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ABSTRACT1

The macroscopic Fundamental Diagram (MFD) provides a novel perspective on urban traffic that2

facilitates new policies and strategies to cope with recurring congestion. The MFD is assumed3

to be well-defined and reproducible, but, so far, no long-term empirical evidence for this shape4

assumption exists. In this paper, we use an extensive one-year traffic data set from Lucerne, recent5

advances in modeling the MFD shape as well as established similarity measures (Dynamic time6

warping and Fréchet distance) and k-medoid clustering to investigate this assumption. We first find7

that we can reduce the complexity of urban traffic throughout the year to only three or five clusters8

depending on the selected similarity measure. Furthermore, we reveal that the MFD shape in the9

loading phase of the network is very similar across the observed inflow patterns over the course of10

a year, but less so for the unloading and full-day MFD.11

Keywords: MFD Similarity Congestion Cluster12
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INTRODUCTION1

There is a growing evidence that human mobility patterns in cities follow laws and recurring pat-2

terns (1, 2, 3), that - not surprisingly - result in recurring congestion patterns (4, 5, 6, 7, 8). Using3

the appropriate tools, such patterns allow the accurate prediction of traffic states and travel times4

for journey planners (9, 10, 11, 12). Among the tools used, the recently introduced macroscopic5

fundamental diagram (MFD) provides a paradigm shift, which consist in moving our attention6

from minimizing travel times to maximizing the overall number of trips (13). The MFD itself7

describes with a well-defined and reproducible curve the relationship between the accumulation8

of vehicles and the travel production in vehicle kilometers in an urban network. Importantly, each9

MFD has at the network’s critical vehicle accumulation a distinct maximum of travel production.10

So far, the daily MFD has not been investigated over a long time period. In other words,11

the reproducibility of the MFD has only been established for short time periods. Closing this gap12

is important because the MFD shape results from a complex interplay between network topology,13

signal settings (14, 15), routes, demand (16), and public transport interactions (17, 18), i.e. bridging14

the traffic demand and supply side. Proof for the existence of a long-term reproducibility is key15

to the concept of the MFD, as it allows to simplify urban traffic in an unprecedented way for16

macroscopic applications, ranging from traffic control (19), to pricing (20) and the allocation of17

urban space (21).18

Existing empirical MFD work suggests that indeed the MFD shape is reproducible across19

a number of days, especially during the loading phase of the network, (22, 23, 24, 25, 26). Unfor-20

tunately until now, a lack of longitudinal empirical data as well as methodology to measure MFD21

pattern similarity and subsequently clustering prevented a detailed analysis for longer time peri-22

ods. In this paper, we use advances in modeling the MFD’s shape (27) combined with established23

sequence similarity measures to identify daily MFD patterns and to quantify the MFD’s repro-24

ducibility over the course of a year using empirical data from Lucerne, Switzerland. In the field of25

the MFD research, the closely related term partitioning already exists for identifying homogeneous26

sub-regions in networks (28, 29, 30), but our research focuses on the overall MFD shape across27

days and its temporal clustering, instead of the spatial distribution of vehicle densities within a day.28

This paper presents the first empirical evidence on the reproducibility of the MFD shape29

and a methodology to analyze MFD patterns for long periods of time (i.e. one year). Depending on30

the methodology measuring the similarity of MFD patterns, we observe only three or five global31

clusters of MFD patterns. We find that they can be classified by day of week and average total32

inflow. For all non-weekend clusters, we find that the MFD’s shape in the network loading phase33

is most similar across demand clusters, while the MFD shapes are less similar for the recovery34

phase. These findings confirm not only the reproducibility of the MFD’s shape, but also increase35

the validity of models built around the MFD.36

The remainder of this paper is organized as follows. The next section introduces the similar-37

ity measures for MFD patterns as well as clustering in the context of the MFD. We then introduce38

the empirical data set used, before presenting the results of the clustering and shape reproducibility39

analysis. The paper ends with discussion and conclusions.40

ANALYZING MFD PATTERNS41

Measuring similarities in patterns42

In our analysis, we consider the MFD as a joint time-series of flow q(t) and density k (t) over43

the course of the day. This joint time-series does not only describes the resulting MFD of the44
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Ambühl et al. 3

considered day, but also captures the aggregate dynamics of network loadings and recoveries that1

result from the overall demand. This perspective is particularly useful to address the question of2

how many daily MFD patterns can be observed over time in an empirical context, and whether we3

can link the different MFD shapes to certain observable traffic aspects. So far, in the literature,4

