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"The ever accelerating progress of technology and changes in the mode of human
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the race beyond which human affairs, as we know them, could not continue."
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Abstract

The conventional development of advanced materials for high-performance batter-
ies is a decade-long journey. A considerable amount of capital and effort is required
to sustain the trial-and-error approaches from discovery to commercialization. Herein,
it is essential to accelerate the identification of promising materials in the domain of
energy storage and conversion, requiring agile and disruptive research methods to
significantly shorten the development life-cycle and spur innovation. The integration
of indispensable tools such as machine learning, data science, and high-throughput
experimentation is increasingly recognized for its capacity to generate insights and
optimize battery performance, thus accelerating research paradigms. State-of-the-art
Materials Acceleration Platforms (MAPs) leverage these advancements to deploy
intelligent automated workflows, minimize researcher intervention, and maximize
autonomous laboratory operations.

This thesis aims to engineer tools for MAPs applicable in autonomous electrochem-
ical experimentation and predictive analysis to enhance battery informatics. The
study involves various stages of laboratory device integration, hardware interfacing,
deployment of custom-designed software, and automatic testing. It unites rigorous
electrochemical data analysis and data management systems and leverages deep learn-
ing, machine learning, and active learning algorithms to orchestrate AI-accelerated
experiments for optimization tasks at an unprecedented rate. The objective is to
reduce the time required to extract fundamental knowledge compared to traditional
approaches and ensue high-throughput experimentation with reliability, reproducibil-
ity, and multi-fidelity. Ultimately, this research contributes to the advancement of
battery technology and marks a significant leap toward the realization of self-driving
laboratories.
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Kurzfassung

Der herkömmliche Entwicklungsprozess fortschrittlicher Materialien für Hoch-
leistungsbatterien ist ein jahrzehntelanger Prozess. Für die Aufrechterhaltung des
serendipitären Ansatzes von der Entdeckung bis zur Kommerzialisierung ist ei-
ne beträchtliche Menge an Arbeit und Kapital erforderlich. Daher ist es von ent-
scheidender Bedeutung, die Identifizierung vielversprechender Materialien für die
Energiespeicherung und -umwandlung zu beschleunigen, was agile und disruptive
Forschungsmethoden erfordert, um den Entwicklungszyklus wesentlich zu verkürzen
und Innovationen voranzutreiben. Die Integration von unverzichtbaren Werkzeugen
wie maschinelles Lernen, Datenwissenschaft und Hochdurchsatz-Experimente wird
zunehmend für ihre Fähigkeiten genutzt, Erkenntnisse zu generieren und die Bat-
terieleistung zu optimieren, wodurch Forschungsparadigmen beschleunigt werden.
Hochmoderne Materialbeschleunigungsplattformen (MAPs) verwenden diese Fort-
schritte, um intelligente automatisierte Arbeitsabläufe einzusetzen, die Notwendigkeit
für das Eingreifen der Forscher zu minimieren und den autonomen Laborbetrieb zu
maximieren.

Ziel dieser Arbeit ist die Entwicklung von Werkzeugen für MAPs für autono-
me elektrochemische Experimente und prädiktive Analysen zur Verbesserung der
Batterieinformatik. Die Studie umfasst verschiedene Phasen der Integration von La-
borgeräten, Hardware-Schnittstellen, den Einsatz von maßgeschneiderter Software
und automatischen Tests. Sie vereint rigorose elektrochemische Datenanalyse sowie
Datenverwaltungssysteme und nutzt Deep Learning, maschinelles Lernen und aktive
Lernalgorithmen, um KI-beschleunigte Experimente für Optimierungsaufgaben mit
noch nie dagewesener Schnelligkeit zu orchestrieren. Ziel ist es, den Zeitaufwand
für die Gewinnung grundlegender Erkenntnisse im Vergleich zu herkömmlichen
Ansätzen zu reduzieren und Experimente mit hohem Durchsatz, hohrer Zuverläs-
sigkeit, Reproduzierbarkeit und Vielseitigkeit zu ermöglichen. Letztlich trägt diese
Forschung zur Weiterentwicklung der Batterietechnologie bei und markiert einen
bedeutenden Schritt in Richtung der Realisierung selbstfahrender Labore.
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[7] Katarina Cicvarić, Leon Merker, Bojing Zhang, Fuzhan Rahmanian, Miran Gaberšček,
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1. Introduction

“The only constant is change,

and the rate of change is increasing”

— Peter Diamandis

Why is the race for better batteries a race against time and data

scarcity?

Material discovery and design approaches resemble a polymorph puzzle that
changes shape once put together1. Conventionally, scientists assembled these puz-
zle pieces by investing a disproportionate amount of time and capital in empirical
methods2. Especially in battery research, the vast and complex chemical space3, 4 re-
quires a depth of analysis exacerbated by the lengthy process of brute-force strategies5.
This further amplifies complexity in the high-dimensional design spaces where the
optimization of electrolytes, electrodes along with their physical and mechanical
properties6, 7 result in a matrix of outcomes that urge for exploration and systematic
exploitation8, 9.

The path to optimal battery materials involves a series of iterative processes, each
requiring precision and a profound understanding of physiochemical parameters10.
The optimization steps concern not only the composition of materials but also include
the design of electrodes and electrolytes11, the development of efficient cycling
protocols, and the assessment of battery interfaces12 stability, such as solid electrolyte
interphase (SEI) and cathode electrolyte interphase (CEI). These processes directly
affect a battery’s lifetime and performance, and it is essential to understand the
extent of their impact13. Thus, the final puzzle piece is lifespan prediction, where the
lengthy cycling procedures introduce latency in performance feedback14. Early-cycle
data prediction could enhance development progress and manufacturing processes.
These multifaceted challenges necessitate a paradigm shift in battery research15.
Conventional methods, while foundational, require transformation to address these
complex challenges16. Modern research strategies17, such as the implementation
Materials Acceleration Platforms (MAPs)18, 19, are indispensable for discovery20

and development of the next-generation battery systems21 for energy storage and
conversion applications10.
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1.1. A Phenomenological Perspective

According to Kuhn22, scientific progression unfolds not through mere linear accu-
mulation of knowledge but through a series of transformative shifts in science’s
fundamental concepts and methodologies. In line with this perspective is the emer-
gence of initiatives such as MAPs, which are emblematic of a broader scientific
evolution over the past and current centuries. Developments were brought forward
by breakthroughs in digital technologies23 along with the evolution of material sci-
ences, which has experienced several paradigmatic transformations, each building
upon its forerunners. The inception of modern scientific understanding began with
empirical science of the 17th century, characterized by rigorous observation and
experimentation. This phase signified a shift from insightful premises to a reliance on
empirical evidence24. In the late 1870s, Edison’s exhaustive exploration of over 1600
materials for the optimal lightbulb was a precursor to High-Throughput Experimen-
tation (HTE) design, where the systematic variation of experimental parameters in a
vast search space established essential techniques for observing material properties25.
Further examples of primitive HTEs were involved just a few decades later in discov-
eries that massively impacted society’s standard of living. Alwin Mittasch at BASF in
1909, through an iterative approach for optimizing the catalyst, allowing for industry-
scale ammonia synthesis, which is still a crucial element for agricultural fertilization26.

It was soon apparent that even a high degree of acceleration cannot justify a mind-
less screening procedure. HTE is most effective when the experimental endeavor is
minimized while the information retained is maximized. The mindful application
of Design of Experiments (DoE) is required to reach efficacy26, and it involves the
systematic design of a search space grid with predefined steps for each parameter to
explore their performance impact. The expansion of phenomenological approaches
continued throughout the 1950s; it sought to explain nature through increasingly
complex scientific laws and principles based on mathematics, significantly impacting
domains such as physics, chemistry, and biology22, 27.
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1.2. Digital Transformation

The omnipresence of computers today, along with the leaps in power and efficiency
achieved by silicon-based transistor chips, can make it challenging to imagine that
the formal foundations for these advancements were laid a mere 70 years ago by
researchers28 such as Alan Turing, who formalized theoretical computer sciences as
a discipline29. Gordon Moore’s 1965 observation, which accurately predicted the
exponential growth in computing power30, marked the evolution from Z3, the first
programmable floating-point machine by Konrad Zuse31, to Frontier, today’s most
powerful supercomputer. In parallel, the term ’Artificial Intelligence (AI)’ was pro-
posed by John McCarthy at Dartmouth in 1956; the first AAAI was held at Stanford
in 1980, and AI experienced its boom in that decade. In 1997, IBM’s Deep Blue beat
Garry Kasparov at chess32, and today, Large Language Models (LLMs) are conquering
multiple domains of society33. Against this backdrop, it was not long until the society
and scientific community started to benefit34. Material sciences soon integrated its
ideas into this digital transformation35.

In 1970, Joseph J. Hanak36 contributed significantly to the field of materials research
by introducing ’multiple-sample concepts’ with high-throughput techniques for pro-
cessing and testing new low-temperature superconductors that created gradient
libraries of multiple compositional properties while being limited by the computa-
tional possibilities of his time. His work on combinatorial principles was progressively
acknowledged in the 1990s when it was applied in biochemistry and pharmaceutical
studies at UC Berkley37. Combinatorial Materials Sciences (CMS) was officially started
in 1995 by Xiang et al. with their effort to unravel the physiochemical properties
of solid-state materials38. From 1997, industrial interests from companies such as
Symyx Technologies could publish a material library for 25000 inorganic compounds,
establishing the state-of-the-art for HTE at the time39. Despite skepticism, Xiang and
Takeuchi1 were able to capture the importance of advances in tools and experimental
techniques, reflecting them into the systematic execution of multiple experiments and
codified CMS in 2003; together with HTE, the creation of extensive material libraries
was rapidly increasing and added scientific value by inferring knowledge40 from the
correlations between composition, structure, and properties in reduced time1.
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1.2.1. Beyond Linear Exploration

As outlined by Maier et al.26 in 2007, there was a need for software and computational
tools for the analysis of large datasets and pattern identification41. The development
of highly parallelized computational architectures in hardware42, such as Central
Processing Units (CPUs) and Graphics Processing Units (GPUs), has accelerated
the efficiency of training algorithms including Aritificial Neural Networks (ANNs)
and genetic algorithms (GAs)26 and enabled more complex statistical modeling
capable of learning intricate patterns in data43, 42. The convergence of advancement
in computer science, alongside AI technologies44, 45, has unlocked new potential in
material discovery24, 46, 47 bringing the discipline on the verge of the next Kuhnian
paradigm shift22. Now, the pursuit of material knowledge is no longer linear but
multidimensional, driven by data48, computation, and an innovative spirit that seeks
to redefine the possible45, 49.

1.2.2. Chemoemtric Era of Inverse Design

The physical properties of a wide range of synthesized materials are still to be ex-
plored, despite the greater availability of a library of materials derived from HTE50.
Obstacles in the path between serendipitous and intentional discovery limit their po-
tential to uncover materials in a plausible chemical neighborhood that can be derived
from a minimal configurational change51, 52; in a conventional direct approach, the
three dimensions of atomic fingerprint, composition, and structure (ACS) are taken as
input for the exploration of material properties P(ACS), which are not pursued a pri-
ori. An approach to material design where the targeted properties of a given ACS are
the goal and not the outcome is what characterizes the inverse design philosophy53

(Figure 1.1). Early approaches to inverse design were mathematical; for instance,
the inversion of the Schrödinger equation to find the potential energy for desired
eigenvalues has been a long-standing topic in the literature54. Analytic solutions
provided by inversions of equations might prove impractical due to mathematical
constraints, the inherent complexity of material systems, and the necessity for scalable
solutions55. Modern applications of inverse design rely on data-driven techniques to
offer a feasible alternative48. Herein, this ’form follows function’ conceptualization
manipulates datasets from deliberate discovery to uncover relationships between
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properties, functionalities, and molecular structures53. Ideally, a tool for inverse
physicochemical design would be both efficient in sampling the chemical space and
optimizing property gradients to output accessible compounds40, 52. This can be
achieved by capturing the probability distribution of nonlinear correlated properties
and structures, a task where deep generative models are particularly adept. Through
the use of complex sampling, generative models can create latent representations of a
chemical space56. This allows optimizers to efficiently map inputs to targets, utilizing
backpropagation to navigate local min-max traps and rapidly calculate gradient
information relative to design variables50. The outcome is enhanced exploration and
guided optimization5, efficient at handling multi-objective design and complexities
from high-dimensionality of microstructure space57. Common generative models
applied for inverse design in material science are variational autoencoder (VAE)40,
Generative Adversarial Networks (GANs)58, reinforcement learning (RL)59, 60, and
Recurrent Neural Network (RNN)61 in applications such as the prediction of crys-
tal structures for inorganic materials or the molecular representation of redox flow
batteries48. Inverse design has shown promise in overcoming major roadblocks in
laboratory experimentation by exploring unknown and counterintuitive compounds
often required for technological applications56.

1.2.3. Material Genome Initiative & Beyond

From 1990, data-intensive scientific endeavors, in combination with computing power
and experimental data, unlocked genetic mysteries with The Human Genome Project
(HGP)62, which was completed in 200363 with the sequencing and mapping of the
entire base pairs of human DNA64. Its modalities inspired material scientists to
apply similar principles to their research through the integration of data sharing,
HTE, and modeling65. Ceder initiated the Materials Genomics project at MIT66,
utilizing advanced data mining to seek optimal materials for lithium-based batteries
for electric personal mobility. Concurrently, Curtarolo at Duke University developed
the Materials Genomics Center to enhance the study of metal alloy research with the
introduction of Automatic-FLOW (AFLOW)67, 68, an automated system capable of
predicting new crystal structures. A crucial milestone for modern material science
was reached in 2011 with the launch of the Material Genome Initiative (MGI)69.
President Barack Obama set the goal to double the speed and lower the cost in
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the discovery, development, and deployment of advanced materials, cementing the
intentions of the United States70 with hundreds of millions of dollars in funding and
with the words "We can do it faster"71. Since then, The Materials Projects66 as the core
data repository of MGI, as well as other databases such as Open Quantum Materials
Database (OQMD)72, are being utilized as interactive multichannel exploration tools
for data-driven approaches and data-informed prototyping42.

Figure 1.1.: Comparative overview of material design strategies, namely direct and inverse approaches.
In the direct approach, experiments include the entire range of possible combinations of materials
A and B through HTE or manual experimentation. This process segregates regions based on a prior
search into physically infeasible areas (inaccessible) and previously explored (quantified) regions,
while also identifying unmeasured (under exploration) and unknown (uncharted) ones. Here, the
combinations of each material with their known ACS, are explored for a potential functionality
P(ACS). In contrast, the inverse strategy reverses the sequence by estimating the target functionality,
P(ACS), and guides the search toward optimal ACS combinations in fewer steps. This approach is
illustrated in a contour plot, where the estimated functionality is derived from the quantified ACS
data from the lower grid space, and the measurements are directed to compounds with predicted
maximized functionality53. Such a strategy enables a more efficient, targeted exploration and can
accelerate the discovery of novel materials.
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1.2.4. Closing the Experimental Loop

The success of projects such as MGI has validated the proposition of faster mate-
rials discovery23. CMS1, high-throughput characterization73, 74, and robust inverse
design53, 40 are all integral components of a "closed-loop" setup capable of maximizing
the potential of data resources and exploiting their intrinsic prior knowledge75, 76.
An ideal closed-loop design involves an iterative process that integrates a contin-
uous feedback mechanism, connecting several stages from material conception to
experimental execution, testing and characterization77, which allows identifying the
most promising material designs, reducing experimental trials and the time gaps
between each step in the discovery chain50, 44. The development of AI technology
has enabled closed-loop systems to acquire self-optimization capabilities, incorporat-
ing informed decision-making and automated feedback75, 78. In this context, Active
Learning (AL) algorithms guided high-throughput experimental workflows through
heuristic exploration and exploitation within the search space9. These algorithms
enabled predictions of figure-of-merit (FOM) based on an in-depth analysis and data
extraction, benchmarking experimental learning-based approaches40. Nevertheless,
the insight creation was limited to sufficient interoperability and data integration.
Tools, machines, and control mechanisms were often isolated and did not rely on
effective ways of communications32. Addressing this challenge, Application Program-
ming Interface (API) emerged as a natural fit, capable of enhancing the interactions
between various segments of scientific research processes79, 46. For instance, large
data projects such as AFLOWLib in 2014 relied on API80 communication to allow
retrieval of datasets through interchangeable and customizable queries that are acces-
sible and human-readable. APIs are now prominent in modern decentralized data
handling; their journey from simple command-line tools to the interface of service
access architecture, on-premise and cloud, follows the progression of the connectivity
protocol for big-data24. They ensure coherent communication using the same digital
language across various components of an ecosystem. In 2018, the convergence of
digitalization efforts and novel experimental designs led to the evolution of closed-
loop discovery and its related terminology into MAPs18, a strategic rebranding in
materials science46, with benefits specifically in electrochemical energy storage10.
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1.2.5. Intelligent Acceleration Platforms

MAPs are not merely an extension of the closed-loop systems, but a more sophis-
ticated embodiment of it18. Besides all the features of HTEs, MAPs incorporate a
higher degree of automation81, autonomy82 and instrumental abstraction to accelerate
the discovery and optimization of materials17, 83. MAPs elevate HTE84, 73 with modu-
lar robotic platforms85, machine learning (ML),45, 86 and statistical knowledge87, 88.
Inherent to this functionality are web interfaces and unified data infrastructures,
which enhance the interoperability and data collection at all stages from preparation
to characterization83. This ensures detailed lineage and provenance for data89 and
enables real-time, systematic analysis and modeling across diverse experiments90

(Figure 1.2). The modular nature of MAPs offers profound insights into physico-
chemical parameters91 in less time compared to drudgerous Edisonian approaches,
minimizes human error, and maximizes productivity, promoting device reusability
across a multitude of instruments and laboratories92, 93.

Autonomous Research System (ARES) in 2016 designed to optimize the synthe-
sis of carbon nanotubes (CNTs), is considered to be the first HTE labeled as MAPs.
This autonomous system allowed control over the growth processes of these nan-
otubes in a six-dimensional parameter space. By leveraging GAs and random forest
(RF) for AL, ARES efficiently performed up to 100 experiments daily, surpassing
manual methods. After completing 534 experiments, this system achieved its tar-
geted growth rates with minimal expert intervention, highlighting a milestone in
automated, learning-based approaches for material synthesis94. This was followed by
another platform in 2018: Chemputer. It shifted towards automated, machine-driven
experimentation and integrated a Chemical Assembly (ChASM), as a unique scripting
language, to a robotic system to automate organic material synthesis, enhancing
safety and reproducibility of chemical processes95.

8



1.2. Digital Transformation

P-

Li+

O

O

O

Prior Knowledge Hypothesis

Parameter Space

Pr
op

er
ty

Experiment Analyze

Plan

Report

Data Infrastructure

Closed-Loop

Figure 1.2.: Schematic representation of MAPs. The process begins by collecting prior knowledge,
such as empirical data, literature reviews, and statistical analyses of previous experiments. This
information is then used by the scientist to formulate a hypothesis for a research question. Following
this step, the MAPs carry out an iterative high-throughput experiment using a closed-loop feedback
mechanism that integrates the robotic experimentation platform, real-time analysis, and AI/ML-driven
algorithms to optimize experimental parameters and plan the subsequent run. This iterative process
is orchestrated by web interfaces that communicate between devices and servers at every stage to
accelerate data transfer. Every phase, from setup and preparation to characterization, is stored in a
unified data repository and is documented in reports that adhere to Findable, Accessible, Interoperable,
and Reusable (FAIR) data principles.

1.2.6. The spawning of MAPs

In 2018, the development of AL algorithms for multi-objective optimization chal-
lenges in MAPs was evidenced by the introduction of frameworks such as Chimera96

and Phoenics97 that utilized Bayesian Optimization (BO) with minimal requisite
of prior knowledge. Phoenics, distinctively, leveraged kernel density estimation to
efficiently identify the global optimal condition98, beneficial in resource-limited envi-
ronments. Additionally, it significantly enhanced uncertainty estimation capability
through a practical exploration and exploitation9 of decision spaces. Subsequently,
beginning in 2019, a growth in MAPs development has been observed that resulted
in an escalating number of related initiatives worldwide. This growth began with
ChemOS99, 100, which exhibited advanced infrastructure software with its modular
design-enabled orchestrating and scheduling of experimental procedures through a
central workflow manager. This allowed for coeval feedback from past experiments
into future planning and was supported by its flexible data storage and transfer
capabilities101. ChemOS102, 100, primarily utilized Phoenics98 and later incorporated
Chimera96 and Gryffin103 for user-specific parameter prioritization and incorporation
of categorical descriptors, alongside with Golem104 and Gemini105 respectively for
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handling input uncertainties106 and enhancing multifidelity to reduce biases. Its
integration with a chatbot, utilizing Natural Languages Processing (NLP), provided
an intuitive user-centric interface. The hardware-agnostic nature of the platform
further enabled easy extension and broad applications, supporting cross-disciplinary
research fields and remote control102. These features exemplified the characteristics
of the Experiment-as-a-Service (EaaS) model107, 108 and in 2020, the platforms Ada109

and Langner110 adapted ChemOS into their operations. Ada, designed to optimize
thin film materials, demonstrated significant acceleration by completing 35-sample
experimental campaigns in less than 30 hours109. The Langner platform, on the other
hand, was applied in the organic photovoltaics, effectively fabricating up to 6048
films per day. Its use of Phoenics for multidimensional space exploration allowed for
identifying competitive photostable blends in just 15 iterations110.

The open-source, AI-integrated software package Experiment Specification, Cap-
ture and Laboratory Automation Technology (ESCALATE)111, simplified and ab-
stracted data pipelining for MAPs initiatives. This ontological platform streamlined
data management from collection to experiment creation and was suitable for ML
applications88. In 2020, the user-friendly Robot-Accelerated Perovskite Investigation
and Discovery (RAPID) platform112, in conjunction with ESCALATE, further accel-
erated discovery in the perovskite field, achieving over a 5-fold increase in research
efficiency. Materials Acceleration Operation System (MAOS)91 initiated a new per-
spective on user-centric approach19 in MAPs, integrating virtual reality (VR) with
collaborative robots for autonomous material synthesis and quality assurance through
a RL schema. Here, the training involved VR-based remote laboratory simulation by
administrators, translating recorded operations into real-world robotic commands.
Post-training, MAOS employed cloud-based data storage and an AI-planner to au-
tonomously analyze and optimize high-throughput data90.

1.2.7. From Optimization to Discovery

The progressive integration of the BO algorithm within MAPs113 significantly cat-
alyzed discovery rates from 202057, 114 onwards. Bayesian experimental autonomous
researcher (BEAR)115 exemplified this with its high multifidelity capability in au-
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tonomously optimizing the geometric parameters to enhance material toughness
in additive components. This workflow reduced experimental trials by 60-fold and
enabled benchmarking in only 12 hours. This was a substantial improvement over the
month-long duration typically required by traditional grid-search methods. Concur-
rently, closed-loop, autonomous system for materials exploration and optimization
(CAMEO)116 integrated phase map blueprints as prior data for real-time AI-driven
guidance for exploitation of composition-structure relationships. The platform dis-
covered novel compositions with competitive physical properties, achieving a 10-fold
iteration reduction with only 19 experiments. Using a batched Bayesian algorithm,
the Mobile Robotics Chemist117 identified novel photocatalysts six times more active
than existing formulations by conducting 688 experiments in eight days. This demon-
strated a 1000-fold and 10-fold acceleration compared to manual and semi-automated
workflows. These developments, among others, continued to enhance the evolution
of MAPs, further accelerating material discoveries in numerous domains108, 118, 119, 120.

1.3. Holistic Strategies for Multilayered Batteries

Digitalization efforts in battery material research, particularly for Lithium-ion batter-
ies (LiBs), are progressing towards more innovative and more sustainable manufactur-
ing121, 10. This progression is characterized by enhanced automation and interconnec-
tivity in the production chain, aiming for seamless integration from raw materials to
fully assembled battery cells122. In this development, building a digital workflow for
rechargeable systems with high energy and power density, particularly within MAPs,
involves an intertwined array of challenges123, 124. The advances, which were slightly
impeded relative to other materials’ discovery efforts, need to extend across the mate-
rial composition, interfaces, and systems125, 126. Addressing the multifaceted nature
of batteries requires a multimodal approach in HTE settings127. This approach is
essential to achieve Pareto-optimal cell chemistry, a demanding task128, 129, involving
a systematic balance of multiple performance attributes which include electrochem-
ical stability, safety considerations, and scalability20. As such, these complexities
make the research and manufacturing processes arduous, yet essential for practical
evaluation of the overall performance130. The difficulties, intensified by the diverse
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material properties and environmental factors10, set the goal to not only develop
high-performance batteries but also to ensure that solutions are sustainable121, 131

and socially unobjectionable129, 132.

1.3.1. The path of MAPs for Materials Screening

Progress in energy storage solutions (ESS), particularly in HTE for battery material
screening, experienced a notable growth13, 131, starting from late 2014. A notable
contribution was the introduction of a hierarchical computation method that, to a
significant extent, evaluated the stability of various electrolyte properties, including
redox potential and structural characteristics133. This was a precursor to the Elec-
trolyte Genome Project134 in 2015, an open-source initiative that utilized big data and
computational techniques to deepen the physicochemical understanding of battery
electrolytes on a multiscale level. By 2016, the project had significantly contributed
to techno-economic model development for redox flow battery electrolytes while
pursuing cost minimization of material design135. Despite progression in these com-
putational platforms for optimizing battery materials, the complexities intrinsic to
experimental workflows have carried over into a selected number of initiatives within
MAPs136. Beginning in 2019, an automated test-stand137 was introduced to rapidly
optimize binary search spaces for aqueous electrolyte solutions, utilizing real-time
high-throughput data acquisition and a ML-assisted algorithms. This system discov-
ered novel electrolytes by completing hundreds of tests in less than a day. It achieved
high precision, registering a deviation of 0.5 mS/cm in conductivity measurements
and a minimal 0.02 V shift in stability windows. Follow-up studies by Dave et al.138

enhanced this server-based robotic platform with Dragonfly139, a BO-guided algo-
rithm, with four acquisition functions, starting from a five-sample random strategy.
The system could test and analyze 140 mixed-anion sodium electrolyte formulations
in under 40 hours and identify compounds with superior electrochemical stability.
This platform was further expanded to Clio140, which was tailored for evaluating
non-aqueous electrolytes in LiBs. Clio showcased increased efficiency, achieving
six-fold acceleration in its testing process. Within two days, it examined 42 distinct
formulations for optimization of three solvents and a single Li-ion salt, which led to
the discovery of six benchmarks for fast-charging electrolytes.
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In recent years, the high-throughput approaches in combinatorial synthesis and
characterization were further advanced by miniaturization92, significantly reducing
material usage and enabling rapid assembly in electrochemical experimentation. An
example is given by the Scanning Droplet Cell (SDC), a tool140 initially applied in
electrocatalysis141, 142, 143 that has been expanded to battery-oriented studies144, 16. A
roadblock that requires sophisticated engineering and design persists in maintaining
consistent droplet formation and ensuring compatibility with commonly used carbon-
ate and fluorinated salt formulations145 in non-aqueous batteries146, 144. By leveraging
technologies such as 3D printing, this downsampling approach can replace the need
for full-scale instruments, thus lowering expenses and mitigating material scarcity147.

1.3.2. The Iceberg Illusion of Interfaces

In battery interfaces, the impact of electrolytes extends from charge transfer to the
formation of interphases such as SEI and CEI125, 148, which are critical factors in
defining quality, reliability, and life (QRL) of batteries149, 150. A comprehensive under-
standing of their underlying mechanisms necessitates advanced analytical methods20.
Algorithms such as GANs151 in 2014 catered to this requirement and enhanced
the capabilities of generative models152 and strengthened their reliability and inter-
pretability by integrating uncertainty estimation153, 154. The in silico progression has
been instrumental in generating electrochemically stable interfaces155, 55 by combin-
ing physical insights with computation models5 and unraveling their complexities
through advanced image analysis156 and spectroscopic techniques50. However, the
fidelity of insight gained from Deep Learning (DL) is contingent on the availability of
extensive datasets, which introduced its challenges in battery interface research157.
At the experimental level, evaluating these interfaces encounters further hurdles,
augmented by diverse experimental conditions and the necessity for multiple mea-
surement devices10. Such evaluation requires exhaustive preparation, stringent safety
guidelines, and comprehensive electrochemical analysis such as Electrochemical
Impedance Spectroscopy (EIS)149. The impact of these interfaces is not limited to the
initial battery cycles; additionally, it extends throughout the entire lifespan, directly
correlating with their aging process and impacting their State of Health (SoH)14. This
intricate dynamic represents a "Grand Challenge", as outlined by Bhowmik5. Despite
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considerable efforts125, 158, 159, a gap remains in developing MAPs that cohesively
connect interfaces to the broader battery systems157, 160. Such platforms, which inte-
grate extensive databases, operando characterization, and multimodal approaches,
are essential in advancing this area of research5, 129.

1.3.3. Temporal Narratives in System Analytics

In battery testing at the system level, the prolonged evaluation cycles add a temporal
dimension161 that intensifies the challenges for accurate health prognostics inferred
by battery management systems (BMS)162. Although there have been advances in
the integration of data-driven modeling with closed-loop optimization163, progress
towards complete autonomy in MAPs remains gradual10, mainly due to the nonlinear
relationship between battery capacity and both cyclic and calendar aging profiles162.
Thus, there is a necessity to engineer a unified methodology to formulate accurate
prediction and timely measure and analyze degradation behavior, ensuring long-term,
unmanned operations164, 165. The data-centric approach of the study by Severson et
al.14 in 2019 utilized a feature-based model, i.e., elastic net, from data of the first
100 cycles of 124 commercial LiBs cells, to accurately predict their lifetime trajectory.
Additionally, by implementing regularized logistic regression, they were able to clas-
sify cell longevity based on discharge measurements from only the initial five cycles.
This work was carried onto a closed-loop optimization (CLO) workflow163 in 2020,
where it was combined with a BO-guided approach to identify optimal fast-charging
protocols from 224 candidates. Compared to traditional procedures with random
protocol selection as a baseline, the test time of this system was decreased from 7700
to only 500 battery-hours during an experimental time of 16 days, resulting in a
substantial reduction in resources needed163.

Reliability of advancement in statistical forecasting, coupled with the role of un-
certainty quantification166, has become indispensable167. A prime example was the
development of an autoregressive ensemble RNN designed for predicting battery
degradation trajectories considering both aleatoric and epistemic uncertainties168.
The model utilized a comprehensive set of six features per training cycle and im-
plemented saliency analysis, which formalized the importance of input features
upon measurement and their impact on output prediction168. Among data-driven
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strategies, DL pipelines have increasingly been recognized169 for their capability in
uncovering insights directly from raw data170, 171 and eliminating the necessity of
feature engineering162. For instance, Fan et al.172 combined Gated Recurrent Units
(GRU) with Convolutional Netral Network (CNN) to enhance the fidelity of SoH
estimation. This integration enabled the extraction of temporal-spatial dependencies
from direct measurement parameters of current, voltage, and temperature.

Despite significant advancements, a fundamental challenge remains when consider-
ing the explainability of DL architectural designs57. Attention mechanisms173, initially
developed in NLP applications for enhancing sequence-to-sequence models174, are
a promising solution175. They strengthen the capability of DL models to manage
temporal dependencies and complex data patterns, providing human experts with
reliable and interpretable analysis176, 177. Crucially, the success of generalization
across DL models for accurate prediction hinges on the availability of extensive
amounts of data178. This prerogative prevents overfitting and bias to establish explain-
able, in-depth research insights for battery design studies5. However, the absence
of homogenous data157 is the missing piece that, to date, represents the main obsta-
cle in the development of MAPs for real-time, online monitoring of battery health
prognostics10.

1.4. Digital Movements in Smart MAPs

To implement a modular and versatile MAPs capable of covering all dimensions
of batteries, it is essential to address several distinct layers of complexities179, 180.
At the software level, a predominant facet is developing an API-centric framework
adaptable beyond individual instruments and single laboratory needs102, 46. This
involves addressing the complexities of software dependencies99 as current robust
autonomous workflows are primarily constrained by laboratory middleware, which
will become increasingly cumbersome with the broadening scope of experimental
platforms. In addition, the incompatibility of commercial softwares181 with the
open-source, version-controlled development restricts adaptability and community
engagement, essential for the promotion of automated orchestration182, 183.
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The path to digitalization in modular automation design for battery platforms can
be furthered through a versatile analysis server. Its fidelity can be demonstrated in
a range of complex analysis capabilities88, from electrochemical tests to advanced
imaging and characterization methods184, while adaptability is manifested in the
capacity of processing various file formats89. The server’s ability to generate compre-
hensive reports and provide advanced visualization further enhances the dynamic
modularity within the system185. Another milestone is the deployment of a robust
Data Management System (DMS) for cataloging the extensive data generated by labo-
ratory automation and understanding its flow across various projects186. Adherence
to FAIR187 principles in data lineage is crucial to ensure traceability from data acqui-
sition, processing, and associated metadata, essential to accurate data interpretation
at any level89. In conjunction with an advanced data analysis server, this architec-
ture will enable frictionless real-time integration between experimental data and
modelling188. Herein, leveraging AI-driven algorithms hinges on augmenting system
transparency and trust through enhanced explainability102, which will enable models
to achieve a level of proficiency in data interpretation comparable to that of expert
analysis189. Expanding upon this premise, DL models for non-convex optimization
in high-dimensional parameter spaces amplify the explainability through multi-task
learning approaches162. This collective learning philosophy enables the exploitation
of complex property correlations and accounts for experimental uncertainty, resulting
in more informed decision-making190. Addressing these complexities in MAPs will
enhance the system’s reliability, reproducibility, and autonomy through insightful
knowledge extraction78, 191 and remains a point of contention in this field of study15.

1.5. Europe’s Solution to Energy Storage

In order to solve the current disjunctions in global battery research, Europe, with its
Battery 2030+192 initiative, is gaining strategic autonomy by reliably accelerating the
pace of discovery in joining their domains20. Acceleration is being achieved with the
development of applications as part of the broader efforts to integrate experimental
and computational research through advanced data analytics and ML algorithms,
autonomous robotics with standardization and ontology-guided data management at
its core129.
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Battery 2030+ made the development of tools and methods for understanding the
spatiotemporal evolution of interfaces and interphases in batteries across multiple
chemistries possible with the Europeean Materials Modelling Ontology (EMMO)193.
It was developed under the auspices of the European Materials Modelling Council
(EMMC)194 as an ontology designed to facilitate interdisciplinary communication,
and it has become a key enabler of the Battery 2030+ project, functioning as its
designated knowledge space195, 186. The creation of this unified language benefitted
a variety of projects in this initiative and contributed considerably to lowering its
Technology Readiness Level (TRL)15 allowing endeavors such as Battery Interface
Genome – Materials Acceleration Platform (BIG-MAP)196 and Battery interface on-
tology (BattINFO)197, 198 to achieve scientific maturity with clarity in development
stages, effective risk management and fluid exchange between involved parties136.

1.5.1. Blueprinting the Energy MAP

Initiatives such as BIG-MAP have successfully addressed the subsequent layer of
complexity by incorporating efficacious AI techniques that necessitate the integration
and implementation of extensive datasets and data management plans (DMPs)191, 195.
To that end, interface calculation data is stored and shared to combat the current
scarcity in the battery research community. Partners involved in the BIG-MAP project
collaborated to interlink experimental and predictive data200, 191 within the unified
ontological infrastructure198 (Figure 1.3), with explainability as one of the main fea-
tures.

