive. The sample was restricted8
to residents aged between 18 and 80 years old and having their official residence within the city9
boundaries. To evaluate the survey design, 500 individuals were invited to participate in a pre-test10
survey in June 2022, achieving a 14,6% response rate (11). Subsequently, we implemented some11
minor improvements in the design and invited the remaining 9,500 individuals. The data collection12
spanned between July and October 2022 and, including the pre-test, a total of 1,349 individuals13
completed the survey (13,5% response rate).14

Modeling approach15
The following model formulation represents the MMNL model applied to the data at hand. In16
Section 4 we present the results of both our MNL and MMNL models.17

Each mode/alternative i for an individual n in model component m and choice task t is18
associated with a utility Ui,n,m,t = Vi,n,m,t + εi,n,m,t with Vi,n,m,t = f (β ) referring to the observed19
and εi,n,m,t to the random (unobserved) part of it. The observed part Vi,n,m,t relates to a vector of20
parameters β that is estimated based on the attributes given in the choice experiment and sociode-21
mographic variables of the respondents. For the MMNL, to account for the random heterogeneity22
across decision-makers, we assume βn∀n with density f (β |Ω), where Ω is a vector of parameters23
of this distribution (i.e., its mean and variance). Since we have multiple choices per individual, the24
likelihood of the sequence of choices for individual n is given by Pn(Ω) (see Eq. (1)), assuming25
that sensitivities vary across individuals, but stay constant within. i∗n,m,t represents the individual’s26
chosen alternative i in model component m and choice task t. The MMNL model is estimated by27
means of Maximum Simulated Likelihood (MSL) where the simulated log-likelihood (SLL, see28
Eq. (3)) is the probability of reproducing each choice in the sample and βr,n,m gives the rth draw29
from f (β |Ω) for individual n.30

Pn(Ω) =
∫

β

T

∏
t=1

M

∏
m=1

Pn,m,t
(
i∗n,m,t |β

)
f (β |Ω)dβ (1)

LL(Ω) =
N

∑
n=1

ln

(∫
β

[
T

∏
t=1

M

∏
m=1

Pn,m,t
(
i∗n,m,t |β

)]
(β |Ω)dβ

)
(2)

SLL(Ω) =
N

∑
n=1

ln

(
1
R

R

∑
r=1

[
T

∏
t=1

M

∏
m=1

Pn,m,t
(
i∗n,m,t |βr,n,m

)])
(3)

We estimate a pooled MMNL model parametrized in willingness-to-pay (WTP) space. The term31
"pooled" refers to parameters that are calibrated jointly across both model components. The utility32



Schatzmann, Álvarez-Ossorio, Loder, Axhausen, Bogenberger 8

(a) Status quo regime

(b) TCS regime

FIGURE 1: Example mode choice tasks of the two experiments
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equations Vi,n,m,t are given by:1

VW,n,SQ,t = αW + sn,tκW +ψn,t
(
xtc

W,n,SQ,t + xtt
W,n,SQ,tV T TW,n,t

)
+ vSQ,tγW (4)

VB,n,SQ,t = αB + sn,tκB +ψn,t
(
xtc

B,n,SQ,t + xtt
B,n,SQ,tV T T B,n,t

)
+ vSQ,tγB (5)

VC,n,SQ,t = αC + sn,tκC +ψn,t
(
xtc

C,n,SQ,t + xtt
C,n,SQ,tV T TC,n,t

)
+ vSQ,tγC (6)

VPT,n,SQ,t = ψn,t
(
xtc

PT,n,SQ,t + xtt
PT,n,SQ,tV T T PT,n,t + xPT,n,SQ,tWT PPT

)
(7)

VW,n,TCS,t = ωTCS

(
αW + sn,tκW +ψn,t

(
xtc

W,n,TCS,t + xtt
W,n,TCS,tV T TW,n,t

)
+ vTCS,tγW

)
(8)