MFD patterns in time-sequences have not been analyzed.5

In mathematical terms, the similarity σ between sequences a(t) and b(t) can be expressed6

by7

σ (a(t) ,b(t)) = Γ [a(t) ,b(t)] (1)

where Γ describes the function returning the similarity measure, or in a physical analogy the dis-8

tance between a(t) and b(t). The most common similarity or distance measure between two9

sequences is the Euclidean distance. In its simplest approach according to Eqn. 2, at each time10

instance t the Euclidean distance between sequence a(t) and b(t) is computed and subsequently11

summed up over all time periods of an observation period (day, week, month).12

ΓEuclid [a(t) ,b(t)] =
T

∑
t=1

√
N

∑
i=1

(ai (t)−bi (t))
2 (2)

Figure 1a shows this behavior for the MFD, where the distance between the two MFDs13

is measured for every point in time. The bars in this figure correspond to the measured distance.14

Especially for t = 4 and t = 6 the temporal mismatch in the pattern creates a substantial distance.15

Arguably, this approach is very strict and penalizes even a temporal mismatch between sequences16

at the smallest temporal resolution, which might not be desired in the context of the MFD. For17

example, if a highly similar loading of the network starts with a five minute difference between two18

days, they will not be considered similar by this measure although they exhibit a similar pattern.19

Therefore, we consider and compare two other approaches for Γ that are more flexible in20

the time dimension: dynamic time warping (DTW) (31, 32) and the Frechét distance (FRE) (33).21

Although their primary field of application are one-dimensional time series, using the Euclidean22

distance allows a straightforward extension to multi-dimensional time-series as the MFD. In the23

next two subsections we briefly introduce these two approaches. For the computation of the simi-24

larity measures, we use the software provided by (34).25

Dynamic time warping26

In contrast to comparing the distance between sequences at the same time, DTW deforms the27

time axis in both a(t) and b(t) within allowed limits to analyze the similarity. This procedure28

is looking for a warping path W where element wk aligns the elements a(i) and b( j) so that29

their distance δ , here Euclidean, is minimized. The warping paths require some mathematical30

constraints, e.g. monotonicity, continuity and a warping window for time mismatch between i and31

j (further mathematical explanations can be found in (31)). In mathematical terms, DTW searches32

for the warping path W that is minimizing the cumulative distance between sequences a(t) and33

b(t) as indicated by Eqn. 3.34

ΓDTW [a(t) ,b(t)] = min
W

(
P

∑
k=1

δ (wk)

)
(3)
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Figure 1b illustrates the MFD case for the DTW problem, where the procedure is assigning1

new time values (indicated by a prime) based on the warping paths along which the distance is2

minimized. Arguably, this feature of DTW is very useful for MFD patterns as network loading and3

recovery must not start or end at the same time, even if they maintain a similar shape. Nevertheless,4

this similarity measure requires the definition of a physical meaningful warping window, and this5

is not necessarily trivial.6

Frechét distance7

The meaning and interpretation of the Frechét distance is best introduced with a very popular8

example: Let us think about a girl walking her dog. The girl walks on one trajectory while the dog9

walks on another trajectory. Both can vary their speed, even stop, but are not allowed to go back10

in time. The Frechét distance is the minimal length of the leash required for completing the walk.11

In mathematical terms, Eqn. 4 describes this problem. a(i) is re-parameterized to a (α (τ))12

to map from the unit interval, and similarly for b. For further mathematical insights we refer the13

reader to previous work by (33).14

ΓFRE [a(t) ,b(t)] = inf
α,β

max
τ∈[0,1]

{δ (a(α (τ)) ,b(β (τ)))} (4)

Figure 1c depicts the idea of the Frechét distance in the MFD context, where the leash15

corresponds to the bar that links both MFDs. The algorithm searches for the shortest required16

line linking both MFD patterns. This algorithm does not require a minimum warping window17

as DTW (window can be set to infinity if physically meaningful and computational resources are18

available), and might be able to uncover slightly more differences in pattern than DTW. The Frechét19

optimization problem is computationally exhaustive compared to DTW, making it more difficult20

to work with in large scale empirical contexts.21

Clustering22

In general, the clustering or partitioning of data can be divided into two overarching classes: su-23

pervised and unsupervised clustering. Here, we will focus on the implementation of unsupervised24

approaches (35).25

Further, we use k-medoid or k-median clustering (36, 37). We select this approach over the26

more common k-means algorithm because the k-medoid partitions around an element (medoid or27

median) of the sample. In the context of the MFD, each cluster is assigned one medoid MFD that28

is representative for its cluster and thus can be interpreted and analyzed. This is not possible with29

k-means. Another advantage of k-medoid is the possibility to evaluate the similarity of each object30

within its cluster and to its neighboring clusters visually with the silhouette plot (38), assessing31

the cluster’s coherence and variation. The silhouette value is always in the range of -1 to 1 and32

is attributed to each member of a cluster. A value close to 1 indicates that a particular day is33

well matched to its corresponding cluster, whereas a value close to -1 indicates that the chosen34

cluster is a poor match. The average silhouette over all members indicates the overall quality of35

the clustering. For clustering, we use the R package by (39).36

Clustering of MFD shapes has been done previously using heuristics (25). However, this37

approach is only a rough quantification of the MFD shape, but does not allow for statistical testing38

and does not account for dynamic influences (40).39
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FIGURE 1 : MFD representation of similarity measures.
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Measuring MFD shape similarity1