BIG-MAP is a game-changing project consistent with the FAIR data principles187

developed by a network of European experts and research institutions and repre-
sents the largest collaborative platform of its kind. It includes remarkable tools for
data integration and management, analysis, laboratory notebooks, simulations, and
predictive modeling; examples199 include Aurora, a platform for automated robotics
developed on the AiiDA201 python platform, PRISMA202, a robust application for
high throughput spectrum analysis, and an app to model SEI formation with AL203.
To date, a total of 30 apps are supported on the BIG-MAP registry199. The initia-
tive’s manifesto delineates a holistic, closed-loop strategy, ensuring a comprehensive
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Figure 1.3.: An overview of the data and information flow across various domains in the BIG-MAP
project196. It showcases the integration of experimental workflows, computational tools, and data-
driven strategies within a unified and shared data infrastructure. Herein, standardized protocols
and ontologies, together with public repositories, ensure data exchange and interoperability across
theoretical, experimental, and AI-driven domains. The commitment to FAIR principles187 is further
reinforced by the open-source publication of data in the cloud and the collection of tools and developed
software within the BIG-MAP registry199 to allow for efficient collaboration among project partners.
Applications such as SDLabs, HELAO, and tomato for experimental design and laboratory automation
are curated, along with computational resources such as the SEI Modeler and Quantum Espresso.
Other applications, including PRISMA and EVA, are designed for spectral characterization and
electrochemical analysis. The BIG-MAP project is a collaborative platform that aims to unravel the
complexities of batteries from materials development to end-use applications to ultimately accelerate
and advance the frontiers of energy storage technology.

understanding of the complete battery value chain, from basic materials to end-use
applications, emphasizing the crucial role of interfaces for enhanced performance and
longevity with the consideration of commercialization challenges15. The project aligns
with European sustainability goals and is positioning our continent at the forefront of
energy storage technology and contributing to the global transition towards a cleaner
energy future.
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Looking ahead, the scientific roadmap for future battery design and material discov-
ery must involve accelerating existing and future platforms, refining, cataloging, and
sharing interface mapping and enhancing smart functionalities of sensing and self-
healing. The research attention should additionally be focused on addressing critical
non-chemical aspects such as reproducibility in manufacturing and recyclability10

for ecological footprint. The race against data scarcity and time, therefore, is evident,
especially considering that talent and knowledge transfer between domains is not
instantaneous. However, by virtue of Battery 2030+ and other initiatives worldwide,
the transfer is already in motion.

1.6. Perspectives on a Singularity

In recent years, the democratization and cost reduction in robotics214, coupled with
the spread of programming skills in scientific fields, reduced computing costs, and
the accessible implementation of ML frameworks, have significantly impacted the
materials science communities. This is evident in the development of widespread
MAPs, or as they are recently known, SDLs102, 209. With the application of AI, automa-
tion, and the increase in computational power, SDLs are set to accelerate scientific
discovery189, 190. Notable recent progress includes A-Lab, built on Google’s Deep-
Mind, which conducted closed-loop experimentation with AL for 17 days, achieving
a 71% success rate211. Additionally, BayBE, an engine developed by the Merck
Group in collaboration with the University of Toronto, enhances experimental design
and optimizes industrial applications. Recently released as open source, BayBE
demonstrates the transition from theoretical frameworks to practical, autonomous
experimentation212, 213. Industrial interest confirms that knowledge-driven experi-
mentation with mere autonomy is no longer the goal, and global collaboration will
become the standard going forward179. Generative AI215 and LLMs33, 216 represent a
further step in self-optimization, enabling unsupervised decision-making processes
in future SDLs iterations49. This increasing autonomy promises significant advances
in new-material synthesis for sustainability, carbon neutrality, and especially the de-
velopment of safe, scalable, earth-abundant materials for batteries. However, it raises
important questions about governance, security, and broader societal impacts217. All
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Figure 1.4.: Tracing the trajectory of chronological scientific innovation, this figure encapsulates the
evolution of data repositories, AI technology, and MAPs through four paradigm shifts, including
empirical, theoretical, computational, and data-driven science24. It illustrates the progression from
Edison’s methodical materials experiments in 1870s, which established the basis for HTE25, to the
introduction of systematic DoE approaches in the early 20th century26. Initial databases such the
Cambridge Structural Database (CSD)204 and the Inorganic Crystal Structure Database (ICSD)205

laid the groundwork for the integration of materials science into the digital age after the emergence
of the term AI in 195632. Advancements in CMS1 were initiated by Hanak’s gradient libraries in
the 197036 and Xiang’s optimization of solid-state material in 199538. These, among other efforts,
resulted in MGI, which aimed to reduce development time and cost69, 71 of experimentation. The
Materials Project66 and OQMD72 were among the core outcomes of this initiative. The evolution of
additional repositories, such as AFLOW67, 68 along with technological advances, led to the coining
of the term MAPs in 201818. Among these platforms, ARES stands out as one of the inaugural
MAPs94. Others, such as ChemOS102, 100 and ESCALATE111, contribute to orchestration and data
management. In parallel, the AI leaps forward with advanced models such as GANs and libraries
like TensorFlow and PyTorch24, 27. This further accelerates the development of repositories such as
Novel Materials Discovery (NOMAD)206, 207, and Material’s Cloud186. All these progressions led to
the growth of MAPs, including RAPID112, Ada109, and Autonomous Materials and Device Application
Platform (AMANDA)108, among others. In the battery-related studies, the figure highlights platforms
such CLO163, Clio140, and ExpFlow208. In this research domain, the BIG-MAP196, 10 project is the
largest European collaborative platform that aims to advance material studies for the next generation
of batteries. These endeavors are presented as introductions to the present era, where the term
MAPs has evolved into Self-Driving Laboratories (SDLs)102, 209. Recent advancements in AI such as
AlphaFlow210, A-Lab211, and Bayesian Back End (BayBE)212, 213 represent an additional step towards
a potential scientific singularity, an event where AI-enabled materials discovery may exceed human
capabilities and trigger a transformative shift of explorative power.
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1.6. Perspectives on a Singularity

markers point to an upcoming paradigm shift in scientific discovery, and soon, the
community will have to face a "Materials Singularity" (Figure 1.4), a moment where
the rapid integration of AI and SDLs will potentially lead to breakthroughs at a speed
and complexity beyond human capability.
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2. Aim and Objectives

“The goal is to turn data into information,

and information into insight.”

— Carly Fiorina

This thesis addresses the challenges of designing a modular automation platform
for battery research. It seeks to answer the question: "Can the integration of AI
technology and informatics tools accelerate insights in battery-related studies?" To
answer the query, this thesis explores the potential of an orchestration system for
distributed research instruments. It examines various building blocks for conducting
experiments and integrating data from diverse sources to transform raw inputs into
valuable insights. Thus, the aim is to engineer reliable tools and a platform to acceler-
ate advancements in battery informatics.

The primary objective of this project is to design a SDC for non-aqueous systems, em-
blematic of the behavior of a half-cell at a millimeter scale and capable of on-demand
electrolyte formulation146. Following the development of hardware components, the
secondary objective is to plan and implement a Python-based software interface for
laboratory instruments to maximize device reusability through a modular web frame-
work and to establish an architecture that enhances the scalability and robustness of
device operations (Sec. 4.1).

An additional essential element is the development of a modular Python package for
comprehensive data analysis tailored to various electrochemical tests. The program
supports a diverse range of files and data formats, incorporates FAIR principles, and
enables effective data lineage tracking and visualization. Its architecture underlines
extendibility for additional functionalities and ensures compatibility for both stan-
dalone use and integration within various software environments (Sec. 4.2). The
design and development of a relational data infrastructure is another fundamental
component to ensure the integrity and accessibility of research data191. Therefore, a
locally hosted PostgreSQL is engineered for efficient data storage and management,
from user details to metadata and instrument outputs (Sec. 4.5).

Various AI tools tailored for specific insights are developed at different stages during
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this project. This includes the design of an ML pipeline to demonstrate the utility of
one-shot AL in data-scarce scenarios, utilizing a polynomial regression model with
uncertainty estimation. It showcases the prediction of conductivity optima at various
temperature ranges for non-aqueous electrolyte formulations (Sec. 4.3). Beyond the
scope of this thesis, another objective is to implement and develop a DL pipeline and a
modular Python package for multitask learning, targeting forecasts of battery lifetime
and degradation parameters. Integration of uncertainty quantification and attention
mechanisms enhances the design’s reliability and interpretability and demonstrates
generalization across battery types and testing protocols (Sec. 4.4).

AI-orchestrated 
experimentation

SETUP

ORCHESTRATION

QUALITY
CONTROL

AUTO-ANALYSIS

DMS

EXPERT 
CONTROL

AUGMENTED
INTELLIGENCE

Figure 2.1.: Design of enablers and tools for a reliable materials acceleration platform for battery-related
studies engineered for the fulfillment of this thesis’ objectives and achieved through the integration of
various building blocks. These include the development of hardware components for the experimental
setup (SDC), the design of an asynchronous Python-based web interface for orchestrating sequential
or parallel experiments for orchestration (HELAO), the implementation of a real-time quality control
mechanism, the development of a data analysis package (MADAP), the design of a FAIR-based data
management system, a user-friendly interface, and two AI-based frameworks. In particular, an ML
pipeline for active learning applications and a DL pipeline for predicting high-dimensional scenarios
such as battery lifetime (ARCANA). Together, these tools contribute to an advanced intelligent
acceleration platform (Auto-MISCHBARES).
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The next milestone focuses on developing an asynchronous server-based orchestration
framework to automate experiment scheduling and execution, enabling both sequen-
tial and parallel experimentation through a user-defined experiment list sketched via
a web interface (Sec. 4.1). Additionally, the project includes designing a real-time
quality control system to proactively identify and address potential failures and
ensure experimental reliability (Sec. 4.5). The final objective is to further utilize ML
tools, particularly AL, to conceptualize an intelligent acceleration platform, show-
casing the search optimization of the Schwefel function’s global minimum, which
demonstrates the framework’s robustness and transformative role of AI technologies
(Sec. 4.1). Overall, this thesis prepares the ground for scientists to utilize the platform
and its tools, that promise acceleration and enhancement of scientific discovery and
indicate their potential for broader research applications16.
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3. Research Design and Methodology

“We can’t solve problems by using the same

kind of thinking we used when we created

them.”

— Albert Einstein

The present chapter outlines this thesis’s primary interdisciplinary tools and con-
cepts, spanning from computer science and informatics to Artificial Intelligence
technologies and electrochemical methods. The subsequent chapter (Chap. 4) will
present detailed discussions of these techniques and accelerators for experimental
workflow, particularly in the Methods and Supplementary sections of each featured
publication and scientific study provided as addenda to this work.

3.1. Software & Informatics Tools

This section focuses on three main subjects required for developing software for
laboratory automation platforms. Initially, it introduces types of concurrent program-
ming, namely multiprocessing, multithreading, and asynchronous execution. These
techniques enable instruments to be called simultaneously, allow parallel testing, and
support the execution of multiple sequences of events asynchronously. Additionally,
the discourse covers the communication methods for software development, includ-
ing FastAPI for handling multiple requests and WebSocket for enabling a real-time
interactive platform for the user during experiments. The methods discussed in
these two subsections are complemented by additional explanations presented in
Section 4.1 and 4.5. The last subsection pertains to the integration of the Research
Data Management (RDM) lifecycle as a requirement of any research software. De-
tailed elaboration and practical implementations are provided in Sections 4.1, 4.2, 4.4,
and 4.5.

3.1.1. Concurrent Programming

Today’s computing hardware is becoming more efficient and powerful. However, it
is still a limited resource that must be carefully allocated among many workloads
during any given processing cycle. Therefore, parallelization and concurrency are
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indispensable tools for modern software development and hardware architecture
design. In computer science and engineering, concurrency improves software effi-
ciency by strategically executing task sequences through the orchestration of multiple
operations in overlapping intervals, focusing on logical coordination and resource
optimization without necessitating simultaneous execution. The core of this strategy
involves precise decision-making on "what to execute and when to execute it", en-
suring task prioritization and timely execution. This is especially useful in scenarios
where tasks have varying degrees of interdependency and require efficient synchro-
nization. The allocation of tasks switches at a high frequency, and concurrency can
create the illusion of simultaneity. A special form of concurrency is parallelism. It
refers to the execution of multiple tasks or segments of a single task across single
or multiple processor architectures at the same time that are logically or physically
partitioned218. The definition of these computational concepts is outlined in Fig-
ure 3.1. Concurrency can be achieved through three types of switching decisions;
multiprocessing, multithreading, and asynchronous processing.

Multiprocessing

Multiprocessing enables the concurrent execution of independent tasks using multiple
processes across different CPU cores. This approach is ideal for CPU-bound and
compute-intensive applications, as each process operates in its own memory space,
and tasks are assured of being executed independently without frequent interprocess
communication.219.

Multithreading

Multithreading allows multiple threads to run parallel within a unified process
context, enabling the same memory reference. This facilitates efficient communica-
tion and data sharing among threads, making it advantageous for Input/Output
(I/O)-bound tasks, which are operations that wait for external events, such as file
reads or network responses, while allowing other threads to proceed during idle
periods220. However, the shared memory model requires careful management to
prevent concurrency issues such as data races, a condition where two or more threads
simultaneously read or write to the same memory space. Deadlock and starvation
are two common challenges in multithreaded programming. Deadlock occurs when
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threads are mutually blocked, each waiting for resources held by the other to be
available, leading to a standstill. During starvation, threads with lower priority are
perpetually denied access due to higher-priority threads being given precedence.
All these pitfalls can be avoided with a thread-safe software design to ensure error-
free inter-thread communication. Recent Python versions offer adaptable solutions
for both CPU and I/O bound tasks, with built-in packages to handle concurrency,
threading, and subprocess-management221.
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Figure 3.1.: Schematic representation of concurrent multithreading system, where the non-blocking
execution of tasks is achieved through parallelism across multiple CPU cores and concurrency within
threads. Here, each horizontal lane represents a single thread running in parallel with others. Threads
1 and 2 illustrate the concurrent execution of a sequence of experimental tasks in separate setups.
Thread 3 manages real-time auto-inspection and dynamic data management tasks, and Thread 4
maintains a live visualization throughout the operation. This depiction exemplifies the two different
types of executions applicable in the design of laboratory automation frameworks.

Asynchronous frameworks

Asynchronous processing represents another concurrency mechanism where tasks
are initiated and executed independently. It allows a system to execute multiple
operations simultaneously without waiting for one task to complete prior to starting
the next. Due to its non-blocking operational framework, the architectural design is
effective in I/O-bound contexts, such as handling multiple web server requests via
API calls. This approach improves the efficiency of the system and minimizes the
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latency219.
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Figure 3.2.: An asynchronous event-driven execution framework, where multiple tasks submit requests
to an event queue. A single-threaded, non-blocking event loop processes these requests and orches-
trates the execution flow by scheduling and delegating events in the queue and registering callbacks
without awaiting operation completion. Once operations are finished, the registered callbacks will
be triggered, and the event loop will continue to process new requests. Completed responses are
asynchronously returned to the tasks.

In Python, the asyncio library enables this behavior through coroutines, tasks,
and the event loop to implement cooperative multitasking within an event-driven
framework. Coroutines are functions defined with the async def syntax that allows
execution to be paused and resumed at await expressions, ensuring non-blocking op-
eration. Tasks are coroutine wrappers that are scheduled in a queue and orchestrated
by the event loop, a mechanism that serves as a central coordinator and manages the
nonlinear flow of tasks. Here, coroutines can be executed concurrently on a single
thread, pausing at an await expression and resuming execution when the awaited
operation is complete (Figure 3.2). This execution model, supported by context
switching, enables the development of scalable and responsive applications without
the complexity of threading designs or the performance limitations associated with
Global Interpreter Lock (GIL), which restricts the concurrent execution of multi-
ple native threads. Asynchronous operations bypass this constraint without direct
interference from the GIL. The standard API architecture promotes non-blocking in-
formation flow, allowing clients to make multiple requests simultaneously and receive
instant responses while requests are being processed in the background222. This type
of processing is most useful for laboratory automation software and long-running
experiments.
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3.1.2. Web-Server Communication

Online interaction between different instruments and controlling devices in a labora-
tory is a key component in the development of automation in experimental settings
and is best designed using modern communication tools. In this regard, RESTful APIs
and Websockets have reached maturity in web-based frameworks and are applicable
for asynchronous tasks and live data transmission, respectively.

FastAPI

Representational State Transfer (REST) is a protocol that facilitates interoperability and
data exchange between microservices or systems, enabling access and communication
through a unified set of stateless operations. A robust web framework for building
RESTful APIs in Python 3.7+, FastAPI223, uses standard Python type hints to support
the development process. Communication is facilitated through endpoints, which
are specific URLs where clients can request data or perform actions. These interac-
tions are managed by Python functions annotated with FastAPI decorators for POST,
GET, PUT, and DELETE HTTP-Methods, aligned with Create, Read, Update, Delete
(CRUD) operations. GET queries are used to get data without altering the server
state, which makes them idempotent to read operations. On the other hand, POST
queries are used to submit data to a server for processing, creation, or modification224.

Each request can have several components, including path parameters, query param-
eters, headers, and content bodies. Path parameters are defined in URLs to locate
resources, while the query parameters, represented as a string appended to URLs
after a ’?’ sign, filter the data to be retrieved. Headers provide meta-information
about the request or response, and the request body transmits data in bytes to pro-
cess. A model class can be implemented using Pydantic225 to handle request bodies.
This module inherits from BaseModel and is necessary for data type validation and
structure. It enforces schema and reduces errors while maintaining type safety and
data integrity through Python type annotations.226 (Figure 3.3). The responses from
the endpoints are versatile and support a variety of types, such as JSON, HTML, and
custom formats. Status codes indicate the outcome of requests between the client and
server, ranging from successful operations (2xx codes) to client errors (4xx codes) and
server errors (5xx codes).
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http://echem-exp.api/experiment/130?experiment_type=CP
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Figure 3.3.: Illustration of the API communication process and endpoint configuration in the FastAPI
framework, showcased at an exemplary function, which contains the components of an API request
and its corresponding validation mechanism. The provided code snippet shows a FastAPI POST
decorator that defines an asynchronous endpoint. This request includes experiment_id as the
path parameter for unique experiment identification and the query parameter experiment_type.
Additionally, this example illustrates the request header, scientists_username, implemented for
tracking and authentication. The Experiment class, which inherits from the BaseModel module of
the Pydantic package, defines the schema of the request body, with attributes such as description,
duration, and voltage. This is used to validate the type of the incoming request.

FastAPI’s architecture inherits from Starlette, a basic routing and middleware tool
with expanded security attributes such as sessions cookies, leverages Uvicorn, a
lightweight and scalable server, and uses Asynchronous Server Gateway Interface
(ASGI) to create an asynchronous framework suitable for high-performance web
services. This combination makes FastAPI suitable for real-time applications and
non-blocking I/O tasks, as it can handle high volumes of concurrent requests and
asynchronous operations.224. To simplify API exploration, FastAPI’s design also
includes automatic documentation generation through Swagger User Interface (UI)
and ReDoc. To promote error-free codebase and improved maintainability, FastAPI
supports integration with Pytest, a Python testing framework that encourages test-
driven development (TDD) practices for code robustness and reliability218.
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Websockets

WebSockets is another protocol for web server communication that maintains a per-
sistent, two-way communication channel between the server and the client through a
single connection. This protocol enables instantaneous data transmission and recep-
tion, which is essential for applications requiring timely updates, such as real-time
experiment monitoring227. Unlike the traditional request-response model, where
each new data piece necessitates a separate HTTP request and potentially introduces
latency and inefficiency, WebSockets keep the channel open after the initial handshake
by upgrading an existing HTTP connection. Herein, this bidirectional communication
allows data to be transmitted between the server and client in real-time, enabling
dynamic updates without the need for continuous polling or reloading228. This
enhances data-driven decision-making processes by creating a more interactive user
experience.

In designing a lab automation framework, integrating Websockets for real-time
functionalities, such as live visualization of measurements, alongside structured APIs
for more conventional request-response tasks (e.g., FastAPI) ensures a responsive,
scalable, and maintainable workflow17, 229.

3.1.3. Research Data management

Data veracity, reproducibility, repurposeability, and trustworthiness are validated by
RDM throughout the entire lifecycle of scientific research10, 230. A RDM framework,
outlined in Figure 3.4, allows for effective data utilization from the collection phase
during experimental design to the final stages of data preservation89. Trust in data
integrity is essential for reproducibility, a core tenant of scientific inquiry, where
high-quality data generated from experimental workflows is both traceable and
manageable through solid stewardship plans231. Crucially, experimental data and
associated digital assets that are subject to long-term management retain their value
and remain accessible for future scientific endeavors232. The challenges presented
by the 5Vs, namely volume, variety, velocity, veracity, and value, hinge on the
implementation of reliable RDM strategies that cover all research outputs, such as
experiments, source codes, algorithms, and software packages, to maintain their
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usability and integrity over time233. A proactive data management plan is essential
for all stakeholders involved in the data-driven material science research lifecycle to
comply with current analytical and regulatory requirements200.
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Figure 3.4.: Overview of RDM lifecycle. This diagram illustrates the sequential phases of RDM,
beginning with Project Planning, where strategies for data management and compliance with FAIR
principles187 are established. It progresses through Data Acquisition and Preprocessing to create
and structure the planned databases and assure data quality. The next phase continues with the
Analysis and Prediction, where AI, ML, and statistical algorithms are applied, and code developments
are supported by version control systems. In the following phase, data sharing is achieved through
visualization tools such as Matplotlib and Plotly234 and results are shared via interactive web UIs or
graphical user interface (GUI)s. The cycle is completed with the Access and Reuse of data across local
storage or cloud-based repositories such as Zenodo235 to facilitate its extended use and impact.

Project Planning

The RDM lifecycle begins with the planning phase, which includes the design of
a data flow and represents a blueprint in alignment with the FAIR principles187.
The process initiates with the identification of data sources and the assessment
of data acquisition strategies under consideration of the diversity of methods and
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instruments used in its generation. It outlines the curation process steps, including
quality assurance and validation to maintain data integrity and compliance with
ethical standards236. This planning phase also involves determining storage solutions
and formats based on the nature of the data and the requirements of potential future
users237. Additionally, the integration of metadata standards provides a structured
description of data, including its provenance and characteristics, and makes datasets
shareable and publishable191.

Acquisition and Processing

The data acquisition phase of RDM requires the instantiation of the planned databases
for data storage and relies on principles that maintain the integrity and accuracy of the
collected data195. Relational databases are characterized by a structured schema that
defines data types and relationships. They support data manipulation and retrieval,
as well as robust query handling and operational reliability in compliance with the
atomicity, consistency, isolation, and durability (ACID) principle238. Additionally,
normalization eliminates data redundancy and dependency constraints within these
databases239. Herein, The First Normal Form (1NF) ensures that entries are atomic
and single-valued. The Second Normal Form (2NF) removes partial dependencies
and assesses the dependency of non-key attributes only on the primary keys, and
the Third Normal Form (3NF) further reduces transitive and indirect dependencies
({A → B, B → C} |= A → C). These forms simplify data management and allow for
precise definitions of table creation and their inherited relationships, data updates,
and insertions240. The implementation of Universally Unique Identifiers (UUIDs)
additionally prevents duplicate data entries and enables data lineage tracking across
different systems. These actions can be managed using a relational database manage-
ment system (RDBMS), available in commercial and open-source versions, such as
PostgreSQL241.

Alongside data acquisition, data preprocessing is indispensable for the quality and
informativeness of data, making it valuable for analytical purposes and ensuring
its long-term usability. By removing inaccuracies, redundancies, and heterogeneity,
this process restructures raw data into a coherent unit and avoids data quality and
consistency issues. This prepares data for ML modeling applications, supports model
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performance, and facilitates the extraction of meaningful insights. Data preprocessing
connects the collection of raw data to its practical use to strengthen the robustness
and reliability of research findings242.

Analysis and Prediction

The following phase of RDM involves analyzing data and may include the application
of AI and ML techniques for prediction objectives. Analytical frameworks tailored to
unique experimental applications can be developed and maintained using software
that facilitates low-level control through high-level language constructs. Here, version
control systems, such as git, can be used to monitor the changes made by each
contributor at any given time to promote accountability at all stages of research232.
The modularity and scalability of the codebase benefit from the use of modern
software design patterns applicable to object-oriented and functional scenarios243.
Documentation and detailed logging of every action is necessary for maximum
transparency and traceability. These measures enable accurate analysis and prediction
to generate actionable knowledge232.

Data Sharing

The data sharing phase maximizes the extraction of information, permitting diverse
interpretations from multiple stakeholders83. It allows for data exchanges while grant-
ing confidentiality for sensitive information through approaches such as federated
learning244. Intelligent visualization of both raw and processed data using libraries in
common programming languages such as R and Python contribute to the distribution
of derived knowledge through web-based UI or GUI195. Web UI development com-
monly utilizes standard frontend languages such as HTML, CSS, and JavaScript, with
API communication through, for instance, Python Flask245 for backend connectivity.
On the other hand, for GUIs, libraries such as PySimpleGui246 provide intuitive and
user-friendly interfaces to construct interactive widgets and applications for local
execution. This approach to data sharing promotes transparency and accelerates in-
sight extraction, benefiting both small teams and large-scale consortia in collaborative
research environments247.
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Access and Reuse

The last stage of the RDM lifecycle focuses on techniques for data storage, publication,
and subsequent reuse, guided by the FAIR principles, to elevate the preservation
and utility of digital assets236. Various data formats are available to store complex
experimental structures along with their metadata. For example, the JSON format,
with its nested architecture, can improve the findability and interoperability of
datasets89, 248. The HDF5 format is intended for intensive I/O processing and storage,
while simpler structures can be written to CSV files. Relational databases also
serve as scalable storage solutions, especially considering the already tabular design
that adheres to the schema defined during the planning phase. Independence
from local hardware is offered by cloud-based repositories such as Zenodo235 and
Figshare249 that provide secure and configurable access to datasets while maintaining
data integrity and compliance with confidentiality requirements. Publishing data
on academic platforms increases its visibility within the scientific community and
simplifies the peer review process. Positioning data within digital libraries and
archives ensures data accessibility across diverse scientific domains and enhances
its repurposeability250. This maximizes the potential impact on future scientific
discoveries by allowing datasets to be adapted and reused in varying study settings,
thus increasing the immediate and long-term value of research projects195. Such a
scalable infrastructure is designed to support the dynamic requirements of expanding
projects, promotes sustainable data management practices that align with broader
research objectives, and embodies a commitment to openness, interoperability, and
the advancement of knowledge across disciplines251.

3.2. Statistics, ML, and DL tools

This section addresses methods and algorithms from statistics, ML and DL techniques.
In 3.2.1 the discussion verges on AL algorithm in the context of laboratory automation
and distributed instrumentation, focusing on how experimental optimization can be
achieved. Complementary details are provided in Section 4.1, which reports on the
development of hierarchical autonomous laboratory automation and orchestration
(HELAO) software. Section 3.2.2 outlines the uncertainty quantification method,
applied in evaluating a model’s performance using polynomial regression, that
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is described in Section 4.3. Lastly, in segment 3.2.3, an introduction to sequence
modeling for time series applications is presented. The specifics of this modeling
approach, along with the main blocks in the design and engineering of an explainable
and regularized deep model, are further elaborated in Section 4.4. This has led to
the development of the arcana-batt Python package for multi-output prediction of
parameters to estimate battery lifetime. Additional statistical methods are described
in Section 4.2 and 4.5 and include coverage of peak detection methods, motion
detection algorithms, and other techniques used to implement the data analysis
package and develop reliable software components for sequential experimentation
that comprise the autonomous millimeter scale high-throughput battery research
system (Auto-MISCHBARES) framework.

3.2.1. Active Learning

Accelerated science, as envisioned by early-stage autonomous feedback loops76 for
chemistry and materials science83, 5, seeks to deliver improved and promising ma-
terials through efficient chemical space exploration. These workflows are based on
the principle of AL algorithm, which includes a feedback loop252, 253 in planning
subsequent experiments from previous ones, and thus aim to integrate experiment,
analysis, and data management17, 99. Relying on the reproducibility characteristic
of high-throughput materials science, the goal is to reduce the amount of required
experiments while maximizing knowledge gain and experimental robustness17.

After defining the quantities of interest, the AL cycle begins with the random selection
of an initial experiment from the exploration space, guided by a predefined DoE
approach.254 This experiment is then executed automatically based on the specified
configurations. Following the automated measurement and real-time analysis, the
experiment’s merit is evaluated, and a learning function is used to determine the
parameters’ values for the next experiment. The ML model instantiates this function
to forecast the FOM for prospective experiments in the exploration area9. Figure 3.5
illustrates the application of a RF regressor as a predictive model, which reduces the
variance. Mathematically, this is expressed as Var[y] = σ2

n , where σ2 is the variance of
the model predictions, and n represents the number of decision tree estimators. Here,
the regressor improves the reliability of its predictions by averaging the outputs of
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multiple decision tree estimators. Additionally, during training, the model selects
a random subset of features for each decision tree split to prevent overfitting and
increase out-of-sample prediction accuracy255. This technique allows the model to
consider different aspects of the data by using an ensemble of trees, which provides
diverse insights for its predictions and enhances its generalizability. Furthermore, its
capability for parallel training reduces computational costs and decreases training
time, which is desirable for a model that requires real-time updates and predictions256.

The regressor model is retrained with the updated dataset and is then evaluated
across all non-sampled measurements within the defined space to obtain the pre-
dictions of the FOM (µ) and its associated uncertainty (σ). To improve the model’s
performance and experimental outcomes, the autonomous feedback loop incorporates
model predictions and uncertainty measures. Due to the error-prone environments9

in which the underlying measurement instruments operate, there is often a false
sense of data precision18, and uncertainties are predominately attributed to the model
itself and are known as epistemic uncertainty257. Given these challenges, in the
next procedural step of the AL algorithm, the acquisition function quantifies the
expected utility or informativeness of unlabeled data points, i.e.potential experiments,
to decide the subsequent measurement. The choice of the acquisition function may
vary depending on the research objectives. In the provided example in Figure 3.5,
this function, described by Rohr et al.9, determines the coordinates that maximize the
quantity in the upper confidence bound. The formula for the acquisition function is
defined as

λ · µ + (1 − λ) · σpreds (3.1)

where λ parameter, ranging between 0 and 1, adjusts the balance between exploiting
areas where the model predicts high values (µ) and exploring areas where the model
is uncertain. Here, this is indicated as σpreds, representing the standard deviation of
predictions across all decision tree estimators in the ensemble and highlighting the
areas of potential information gain257. This acquisition function provides a flexible
and versatile mechanism to prioritize either exploration or exploitation depending
on the objective. Thus, the experimental parameters that achieved the highest value
of the acquisition function are opted as the next experimental configuration; if mul-
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tiple points share the maximum value, one is selected at random. The suggested
experiment is then tested, and the resulting data and outcomes are added to the
existing dataset. The model will then be updated for the next cycle. This iterative
process of observing data, updating models, and selecting experiments continues to
systematically explore and exploit the search space to discover optimal solutions or
deepen understanding of the modeled phenomenon116, 254.

Rohr et al.9 additionally introduced a comprehensive set of metrics to evaluate
the effectiveness of the AL approach. Among them, all ALM measures the proportion
of all “good” materials identified within the top percentile of the FOM for a given
iteration cycle. This approach enables a systematic comparison to a baseline method,
which involves random selection at each iteration. The authors defined two metrics
for this comparison. The enhancement factor is measured as,

all ALMML_guided_process
all ALMrandom_sampling

(3.2)

which quantifies the improvement in all ALM metrics by integrating a predictive model
to guide experimental iterations over random sampling within a fixed experimental
budget. The second comparison metric is an acceleration factor that indicates the
reduction in the number of samples or experiments required to reach the same level
of all ALM:

all ALMML_guided_process =
all ALMrandom_sampling = y (3.3)

The factor is expressed as the ratio of cycles required in AL compared to a random
sampling baseline to reach this level. These metrics demonstrate the capability
of the AL approach in making intelligent and informed decisions and identifying
high-potential materials with fewer experiments compared to the conventional high-
throughput methods.

3.2.2. Uncertainty Quantification

Uncertainty quantification is crucial for assessing the reliability of predictions made by
ML algorithms, especially when using decision mechanisms such as AL. Among the

40



3.2. Statistics, ML, and DL tools

(...)

μ1,δ2
1 μ2,δ2

2 μn,δ2
n

μ, 
 

RF Model

Tree 2Tree 1 Tree n

Update Train 
& Test Data

x2,y2 
x1,y1

Motor Measure Analysis

Motor Measure Analysis

Sample from

Ra
nd

om
 S

am
pl

in
g

Figure 3.5.: A feedback loop for high-throughput experimentation. The schematic illustrates a
closed-loop system, initiating with a randomly selected trial from a predefined list of experiments.
The automated sequential process includes testing, measurement, and data analysis to derive the
experiment’s FOM that is then incorporated into an AL framework; here, the data of the completed
experiment is added to the training dataset and is simultaneously removed from the testing queue.
The selected ML model, represented here by a RF regressor, is retrained with the updated dataset and
proceeds to predict the FOM for the remaining unsampled trials, accompanied by an estimated mean
(µ) and standard deviation (σ). Following this prediction, an acquisition function, represented here
by an upper confidence bound heuristic, is applied to acquire these predictions to target areas of the
greatest model uncertainty. This function balances between explorative and exploitative strategies
via a tunable parameter, λ . The experiment that maximizes the acquisition function’s criteria is thus
selected for the subsequent execution, with its parameters sent to the devices. This iterative feedback
loop perpetuates until a predefined experimental budget is reached or the optimal solution within the
search space is empirically determined.
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various strategies for this quantification, conformal prediction is a proven approach
to measuring prediction certainty258. This statistical method is versatile as it can be
used under the assumption of data exchangeability, where the data is independent
and identically distributed (i.i.d.), without the need to determine the underlying joint
data distribution, PX,Y

259. Given i.i.d., training data is

(Xi, Yi) ∈ R
d × R, i = 1, 2, ..., n

and considering

Y = µ(X) + ϵ , (3.4)

where µ represents the target estimator function and ϵ refers to the noise, the objective
is to estimate a prediction interval Ĉn,α for a new observation, Xn+1, that approximates
the true target value, Yn+1, with a probability of at least 1 − α. Here, α represents a
pre-defined error rate and sets the significance level for the proportion of future data
points that are expected to be outside the predicted interval defined as

P
{

Yn+1 ∈ Ĉn,α
(

Xn+1
)}

≥ 1 − α . (3.5)

One approach to constructing this interval is the jackknife+ method, a variant of
conformal prediction techniques. This method considers the variability of model
predictions through leave-one-out (LOO) cross-validation, along with calibration
and conformity scores. Herein, for each instance in the training set, the model is
trained on all other instances to predict the excluded one. The conformity score is
then calculated as the LOO residuals, which measures the agreement between the
expected and actual values for each left-out instance. The jackknife+ method can be
extended to k-fold cross-validation, where one fold is left out at a time. This expands
the method’s applicability to larger datasets or computationally intensive models.
Mathematically, the conformity score for the i-th data point is commonly defined as
the absolute error between these two values259 and is expressed as

Si = |Yi − µ̂−i(Xi)| , (3.6)
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where µ̂−i is the prediction model trained without the i-th data point. To calibrate
the prediction interval, empirical quantiles of the conformity scores are used to
estimate its bounds and establish a threshold for prediction error within a desired
confidence interval. This leads to the formulation of the prediction interval around
the new observation Xn+1, guided by the 1-α quantile of the conformity score, as
follows260, 259:

Ĉjackknife+
n,α (Xn+1) =

[

q̂−
n,α

{

µ̂−i(Xn+1)− Si

}

, q̂+
n,α

{

µ̂−i(Xn+1) + Si

}]

. (3.7)

Here, q̂−
n,α and q̂+

n,α correspond to the lower and upper quantiles and are calculated
from the leave-one-out conformity scores (Figure 3.6). This method, which can
be implemented using MAPIE Python library261, accounts for the variability in the
regression function and promotes stable and reliable uncertainty quantification results
for practical applicability262.

... ...

Figure 3.6.: Estimation of prediction interval using the jackknife+ method. The series of panels
enclosed in the yellow frame represents the model evaluations (M1, . . . , M17, . . . , M25, . . . ), with each
model trained on subsets of the data excluding one observation (X−i) in successive LOO iterations to
calculate the corresponding conformity score from the residual error. The process loops across the
entire training dataset. The rightmost panel combines all these evaluations, utilizing the empirical
quantiles of the conformity scores to establish the prediction interval for new observations, depicted
as a shaded area. This provides a reliable measure of uncertainty for future predictions.

3.2.3. Sequence Modeling

This section describes some fundamental building blocks utilized in the design and
development of a highly regularized attention-based sequence-to-sequence (Seq-to-
Seq) architecture, thoroughly elaborated in Section 4.4. The following paragraphs
explore RNNs, particularly the long short term memory (LSTM) model, which is
used as part of the Seq-to-Seq model for the structuring of the encoder and decoder.
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The regularization techniques for optimizing the learning process along with further
advanced approaches, such as attention mechanisms and customized implementations
of methods, including the quantile loss function, rigorous early stopping, teacher
forcing for Seq-to-Seq flow, and transfer learning, are provided in detail in Section 4.4.

