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ABSTRACT1

Public transportation strikes have a long-standing tradition in transportation research for analyzing2

their impact on individual mode choice and collective traffic performance, e.g., congestion levels3

or traffic speeds. In March 2023, Munich was twice affected by a one-day strike of almost all road-4

based transportation services. We use this natural experiment to empirically analyze the impact of5

public transportation operations on Munich’s network traffic using the macroscopic fundamental6

diagram (MFD) and data from 770 loop detectors. The MFD theory predicts that the MFD’s shape7

also depends on public transportation operations, the so-called 3D-MFD: the absence of public8

transportation is expected to increase network capacity and critical density. We find that on strike9

days, the inflow of cars into the city increases by around 15%, suggesting that some previous10

public transportation travelers changed to the car. Further, we find the expected change in the11

MFD shape, with the MFD capacity increasing by 4.7% and the critical occupancy by 8%, while12

data also suggests a slight increase in free-flow speeds. Interestingly, we see that on the Friday13

strike day compared to the Monday strike day, peak spreading behavior in the afternoon avoided a14

network breakdown. Overall, we conclude that the increase in the capacity in car passenger travel15

production due to the absence of public transportation was only one-third of the lost capacity in16

public transportation passenger travel production based on conservative estimates of bus occupancy17

levels.18

Keywords: Strike; Public Transportation; Traffic Analysis; Capacity; Speed; Moving Bottleneck;19

MFD20
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INTRODUCTION1

Strikes are considered natural or forced experiments and have been used in transportation research2

to investigate various aspects, such as their impacts on congestion and travel mode choice. For3

example, analyses of the 2003 Los Angeles public transportation strike show that congestion wors-4

ened substantially even though public transportation usually sees only a small fraction of the overall5

travel demand (1, 2). The “congestion relief” benefit of public transportation and the external cost6

of strikes are found to be substantial, stressing the importance of public transportation provision7

and subsidies in reducing car externalize (2–4). While the reasons for a behavioral change during a8

public transportation strike presumably only be obtained through questionnaires (5, 6), the primary9

data source for assessment of strike impacts on traffic performance are loop detector data (2, 7) and10

floating car data (4).11

Strike-related traffic analyses have mainly focused on arterials or highway speeds, pre-12

sumably as economic assessments are based on losses in travel time and the value of travel time13

savings (3, 8). While speed might be informative from an economic perspective and for individual14

travelers, public transportation operations impact traffic flow, e.g., reduced corridor capacity due15

to mixed traffic (9, 10) as buses have additional stops (11), buses are moving bottlenecks (12–14)16

and some even designated time-table speeds (15), and public transportation priority at intersections17

(16–19). In other words, there is an impact on the network performance too. However, there has18

been, so far, less focus on this collective impact on traffic flow and network performance.19

Here, the macroscopic fundamental diagram (MFD) provides a unique methodological op-20

portunity to study the strike impact on the overall network performance in terms of demand and21

supply. The MFD is a network-wide relationship between the number of vehicles in the network22

and their collective travel production or average speed (20). This relationship is assumed to be23

a function of network structure and topology (21–23) as well as the presence of other modes of24

transportation, e.g., public transportation (24, 25). Consequently, if a public transportation strike25

occurs, the natural hypotheses are that some trips are shifted from public transportation to the car26

and that the absence of public transportation improves car travel and traffic through less moving27

bottlenecks, less public transportation service stops, and more green time at intersections due to28

less public transportation priority. So far, the MFD has been widely used to study, e.g., the im-29

pact of network topology (26), public transportation operations (27, 28), and the impact of road30

investment (29), but it has never been used as a method to empirically assess the impact of a pub-31

lic transportation strike on network traffic; in other words, comparing the same network with and32

without public transportation operations.33

In March 2023, Munich, Germany, experienced twice a strike of all road-based public trans-34

portation and most rail-based services. We use this natural experiment to empirically investigate35

the impact of public transportation on demand patterns and network-wide traffic using loop de-36

tector data for an urban road network with and without road-based public transportation services.37

We have the following hypotheses (i) strike leads to demand shifts towards car travel, based on38

empirical evidence, e.g., (1, 2); (ii) strike results in changes in the MFD shape, with an increased39

capacity, critical density, and free-flow speed, based on MFD theory, e.g., (30).40