In order to answer the question to what extent the MFD is well-defined and reproducible, we have2

to measure and quantify the MFD shape. For this, we use recent advances by (27), where the3

authors propose a single parameter functional form for the MFD. This single parameter function4

requires the analytical definition of an upper MFD (uMFD), e.g. a simple trapezoidal shape with5

parameters derived using the methodology by (14). The uMFD is time-invariant and is based on6

the fundamental diagram of the individual streets, traffic control, and the capacity of an average7

intersection. It is therefore a rough first order approximation of the MFD and serves as a reference8

MFD. Eqn. 5 shows the function where k is the density, v(k) is the speed MFD, and u f , Q, κ and9

w are the trapezoidal shape parameters (u f is the free flow speed, Q is the average link capacity, κ10

is the jam density, and w is the backward wave speed). These parameters can easily be obtained11

from actual measurements and from local authorities. For quantifying the actual MFD shape, only12

the parameter λ has to be estimated from the daily speed MFD with non-linear least squares.13

v(k) =−λ ln
(

exp
(
−

u f k
λ

)
+ exp

(
−Q

λ

)
+ exp

(
−(κ− k)w

λ

))
/k (5)

λ measures how far the observed MFD is located from the uMFD. The larger λ , the farther14

away the observed MFD is located from the uMFD. In case the MFD shape is reproducible and15

well-defined, λ should take the same value for each and every day.16

DATA17

For this analysis, we use a longitudinal MFD data set from the city of Lucerne, Switzerland,18

spanning the entire year 2015. In total, we use data from 352 days in the year 2015. 13 days19

are excluded as they clearly showed irregular behavior due to too many missing loops, system20

breakdowns, or special events. The MFDs are recorded from inductive loop detectors located21

upstream and downstream of intersections. Figure 2a shows a map of Lucerne with the locations of22

all detectors marked. We first filter all defective measurements and smooth the 3min measurements23

with a moving average technique. Further, we ensure that only a single detector per lane is used for24

MFD estimation. The MFD is estimated using a common technique for stationary traffic sensors25

(41). As the distribution of loop detectors across the length of the link is rather uniform, we do not26

account for a potential placement bias in the MFD.27

As loop detectors measure only flow and occupancy, but not density, we need to adjust the28

MFD to measure density and thus in turn average space-mean speed in the network. We adjust the29

MFD by identifying the fastest hour in the MFD, typically in the morning or evening, before or30

after rush hour when the network is only slightly loaded. For this hour, we then query the Google31

routes API for 1000 random trips through Lucerne, and then match the speed distribution from32

the MFD in the fastest hour with the speed distribution of the API query to obtain the adjustment33

scalar. The adjusted MFD for Lucerne is then given in Figure 2b.34

RESULTS35

In the following, we discuss the results of the MFD pattern clustering, once measuring the simi-36

larity with dynamic time warping (DTW) and once with the Fréchet distance (FRE). We denote37

each cluster with the previous mentioned abbreviation for the similarity measure, followed by the38

cluster number. In general, we observe highly similar clustering outcomes for the two different39

similarity measures, where the Fréchet distance seems to be able to retain slightly more informa-40
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(a) City map of Lucerne with the location markings of the detectors.
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FIGURE 2 : Information on the empirical data used for this analysis.

TRB 2019 Annual Meeting Original paper submittal
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tion than DTW. We will first investigate the general form of the MFD over the course of a full1

day and try to reveal differences between the clusters found. Afterwards, we will analyze in more2

details the MFDs’ loading and recovery phases.3

In Figure 3 we show the results for the one-year data of Lucerne for which we find that the4

average silhouette value is maximized for DTW with two clusters, while for Fréchet three clusters5

are needed. Recall that a silhouette value closer to 1 indicates a high similarity of a daily MFD6

pattern to the cluster, whereas a value closer to -1 means a poor match. The resulting silhouette7

plots are shown for DTW in Figure 3a and for Fréchet in Figure 3b. The colour of each day8

represents whether it is a weekend day or not. First, we find that all weekends are located in9

DTW1 (117 days) as well as FRE1 (89 days) and FRE2 (28 days), while DTW2 (235 days) and10

FRE3 (235 days) only contain weekdays. Thus, we define the first group as the weekend clusters,11

while the latter group are the weekday clusters. Further investigation of the type of days shows that12