Recurrent Neural Network

To model the sequential data in applications such as time series prediction, RNNs
architecture are designed. These networks are an extension of feed-forward neural
networks (FFNNs) and incorporate a looped architecture with feedback connections,
enabling the network to maintain historical information. This architectural design
captures the temporal dependencies through an internal memory state (h), which
is updated at each step with newly received input data alongside all information
from previous states. This dynamic creates a recursive dependency and preserves the
continuity across the input sequence263 and can be mathematically expressed as:

h(t) = f (h(t−1); x(t); θ) , (3.8)

where h(t) and x(t) represent the hidden state and the input at time t, and θ refers to
the trainable parameters. The function f , integrates the previous state and the current
input to produce the new state.

Similar to other neural networks, the RNN architecture is defined by its layers
and activation functions. Each layer within a RNN contains a set of parameters,
namely weights and biases, which are optimized during training. This network
shares the same weights across all time steps, and biases provide further adjustments
to the neuron’s activation potential. Activation functions introduce element-wise non-
linearity into a layer during the learning process, enabling the network to understand
the dynamics of complex sequential data patterns and maintain the dimension of
each layer. These functions must be monotonic and differentiable, as neural networks
utilize gradient-based learning to optimize their trainable parameters. Commonly
implemented activation functions in RNN are shown in Figure 3.7.

The sigmoid function (Equation 3.9) transforms the input values (x) into a probability

44



3.2. Statistics, ML, and DL tools

a) b) c)

Figure 3.7.: The schematic illustration of common neural network activation functions and their
derivatives. a) represents the sigmoid activation function, which maps input to values between 0
and 1, and its derivative, which is maximal at the function’s inflection point, indicating maximum
input sensitivity. b) depicts the hyperbolic tangent (tanh) function, which produces outputs ranging
from −1 to 1, with its derivative reaching its highest absolute value at the origin. c) presents the
leaky rectified linear unit (Leaky ReLU) activation function, which prevents gradient vanishing during
backpropagation for negative inputs by allowing a small and non-zero gradient. The derivative of this
function maintains a constant positive slope for negative inputs and a slope of one for positive ones.

output within the interval (0,1). It saturates extreme values, negative or positive,
preventing abrupt changes in the outputs and moderating the magnitude of the
changes. This function is expressed as

σ(x) =
1

1 + e(−x)
. (3.9)

The tanh (Equation 3.10) is a frequently used function in recurrent architectures,
scaling the input values to the range between (−1, 1). This function is known for
leading to faster and more stable convergence compared to the sigmoid function and
is defined as

tanh(x) =
ex − e−x

ex + e−x
. (3.10)

A Leaky ReLU is defined in Equation 3.11, where α is a small, positive slope. This
function mitigates non-active gradients when x < 0, allowing the gradient flow for
inactive states and facilitating ongoing learning during training. It is expressed as
follows:

LeakyReLU(x) = max(αx, x) . (3.11)
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Figure 3.8 depicts the basic RNN and its unfolded structure, which comprises a
single recurrent layer. This unfolding process converts the recurrent structure into an
expanded computational graph, where each node represents the network at a specific
time. During the forward propagation phase of computation, the network processes
the input sequentially. It updates its hidden states at each step with

a(t) = Ux(t) + Wh(t−1) + b , (3.12)

h(t) = tanh(a(t)) . (3.13)
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Figure 3.8.: Schematic of an RNN. The circuit diagram on the left illustrates the compact cyclic
architecture of an RNN in which the hidden state h, is recurrently updated based on the current
input (x) and the previous states. This update process is parameterized by weight matrices U and
W, for input-to-hidden and hidden-to-hidden connections, respectively. The graph on the right side
depicts the unfolded RNN across multiple time steps, detailing the processing of input sequences. At
each time step t, the hidden state is updated by applying a tanh activation function to the weighted
sum of the input x(t) and the previous hidden state h(t−1). The output y(t) at this time step is then
calculated from the hidden state through another transformation involving the weight matrix V, which
connects this state to the output. This unfolded computational graph demonstrates how RNN captures
temporal dependencies within sequences.

The input-to-hidden, hidden-to-hidden transformations are described by the weighted
matrices U and W respectively and the bias vector is represented by b. The hidden
state at time t, h(t), is calculated using the activation function tanh. Finally, the output
for time t, ŷ, is determined by computing

ŷt = Vh(t) + c (3.14)
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with V and c being the hidden-to-output weight matrix and the output bias vector,
respectively. During the training phase, the RNN adjusts its parameters to minimize
the loss function, which typically measures the difference between the actual target
and the predicted output. This optimization is obtained through backward propa-
gation through time (BPTT), where gradients of the loss function are computed and
propagated through the network. With mean square error (MSE)

L =
1
2

T

∑
t=1

∥ŷ(t) − y(t)∥2 (3.15)

considered as the loss function, the gradient with respect to (w.r.t.) different parame-
ters can be calculated as follows :

δ(t) =
∂L

∂y(t)
= ŷ(t) − y(t) , (3.16)

where δ(t) represents the error, which is the derivative of the loss function (L) w.r.t.
the output at time t obtained using the chain rule. The loss gradient w.r.t. the hidden
states (h(t)) can be derived as:

∂L

∂h(t)
=

∂L
∂y(t)

·
∂y(t)

∂h(t)
= δ(t) · V , (3.17)

which illustrates how alterations in the hidden state at time t will impact the output
t and, consequently, the loss. However, in this recurrent setup, errors in prediction
at a subsequent time step (t+1) also influence the gradients at an earlier stage.
Mathematically the impact is expressed as

∂L

∂h
(t)

from ht+1

=
∂L

∂h(t+1)
·

∂h(t+1)

∂a(t+1)
·

∂at+1

∂h(t)
=

∂L
∂h(t+1)

· (1 − (h(t+1))2) · W . (3.18)

By combining the two terms in Equations 3.17 and 3.18, the gradient (∇h(t)L) can be
expressed as:

∇h(t)L = ∇h(t+1)L · (1 − (h(t+1))2) · W + δ(t) · V . (3.19)
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The loss gradient w.r.t. the output bias (c), denoted as ∇cL, is the sum of the direct
gradient impacts from the output layer across all time steps:

∇cL =
T

∑
t=1

∂L
∂y(t)

=
T

∑
t=1

δ(t) . (3.20)

The loss gradient relative to output weights (V) captures the error at each output step
influenced by the respective hidden state and is given by:

∇VL =
T

∑
t=1

∂L
∂y(t)

· h(t) =
T

∑
t=1

δ(t) · h(t) . (3.21)

Two gradients, one w.r.t. hidden bias and one w.r.t. to hidden-to-hidden weights (W),
are calculated in relation to the hidden layer parameters which capture the temporal
dependencies:

∇bL =
T

∑
t=1

∂L
∂y(t)

·
∂y(t)

∂h(t)
·

∂h(t)

∂a(t)
=

T

∑
t=1

δ(t)V ⊙ (1 − (h(t))2) (3.22)

∇WL =
T

∑
t=1

δ(t)V ⊙ (1 − (h(t))2) · h(t−1) . (3.23)

Lastly, the gradient w.r.t. input-to-hidden weights (U) considers the impact of each
input at respective time steps:

∇UL =
T

∑
t=1

δ(t)V ⊙ (1 − (h(t))2) · xt . (3.24)

The RNN, however, is constricted in learning long-term dependencies due to ex-
ploding or vanishing gradient problems, as illustrated by the recursive nature of the
gradients (Equation 3.19). This can result in slow convergence or instability in the
training process264. One advanced architecture introduced by Hochreiter et al.265 was
the LSTM network, which can mitigate this drawback and maintain a more constant
error flow through time steps.
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Long Short-Term Memory

LSTM networks enable improved gradient flow for capturing long-duration depen-
dencies within the network through an internal recurrence mechanism known as the
cell state (s). This unit functions as a linear self-loop, without weights and biases,
maintaining long-term memory without inducing gradient issues263, 265. It operates
in parallel with the external recurrence mechanism, which includes hidden units and
shares the same weight parameters for managing short-term memory. The interaction
between these two recurrences is modulated by gating units266. An LSTM consists of
three gates, namely the forget, input, and output gates (Figure 3.9).

h(t-1)

s(t-1) x

+

x

+

x

x(t) y(t)

b

State Update

b b

+ +
h(t)

s(t)

+

f(t) q(t) g(t)

o(t)

b

Figure 3.9.: Schematic representation of an LSTM unit during the t-th time step. This structure
illustrates the information flow from the input vector (x(t)), the previous hidden state (h(t−1)), and
the cell state (s(t−1)) through various gates: the forget f (t), input g(t)q(t), and output gate o(t). Each
gate executes a pointwise operation that combines x(t), h(t−1), and their corresponding weights with
their bias, subsequently passing through a non-linear activation function. The forget gate calculates
the amount of short-term information remembered from h(t−1) in the long-term memory s(t−1) while
ignoring the rest. The input gate consists of two sections that decide both the quantity of short-term
information to be acquired and its proportion to be stored in the long-term memory. The combination
of these two gates results in a state update, which is the new long-term memory, s(t). Lastly, the
information from the output gate is multiplied by the transformed updated cell state, resulting in a
new hidden state, h(t).

The forget gate f
(t)
i for cell i at time step t, utilizes conditional self-loop weights to

determine the proportion of long-term memory to retain. This decision is informed
by incorporating the current input vector x

(t)
j and the previous hidden state h

(t−1)
j

and processing them through a sigmoid activation function. The gate’s output is

49



3. Research Design and Methodology

represented by the following equation:

f
(t)
i = σ

(

∑
j

U f
i,jx

(t)
j + ∑

j

W f
i,jh

(t−1)
j + b

f
i

)

, (3.25)

where U f and W f represent the forget gate weights for the input and the recurrent
state, respectively, and b f indicates the bias. The input gate subsequently determines
the amount of short-term memory that should be considered for potential long-term
memory. This process calculates the portion of new data for updating the state using
a sigmoid activation function (q(t)i ):

q
(t)
i = σ

(

∑
j

Uq
i,jx

(t)
j + ∑

j

Wq
i,jh

(t−1)
j + b

q
i

)

. (3.26)

It then produces the candidate state values by processing short-term memory, input,
and their weights through a tanh activation function, given by g

(t)
i .

g
(t)
i = tanh

(

∑
j

Ug
i,jx

(t)
j + ∑

j

Wg
i,jh

(t−1)
j + b

g
i

)

. (3.27)

The total quantity of learned information can be calculated by multiplying the q
(t)
i

and g
(t)
i values. The cell state s

(t)
i is then updated by a combination of the forget

gate’s output, which modulates the remembered old memory, and the input gate’s
output, which adds new memory:

s
(t)
i = f

(t)
i s

(t−1)
i + g

(t)
i q

(t)
i . (3.28)

Lastly, the output gate o
(t)
i determines what proportions of the cell state should

influence the output hidden state h
(t)
i . This is achieved by transforming the updated

cell state through a tanh function and then scaling this output with a sigmoid gate.
The potential short-term memory to be remembered in the updated hidden state is:

o
(t)
i = σ

(

∑
j

Uo
i,jx

(t)
j + ∑

j

Wo
i,jh

(t−1)
j + bo

i

)

, (3.29)
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h
(t)
i = tanh(s(t)i )o

(t)
i . (3.30)

Various advanced implementations can further enhance the capability of LSTM
networks to learn long-term dependencies and stabilize training. For instance, skip
connections introduce a delay mechanism into the network by providing more
temporal context through access to earlier states267. Regularization techniques such
as dropout can be implemented to prevent, among others, overfitting issues and
ensure robust performance on unseen data268. This method randomly removes a
subset of the network’s unit at each training step. Beyond these approaches, the
integration of attention mechanisms, allows for the dynamic selection of relevant
features269. Other strategies, such as teacher forcing263 and multitasking learning,
promote greater generalization270. Optimizing the training procedure can also benefit
from implementing a learning rate scheduler to increase the convergence rate by
adaptively adjusting the learning rate during the training phase271, as well as other
regularization techniques as, for example, early stopping272. A detailed discussion of
all these strategies is provided in Section 4.4.

3.3. Electrochemical methods

The following section introduces the electrochemical principles behind the design
and development of the two software packages used to analyze and model the data
presented in this dissertation, namely arcana-batt and madap. It begins by outlining
the working principles of batteries, which guide the extraction of parameters from
cycling data to model their lifetime using DL models, as described extensively in
Section 4.4. The section continues by providing an overview of the basics of electro-
chemical tests such as EIS and cyclic voltammetry (CV). These principles support the
design of the electrochemical data analysis package, Modular and Autonomous Data
Analysis Platform (MADAP), which utilizes statistical tools to derive electrochemical
values. Complementary details on this analysis package can be found in Sections 4.2
and 4.5.
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3.3.1. Battery Fundamentals

Lithium-ion batteries (LIBs) structure comprises four principal components, namely
negative and positive electrodes, electrolytes, and a separator273. Although a diverse
range of materials can be utilized for each component, this discussion focuses on
lithium iron phosphate (LFP) batteries since its half-cell configuration is used to
showcase the functionality of the presented reliable lab automation software packages
(Section 4.5). The cathode of the selected battery is made from LFP with a theoretical
capacity and energy density of ≈ 170 mAhg−1 and ≈ 550 Whkg−1, respectively274.
The cathode is coated on an aluminum current collector sheet, which resists corrosion
through passivation from electrolyte interactions275. The anode is composed of
graphite (C6) with a high theoretical capacity of ≈ 370 mAhg−1, which supports
the reversible intercalation of lithium ions during charging and discharging cycles276.
This electrode uses a copper collector for its high conductivity and electrochemical
stability. The electrolyte typically contains lithium hexafluorophosphate (LiPF6) salt,
essential for charge transfer and high ionic conductivity, and is dissolved in a mixture
of solvents, such as ethylene carbonate (EC) and propylene carbonate (PC). These
components in rechargeable LIBs operate based on the “rocking chair” model275. In
terms of electrochemistry, this involves a series of redox reactions characterized by
the movement of lithium ions, which intercalate into one electrode during charging
and deintercalate during discharging. In the charging process, lithium ions migrate
from the LFP cathode, pass through the electrolyte, and are intercalated into the
graphite anode, which is accompanied by a reduction reaction in which the lithium
ions accept electrons from the external circuit to form lithiated graphite (Figure 3.10).
This charging process increases the cell voltage (Ecell = Ecathode − Eanode) due to
changes in the chemical potentials of the electrodes. Additionally, a rise in internal
resistance can be observed that is caused by degradation or structural change in
the electrode materials and the buildup of concentration gradients, impacting the
charging efficiency and thermal behaviors. To accommodate these changes, the
charging system adjusts the voltage to maintain a constant charging current and to
compensate for the increased resistance277. During discharge, the process reverses;
lithium ions deintercalate from the anode through an oxidation reaction, releasing
stored electrical energy273. The cathodic reaction, involving the intercalation and
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deintercalation mechanisms of lithium ions, can be described as

LiFePO4
charge

−−−−−⇀↽−−−−−
discharge

FePO4 + Li+ + e− , (3.31)

and the anodic reaction can be expressed as:

6 C + Li+ + e−
charge

−−−−−⇀↽−−−−−
discharge

LiC6 . (3.32)

Within the electrochemical stability window, the overall reversible reaction, where no
decomposition of components occurs, is given by:

LiFePO4 + 6 C
charge

−−−−−⇀↽−−−−−
discharge

FePO4 + LiC6 . (3.33)

This equation illustrates the closed-loop transfer of ions and electrons during these
redox reactions, describing the functionality of batteries in storing and releasing
energy278. The actual amount of electric charge delivered at the rated voltage during
each discharge cycle is represented as the discharge capacity (Qdis) of a cell and is
measured in ampere-hours (Ah). This is empirically determined by integrating the
discharge current (Idis) over the period t and mathematically expressed as:

Qdischarge =
∫ ∆t

0
Idis(t) dt . (3.34)

The charge capacity is calculated analogously. Additionally, the C-rate is a metric
that quantifies the rate of discharge or charge of a battery relative to its maximum
capacity (Qnominal), given in units of h−1. This capacity, which differs from the
theoretical capacity, represents the usable charge capacity under specified operational
conditions and varies with different C-rates due to practical inefficiencies such as
increased resistance that lowers the discharge capacity at higher rates. Thus, the C-
rate parameter helps to evaluate battery performance. Elevated C-rates can accelerate
the degradation of battery components, impacting the balance between operational
demands and longevity277; it is formulated as:

C-rate =
I

Qnominal
. (3.35)
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Figure 3.10.: The electrochemical process of a rechargeable Li-ion battery during charging and
discharging cycles is illustrated by the "rocking chair" model. The anode consists of a graphite-based
composite on a copper current collector, and the cathode comprises LFP on an aluminum foil. The
direction of electron and lithium-ion flow is indicated by the orange and blue arrows for charge
and discharge. Lithium ions are transferred during charging from the cathode to the anode across
the electrolyte and intercalate into the graphite layers. This is accompanied by the flow of electrons
through the external circuit, resulting in a reduction reaction within the anode to balance the charge.
Reversely, the discharge process involves the deintercalation of lithium ions from the graphite layers at
the anode, whereby they flow back through the electrolyte and towards the cathode, with electrons
traveling through the external circuit to the aluminum sheet, thus delivering electric energy. Crystal
structures of LFP, FePO4, and graphite were obtained from the Materials Project66.

To evaluate the reversibility of the battery’s electrochemical processes, it is essential
to consider its charge retention capability during cycling. This can be quantified by
coulombic efficiency (CE), which is defined as:

CE(%) =
Qdis

Qch
· 100 . (3.36)

This parameter quantifies the percentage of charge that can be recovered from the
battery relative to the amount stored during the charging process. A higher CE sug-
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gests minimal cycling energy losses and good battery health277. The battery’s overall
condition throughout its lifecycle is defined by its SoH, which is a measurement of
the current capacity relative to the initial capacity.

SoH =
Qcurrent

Qinitial
· 100 . (3.37)

A reduction in the SoH is indicative of a diminished practical discharge capacity,
which is to be attributed to the deterioration of the electrode material and the
depletion of active lithium279, 14.

3.3.2. Electrochemical Impedance Spectroscopy

EIS denotes a non-destructive analytical technique that applies a sinusoidal potential
or a current to a system and measures the resulting sinusoidal electrical response
in terms of current or potential280. This method enables the linearization of the
current-voltage relationship under potentiostatic or galvanostatic conditions. Here,
time is associated to angular frequency (ω), and their relation is described by the
equation

ω = 2πT−1 = 2π f , (3.38)

where T (s) represents the oscillation period, and f (Hz) is the frequency. To analyze
the system’s response, the input signal and its corresponding output in the time
domain, which are characterized by a phase shift (ϕ = ϕresponse −ϕinput), are converted
into the frequency domain, using Fourier transform281. In this context, impedance (Z)
is a measure of a system’s resistance to the flow of electrical energy across a range of
frequencies. Mathematically, this parameter is represented as the complex ratio of
voltage to current, extending Ohm’s law to include alternating current circuits, and is
given by

Z(ω) =
V(ω)

I(ω)
eiϕ = |Z|eiϕ , (3.39)

where ϕ (◦) represents the phase difference and |Z| (Ω) is the magnitude of the
impedance. These parameters, as functions of frequency, are graphically depicted in
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a Bode plot, which illustrates the frequency response characteristics of the system. In
accordance with Euler’s formula, the impedance can be decomposed into real and
imaginary components:

Z(ω) = |Z|cos(ϕ) + i · |Z|sin(ϕ) = Re(Z) + i · Im(Z) . (3.40)

Zω

45°

+

Figure 3.11.: Schematic representation of Nyquist plot illustrating the impedance characteristics of
a Randles equivalent circuit model (ECM) over a wide range of frequencies. The circuit elements
consist of the solution resistance Rs, which is positioned at the highest frequency and intercepts on the
real axis, representing the ionic transport resistance of the electrolyte. The charge transfer resistance,
Rct, is indicative of the kinetic barriers at the electrode-electrolyte interface, and the capacitance,
Cdl , is representative of the accumulated charge in the electrode’s double layer. All these charge
transfer-controlled features can be observed in the semicircle in the Nyquist plot. The total impedance
at low-frequency intercept on the real axis is the sum of Rs and Rct. The line at a 45° angle is indicative
of a Warburg impedance Zw, which models the mass transfer limitations, such as the diffusion of
lithium ions in the electrolyte. It is important to note that in non-ideal systems, variations in electrolyte
properties and electrode surface conditions result in deviations from ideal capacitive behavior. These
deviations can be modeled by a constant phase element, which alters the representation of the Nyquist
plot from ideal behavior281.

This formulation allows the representation of impedance in a Cartesian coordinate
system, as illustrated by a Nyquist plot. This plot deconvolutes various electrochem-
ical phenomena at characteristic frequencies, thereby providing insights into the
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kinetics and stability of the system281. Here, each phenomenon can be modeled by
different elements in an ECM. For instance, a typical ECM known as a Randles circuit
incorporates resistors (Rs and Rct), capacitors (Cdl), and Warburg impedance (ZW)
elements. These represent the solution resistance, charge-transfer resistance, and
double-layer capacitance and account for lithium-ion diffusion282 (Figure 3.11). The
fitting of the Nyquist plot to the ECM enables the extrapolation of qualitative and
quantitative insights into the underlying electrochemical processes. This thesis does
not present an experimental application of the aforementioned test, but rather its
principles are discussed for the sake of completeness. However, the technique is
incorporated into the data analysis package, MADAP, where the ECM is fitted using
an “Impedance” Python package283 that leverages non-linear least squares fit from
SciPy module284.

3.3.3. Cyclic Voltammetry

CV is a versatile electrochemical technique used to study the kinetic aspects of
electrochemical reactions. In CV, a controlled, linearly varying potential is applied
to an electrode to monitor the resulting currents and to capture the dynamics of
electrochemical reactions, including electron transfer rates, species intercalation at
the electrode surface, and their diffusion within the electrochemical cell. This method
uses a potential-scan mechanism, in which the electrode potential is swept back and
forth, resulting in a voltammogram that depicts the system’s diffusion-driven flux
and redox behavior. The scan rate determines the speed of the forward and backward
sweeps; elevated scan rates result in increased current and reduced diffusion, which
has profound effects on the shape of the voltammogram. The current response to the
applied potential is modeled by the Butler-Volmer equation, which accounts for the
overpotential required to drive the reaction at the desired rate by overcoming energy
barriers and dynamic concentration gradients that develop during potential sweeps.
The gradients lead to non-steady-state conditions where diffusion limitations cause
deviations from the inherently exponential behavior predicted by the Butler-Volmer
equation, resulting in peak-shaped features in the voltammogram285 (Figure 3.12).
Mathematically, this relationship is illustrated by the equation

i = i0

(

e
αanF

RT (E−Eeq) − e−
αcnF
RT (E−Eeq)

)

, (3.41)
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where i0 (A/m2) refers to the exchange current density, α represents the charge
transfer coefficient, F (Cmol−1) is the Faraday constant, R (J K−1 mol−1) stands for
the gas constant, T (K) is the temperature, and Eeq (V) is the standard electrode
potential at equilibrium. This equation considers both the applied voltage and the
electrode’s chemical environment, quantifying the impact of the electric field on the
electrochemical reaction rate at the electrode interface285.

Anodic Scan

Cathodic Scan

ipa

ipc

Epc Eeq Epa

Figure 3.12.: Schematic presentation of a voltammogram obtained from a CV test. The graph illustrates
a curve obtained during a potential sweep, including anodic and cathodic scans, that recorded the
current responses. In the forward pass, an oxidation reaction occurs, followed by the double layer’s
charging and an anodic peak(Epa, Ipa). During the backward scan, the oxidized species are reduced,
resulting in a cathodic peak (Epc, Ipc). The peaks provide further insights into the reversibility of the
electrochemical system.

During each scan in CV, the electrode undergoes two processes; the first is the
Faradaic process, which involves electron transfer through oxidation and reduction
reactions, and the second is the non-Faradaic process, which includes capacitive
effects due to the charging of the electrical double layer that occurs without electron
transfer between species. During the cathodic sweep, as the potential is scanned
negatively, the electrode predominantly exhibits Faradaic behavior with reduction
reactions. As the potential becomes increasingly negative, the surface concentration of
the reactants decreases, causing the current to rise due to higher reduction rates until
the reactants are nearly depleted. Here, the current reaches a maximum, representing
a cathodic peak. Following this peak, the current decreases as the diffusion layer
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thickens, gradually impeding further mass transport of reactants to the electrode sur-
face. When the sweep direction is reversed to anodic, oxidation reactions begin, and
the current rises to reach an anodic peak and then begins to decrease286 (Figure 3.12).
For reversible electrochemical reactions, the voltammogram shows Nernst behavior,
illustrating the adjustment of the electrode potential to changes in the concentration
of the electroactive species. This relationship is described by the Nernst equation

E = Eeq +
RT

nF
ln

[Ox]

[Red]
, (3.42)

where n is the number of electrons transferred, and [Ox] and [Red] are the concentra-
tions of the oxidized and reduced forms of the species, respectively. According to
this principle, the peak currents for anodic and cathodic reactions are identical (ipa =
ipc), and the peak-to-peak separation (∆Ep = Epa - Epc) is ideally approximate 59 mV
at 25 °C per electron transferred, to maintain equilibrium conditions. Additionally,
for these reversible reactions, the diffusion coefficient as D (cm2s−1), which measures
the rate at which species diffuse towards the electrode, can be calculated from the
peak current using the Randles–Sevcik equation at 25 °C as

i = 2.69 × 105n1.5AC(Dν)0.5 , (3.43)

where A (cm2) is the electrode area, C (mol/cm3) is the reactive species concentra-
tion, and ν (Vs−1) is the scan rate. Each cycle of the voltammogram describes the
electrochemical characteristics at varying potentials and provides insight into the
kinetic properties of the system285.
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“Artificial Intelligence is the new electricity.”

— Andrew Ng

This chapter provides an overview of the main articles published in peer-reviewed
journals that pertain to and extend beyond the scope of this dissertation. It begins
with the demonstration of a hierarchical orchestration platform for autonomous
feedback-loop systems, which is detailed in Section 4.1. The data management
methods applied in this study and the SDC setup utilized to showcase the framework
are presented in co-authored publications by Castelli et al.191 and Dobass et al.146,
respectively. Section 4.2 outlines the specifications for designing and developing
data analysis software that adheres to FAIR principles. A summary of data-driven
methods is presented in a co-authored paper by Benayad et al.13. Subsequently, two
applications using AI tools will then be discussed. These include the implementation
of one-shot active learning in Section 4.3, and the design and implementation of an
explainable deep learning framework delineated in Section 4.4. Eventually, Section 4.5
demonstrates the integration of developed AI and computational tools into a reliable
and robust acceleration platform that leverages data analysis, data management,
and statistical and machine learning algorithms. Additionally, a perspective on the
potential for data science integration into material workflows to accelerate materials
discovery is provided in a co-authored paper by Stein et al.16. Each of the five
core peer-reviewed publications highlights the published code repositories and the
developed software. A summary of the main article content, individual contributions,
the main manuscript, and additional information are also provided.
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4.1 HELAO

Publication Content

The necessity for MAPs is rooted in the need for rapid gain of insights and optimiza-
tion of materials for their properties of interest. This demands an integrated approach
of experimental procedures, characterization, analysis, and machine learning for au-
tonomous planning. Herein, the HELAO framework has been developed with these
challenges in mind as a first-of-its-kind solution and has been designed to be versatile,
modular, and lightweight to support maximal reusability in orchestrating distributed
research instruments across software and hardware. The HELAO architecture is
built on a hierarchical structure from low-level drivers to high-level orchestrator,
which enhances the scalability of experimental setups and is positioned to ease the
incorporation of new functionalities or devices. The developed drivers cover a variety
of laboratory devices from manufacturers such as Metrohm, Lang, CAT, Mecademic,
and others. These intercompatible drivers can operate independently as required.
The driver servers enable communication between devices, while the action servers
host higher-level functions that depend on specific instrument configurations, thereby
allowing for user customization. At the highest level, the orchestrator manages lists
of experiments and coordinates long-running experimental sequences with multiple
measurements. HELAO interfaces with a FastAPI web framework to support various
synchronous and asynchronous operations, backed by Pydantic type validation. All
measurements are displayed through an interactive live visualizer, and all experimen-
tal sequences are executed through a scripting tool, which minimizes the need for
user-specific programming. This platform’s scalability and ease of integration enable
it to support inter-laboratory workflows and to operate across different workstations.

HELAO framework adheres to FAIR data principles, thereby contributing to the
integrity and accessibility of scientific data by allowing reproducibility of all experi-
mental steps, configurations, metadata, and results through tracking. This system
is not limited to experimental execution but also supports simulations. Another
notable feature of HELAO is its active learning server integration, which is capable of
autonomously planning subsequent experiments and optimizing research outcomes
by updating and learning from ongoing results. The framework’s ability to parallelize
operations further accelerates research. The functionality of this framework is demon-
strated in the simulation of determining the local maxima of the Schwefel function.
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Here, parallel autonomous experimentation is conducted across two identical setups
sharing a common learner and optimizer. Through AL, HELAO achieved a doubling
of speed compared to traditional autonomous sequential experimentation.

Individual Contributions

In the development of HELAO, Fuzhan Rahmanian contributed substantially to the
implementation of essential drivers for the SDC setup suitable for electrochemical
applications and designed and integrated the active learning server into the workflow
to optimize the parameters autonomously and plan successive experiments. H.S.
and J.G. conceived the scaffolding for HELAO and its underlying software structure.
F.R., J.F., D.G., M.R., and P.D. developed additional drivers, servers, and actions and
conducted experiments to test the framework. J.F. was responsible for designing
the orchestrator and integrating the action server of the instruments into it. F.R.

and J.F. designed and implemented scripts for multiple sequential and parallel
experimentation with a distributed thread workload. F.R., J.F. and H.S. wrote the
main manuscript, and all authors reviewed the work for publication.
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Enabling Modular Autonomous Feedback-Loops in 
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enabled the emergent paradigm of con-
ducting research in materials acceleration 
platforms (MAP)[5,6]. Within these MAPs 
different research tasks are accelerated 
and integrated to efficiently address the 
ever increasing complexity of materials 
optimization through targeted mate-
rials synthesis, processing, analysis, and 
insight generation.[7]

Demonstrations of autonomous work-
flows to date,[8–11] have been based on a 
single instrument in a single laboratory.[12] 
This limited purview of the autonomous 
experimentation is rooted in the laboratory 
middleware in which orchestration of the 
laboratory hardware occurs within a single 
computer-instrument pairing.[11] Some 
notable examples include ChemOS,[12] 
which in principle is capable of distrib-
uting work across different machines 
through the ROS[13] backend. This inar-
guably powerful software does however 
impose complex software dependencies 
that grow with increased purview of the 
experimental platform. While commer-
cial software such as LabView by National 

Instruments can facilitate programming for instrument auto-
mation, it does not meet the needs of the MAP community 
due to its incompatibility with the open-source development 
of version-controlled software. In instances where there is no 
(official) application programming interface (API) for a device, 
or an instrument’s software driver must continually evolve with 

Materials acceleration platforms (MAPs) operate on the paradigm of integrating 

combinatorial synthesis, high-throughput characterization, automatic analysis, 

and machine learning. Within a MAP, one or multiple autonomous feedback 

loops may aim to optimize materials for certain functional properties or to 

generate new insights. The scope of a given experiment campaign is defined 

by the range of experiment and analysis actions that are integrated into the 

experiment framework. Herein, the authors present a method for integrating 

many actions within a hierarchical experimental laboratory automation 

and orchestration (HELAO) framework. They demonstrate the capability of 

orchestrating distributed research instruments that can incorporate data 

from experiments, simulations, and databases. HELAO interfaces laboratory 

hardware and software distributed across several computers and operating 

systems for executing experiments, data analysis, provenance tracking, and 

autonomous planning. Parallelization is an effective approach for accelerating 

knowledge generation provided that multiple instruments can be effectively 

coordinated, which the authors demonstrate with parallel electrochemistry 

experiments orchestrated by HELAO. Efficient implementation of autonomous 

research strategies requires device sharing, asynchronous multithreading, and 

full integration of data management in experimental orchestration, which to the 

best of the authors’ knowledge, is demonstrated for the first time herein.
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1. Introduction

Ever increasing performance demands necessitate the accelera-
tion of materials science and chemistry.[1,2] Progress within the 
Materials Genome Initiative,[3] advances in high-throughput 
experimentation,[4] and proliferation of machine learning have 
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hardware advancements, ROS and LabView can incur substan-
tial overhead in software management.

Modular software design facilitates community sharing of 
techniques across sub-fields. For example, organic chemistry 
uses tailored languages,[14] to express research tasks in a human 
and computer readable format.[15,16] Sharing of experimental 
control techniques across such domains requires a high level of 
modularity in conjunction with the data management-informed 
design of the experimental control framework.

In addition to the necessity of being able to orchestrate a 
multitude of laboratory instruments, there is a critical need to 
be able to trace back all undertaken steps that lead to the acqui-
sition of data or synthesis of a material,[14,17] beyond FAIR[18] 
guidelines. Experiment provenance management is critical 
for enabling reproduction of an experiment.[19] Such reproduc-
tions or more general sharing of experiment protocols can be 
enabling of the computer automation of laboratory devices via 
drivers that provide an abstraction layer between the central 
software and hardware. If these criteria are met, autonomous 
inter-laboratory workflows[7] can be deployed and motivate the 
discretization of an experimental provenance into its elemen-
tary instrumental actions. We therefore view the levels of exper-
iment abstraction to be hierarchical in nature.

The hierarchical laboratory automation and orchestration 
framework was built with the goals of being able to integrate 
any laboratory device for which a software driver is available or 
can be written, and to enable any configuration of the devices 
including serial and parallel experimentation, sharing of equip-
ment across multiple instruments, and orchestration of mul-
tiple measurements in multiple laboratories. To facilitate con-
tinued adoption of active learning in experiment workflows, 

the framework is designed for facile switching between human 
and machine-based experiment selection. The framework 
adopts a data management wherein all gathered data and all 
instructions are stored in a “FAIR” way, giving the instruction 
data the same level of attention as the resulting measurement 
data. For these requirements to be met, we seek a software 
framework for communicating with devices hosted or operated 
on different computers (i.e., some instruments are mutually 
exclusive to be connected on a PC due to driver constraints). 
We seek to be platform independent and minimize additional 
requirements such as extensive software dependencies.

In the present work we describe the hierarchical experi-
mental laboratory automation and orchestration (HELAO) 
framework to address the needs of next-generation experi-
ments. At a high level, the modularity of HELAO is built upon 
a widely used web framework called fastAPI[20] as shown in 
Figure 1. The main design idea is to represent every device 
of an instrument as a (asynchronous) web server (Figure  1, 
right side). Basic functions of devices are exposed to and bun-
dled by actions, which themselves are again web servers. Only 
these actions are called by an orchestrator executing experi-
ments on one or multiple instruments (Figure 1, left side). For 
future proofness, HELAO was developed in python 3.8+ with 
type hinting and pydantic type validation. The modular design 
allows for the integration of arbitrary devices, including those 
operated through OPC-UA.[21]

The design guidelines and protocols necessary to orchestrate 
instrumentation in the laboratory are outlined in the following 
sections, together with a detailed description of the individual 
constituents. We demonstrate the orchestration of an active 
learning run on two instruments and deposited the resulting 

Figure 1. A schematic representation of HELAO where experiments are executed by sequentially calling actions which are high level wrappers for lower 
level driver instructions. Communication goes hierarchically down from the orchestrator level to actions, which may however communicate among 
each other, to the lowest level of drivers which can only communicate with actions. The orchestrator, actions, and drivers are all exposing python class 
functions through a web interface allowing for highly modular and distributed hosting of each item. Experiments are encoded as python dictionaries (a 
data type) containing a sequence of events (SOE) that outlines in which the actions are to be executed. Many experiments form a process. All actions 
require parameters and metadata that are all echoed back.
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data including all instructions and the code at github.com/
helgestein/helao-pub.