This paper contributes with the first empirical assessment of the impact of a public trans-41

portation strike on network traffic flow using the MFD and data from Munich, Germany. By doing42

so, we also provide the first empirical analysis of network-wide traffic operations in a metropolis43

with and without public transportation operations, which allows us to approximate the benefit of44

public transportation in terms of passenger travel. The results show that, indeed the MFD shape is45
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changed from a non-strike day to a strike day in terms of capacity, critical occupancy, and likely1

also in free-flow speed, as well as that the gains in car passenger travel production are only one-2

third of the losses in public transportation passenger travel using a conservative estimate of the3

average public transportation vehicle occupancy.4

This paper is organized as follows and is further illustrated in Figure 1. First, we introduce5

the case study of Munich; next, we provide an overview of the dataset and the MFD-based analysis6

deployed in our study; later, we present the results from the Munich case and offer insights into7

the benefits of public transportation provision in terms of passenger travel; finally, we summarise8

future research directions and highlight important takeaways from the Munich case.9

Detector data
of strike days
(without PT)

Detector data
of regular days

Analysis using
the MFD

Strike effects on
the MFD shape

Passenger travel
assessment

Benefits of public
transport for

passenger travel

FIGURE 1 : Organization of this study

CASE STUDY MUNICH10

The city of Munich, Germany, covers an area of 310 km2 with a population of approximately11

1.6 million inhabitants. Excluding motorways and minor residential roads, Munich road network12

is 740 km-road long. The city of Munich and its metropolitan region is characterized by three13

ring roads: around the city, a highway beltway connects seven highways and allows to bypass14

the city for through traffic. The second ring road is the “Mittlerer Ring” (middle ring road), road15

number “B2R” surrounds the inner part of the city and also connects to the same highways that are16

connected to the highway beltway. The third ring road is the “Altstadtring” that surrounds the old17

city core, which is predominately pedestrianized. Moving between the highway beltway and the18

B2R is possible on highways, while moving between the B2R and the Altstadtring is only possible19

on signalized arterials. Figure 2a shows the road network at the level of B2R, the middle ring road.20

The B2R acts as a natural boundary separating the CBD from the city suburbs. Complementing the21

extensive road network is a public transportation network operated by Munich Transport and Tariff22

Association (MVV). The Public transportation network comprises eight suburban train lines and23

eight subway lines that connect the suburbs of the city by crossing the B2R. In addition, the network24

is enhanced by 18 tram lines and 118 bus lines, shown in Figure 2b, operating with headways25

between five and fifteen minutes. Many services operate in mixed traffic conditions and not on26

dedicated lanes. Table 1 shows the operational characteristics of road-based public transportation27

within the B2R. To promote sustainable modes, most road-based public transportation lines are28

prioritized at signalized intersections across the city. Nevertheless, the network-wide effect of29

public transportation and related prioritization strategy has never been investigated.30

In March 2023, Munich encountered two significant strikes by public transportation person-31

nel, resulting in severe disruptions to transportation services. The first strike occurred on Friday,32

the 3rd, impacting the subway, trams, and buses. Subsequently, on Monday, the 27th, a broader33

strike affected all public transportation services, including rail-based services. These strikes, an-34
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nounced well in advance by the labor union, persisted for a full day. It should be noted that a few1

buses operated by private companies with sub-contracts from MVV continued to run. The snowy2

weather on the second strike date further limited accessible alternative transportation modes, such3

as walking or cycling. This network-wide natural experiment gives a unique opportunity to apply4

an MFD-based analysis to investigate the impact of public transportation.5

Previous work involving the estimation of the MFD in Munich includes (31) simulation-6

based MFD model for the city, (23) empirically MFD for Schwabing sub-network, (32) analytical7

and empirical MFD for Leopoldstraße corridor. While these studies offer valuable insights, they8

also leave space for a broader empirical investigation.9

In this study, we focus on the area inside the B2R, the colored area shown in Figure 2a.10

The B2R can be considered a natural urban boundary, not only in terms of urban structure but also11

in terms of traffic flow. The region inside is one large reservoir. The inflow and outflow to this12

network is limited to a few locations, usually connected with ramps to the B2R. In addition, the13

B2R region sees substantially more public transportation operations on almost all major streets in14

the network. Note that we exclude the B2R ring road itself from this analysis because it is a dual15

carriageway and almost unsignalized, being more an urban highway than an urban street.16