FRE2 covers mostly Sundays and public holidays. Second, we find that the silhouette distribution13

within each cluster exhibit a different shape. Especially for DTW, we see that the weekday cluster14

is more robust, i.e. has more similar days, as expressed with a less steep decline in silhouette values15

as in the weekend cluster. This seems intuitive, as on weekdays car drivers might be less flexible16

in terms of activity and departure time choices compared to weekends, not mentioning all special17

events that often place on weekends.18

As the k-medoid clustering methodology returns the most representative member of each19

cluster as the so-called medoid, we show these medoids in Figure 3c and 3d, as well as the MFDs20

of all days attributed to each cluster. At first sight we find that the medoids are located well within21

each cluster, emphasizing the idea of the medoid being a good representative of that cluster. In22

both, Figure 3c and 3d, we see the expected loading pattern based on the previous Figures 3a23

and 3b: DTW1, FRE1 and FRE2 show a lower loading on a typical weekend day compared to24

DTW2 and FRE3, where traffic is even found to be in the congested regime. However, it becomes25

clear from Figure 3d that the difference between FRE1 and FRE2 is not in terms of the general26

MFD shape, but must be located in the temporal evolution of the MFD. This emphasizes that the27

similarity measures not only capture the MFD’s shape, but also the temporal aspects of the MFD.28

For a better understanding of the clusters, we further show the time series of the average flows and29

speeds for the respective medoids in Figures 3e and 3f. Clearly, the average flow is different for30

DTW1 and DTW2 during the morning hours. Furthermore, DTW1 almost always shows higher31

speeds than DTW2. Similarly, the weekend clusters FRE1 and FRE2 exhibit a later loading of the32

network and higher speeds than FRE3.33

As the weekend cluster seems to be sufficiently determined by the type of day, we fur-34

ther concentrate on the higher loaded weekday clusters and investigate them with a second level35

clustering. Therefore, we perform another clustering for the 234 days of DTW2 and FRE3. The36

clustering results in two clusters for DTW with DTW2.1 (108 days) and DTW2.2 (126 days) and37

three clusters for Fréchet with FRE3.1 (52 days), FRE3.2 (104 days) and FRE3.3 (78 days). Again,38

we present the silhouette plots in Figures 4a and 4b as well as the medoids in Figures 4c and 4d.39

Colours in the silhouette plot represent the different days of the week. Interestingly, we find that40

cluster DTW2.1 is more likely to occur at the beginning of the week, while cluster DTW2.2 is41

more likely to be observed at the end of the week. The results for Fréchet show a similar behav-42

ior, FRE3.2 seems to more or less describe the mid-week conditions, while FRE3.1 (beginning of43

week) and FRE3.3 (end of week) follow the behavior observed for DTW. This distinction might44

not be surprising as Switzerland, including Lucerne, is known to have many weekly commuters,45
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(c) All MFDs and medoids for DTW.
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(d) All MFDs medoids plot for Fréchet.

0
20

40
60

S
pe

ed
 [k

m
/h

]

0
20

0
40

0
60

0
Fl

ow
 [v

eh
/h

-la
ne

]

6 9 12 15 18 21
Hour of day

q-DTW1 q-DTW2

v-DTW1 v-DTW2

(e) Average flows and speeds of the medoids for
DTW.

0
20

40
60

S
pe

ed
 [k

m
/h

]

0
20

0
40

0
60

0
Fl

ow
 [v

eh
/h

-la
ne

]

6 9 12 15 18 21
Hour of day

q-FRE1 q-FRE2 q-FRE3

v-FRE1 v-FRE2 v-FRE3

(f) Average flows and speeds of the medoids plot
for Fréchet.

FIGURE 3 : First level clustering results.
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where we can expect different OD demands at the beginning of the week from those at the end of1

the week. Second, the silhouette values are on average lower and exhibit a steeper slope for the2

DTW2 and FRE3 clusters (see also Figure 3), showing that the now recovered clusters show less3

within-cluster similarity than before. This is intuitive as the clustering algorithm is now scrutiniz-4

ing the differences within the normal weekday pattern.5

The medoids in Figures 4d and 4c reveal mostly a distinction between a normal weekday6

pattern without indication of a congested branch (DTW2.1, FRE3.1), and with indication of a7

congested branch (DTW2.2, FRE3.2, FRE3.3). Given that this is the second level of clustering,8

it makes sense that the differences between the cluster medoids’ average speed and flow shown9

in Figures 4e and 4f are less accentuated than in the first level. Nonetheless, we can observe10

certain differences, in particular between FRE3.1, FRE3.2 and FRE3.3, where morning speeds are11

lowest for FRE3.2, contrary to evening speeds that are lowest for FRE3.3. A potential reason why12