2. Results

2.1. Implementation of Hardware Drivers

The aim of HELAO is to be a universal laboratory automation 
framework, democratizing accelerated experimental research 
workflows. To this end, the two laboratories at the California 
Institute of Technology (Caltech) and Karlsruhe Institute of 
Technology (KIT) started to implement major hardware com-
ponents amenable for automatization. In Table 1, all currently 
implemented hardware drivers are listed. During develop-
ment of these drivers, it became apparent that there exist two 
major types of drivers based on whether their function calls 
are natively blocking or non-blocking. Those with non-blocking 
operations typically accept an instruction, execute it, and 
require the user to ask if the current operation is finished.

A special class of devices is auxiliary (aux) devices. These 
are broadly defined as software “devices” used, for example, 
for data analysis, regression, and prediction. These aux drivers 
could in principle be written for any python interfaceable soft-
ware or hardware which is necessary for a special experiment, 
for example, background inference algorithms[22] or special 
machine learning models.[23]

With the devices available at the time of writing this manu-
script, highly complex instruments have and are being built, 
whose detailed descriptions will be the subject of future work. As 
an initial example of the scope of the present HELAO implemen-
tations, the operated instruments are comprised of the devices 
shown in Table 1 that include four scanning droplet cells (SDCs) 
at Karlsruhe Institute of Technology (KIT) (each consisting of 
lang, autolab, pump, force, aux, kadi), one SDC at Caltech (galil, 

gamry), a coupled Raman and FTIR spectrometer (owis, ocean, 
arcoptix, aux, kadi), a battery cycler (arbin, aux), and a coin cell 
assembly system (mecademic, rail, arbin, arduino, aux).

2.2. Hardware-in-the-Loop Active Learning

A hardware-in-the-loop demonstration run of HELAO is shown 
in Figure 2. The instrument is copied two times where one 
setup was run in a fume hood and another one was run in a 
glove box. The two instruments share a common learner and 
optimizer, which are controlled along with both instruments 
by a single orchestrator. An example video of a parallel active 
learning run can be found in the Supporting Information. To 
demonstrate the operation and identification of a known global 
maximum, the potentiostat driver in each instrument was 
replaced by a synthetic data generator. This synthetic driver 
returns a scaled Schwefel function[24] depending on the posi-
tion where the SDC touches down on a substrate, providing the 
source data with which the active learning server identifies the 
next target substrate position 3.

The active learning run is stopped once a threshold value 
(top percentile) is found. Actions in this run consist of, for 
example, “move to waste”, “remove the droplet”, “move to 
sample offset”, “move to the defined point”, “move down 
to substrate”, “get output value”, “predict the next best posi-
tion using active learning algorithm.” The hdf5 file gener-
ated during this run was recorded on 05.10.2021 and has been 
uploaded to KaDI4Mat upon completion of the session under 
the records 20287 and 20280. Public release of the dataset[25] 
with the https://doi.org/10.6084/m9.figshare.16798177.v1 had 
been triggered on 09.10.2021. The hdf5 file for this run may 
also be found in the Supporting Information.

One experiment takes ≈108 s. Depending on the number of 
datapoints the learning step requires more time. During the 

Table 1. Currently implemented devices in the laboratories at KIT and Caltech. Instruments built from this include scanning droplet cells, high-
throughput spectrometers, and a battery assembly robot. The extreme modularity allows us to mix and match any of these devices by simply defining 
a sequence of events, that is, to build an integrated SDC and spectrometer or a sample exchange robot without code changes to HELAO. For each 
device we note the communication protocol and the physical quantity being controlled and/or measurement. We also note whether the instrument is 
“natively blocking” meaning that the device is unable to process new commands until the currently running command is finished.

Device name Type Communication Measures/Controls Manufacturer Natively blocking

lang Motion .net API Position Lang GmbH No

galil Motion, IO TCP/IP Position Galil Motion Control Inc. No

owis Motion Serial commands Position Owis GmbH No

mecademic Motion Python TCP/IP API Position, state Mecademic Ltd. no

rail Motion TCP/IP Position Jenny Science AG No

autolab Potentiostat .net API Electrochemistry Methrohm Autolab B.V. Yes

gamry Potentiostat .dll for serial communication Electrochemistry Gamry Instruments Inc. Yes

arbin Potentiostat autohotkey Electrochemistry Arbin Inc. No

pump Pumping Serial commands n.a. CAT engineering GmbH No

arcoptix Spectroscopy .dll api IR spectra arcoptix S.A. Yes

ocean Spectroscopy Raman Python package Raman spectra ocean insights GmbH Yes

force force sensing Serial commands Force ME Meßsysteme GmbH n/a

arduino Relays, I/O Python package n.a. arduino No

kadi Data management Python package n.a. KIT Yes

aux Machine learning and analysis Python package n.a. n.a. Yes
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measurement, all data is constantly logged from all devices 
and subsequently uploaded to the data management repository 
(KaDI4Mat). The overall time required for the entire run was 
a little less than 3 h and allows for a fine-grained analysis of 
what action consumes the most experimental time as shown in 
Figure 3. From this analysis, it is for instance evident that motor 
movement between measurements consumes a substantial frac-
tion of the experimental time, motivating efforts to enable faster 
movement. With 3856 s for the sequential run there is a signifi-
cant speed up when the experiment is run in parallel where the 
instrument 1 (in the fume hood) takes 2041 s and the instrument 
2 requires 2424 s to complete. As is evident from these numbers 
the speedup is a little less than 2× for a parallel active learning 
run as asynchronous locks and the machine learning consume 
some of the time. To the best of our knowledge this is the first 
demonstration of an active learning run involving two spatially 
distributed instruments involving more than one operational PC.

In this demonstration, the two instruments perform the 
same type of measurement in the same search space with the 
same active learning acquisition function, which is a simplifica-
tion of our vision of enabling the active learning to incorporate 
multiple types of data and to make distinct decisions’ poli-
cies for each instrument.0 For example, a property-measuring 
instrument and a structure-measuring instrument could be 
effectively combined for an accelerated structure–property 
mapping. This concept requires an active learning framework 
that chooses different targets for property and for structure 

measurements while unifying the distinct data sources. HELAO 
is designed to deploy such advanced modes of experimentation 
as the field of autonomous materials research evolves.

3. Discussion

Herein we present a versatile, stable, and modular approach 
to laboratory automatization that offers capabilities to deploy 
autonomous experimentation in materials science. The frame-
work was built using modern asynchronous programming and 
operates in a safe hierarchical layout. State of the art server-based 
communication between laboratory devices is used to ensure 
maximum modularity and reusability of devices across instru-
ments and laboratories. Higher level sequences requiring the 
interaction within one or among several devices are wrapped in 
actions that are exposed as web servers. This design allows for a 
distributed operation across computers and locations, in addition 
to being resilient against single machine crashes.

Through utilization of a facile underlying web framework like 
fastAPI and pydantic type annotation, documentation to most 
functions is autogenerated. This design allows users also to quickly 
adopt new devices and actions without the need of installing clients 
or servers, as drivers and actions can be called through python’s 
built in “request” package or even through the auto generated web 
documentation. Moreover, this allows any HELAO action-driver 
pair to be called by virtually any other software as users develop 

Figure 2. Schematic drawing of the HELAO hardware-in-the-loop active learning run with two instruments running parallel and the corresponding 
actions, drivers, and orchestrator. The red dashed lines illustrate drivers that were removed from HELAO for the demonstration presented herein, 
where the pumps were not operated and the potentiostat, which would typically provide the primary measurement data, was replaced by a synthetic 
data driver that returns a function value from the Schwefel function depending on the visited substrate position. The active learning action and driver 
are shared among the instruments/threads.
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orchestrators to employ complementary modes of research. If 
users wish to deploy active learning to a device that does not accept 
standard web requests like OPC-UA (often encountered in indus-
trial settings) fastAPI compatible wrappers can be built.

This high degree of modularity and interoperability is only 
possible through a very lightweight design that puts relatively 
few restrictions on the user compared to middleware like ROS or 
ChemOS. Other competing softwares and frameworks are ARES 
OS that is currently only demonstrated to operate on a single 
computer instrument pairing. Another mature and great alterna-
tive to the lightweight implementation of HELAO is the bluesky 
project.[26] Bluesky works with similar hardware abstraction ideas 
like HELAO, but puts significantly more constraints on a user 
and is, in our view, more built around streamlining the research 
process as a whole. However, orchestrating multiple instruments  

in parallel has not been demonstrated by any other labora-
tory automation framework. These parallelization efforts will 
be increasingly impactful with development of optimizers that 
incorporate uncertainty and multiple optimization strategies.[27]

The framework is built with the goal of being fully FAIR 
compliant and allows users to rerun an experiment without 
much or any overhead. We view this degree of data manage-
ment to be FAIR+. By logging every possible parameter along 
the entire research process, it is possible to extract utiliza-
tion figures, find bugs, and determine bottlenecks in high-
throughput experimentation. Direct interfacing with data 
management software has been demonstrated, to the best of 
our knowledge, for the first time in an autonomous research 
environment. All data gathered during the active learning ses-
sions has been automatically uploaded upon the completion of 
the session and is publicly available at figshare[25] and from the 
Supporting Information of this manuscript. Within the uni-
versity network all recorded data is made publicly available by 
default without an embargo period as a statement to encourage 
more data sharing. HELAO is demonstrated to be stable and 
versatile and is published under the LGPL license at https://
github.com/helgestein/helao-dev. Stand-alone example config-
urations with reference driver implementations and a how-to 
guide of writing custom drivers are available alongside docu-
mentation thereof as part of the public code repository.

The parallel active learning run with hardware-in-the loop of 
HELAO demonstrates for the first time that two (and techni-
cally unlimited more) spatially separated instruments in a mate-
rials science laboratory are capable of collaboratively optimizing 
together for faster discovery. Contributions and collaborations 
with and by the community to expand the hardware support for 
HELAO is therefore warmly welcome. Future efforts will aim 
to bridge HELAO with methods from theoretical materials’ sci-
ence to build modular physics-informed instrumentation and 
autonomous feedback loops connecting laboratories.

4. Experimental Section

Design Guidelines and Protocols: From the bottom-up hardware 
perspective, a research instrument is an assembly of devices. A device is 
a piece of laboratory equipment, defined as the largest “thing” that has a 
dedicated communication stream, that is, a multi-channel potentiostat, 
or a motor control board.

Devices are typically shipped with a driver that enables access to 
some or all its functions, that is, measuring a current. From the top-
down perspective, a user or operator wishes to perform a series of 
experiments, which are each a list of actionable events defined as 
“actions” in HELAO. The actions are to be executed in a particular order 
with predefined or variable parameters and/or designed on-the-fly via a 
decision policy. In this latter case, evaluation of the decision policy can 
be viewed as a particular type of action whose execution impacts future 
actions. The instructions for an experimental campaign are given to an 
orchestrator, which governs their sequential execution from a queue. 
Each action is materialized by the drivers, thereby completing the top-
to-bottom instrument framework. Everything that happens to or on that 
instrument originates within the orchestrator.

In order for the ensemble of devices to operate in concert as a single 
instrument, it is convenient to assemble the various elements listed 
above into a single software framework. Hierarchically from bottom to 
top, each device driver (internally communicating through, for example, 
serial, TCP/IP commands, or a dynamic link library) is exposed through 

Figure 3. a) Time spent at each action for a sequential and a parallel run 
with two instruments; b) total time spent per run. The time spent does 
not form a perfectly straight line as some actions need different time (i.e., 
movements are shorter or longer). The inset shows the parallel run and 
highlights visited points in black and red depending on whether they were 
visited by instrument 1 or 2. The sequence of events for each measure-
ment is typically the order shown in the horizontal axis of (a).

Adv. Mater. Interfaces 2022, 9, 2101987

 2
1
9
6
7
3
5
0
, 2

0
2
2
, 8

, D
o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

0
0
2
/ad

m
i.2

0
2
1
0
1
9
8
7
 b

y
 F

u
zh

an
 R

ah
m

an
ian

 - C
o
ch

ran
e G

erm
an

y
 , W

iley
 O

n
lin

e L
ib

rary
 o

n
 [0

2
/0

1
/2

0
2
4
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y
 th

e ap
p
licab

le C
reativ

e C
o
m

m
o
n
s L

icen
se

4.1 HELAO

69



www.advancedsciencenews.com

www.advmatinterfaces.de

2101987 (6 of 8) © 2022 The Authors. Advanced Materials Interfaces published by Wiley-VCH GmbH

a uvicorn[28] web server through fastAPI. Construction of actionable 
functions (“actions”) are constructed from the API calls exposed by the 
drivers, where each action may involve multiple API calls.

An example of an action to pump a mixture of three fluids would 
therefore be “initiated” by the orchestrator calling the respective action. 
This action then calls the pump driver server. Internally the driver server 
is sequentially called by the mixture action as the hardware requires us 
to first initialize each pump channel, prime the pumps, and only then 
turn the pumps on. The orchestrator will receive a nested reply from the 
action that entails all information exchanged, down to the lowest level, 
that is, initialization, priming, execution.

A rigorous commitment to data management is foundational to this 
framework’s implementation. Requests to the driver and action servers 
track all functions called, as well as all (echoed) input parameters and 
outputs of those functions. The orchestrator tracks additional metadata, 
such as the time at which an action was performed or the point on 
a substrate at which an experiment was conducted, in addition to 
accepting arbitrary custom metadata. All of these are then automatically 
saved (redundantly), in the native file format (if applicable), and in 
an hdf5 file together with the parameters and metadata. Methods for 
depositing the hdf5 file into institutional repositories like KaDI4Mat[29] 
or MEAD[19] repositories are automatically executed after each session. 
From KaDI4Mat,[29] experimental data can be accessed internally but 
also be shared with the community through materials cloud or to inform 
simulations through AIIDA.[30,31]

Due to each element of the authors’ software framework being a 
server, a very high degree of modularity is achieved. This allows, for 
instance, a single instance of a device to fulfill requests from multiple 
action servers sequentially. This type of resource sharing requires the 
actions to be programmed to ingest calls from multiple orchestrators, 
for example by notifying the orchestrators of the un/availability of each 
action. A more straightforward implementation of resource sharing is 
for a single orchestrator to govern multiple instruments with a shared 
piece of equipment, which they demonstrate herein. More generally, this 
design allows for distributed hosting of devices on different machines, 
potentially dispersed around the globe.

Drivers and Driver Servers: Any (autonomous) experimental workflow 
consists of smaller organizational units, that is, a SDC[32] instrument 
consists of several hardware devices such as motors, a force sensor, 
pumps, and a potentiostat. In addition, there are software devices such 
as data analysis and experimental design. All of these devices need to 
be able to receive commands, perform the instruction, and reply with 
measurement data or a status and echo back the input parameters. With 
respect to the orchestrator, interaction with an analysis or active learning 
module is equivalent to that of a hardware device, motivating virtual and 
physical devices to be implemented in the same manner.

Driver Server Design: Drivers provide the lowest-level interaction with 
devices based on the elementary communication commands for the 
respective device, for example, connect, disconnect, query the device 
status, or read data. Some drivers are therefore more complex than 
others, as some devices offer direct python APIs whilst others require 
development of python wrappers or source code. Positively notable 
examples are for instance python drivers offered by Mecademic or 
Palmsens offering well-documented software development kits (SDKs). 
Each device is paired to a dedicated driver server. Calling driver functions 
can only be done through the web-based API by sending web requests, 
enabling software modularity that mimics hardware modularity wherein 
devices can be reconfigured into new instruments.

Driver Parameters: Drivers accept parameters, which are validated 
through pydantic data types that inherit from the pydantic’s BaseModel. 
This automatically annotated and type-hinted validation scheme allows 
users to assess how a request should be formatted in order to receive 
a desired device behavior. Additionally, the pedantic validation scheme 
ensures proper data handling, easing data management downstream. 
Traceability and ease in debugging are ensured by each driver server 
echoing all provided input parameters alongside the output data. For this 
purpose, the return object from any server including drivers is a python 
dictionary (an unsorted data type containing key value pairs) containing 

two keys for the input parameters and output data. The parameter key is 
described by its name, the value(s), and optionally a physical unit. The 
data key contains data, which contains the data acquired or derived from 
the device. These python dictionaries play a signal role between different 
organizational units, for example calling the pump requires specification 
of volume, speed, and direction. The response from the pump (a device 
acting but not measuring) is the entire serial string communication 
response (potentially containing valuable error messages) from the 
pump as output. The units returned for pumping are for instance speed 
in microliters per minute, total volume in microliters, and a binary flag 
for forward versus backward pumping direction.

Actions and Action Servers Design: Hierarchically above drivers, 
actions wrap one or many driver functions such that the action function 
has a name and parameters that are meaningful for the deployment 
of the device(s) in a particular type of experiment. This provides an 
abstraction layer where two action functions can be programmed in 
different labs using different devices/drivers, enabling shared higher-
level code that calls the action functions. Similar to driver servers, 
actions also expose their functionalities as servers and again are not 
limited to a single instrument. Communication with multiple device 
drivers is intended for when knowing what multiple devices are needed 
to realize a single physical action, such as motor actuation with feedback 
from a force sensor. To manage shared driver/device-level resources, 
direct communication between drivers is forbidden, requiring any such 
message passing to occur via the action server.

Action Parameters: Similar to driver servers, the return statement of 
an action server is a python dictionary containing the parameters and 
data. The output from an action can be customized for the specific use 
case, but is generally the aggregate return statements received from all 
driver server calls downstream. After execution of the relevant action 
function, the return statements of the called actions will be received by 
the orchestrator as the highest level of this hierarchy.

A major advantage of driver/action distinction is the possibility of 
multiple operating computers sharing one device. Any failures on a 
higher level (i.e., computer crash and/or program failure of the deployed 
visualizer or orchestrator) do not affect the operation of an instrument.

This design also facilitates the resolution of hardware conflicts and 
smart instrument communication, since some simultaneously-executing 
actions could logically cause a contradiction. Therefore, a driver blocks 
further execution until the current request has been fulfilled. For instance, 
when the force sensor is measuring the amount of applied force as an 
action, this action server will block execution of subsequent actions 
until the current action is finished, which is implanted by awaiting (an 
asynchronous function call) the response from the force sensor driver. 
After the awaited response is received, the next action will be called. This 
locked execution of sequential instructions allows for a safe operation 
without the need of a state machine. An alternative implementation would 
require a state machine on the highest level, thus violating the design 
principle that dictates little to no changes upon addition of new hardware.

Orchestrator/Local and External Database: The highest level in the 
framework is the orchestrator, which sends out instructions to actions 
from a list of experiments to be performed, where the orchestrator also 
holds the sequence of actions and the respective parameters needed to 
perform each experiment. The orchestrator server accepts experiments 
through an API function called addExperiment, which adds an 
experiment to a list that is executed in the first-in-first-out order. Upon 
exhaustion of experiments from the process, the orchestrator remains 
online and awaits the next experiment(s). In total, initializing a HELAO 
session involves launching n  + m  + 1 servers, where n is the number 
of devices in the system and m is the number of action servers. In the 
standard configuration, each driver is controlled by its own action server 
(m = n). Alternatively, an action server may govern multiple devices or a 
driver may be directly incorporated into an action server (m < n). Based 
on an instrument-specific configuration file, a launch script governs the 
initialization of each server. If two copies of an instrument exist, they 
require unique configuration files with unique IP addresses, such that 
deploying HELAO for a cloned instrument can be achieved by updating 
the IP addresses in a copy of the configuration file.
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Defining a Process: The main purpose of the orchestrator is the 
execution of a list of (dynamically editable) experiments from the 
process as well as data management. For defining a sequential 
experiment involving multiple devices, experiments need to be specified 
by a sequence of what actions are to be executed in a particular order 
with all necessary parameters. An instrument is factually defined by the 
devices called in a sequence of events. An experiment is defined by a 
python dictionary containing two dictionary keys: the Sequence of Events 
(SOE) key, which contains an ordered list outlining the exact order in 
which actions are to be executed and the “params” key containing all 
necessary parameters for any of the actions outlined in the SOE. As 
actions may be called multiple times they are numbered sequentially 
in the SOE. Calling an action through the orchestrator requires four 
parts: the name of the action, the desired function, a number which 
indicates the n-th time that we call that specific action within a SOE 
and the thread number (e.g., “motor/moveAbs-3:1” for calling the third 
absolute movement of a motor belonging to thread 1). Thread numbers 
are important for deploying active learning across multiple instruments. 
Two or more instruments/threads run independent of each other until 
some action requires input from all threads or a SOE is finished.

The parameters for actions are stored under the “MoveAbs-3” key in 
the parameter dictionary and contains the specific values for running 
that particular action (i.e., dx = 2 mm, dy = 3 mm, dz = 0 mm).

Defining a Session: To start and end a session lasting for one or more 
experiments the first and last actions to be called are the “start” and 
“finish” actions, natively implemented within the orchestrator (i.e., not 
as servers), hence being called native actions. The data acquired within 
a session is locally stored in a single hdf5 file that is then uploaded 
to KaDI4Mat upon calling the “finish” action. Storing data locally and 
uploading it at the end of a session has been shown to be significantly 
faster and avoids reliance on the speed or availability of the master 
database, which may not be directly controlled by the lab running the 
experiments. An illustrative example for this design choice is when we 
measured a series of Raman spectra and performed the upload after 
taking each spectrum. Whilst each spectrum only took a second to 
measure, the upload time was comparable, forcing instrument down 
time that was remedied by asynchronous data uploading.

Data Analysis and Machine Learning Servers: A goal of HELAO is to 
enable active learning accelerated experiments across a wide range of 
laboratory instruments. Active learning does however require automatic 
data analysis and machine learning based suggestion of the next best 
subsequent experiment.

These two functionalities are implemented as servers in HELAO. 
On a high level, active learning within the HELAO framework is simply 
the alteration of parameters of an action by some suggestion of an 
algorithm. The parameter to be changed in a subsequent experiment is 
referred to as the “target”. The algorithm needs to have access to all 
(analyzed) data to suggest the target. This “source” data needs to be 
well posed for the machine learning algorithm, which typically requires 
analysis of the raw data. The automated data analysis in HELAO is again 
a server-action. A unique aspect of an analysis server is its required 
access to raw data, which is implemented by using pointers to the 
location in the orchestrator memory of where relevant data (the source 
data) is stored. Likewise, the server dedicated to machine learning for 
active learning needs to be pointed to the input and output values of 
the analyzed data. Inside the active learning action, the datasets are 
aggregated on-the-fly from the orchestrator temporary storage (what 
is later the hdf5 file being uploaded). A target can be specified from a 
list of candidates or be freely decided by the algorithm, depending on 
the chosen optimizer, and upon receiving the target the orchestrator 
updates and runs the pending measurement action.

These functionalities allow for autonomous operation where the user 
only has to define the budget of active learning runs, pointers to the 
input and output values, and the choice of optimizer and the estimator.

The active learning server can be equipped with a broad range 
of optimizers and regression algorithms. Also, several acquisition 
functions have been implemented including expected improvement 
(EI) and probability of improvement (POI). We envision the possibility 

for incorporating different fidelity sources by adaption of optimizers 
that can handle different fidelities, which is an active area of machine 
learning research where advancements can be readily incorporated into 
HELAO.

As some ML algorithms require significant computational resources 
within a thread and some actions are data-transfer intensive, servers may 
become unresponsive. To solve this issue, the most computationally 
expensive tasks like machine learning can be wrapped inside a celery[33] 
server. Celery is a server-based framework capable of distributing high 
workloads across compute clusters. We empirically observed this 
necessity for long running active learning runs with a high degree of 
freedom.

Visualizer: On the same hierarchical level of the orchestrator is the 
visualizer, which can be viewed as a “read only” orchestrator that has 
global access and does not store data. This server can display the live 
data of, for example, electrochemical test measurements or Raman 
spectroscopy to assess data quality during a run.

Supporting Information

Supporting Information is available from the Wiley Online Library or 
from the author.
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In this section, we are going to demonstrate the steps required for running a process by our 
proposed HELAO framework. The experiment in question will be maximization of a scaled  
Schwefel function, virtually sampled by moving a pair of motorized probes in parallel to 
different (x,y) positions on the function. In the proposed demo, two devices and two auxiliary 
servers including lang motor, force sensor, analyze and active learning respectively are 
required to be instantiated.  
 
As described in the main section of the paper, we operate the orchestrator by sending it lists 
of actions to perform, called “experiments”. Generally, one experiment will comprise all the 
actions we need to perform to complete a measurement at a single point on a substrate, but 
this formalism is not strict, and can easily be adapted for experiments which do not use 
substrates at all. While plans are to build a more user-friendly graphical interface in the near 
future, we currently construct these experiments directly as python dictionaries. An 
experiment dictionary has three keys: “soe” (sequence of experiments), which contains a list 
of all the actions to be performed in the experiment in order, “params”, which contains a 
dictionary which has the actions to be performed as keys and dictionaries of their 
parameters as values under those keys, and “meta”, which accepts a dictionary of arbitrary 
metadata. 
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Below, the first experiment dictionary in our parallel active learning demonstration process is 
given as an example of this structure. As can be seen under the “soe” key of this dictionary, 
each action name has three components: the name of the server performing the action (with 
an optional colon and integer to distinguish between multiple instances of the same server), 
these instances are separated by a “/” from the name of the action, which is optionally 
separated by an “_” from an indexing integer. The latter distinguishes between multiple 
actions of the same type in a single experiment, or between the actions of multiple 
experiments in a process.  
This particular experiment begins with “orchestrator/start”, which, as described in the paper, 
primes the orchestrator to begin collecting data. It is then followed by several motor 
movements such as “lang:2/moveWaste_0”, which would normally be necessary to handle 
pumped liquids in our electrochemistry experiments, but are merely ornamental in this demo 
representation. After these, “lang:2/moveAbs_0'' moves to an arbitrary sample point (dx0, 
dy0)  taken from the defined search space which is required for initializing the process. 
“lang:2/moveDown_0” uses feedback from the force sensor to safely move the probe into 
contact with the substrate, as we would in an actual electrochemical experiment, and 
“measure:2/schwefelFunction_0” takes the value of the Schwefel function at this point. 
“analysis/dummy_0” performs a placeholder analysis. 
Looking under the “params” key, we have a dictionary of parameters for each of our actions. 
Most of these are relatively straightforward, but there is some value in explaining the 
parameter structure for “dummy_0”. Active learning normally requires analyzing our data as 
it is acquired. Data analysis functions in our active learning routines must be able to operate 
on data as it is collected. From the structure of our action return statements, we are able to 
predict under what headings each data value will be stored within our hdf5 files. The 
parameters of this analysis function are partial addresses to these values within the hdf5 file. 
 
 

add_process(dict(soe=['orchestrator/start','lang:2/moveWaste_0', 'lang:2/RemoveDroplet_0',              

'lang:2/moveSample_0','lang:2/moveAbs_0','lang:2/moveDown_0','measure:2/schwefelFunction_0','analysis/dummy

_0'],  

            params={'start': {'collectionkey' : 'al_parallel'}, 

                    'moveWaste_0':{'x': 0, 'y':0, 'z':0}, 

                    'RemoveDroplet_0': {'x':0, 'y':0, 'z':0}, 

                    'moveSample_0': {'x':0, 'y':0, 'z':0}, 

                    'moveAbs_0': {'dx':dx0, 'dy':dy0, 'dz':dz},  

                    'moveDown_0': {'dz':0.12, 'steps':4, 'maxForce':1.4, 'threshold': 0.13}, 

                    'schwefelFunction_0':{'x':dx0,'y':dy0}, 

                    'dummy_0':{'x_address':'experiment_0:0/schwefelFunction_0/data/parameters/x', 

                                'y_address':'experiment_0:0/schwefelFunction_0/data/parameters/y', 

                                'schwefel_address':'experiment_0:0/schwefelFunction_0/data/data/key_y'}},  

            meta=dict())) 

 
 
We often use a “for” loop to define a large number of experiments and, consequently, send 
those experiments all at once to the orchestrator, to be performed one at a time. Shown 
below is one such for loop, generating the list of experiments which follows the initial 
experiment described just above. The “soe” here is identical to the initial experiment, with an 
additional two actions, “ml/activeLearningParallel” and “orchestrator/modify”, at the start of 
each experiment. “activeLearningParallel” takes in data from the dummy analysis of the 
previous experiment, by the same means that the analysis server itself takes in data from 
the results of other actions, and then stores the data in an active memory, sends that data to 
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a model, and suggests a new point (x2, y2) at which the Schwefel function should be 

sampled. The active memory of the “ml” action server is central to how we enable multi-
threading, as multiple experiment threads in the orchestrator can each access a single “ml” 
server, and thus can give data to and take suggestions from the same model.  
The “modify” action is coded directly into the orchestrator, and is uniquely able to modify the 
action parameters of an in-progress experiment from values within the previous experimental 
results. It takes as inputs a set of addresses within the relevant hdf5 file, and pointers to 
values within the current “params” dictionary. Any value that will be changed by this function 
must be initialized to “?”, as can be seen in the parameters for “moveAbs” and 
“schwefelFunction” below. 
 
 
 

n = 100 

for i in range(n): 

    add_process(dict(soe=[f'ml/activeLearningParallel_{i}',f'orchestrator/modify_{i}', 

                       f'lang:2/moveWaste_{i+1}', f'lang:2/RemoveDroplet_{i+1}',  

                       f'lang:2/moveSample_{i+1}', f'lang:2/moveAbs_{i+1}', 

                       f'lang:2/moveDown_{i+1}', f'measure:2/schwefelFunction_{i+1}',  

                       f'analysis/dummy_{i+1}'],  

                  params={f'activeLearningParallel_{i}':{'name': 'sdc_2', 'num': int(i+1), 

           'query': query, 'address':f'experiment_{i}:0/dummy_{i}/data/data'}, 

                          f'modify_{i}':{'addresses': 

                           [f'experiment_{i+1}:0/activeLearningParallel_{i}/data/data/next_x',                       

                            f'experiment_{i+1}:0/activeLearningParallel_{i}/data/data/next_y', 

                            f'experiment_{i+1}:0/activeLearningParallel_{i}/data/data/next_x',                       

                            f'experiment_{i+1}:0/activeLearningParallel_{i}/data/data/next_y'], 

                            'pointers':[f'schwefelFunction_{i+1}/x',f'schwefelFunction_{i+1}/y', 

                          f'moveAbs_{i+1}/dx', f'moveAbs_{i+1}/dy']}, 

                          f'moveWaste_{i+1}':{'x': 0, 'y':0, 'z':0}, 

                          f'RemoveDroplet_{i+1}': {'x':0, 'y':0, 'z':0}, 

                          f'moveSample_{i+1}': {'x':0, 'y':0, 'z':0}, 

                          f'moveAbs_{i+1}': {'dx':'?', 'dy':'?', 'dz':dz},  

                          f'moveDown_{i+1}': {'dz':0.12, 'steps':4, 'maxForce':1.4,'threshold':  

                                       0.13}, 

                          f'schwefelFunction_{i+1}':{'x':'?','y':'?'}, 

                          f'dummy_{i+1}': 

                 {'x_address':f'experiment_{i+1}:0/schwefelFunction_{i+1}/data/parameters/x',                        

                  'y_address':f'experiment_{i+1}:0/schwefelFunction_{i+1}/data/parameters/y', 

     'schwefel_address':f'experiment_{i+1}:0/schwefelFunction_{i+1}/data/data/key_y'}},  

                  meta=dict())) 

 

add_process(dict(soe=['orchestrator/finish'], params={'finish': None}, meta={})) 

 
Finally, as shown in the function “add_process”, we use the python package “requests” to 
send each experiment to be performed to the orchestrator, through the parameters of the 
orchestrator’s “addExperiment” function, as defined by fastAPI. The “thread” parameter of 
this function is also visible. While normally experiments are performed in the order in which 
they are received, it is possible to run multiple such sequences in parallel by assigning 
different thread values to different experiments. In our parallel active learning experiment, 
each instrument was run on a different thread, and they communicated only by contributing 
data to the same model within the memory of the active learning server. 
 
 

def add_process(sequence,thread=0): 

    server = 'orchestrator' 

    action = 'addExperiment' 

    params = dict(experiment=json.dumps(sequence),thread=thread) 
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    requests.post("http://{}:{}/{}/{}".format( 

        config['servers']['orchestrator']['host'], 13380, server, action), params=params).json() 

 
 
We have included a demo of the process we have just exemplified above in action. 
In this video*, we demonstrate how such a parallel run appears to the user.  
Two anaconda terminals can be observed in the left column, which correspond to two 
devices. Once an action is performed, its fastAPI server sends a message to the terminal 
hosting that server and the subsequent action will be then executed. Note that the lower 
terminal is substantially more crowded than the upper terminal, as it is hosting the 
orchestrator, analysis, and machine learning servers in addition to an instrument. In the 
middle of the frame, an acquisition function taken from the active learning function at every 
step is depicted. Based on the maximum of the acquisition function, the next subsequent 
experiment can be selected. Lastly, in the right column, video feeds of the two SDCs are 
displayed. The operated SDCs are located in the Glovebox (later for battery application ) and 
in our fume hood (for other inorganic experimentations) 
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The integrity of prior knowledge and the quality of experimental data are essential
when applying ML algorithms. However, the data quality is often compromised by
experimental noise, which requires manual evaluation by researchers to analyze and
extract relevant parameters. This underscores the importance of data analysis in the
design of laboratory automation framework. Herein, MADAP, a versatile Python-
based toolkit, has been designed and developed to support a range of electrochemical
analyses. The package generates real-time publication-quality plots and structured
reports that include raw and processed data, model parameters, output values, and
their respective uncertainties. It ensures complete data provenance tracking, fol-
lowing FAIR principles for reproducibility and transparency of research findings.
MADAP is accessible through three interfaces: a command-line interface (CLI), a GUI
designed with PySimpleGUI246, and a Python library, installable with pip install

madap, which can be integrated into automated experimental setups. This modularity
allows researchers to select the optimal approach for the specific requirements.

The package’s structured approach to the analysis process, from data input to report
generation, includes data acquisition that supports various file formats, pre-processing
that is responsible for data cleaning, and detailed analysis that is inherited from
abstract classes for consistency and expandability. MADAP includes a range of
analytical tools for EIS, Arrhenius, and voltammetry methods, the latter of which
is detailed in a subsequent publication (Section 4.5). Here, EIS partially utilizes the
impedance Python library283 to fit data to user-defined equivalent circuits and evalu-
ate the linearity and stability of the system. In the absence of a predefined circuit,
MADAP iteratively searches for the optimal fit using a series of built-in equivalent
circuit models and optimizes its parameter values through a remeasuring strategy
alongside root mean squared error (RMSE) score. Visualization includes Nyquist
and Bode plots, along with real and imaginary residuals to evaluate the potential for
overfitting. The Arrhenius class uses linear regression of the scikit-learn library
for the fit to derive parameters such as activation energy. The quality of the fit
is evaluated via MSE and R2 metrics. Detailed documentation for each module is
available at https://fuzhanrahmanian.github.io/MADAP/ and was autogenerated
through sphinx. In a practical application, MADAP was tested on electrolyte formu-
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lation data from the Helmholtz Institute Münster, which involved measuring ionic
conductivity across various compositions under different temperatures, with a total
of 5040 individual measurements. The results produced by MADAP were found
to be consistent with those obtained from manual analyses by the institute. This
demonstrates the efficacy and reliability of MADAP in data-driven settings, providing
insights and offering acceleration to researchers.