TABLE 1 : B2R Regions Characteristics

Area [km2] Road Length [km] Stops No. [#] Routes Length [km]

North West 15.2 72 256 129
South West 11.0 43 174 90
North East 8.8 48 166 99
South East 7.0 24 110 47

Full region 43.6 188 735 376

METHODOLOGY AND DATA17

An MFD-based Approach18

The large extent of both strike days as well as their level of impact makes the application of19

the MFD theory appealing. As the MFD provides an aggregated, macroscopic and urban-scale20

perspective on the dynamics of multi-modal traffic in urban road networks (33), it allows to focus21

on the main or “first order” effect of the strike at an urban level. The MFD extends naturally22

to several modes of transportation, where the “multi-modal” MFD then captures the interaction23

costs between modes of transportation at the network level. In an urban environment, the most24

relevant multi-modal MFD captures the interactions between car traffic and road-based public25

transportation (25, 30, 34), also called the “3D-MFD”. It quantifies the impact of the number of26

cars and public transportation vehicles in a network on the joint travel production of all vehicles in27

the network. Considering an urban road network with substantial public transportation operations,28

the 3D-MFD predicts that in case of a strike, the capacity, as well as the critical density, increases29

(30). In this analysis, we investigate how the capacity and the critical density are affected by the30

strikes. If an effect can be found, the effect size, together with the 3D-MFD theory, then allows to31

make an assessment of the cost and benefits of public transportation operations in Munich from a32

traffic engineering perspective without using operational public transportation data.33
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(a) B2R road network

(b) B2R road-based public transportation network

FIGURE 2 : B2R region under study
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A key underlying assumption of the MFD is that homogeneous network characteristics as1

well as homogeneous traffic load exist in order to make the estimated MFD representative of the2

average traffic conditions in the network. The literature presents several approaches to obtain sub-3

networks within a city that satisfy the homogeneity assumption (35–38). In this analysis, we first4

estimate the car MFD for the entire core urban region within the B2R as shown in Figure 2 and5

then partition the entire region into four sub-networks by following the natural borders of the four6

reservoirs.7

We estimate MFDs for strike days and non-strike days using the “re-sampling” method8

(39), which has shown to reveal a smooth upper bound to all possible states, potentially describing9

the network’s upper MFD, as well as the networks’ pockets of congestion, leading to an observed10

congested branch (23).11

Traffic Data12

The city of Munich utilizes 9,815 loop detectors, mainly for traffic signal control purposes, here-13

after, we focus on the 3,300 geo-referenced detectors. We obtained nine weeks of traffic data14

between January 28th and April 13th; each detector has a record of traffic flow (count of vehicles15

passing the detector) and occupancy (proportion of time the detector is occupied by a vehicle),16

updated in an interval of 15 minutes.17

The detectors were filtered in two stages, first, by removing the daily record for any detector18

if (i) the detector was off or reported an error for more than 20% of the day, (ii) if either the flow19

or occupancy measurements did not change for more than 80% of the day. Second, by removing20

detectors if the 98th-percentile of all its records for the nine weeks is less than 300 veh/hr-ln. This21

resulted in removing around 47% of the geo-referenced detectors; the final number of detectors22

was 1,555, out of which 770 are within the B2R region, as illustrated in Figure 2a.23

The resulting sample of loop detectors covers the road network inside the B2R region well.24

Almost any major urban street is monitored in our study. Residential streets are not monitored but25

also not considered in the MFD analysis. Thus, we consider the traffic data sample representative,26

although the known location bias of loop detectors is still present in the data (40–42).27

RESULTS28

The absence of public transportation services is expected to shift commuters towards cars, conse-29

quently increasing the traffic flow per lane. We estimated the average cumulative count of detectors30

on arterials connecting the B2R region, Figure 2a, to assess the demand for commuting to and from31

the CBD. Figure 3 illustrates the average detectors’ cumulative count for both strike days and non-32

strike reference days, considering the corresponding weekday from one week before and one week33

after each strike. Notably, the number of vehicles entering the B2R network significantly increased34

on strike days, with an average inflow per lane rise of approximately 15.7%. The number of ve-35

hicles leaving the B2R network was also consistent and comparable, with an average outflow per36

lane rise of around 16.4%. Interestingly, the increase in demand for cars was more pronounced on37