Fréchet distinguishes between the very similar FRE3.1 and FRE3.2 can be seen in Figure 5 that13

shows the cumulative inflows into the city for the medoid days. Here, we observe that FRE3.2 has14

more inflow throughout the day than FRE3.1, even though both result in a similar medoid without15

congestion. At the same time, we see that FRE3.3 exhibits some congestion for the same level of16

inflow as FRE3.2.17

Based on the similarity measure, we identified three (DTW) and five (Fréchet) clusters in18

our one year data set for the city of Lucerne that capture not only the shape of the MFD, but also19

the overall inflow into the city throughout the day. We now further investigate the differences20

between the found clusters by estimating the shape defining parameter λ as introduced by (27) for21

each day in the data set, as well as for the loading and unloading phase separately. We identify22

the loading and unloading phases in the network by decomposition of the density time series into23

a seasonal and trend component. From the latter component, we identify network loading in a24

time interval when the trend is increasing, and a network unloading when the trend is decreasing.25

In other words, it is possible that there are multiple loading and unloading phases during a day.26

DTW and the Fréchet clusters are only meaningful, when applied to continuous time series. Given27

the fact that there are potentially multiple loading and unloading phases during a single day -28

interrupting the time series - we refrain from applying the clustering to the loading and unloading29

phases separately, but estimate λ for each sample. Nonetheless, it is still possible to investigate the30

robustness of the initially found clusters with respect to their loading and unloading behaviour.31

In Figure 6 we show the kernel density plots of λ for every cluster, during the full day,32

the loading, and the unloading phase, respectively. For the weekday clusters, we find that for all33

analyzed cases the distributions overlap to a large extent. We test for similarity of the distributions34

using the two-sample Kolmogorov-Smirnov test. Table 1 shows the pairings of clusters the loading35

and unloading phase of the MFD, respectively. The values for full day MFD are included for36

completeness, but we focus on the loading and the unloading phases. The p-value indicates the37

probability to observe the two randomly sampled distributions drawn from the same population, i.e.38

the smaller the value the more likely it is that the two samples are not from the same distribution.39

Despite the relatively broad distribution of λ , we conclude that in the loading phase of the network,40

all considered combinations show a non-zero chance of being from the same population - even for41

different inflow scenarios, e.g. FRE3.1 and FRE3.3, we obtain MFDs of similar shape. This42

supports the notion that relatively small changes in the demand do not affect the shape of the MFD43

substantially. The p-value decreases for the full day MFD as well as the unloading phase to more or44

less zero, except for the combination FRE3.1 and FRE3.3 that shows in all three cases a non-zero45
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(c) All MFDs and medoids for DTW.

0
20

0
40

0
60

0

0 20 40 60 0 20 40 60 0 20 40 60

FRE3.1 FRE3.2 FRE3.3

All days Medoid

V
eh

ic
le

 fl
ow

 [v
eh

/h
 la

ne
]

Vehicle density [veh/lane-km]

 

(d) All MFDs and medoids for Fréchet.
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FIGURE 4 : Second level clustering results.
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FIGURE 5 : Reservoir inflows for the medoid MFDs.

value, i.e. they are less likely to be from the same distribution. These findings are reasonable, as1

the unloading of the traffic network is known to be more heterogeneous than its loading. In other2

words, unloading the network can follow many different paths in an MFD, contrary to the loading.3

Such differences can result in hysteresis effects, as investigated previously by (40). However, in the4

relatively small network, we observe only thirteen days with a substantial hysteresis, all clustered5

in DTW2 and FRE3. At the second level clustering, these days are then distributed across all6

clusters.7

As the k-medoid clustering algorithm returns a representative element for each cluster as8

the median or medoid element, we can further analyze whether these medoids have statistically9

significant different λ . Therefore, we estimate for each medoid in the second clustering level λ10

and the corresponding 95 % confidence interval. We find both for DTW and Fréchet overlapping11

confidence intervals, except when comparing FRE3.1 with FRE3.2 and FRE3.3. However, in those12

cases we find that the difference is not significantly different from zero.13

It is clear that the found clusters and interpretations are context-specific to Lucerne, but the14

results emphasize the power of the proposed MFD pattern similarity measures to reveal congestion15

patterns within a city. Furthermore, the city of Lucerne might be comparatively small in relation16

to larger cities, such as Singapore or Los Angeles where congestion levels might be more severe17

and more MFD patterns might be present. Nevertheless, the results show that we can reduce the18

complexity of one year traffic into a hand full of representative clusters, where cluster membership19

can be determined by day of week as well as average city inflow. A general implication from these20

findings is that the assumption of a relatively well-defined and, in particular, reproducible MFD is21

indeed satisfied.22

DISCUSSION AND CONCLUSIONS23

In this paper we address the question whether the MFD’s shape is reproducible over a long time24

period. Using an extensive one-year traffic data set, we find that we can reduce the daily MFD25

TRB 2019 Annual Meeting Original paper submittal



Ambühl et al. 13

0
20

40
60

80
K

er
ne

l d
en

si
ty

0 .01 .02 .03 .04 .05 .06
λ

DTW2.1
DTW2.2

(a) Full day MFD, DTW.