4.2.2. Individual Contribution

During the development of MADAP, Fuzhan Rahmanian designed the UML and
the corresponding structure for the implementation of EIS and Arrhenius analysis
classes. F.R. developed on GitHub and deployed the Python package on PyPI that
included a CLI and a GUI with the corresponding formatting of the plotting. F.R.

curated the sphinx documentation and the GitHub repository. F.R. designed the
import and export mechanism for reporting, the data cleaning steps, and the logging
functionality of the framework. F.R. wrote the script for the .exe creation. M.V. and
F.R. created the data frame structure for the raw and processed data. C.W. and P.Y.
performed the experiment to create the raw data. F.R. and M.V. wrote the manuscript,
and all authors reviewed it before publication.
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Conductivity experiments for 
electrolyte formulations and their 
automated analysis
Fuzhan Rahmanian  1,2,�M�nika�V�gle�1,2,�Ch�istian�Wölke3,�Peng�Yan3,�Stefan�Fuchs�  1,2,�
Ma�tin�Winte�3,4,�Isid��a�Cekic-Lask�vic3�&�Helge�Sö�en�Stein�  1,2�✉

Elect��lytes�a�e�c�nside�ed�c�ucial�f���the�pe�f��mance��f�batte�ies,�and�the�ef��e�indispensable�f���
futu�e�ene�gy�st��age��esea�ch.�This�pape��p�esents�data�that�desc�ibes�the�e񯿿ect��f�the�elect��lyte�
c�mp�siti�n��n�the�i�nic�c�nductivity.�In�pa�ticula�,�the�data�f�cuses��n�elect��lytes�c�mp�sed��f�
ethylene�ca�b�nate�(EC),�p��pylene�ca�b�nate�(PC),�ethyl�methyl�ca�b�nate�(EMC),�and�lithium�
hexaƪu���ph�sphate�(LiPF6).�The�mass��ati���f�EC�t��PC�was�va�ied,�while�keeping�the�mass��ati���f�
(EC +�PC)�and�EMC�at�Ƥxed�values��f�3:7�and�1:1.�The�c�nducting�salt�c�ncent�ati�n�was�als��va�ied�
du�ing�the�study.�C�nductivity�data�was��btained�f��m�elect��chemical�impedance�spect��sc�py�(EIS)�
measu�ements�at�va�i�us�tempe�atu�es.�Based��n�the�thus��btained�tempe�atu�e�se�ies,�the�activati�n�
ene�gy�f���i�nic�c�nducti�n�was�dete�mined�du�ing�the�analysis.�The�data�is�p�esented�he�e�in�a�
machine-�eadable�f��mat�and�includes�a�Pyth�n�package�f���analyzing�tempe�atu�e�se�ies��f�elect��lyte�
c�nductivity�acc��ding�t��the�A��henius�equati�n�and�EIS�data.�The�data�may�be�useful�e.g.�f���the�
t�aining��f�machine�lea�ning�m�dels����f����efe�ence�p�i���t��expe�iments.

Backg��und�&�Summa�y
Electrolytes are crucial for the performance of batteries1 since they enable shuttling of the ions, provide electrical 
isolation of the electrodes and have a deĕning inĘuence on the formation and stability of the solid electrolyte 
interface (SEI)2 and the cathode electrolyte interface (CEI)2–4. Achieving high performance electrolytes, typi-
cally requires the presence of various components like organic solvents, co-solvents, functional additives and 
conducting salts5. će concentration of each component and the ratio between the components have a strong 
impact on the conductivity of the electrolyte6–8. Ding et al. showed in several studies6–9, that the composition of 
the electrolyte, especially the PC content, aČects the viscosity and glass transition temperature of the electrolyte. 
će amount of PC also hinders crystallization of EC6,10. ćis allows for the formulation of electrolytes with 
improved performance at low temperatures10,11.

će dataset12 presented herein provides a comprehensive basis for future optimization studies, as it contains 
a wide variation of formulations and temperatures, including the raw data. Furthermore, it can help to gain 
deeper insights regarding composition-property-performance relationships. Fractions of this dataset served as 
the basis for several machine learning models published elsewhere11,13,14. će automated high-throughput exper-
imentation system13 available at the Helmholtz Institute Münster is used to formulate a variety of electrolyte 
solutions based on EC, EMC, PC and LiPF6. Ratios of (PC + EC):EMC of 3:7 and 1:1 are covered in the dataset12. 
će concentration of the conducting salt varies between 0.2 mol kg−1 and 2.1 mol kg−1, while the ratio of EC:PC 
ranges from 0.0 to 9.2.

će robotic system13 used for the acquisition of the data is able to dispense liquid and solid components 
into aluminium or polymer vials with high accuracy. Each formulation is identified by a batch number 
and measurements are identiĕed by a unique ID stored and reported on the vial through a QR code. Aęer 
sample-preparation, the automated setup performs the targeted measurement. Subsequently, the system returns 
a JSON formatted ĕle for each formulation, which allows for downstream processing. Here, we present the 
data12 as a CSV ĕle to summarize the results received from 504 individual JSON ĕles. Manual analysis of the 

1Helmholtz�Institute�Ulm,�Applied�Electrochemistry,�Helmholtzstr.�11,�89081,�Ulm,�Germany.�2Karlsruhe�Institute�
of�Technology,�Institute�of�Physical�Chemistry,�Fritz-Haber-Weg�2,�76131,�Karlsruhe,�Germany.�3Helmholtz Institute 
Münster�(IEK-12),�Forschungszentrum�Jülich�GmbH,�Corrensstraße�46,�48149,�Münster,�Germany.�4MEET�Battery�
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raw data is time intensive, which is why we have developed an automated Python-based data analysis package 
called Modular and Autonomous Data Analysis Platform (MADAP)15 with a command line interface (CLI) and 
a graphical user interface (GUI) that can process the aggregated CSV. ćis package is generalized and can be 
used on a variety of datasets as described below. će overall workĘow of generating and analyzing data is shown 
in Fig. 1. All input parameters are tracked and saved in the output obtained from MADAP15 to allow full data 
provenance tracking16,17 of not just the experimental but also the data analysis steps in the research workĘow18.

će dataset12 can be used to train machine learning models in order to predict promising electrolyte formu-
lations to reach an optimum conductivity, as demonstrated by Rahmanian et al.11. Further, the research com-
munity may ĕnd the data useful in the design of their own experiments and in decisions concerning the use of 
hardware, soęware and human resources. će use of this dataset together with analysis tools like MADAP15 as 
a base for further lithium-ion battery research, enables the generation of further insights such as the activation 
energy of the ion conduction process. It is even possible to add other analysis procedures to MADAP15 to further 
expand the automation it provides.

Meth�ds
High�th��ughput�expe�imentati�n�(HTE)�system.� će robotic HTE system13, used to acquire the 
data12 presented here, is designed for high-throughput operation in a nitrogen atmosphere. će setup designed 
for the formulation of electrolyte solutions is able to prepare 96 formulations in 8 h by gravimetric dosing of solid 
and liquid materials into polymer or aluminium vials. Up to 10 mL of electrolyte can be formulated within one 
vial. će setup also provides functionalities to close the vials, mix, and heat their content using a heated shaker 
plate. Further, EIS measurements are performed automatically. To track the samples, each vial is automatically 
labelled using a QR code representing information like the date of preparation, an ID for the electrolyte mixture 
and information regarding the chemicals used. In preparation for EIS measurements, a volume of 750 µL of the 
electrolytes is automatically ĕlled into single-use Eppendorf Ⓡ Safe-Lock Tubes with a capacity of 2 mL. će use 
of single-use equipment avoids cross contamination in this step of the process. Subsequently, electrodes are auto-
matically immersed into the sample. ćese electrodes are designed to generate reproducible results independent 
of the shape of the vial or the depth of immersion19. For the measurement, the samples are arranged in groups 
of eight samples per rack, three of which are mounted on one larger rack. Four of these combined racks can be 
connected to the Metrohm Autolab potentiostat, which is used for the measurements13.

EIS�measu�ement.� Aęer the assembly of the racks, they are manually transferred to a Memmert TTC256 
temperature chamber for EIS measurements. će connection of the cells to the Metrohm Autolab potentiostat 
is also done by the operator. će temperature chamber is programmed such, to cover the temperature ranges 
between −30 °C and 60 °C in steps of 10 °C. Subsequent to an equilibration period of 2 h for each temperature, the 
EIS measurements are automatically performed with an applied AC voltage of 40 mV and frequencies between 
20 kHz to 50 Hz. A multiplexer distributes the output of twelve channels to eight outputs each. Hence, 96 channels 
are available to connect to each of the 96 cells on a rack13. Each experiment is repeated several times to provide 
up to 8 sets of values to the dataset. Repetitions can be identiĕed and distinguished based on the running number 
in the experimentID.

Data�management�in�the�expe�imental�setup.� će data recording during the experimental workĘow 
is handled by a laboratory information management system. It records identiĕers for the starting materials, test 
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Fig. 1 će overall workĘow representation from experimentation to data generation in Helmholtz-Institute 
Münster and data analysis in Karlsruhe Institute of Technology (KIT) and its partners.
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protocols and relevant experimental parameters. Furthermore, the system is able to merge these data with meta-
data comprising further details about the electrolytes used in a measurement. Aęer conclusion of a measurement, 
the collected data including the metadata is saved to a JSON ĕle, which can be used for analysis.

Analysis�S�ftwa�e�(MADAP).� For the data analysis, a variety of tools are present and available, e.g. ZView20, 
pyEIS21, impedance22, Aęermath23 and Origin24. We decided to bundle some of these tools into a compact, modu-
lar soęware package called MADAP15, thoroughly documented using sphinx25. ćis analysis tool provides all the 
necessary means to perform electrochemical data analysis based on experimental datasets, while providing full 
data provenance tracking, and plot publication quality results. It can perform a variety of automated electrochem-
ical analyses, including EIS, linear and cyclic voltammetry and the analysis of temperature series according to the 
Arrhenius equation. In this paper, we focus on Arrhenius analysis and EIS measurements. MADAP15 is deployed 
in Python3 and is publicly accessible as a GitHub repository (https://github.com/fuzhanrahmanian/MADAP)15, 
a pip installable package (pip install madap), and an executable (https://github.com/fuzhanrahmanian/
MADAP/releases/tag/v1.0.0) with a graphical user interface (GUI) created with PySimpleGui26,27, as shown in 
Fig. 2. će accessibility of MADAP15, by means of a CLI as well as a GUI, provides the broader scientiĕc com-
munity with a variety of entry points for the data analysis. će generic nature of the procedure assures that the 
package can be expanded with further analysis methods without impacting the existing methodologies. Further, 
this enables its integration into autonomous research workĘows28–30. će basic workĘow of an analysis using 
MADAP15 comprises the three steps of data acquisition, pre-processing and the analysis itself. In the former, the 
user can import diČerent data types (.txt, .json, .hdf5 or .h5, .xml, .pkl and .csv) and select the data to be analyzed 
based on ranges of indices for rows and columns or by specifying column labels. će pre-processing step can 
detect outliers based on given upper and lower limits of the relevant quantile using the Quantile-based Ęooring 
and capping algorithm31. će user may choose to specify custom limits or use the default values implemented 
in MADAP15. In version 1.0, the default values are chosen as 0.01 for the lower and 0.99 for the upper limit. 
Aęerwards, the user can choose what type of analysis shall be performed, i.e. voltammetry, EIS or Arrhenius.

Figure 3 depicts the code structure used in MADAP15. In the beginning of each analysis, all the procedures 
instantiate an abstract class called EChemProcedure, which enforces the presence of methods called ana-
lyze, plot, save_data and perform_all_actions. All procedures additionally inherit from the 
common Plots class, which equips them with the common plotting functionalities, providing outputs with 
scientiĕc format32. će complete procedure is continuously logged to review potential errors.

će linear ĕt required for the Arrhenius type analysis33 is implemented in MADAP15 using the functionalities 
for linear regression provided in the scikit-learn package34. će activation energy and the pre-exponential factor 
are derived from this ĕt. će regression loss, which is chosen as a quality metric, is calculated using the mean 
square error (MSE). Finally, plots and data ĕles for the raw and ĕtted data as well as the model’s parameters are 
automatically generated and saved in a designated location in accordance to the FAIR (Findability, Accessibility, 
Interoperability, and Reusability) data principle35.

EIS analysis and ĕtting are performed by a partial adoption of the impedance package provided by Matthew 
D. et al.22. In this package, the model uses a non-linear square fit as supplied by the SciPy36 package. The 

Fig. 2 A showcase of the Graphical User Interface diagram of MADAP15.

MADAP
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EImpedance module of MADAP15 gives the user the possibility to provide a deĕnition of an equivalent circuit 
via available elements and their corresponding values. In this case, the user should provide guesses for the value 
of each element in the selected circuit. Based on these guesses, MADAP15 generates a ĕt of the selected data inter-
nally and evaluates its quality. For the quality check, the root-mean-square error (RMSE) of the ĕt is determined 
and compared to the root mean square (RMS) of the experimental data. If the ratio of RMSE over RMS exceeds 
a threshold (δ), a re-evaluation will be triggered. In this case, the standard deviation of each estimated value of 
a circuit’s element is added to or subtracted from the respective value to improve generalization. će operation 
to be carried out is selected randomly for each value. ćese new values are then used as the input guesses for the 
subsequent ĕt. ćis procedure is iterated, until either the ratio of RMSE and RMS is below δ, i.e. Equation 1 is 
fulĕlled, or 5 iterations are reached. će number of iterations as well as δ are determined heuristically to 5 and 
0.01, although the user will have the possibility to change them and deĕne custom numbers as required.

δ≤ <
RMSE

RMS
0

(1)

Alternatively, MADAP15 provides the option to iterate over 40 common hard-coded equivalent circuits, which 
are provided as part of the MADAP15 package, without further user input. In this case, the match with the lowest 
RMSE will be chosen. ćis metric will be used as the loss metric in the analysis. For every impedance spectrum, 
the ĕtted circuit parameters and their uncertainties, the loss metric, the determined resistance and the corre-
sponding conductivity will be saved automatically. To provide information about the linearity and stability of the 
ĕt, the improved linear Kramers-Kronig (linKK) method37 as implemented in the impedance module22 is applied 
automatically to each spectrum. For visualization, a Nyquist and a Bode plot comprising the raw and ĕtted data as 
well as a residual plot for the linKK method will be generated and saved accordingly. Figure 4b shows the data and 
the ĕt of randomly selected spectra corresponding to diČerent quantiles of the RMSE to convey an impression of 
the achieved quality of the ĕt. For each quantile, four spectra and their respective ĕts are shown. For evaluation 
of the reliability of the ĕt, benchmarking is done referencing to the manual analysis of the selected data using 
Metrohm Autolab soęware as a baseline. In comparison to this baseline, MADAP15 provides acceptable ĕts for the 
majority of the spectra. će same principle was applied for the Arrhenius analyses, depicted in Fig. 4a.

Data Records
će dataset12 presented here comprises, among others, conductivity, real and imaginary part of the impedance 
as determined by EIS measurements and information regarding the formulation of a variety of electrolyte for-
mulations for lithium-based batteries. će formulations relate to the masses of the solvent components EC, PC, 
and EMC and the conducting salt LiPF6.

We provide the dataset as a dataframe in a CSV file format, which can be dowloaded from https://doi.
org/10.5281/zenodo.724493912 and may be used under the CC BY license. A summary of its structure is presented in 

Fig. 3 će stylized Uniĕed Modelling Language (UML) diagram that represents the code structure of 
MADAP15.
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Table 1. ćis table also shows the data type, the range of values covered for each quantity, the number of unique val-
ues and the physical unit. In this section, we elucidate more on the data and the interrelations within the dataframe.

će robotic system operated at the Helmholtz Institute Münster outputs the raw data in JSON format. Although, 
this format is machine-readable, we decided to provide the data in CSV format, which can easily be read into the 
user’s script as a table, e.g. using the Pandas38 library available for Python. Each line in the dataframe represents 
all the data available for a single measurement. Parameters, which are shared by several experiments, are repeated 
in each line, where they are applicable. In the following, we will elucidate more on each column of the dataframe.

Fig. 4 Fits randomly selected from Q1, Q2, Q3 based on the (a) R2 score of the Arrhenius ĕt and (b) RMSE  
of the eis ĕt determined by MADAP15 for 5035 electrolyte measurements with a frequency range between  
50 and 20k.

MADAP
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expe�imentID.� ćis column provides a unique identiĕer for each experiment, which enables traceability 
of the data. It codes the operator, the date of the experiment, the label of the electrolyte and a running number 
diČerentiating the repeats. će format of the experimentID is: [operator]_[date of the experiment]_[label of the 
electrolyte]_[running number].

Column name Description Data type Range
Unique 
entries Unit

experimentID
A unique identiĕer for each experiment coding an operator, the 
date of the experiment and the batch of the electrolyte used.

string not applicable 504 —

temperature će temperature at which the measurement was conducted Ęoat (−30, 60) 10 °C

frequency
A series of frequency values selected for the electrochemical 
impedance spectroscopy

Str[List[Ęoat]] (50, 20000) 1 Hz

real_impedance
A series of the real part of the impedance measured by means of the 
electrochemical impedance spectroscopy

Str[List[Ęoat]] (−390106, 114305526) 5035 Ω

imaginary_impedance
A series of the imaginary part of the impedance measured by means 
of the electrochemical impedance spectroscopy

Str[List[Ęoat]] (−371850382, 103) 5035 Ω

cell_constant,_standard_deviation

A tuple comprising the cell constant and its standard deviation 
determined from ĕve measurements using a 0.01 M KCl (aq) 
standard solution at 20 °C with a 2 h equilibration period between 
measurements

Str[Tuple[Ęoat]]
(3.815, 4.720); (0.000, 
0.178)

339 cm−1

PC
će mass of propylene carbonate (PC) used for electrolyte 
formulation

Ęoat (0.273, 5.306) 105 g

EC
će mass of ethylene carbonate (EC) used for electrolyte 
formulation

Ęoat (0.000, 4.320) 99 g

EMC
će mass of ethyl methyl carbonate (EMC) used for electrolyte 
formulation

Ęoat (5.293, 9.457) 105 g

LiPF_6
će mass of lithium hexaĘuorophosphate (LiPF6) used for 
electrolyte formulation

Ęoat (0.301, 4.093) 100 g

metadata

Further metadata regarding the electrolyte solution 
arranged in a dictionary with the keys experimentDate, 
experimentType, formatVersion, channel, electrolyteAmount, 
suspectedMeasurementError, PC, EC, EMC, and LiPF6

Str[Dict[str]] not applicable 504 —

phase_shię
će phase shię as obtained from EIS analysis as implemented in 
MADAP

Str[List[Ęoat]] (0.131, 89.882) 5035 °

EIS_conductivity
će conductivity as obtained from EIS analysis performed using 
MADAP

Ęoat (0.000, 0.019) 5035 S cm−1

EIS_ĕttedParameters
će values and corresponding uncertainties of the elements in the 
equivalent circuit as determined using MADAP

Str[List[tuple]] not applicable 5035 —

EIS_RMSE
će RMSE of the ĕt obtained by applying the equivalent circuit 
determined using MADAP in the real and imaginary dimension

Ęoat (4.363, 28560.795) 5035 —

EIS_numberRCelements
će required number of RC elements in the equivalent circuit 
required to reproduce the EIS spectrum determined using the 
linKK method as implemented in the impedance package22

Ęoat (5, 11) 7 —

EIS_ĕtEvaluation
A numeric value indicating the quality of the ĕt. A value close to 
unity indicates a good ĕt.

Ęoat (0.576, 0.850) 5035 —

EIS_resistance
će ionic charge transfer resistance as obtained from EIS analysis as 
implemented in MADAP

Ęoat (241.781, 25564.121) 5035 Ω

EIS_chiSquare
A statistical measure for the goodness of the ĕt as obtained from the 
linKK method as implemented in the impedance package22 Ęoat (0.000, 0.322) 5035 —

EIS_circuit
će equivalent circuit for the EIS spectrum as obtained from the 
linKK method as implemented in the impedance package22 string not applicable 8 —

EIS_impedance
A list of impedance values obtained from the ĕt generated during 
the EIS analysis performed using MADAP

Str[List[compex]] not applicable 5035 Ω

EIS_residualReal
će real part of the residuals of the ĕt as determined using the 
linKK method as implemented in the impedance package22 Str[List[Ęoat]] (−0.118, 0.170) 5035 Ω

EIS_residualImaginary
će imaginary part of the residuals of the ĕt as determined using 
the linKK method as implemented in the impedance package22 Str[List[Ęoat]] (−0.118, 0.170) 5035 Ω

Arrhenius_activationEnergy
će activation energy obtained from the analysis according to the 
Arrhenius equation using MADAP

Ęoat (9.427, 30.413) 504 mJ mol−1

Arrhenius_preExponential
će pre-exponential factor obtained from the analysis according to 
the Arrhenius equation using MADAP

Ęoat (0.109, 962.145) 504 —

Arrhenius_R2
će R2 score corresponding to the linear ĕt obtained in the analysis 
according to the Arrhenius equation using MADAP

Ęoat (0.186, 0.999) 504 —

Arrhenius_MSE
će mean square error for the linear ĕt determined during the 
analysis according to the Arrhenius equation using MADAP

Ęoat (0.000, 0.703) 504 —

Arrhenius_lnConductivity
A list of Inσ obtained from the linear ĕt according to the Arrhenius 
equation determined by MADAP

Ęoat (−8.175, −3.713) 5035 ln(S cm−1)

Table 1. ćis table describes the data comprised in the dataset presented herein.
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tempe�atu�e.� će temperature, at which each measurement was performed, is reported in this column. Each 
row corresponds to a measurement at one temperature. će values range from −30 °C to 60 °C. For ĕve formulations,  
the measurement at −30 °C is not reported in the dataset.

f�equency.� ćis column reports a string, which comprises a list of the frequencies used in the EIS measurements.  
će frequencies are reported in units of Hz and cover a range from 20 kHz to 50 Hz.

�eal_impedance.� Values for the real part of the impedance, Z’, in the unit Ω are given in this column in the 
form of a string of a list of Ęoats. će values in this column for all measurements range from −3.901 × 105 Ω to 
11.430 × 107 Ω. će negative values result from artefacts in the measurements.

imagina�y_impedance.� će imaginary part of the impedance, Z”, is presented in this column. će values are 
given in Ω and range from −37.185 × 107 Ω to 103.002 Ω. će positive values result from artefacts in the measurements.

cell_c�nstant,_standa�d_deviati�n.� će cell constant and the respective standard deviation values are 
reported in cm−1 and determined from ĕve reference measurements using 0.01 M KCl (aq) standard solution at 
a temperature of 20 °C13. In the dataset, they are reported in a common column as a tuple, in which the ĕrst value 
corresponds to the cell constant and the second value reports the standard deviation. će values for the cell con-
stant range from 3.815 to 4.720, while the standard deviations span a range from 0.000 to 0.178.

PC.� ćis column reports the mass of PC in g used during the preparation of the electrolyte formulation. će 
values are given as Ęoats and range from 0.273 g to 5.306 g.

EC.� će mass of EC used during the preparation of the electrolyte formulation is reported in this column. će 
values are given as Ęoats in units of g and are spanning a range from 0.000 g to 4.320 g.

EMC.� In this column, we report the mass of EMC used for the preparation of the electrolyte formulation. će 
values are given in g and comprise values between 0.480 g and 9.457 g.

LiPF_6.� ćis column presents the mass in g of LiPF6 comprised in the formulations. će values reach from 
0.301 g to 4.093 g.

metadata.� In this column, additional information is reported, which cannot be reasonably presented in tab-
ular form. će metadata are presented as a string of a dictionary. It reports the date and type of the experiment 
using the keys experimentDate and experimentType, respectively. Further, the version of the JSON format is asso-
ciated with the key formatVersion. će number of the channel running the experiment, the amount of electrolyte 
used in the respective measurement, and the suspected measurement error are correlated with the keys channel, 
electrolyteAmount, and suspectedMeasurementError, respectively. će keys PC, EC, EMC, and LiPF6 are linked to 
further information regarding the respective electrolyte component which is represented in dictionary format. 
će keys Batch-No, CAS-No, and comment present the respective information as a string. će date of delivery and 
the date of opening of the container are given as strings in the format MM/YY and can be accessed using the keys 
dateOfDelivery and dateOfOpening. će molar mass of the substance is reported as a Ęoat with the key molarMass, 
while its unit is given as a string using the key molarMassUnit. će name key is associated with a string stating 
the long name of the chemical. će purity of the material is found using the key purity, while the SMILES string 
is given with the key SMILES. Both of these quantities are reported as strings. će amount of the respective sub-
stance used in the formulation is accessed with the key substanceAmount, while the respective unit is found using 
the key substanceAmountUnit. Finally, the supplier key returns the supplier, from which the material was obtained.

Moreover, the dataframe also contains data resulting from the analysis of the experimental data using the 
MADAP15 Python package. će MADAP15 analysis workĘow is performed on a Lenovo Workstation with an 
AMD Ryzen ćreadripper PRO 3975WX processor at 3500 MHz with 32 cores and 64 Logical Processors. će 
workstation is equipped with 128 GB of RAM and an RTX A6000 GPU running with Microsoę Windows 10 
Pro. će single core performance of the CPU turned out to be a bottleneck during operation, since the used 
libraries are not optimized for multicore processing or GPU training. Hence, MADAP15 was conĕgured to use 
all 32 cores for multithreaded operation for this scenario. In the following, we elucidate more on the analyzed 
results contained in the dataframe by going through the column names associated with analyzed data.

phase_shift.� ćis column reports the phase shię (φ) or phase angle as obtained from the EIS analysis imple-
mented in the MADAP15 package according to Eq. 2:

Z

Z
arctan

(2)
φ =

″

′
.

će data is given as a string of a list with values ranging from 0.131 to 89.882 given in°.

EIS_c�nductivity.� će ionic conductivity obtained as the quotient of the cell constant and the resistance 
determined from the EIS analysis implemented in MADAP15 is reported in this column. će conductivity is given 
in units of S cm−1 and the values range from 0.000 S cm−1 to 0.019 S cm−1.
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EIS_ƤttedPa�amete�s.� In this column, we report the determined values of the circuit’s elements as well as 
their uncertainties as obtained from the analysis. ćese parameters are represented as a string of a list of tuples. 
će ĕrst element of each tuple illustrates the value of the respective element, and the second value shows the 
standard deviation error obtained from the output of the impedance package22. će order of the tuples corre-
sponds to the order of a given circuit’s elements as presented in column EIS_circuit.

EIS_rMSE.� ćis column reports the RMSE of the ĕt in the real and the imaginary dimension as obtained 
from EIS analysis. će values are given as Ęoats.

EIS_numbe�rCelements.� An optimal number of RC elements in an equivalent circuit determined using 
the linKK method can be veriĕed by a metric, which subtracts the ratio between the sums of negative and positive 
resistor values from unity. će symbolic representation of this metric is conventionally chosen to be µ and its 
values are reported as Ęoats in our dataframe. će number of RC elements considered as optimal is the one, which 
results in a value of µ below 0.8537.

EIS_ƤtEvaluati�n.� ćis column reports a numeric value providing means to estimate the degree of over- or 
under-ĕtting. će values range from 0.576 to 0.850 and are reported as Ęoats. će upper limit is ĕxed at 0.850 to 
avoid overĕtting, as described by Schönleber et al.37.

EIS_�esistance.� From the EIS analysis, the resistance of the electrolyte towards ionic charge transfer is 
obtained. će values resulting from the analysis are reported in this column in units of Ω. A range from 241.781 
Ω to 25.564 × 103 Ω is spanned by the data.

EIS_chiSqua�e.� ćis statistical value determines the goodness of the ĕt derived from the linKK method and 
is calculated as the sum of squares of the real and imaginary residual error. će χ2 values are reported as Ęoats.

EIS_ci�cuit.� će manual or auto-selected circuit used to ĕt the EIS data of the concerned measurement is 
reported in this column. In the representation, serial connections are displayed as element1-element2, while p(ele-
ment1, element2) indicates a parallel electric connection. će elements in the circuit are represented by R for 
resistance and C for capacity. A constant phase element is indicated by CPE and a Warburg element is represented 
as W. An additional list of elements, which may be used by the user, can be found in the impedance package22. In 
this column, the ĕtted circuit for each conductivity experiment is represented by a string.

EIS_impedance.� ćis column represents a list of impedance values obtained from the ĕtted model with 
frequency as input and the measured impedance as output. će data is reported as a string of a list.

EIS_�esidualreal.� će residual errors of the real impedance obtained from the linKK method can be seen in 
this column. ćey are given as a string of a list.

EIS_�esidualImagina�y.� In this column, the residual error derived from the linKK method for imaginary 
impedance as a consistency factor is reported as a string of a list.

A��henius_activati�nEne�gy.� For calculating the activation energy from the conductivity experiment, a 
linear ĕt between the inverse temperatures in 1000/K and the natural logarithm of conductivities is applied. će 
activation energy can be calculated with the Arrhenius equation and is reported as a Ęoat in this column with the 
unit mJ mol−1.

A��henius_p�eExp�nential.� The pre-exponential factor obtained from the linear fit according to the 
Arrhenius equation is reported in this column. će values of this factor are given as a Ęoat with the unit Scm−1.

A��henius_r2.� In this column, the R2 score of the linear ĕt is shown as a unitless Ęoat.

A��henius_MSE.� In this column, we report the mean square error of the linear ĕt as a unitless Ęoat.

A��henius_lnC�nductivity.� A list of the natural logarithmic conductivities obtained from the linear ĕt is 
reported in this column as a string of a list of Ęoating point numbers.

All the relevant data concerning the raw data, ĕtting parameters and results of the analysis are saved in the 
presented dataset. će data is therefore fully traceable and reusable. ćis is compliant with the FAIR35 data 
standard. će workĘow is schematized in Fig. 5.

će column named Data Type in Table 1 shows the data type obtained aęer reading the dataframe from 
the CSV ĕle using Pandas’38. read_csv method. će user should note the information provided in the column 
Description to see the structure of the string. For example, the real part of the impedance is read as a string type 
variable. However, it actually represents a list of Ęoats and should be cast to this data type.

Technical�Validati�n
će reliability of the experimental data is validated by repeating each measurement several times. Invalid data 
is not stored in the dataset12 reported here. Each measurement is examined by an expert in the ĕeld to ensure 
high quality of the data.
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The data obtained from the analysis is verified using an appropriate metric for each analysis. For the 
Arrhenius type analysis, the quality of the ĕt is quantiĕed by the mean squared error (MSE).

će impedance data reported in this work is pre-processed for analysis by excluding negative impedance val-
ues and outliers to enable a reliable analysis. će linKK method is used to verify the linearity of the spectrum and 
also reports the goodness of the ĕt by the statistical χ2 value corresponding to the residual errors of the imped-
ance data. Consequently, the resulting ĕt of the equivalent circuit is veriĕed by means of the RMSE. ćis work-
Ęow returns the parameters corresponding to the equivalent circuit as presented in the section Data Records.

For visualization, we generated quantiles based on R2 and RMSE for all the ĕts performed during the analy-
ses. Figure 4 shows the results of four randomly selected analyses taken from each quantile to provide an over-
view of the distribution of the ĕtting quality. In Fig. 4a, ĕts corresponding to quantiles based on R2 are shown, 
while Fig. 4b presents ĕts for quantiles based on RMSE. će ĕrst row in each subĕgure gives an impression of the 
lowest ĕt quality, while the best ĕts are shown in the last row of the subĕgures. Additionally, the conductivity and 
the activation energy calculated by MADAP15 are depicted in Fig. 6.

Usage�N�tes
It is recommended to apply the MADAP15 package to use, extend or adapt the provided data analysis. For per-
forming analysis using the MADAP15 package, a speciĕc range of rows and columns of the dataframe can be 
selected. For example, to reproduce one of the result of this article for Arrhenius analysis, the published dataset 
was selected as input for the MADAP15 GUI and the row indices from 3967 to 3977 and column 2 for temper-
atures and column 13 for electrolyte conductivity selected for the evaluation. Both plotting types were chosen, 
and the RUN button was pressed. Further results can be derived similarly.

Note that, in case a deĕnition of the formulation in terms of molar fractions is desired, the amounts of 
substances for each component of the electrolyte as reported in the dictionary given in the column labelled 
metadata can be used.

Raw Data

MADAP

Plots 

(png, svg) 

Data 

(json, csv) 

Concat

Processed Data

Fig. 5 Schematic representation of the given dataframe consisting of raw and processed data.

Fig. 6 Results from the analysis according to the Arrhenius equation. (a) represents the activation energies 
for two (EC + PC):EMC ratios of 0.4 and 1, derived by MADAP15 using a linear regression ĕt, (b) shows the 
conductivity value for the mentioned ratios at 10 descrete temperatures between −30.0 °C and 60.0 °C obtained 
from the analysis performed by MADAP15 using non-linear least square ĕt of SciPy36 module. For a part of this 
ĕt, the impedance module22 has been utilized.
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Code availability
će code of the MADAP15 package is publicly available on https://github.com/fuzhanrahmanian/MADAP and 
the documentation can be found in https://fuzhanrahmanian.github.io/MADAP/. A stand-alone windows 
executable can be downloaded from the GitHub repository as well. Furthermore, MADAP15 can be installed by 
running pip install madap.

će analysis results presented in this article are generated using MADAP15 version 1.0. Contributions are wel-
come, but should follow the common guidelines for group soęware development, which can be found in the 
CONTRIBUTION section of the MADAP15 the repository. će code is developed for the Python version 3.9 
and above and should use the following packages and versions: attrs > = 21.4.0, matplotlib > = 3.5.339, numpy 
> = 1.22.440, pandas > = 1.4.238, pytest > = 7.1.2, scikit_learn > = 1.1.2, and impedance > = 1.4.122. For running 
the GUI, PySimpleGUI > = 4.60.326 is required additionally.
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4.3 One-Shot AL

Publication Content

Autonomous experimental workflows with feedback loops typically begin with a ran-
dom experiment. Subsequent experimental parameters are then iteratively selected
using a learning algorithm and an optimizer to enhance model performance. This
process expands prior knowledge at every step to unravel parameter interdependen-
cies. A challenge that often the model encounters is the scarcity of data, which can
lead to overfitting or inefficient learning. The incorporation of existing datasets as
prior knowledge into the workflow can accelerate insight acquisition and optimize
experimental parameters, thus deepening the understanding of physicochemical
interrelationships. Herein, this study introduces an active learning pipeline within
a human-in-the-loop framework, utilizing a dataset from the Helmholtz Institute
of Münster (HIM) as its prior knowledge. The dataset consists of 80 electrolyte
formulations of LiBs, with cofnductivity measured across temperatures ranging from
−30 °C to 60 °C in 10 °C increments. The study defined a search space of 104 po-
tential formulations and aimed to identify those with optimal ionic conductivity at
all defined temperatures using an interpretable model. This approach involved the
implementation of regularized polynomial regression with hyperparameter optimiza-
tion and uncertainty estimation.

Following training and validation, the model predicted ionic conductivity for untested
formulations at each temperature. In a fully exploitative setting, the top 10 formula-
tions demonstrating the highest conductivity for each temperature were selected, and
through random sampling, 24 formulations from temperatures −30 °C, 20 °C, and
60 °C were experimentally tested by the collaborator at HIM. The initial test findings
aligned with the model predictions at lower temperatures, although discrepancies
were observed at higher temperatures. The model was retrained following one-shot
experimental testing and the inclusion of additional data, which constituted 30%
more than the initial dataset. This retraining improved prediction accuracy, reduced
uncertainty, and aligned better with the existing literature. For interpretability, the
coefficients of the optimized third-degree polynomial model were recorded to capture
the trends of solvent and conducting salt across varying temperatures. Additionally,
the conductivity gradient relative to formulation variations was calculated, which
enabled the derivation of the maximal allowable error in formulations. This study
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highlights the importance of prior knowledge in increasing model trustworthiness,
optimizing experimental design, and accelerating material discovery.
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pipeline, developed the model, implemented the uncertainty estimation with MAPIE,
and oversaw the training procedure. F.R. performed the analysis, plotted the results,
and curated the code and GitHub repository. F.R. drafted the manuscript. M.V. vali-
dated the results with existing values in the literature and supported the finalization
of the manuscript. C.W. and P.Y. conducted the experimental measurements in both
the initial and second experimentation run. All the authors reviewed the manuscript.
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Non-aqueous aprotic battery electrolytes need to perform well

over a wide range of temperatures in practical applications.

Herein we present a one-shot active learning study to find all

conductivity optima, confidence bounds, and relating formula-

tion trends in the temperature range from 30 °C to 60 °C. This

optimization is enabled by a high-throughput formulation and

characterization setup guided by one-shot active learning

utilizing robust and heavily regularized polynomial regression.

Whilst there is an initially good agreement for intermediate and

low temperatures, there is a need for the active learning step to

improve the model for high temperatures. Optimized electro-

lyte formulations likely correspond to the highest physically

possible conductivities within this formulation system when

compared to literature data. A thorough error propagation

analysis yields a fidelity assessment of conductivity measure-

ments and electrolyte formulation.