VB,n,TCS,t = ωTCS

(
αB + sn,tκB +ψn,t

(
xtc

B,n,TCS,t + xtt
B,n,TCS,tV T T B,n,t

)
+

xmb
B,n,TCS,tι

mb
TCS + vTCS,tγB

) (9)

VC,n,TCS,t = ωTCS

(
αC + sn,tκC +ψn,t

(
xtc

C,n,TCS,t + xtt
C,n,TCS,tV T TC,n,t

)
+

xmc
C,n,TCS,tτ

mc
TCS + vTCS,tγC

) (10)

VPT,n,TCS,t = ωTCS

(
ψn,t

(
xtc

PT,n,TCS,t + xtt
PT,n,TCS,tV T T n,t + xPT,n,TCS,tWT PPT

)
+

xmc
PT,n,TCS,tτ

mc
TCS

) (11)

with:2
• ωm: Parameter to account for scale differences (error variance) between the two model3

components in pooled estimation (36); m ∈ {SQ,TCS} (SQ = reference; ωSQ = 1)4
• αi: Alternative-specific constant (PT = reference; αPT = 0)5
• sn,t : Vector of trip-specific and sociodemographic attributes as a shift on the ASC’s6
• κi: Vector of parameters for sn,t7
• ψn,t : Scale parameter of VTT & WTP attributes (see Eq. (12))8
• xtc

i,n,m,t : Private travel costs9
• xtt

i,n,m,t : Travel times10
• V T T i,n,t : Vector of VTT parameters (see Eq. (13))11
• xPT,n,m,t : Vector of trip-specific PT attributes (e.g., access & egress time, number of12

transfers, frequency; excluding PT private travel costs and travel time)13
• WT PPT : Vector of PT-related WTP parameters14
• xmc

i,n,TCS,t : Vector of MobilityCoin expenses (external travel cost for car and PT)15
• τmc

TCS: Vector of parameters for xmc
i,n,TCS,t16

• xmb
B,n,TCS,t : Vector of MobilityCoin revenues (external travel incentive for bicycle)17

• ιmb
TCS: Vector of parameters for xmb

B,n,TCS,t18
• vm,t : Vector of scenario attributes (e.g., weather, bike lane quality)19
• γi: Vector of parameters for vm,t .20
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For models parametrized in WTP, the overall model scale is a product of the scale parameter of the1
extreme value distribution and, as in our case, the private cost parameter. Therefore, the effect of2
scale heterogeneity, which is shared across coefficients, can not be separated from heterogeneity3
in individual coefficients when using univariate distributions (37, 38). The scale coefficient is then4
defined as a function (Eq. (12)) that accounts for heterogeneity in all VTT-related attributes. It5
follows a negative log-normal distribution according to β scale =−exp(µ+σrN) with rN ∼N(0,1).6
The non-linear interaction term with distance distn,t (dist is the sample average) additionally allows7
for heterogeneity with respect to the trip length. We expect a negative δscale, indicating that for8
longer distances, potentially relevant but unobservable features may gain in relative importance,9
which are omitted in the utility function.10

ψn,t =−exp
(

µlog(β scale)+σlog(β scale)rN

)(distn,t
dist

)δ scale

(12)

V T Ti,n,t (Eq. (13)) follows a log-normal distribution according to βV T T
i,n = exp(µi+σi,nrN) with rN ∼11

N(0,1) and thereby accounting for random individual-related heterogeneity in VTT parameters.12
Again, the non-linear interaction term with distance distn,t additionally allows for heterogeneity13
with respect to the trip length. We expect a positive δV T T , indicating that VTTs marginally in-14
crease for longer trip distances. Moreover, we incorporate purpose-specific multipliers z on the15
VTT, κV T T

i,z times a dummy for each pz,n, to account for differences between the three trip pur-16
poses mentioned in Section 3.17

V T Ti,n,t = exp
(

µlog(βV T T
i )+σlog(βV T T

i,n )rN

)(distn,t
dist

)δV T T

∏
z

(
(κV T T

i,z )pz,n +(1− pz,n)
)