the first strike day compared to the second, despite the latter including all available public trans-38

portation options. It appears that individuals who experienced significant travel delays on the 3rd39

strike day chose to refrain from traveling altogether on the 27th strike day. The increase in demand40

for private vehicles, a trend reported in previous studies, is also evident in Munich. Consider-41

ing that the accessibility to alternative modes like walking and cycling was limited due to severe42

weather, these results indicate the cancellation of many trips. This suggests that the newfound flex-43
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ibility in working locations, arising from the changes brought about by the COVID-19 pandemic,1

contributed to these travel behavior shifts.2

FIGURE 3 : Average cumulative inflow into the B2R network per lane on strike days and non-
strike days

Additionally, we estimated the difference in peak flow for each detector within the B2R3

region, Figure 2a, on each strike day, comparing it to its corresponding weekday in the following4

week. The distribution of these differences for both strike days is shown in Figure 4. On average,5

the detector’s peak flow was higher by around 76 and 69 veh/hr-ln for the first and second strike day,6

respectively, compared to the same weekday in the following week. It’s clear that the distribution is7

skewed towards positive changes in the detectors’ peak flow, with only around 13%, experiencing8

a negative change.9

The increase in peak flow can be attributed to the observed increase in demand for some10

detectors. However, for others, it represents an actual increase in the link capacity due to the11

absence of public transportation services. This distinction becomes clearer when examining the12

Fundamental Diagram (FD) of individual links with high private car demand and frequent public13

transportation services. To estimate the FD, we pooled the detector’s flow and occupancy measure-14

ments from strike dates. We, also pooled the traffic measurements from corresponding days in the15

dataset to serve as reference days. An example of the obtained FDs is shown in Figure 5, with the16

detectors highlighted in Figure 2a. Notably, an increase in capacity is evident in Figure 5a, while17

an increase in speed is observed in Figure 5b. This demonstrates the varying effects of the absence18

of public transportation services on capacity and speed at the link level.19

To assess the impact of the absence of public transportation services at a network level, we20

estimate the MFDs for the B2R region and sub-regions, using the re-sampling method proposed21

by (39). The re-sampling method is designed to produce results that are less impacted by small22

demand variations, to consider pockets of congestion in the network, and to produce a smooth23

upper bound of the MFD. Considering the changes in demand due to the strike as seen in Figure 3,24

using the re-sampling method can be expected to make the results and implications less sensitive25
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FIGURE 4 : The difference in flow 95th-percentile between strike days and non-strikes for all
detectors

(a) A detector placed at Leopoldstraße (b) A detector placed at Prinzregantenstraße

FIGURE 5 : The FD for sample detectors
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to the changes in demand. After evaluating various parameter values, we ultimately selected a1

sample size of 500 subsamples with a fraction size of 0.6, enabling us to resample 60% of the2

aggregated data for each subsample. Figure 6 presents the resampled MFDs for both strike days3

and all corresponding weekdays in the dataset. For the pooled strike and reference MFD, the upper4

profile represents the median flow value of the highest 50 values in each occupancy bin of 1%,5

while the critical occupancy is determined at the 97.5th-percentile of the upper bound flow.6

Intuitively, the re-sampling method obtains more scatter and the upper bound is less smooth7

when using only a few days instead of several weeks, as it is the case in our analysis with only8

two strike days compared to several weeks of non-strike days. The strike MFD reveals a rise9

of capacity flow by 4.7%, in addition to an 8% rise in the critical occupancy in the absence of10

public transportation vehicles. Table 2 presents the change in capacity and critical occupancy for11

the partitioned sub-regions of the B2R, where all sub-regions showed a considerable increase in12

the capacity flow on the strike days, but the increase in critical occupancy didn’t follow the same13

pattern. However, it’s essential to note that our sample size was limited, consisting of only 414

regions. These findings of the resampled MFDs are in line with the 3D-MFD theory, stating that15

the maximum vehicular flow occurs when no public transportation vehicles operate.16

(a) Flow-Occupancy (b) Speed-Occupancy

FIGURE 6 : B2R MFD

To better understand the variation in demand during the strikes, we analyzed the flow-time17

series shown in Figure 7. It is evident from the figure that on the first strike day (Friday, March 3rd),18

commuters exhibited greater flexibility by avoiding peak hour congestion and leaving earlier than19

usual. However, the slightly higher demand on that date than on the second strike day (Monday,20