0
20

40
60

80
K

er
ne

l d
en

si
ty

0 .01 .02 .03 .04 .05 .06
λ

FRE3.1
FRE3.2
FRE3.3

(b) Full day MFD, Fréchet.

0
20

40
60

80
K

er
ne

l d
en

si
ty

0 .01 .02 .03 .04 .05 .06
λ

DTW2.1
DTW2.2

(c) Loading MFD, DTW.

0
20

40
60

80
K

er
ne

l d
en

si
ty

0 .01 .02 .03 .04 .05 .06
λ

FRE3.1
FRE3.2
FRE3.3

(d) Loading MFD, Fréchet.

0
20

40
60

K
er

ne
l d

en
si

ty

0 .01 .02 .03 .04 .05 .06
λ

DTW2.1
DTW2.2

(e) Unloading MFD, DTW.

0
20

40
60

K
er

ne
l d

en
si

ty

0 .01 .02 .03 .04 .05 .06
λ

FRE3.1
FRE3.2
FRE3.3

(f) Unloading MFD, Fréchet.

FIGURE 6 : Distributions of λ grouped by the identified clusters. λ is calculated using non-linear
least squares with uMFD parameters: u f = 7.4 m/s , Q = 0.177 veh/s,w = 2.1 m/s, and κ = 0.135
veh/lane-km.
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Full day MFD p-value

DTW2.1 DTW2.2 0.043
FRE3.1 FRE3.2 0.131
FRE3.1 FRE3.3 0.392
FRE3.2 FRE3.3 0.032

Loading

DTW2.1 DTW2.2 0.218
FRE3.1 FRE3.2 0.397
FRE3.1 FRE3.3 0.318
FRE3.2 FRE3.3 0.106

Unloading

DTW2.1 DTW2.2 0.003
FRE3.1 FRE3.2 0.005
FRE3.1 FRE3.3 0.284
FRE3.2 FRE3.3 0

TABLE 1 : Summary of p-values from the two-sample Kolmogorov-Smirnov for each pair of
weekday clusters.

patterns into only three or five clusters depending on the methodology used for measuring the1

MFD pattern’s similarity. Interestingly, we see that the top-level clusters differentiate between2

weekends and public holidays, and weekdays. Even though the performance of complex urban3

traffic networks depends on many factors, including travel demand, traffic control, route choice,4

and interactions between different traffic modes, the findings presented show that the observed5

patterns are reproducible day after day. We further showed that certain differences can partially be6

explain by the inflow into the city.7

The city of Lucerne does not compare to the large metropolises around the globe and thus8

we cannot generalize to more complex networks. Nevertheless, our methods allow an in-depth9

analysis with data from metropolises, so that this question can be answered in a more generalized10

way.11

Our results also align with previous research about human travel behavior that revealed12

some repetitive patterns. Interestingly, the small set of clusters and our ability to explain cluster13

membership also has its implications for traffic state and travel time predictions: By knowing the14

type of day, the average reservoir inflow and the current time of day, we can estimate the space-15

mean speed with reasonable accuracy. In conclusion, the proposed procedure for clustering MFD16

patterns is very promising to understand urban congestion.17

AKNOWLEDGEMENTS18

This work was supported by ETH Research Grants ETH-04 15-1 and ETH-27 16-1 and has re-19

ceived funding from the European Research Council (ERC) under the European Union’s Horizon20

2020 research and innovation program (grant agreement No 646592 – MAGnUM project). We21

would like to thank Thomas Karrer and Milena Scherer from the City of Lucerne for their support22

TRB 2019 Annual Meeting Original paper submittal



Ambühl et al. 15

and providing the data.1

AUTHOR CONTRIBUTION STATEMENT2

The authors confirm contribution to the paper as follows: study conception and design: Lukas3

Ambühl, Allister Loder; data collection: Lukas Ambühl, Allister Loder; analysis and interpre-4

tation of results: Lukas Ambühl, Allister Loder, Ludovic Leclercq, Monica Menendez; draft5

manuscript preparation: Allister Loder, Lukas Ambühl, Ludovic Leclercq, Monica Menendez,6

K.W. Axhausen. All authors reviewed the results and approved the final version of the manuscript.7

References8

[1] González, M. C., C. A. Hidalgo, and A. L. Barabasi, Understanding individual human mo-9

bility patterns. Nature, Vol. 453, No. 7196, 2008, pp. 779–82.10

[2] Noulas, A., S. Scellato, R. Lambiotte, M. Pontil, and C. Mascolo, A tale of many cities:11

universal patterns in human urban mobility. PLoS One, Vol. 7, No. 5, 2012, p. e37027.12