(13)

Note that only β parameters in ψn,t and V T Ti,n,t are random in our specification. The models were18
estimated using R (version 4.2.0) and the Apollo package (version 0.2.9) on ETH’s Euler compute19
cluster (39, 40).20

RESULTS AND DISCUSSION21
This section presents the results of the choice model mentioned above and discusses the implied22
effects on mode choice preferences.23

Descriptive analysis24
A total of 1,349 complete responses were collected in 2022. A comparison of the sample compo-25
sition with the most recent mobility census from 2017 in Germany filtered for Bavaria (41) as well26
as local data for Munich revealed two noteworthy differences: our sample over-represents younger27
age cohorts (18-30 & 30-40 years of age) and higher educated people (holding a university degree).28
Therefore, we re-weighted the model outcome using iterative proportional fitting (IPF) based on29
gender, age, education level, mobility tool ownership, and household size.30

Non-trading in choice behavior can be an issue in SC experiments as discussed in (42).31
It generally refers to the situation where a respondent always chooses the same alternative across32
choice tasks for different reasons: extreme preferences, heuristic decision-making, and political33
or strategic behavior. In addition, SP data might exhibit further behavioral bias such as the social34
desirability or lack of consequentiality bias (43). We observed non-trading behavior for 296 indi-35

https://scicomp.ethz.ch/wiki/Euler
https://scicomp.ethz.ch/wiki/Euler
https://scicomp.ethz.ch/wiki/Euler
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viduals in our sample. After comprehensive testing, we decided to remove these for the following1
reasons. First, many of those respondents rushed through the survey having an experiment duration2
time of less than 5 minutes. Second, a substantial share failed the exam question at the end of the3
survey concerning the purpose of a TCS, which indicates that they did not understand the basic4
principles of such a scheme. Last but not least, the MNL models tested with only traders gave5
more reliable results in terms of parameter estimates, model fit, and corresponding VTT values.6

Fig. 2 presents an overview of the choice frequencies for different trip purposes and regimes,7
and MobilityCoin price levels. The modal split in Fig. 2a shows a high cycling share across trip8
purposes and regimes, which might either be related to the mobility behavior of the sample or to9
the experimental design. Regarding the former possibility, the simplified travel diary of the survey10
revealed that more than 40% of the participants ride their bicycle almost daily and another 20%11
on 2-3 days per week. Albeit these are high values, Munich and other comparable European cities12
have seen a substantial increase in cycling usage in the last years (44). Furthermore, due to the13
recruitment strategy of our study, the sample of participants consists exclusively of residents of the14
city of Munich, presumably with higher accessibility to services and jobs and lower needs to com-15
mute by car, and excludes those of the metropolitan area. This would explain the low car shares16
observed in the SC experiment.17

Despite the discussed cycling trend and the use of efficient choice designs, we can not rule18
out the presence of other biases affecting the behavior of the participants. Nevertheless, the ef-19
fect of introducing a TCS is clearly visible across all trip purposes and price levels. Trips with20
work/education purposes experience the strongest reduction in car share (almost 10%) and conse-21
quent growth of the bike mode, with a lower observed increase of public transport. Conversely,22
for errand activities, we observe the smallest reduction in car share, which is distributed evenly23
between car and public transport. This difference is intuitive as public transport, and bikes in par-24
ticular, are poor substitutes of cars for the transport of loads (e.g., groceries). Overall, there seem25
to be only small increases between the regimes for PT, whereas walking is barely affected. Regard-26
ing the market price, introducing the TCS leads to a significant reduction of car share for all price27
levels, but this reduction is strongest for the high market price level. Interestingly, public transport28
share experiences a slight increase for low and medium market price levels, but falls back to the29
status quo level for the high market price. A possible explanation is that, for this market level,30
PT becomes too expensive and its utility degrades excessively in relation to that of the bike mode.31
Thus, with a high market price level, all the reduction in car share is shifted to bike.32