Introduction

High-conductivity electrolytes in secondary batteries are of

paramount importance for ensuring high performance and

reliability of each battery cell chemistry.[1] In specialty applica-

tions such as aerospace or stationary storage in remote

locations, bespoke electrolytes are however necessary.[2] High

or low temperatures make the electrolyte a limiting perform-

ance factor,[1–4] e.g., in electric vehicles which suffer from

relatively narrow optimal temperature windows of 15 °C to

35 °C.[1] Many studies[3–5] have thus been conducted to evaluate

lithium-ion battery (LIB) electrolytes at low temperatures in

respect to their conductivity. There exists only a limited number

of electrolyte studies that consider wide temperature ranges[6–9]

as recently reviewed by Lin et al.[10] Emblematic are the studies

of Smart et al.[6] and Fan et al.[7] that both evaluate a limited

number of formulations between 60 °C to 20 °C and 125 °C

to 70 °C, respectively. The studies by Dave et al.[11,12] consider a

wide range of electrolyte formulations but within a narrow

range of temperatures. Utilizing an existing dataset[13,14] span-

ning a wide range of formulations and temperatures, we aim to

perform as few as possible additional experiments to discover

formulations with maximum conductivity for a wide range of

temperatures. This is performed in a workflow called one-shot

active learning. This means that a machine learning algorithm

is used to suggest the most promising subsequent experiment

for improving the outcome and model. Besides aiming to

discover optimal electrolyte formulations for a range of temper-

atures, we also seek to evaluate whether there exists a globally

optimal electrolyte. Although, conductivity optima can be

predicted from the existing dataset using a machine learning

model, we believe that more physically meaningful predictions

can be obtained upon re-training of the model from one-shot

active learning suggestions. From the post shot model, we then

seek to deduce insights on the effects of different parameters

on the conductivity values, which could not be generated

solely based on the initially available dataset.

Compared to previous deployments of machine learning[15]

in the field of battery electrolyte optimization,[11] we investigate

whether an improvement in conductivity may already be

achieved through a single iteration cycle. This approach is

mostly analogous to the workflow of Attia et al.[16] for fast

charging protocol optimization, as herein we are using a high-

throughput electrolyte formulation robot and a machine

learning based optimizer, that were not integrated and in fact

run at two different locations asynchronously. This enabled us

to deploy active learning without requiring the experimental

equipment to have a direct interface to our active learning

infrastructure, potentially allowing a greater adoption of this

research paradigm.[17,18] This one-shot active learning study

aims to find optimally conducting electrolyte formulations at

temperatures ranging between 30 °C and 60 °C with as few
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extra measurements as necessary. Opposed to applying
machine learning algorithms to conclude from existing data-
sets, active learning[18,19] is integrated in the data acquisition
process with the idea of improving the model through
intelligent suggestion of additional measurements. Usually,
optimization loops in materials science[12,20] are run over several
iterations, the approach herein, however, aims to only perform
a single iteration to achieve an improvement in conductivity
and potentially reduction in uncertainty. The existing dataset of
lithium hexafluorophosphate (LiPF6) in ethylene carbonate (EC),
ethyl methyl carbonate (EMC) and propylene carbonate (PC)
was totaling 80 electrolyte formulations with measured con-
ductivities at 30 to 60 °C.[13,14] The suggestion of new
formulations was fully exploitative,[20] i. e., requested formula-
tions were selected solely based on their predicted conductivity
at a respective temperature with complete neglect of model
uncertainty. Active learning in fully exploitative mode has been
shown to significantly increase the so-called “enhancement
factor” by Rohr et al.[20] The enhancement factor describes the
increase in probability of finding an optimum given a fixed
budget of experiments. There are other research modes[20] not
explored in this study. However, a recent study by Flores
et al.[13] focused on the “understanding driven” research mode.
Their symbolic regression approach[13] works well for high
temperatures but fails for highly concentrated liquid electro-
lytes at low temperatures, indicating a change in the
physicochemical behavior. Organizationally, this study is the
human-in-the-loop version of the fully autonomous active
learning study presented by Rahmanian et al.[21]

Results and Discussion

Pre-shot model training

The dataset DS1 used herein is the same underlying the study
presented by Flores et al.[13] using the formulation and charac-
terization setup reported by Krishnamoorthy et al.[14] The herein
presented one-shot active learning approach is model free,
meaning that we do not utilize any physics or chemistry
knowledge except correct pose of the input (formulation) and
output (conductivity) and a compartmentalization of the
problem by temperature.

The global trends of electrolyte conductivity, captured by
our model M1, are shown in Figure 1, which illustrates the
conductivity (σ) over rLiPF6 and rPC at 30 °C, 10 °C, 20 °C, and
60 °C (additional temperatures see S2). For all considered
temperatures the R2 score is approximately 0.73–0.80, which
indicates a good fit. However, the degree of the polynomial
used for the fit is higher for the high temperatures compared
to low temperatures. The orange datapoints in Figure 1 indicate
the formulations covered by dataset DS1.

Overall, conductivity is strongly correlated with temperature
as expected from Debye-Hückel-Onsager (DHO) theory,[13,22]

however this theory is only valid for dilute solutions. Con-
sequently, we observe low conductivity for rLiPF6 0.8 or rLiPF6
0.1. In general, we observe the maximum conductivity

shifting towards higher conducting salt concentrations at
higher temperatures as it was reported by Landesfeind et al.[23]

and Ding et al.[24,25] for various electrolyte formulations. The
lowest overall measured conductivity is 194 mScm 1 at 30 °C.
Conductivity is showing a generally less pronounced depend-
ence on rPC than on rLiPF6 . This observation correlates with the
concentration-conductivity relationship that is primarily de-
pendent on conducting salt concentration.[25]

Going from low to high temperatures, the system seems to
allow for higher rPC and rLiPF6 while yielding a high conductivity
which is in good agreement with established theory.[25,26] The
model M1 also seems to prefer little presence of PC at low
temperatures for higher conductivity.[25,26] Our finding is in
good agreement with Ding et al.[26] who report, similar trends
with temperature.[27] They discuss the higher EC and PC
contents by an increase in the dielecteric constant and
consequently higher conductivity.[27,28] At 20 °C, a narrow global
optimum at relatively high rPC 0 35 is observed. The plot of
the conductivity corresponding to 60 °C shows a very small
region with high conductivity around rPC 0 35 and rLiPF6 0 38,
and additionally a maximum at rPC 0 3 and very high
rLiPF6 1 2. All but the 10 °C optima exist near unsampled
formulations. Based on the prediction of the trained model M1,
10 samples with highest predicted conductivity for each
temperature were selected and reported to the experimental-
ists. The requested and considered formulations can be found
in the https://github.com/BIG-MAP/electrolyte_optimization_
one_shot_active_learning repository.

One-shot predictions and measurements

Utilizing the above results obtained from M1 (see Figure 1), we
predict 10 top percentile formulations at every temperature,
resulting in a total of 100 electrolyte formulations. These
formulations were communicated to the experimentalists
omitting the predicted conductivity. The experimentalists
randomly selected 24 formulations from these 100 suggestions.
These selected formulations correspond to optimization tem-
peratures of 30 °C, 20 °C and 60 °C. Conductivity measure-
ments were conducted for the selected formulations covering
all the temperatures between 30 °C and 60 °C in steps of 10 °C
analogously to the generation of the dataset DS1. The data
obtained from the measurement of these 24 formulations
constitute dataset DS2. Figure 2 compares the M1 predicted vs.
measured conductivities for the 24 newly measured formula-
tions. There is a small deviation between the requested and
measured formulations due to slight imperfections in the
formulation process. Hence, Figure 2 shows the conductivity
prediction at the actually formulated composition. Inaccuracies
occurring during the solid and liquid dispensing processes are
technical in nature and are negligible given the fidelity assess-
ment presented in the section “Interactions and method
fidelity”. The error bar illustrates the conductivity error by
reporting the maximum and minimum values among the
repeated measurements.
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Figure 2(a) shows predicted and measured conductivities at
a temperature of 30 °C. Formulations predicted to be
optimally conducting electrolytes at 30 °C are verified exper-
imentally to be among the best conducting at this temperature.
The evaluation metric here should therefore not be the exact
value prediction, as all originate from a narrow distribution of
only 1% variance, which is significantly lower than the
experimental noise, i. e., all points are virtually indistinguishable.
All but one formulation optimized for 30 °C fall within the top
percentile, i. e., the success rate is 87%, see also Figure 4. The
formulations optimized for 20 °C and 60 °C exhibit a signifi-
cantly lower conductivity at 30 °C, also with relatively large
deviations between M1 prediction and measurement. This data
suggests that there exists no electrolyte with a globally optimal
conductivity. Differences in performance between formulations
optimized for the temperature of interest and those not
optimized for this temperature can amount up to 100%.

The measured conductivities for the requested formulations
are added as prior knowledge and the model is retrained using
dataset DS3.

Post-shot model refinement

After one-shot active learning and the Bayesian hyperpara-
meter tuning[29] as described in the methods section, the
models are significantly improved. The predicted trends for low
temperatures changed only marginally, whereas the improve-
ments for temperatures of 20 °C and 60 °C are significant, as
shown in Figure 3. Additional temperatures can be found in S3.
Together with the low temperature trends there is now a
coherent trend across temperatures suggesting higher rPC and
rLiPF6 for optimal conductivity at elevated temperatures.[23,26]

Also, the range of formulations, for which the maximum

Figure 1. Trends in electrolyte conductivity at a) 30 °C, b) 10 °C, c) 20°C, d) 60 °C as obtained from model M1. Orange data points represent the rPC and
rLiPF6 position of formulations, which were experimentally measured. There is an overall incremental trend for higher rLiPF6 from 30 °C to 10°C and narrow
optima in electrolyte conductivity at higher rPC at unsampled formulations for the higher temperatures. The red boxes in the plots represent the range of
formulations corresponding to the top percentile of the conductivity as obtained from the predictions of the model M1.
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conductivity was predicted by M1, changed significantly with
M2. Therefore, the region of the formulations constituting the
top percentile obtained from M1, represented as a red

rectangle in Figure 3, is far from the top percentile of the
improved model M2.

The improvement of the model’s predictions towards a
more physically meaningful trend highlights the significance of

Figure 2. Comparison between measured and predicted conductivity values at a) 30 °C, b) 10 °C, c) 20 °C, and d) 60 °C for the formulations selected based
on the predictions of model M1. Orange points represent the mean values of measured conductivities with error bars relating to the min/max spread from
repeated measurements. The high accuracy for low temperature predictions is best observed in a) where the formulations predicted to be best at 60 °C and
the ones optimized for conductivity at 20 °C perform worse at 30 °C. Overall, this suggests, that there exists no globally optimal electrolyte and performance
can vary by up to a factor of two.

Figure 3. Trends in electrolyte conductivity after one-shot active learning for a) 20 °C, and b) 60 °C as predicted by M2. The red boxes correspond to the top
percentile, which was obtained from M1. The selected formulations which were suggested by M1 and used for conductivity determination (DS2), were added
to the training set as an additional prior knowledge (DS3). Model parameter tuning and uncertainty measurement were implemented at this stage of active
learning (see S4). Trends for additional temperatures can be seen in the S3.
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active learning in model refinement as we only added an
additional 30% of data points to the dataset whilst qualitatively
improving the model. Comparing these results to the symbolic
regression model by Flores et al.[13] reveals significant differ-
ences in the mass ratios required for maximum conductivity.

Figure 4 shows the conductivity as predicted by M1 and
measured experimentally for the formulations comprised in
dataset DS2 at the temperature for which the respective
formulation was optimized. Furthermore, the top percentiles
obtained from M1 (red areas) and M2 (green areas) are shown.
Overall, the optimization and prediction worked best at low
temperatures. The measured conductivity values are close to
the predicted ones at 30 °C. Hence, the measured values are
within the top percentile of M1. Unsurprisingly, the top
percentile does not change significantly after the one-shot
active learning and the formulations are also within the top
percentile of M2. From the plots corresponding to 20 °C and
60 °C, a poorer performance is observed. At 20 °C, the model
significantly overestimates the highest conductivity. The meas-
ured conductivity values at 20 °C remain below the predictions
and below the top percentile. The results for 60 °C reveal a less
severe deviation between the predictions and the measured
conductivity values. However, the measured values are still
below the predicted ones and below the top one percentiles of
both, M1 and M2. This can be understood based on the results
obtained from Figure 3. Therefore, the success rate is only
about 12% as only one formulation is within the pre-shot top
percentile. The significant changes in the position of the
conductivity maxima upon one-shot active learning result in
the formulations contained in dataset DS2 not being the
highest conducting ones anymore. The range of the top
percentile in conductivity does not change severely, however
the formulations corresponding to these conductivity values
differ strongly. This indicates that M1, which is trained solely on
DS1, is not fit well for temperatures around 20 °C and above.
Based on the differences between Figure 3 and Figure 4, it can
be assumed, that the quality of the models significantly
increases through active learning.

The drastic improvement of the model becomes even more
obvious upon plotting the temperature maxima with the
spread of the top percentile as displayed in Figure 5. Before the

learning shot, the optima followed no physically meaningful or
interpretable trend whereas after adding the extra data
contained in DS2, the very fine trends in optima towards higher
rLiPF6 and slightly more rPC become obvious. Uncertainty
quantification was performed using the jackknife plus[30,31]

strategy resulting in an average 95% prediction interval of
3*10 1 mScm 1 (see S4). However, the incorporation of the
model agnostic prediction technique allows the measurement
of aleatoric and epistemic uncertainty at any point. Comparing
the results for electrolyte conductivity found by our one-shot
active learning approach to literature such as Ding et al.[24] at
60 °C, and 30 °C suggests that the herein reported maxima
correspond to the globally maximum conductivity in this
system, which is approximately 12 mScm 1 and 1.9 mScm 1,
respectively. In another study, Landesfeind et. al.[23] indicate
global maxima of 4.7 mScm 1, 7.6 mScm 1 and 9.25 mScm 1 at
10 °C, 20 °C, and 30 °C, respectively. Their results are in

agreement with our findings.

Interactions and method fidelity

Through the availability of a machine learning model M2 that
accurately and precisely predicts the trends in conductivity for
all temperatures, an assessment of confounding inputs and
method fidelity can be pursued. The model has two inputs: rPC
and rLiPF6 , and through the polynomial nature an analytical
derivation is facile. The post-shot regularized polynomial
equation [Eq. (1)] for conductivity ( ) post hyperparameter
tuning is:

c0 c1rPC c2rLiPF6 c3r
2
PC

c4rPCrLiPF6 c5r
2
LiPF6

c6r
3
PC c7r

2
PCrLiPF6 c8rPCr

2
LiPF6

c9r
3
LiPF6

(1)

i. e., a polynomial of degree 3 with the individual parameters
shown in Table 1. Some coefficients change drastically with
temperature whilst others barely change. Upon careful compar-
ison to Equation (1), one can see that those coefficients
corresponding to a conducting-salt-ratio-only term, scale al-
most exponentially whilst all others, i. e., solvent-ratio-only and

Figure 4. Predicted and measured conductivities for the formulations contained in dataset DS2 optimized regarding conductivity at the temperatures a)
30 °C, b) 20 °C and c) 60 °C. Each subfigure shows the data for the formulations optimized at the respective temperature. Predictions originating from M1 are

shown. Additionally, the range of conductivities spanned by the top percentile as predicted by M1 (red areas) and M2 (green areas) are shown.
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solvent-conducting-salt-ratio terms scale sigmoidal with tem-
perature (see S6b). These interaction coefficients allow for
further research into the relationship governing the solvation
shell properties upon electrolyte solvent variation.[32]

A long-lasting debate of how precise the electrolyte
formulation needs to be answered using model M2. An error
propagation estimation can be done when the gradient of a
function and the uncertainty of the underlying input is known.
From the herein reported measurements, we know the
uncertainty of the conductivity and we can easily calculate the
gradient of the conductivity w.r.t. the formulation. Here, we
take the median uncertainty of the conductivity measurements
( exp 0.3527 mScm 1) and divide it by the largest gradient
of conductivity w.r.t. to formulation (both uni- and bivariate) at
every temperature (Figure 6, Table 2) to obtain a conservative
estimate of the maximally allowed formulation error [Eq. (2)]
that would be on the same order of magnitude like the
measurement noise. Unsurprisingly one can have larger errors
in solvent-to-co-solvent ratios as in conducting-salt-to-solvent
ratios. Interesting, however, is that an error of about 10% in the
solvents is acceptable for most temperatures. Dosing of the
conducting salt should however be as precise as possible as at
high temperatures the error should not exceed 1.5%.

Figure 5. Trends of maximum conductivity a) before (M1) and b) after (M2) one-shot active learning and model optimization. Each point corresponds to the
mean conductivity value of the top percentile obtained from the respective model trained for the temperature of interest. The error bars represent the spread
of rLiPF6 and rPC within the top percentile. Before introduction of the additional 24 electrolyte formulations (DS2), the trends are neither physically nor
qualitatively interpretable. Overall, higher rLiPF6 is needed at higher temperatures to reach the optima, with a minutely higher rPC from 20 °C onward.

Table 1. Polynomial coefficients incorporating ridge regularization after one-shot active learning for T 30 °C to 60 °C.

T [°C] / c×10 3 c0 c1 c2 c3 c4 c5 c6 c7 c8 c9

30 1 0 0 3 5 6 0 9 2 3 9 7 0 6 1 4 0 6 4 0
20 1 2 0 3 8 9 0 9 3 2 13 6 0 7 1 9 0 8 5 1
10 1 4 1 0 12 1 0 1 3 9 17 1 0 3 2 4 0 9 6 1

0 1 5 0 4 15 9 0 1 4 9 21 2 0 4 3 3 0 9 7 3
10 1 5 1 2 20 4 0 9 5 9 26 1 0 4 4 2 0 7 8 8
20 1 6 1 7 25 0 1 4 6 8 31 0 0 3 5 1 0 5 10 5
30 1 6 2 7 29 7 3 2 6 9 35 8 0 4 5 6 0 0 12 2
40 1 6 3 0 35 1 3 2 7 3 41 9 1 0 6 2 0 6 14 6
50 1 6 3 2 41 3 3 2 7 6 49 5 0 0 6 4 0 7 17 6
60 1 6 3 0 47 4 2 5 6 9 57 2 0 7 6 6 1 8 21 1

Figure 6. The maximum formulation error calculated by Equation (2) with
the median exp of approximately 0.352 mScm 1 with respect to uni- and
bivariate combination of rLiPF6 and rPC between 30 °C and 60 °C.
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(2)

Conclusion

This study shows the utility of active learning to improve model
accuracy and precision on complex data with few examples.
The pre-shot model M1 significantly underfit the data such that
obtained trends did not follow a physically meaningful trend.
After one-shot active learning, the discovered model M2
produced smooth optima across the temperatures under
investigation even though temperature was not a parameter in
model training. Obtained trends in the optima suggest that for
low temperatures, the conducting salt concentration should be
minimized whilst for higher temperatures the salt concentra-
tion should be increased. We find that a globally optimally
conducting electrolyte does not exist as those optimal at low
temperatures perform poorly at higher temperatures. Those
electrolytes optimized for near room temperature show
approximately 20% less conductivity at low and about half the
conductivity at high temperatures compared to the formula-
tions optimized for the respective temperature range. Through
the availability of an easily differentiable model M2, we can
discuss electrolyte solvent-conducting salt interactions and find
mostly sigmoidal or exponential temperature trends hinting at
two different mechanisms. The differentiable model M2 also
allows an elucidation of maximally allowed formulation errors
which lie at approximately 10% for the solvent composition
and 1.5% for the conducting salt ratio at most temperatures.
Through the conservative choice of a low degree polynomial
model, we were able to obtain optima and interpretable
insights translatable to existing physicochemical laws such as
the DHO theory, however at high salt concentrations.

We believe, our approach can be transferred to novel
electrolyte systems e.g., for Na-ion batteries. In our opinion,
this could accelerate knowledge generation when starting from
small datasets and unravel complex interrelations early in the
research process.

Experimental

Workflow

The overall idea of this study is the optimization through a one-
shot active learning iteration. To this end a pre-existing dataset
DS1 was utilized to pre-train a model M1. From M1, a set of
optimally conducting electrolytes was suggested to the experimen-
talists. The experimentalists measured the conductivity of the
newly suggested formulations and reported the results back to the
machine learning team. The newly measured data collected in the
dataset DS2 was merged with dataset DS1 to obtain an extended
dataset DS3. The dataset DS3 is then used to retrain the model to
provide refined trends with formulation and temperature. In the
following we will refer to the retrained model as M2. The predicted
conductivities obtained from M2 are also used to understand error
propagation.

Further details about the model training can be found in the
section “Model training and one-shot active learning”. A schematic
of this study’s workflow is shown in Figure 7. Summarizing, there
are three stages in this pipeline: 1) model training, 2) formulation
suggestions and measurement, 3) retraining and refinement of the
model and uncertainty quantification.

Description of the initial dataset DS1 and Measurements

The initial dataset DS1 used herein to pre-train the model M1,
totals 80 distinct electrolyte formulations measured at Helmholtz-
Institute Münster for general purpose, using their automated
formulation and characterization setup described in detail in
Krishnamoorthy et al.[14] The formulations reported in DS1 contain
ethylene carbonate (EC), propylene carbonate (PC), and ethyl
methyl carbonate (EMC) in a solvent/co-solvent mixture and
lithium hexafluorophosphate (LiPF6) as the conducting salt. The
data reported in DS1 covers temperatures between 30 °C and
60 °C, at increments of 10 °C as described by Krishnamoorthy
et al.[14] Conductivity measurements were repeated 5 to 7 times.
For each datapoint the electrolyte formulation, conductivity and
measurement temperature were recorded. Across all formulations,
the ratio of EC PC EMC was fixed either at 3 : 7 or 1 :1 by
weight and the concentration of LiPF6 was varied between 0.2 and
2.1 mol kg 1.

We express the uncertainties for the experimental values by the
min/max spread of the individual measurements. The mass ratios
of PC and LiPF6 were normalized and referenced as rPC

PC
PC EC

and rLiPF6
LiPF6
PC EC for using them as inputs for model training and

one-shot active learning. The (EC PC) : EMC ratio was not consid-
ered during model training as it is not an independent variable.

Model training and one-shot active learning

The dataset size poses the challenge of finding well performing
models that are simple and interpretable.[33] We therefore settle on
polynomial regression[34] for our study. Contrary to Flores et al.[13]

we do not consider temperature as a parameter in model training
and train our model independently for each temperature. The basic
model is a strongly regularized polynomial regressor aiming to
avoid multicollinearity,[35,36] i. e., linear correlations among the input
parameters, which would negatively affect the estimates of the
coefficients in the regression model.[37–40] The polynomial
regression,[34] ridge regularization,[41] and in step two for optimiza-
tion purposes hyperparameter tuning are performed. All of the
machine learning steps were performed using the scikit-learn
library[42–44] available for Python. From the fitted polynomial model

Table 2. The maximum norm of the predicted conductivity gradient.

T [°C] / max σ) [mS

cm] rPC rLiPF6 rPC rLiPF6

30 3 598 1 636 3 582
20 6 071 2 277 6 057
10 8 526 2 563 8 523

0 11 454 3 208 11 455
10 14 955 3 711 14 947
20 18 535 4 341 18 516
30 22 345 4 283 22 294
40 26 462 5 024 26 404
50 31 307 5 234 31 248
60 36 173 5 831 35 999

Research Article

doi.org/10.1002/batt.202200228

Batteries & Supercaps 2022, 5, e202200228 (7 of 9) © 2022 The Authors. Batteries & Supercaps published by Wiley-VCH GmbH

 25666223, 2022, 10, D
ow

nloaded from
 https://chem

istry-europe.onlinelibrary.w
iley.com

/doi/10.1002/batt.202200228, W
iley O

nline Library on [08/05/2024]. See the Term
s and Conditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable Creative Com
m

ons License

4.3 One-Shot AL

101



a fine subsampling is performed comprising 104 formulation ratios
at a fixed grid spacing of 1 ratio-%. From this fine subsampling, the
10 formulations corresponding to the maximum predicted con-
ductivity, for each temperature were reported to the experimen-
talists resulting in a total of 100 suggested formulations. A subset
of 24 formulations was chosen by the experimentalists covering all
suggestions for 30 °C, 20 °C and 60 °C. Subsequent to the
formulation and conductivity measurements of the new formula-
tions, the model was retrained on dataset DS3. For hyperparameter
tuning we performed a Bayesian search[29,42] with a threefold cross
validation (details see S5). The best parameters are then fed to our
model. This search uses ridge regularized polynomial models to
favor low polynomial degrees. To assess the model uncertainty for
both aleatoric and epistemic uncertainty after the learning shot
(and the possible necessity for a second learning shot) we build a
pipeline using the so called model agonistic prediction interval
estimator (MAPIE).[45] This estimator uses the jackknife plus[31] library
to estimate the uncertainty[46] of the model for a 95% prediction
interval, i. e. a newly predicted value has a probability of 95% to lie
within this prediction interval.
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Initial model training (M1): In the first round of optimization, for every temperature, the polynomial degree varied between 

1 to 9. The degree which results in lowest root mean square error (RMSE) after every fit, is considered as an optimal degree. 

The split ratio between train set and validation set is 70:30. A constant value of 10-4 is selected for regularisation coefficient 

parameter. The trends of predicted conductivity for additional temperatures including -20 °C, 0 °C, 10 °C, 30 °C, 40 °C, 50 °C 

can be seen in Figure.S1. The validation scores from the 70:30 split at all temperatures are shown in Figure S1.1. 

 

 

Figure S1: Trends in electrolyte conductivity at a) -20 °C, b) 0 °C, c) 10 °C, d) 30 °C, e) 40 °C, f) 50 °C 

 

temperature 
validation R2 score model training R2 score 

from splitting DS1 in 70:30 (pre-shot) from DS1 / pre-shot 

-30 0.8 0.724297226 

-20 0.81 0.70787434 

-10 0.73 0.72662187 

0 0.75 0.712614466 

10 0.8 0.72145169 

20 0.72 0.717343607 

30 0.78 0.730915979 

40 0.79 0.744500333 

50 0.8 0.75248152 

60 0.79 0.7590995 

Table T1: R2 scores for the training of the model M1 on dataset DS1. 

 

One-shot predictions and measurements: Figure.S2 compares the experimentally measured conductivity versus the 

predicted one for the suggested 24 formulations (DS2) for additional temperatures including -20 °C, 0 °C, 10 °C, 30 °C, 40 °C, 

50 °C. 
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Figure S2: Comparison between measured and predicted conductivity values at a) -20 °C, b) 0 °C, c) 10 °C, d) 30 °C, e) 40 °C, f) 50 °C at 

the respective temperature. Orange points represent the mean of measured conductivities with error bars relating to the min/max from repeated 

measurements. 

Post-shot model refinement (M2): The parameters of the regularized polynomial pipeline (M2) for DS3 is optimized using 

Bayesian search with 3-fold cross validation. Figure.S3 shows the trends of electrolyte conductivity after one-shot active 

learning for additional temperatures including -20 °C, 0 °C, 10 °C, 30 °C, 40 °C, 50 °C. 

 

Figure S3: The refinement of conductivity trends after one-shot active learning at a) -30 °C, b) -20 °C, c) -10 °C, d) 0 °C, e) 10 °C, f) 30 °C 

g) 40 °C, h) 50 °C can be seen. 
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temperature 
model training R2 score 

from DS3 / post-shot 

-30 0.760282478 

-20 0.747042491 

-10 0.773409518 

0 0.823519509 

10 0.813040842 

20 0.859029562 

30 0.828545608 

40 0.855524487 

50 0.830341705 

60 0.763871653 

Table T2: R2 scores for the training of the model M2 on dataset DS3. 

Model Uncertainty: In Figure.S4, prediction intervals with 95 % of confidence (𝛼 =  0.05) for predicted conductivity values 

can be seen. For incorporating these calculations, model agnostic prediction interval estimator (MAPIE) using sklearn-contrib 

module is implemented [1].    

 

 

Figure S4: Uncertainty quantification for predicted conductivity values using 95 % prediction interval at a) -30 °C, b) -20 °C, c) -10 °C, d) 

0 °C, e) 10 °C, f) 20 °C, g) 30 °C, h) 40 °C, i) 50 °C, j) 60 °C 

Bayesian optimization: hyperparameter tuning was applied using the Bayesian optimization method [2,3]. The cross-validation 

search set to 3 for 20 iterations and the parameters setting includes polynomial features degree and ridge coefficient which can 

vary between (2 to 5) and (5*10-4to 0.03) respectively. The objective plot of hyperparameter parameters can be observed in 

figure S5. 

Summary: In figure S6.a, an overall trend of conductivity for molal ratio of salt at considered temperatures range is observable. 

The line plots represent the predicted conductivity trend and the measured conductivity for the selected formulations at 

Helmholtz-Institute Münster are shown with scatter points. Figure S7 shows the molar conductivity comparison to the 

conductivity. Trends are overlapping for solvent ratios but not for salt concentrations. 

According to Table.1, the coefficient relations extracted from our polynomial fit after one shot active learning can be seen in 

figure S6.b.  
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Figure S5: Hyperparameter tuning using Bayes search on pipeline consists of polynomial and ridge regression at a) -30 °C, b) -20 °C, c) -10 °C, 

d) 0 °C, e) 10 °C, f) 20 °C, g) 30 °C, h) 40 °C, i) 50 °C, j) 60 °C.  
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Figure S6: a) An overall trend of conductivity prediction for molal ratio of salt for temperature range between -30 °C and 60 °C applied on a 

full exploit search space can be seen. The lines represent the prediction trend of conductivity while the points refer to the measured conductivity 

for the selected formulations. Each colour specifies the corresponding temperature. b) The relation between polynomial coefficients 

incorporating ridge regularisation after one shot active learning.  
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Figure S7: Trends in molar electrolyte conductivity at a) -30 °C, b) -10 °C, c) 20 °C, d) 60 °C as obtained from model M1. The maxima of 

conductivity and molar conductivity coincide for solvent composition but not in salt concentration. 
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Publication Content

Monitoring and predicting the lifetime of batteries is a lengthy and complex undertak-
ing that requires an understanding of numerous factors, including the manufacturing
processes, their chemistry, design, and cycling procedures. Among data-centric
approaches, traditional DL models can capture non-linear relationships between pa-
rameters. However, they often suffer from overfitting due to their extensive parameter
requirements, which impedes their generalizability and interpretability. Considering
the aforementioned challenges, this study introduces a novel Seq-to-Seq architec-
ture designed to efficiently capture temporal dependencies across variables. This
architecture integrates advanced modeling techniques, including the utilization of
pinball loss for uncertainty measurements, an adjusted teacher forcing technique,
and an attention mechanism at the decoder level to dynamically prioritize important
features in long sequences. It also incorporates other strategies, such as learning
rate scheduling and customized early stopping, to accelerate model convergence.
Additionally, the architecture enables multi-output predictions, which enhances the
model’s explainability of its decision-making process.

The framework, anointed as Attention-based ReCurrent Algorithm for Neural Anal-
ysis (ARCANA), offers flexibility through the implementation of four operational
modes, namely training, tuning, prediction, and fine-tuning. The tuning mode utilizes
the Optuna library287 to optimize model parameters. During prediction, the model
delivers immediate results and generates a detailed report on evaluation metrics, pre-
diction uncertainties, and the impact of input parameters through saliency analysis,
along with visual plots. The fine-tuning mode adjusts the pre-trained model to opti-
mize performance on the provided user-specific datasets, which is especially effective
in data-scarce scenarios. This pip-installable package (pip install arcana-batt) is
implemented as a modular and user-friendly platform. The robustness of the model
was validated in two separate case studies. Initially, the model was trained on an
extensive coin cell dataset provided in a collaborative project with BASF company; in
the second phase, a diverse, publicly available dataset comprising a variety of battery
types, manufacturers, and charge-discharge protocols was collected. The number of
cells was comparatively small to the initial dataset, amounting to just 4% of the total.
The model processed static inputs, such as discharge current and nominal capacity,
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and dynamic inputs from past cycling sequences, including discharge capacity, volt-
age drop, and CE. Following training, both models were evaluated on entirely unseen
datasets from varied locations and manufacturers, demonstrating a high degree of
generalization. The model trained with a larger dataset from BASF possesses richer
prior knowledge of coin cell behaviors, while the smaller data facilitated broader
predictions across different battery types, albeit with higher uncertainty. Both models
were further fine-tuned for sodium batteries to showcase their adaptability across
different chemistries. ARCANA, therefore, demonstrates potential scalability from
laboratory settings to industrial production. Additionally, the framework is suitable
for applications such as on-the-fly monitoring to reduce testing durations and costs
and accelerate decision-making processes, and can also extend to active learning for
continuous optimization of experimental protocols or other applications.

Individual Contribution

The model idea for ARCANA was conceptualized by Fuzhan Rahmanian who con-
tributed to the complete data lifecycle, including data collection, feature extraction,
data cleaning, and curation for BASF and public datasets. The raw dataset of BASF
was provided by K.M. and B.B. while L.M. and L.N. conducted the experiment for
the data creation of Li-ion and Na-ion batteries at KIT and IPC. F.R. designed and
implemented the OOP model and incorporated uncertainty measures and an evalu-
ation framework, which included calculation and visualization of saliency analysis
and attention mechanism F.R. run training on the curiosity supercomputer of BASF,
gathered, evaluated, plotted, and reported the results, curated the codebase and the
repository, implemented documentation, and automatic deployment. F.R. assembled
the manuscript. R.L. and D.L. supervised the development of the model, while H.S.,
K.M., R.L., and D.L. oversaw the research. All authors reviewed the publication.
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Fuzhan Rahmanian 1,2,3,4,5 , Robert M. Lee6, Dominik Linzner6, Kathrin Michel6, Leon Merker1,2,

Balazs B. Berkes6, Leah Nuss1,3,4,5 & Helge Sören Stein 3,4,5

Predicting andmonitoring battery life early and across chemistries is a significant challenge due to the

plethora of degradation paths, form factors, and electrochemical testing protocols. Existing models

typically translate poorly across different electrode, electrolyte, and additive materials, mostly require

a fixed number of cycles, and are limited to a single discharge protocol. Here, an attention-based

recurrent algorithm for neural analysis (ARCANA) architecture is developed and trained on an ultra-

large, proprietary dataset from BASF and a large Li-ion dataset gathered from literature across the

globe. ARCANA generalizes well across this diverse set of chemistries, electrolyte formulations,

battery designs, and cycling protocols and thus allows for an extraction of data-driven knowledge of

the degradationmechanisms. Themodel’s adaptability is further demonstrated through fine-tuningon

Na-ion batteries. ARCANA advances the frontier of large-scale time series models in analytical

chemistry beyond textual data and holds the potential to significantly accelerate discovery-oriented

battery research endeavors.

Lithium-ion batteries (LIBs) enable the electrification of everything, yet
there is amaze of challenges thatmust be navigated in order to optimize the
batteries of the future1–4. Critical to the advancement of battery research is
the rapid understanding of why and how some batteries degrade and what
needs to be changed to prevent premature capacity fade5. Material degra-
dation can occur due to numerous factors, including unpreventable solid
electrolyte interphase growth, loss of active material, and other electro-
chemical phenomena6. However, investigating battery degradation is a
time-consuming task, as non-linear capacity loss can occur over hundreds
or thousands of cycles7. Another challenge in early lifetime prediction is the
diversity of battery chemistries in the anode, cathode, and electrolyte, along
with various form factors and testing protocols.

Battery lifetime can be evaluated through various methods, such as
conventional cycling until the end of life (EOL) under constant current-
constant voltage (CC–CV) conditions or cycling for a predetermined
number of cycles. From these data, measures such as coulombic efficiency
(CE) can be calculated8 and correlated to more in-depth techniques such as
electrochemical impedance spectroscopy (EIS)9 to fundamentally assess the
underlying degradation mechanisms. Accurate measurement of CE10,11

does, however, require bespoke instrumentation and a considerable amount

of time, i.e., cycling abattery for1000 cycles at 1C/1D takes approximately 11
weeks. Reducing the required number of cycles by a factor of 10 while
maintaining a high level of fidelity is, therefore, of great interest12. Machine
Learning (ML) anddeep learning (DL) canaccelerate testingby lowering the
number of cycles required to understand the underlying chemistries13. An
example of predicting the EOL of batteries using initial discharge capacity
curves was demonstrated by Severson et al.3, who used regression models.
They integrated data generation with data-driven models to forecast the
lifetime of LFP/graphite cells based on ΔQ(V) and classified their longevity.
In further work, Attia et al.12 employed a Bayesian algorithm to accelerate
the optimization of fast-charging protocols. By using early-cycle data for
low-fidelity predictions, the approach enabled the optimization of high-
fidelity experimental outcomes, thus significantly reducing the experimental
duration from 500 to 16 days.