March 27th) led to a prolonged peak period.21

This demand pattern significantly influenced the resampled MFD for the strike days, de-22

picted in Figure 8. The figure illustrates a clear clockwise hysteresis pattern for the second strike23

day, characterized by a higher increasing branch during loading and a lower decreasing branch24
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TABLE 2 : B2R Regions Change in MFD Characteristics

Capacity [veh/hr-ln] Critical Occupancy [%]

Non-Strike Strike Increase [%] Non-Strike Strike Increase [%]

North West 431 472 +9.5 26 28 +7.7
South West 475 519 +9.2 23 26 +13.0
North East 452 479 +5.6 28 29 +3.6
South East 413 448 +8.5 26 26 +0.0

Full region 509 533 +4.7 25 27 +8.0

during recovery. Such a hysteresis loop becomes evident as the network transitions from free flow1

to saturation and persists until all congestion effects have dissipated. Notably, this phenomenon2

was not observed when the demand spread over a longer peak period on the first strike day. This3

finding highlights the potential of a simple demand management scheme, such as flexible working4

hours, to avoid pushing the network into a congested state that takes a longer time to recover from.5

FIGURE 7 : Change in flow with time

ASSESSING THE BENEFITS OF PUBLIC TRANSPORTATION6

We use the concept of the 3D-MFD (30) to make a macroscopic assessment of the cost and benefits7

of public transportation in Munich from a traffic engineering perspective. The total length of the8

relevant road network within the B2R area is around R = 560 lane-km (we multiply the road length9

from Table 2 by a factor of three). We approximate the average space-mean effective vehicle length10

with s ≈ 8 m to estimate the accumulation of vehicles in the network11

nc = R · o
s
. (1)
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(a) The resampled MFD of the first strike day (b) The resampled MFD of the second strike day

FIGURE 8 : Strike MFD hysteresis

1

Using the values for the critical occupancy from Table 2, we obtain as critical accumulation for2

non-strike days n∗c,r = veh and for strike days n∗c,s = veh. In other words, the critical accumulation3

increases by ∆n∗c = veh from a non-strike to a strike day. The relocation of the critical point in the4

MFD as seen in Figure 6 has implications on the critical speed too. During non-strike days, the5

critical speed is v∗ = 16.3 km/h, while on strike days the critical speed reduces to v∗ = 15.8 km/h,6

i.e., the critical speed reduces by ∆v∗ = 0.5 km/h. In other words, during strike days, the network7

falls into the congested regime at slightly lower speeds.8

Using the average car passenger occupancy during peak hours and the measured MFD9

capacity (see Table 2), the car passenger travel production Πp,c in passenger-kilometers per hour10

can be computed by11

Π
∗
p,c = hc ·R ·qmax. (2)

12

Assuming hc = 1.1 during peak hours, we obtain for strike days Π∗
p,c = 328,328 passenger-km/h13

and for non-strike days Π∗
p,c = 313,544 passenger-km/h. Consequently, the absence of public14

transportation in the network increases car passenger travel production by 14,784 passenger-km/h15

or 4.7%.16

For public transportation, we estimate the travel production in vehicle kilometers per hour17

during peak hours using the official GTFS data (43). Here, we find the travel production to be Πpt =18

1717 veh-km/h (at an average peak-hour service headway of h = 8.2 min). We conservatively19

estimate the average public transportation vehicle occupancy with hb = 25 passengers per vehicle.20

This leads to the passenger travel production of public transportation during peak hours on non-21

strike days is (intuitively, on strike days, there are no public transportation operations, i.e., Πp,pt =22
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0)1

Πp,pt = hb ·Πpt = 42,925 passenger-km/h. (3)
2

We can summarize that on strike days compared to non-strike days, car passenger travel production3

increases by 14,784 passenger-km/h, while public transportation passenger travel production is4

decreased by 42,925 passenger-km/h. In other words, at the critical point, public transportation5

operations in Munich’s B2R area can produce almost three times the amount of passenger travel6

than car travel could do. This benefit, in terms of increased passenger travel production, comes at7

the cost of an increased critical speed of v∗ = 0.5 km/h for all vehicles.8

DISCUSSIONS9

The strike as a natural experiment provided us with the opportunity to contribute to the understand-10

ing of changes in the MFD as a consequence of changes in the network as well as changes on the11

demand side. Although we use the re-sampling method to reduce the impact of demand changes12

on the results, data and methods of our study have limitations and require a discussion.13