Model results33
The model estimates are presented in Table 1. The discussion focuses on the MMNL 2 model and34
follows the segmentation used in Table 1. The units of the temporal variables are minutes while35
those related to costs are Euros. Building upon the recommendations of (45), the table does not36
present associated p-values. Thus, researchers should recognize the presence of uncertainty and37
should not assume that effects simply exist due to the statistical significance or lack thereof.38

The scale parameter of the TCS model component ωTCS is not significantly different from39
one, which shows that we cannot reject equal error variances between the two experiments. How-40
ever, it is still important to control for it.41

The ASC represent the mean of unobserved factors in the model. For identification reasons,42
one has to be normalized to zero, which is the one for PT in our case. The same principle holds43
for categorical variables, where one level is set as reference to the others. For each alternative,44
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(a) By trip purpose and regime

(b) By market price levels

FIGURE 2: Choice frequencies
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we include shifts on the ASC for different trip purposes and sociodemographic variables. To1
start, all the purpose-specific shifts included are not significantly different from zero, but show2
the expected sign. The coefficients of the non-linear specification for age suggest that –ceteris3
paribus– walking, bike, and car are preferred over PT for younger ages, but the latter two become4
less attractive than PT after retirement age. With regard to car, male and divers people (0.462;5
3.462) are more likely than females to choose car over PT. In contrast, highly educated individuals6
holding a University degree (-0.374) are less prone to do so than people with a lower education.7
Similar –although slightly lower– effects were found for male and divers people (0.368; 1.913) with8
respect to bike. However, higher education does not seem to significantly influence the choice to9
ride a bike compared to lower education levels (0.024) and relative to PT. With respect to the ASC10
for car, neither the base ASC nor any shift turned out to be significant. However, in general, it is11
still important to control for these effects when deriving VTT values.12

The external-cost coefficients for different remaining budgets and days into the month13
(τmc

TCS) are all negative and significant. As shown in Fig. 3, for a given budget at the mean trip14
distance and monthly household income, the sensitivity to the MobilityCoins charge is higher the15
more days are left until the end of the month, as individuals need to distribute their remaining bud-16
get within more days. Conversely, for a given day in the month, individuals are less sensitive to the17
external costs the larger their remaining budget is. Albeit intuitive, both observations confirm that18
the participants understood the complexity of TCS and seem to behave rationally by incorporating19
it into their decision-making process. They also reveal that the same MobilityCoins charge could20
have different impacts on mode choice at different moments in time within a month. Moreover, we21
found that the cost sensitivity marginally decreases with longer trip distances and higher monthly22
household income. While the effect of the latter is lower in absolute magnitude (-0.2 vs. -0.898),23
it is interesting that we found no income effect on all the VTT values (see Section 4.2.1), which in24
our framework only depend on private travel costs. As expected, a MobilityCoins incentive ιmb

TCS25
positively affects the probability to choose a bike.26

The scale was specified as a random continuous parameter in MMNL 2 to possibly reveal27
scale heterogeneity in the VTT values. Interestingly, there does not seem to be random scale28
heterogeneity as the estimated standard deviation σlog(β scale) = 0.166 is not significant (t-ratio =29
1.102). −exp(µlog(β scale)) = −0.178 shows that the parameter is very similar to MNL estimate of30
-0.149. The distance elasticity on the scale parameter yields a decreasing marginal effect for longer31
trip distances (-0.680), which again is comparable to -0.715 in the MNL model and further confirms32
our hypothesis from Section 3.4. This indicates that the VTT values presented in Section 4.2.1 to33
a large extent are driven by randomness in the individual sensitivities.34