Themost reliablemodels do not, however,merely predict just predict a
quantity but also allow assessment of the model’s uncertainty. Emblematic
of this is the work by Tong et al.14, who introducedADLSTM-MC, a hybrid
predictive model using adaptive dropout long short-termmemory (LSTM)
with Monte Carlo simulations. This approach, which requires minimal
training data, enhances robustness through Bayesian-optimized dropout
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rates and improves the remaining useful life of two types of LIBs. In a
correlative study15, a recurrent autoregressive deep ensemble network with
aleatoric and epistemic uncertainties was developed along with saliency
analysis to assess the impact of input parameters on output prediction. This
provided an intuitive understanding of feature importance. Another
advantage of using DL algorithms is their ability to use raw data, which has
gained interest in the estimation of battery State of Health (SOH). For
instance, Yang et al.16 developed a hybrid convolutional neural network
architecture with parallel residual connections, which utilizes raw data
across multiple dimensions. By incorporating attention mechanisms, their
model achieves remarkable accuracy in predicting the early stages of
degradation. These advances support the increased focus on more adaptive
and generative modeling frameworks, of which recent efforts include
reinforcement learning from human feedback (RLHF) and the prompt
paradigm in Generative Artificial Intelligence (GAI) techniques regarded
for their potential to unravel complex structure–activity relationships in
material behavior17. Although these approaches are applied in battery
research18,19, their prominence is not as widespread as in other scientific
fields. However, this lesser emphasis provides an opportunity for further
exploration and discovery.

Beyond these early lifetime prediction models, sequence-to-sequence
(Seq-to-Seq) models have been used to monitor battery lifetime and
(SOH)18,20,21. They leverage intrinsic temporal dependencies in degradation
data, providing high predictive accuracy and computational efficiency.
Li et al.20 developed a one-shot LSTM-based Seq-to-Seq framework that not
only predicts future capacities but also identifies knee points in the degra-
dation curve, maintaining stability even in the face of stochastic dis-
turbances. Although Seq-to-Seq models demonstrate robust predictions,
they also exhibit limitations in generalization and require large and diverse
datasets to enhance performance4.

Despite the promises made byML and DL for lifetime predictions22–24,
these models, while robust, face challenges of precision and
trustworthiness25. Existing models often focus on single-task learning,
neglecting the potential benefits of multi-objective learning for various
predictive settings4. In particular, data-driven approaches26,27 tend to over-
look the inherent variations between, for example, production batches or
individual cells28. Such discrepancies, originating from manufacturing
processes or agingmechanisms, canprofoundly impact lifetimepredictions.
Addressing these variations requires integrating domain knowledge into the
learning process to enhance the model’s ability to adapt and accurately
forecast across diverse conditions27. Furthermore, despite the assertions of
recent studies that they are chemistry-agnostic15,29, they often require
enhanced explainability to optimize their effectiveness in various chemistry
settings. Transfer learning offers a promising solution to the challenge of
scarce data but requires more investigation for transparency and
interpretability30. The acquisition of extensive datasets, essential for DL
algorithms31, remains a significant hurdle26,32,33. Nevertheless, innovative
strategies, such as the use of common features in databases and the doc-
umentation of various chemistries and protocols34, establish the foundation
for more in-depth research31. Our goal is to develop a model characterized
by its adaptable design and robustness, with the capability to provide both
uncertainty quantification and explainability. The model’s strength is
underlined by its adaptability in dynamically fine-tuning to specific che-
mical domains. Such a model would be invaluable to the academic com-
munity and would find marketable applications in the real world31,
accelerating battery design and data collection based on active learning.

Results
Data resources
Developing a model that generalizes well necessitates a diverse and large
dataset26 that ideally covers a spectrum of chemistries and formats given
high-dimensional correlations and cell variations30,35, obtained fromvarious
laboratories and measured under different operating conditions12. Data
diversity not only ensures an accurate representation of different cycling
behaviors but also tames the irreducible uncertainty in the predictionswhile

mitigating the risk of overfitting. However, the scarcity of large and com-
prehensive datasets25 that include both high and low-performing cells cre-
ates a challenge for training generalized models, i.e., to overcome a positive
bias30,36. Available data often exhibit noise, discontinuities, and varying
formats that require extensive curation, adding a layer of complexity.
Initiatives such as Battery Archive37 or other cloud services38 are therefore
commendable in promoting Findable, Accessible, Interoperable, and Reu-
sable (FAIR) data39,40 handling in battery research32,33.

In this study, we develop a model trained on ca. 17,400 batteries from
BASF research laboratories that cover a diverse range of LIBs chemistries
andmultiple cyclingprotocols. Exposure of ourmodel to such awide variety
of data enables robust generalization. Utilizing our pre-trained model on a
set of unseen data, we effectively predict the early degradation trajectory.
The ultimate test of our model, therefore, is to apply it to data from cells
produced in a different location and with varying chemistries. Due to
intellectual property constraints that prevent the authors from making the
model trained on the BASF dataset openly accessible, we have retrained our
model by leveraging a diverse array of publicly available datasets from
respected institutions and research groups, including the Toyota Research
Institute (TRI) in partnership with MIT and Stanford41,42, NASA43, the
Center forAdvancedLifeCycle Engineering (CALCE)44, Karlsruhe Institute
of Technology (KIT)45, Hawaii Natural Energy Institute (HNEI)46, and
Sandia National Laboratories (SNL)46. Furthermore, we have incorporated
data from our in-house cycled cells47–50 with successful and failed experi-
ments to further enrich model training and reduce bias. In Supplementary
Section1,weprovide an overviewof all datasets;we include a brief summary
in Table 1 with an indication of which datasets were used during training
and which remained completely unseen for model testing. This approach
ensures a thorough understanding of the data sources, thus improving the
transparency and reproducibility of our research.

Architecture overview
Central to this study is theAttention-basedReCurrentAlgorithm forNeural
Analysis with LSTM (ARCANA)model. This is an attention-based Seq-to-
Seq architecture specifically engineered to assess early-stage battery degra-
dation and perform lifecyclemonitoring. Themodel demonstrates superior
multi-output predictive capabilities, supported by its high modularity and
dynamic adaptability. It is designed to utilize a flexible range of past battery
cycle data, knownas historical temporal segments, for input. In addition, the
model includes predetermined parameters for future conditions, such as
discharge rates and cycle numbers. These parameters are known in advance
of the experiment, i.e., they are controlled by the measurement device and
are referred to as encoded temporal segments. This dual capability offers
multifaceted advantages, from cost and time savings to improved material
selection and protocol optimization.

TheARCANAmodel is augmentedwith additional features suchas the
attention mechanism, which provides insight into the decision-making
process of the model. This feature distinguishes between predictions based
onunderlyingpatterns and those arising fromstochastic variability. Saliency
analysis is additionally performed to emphasize the relative importance of
eachparameter througha computationof the absolute gradient of themodel
output relative to the input of the test set. It quantifies the sensitivity of the
input parameters, revealing how minor variations significantly alter the
output results15, thus aligning the internal logic of the model with domain-
specific knowledge. Adding another layer of robustness is uncertainty
quantification,which is valuable not only for understanding the reliability of
cycling protocols but also for assessing material performance across dif-
ferent battery chemistries.

As illustrated in the unified modeling language (UML) diagram (Fig.
1), theARCANAmodel consists of four principal classes, eachperforming a
different function, and is designed to accept rawdata, thus negating the need
for preliminary feature engineering. This design versatility extends to its
operational modes with Naive Training for initial experiments, Dynamic
Tuning for real-time adaptability via extensive hyperparameter optimiza-
tion, Fine-Tuning for integration of a pre-trained model with selective
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gradient updating, and prediction for efficient inference. Through mod-
ularity, a logging mechanism ensures data integrity and traceability,
adhering to FAIR data principles40. The open-source codebase uses the
PyTorch library51 for model development and the Optuna library52 for
hyperparameter optimization.

The encoder–decoder framework. The encoder (Fig. 2a) initiates the
Seq-to-Seq model in the ARCANA framework by processing historical
temporal segments of the past battery life cycles. Employing an LSTM
network, it is designed to capture complex, non-linear relationships and
time dependencies inherent in sequence data. The encoder processes the
input tensor to accommodate sequences of different lengths, employing a
padding mechanism that enables the LSTM to efficiently process these
sequences without being constrained by their varying lengths.Within the
LSTM, the temporal data is transformed into a tensor, constructing
hidden and cell states that capture sequential information. A skip con-
nection incorporates the initial input into the LSTM output, thus pre-
serving crucial temporal features and stabilizing the learning process.
Layer normalization, when applied to the LSTM output, not only
accelerates convergence but also leads to robust performance, mitigating
the challenges associated with long-sequence dependencies53. The
encoder returns a rich latent representation of the historical data, con-
sisting of the output tensor and the updated hidden and cell states, which
are then utilized by the decoder to enable accurate forecasting in sub-
sequent steps.

The decoder (Fig. 2a) takes on the task of generating future state
predictions. It is initialized with the hidden and cell states from the
encoder and begins by processing the most recent historical cycle data.
The model then integrates its own previous predictions and known
future conditions, such as the expected discharge current and the cycle
number. These two inputs are temporally encoded to capture their
positional relevance54, ensuring that the decoder is informed of the
predefined condition and the timing of each data point within the life
cycle. The decoder employs an attention mechanism that can dynami-
cally adjust sequence weights, identifying critical information at each
prediction step. This approach overcomes the limitations of static-
length vector representation in conventional encoder-decoder models55,
allowing the decoder to focus on the most relevant parts of historical
data. The attention mechanism then computes a context vector asso-
ciatedwith the encoder’s output, which highlights the encoder sequences
with the highest relevance to the current decoding task. This context
vector, combined with the current input, forms a feature-rich tensor that
is subsequently processed by an LSTM layer. Post-LSTM, the output
layer is passed through a fully connected layer with a leaky ReLU acti-
vation function, crucial in maintaining network stability, and enhanced
with a dropout layer placed to reduce overfitting risks. The culmination
of this process is a decoder that generates forecasts for the 0.1, 0.5, and
0.9 quantiles. These provide a probabilistic range indicative of the
inherent uncertainty and offer a statistical interpretation of the potential
future states of the degradation profile.

Table 1 | Collected cycling data for training and testing

Location Cell form Cell chemistry Protocol charge\discharge No.
cell

Cycle range Nominal
capacity [Ah]

Usage

BASF Coin Heterogenous Multimodal 17400 Multimodal Multimodal M(B) Train\Val

TRI41 Cylindrical

commercial

LFP\graphite CC1(Q1)CC2, CC–CV@1C, 4.2V \CC@4C 124 169–2235 1.1 M(P) Train\Val

TRI42 Cylindrical

commercial

LFP\graphite CC1(20%)CC2(40%)CC3(60%)CC4(80%),

CC–CV@1C, 4.2V\CC–CV@4C, 2V

233 100–862 1.1 M(P) Train\Val

CALCE44 Prismatic com-

mercial CX2

LCO\graphite CC–CV@0.5C, 4.2V, \CC@(0.5C, 1C) 6 781–1082 1.35 Testing

CALCE44 Prismatic com-

mercial CS2

LCO\graphite CC–CV@0.5C, 4.2V, \CC@0.5C 6 1701–2016 1.1 M(P) Train\Val

KIT45 Cylindrical

commercial

NCA\graphite-Si CC–CV@(0.25C, 0.5C, 1C), 4.2V, \CC@1C 58 29–800 3.5 M(P) Train\Val

KIT45 Cylindrical

commercial

NCM\graphite–Si CC–CV@(0.25C, 0.5C, 1C), 4.2V, \CC@1C 55 43–1277 3.5 M(P) Train\Val

KIT45 Cylindrical

commercial

NCM+NCA

\graphite

CC–CV@0.5C, 4.2V,\CC@(1C, 2C, 4C) 9 912–1031 2.5 Testing

KIT47 Coin self-made LNO\graphite CC–CV@1C, 4.2V, \CC@1C 43 82–505 0.004618 60% for M(P)f, 40%

Testing

KIT48 Coin commercial LCO\graphite CC–CV@1C, 4.25V, \CC–CV@1C, 2.75V 26 150–600 0.045 M(P) Train\Val

KIT49 Coin self-made NMC622\graphite CC–CV@1C, 4.2V,\CC@1C 11 228–501 0.00328 Testing

KIT50 Coin self-made Na0.9[. . . ]O2

\graphite

CC@1C \CC@1C or C-rates test 44 40–140 0.00015 60% for M(P)Na and

M(B)Na, 40% Testing

NASA43 Cylindrical

commercial

NCA\graphite CC–CV@0.75C, 4.2V, \CC@(0.5C, 1C, 2C) 34 24–196 2.0 M(P) Train\Val

HNEI46 Cylindrical

commercial

LCO-NMC

\graphite

CC–CV@0.5C, 4.3V, \CC@1.5C 14 1102–1133 2.8 M(P) Train\Val

SNL46 Cylindrical

commercial

LFP\graphite CC–CV@0.5C, 4.2V,\CC@(0.5C, 1C, 2C, 3C) 28 2621–19,174 1.1 M(P) Train\Val

SNL46 Cylindrical

commercial

NCA\graphite CC–CV@0.5C, 4.2V, \CC@(0.5C, 1C, 2C) 24 463–7877 3.2 M(P) Train\Val

SNL46 Cylindrical

commercial

NMC\graphite CC–CV@0.5C, 4.2V, \CC@(0.5C, 1C, 2C, 3C) 25 388–11,149 3.0 M(P) Train\Val

An overview of the collected cycling data utilized for training and testing. ThemodelM(B), was trained with data provided by BASF, and the modelM(P) was trained with publicly available data. Themodel

M(P)f represents a fine-tuned version ofM(P) for lithium-ion coin cell data.M(P)Na andM(B)Na models are fine-tunedM(B) andM(P), respectively, adapted for sodium coin cells.
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Seq-to-seq integration. In the broader Seq-to-Seq model, the encoder
and decoder are orchestrated to facilitate the overall predictions, as can be
seen in Fig. 2b. Here, the model processes the temporal data using a
sliding window approach that enhances the ability to discern local pat-
terns within long input sequences54. This technique allows for the inte-
gration of the last observed data or transitions to the decoder’s self-
generated predictions, supplemented with temporally encoded future
conditions. During training, a dynamic teacher forcing strategy is
employed, in which actual target outputs are used as inputs in lieu of
previous predictions to promote model convergence, prediction fidelity,
and generalizability in the model. This hybrid training strategy allows
effective learning from the ground truth while gradually becoming
equipped for self-guided predictions. At the end of the processing of this
sequence, quantile-based predictions are collected into a stack of tensors,
encapsulating a comprehensive forecast for subsequent decision-making
processes. Thus, this forward pass provides a fine-grained, probabilistic
understanding of the evolving battery life-cycle stages, with the potential
to inform risk assessment and optimize operational efficiency.

Experimental configuration
This study evaluates theARCANAarchitecturalmodel through a two-stage
experimental process. Our aim is to present findings that resonate across
multiple disciplines, highlighting both the complexity and versatility of our
approach. The first stage involved training model M with the coin cell
datasetB fromBASF.The resulting trainedmodel is here denotedM(B).We
encoded predetermined parameters, including cycle number and discharge
current, into temporal segments to capture past and future discharge con-
ditions. The training used an additive attention mechanism in the
ARCANA architecture for initial learning, with a detailed explanation in
Section “Methods”. In the second stage, the model M is re-trained from
scratch (parameters available in Supplementary Table 1), with publicly

available datasets asmentioned in Table 1 and denoted asM(P). This entails
various cell types, including 26 coin cells and 6 prismatic cells with
Lithium–Cobalt–Oxide (LCO) cathodes, with themajority being cylindrical
cells with Lithium–Iron–Phosphate (LFP), Nickel–Manganese–Cobalt
(NMC), and Nickel–Cobalt–Aluminum Oxide (NCA) cathode materials.
To address these cell chemistry variations, we introduced an additional
predefined parameter, the nominal capacity of each cell in logarithmic
format. This inclusion was critical for the model to effectively differentiate
and interpret response characteristics56. The public dataset selected forM(P)
was significantly smaller, comprising 627 cell entries and accounting for
only 3.35% of the total data size of the initial modelM(B). The dataset was
distributed with 65% for training, 30% for validation, and 5% for testing.

To emphasize generalizability and test model performance, we incor-
porated four distinct test datasets, each sourced fromdifferent locations and
created by various experts. Thefirst two test sets, denoted (DLNO) andDNMC,
comprise coin cell measurements made at the Institute of Physical Chem-
istry (IPC) of KIT, featuring the Lithium-Nickel-Oxide (LNO) and NMC
materials, respectively. The third dataset consisted of cylindrical cells from
the Institute of Applied Materials (IAM) of KIT, containing NMC blended
with NCA cathode materials (DNMC+NCA). The final dataset involved
prismatic cells of the CALCE institute with LCO materials (DLCO). The
complete description of these cells is provided in the Supplementary
Section1. This approach in dataset selection and testing allowed an in-depth
evaluation ofM(P) for its adaptability to various cell types and experimental
setups.

Thepublicly available data forM(P) presenteddistinctive challenges, as
they included prematurely failed cells and high experimental noise, in
contrast to the high-quality data used for trainingM(B). These complexities
required a change from an additive to a multihead attention mechanism in
M(P). We also encountered a wide range of cycles, from as few as 196 to as
many as 19176. However, most of the tests we considered had fewer than
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Fig. 1 | An UML diagram of the computational framework. The framework is

designed around three principal class clusters. The first includes aConfigHandler

engineered to manage a comprehensive set of user-defined configurations and

establishes a blueprint for handling various subconfigurations such as general set-

tings, data properties, and model specifications. During hyperparameter optimiza-

tion tasks, ConfigHandler interfaces with the Optuna optimization library to

adaptively create and update the tuning configuration. The second key class struc-

ture includes TrainProcedure, which serves as an architectural template for the

training process. Its attributes are employed throughout the computational pipeline,

starting with data preparation and extending to the instantiation of specialized loss

functions and Seq2Seq models via the LossFactory and Seq2SeqFactory.

FineTuning is a specialized subclass that inherits from TrainProcedure

while TuneProcedure and PredictProcedure, the latter of which uses the

QuantilePredictor, are incorporated into the pipeline depending on the

desired use case and settings. The tuning operates on single trials with a TPESampler

whenmultiple runs are desired. Lastly, Seq2SeqFactory is engineered to govern

the instantiation of encoder-decoder architectures. Depending on the user-defined

configurations, it can orchestrate a multihead or an additive encoder-decoder

mechanism. The inclusion of custom attention mechanisms within the architecture

is handled by the AdditiveDecoder class or the MultiheadDecoder, con-

ditional upon the configuration stipulations.
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500 cycles. This variability posed a potential risk of gradient instability and
inconsistent learning in the training process. To mitigate the risk of poor
convergence and the possibility of overfitting, we adopted a standardization
approach in which all cells were limited to a maximum of 500 cycles,
ensuring better balance in the training data and reducing bias, thus
increasing reliability.

Both M(B) and M(P) focused on predicting three parameters, which
were selected for their established significance in the existing literature and
their availability across the datasets. They included discharge capacity, crucial
for understanding the (SOH)3, CE, as emphasized in studies byBurns et al.57,58

as the key to understanding the impact of electrode additives and electrode
materials on battery long-termperformance, and the voltage drop during the
relaxationphase betweencharging anddischarging cycles.The last parameter
is less explored but, as described by e.g. Zhu et al.59, it offers valuable insights
independent of the charging process. This parameter is easily calculated from
cycling data, even if the studies where the data originated did not directly
measure it. In this section, we evaluate our model’s performance on various
scenarios, focusing on the impact of data quality onmodel generalization and
interpretability, investigating its adaptability to different chemistries, and
deriving insights from attention mechanisms and saliency analysis.

Fig. 2 | Architectural overview of Seq-to-Seq model. In this overview subfigure

a depicts the detailed architecture of the encoder and decoder components. The

LSTM-based encoder processes historical temporal segments to capture the intricate

pattern of battery life cycles. It integrates skip-connection and layer normalization to

preserve and stabilize essential key temporal features. The decoder is initialized with

the encoder’s final states and applies an attention mechanism to focus on relevant

temporal features from the encoder output and enrich the context of its predictions.

The attention-enhanced representations are combinedwith the initial decoder input

and subsequently propagated through LSTM layers. A fully connected layer with

leaky ReLU activation and a dropout layer—used solely during training and inactive

during inference—for regularization follow the LSTM outputs. The model outputs

are then fed into three separate fully connected layers for predicting a specific

quantile of the future distribution based on the pattern learned during training, thus

providing a probabilistic characterization of the forecast. Subfigure b illustrates the

integrated Seq-to-Seq model flow, depicting the progression from encoding his-

torical data to multi-output future forecasts. It highlights the sliding-window

approach that underpins the model’s capability to handle both the tail-end of his-

torical data and the integration of self-generated forecasts with known future con-

ditions. This process also captures the dynamic training process, which incorporates

teacher forcing to enhance the predictive fidelity of the model.
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Model performance across battery types
The hyperparameters of M(P) were selected using Optuna’s hyperpara-
meter tuning with 250 trials and are described in Supplementary Fig. 2,
along with its training performance (Supplementary Fig. 3). The model
generalization is evaluated on two datasets; cylindrical cells of DNMC+NCA

and prismatic cells ofDLCO, neither of whichwere seen by themodel during
training. Here, the objective was to determine how effectively the model
generalizes across different battery configurations despite the presence of
noisy data.

As shown in Fig. 3, the model handles multidimensional predictions
for both DNMC+NCA and DLCO well. For DNMC+NCA, it accurately forecasts
up to 500 cycles basedon 24 input cycles (see Panel I, Fig. 3) even though the
extracted data exhibits occasional jumps despite the discharge current
remaining constant throughout. Given that these unexpected jumps are not
annotated in the original dataset, we have chosen to acknowledge their
presence but not alter them for the sake of data integrity. Aggregated
attention weights in early cycles indicate their importance for long-term
forecasting. Emblematic isDLCO, which starts from a 23-cycle profile (Panel
II, Fig. 3); the model demonstrates robustness even in the presence of more
complex noise patterns. Here, the attention weights are distributed not only
in the initial cycles but also in later cycles, proving the necessity of incor-
porating an attention mechanism. Illustrating the model’s generalization
capabilities, a detailed analysis of Qdis in Fig. 4 is presented. In both
DNMC+NCA and DLCO, there is good agreement between the model’s pre-
dictions and actual values (Panel I & II, Fig. 4a), as complemented by the
density graphs in Fig. 4b. ForDNMC+NCA, the predicted and actual densities
closely overlap. For DLCO, the predicted density is highly similar, with a

slightly skewed distribution towards lower Qdis. The better density dis-
tributions for DNMC+NCA are likely attributable to the larger proportion of
cylindrical cells in the training data, which accounts for 94.9%of the total. A
detailed evaluation of the uncertainty of the modelM(P) is provided in Fig.
4c–e for both datasets. Panel I & II of Fig. 4c evaluate the calibration by
comparing the observed quantile proportions to the expected proportions
under the assumption of a normal distribution. This continuous curve
indicates the model’s general performance across the entire probability
distribution. The miscalibration area, quantified by the degree of deviation
from the ideal diagonal line, represents the aggregate of discrepancies60. For
DNMC+NCA, the predicted distribution of Qdis is well calibrated around the
median but diverges at the tail, with calibration points showing under-
confidence at higher quantiles. For DLCO, the individual calibration points
suggest a slight overconfidence in the 10th–50th percentile and under-
confidence in the ranges 50th-90th and 10th-90th percentile. The mis-
calibration area for DLCO is 0.16, which is slightly higher than DNMC+NCA,
likely due to noisier data. The overall calibration performance across both
datasets is comparable. Figure 4e) shows a histogram of prediction interval
quantiles, revealing the spread between the 10th and 90th percentiles and
evaluating the concentration of its predictive distribution as indicated by
sharpness. The lower values suggest higher confidence in the prediction61.
For DNMC+NCA, a bimodal distribution highlights variable prediction cer-
tainty across cycles, suggesting potential fluctuations in battery behavior.
DLCO shows two clusters of distributions, mostly around a central quantile
with a sharpness of 0.19, indicative of consistent uncertainty. Figure 4d
further supports thesefindingsby illustrating themodel’smedianprediction
uncertainty and the variability of these predictions by interquartile range

Fig. 3 | ARCANA’s predictive performance on cylindrical sample cells. The

performance of the proposed framework on two unseen datasets, namely cylindrical

DNMC+NCA in Panel I and prismatic DLCO in Panel II, when predicting battery

behavior over 500 cycles for three predictors of Voltage drop [V] (a), CE (b) andQdis

[Ah] (c). The uncertainty at the 10th and 90th percentiles effectively captures

underlying data variability and highlights the model’s predictive reliability and

adaptability across diverse unseen datasets, demonstrating deep insight into data

characteristics.
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(IQR). Here, DNMC+NCA in Panel I shows varying IQR, suggesting changes
in model confidence over the lifespan. In contrast, DLCO maintains a more
uniform IQR, indicating steadypredictionuncertainty and aligningwith the
model’s attention on later cycles to contend with the increased complexity
andnoise.Thesemetrics complement the informationprovided inFig. 4c–e,
serving as a benchmark for the model’s reliability and its capacity to gen-
eralize within a precise estimate range.

The multi-output predictive capabilities of M(P) are further high-
lighted by its performance in predicting the second parameter, voltage drop

(Supplementary Fig. 4). Themodel exhibits strong prediction accuracywith
both datasets. DNMC+NCA shows a smaller range of predictions over
increasing cycles, and DLCO shows a stable range with decreasing median
intervals, while the calibration accuracy and the reliability of the predictions
remain high across both datasets. The performance on the third predictor,
CE (Supplementary Figs. 6 and 11), shows consistency and low prediction
uncertainty, although the high measurement noise present in this dimen-
sion poses a challenge and makes convergence more demanding62. Addi-
tional examples are shown in Supplementary Figs. 5 and 9. The evaluation

Fig. 4 | Comparative analysis of model predictions and its uncertainty and

calibration for Qdis in cylindrical sample cells. Analytical comparison for Qdis for

two datasets; DNMC+NCA (Panel I) and DLCO (Panel II), where a depicts the rela-

tionship between predicted and actual values of Qdis, with the diagonal dashed line

indicating perfect prediction accuracy, b illustrates the density distributions of

predicted versus actualQdis. The calibration plot in c assumes a normal distribution,

where the mean and standard deviation are estimated from the 10th, 50th, and 90th

percentiles of predictions. It depicts the cumulative proportion of actual Qdis values

that fall at or below the predicted quantile values rather than within symmetric

intervals around the predictions. The ideal diagonal line represents perfect cali-

bration with the shaded area indicating the degree of miscalibration, denotedA. The

approximately diagonal trend of the calibration line up to the 0.5 quantile shows that

data with residuals below the median are well described by the predictive distribu-

tion. The jump from0.5 to 1 indicates that the predictive distribution extends further

to positive values than the observed distribution of residuals; almost all test data are

already covered by the predicted 0.6 quantiles for both datasets. However, the overall

miscalibration areas for both datasets are quite similar, indicating that despite dif-

ferent patterns of over- and underconfidence at specific quantiles, the general cali-

bration performance across both datasets is comparable. Box plots at d show the

prediction intervals over multiple cycles, demonstrating the median and variability

of themodel prediction uncertainty over the battery’s lifespan. e provides histograms

that depict the quantile-based prediction interval width between the 10th and 90th

percentiles as a measure of sharpness. The red dashed line indicates the sharpness as

the mean interval width and shows the concentration of the predictive distributions

that indicate narrower distribution and, consequently, higher confidence in pre-

dicting Qdis for DNMC+NCA in Panel I. Further comparisons are in Supplementary

Figs. 7, 8, 10, and 12.
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metrics for M(P) (Supplementary Table 2) demonstrate its predictive
strengths for both DNMC+NCA and DLCO. For the DLCO dataset, the voltage
drop is predicted with a root mean square error (RMSE) of 0.0335 and a
mean absolute percentage error (MAPE) of 6.6052. However, DNMC+NCA

outperformsCEwith significantly lower error rates of 0.0256 and 0.2489 for
the RMSE and MAPE, respectively. However, both datasets present higher
error rates in the predicted discharge capacity. To counteract the impact of
systematic noise, Median Absolute Error (medAE) is used along withMAE
for a more robust error analysis. These metrics highlight M(P)’s versatile
predictive capabilities in handling diverse dataset requirements formultiple
features and long-term predictions4,63.

We further examineM(P)’s performance on unseen coin cell datasets,
DLNO and DNMC. The model predicts the voltage drop and CE well but
shows limitations and high uncertainty when predicting the discharge
capacity with an RMSE of 0.5827. This may stem from the low repre-
sentation of coin cells in the training data, just 4.1% of the total. To alleviate
this problem,wefine-tuned thedecoderweights ofM(P) using thedata of 17
coin cells fromDLNO, resulting in anupdatedmodel,M(P)f. Thisfine-tuning
process and training performance are detailed in Supplementary Figs.
13 and 14 and led to a substantial improvement in predictingQdis, dropping
the RMSE to 0.0002, indicating a significantly enhanced precision.M(P)f’s
performance will be compared withM(B), trained with the BASF dataset B,
in the following section.

Model performance on coin cell data for generalization insights
While comparing the predictive performance ofmodelsM(B) andM(P)f on
subsets of unseenDLNO (Supplementary Figs. 15 and 20) andDNMC dataset
(Supplementary Figs. 21 and 23), M(P)f demonstrates reliable predictive
alignment for voltage drop, CE, and Qdis. In contrast, M(B) shows a
divergent pattern in voltage drop predictions, which may be due to its
training on data with inherently long relaxation time profiles compared to
those in DLNO, where measurements are taken shortly after state changes.
However, it maintains consistency in CE predictions and adjusts Qdis pre-
dictions in response to changes in the test protocol.

In our analysis ofDLNO forQdis, Fig. 5demonstrates thatM(P)f achieves
high predictive fidelity. This is evident from the dense alignment of the
predictions with the actual values in the scatter plot (Fig. 5a), and the
significant overlap in distributions seen in the density plot (Fig. 5b). The
model’s precision is further highlighted by concentratedprediction intervals
and a calibration curve that closely traces the diagonal (Fig. 5c–e). It achieves
a high proportion of data points within the predictive bounds, indicative of
accuracy, without excessivelywide intervals that could decrease the utility of
the predictions. Panel II forM(B) also demonstrates a close tracking of the
actual values, with a marginally broader prediction interval and higher
miscalibrated area of 0.16 compared to M(P)f’s of 0.022 (Panel I). Despite
this variance, M(B) maintains a reasonable estimate range. Qualitatively
(Table 2), M(P)f achieves a lower MAPE (9.2285) for predicting voltage
drop, indicating its capability for learning trends commonly observed in
training datasets with short relaxation times during cycling. On the other
hand, theM(B)modeldemonstrates a notably lowerMAPE inQdis (8.8914),
showcasing its superior ability to capture proportional changes across a
broader dataset. This performance illustrates the impact of prior knowledge
and training data diversity on the learning outcomes of themodels. Detailed
analyses of additional predictive dimensions forDLNO for both models and
the complete dataset DNMC are available in Supplementary Figs. 16–19, 22,
24, 25 and Supplementary Table 3. Despite theDLNO data originating from
another institute, the generalization ofM(B) highlights the potential of well-
trained DL models to overcome the variability of data sources.

Adaptive chemical modeling
ARCANA has so far been demonstrated to generalize well across battery
formats, electrolyte formulations, cathode chemistries, and cycling proce-
dures for LIBs. The ultimate generalization would be achieved if the model
could alsobe deployed toNa-ion batteries. Since the underlyingdegradation
mechanism of Na-ion batteries is very different, we performed fine-tuning

to test the adaptability of M(B) and M(P) to this distinct chemical
domain30,64. These fine-tunedmodels are denotedM(B)Na andM(P)Na, and
are trainedonNa-ion cyclingdatawithCC-CVandpulse discharge settings.
Details on the fine-tuning parameters and training performance for both
models are available in Supplementary Figs. 26–29.

In Figs. 6 and 7,we evaluate thefine-tunedM(B)Na andM(P)Namodels
on an unseen C-rate test protocol (Figs. 6a and 7a). Both models demon-
strate flexibility in adjusting to changes in C-rates, with voltage drop, CE,
and Qdis depicted in Figs. 6b–d and 7b–d. The model M(B)Na shows nar-
rower prediction intervals, indicative of lower uncertainty and greater
predictive robustness. This trend is consistent across all predictive dimen-
sions, and themodel is probably benefiting from the larger initial dataset on
which it was trained, since it provided a richer learning environment for the
model to becomemore ‘protocol-agnostic’. Its precision is especially notable
in predicting the voltage drop and CE estimations, closely following the
ground truth despite the substantial experimental noise. The aggregated
attention mechanism in M(B)Na (Fig. 7d) also appears more fine-tuned,
with greater weights on the latest cycle data, which is consistent with its
precise predictions.WhileM(P)Na is adaptable, it shows amarginally wider
uncertainty (Fig. 6b–d).

Sensitivity analysis, as shown in Figs. 7e–g and 6e–g evaluates the input
parameter influence on future predictions for M(B)Na and M(P)Na. Both
models demonstrate increased sensitivity to the most recent input data, i.e.,
cycles 7–9 in this provided example, aligned with their attention distribu-
tions, with cycle 9 receiving the highest attention. This increased emphasis
on the last input cycles corresponds to the rapid degradation patterns in this
sodium coin cell. As the model receives each successive cycle, the most
recent data, here in cycle 9, becomes important in shaping its predictions,
allowing the model to more accurately predict ongoing trends.

In Fig. 7,M(B)Na shows a greater overall sensitivity across input cycles,
particularly for the dimensions of voltage drop and Qdis. This is further
illustrated in sensitivity profiles and cumulative plots (Fig. 7h–j), high-
lighting a refined input-response relationship and a lower uncertainty
interval in the primary prediction (Fig. 7a–c). Such a distinct sensitivity
indicates M(B)Na’s ability to precisely identify and respond to subtle var-
iations. Despite the high experimental noise and limited battery perfor-
mance, the saliency and attention trends of bothmodels remain remarkably
similar. This suggests that both mechanisms are intrinsic to the model’s
architecture, enabling them to perform consistently in diverse scenarios.

To further substantiate our initial findings, the plots in Fig. 8, show
both models’ Qdis predictions aligning well with the ground truth.M(P)Na
exhibits a tighter clustering around the actual values,whileM(B)Na exhibits a
broader spread. The prediction intervals and the distribution of quantiles
across the 10th and 90th percentile for both models confirm their con-
sistency and calibrated confidence. Further assessments are found in Sup-
plementary Figs. 30–32 and Supplementary Table 4. These evaluations
provide insights into the model’s robustness. The performance ofM(B)Na’s
especially underscores the advantage of extensive and diverse pretraining
datasets in enhancing model generalization across different battery
chemistries.

Discussion
We demonstrated the chemistry-, format- and cycling procedure-agnostic
ARCANAframework and its ability to reliablymonitor battery life andSOH
by utilizing multitask learning with an attention mechanism. ARCANA
excelled across three predictive settings, demonstrating that augmenting the
model with diverse knowledge streams enhances its generalization across
virtually all variations possible in batteries, such as anode, cathode, elec-
trolyte, and shuttle ion chemistry and format. The ARCANA model inte-
grates uncertainty quantification and attention mechanisms for each and
every cycle to elucidate themodel’s focus for each prediction and is essential
for uncovering complex patterns associated with multiple factors. Further
evaluation involves saliency and sensitivity assessments, allowing us to
understand the impact of perturbation of input parameters on output
predictions. By examining whether saliency and attention are directly
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correlated or orthogonal to each other, we gain a comprehensive under-
standing of input–output relationships, increasing the model’s explain-
ability and reliability in extrapolation. Incorporating raw data and failed
experiments, as suggested in prior studies4,36 is a deliberate strategy to teach
our models to recognize variations across similar cell types and manu-
factures. This inclusion not only enables uncertainties to be quantifiedmore
accurately but also deepens reliability insights, reduces bias, and offers a
moremeaningful understandingof thedata.A conceptually straightforward
extension to this work would be to incorporate additional features, such as
the rate of change of voltage with respect to capacity (dQ/dV)34,65, and

leverage different characterization methods, like spectroscopy, to enhance
the predictive power of themodels. Thiswill not only enhancemulti-feature
predictions but also deepen the understanding of degradation processes3,4,63.