In general, as strikes are natural experiments, there is only little to no time in advance14

for thorough planning of the data collection. As loop detector data is continuously recorded and15

ubiquitously available, we can consider that the data source appropriate and its extent is sufficient16

to monitor all relevant effects of this natural experiment; still, as seen with the increased scatter in17

the re-sampled MFD on strike days, having more strike days in the sample is presumably increasing18

the quality in the MFD estimation. Nevertheless, this analysis would benefit from using other data19

sources as well, e.g., floating car data or automatic number-plate recognition data, which allow20

for obtaining (partial) trajectories to enrich the analysis and corroborate the findings. Further, it is21

known that loop detector data has biases in terms of location within the network as well within a22

link (40–42, 44).23

Regarding the selected method of using the empirical MFD for the strike day analysis,24

other methods like calibrating a traffic simulation and/or deriving origin-destination matrices with25

the available loop detector data, e.g., (45), are another possibility to infer the impact on travel26

production between strike and non-strike days. Currently, there is almost no data on public trans-27

portation services and average vehicle occupancy of public transportation services available for28

Munich; consequently, the impact on passenger travel production can hardly be improved. Nev-29

ertheless, we requested data from the public transport operator to refine our estimates. Last, our30

analysis currently focuses on travel production, not trip production. Here, using data on average31

trip lengths would allow us to use the trip production perspective (33, 46), which would improve32

the assessment of the strike impact even further.33

CONCLUSIONS34

In this paper, we investigated the impact of public transportation on network traffic in Munich,35

Germany: we use two strikes of road-based public transportation services to compare network36

traffic on strike days, i.e., without public transportation operations, and non-strike days, i.e., with37

public transportation operations. Using empirical data from more than 700 inductive loop detectors38

in the central area of Munich, we found that on strike days the vehicle inflow into the area is39

increased by 15.7% and that the shape of the MFD is also altered as a consequence of the absence40

of public transportation services with the capacity increasing by 4.7% and the critical occupancy41
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by 8.0%. These two estimated MFDs can be considered a partial 3D-MFD that describes the1

relationship between the numbers of cars and public transportation vehicles in the network and the2

total production of travel in the entire network. Using this partial 3D-MFD we estimate that the3

increase car passenger travel production at the capacity due to the absence of public transportation4

is at most one-third of the losses in public transportation passenger travel production at capacity.5

These findings emphasize the relevance of public transportation operations in cities. Nevertheless,6

our findings also showed that the adoption of demand management schemes are effective solutions7

to mitigate congestion. Implementing measures such as flexible working hours and hybrid work8

options can evenly distribute travel demand, resulting in a degree of improvement in network traffic9

flow without the need for extensive infrastructure or complex ITS systems investments.10

In future research, we will aim to obtain additional data to enrich our analysis and to cor-11

roborate our findings, e.g., trajectory data and floating car data. Considering previous research on12

the impact of public transportation strikes on congestion and speeds, future research should also13

focus on using those methods to estimate the “congestion relief” effect of public transportation14

based on literature methods; then, a throughout economic assessment of the benefits and costs of15

public transportation operations are naturally to follow. In addition, using the estimates of the par-16

tial 3D-MFD for the central area of Munich, future research can use them as a starting point for17

optimizing network-wide traffic operations and space allocation in order to optimize vehicle and18

passenger throughput, e.g., using methods from literature (47). Last, the strike has been across the19

entire country, thus using traffic data from other cities, it would be of interest from a traffic flow20

and transport policy perspective to investigate the differences between cities.21

In closing, our analysis quantifies the impact of public transportation on network traffic22

using the idea of the 3D-MFD and emphasizes the importance of public transportation for cities.23

While we do not focus on the typical congestion impact as measured in travel time losses (1, 2, 4),24

we use the MFD perspective to provide the first analysis of network traffic from a traffic flow25

perspective. We have shown that the MFD theory and 3D-MFD theory are appropriate for network-26

wide assessments of large-scale network changes. Thus, considering all the cities worldwide that27

are transforming their road-based transportation systems, these theory are of high value for them28

to navigating to optimal policy decisions.29
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