By definition, the value of travel time is the extra cost that a person would be willing to35
incur to save one unit of time (46). A higher VTT generally indicates a larger discomfort when36
traveling with that mode if user effects (i.e., sociodemographic effects) are controlled for. The37
VTT estimates presented in the next part of Table 1 were also specified as random continuous pa-38
rameters as explained in Section 3.4. As with the scale parameters, it is important to mention that39
the estimates can not be directly compared between the MNL and MMNL 2 model, as the latter40
are given by the logarithm of it and need back-transformation and sample enumeration to do so.41
We discuss the resulting VTT values in Section 4.2.1. For now, we observe that there is signifi-42
cant random individual heterogeneity in the VTT estimates for all alternatives, with the largest std.43
deviation for cars (see σlog(βV T T

i )). Except for the distance and income elasticity estimates on the44
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FIGURE 3: External-costs-sensitivity for different remaining budgets and day of the month.

VTT, all parameters are statistically significant on the 5% significance level. In contrast to the scale1
parameter, the VTT values are only barely affected by trip distance and household income. Nev-2
ertheless, both show a slightly positive influence and hence partially confirm our expectation from3
Section 3.4. In addition, the alternative-specific multipliers on the VTT yield important differences4
between the modes. Whereas the VTT between commute/education and leisure-related PT trips is5
not significantly different (0.993 vs. 1), the VTT for errands is almost 30% higher (1.294), which6
is often associated with higher discomfort (i.e., mode effect). With regard to the car VTT values,7
we observe a higher value for leisure (35%, 1.359) and a lower one for errands (0.727) compared8
to commute/education trips. The VTT value for leisure seems somewhat counter-intuitive and9
might have picked up unobserved factors (i.e., we did not control for) given that the estimate in10
the MNL model is lower. With respect to walking, the VTT for leisure is lower (0.767, approx.11
24%) compared to commute/education whereas there is no visible difference to errand related trips12
(0.995).13

When looking at the scenario variables, we observe very intuitive and significant estimates.14
Medium and very good cycling lane qualities (a very simplified proxy in the SC experiment for15
cycling infrastructure) show positive effects on the probability to choose a bike (1.127 & 1.475).16
Furthermore, sunny weather has a negative influence on choosing a car in comparison to rainy17
weather and relative to PT (-0.767), while it is associated with substantial positive effects on cy-18
cling (3.882) and walking (2.866). As the estimates show, it is important to at least approximate19
the influence of weather when including active modes in an SC experiment.20

Weighted VTT distributions across alternatives and models21
In order to present a meaningful comparison between the VTT values across alternatives, trip pur-22
poses, and models, we applied weighted sample enumeration, which essentially calculates values23
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for each observation in the data. We used the unconditional posterior distribution that includes1
the draws and hence accounts for uncertainty around the mean, instead of using the conditional2
posterior means which ignores part of the heterogeneity. Fig. 4 summarizes the resulting VTT3
distributions (in C/hour) for each alternative and model, where the dot and solid line represent the4
corresponding mean and median respectively.5

In the case of the MNL model, the median car VTT is lowest (8.3), followed by PT (17.6),6
bike (17.9), and walk (23.5). In many VTT studies, the values for active modes such as walking7
or cycling tend to be higher compared to car and PT since they actually resemble physical activity.8
Note that the median VTT value for PT is relatively high, which might be due to the fact that we do9
not account for crowding, for example. In the context of a city like Munich this could be important.10
Furthermore, we assumed zero private travel costs for persons owning a PT subscription to account11
for mobility tool ownership effects. The median car VTT value observed might (still) be attributed12
to a general preference for cars in Munich even though we removed non-traders from the sample.13
However, as explained in Section 3.2, we decided to have evenly distributed trip distances in the14
SC experiment, leading to a higher mean of trip distances compared to current data and hence15
higher means of VTT values.16