[3] Sun, L., K. W. Axhausen, D.-H. Lee, and X. Huang, Understanding metropolitan patterns of13

daily encounters. Proceedings of the National Academy of Sciences, Vol. 110, No. 34, 2013,14

pp. 13774–13779.15

[4] Lopez, C., L. Leclercq, P. Krishnakumari, N. Chiabaut, and H. van Lint, Revealing the day-16

to-day regularity of urban congestion patterns with 3D speed maps. Scientific Reports, Vol. 7,17

No. 1, 2017, p. 14029.18

[5] Wang, P., T. Hunter, A. M. Bayen, K. Schechtner, and M. C. González, Understanding road19

usage patterns in urban areas. Scientific Reports, Vol. 2, 2012, p. 1001.20

[6] Louf, R. and M. Barthelemy, How congestion shapes cities: from mobility patterns to scaling.21

Scientific Reports, Vol. 4, 2014, p. 5561.22

[7] Louail, T., M. Lenormand, M. Picornell, O. Garcia Cantu, R. Herranz, E. Frias-Martinez, J. J.23

Ramasco, and M. Barthelemy, Uncovering the spatial structure of mobility networks. Nature24

communications, Vol. 6, 2015, p. 6007.25

[8] Colak, S., A. Lima, and M. C. González, Understanding congested travel in urban areas.26

Nature communications, Vol. 7, 2016, p. 10793.27

[9] Mori, U., A. Mendiburu, M. Álvarez, and J. A. Lozano, A review of travel time estimation28

and forecasting for Advanced Traveller Information Systems. Transportmetrica A: Transport29

Science, Vol. 11, No. 2, 2015, pp. 119–157.30

[10] Stathopoulos, A. and M. G. Karlaftis, A multivariate state space approach for urban traf-31

fic flow modeling and prediction. Transportation Research Part C: Emerging Technologies,32

Vol. 11, No. 2, 2003, pp. 121–135.33

[11] van Lint, J. W. C., S. P. Hoogendoorn, and H. J. van Zuylen, Accurate freeway travel time34

prediction with state-space neural networks under missing data. Transportation Research Part35

C: Emerging Technologies, Vol. 13, No. 5-6, 2005, pp. 347–369.36

[12] Chun-Hsin, W., H. Jan-Ming, and D. T. Lee, Travel-time prediction with support vector re-37

gression. IEEE Transactions on Intelligent Transportation Systems, Vol. 5, No. 4, 2004, pp.38

276–281.39

[13] Daganzo, C. F., Urban gridlock: Macroscopic modeling and mitigation approaches. Trans-40

portation Research Part B: Methodological, Vol. 41, 2007, pp. 49–62.41

[14] Daganzo, C. F. and N. Geroliminis, An analytical approximation for the macroscopic funda-42

mental diagram of urban traffic. Transportation Research Part B: Methodological, Vol. 42,43

TRB 2019 Annual Meeting Original paper submittal



Ambühl et al. 16

2008, pp. 771–781.1

[15] Leclercq, L. and N. Geroliminis, Estimating MFDs in simple networks with route choice.2

Transportation Research Part B: Methodological, Vol. 57, 2013, pp. 468–484.3

[16] Leclercq, L., C. Parzani, V. L. Knoop, J. Amourette, and S. P. Hoogendoorn, Macroscopic4

traffic dynamics with heterogeneous route patterns. Transportation Research Part C: Emerg-5

ing Technologies, Vol. 59, 2015, pp. 292–307.6

[17] Boyaci, B. and N. Geroliminis, Estimation of the network capacity for multimodal urban7

systems. Procedia - Social and Behavioral Sciences, Vol. 16, 2011, pp. 803–813.8

[18] Castrillon, F. and J. Laval, Impact of buses on the macroscopic fundamental diagram of ho-9

mogeneous arterial corridors. Transportmetrica B: Transport Dynamics, Vol. in press, 2017,10

pp. 1–16.11

[19] Haddad, J. and N. Geroliminis, On the stability of traffic perimeter control in two-region12

urban cities. Transportation Research Part B: Methodological, Vol. 46, 2012, pp. 1159–1176.13

[20] Zheng, N., R. A. Waraich, N. Geroliminis, and K. W. Axhausen, A dynamic cordon pricing14

scheme combining a macroscopic and an agent-based traffic model. Transportation Research15

Part A: Policy and Practice, Vol. 46, 2012, pp. 1291–1303.16

[21] Zheng, N. and N. Geroliminis, On the distribution of urban road space for multimodal con-17

gested networks. Transportation Research Part B: Methodological, Vol. 57, 2013, pp. 326–18

341.19

[22] Geroliminis, N. and C. F. Daganzo, Existence of urban-scale macroscopic fundamental20

diagrams: Some experimental findings. Transportation Research Part B: Methodological,21