Looking at the VTT values derived from MMNL 2, and taking random heterogeneity into17
account, we generally observe higher median and mean values as well as a larger spread across18
alternatives. This primarily is an artifact of our assumption of log-normally distributed VTT pa-19
rameters, which often exhibit longer tails on the right side of the distribution, what might translate20
into unrealistically high VTT values. Therefore, Fig. 4 is truncated at VTT values of 100 C/hour.21
However, the larger variance in VTT values for bike, car and PT indicate that external travel costs22
or incentives play an important role. This is most pronounced for cars, which then fuels the as-23
sumption that part of the random heterogeneity picked up by the model is related to the assumed24
TCS scenario. This is also supported by the overall higher levels of cost sensitivity for external25
costs in MMNL 2 compared to the more simple MNL model. Based on these results, a TCS regime26
will likely increase the perceived VTT value for car and might shift users away from using it.27

FIGURE 4: VTT comparison between the MNL and MMNL 2 model
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TABLE 1: Estimation results

Reference: PT MNL MMNL 1 MMNL 2

Est. Rob. t-ratio Est. Rob. t-ratio Est. Rob. t-ratio

Scale model component

TCS (ωTCS) 0.973 (−0.810) 0.975 (−0.620) 0.975 (−0.640)

ASC

Car (αC) −1.370 (−1.988) −1.865 (−1.754) −1.886 (−1.462)
Car shift errand (κC) 0.558 (1.702) 0.211 (0.514) 0.366 (0.759)
Car shift leisure (κC) −0.397 (−1.144) 0.040 (0.099) 0.269 (0.621)
Car shift male (κC) 0.330 (3.049) 0.478 (3.011) 0.462 (2.847)
Car shift divers (κC) 1.777 (2.186) 2.913 (1.866) 3.462 (2.052)
Car shift age (κC) 0.057 (2.342) 0.096 (2.817) 0.090 (2.480)
Car shift age sq. (κC) −0.001 (−2.514) −0.001 (−3.044) −0.001 (−2.691)
Car shift high educ. level (κC) −0.343 (−2.922) −0.387 (−2.216) −0.374 (−2.145)
Bike (αB) −3.873 (−7.165) −5.134 (−6.290) −5.174 (−5.375)
Bike shift errand (κB) 0.200 (0.762) 0.252 (0.673) 0.323 (0.615)
Bike shift leisure (κB) 0.101 (0.398) −0.606 (−1.848) −0.411 (−1.097)
Bike shift male (κB) 0.177 (1.956) 0.370 (2.840) 0.368 (2.766)
Bike shift divers (κB) 0.140 (0.124) 1.223 (0.685) 1.913 (0.992)
Bike shift age (κB) 0.060 (3.217) 0.098 (3.462) 0.094 (3.269)
Bike shift age sq. (κB) −0.001 (−2.994) −0.001 (−3.443) −0.001 (−3.270)
Bike shift high educ. level (κB) −0.009 (−0.087) −0.003 (−0.021) 0.024 (0.164)
Walk (κW ) −2.612 (−2.193) −2.855 (−1.858) −2.639 (−1.480)
Walk shift errand (κW ) 0.275 (0.323) 0.456 (0.430) 1.199 (0.936)
Walk shift leisure (κW ) 0.032 (0.037) −0.358 (−0.343) 0.122 (0.099)
Walk shift male (κW ) −0.193 (−1.045) −0.148 (−0.609) −0.169 (−0.649)
Walk shift divers (κW ) 2.187 (3.131) 2.220 (1.737) 2.771 (2.319)
Walk shift age (κW ) 0.049 (1.483) 0.094 (1.828) 0.058 (1.145)
Walk shift age sq. (κW ) −0.000 (−0.817) −0.001 (−1.278) −0.000 (−0.560)
Walk shift high educ. level (κW ) 0.131 (0.663) 0.256 (0.969) 0.261 (0.949)

MobilityCoin expense / revenue

Cost sensitivity (τmc
TCS), with:

75% budget left, 15 days into month −0.037 (−3.510) −0.049 (−3.827) −0.049 (−3.817)
75% budget left, 20 days into month −0.013 (−1.434) −0.041 (−3.333) −0.042 (−3.399)
75% budget left, 25 days into month −0.010 (−0.950) −0.028 (−2.138) −0.026 (−1.891)
50% budget left, 15 days into month −0.080 (−4.541) −0.098 (−5.089) −0.100 (−5.120)
50% budget left, 20 days into month −0.013 (−1.068) −0.063 (−3.489) −0.063 (−3.493)
50% budget left, 25 days into month −0.014 (−1.028) −0.039 (−2.219) −0.038 (−2.165)
25% budget left, 15 days into month −0.081 (−5.975) −0.127 (−7.613) −0.128 (−7.555)
25% budget left, 20 days into month −0.053 (−4.276) −0.096 (−5.678) −0.097 (−5.643)
25% budget left, 25 days into month −0.058 (−4.166) −0.081 (−5.291) −0.080 (−5.075)
Distance elasticity (δ mc,dist

TCS ) −0.785 (−7.881) −0.902 (−12.328) −0.898 (−12.024)
Income elasticity (δ mc,inc

TCS ) −0.302 (−2.766) −0.215 (−2.326) −0.200 (−2.179)
Revenue/incentive sensitivity (ιmb

TCS) 0.199 (2.003) 0.291 (2.279) 0.286 (2.247)

Scale parameter

Continued on next page
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Table 1 – Continued from previous page

Reference: PT MNL MMNL 1 MMNL 2

Est. Rob. t-ratio Est. Rob. t-ratio Est. Rob. t-ratio

Mean scale (µlog(β scale)) −0.149 (−8.009) −1.731 (−14.345) −1.725 (−13.248)
Sd scale (σlog(β scale)) 0.133 (1.814) 0.166 (1.102)
Distance elasticity scale (δ tc,dist

TCS ) −0.715 (−6.514) −0.654 (−9.394) −0.680 (−9.765)

VTT (mean & sd) & WTP indicators

Mean VTT PT (µlog(βV T T
PT )) 0.402 (5.084) −1.281 (−5.089) −1.099 (−3.135)

Mean VTT Car (µlog(βV T T
C )) 0.296 (2.822) −0.855 (−2.605) −0.903 (−2.532)

Mean VTT Bike (µlog(βV T T
B )) 0.411 (5.283) −0.483 (−3.236) −0.487 (−2.902)

Mean VTT Walk (µlog(βV T T
W )) 0.540 (3.451) −0.288 (−1.180) −0.417 (−1.295)

Sd VTT PT (σlog(βV T T
PT )) −1.000 (−10.286) −0.862 (−5.903)

Sd VTT Car (σlog(βV T T
C )) −1.218 (−8.821) −1.161 (−7.662)

Sd VTT Bike (σlog(βV T T
B )) 0.625 (14.423) 0.612 (13.566)

Sd VTT Walk (σlog(βV T T
W )) 0.459 (7.343) 0.447 (7.286)

Multiplier PT leisure (κV T T
PT,leisure) 0.893 (4.944) 1.152 (5.148) 0.993 (4.838)

Multiplier PT errand (κV T T
PT,errand) 0.628 (3.949) 1.459 (4.796) 1.294 (3.295)

Multiplier Car leisure (κV T T
C,leisure) 0.443 (1.461) 1.263 (3.747) 1.359 (3.787)

Multiplier Car errand (κV T T
C,errand) 0.444 (1.548) 0.647 (3.722) 0.727 (3.786)

Multiplier Walk leisure (κV T T
W,leisure) 0.731 (3.514) 0.716 (4.559) 0.767 (3.578)

Multiplier Walk errand (κV T T
W,errand) 0.755 (3.234) 0.793 (4.640) 0.955 (3.557)

Multiplier Bike leisure (κV T T
B,leisure) 0.853 (6.598) 0.687 (9.509) 0.730 (7.239)

Multiplier Bike errand (κV T T
B,errand) 0.693 (5.568) 1.062 (9.114) 1.052 (6.321)