Vol. 42, 2008, pp. 759–770.22

[23] Loder, A., L. Ambühl, M. Menendez, and K. W. Axhausen, Empirics of multi-modal traffic23

networks – Using the 3D macroscopic fundamental diagram. Transportation Research Part24

C: Emerging Technologies, Vol. 82, 2017, pp. 88–101.25

[24] Buisson, C. and C. Ladier, Exploring the Impact of Homogeneity of Traffic Measurements26

on the Existence of Macroscopic Fundamental Diagrams. Transportation Research Record:27

Journal of the Transportation Research Board, 2009, pp. 127–136.28

[25] Wang, P. F., K. Wada, T. Akamatsu, and Y. Hara, An Empirical Analysis of Macroscopic29

Fundamental Diagrams for Sendai Road Networks. Interdisciplinary Information Sciences,30

Vol. 21, 2015, pp. 49–61.31

[26] Ambühl, L., A. Loder, M. C. J. Bliemer, M. Menendez, and K. W. Axhausen, Introducing32

a re-sampling methodology for the estimation of empirical macroscopic fundamental dia-33

grams. Transportation Research Record: Journal of the Transportation Research Board, ,34

No. accepted, 2018.35

[27] Ambühl, L., A. Loder, M. Bliemer, M. Menendez, and K. W. Axhausen, A functional form36

for the macroscopic fundamental diagram with a physical meaning. Transportation Research37

Part B: Methodological, Vol. In Press, 2018.38

[28] Saeedmanesh, M. and N. Geroliminis, Clustering of heterogeneous networks with direc-39

tional flows based on “Snake” similarities. Transportation Research Part B: Methodological,40

Vol. 91, 2016, pp. 250–269.41

[29] Ji, Y., J. Luo, and N. Geroliminis, Empirical observations of congestion propagation and dy-42

namic partitioning with probe data for large-scale systems. Transportation Research Record:43

Journal of the Transportation Research Board, Vol. 2422, 2014, pp. 1–11.44

[30] Mazloumian, A., N. Geroliminis, and D. Helbing, The spatial variability of vehicle densities45

TRB 2019 Annual Meeting Original paper submittal



Ambühl et al. 17

as determinant of urban network capacity. Philos Trans A Math Phys Eng Sci, Vol. 368, No.1

1928, 2010, pp. 4627–47.2

[31] Berndt, D. J. and J. Clifford, Using dynamic time warping to find patterns in time series. In3

Proceedings of the 3rd International Conference on Knowledge Discovery and Data Mining,4

AAAI Press, 3000887, 1994, pp. 359–370.5

[32] Sakoe, H. and S. Chiba, Dynamic programming algorithm optimization for spoken word6

recognition. IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. 26, No. 1,7

1978, pp. 43–49.8

[33] Alt, H. and M. Godau, Computing the Frechet distance between two polygonial curves. In-9

ternational Journal of Computational Geometry Applications, Vol. 05, No. 01n02, 1995, pp.10

75–91.11

[34] Toohey, K., SimilarityMeasures: Trajectory Similarity Measures, 2015, r package version12

1.4.13

[35] Aggarwal, C. C. and C. K. Reddy, Data clustering: algorithms and applications. Chapman14

and Hall/CRC, 2013.15

[36] Kaufman, L. and P. Rousseeuw, Clustering by means of medoids. In Statistical Data Analysis16

Based on the L1 –Norm and Related Methods (Y. Dodge, ed.), North-Holland, 1987, pp. 405–17

416.18

[37] Vinod, H. D., Integer Programming and the Theory of Grouping. Journal of the American19

Statistical Association, Vol. 64, No. 326, 1969, pp. 506–519.20

[38] Rousseeuw, P. J., Silhouettes: A graphical aid to the interpretation and validation of cluster21

analysis. Journal of Computational and Applied Mathematics, Vol. 20, 1987, pp. 53–65.22

[39] Maechler, M., P. Rousseeuw, A. Struyf, M. Hubert, and K. Hornik, cluster: Cluster Anal-23

ysis Basics and Extensions, 2018, r package version 2.0.7-1 — For new features, see the24

’Changelog’ file (in the package source).25

[40] Gayah, V. V. and C. F. Daganzo, Clockwise hysteresis loops in the macroscopic fundamental26

diagram: An effect of network instability. Transportation Research Part B: Methodological,27

Vol. 45, 2011, pp. 643–655.28

[41] Leclercq, L., N. Chiabaut, and B. Trinquier, Macroscopic fundamental diagrams: A cross-29

comparison of estimation methods. Transportation Research Part B: Methodological, Vol. 62,30

2014, pp. 1–12.31

TRB 2019 Annual Meeting Original paper submittal


	Introduction
	Analyzing MFD patterns
	Measuring similarities in patterns
	Dynamic time warping
	Frechét distance

	Clustering
	Measuring MFD shape similarity

	Data
	Results
	Discussion and conclusions
	Aknowledgements