Distance elasticity VTT 0.541 (4.011) 0.047 (0.810) 0.067 (1.054)
Income elasticity VTT 0.018 (0.501) 0.017 (0.425)
WTP PT access/eggress time 0.118 (1.799) 0.231 (3.272) 0.227 (2.552)
WTP PT frequency 0.064 (1.344) 0.160 (3.274) 0.156 (2.900)
WTP PT transfers 0.713 (3.418) 1.101 (4.352) 1.057 (3.885)

Scenario variables (normalized for rain and bad bike lane quality)

Bike lane medium quality (γmedium q.,t ) 0.763 (10.974) 1.125 (12.087) 1.127 (12.040)
Bike lane good quality (γgood q.,t ) 0.942 (13.870) 1.477 (15.040) 1.475 (14.945)
Car sunny weather (γC sun,t ) −0.381 (−4.511) −0.770 (−7.326) −0.767 (−7.263)
Bike sunny weather (γB sun,t ) 2.829 (29.240) 3.884 (26.571) 3.882 (26.538)
Walk sunny weather (γW,t ) 2.107 (12.732) 2.873 (12.020) 2.866 (11.981)

LL(0,SQ) -6283.166 -6283.166 -6283.166
LL(final,SQ) -4594.511 -4184.881 -4181.870
LL(0,TCS) -6539.372 -6539.372 -6539.372
LL(final,TCS) -4738.993 -4329.226 -4328.746
LL(0,model) -12822.537 -12822.537 -12822.537
LL(final,model) -9333.504 -8106.550 -8110.860
Adj. rho squared (model) 0.272 0.367 0.367
# respondents 1053 1053 1053
# observations 11172 11172 11172
# parameters 72 78 78
# draws 0 500 1000
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1

CONCLUSION2
This paper presents first findings concerning mode choice preferences within the framework of3
a Tradable Credit Scheme in the city of Munich, Germany. The main objective of the TCS is4
twofold: Firstly, to curtail the usage of less sustainable transportation modes, and secondly, to5
promote more sustainable alternatives by implementing a monthly mobility budget in the form of6
MobilityCoins. These coins account for both the external costs and benefits associated with the7
modes under consideration. To investigate heterogeneity of choice behavior in such a context,8
we conducted a survey that contained two SC experiments. One resembling the choice between9
walking, cycling, car, and PT in a status quo regime, and one where we hypothetically introduced10
the TCS paradigm.11

A descriptive analysis of the data gathered revealed that the implementation of a TCS leads12
to significantly lower car shares for all considered trip purposes and credit market price levels. The13
bicycle share experiences the largest increase, whereas PT only slightly gains and walking remains14
unaffected. We estimated a Mixed Multinomial (MMNL) choice model to investigate sensitivities15
to external travel costs and to derive values of travel time for each mode considered. First, and16
with respect to the external travel costs, the respondents showed greater cost sensitivity the lower17
the remaining budget was and the fewer days they were into a given month. Given the complexity18
of the experiment, we can conclude that the respondents showed rational choice behavior when19
confronted with mobility budget constraints. Second, the derived median VTT values are higher20
across all modes when accounting for random heterogeneity in a TCS. However, we observed the21
largest variance in VTT values for cars, presumably induced by higher external costs that influence22
the perceived overall cost.23

This paper aims to fill a current gap in the literature by presenting the first SC experiment24
and mode choice model considering a TCS regime. The study leverages an elaborated choice25
design and relies on a thorough sample recruitment plan. As with everything, there are limitations26
to our work. First and foremost, our approach did not allow an investigation into real-world trading27
of MobilityCoins in the market. Secondly, the scope of the study is confined to the city of Munich.28
Lastly, the choice model applied is based on the assumption of log-normally distributed parameters,29
which can lead to VTT estimates that are not necessarily supported by the data. For future work,30
it would be of interest to conduct a paired SC and market-trading experiment, and explore feasible31
TCS design parameters in combination with macroscopic and agent-based models.32
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