We observed that M(P), trained on public data, offers broader gen-
eralization across various battery types and protocols, albeit with increased
uncertainty. M(B), trained on a more extensive dataset, demonstrates a
lower uncertainty. This further motivates the importance of data sharing
andmanagement. Our findings also reveal that fine-tuning themodels with
few labels significantly improves their generalization to different chemis-
tries, especially forM(B). The methodology outlined in this paper presents

Fig. 5 | Performance analysis of M(P)f and M(B) for Qdis in coin sample cells.

Performance ofM(P)f (Panel I) andM(B) (Panel II) onDLNO forQdis prediction. Plot

a illustrates the relationship betweenmodels’ predictions and the actualQdiswith the

diagonal line representing perfect prediction accuracy, plot b compares the density

distribution of actual andpredictedQdis, plot cpresents calibration curves that reflect

the degree of alignment between predicted probabilities and observed frequencies

under a normal distribution assumption. The discrete points on the calibration curve

show the observed proportions of actual values that fall within three specific intervals

based on the quantiles: between the 10th and 50th, 50th and 90th, and 10th and 90th

percentiles. ModelM(P)f shows a high level of calibration for predictingQdis ofDLNO

samples with a minimal miscalibrated area of 0.022. The points for the 10th, 50th,

50th, and 90th percentiles lie close to the diagonal line, indicating a nearly perfect

calibration for these intervals. M(B) exhibits a slight overconfidence by deviating

from the ideal line, with a miscalibration area of 0.16. The three calibration markers

for M(B) are all positioned just below the diagonal line, showing uniform over-

confidence across these quantile ranges, yet they remain close to this line, indicating

a generally well-calibrated model. Plots d show the prediction intervals across life-

span cycles, highlighting models’ uncertainty over time, and plot e details the dis-

tribution of prediction intervals’ quantiles between the 10th and 90th percentiles,

which convey the models’ prediction uncertainty; a distribution skewed towards the

lower quantiles suggests a higher confidence in predictions at these quantiles. The

sharpness, as a measure of mean interval width, is approximately similar for both

models at 3.7 × 10−4 and 3.5 × 10−4 forM(P)f andM(B), respectively. Together, these

plots demonstrate the M(P)f ’s precision in capturing discharge capacity behavior

and M(B)’s robust generalization.
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an opportunity for other researchers to create their own high-performance
models. By retraining or fine-tuning with different datasets, researchers can
tailor these predictive models to their specific experimental setups and
desired outcomes. This flexibility allows for the exploration of different
perspectives and approaches, facilitating the development of more accurate
and specialized models. One could envision a model-sharing and transfer-
learning community similar to those found today in the fields of computer
vision and language modeling. Furthermore, the performance metrics
explored here raise the tantalizing prospect of further improving model
quality via a federated learning approach. This could enable researchers
from diverse backgrounds and institutions to pool their data and expertise,
leading to more powerful models.

The modular design of the ARCANA pipeline enables real-time
monitoring of battery degradation profiles, promoting timely and cost-
effective interventions. This proactive approach prevents prolonged sub-
optimal testing conditions, improves the R&D process, and contributes to
more informed material selection and protocol optimization. By automat-
ing data collection, processing, and analysis, researchers can streamline their
experimentalworkflows and reduce human error. Furthermore,MLmodels
can continuously learn fromupcomingdata, adapt to evolving experimental
conditions, and provide real-time insights. This integration of ML and
laboratory workflows has the potential to transform battery research,
enabling researchers to make data-driven decisions, uncover insights more
rapidly, and accelerate the pace of discovery.

Overall, we demonstrated that incorporating multitask learning with
an attention mechanism creates a framework that can achieve chemistry
agnosticism as envisioned by Battery 2030+1 and the interesting fact that a
DL architecture trainedon a smaller, noisier, butmore diverse dataset yields
better generalization at the cost of higher uncertainty. We hope that the
pipeline will emerge as an indispensable and transformative tool to bridge
the gap between lab-scale research and commercial viability and will
become essential for the development of applications and insightful pre-
dictive models in the energy storage field.

Methods
In the following section, some of the key components of the ARCANA
framework are explained to underscore their contribution to the overall
efficacy and reliability of the model. This includes an exploration of atten-
tion mechanisms, a teacher forcing scheduler, methods to quantify pre-
dictive uncertainty, a strategic early stopping protocol, a training procedure,
and evaluation metrics.

Attention mechanism
Within the proposed ARCANA framework, two distinct attention
mechanisms are implemented. The first, termed additive attention, is also
known as Bahdanau attention55. This mechanism aligns the hidden state of
the decoder ht at each time step twith the hidden states of the encoder (hs),
thus producing a context vector that encapsulates the weighted relevance of
eachhistorical temporal segment fromthepast cycles. This vectorprovides a

dynamically focused representation of the input sequence pertinent to the
current decoding step. This mechanism is functional through a para-
meterized attention model. The model calculates an attention score ets
(Eq. (1)) for each encoder state hs given by:

ets ¼ vT tanhðW1ht þ w2hsÞ ð1Þ

where W1 and W2 are the weight matrices that transform the respective
hidden states into a common feature space and v is a weight vector that
projects the activated sum into a scalar score. Attention weights αts are then
determined by normalizing these scores using the softmax function
(Eq. (2)):

αts ¼
expðetsÞ

PTe

k¼1 expðetkÞ
ð2Þ

here, Te is the total number of time steps in the encoder sequence.
The context vector ct results from aggregating the encoder hidden

states, each weighted by its respective attention weight, as can be seen in
Eq. (3), and can improve the model’s capacity for handling Seq-to-Seq
predictions66.

ct ¼
X

Te

s¼1

αtshs ð3Þ

Another attention mechanism that can be employed within the ARCANA
architecture is multihead attention. This mechanism expands the model’s
capacity to focus on different positions of the input sequence
simultaneously67, which is crucial for capturing a wider range of depen-
dencies inherent in battery lifetimedata. This attentionmechanismoperates
by projecting the decoder’s hidden states and the encoder outputs, repre-
senting the past cycle’s information, into multiple subspaces. This is for-
mulated as: (Eq. (4))

MultiHeadðQ;K;VÞ ¼ Concat head1; . . . ; headh
� �

W0 ð4Þ

headi ¼ Attention QWiQ;KWiK ;VWiV
� �

ð5Þ

where each head (headi) captures different aspects of the input data and is
computed as shown in Eq.(5). The operation applied in eachhead is defined
by the attention of the scaled dot product and is presented in Eq. (6).

AttentionðQ;K;VÞ ¼ softmax
QKT

ffiffiffiffiffi

dk
p

 !

V ð6Þ

Here,Q,K, andV are the query, key, and valuematrices, respectively.Q
is generated from thehidden statesof thedecoder,whileK andVarederived
from the encoder outputs. This arrangement enables the decoder to inte-
grate the current state information with historical data provided by the
encoder. The parameter matrices WQ

i , W
K
i , and W

V
i for each head i, along

with the output weight matrix W0, are optimized during the training pro-
cess. These matrices are instrumental in transforming the input data into
different representational subspaces to capture various aspects and depen-
dencieswithin thedata.Theparameterdk, representing thedimensionof the
key vectors, scales the dot product within the attention mechanism. In
Eq. (6), the softmax function is applied to these scaled attention scores,
which originate from the interactions between the query and key matrices.
This process results in the production of a context vector, which integrates
information fromdifferent representational subspaces and allows themodel
to consider multiple aspects of historical data54,68.

Table 2 | Evaluation metrics for M(P)f and M(B) using DLNO

M(P)f M(B)

Metrics Voltage
drop [V]

CE Qdis [Ah] Voltage
drop [V]

CE Qdis[Ah]

RMSE 0.0703 0.0331 0.0002 0.1247 0.0588 0.0003

MAPE 9.2285 1.1922 20.7946 34.8638 4.4560 8.8914

MAE 0.0353 0.0076 0.0001 0.0867 0.0335 0.0002

medAE 0.0181 0.0021 0.0001 0.0513 0.0104 0.0001

Summary of the evaluation metrics forM(P)f andM(B), tested on 26 unseen coin cells (DLNO), using

27 initial cycles of historical data, to predict the cell behavior up to the 500th cycle. Note that the

number of initial cycles was chosen randomly to resemble practical scenarios with limited initial

data. The user can specify any preferred number of initial cycles in the provided configuration file,

which is detailed at https://github.com/basf/ARCANA/blob/master/config/.
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Teacher forcing
Teacher forcing optimizes the learning of temporal dependencies. By inte-
grating the real data from previous time steps, the technique promotes rapid
stabilization and convergence of the model. In the present study, the
implementation of the teacher forcing strategy is applied through a calcu-
lated division of training epochs. This division is reflective of the model’s
incremental improvement inprocessing sequenceswith varying lengthsover
time by prioritizing shorter sequences at the early stages of training to ensure
intensive guidance. This preferential focus ensures that the model does not
prematurely plateau when learning to predict longer-term dependencies.

Toquantitatively define this approach, the trainingperiod consistingof
E epochs is divided into D equal segments s. Within the i-th segment, the
teacher forcing ratio is adjusted through a decay parameter λ, which
represents how quickly the training procedure switches fromusing real data
as decoder inputs to using model predictions from the previous cycle, as
depicted in Fig. 2b. The allocation of epochs per division di is calculated as
can be seen in Eq. (7)

di ¼ round
s � e�λi

PD�1
j¼0 s � e�λj

� E

 !

ð7Þ

Following this, the teacher forcing ratio for the t-th epoch in the i-th
segment is linearly reduced froma starting ratioRstart to an ending ratioRend,

using the following equation, Eq. (8).

A ¼
Rstart�Rend

diþϵ

� �

Rti
¼ Rstart � A � t

ð8Þ

Here, Rti
indicates the teacher forcing ratio at epoch t for the ith

segment. The expression A represents the decrease per epoch in that seg-
ment. To ensure numerical stability and avoid division by zero, a small
constant ϵ, set to 10−8, is included in the calculation as indicated in Eq. (8).
The teacher forcing ratio, as a probabilistic measure, represents the like-
lihood that the model will utilize the actual observation from the training
data at a given prediction step. This approach modulates the ratio to facil-
itate a smooth transition fromguided to self-generated sequence prediction.
The adjusted ratios are indicative of the model’s learning trajectory,
enhancing its independent predictive accuracy across different sequence
lengths.

Uncertainty quantification
Thepinball loss, in this study, provides a robustmetric for predicting a range
of potential outcomes, rather than a single point estimation. This is an
effective measure for forecasting scenarios where the impacts of over-
prediction and underprediction are asymmetric69. It is defined for a set of
quantiles Q = {q1, q2, q3} where q1 < q2 < q3 and in this study, we select

Fig. 6 | Analysis of M(P)Na’s predictive accuracy and input sensitivity on Na-

ion data. Plot a presents the C-rate profile for cycling one battery, while plots

b–d compare the model’s prediction to actual data, showing consistency and

adaptability. Sensitivity to input parameters across predicted cycles is analyzed in

plots e–g on a logarithmic scale. The color intensity in these plots denotes the specific

cycles from which the input parameter originates. Plots h–j show the sum of the

logarithmic contribution of each input parameter towards predicting future cycles

with a selective representation of three past cycle data. These visualizations confirm

themodel’s attentive adjustment to the latest available input data and its capacity for

generalization, despite the high experimental noise and limited battery performance.
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Q = {0.1, 0.5, 0.9} corresponding to the 10th, 50th, and 90th percentiles,
respectively. For a given predicted value ŷ and the actual target value y, the
pinball loss for a single quantile q is calculated as:

Lqðŷ; yÞ ¼
ð1� qÞ � ðŷ � yÞ if y < ŷ

q � ðy � ŷÞ if y ≥ ŷ

�

ð9Þ

In the implementation of this loss function, a mask is provided and
applied to each quantile’s loss to selectively evaluate certain predictions,
allowing for the exclusion of outliers. The total pinball loss for multiple
quantiles is then the sum of the individual losses for each quantile, averaged
over all predictions, as shown inEq. (10), reflecting themodel’s performance
across the specified range of quantiles.

LðQ; Ŷ ;YÞ ¼
1

N

X

N

i¼1

X

q2Q

Lqðŷqi; yiÞ ð10Þ

Here,N is the number of observations, Ŷ is a stack of vectors, with each
vector containing the predictions for all observations at one of the specified
quantiles, and Y is the vector of the true target values. Each element ŷqi in Ŷ
denotes the predicted value for the ith observation at quantile q. This
configuration not only facilitates efficient computation of the loss function

across multiple quantiles and observations, but also captures the central
tendency and variability of the predictions, making it a comprehensive loss
function for probabilistic forecasting69,70.

Early stopping
To optimize training, a rigorous early stopping approach is incorporated.
This method was originally proposed by Prechelt et al.71 and combines
criteria to prevent overfitting while ensuring substantial training progress,
especially in the presence of noisy data. Here, a dual-criteria strategy is
implemented. The first criterion assesses the ratio between generalization
loss (GL) and training progress, which is shown in Eq. (11), where Eval
represents the validation error at the current epoch, Emin val is the lowest
validation error obtained up to the current epoch, and Etrain strip denotes the
training errors within a recent sequence of epochs. This sequence, or strip, is
a designated period in which the progress quotient (PQ) is measured. If the
generalization-loss-to-progress-quotient-ratio (GL/PQ) surpasses a pre-
defined value, it may indicate that further training will not be beneficial for
the model’s generalizability.

GL ¼ 100 �
Eval

Emin val
� 1

� �

PQ ¼ 1000 �
MeanðEtrain stripÞ

MinðEtrain stripÞ
� 1

� � ð11Þ

Fig. 7 | Evaluation of M(B)Na’s predictive performance and input sensitivity on

our in-house Na-ion data. Plot a shows the discharge current profile, while plots

b–d depict the predictions for voltage drop, CE, and Qdis against the ground truth.

The color bar here shows the aggregated attention weights across the input data.

Plots e–g provide a detailed logarithmic sensitivity analysis per predictive cycle for

each input parameter, and plots h–j aggregate these sensitivities, highlighting the

model’s focus on different input cycles, especially the most recent ones, reflecting

M(B)Na’s protocol adaptability and robust response to experimental noise.
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The second criterion implements a conventional check and is applied
to monitor the trend in validation error. An increased trend over the epoch
sequence suggests that overfitting could be occurring. Training is dis-
continued when both the ratio criterion and the error-trend criterion
indicate that further training is unlikely to yield significant gains. In general,
this strategy offers a control mechanism that aligns the duration of training
with the achievement of a well-generalized model capable of accurate
predictions.

Training procedure
Expanding on Seq-to-Seq integration, the training phase begins by initi-
alizing the data loaders for batch processing and configuring the parameters

of the Seq-to-Seq model, the loss criteria, the optimizer, and a dynamic
learning rate scheduler62. Hyperparameter optimization, through a series of
trials using Optuna’s52 Tree-structured Parzen Estimator (TPE) Sampler,
employs a probabilistic model to specify the most promising parameter
configuration, navigating the search space while balancing exploration and
exploitation within a complex and high-dimensional domain72. Training
unfolds over several epochs, with each iteration starting with a reset of the
model’s hidden states and zeroing gradients to ensure clean computation for
the forward pass. The pinball loss function is selected for its effectiveness in
probabilistic forecasting, eliminating the need for a presumptive data dis-
tribution model70, unlike traditional metrics69, which are more sensitive to
noise and anomalies. These asymmetric and non-parametric criteria assess

Fig. 8 | Comparative analysis ofM(P)Na andM(B)Na onQdisprediction forNa-ion

batteries. Prediciton analysis for M(P)Na (Panel I) and M(B)Na (Panel II) for Qdis

prediction of Na-ion batteries. The scatter plots a illustrate the models' alignment

with actual measurements. Density plots b compare the distributions of predicted

and actual values, demonstrating the models' accuracy in estimating Qdis. Calibra-

tion plots in c depict how well the predicted probabilities match the observed out-

comes against the benchmark line, with the discrete points representing the observed

proportions of actual values that fall within three quantile intervals. Both models

demonstrate a pattern of marginal overconfidence below the 70th percentile and a

slight underconfidence above this percentile, as evidenced by the calibration points

positions beneath and above the diagonal line, respectively. M(P)Na shows a larger

area of divergence, A = 0.06, whileM(B)Na presents a closer fit with a miscalibration

of 0.053, highlighting both models’ well-calibrated prediction capabilities across

different chemistries. Boxplots d visualize the spread and consistency of prediction

intervals across predicted cycles. Histograms in e represent the distribution of the

quantile intervals of the models’ prediction, highlighting uncertainty; these dis-

tributions indicate where, within the prediction range, the models’ confidence is

concentrated, with sharpness values of 1.7 × 10−5 for M(P)Na and 2.0 × 10−5

forM(B)Na, demonstrating a precise estimation of uncertainty.
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forecast accuracy by penalizing deviations from three targeted quantiles,
namely 0.1, 0.5, and 0.9, enhancing robustness to outliers and the efficacy of
LSTM-based networks69. At the same time, a masking technique63 is
implemented to filter out padding-induced distortions from the loss cal-
culation, ensuring the integrity of the learning signal. Backpropagation
follows loss computation, incorporating gradient clipping to prevent
divergence and gradient explosion in recurrent network architectures.
Additionally, learning rate adjustments encourage robust convergence. The
validation phase alternates with training, where performance is assessed,
and early stopping criteria are applied to mitigate overfitting. Optuna
enhances optimization by pruning the less promising trials. Once the
training is completed, themodel parameters are saved and a comprehensive
report is generated detailing the training results. The training procedure
steps described are schematically depicted in Supplementary Fig. 1.

Evaluation metrics
For this study, the followingmetrics are implemented, includingboth average
errors andvariability of individual predictions, to evaluate theperformanceof
the model. These metrics are RMSE (Eq. (12)) which provides a measure of
the magnitude of prediction errors, MAPE (Eq. (13)), which measures the
averagemagnitude of errors as a percentage,medAE (Eq. (14)) to capture the
median error, reducing the influence of outliers, and mean absolute error
(MAE) (Eq. (15)) which represents the mean absolute differences.

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n

Xn

i¼1
ðyi � ŷiÞ

2

r

ð12Þ

MAPE ¼
100%

n

X

n

i¼1

∣
yi � ŷi
yi

∣ ð13Þ

medAE ¼ medianðjyi � ŷij : i ¼ 1; 2; . . . ; nÞ ð14Þ

MAE ¼
1

n

X

n

i¼1

jyi � ŷij ð15Þ

Data availability
Open source data supporting the findings of this study are available online,
with access details provided in Table 1 and can be found in the corre-
sponding literature41–48,50. In addition, public pre-trainedmodel weights can
be accessed at https://doi.org/10.5281/zenodo.10293072.

Code availability
TheARCANAframework canbe installed usingpipinstallarcana-
batt or cloned from https://github.com/basf/ARCANA.

Received: 5 January 2024; Accepted: 24 April 2024;

References
1. Amici, J. et al. A roadmap for transforming research to invent the

batteries of the future designed within the european large scale

research initiative battery 2030+. Adv. Energy Mater. 12,

2102785 (2022).

2. Xu, Y., Ge, J. & Ju, C.-W. Machine learning in energy chemistry:

introduction, challenges and perspectives. Energy Adv. 2,

896–921 (2023).

3. Severson, K. A. et al. Data-driven prediction of battery cycle life before

capacity degradation. Nat. Energy 4, 383–391 (2019).

4. Che, Y., Hu, X., Lin, X., Guo, J. & Teodorescu, R. Health prognostics

for lithium-ion batteries: mechanisms, methods, and prospects.

Energy Environ. Sci. 16, 338–371 (2023).

5. Stein, H. S. Nonlinear potentiodynamic battery charging protocols for

fun, education, and application. ACS Eng. Au 0, 0 (2023).

6. Kabir,M.&Demirocak,D.E.Degradationmechanisms in li-ionbatteries:

a state-of-the-art review. Int. J. Energy Res. 41, 1963–1986 (2017).

7. Attia, P. M. et al. "knees” in lithium-ion battery aging trajectories. J.

Electrochem. Soc. 169, 060517 (2022).

8. Yang, F., Song, X., Dong, G. & Tsui, K.-L. A coulombic efficiency-

based model for prognostics and health estimation of lithium-ion

batteries. Energy 171, 1173–1182 (2019).

9. Rahmanian, F. et al. Conductivity experiments for electrolyte

formulations and their automated analysis. Sci. Data 10, 43 (2023).

10. Dahn, J., Burns, J. & Stevens, D. Importance of coulombic efficiency

measurements in r&d efforts to obtain long-lived li-ion batteries.

Interface 25, 75 (2016).

11. Smith, A., Burns, J., Trussler, S. &Dahn, J. Precisionmeasurements of

the coulombic efficiency of lithium-ion batteries and of electrode

materials for lithium-ion batteries. J. Electrochem. Soc. 157,

A196 (2009).

12. Attia, P. M. et al. Closed-loop optimization of fast-charging protocols

for batteries with machine learning. Nature 578, 397–402 (2020).

13. Adamu, H., Abba, S. I., Anyin, P. B., Sani, Y. & Qamar, M. Artificial

intelligence-navigated development of high-performance

electrochemical energy storage systems through feature engineering

of multiple descriptor families of materials. Energy Adv. 2,

615–645 (2023).

14. Tong, Z., Miao, J., Tong, S. & Lu, Y. Early prediction of remaining

useful life for lithium-ion batteries based on a hybridmachine learning

method. J. Cleaner Prod. 317, 128265 (2021).

15. Rieger, L. H. et al. Uncertainty-aware and explainable machine

learning for early prediction of battery degradation trajectory. Digit.

Discov. 2, 112–122 (2023).

16. Yang, Y. A machine-learning prediction method of lithium-ion battery

life based on charge process for different applications. Appl. Energy

292, 116897 (2021).

17. Liu, Y. et al. Generative artificial intelligence and its applications in

materials science: current situation and future perspectives. J.

Materiomics 9, 798–816 (2023).

18. Gong, Q.,Wang, P. &Cheng, Z. An encoder-decodermodel based on

deep learning for state of health estimation of lithium-ion battery. J.

Energy Storage 46, 103804 (2022).

19. Zhu, C., He, Z., Bao, Z., Sun, C. & Gao, M. Prognosis of lithium-ion

batteries’ remaining useful life based on a sequence-to-sequence

model with variational mode decomposition. Energies 16, 803 (2023).

20. Li, W. et al. One-shot battery degradation trajectory prediction with

deep learning. J. Power Sources 506, 230024 (2021).

21. Deng, Z., Lin, X., Cai, J. & Hu, X. Battery health estimation with

degradation pattern recognition and transfer learning. J. Power

Sources 525, 231027 (2022).

22. Bhowmik, A. et al. Implications of the battery 2030+ Ai-assisted

toolkit on future low-trl battery discoveries and chemistries. Adv.

Energy Mater. 12, 2102698 (2022).

23. Fichtner, M. et al. Rechargeable batteries of the future—the state of

the art from a battery 2030+ perspective. Adv. Energy Mater. 12,

2102904 (2022).

24. Strange, C. & Dos Reis, G. Prediction of future capacity and internal

resistance of li-ion cells from one cycle of input data. Energy and AI 5,

100097 (2021).

25. Ling, C. A review of the recent progress in battery informatics. npj

Comput. Mater. 8, 33 (2022).

26. Ng,M.-F., Zhao, J., Yan, Q., Conduit, G. J. & Seh, Z. W. Predicting the

state of charge and health of batteries using data-driven machine

learning. Nat. Mach. Intell. 2, 161–170 (2020).

27. Liu, Y. et al. Data quantity governance for machine learning in

materials science. Natl Sci. Rev. 10, nwad125 (2023).

28. Baumhöfer, T., Brühl, M., Rothgang, S. & Sauer, D. U. Production

caused variation in capacity aging trend and correlation to initial cell

performance. J. Power Sources 247, 332–338 (2014).

https://doi.org/10.1038/s41524-024-01286-7 Article

npj Computational Materials |          (2024) 10:100 14

4.4 ARCANA

127



29. Roman, D., Saxena, S., Robu, V., Pecht, M. & Flynn, D. Machine

learning pipeline for battery state-of-health estimation. Nat. Mach.

Intell. 3, 447–456 (2021).

30. Jha, S. et al. Learning-assisted materials development and device

management in batteries and supercapacitors: Performance

comparison and challenges. J.Mater. Chem. A 11, 3904–3936 (2023).

31. Yao, Z. et al. Machine learning for a sustainable energy future. Nat.

Rev. Mater. 8, 202–215 (2023).

32. Dos Reis, G., Strange, C., Yadav, M. & Li, S. Lithium-ion battery data

and where to find it. Energy AI 5, 100081 (2021).

33. Wu, B., Widanage, W. D., Yang, S. & Liu, X. Battery digital twins:

perspectiveson the fusionofmodels, dataandartificial intelligence for

smart battery management systems. Energy AI 1, 100016 (2020).

34. Li, X.,Wang, Z.&Yan, J. Prognostic health condition for lithiumbattery

using the partial incremental capacity and gaussian process

regression. J. Power Sources 421, 56–67 (2019).

35. Zhang,Y. et al. Identifyingdegradationpatternsof lithium ionbatteries

from impedance spectroscopy using machine learning. Nat.

Commun. 11, 1706 (2020).

36. Raccuglia, P. et al. Machine-learning-assisted materials discovery

using failed experiments. Nature 533, 73–76 (2016).

37. De Angelis, V., Preger, Y. & Chalamala, B. R. Battery lifecycle

framework: a flexible repository and visualization tool for battery data

from materials development to field implementation. Preprint at

osf.io/preprints/ecsarxiv/h7c24 (2021).

38. Li,W. et al.Digital twin for battery systems: cloudbatterymanagement

system with online state-of-charge and state-of-health estimation. J.

Energy Storage 30, 101557 (2020).

39. Draxl, C. & Scheffler, M. Nomad: the fair concept for big data-driven

materials science.Mrs Bulletin 43, 676–682 (2018).

40. Wilkinson, M. D. et al. The fair guiding principles for scientific data

management and stewardship. Sci. Data 3, 1–9 (2016).

41. Toyota Research Institute (TRI). Experimental data platform: project

data-driven prediction of battery cycle life before capacity

degradation. data.matr.io

https://data.matr.io/1/projects/5c48dd2bc625d700019f3204 (2021).

42. Toyota Research Institute (TRI), Experimental data platform: Project

closed-loop optimization of extreme fast charging for batteries using

machine learning. data.matr.io

https://data.matr.io/1/projects/5d80e633f405260001c0b60a (2019).

43. Saha, B. & Goebel, K. Nasa. Prognostics Data Repository

https://www.nasa.gov/content/prognostics-center-of-excellence-

data-set-repository (2007).

44. Center for Advanced Life Cycle Engineering (CALCE), University of

Maryland https://calce.umd.edu/data (2011).

45. Zhu, J. et al. Data-driven capacity estimation of commercial lithium-

ion batteries from voltage relaxation. Zenodo

https://doi.org/10.5281/zenodo.6405084 (2022).

46. Battery Archive, Homepage of Battery Archive.

https://www.batteryarchive.org, (2021).

47. Zhang, Merker, Sanin & Stein. Cycling data of 64 cells manufactured

by autobass. Zenodo https://doi.org/10.5281/zenodo.7299473

(2022).

48. Merker, L. 2023 commercial coincell 45mah. Zenodo

https://doi.org/10.5281/zenodo.10102627 (2023).

49. Merker, L. Inzepro inform 300 cycles cccv after eol. Zenodo

https://doi.org/10.5281/zenodo.10102508 (2023).

50. Nuss, L., Merker, L., Zhang, B. & Stein, H. Formation and cycling data

for Na-ion batteries from high-throughput synthesis, coating, and

assembly. Zenodo https://doi.org/10.5281/zenodo.7981011 (2023).

51. Paszke, A. et al. Pytorch: An imperative style, high-performance deep

learning library. Adv. Neural Inf. Process Syst. 32, 8024–8035 (2019).

52. Akiba, T., Sano, S., Yanase, T., Ohta, T. & Koyama,M. Optuna: a next-

generation hyperparameter optimization framework. DLP-KDD ’19

2623–2631 (2019).

53. Cooijmans,T.,Ballas,N.,Laurent,C.,Gülçehre,Ç.&Courville,A.Recurrent

batch normalization. Preprint at https://arxiv.org/abs/1603.09025 (2017).

54. Yoo, J., Kim, B., Lee, B., Song, J.-h & Kang, K. An artificial neural

network using multi-head intermolecular attention for predicting

chemical reactivity of organic materials. J. Mater. Chem. A 11,

12784–12792 (2023).

55. Bahdanau, D., Cho, K. & Bengio, Y. Neural machine translation by jointly

learning toalignand translate.Preprint athttps://arxiv.org/abs/1409.0473

(2016).

56. Smith, A. et al. Potential and limitations of research battery cell types

for electrochemical data acquisition. Batter. Supercaps 6,

e202300080 (2023).

57. Burns, J. et al. Evaluation of effects of additives in wound li-ion cells

through high precision coulometry. J. Electrochem. Soc. 158,

A255 (2011).

58. Burns, J. et al. Predicting and extending the lifetime of li-ion batteries.

J. Electrochem. Soc. 160, A1451 (2013).

59. Zhu, J. et al. Data-driven capacity estimation of commercial lithium-

ion batteries from voltage relaxation. Nat. Commun. 13, 2261 (2022).

60. Guo,C.,Pleiss,G.,Sun,Y.&Weinberger,K.Q.Oncalibrationofmodern

neural networks. Preprint at https://arxiv.org/abs/1706.04599 (2017).

61. Gneiting, T., Balabdaoui, F. & Raftery, A. E. Probabilistic forecasts,

calibration andsharpness.J.R.Stat. Soc. SeriesBStat.Methodol.69,

243–268 (2007).

62. Goldberg, Y. A primer on neural network models for natural language

processing. J. Artif. Intell. Res. 57, 345–420 (2016).

63. Li, W., Zhang, H., van Vlijmen, B., Dechent, P. & Sauer, D. U.

Forecasting battery capacity and power degradation with multi-task

learning. Energy Storage Mater. 53, 453–466 (2022).

64. Chen, G., Song, Z., Qi, Z. & Sundmacher, K. Generalizing property

prediction of ionic liquids from limited labeled data: a one-stop

framework empowered by transfer learning. Digit. Discov. 2,

591–601 (2023).

65. Bloom, I. et al. Differential voltage analyses of high-power, lithium-ion

cells: 1. Technique and application. J. Power Sources 139,

295–303 (2005).

66. Niu, Z., Zhong, G. & Yu, H. A review on the attention mechanism of

deep learning. Neurocomputing 452, 48–62 (2021).

67. Ross, J. et al. Large-scale chemical language representations capture

molecular structure and properties. Nat. Mach. Intell. 4,

1256–1264 (2022).

68. Xu, C., Wang, Y. & Barati Farimani, A. Transpolymer: a transformer-

based languagemodel for polymer property predictions. npj Comput.

Mater. 9, 64 (2023).

69. Wang, Y. et al. Probabilistic individual load forecasting using pinball

loss guided lstm. Appl. Energy 235, 10–20 (2019).

70. Liu, B., Nowotarski, J., Hong, T. & Weron, R. Probabilistic load

forecasting via quantile regression averaging on sister forecasts. IEEE

Trans. Smart Grid 8, 730–737 (2015).

71. Prechelt, L. Early stopping—but when? In Neural Networks: Tricks of

the Trade: Second Edition, 53–67 (2012).

72. Bergstra, J., Bardenet, R., Bengio, Y. & Kégl, B. Algorithms for hyper-

parameter optimization. Adv. Neural Inf. Process Syst. 24 (2011).

Acknowledgements
This work contributes to TUM.Battery, the Munich Data Science Institute,

and the Munich Institute for Robotic and Machine Intelligence. This work

contributes to the research performed at CELEST (Center for

Electrochemical Energy Storage Ulm-Karlsruhe) and was partly funded by

theGermanResearchFoundation (DFG)underProject ID390874152 (POLiS

Cluster of Excellence). This project also received funding from the European

Union’s Horizon 2020 research and innovation program under grant

agreement No. 957189 (BIG-MAP). The project is part of BATTERY 2030+,

the large-scale European research initiative for inventing sustainable bat-

teries for the future, funded by the EuropeanUnion’s Horizon 2020 research

https://doi.org/10.1038/s41524-024-01286-7 Article

npj Computational Materials |          (2024) 10:100 15

4. Results and Publications

128



and innovation program under Grant Agreement No. 957213. HSS

acknowledges funding from the German Research Foundation (DFG) under

Project ID 390776260 (eConversion Cluster of Excellence).

Author contributions
K.M. andB.B. provided thecomprehensiveBASFdataset, andL.M.andL.N.

conducted all cycling data for Li-ion and Na-ion batteries at KIT/IPC,

respectively. Data assembly, data cleaning,model idea including the design

architecture, code implementation, repository curation, training, evaluation,

and package creation is conducted by F.R. R.L. and D.L. supervised the

modeldevelopment.K.M.,B.B.,H.S.,R.L. andD.L. supervised this research.

All authors reviewed the paper.

Funding
Open Access funding enabled and organized by Projekt DEAL.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains

supplementary material available at

https://doi.org/10.1038/s41524-024-01286-7.

Correspondence and requests for materials should be addressed to
Fuzhan Rahmanian or Helge Sören Stein.

Reprints and permissions information is available at

http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long

as you give appropriate credit to the original author(s) and the source,

provide a link to the Creative Commons licence, and indicate if changes

were made. The images or other third party material in this article are

included in the article’s Creative Commons licence, unless indicated

otherwise in a credit line to the material. If material is not included in the

article’sCreativeCommons licence and your intended use is not permitted

by statutory regulation or exceeds the permitted use, you will need to

obtain permission directly from the copyright holder. To view a copy of this

licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2024

https://doi.org/10.1038/s41524-024-01286-7 Article

npj Computational Materials |          (2024) 10:100 16

4.4 ARCANA

129



Attention towards chemistry agnostic and explainable battery

lifetime prediction

Fuzhan Rahmanian1,2,4,5,6*, Robert M. Lee3, Dominik Linzner3, Kathrin Michel3, Leon
Merker1,2, Balazs B. Berkes3, Leah Nuss1,4,5,6, and Helge Sören Stein4,5,6 *
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Supplementary Information

1 Multisource Battery Cycling Protocols

In this section, a detailed description of the data is provided, along with their cycling protocols collected
at various locations.

Toyota Research Institute

In a joint venture with MIT and Stanford1,2, the Toyota Research Institute (TRI) has made avail-
able two substantial high-throughput cycling datasets3,4, which form an integral part of our study.
The initial dataset encompasses data from 124 commercial lithium iron phosphate (LFP)/graphite
cells manufactured by A123 Systems (APR18650M1A), each with a nominal capacity of 1.1 Ah. The
cells were cycled under a diverse array of fast charging protocols, ranging from single-step to dual-step
policies, within a temperature-controlled environment maintained at 30 ◦C. The objective was to
investigate the impact of varied charging protocols on the lifespan of the cells from 150 to 2300 cycles.
The charging protocol, ‘C1(Q1)-C2’, involves two constant-current steps, C1 and C2, with a transition
at a State of Charge (SOC) Q1. Following the second stage at 80% SOC, cells proceeded to charge at
a 1 C constant current-constant voltage (CC-CV) rate within the 3.6 V and 2.0 V boundaries. The
cells were consistently discharged at 4 C. The datasets, segmented into three batches, included a broad
spectrum of measurements. The first two batches featured non-calendar aged batteries, while the third
included calendar-aged ones, exhibiting significant capacity degradation over time.

In another relevant study, Attia et al. (2020)2, compiled a second dataset comprising 233 cells,
with an emphasis on improving fast charging protocols. The dataset, segmented into five sequential
batches, began with the first batch of cells, each assigned one of 224 distinct six-step charging protocols
at random. After undergoing 100 cycles, an end of life (EOL) prediction model, based on initial data,
guided the selection of charging protocols for the next batch. This iterative process was repeated
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for the first four batches. The final batch was subjected to extended testing until EOL, providing a
comparative analysis of various charging protocols. The discharge was carried out following a CC-CV
profile at a 4 C rate to 2 V. Despite the absence of internal resistence (IR), efforts have been made by
Strange et al.5 and Ibraheem et al.6 to recover these data and assemble them with the original study.
The IR has been predicted using a Convolutional Neural Network (CNN) model trained on the initial
work by Severson et al.1. Strange et al.5 indicated that the predicted internal resistance drops that
exceeded the EOL of the training set were unreliable and showed a high uncertainty. The predicted
IR can be accessed online7.

Karlsruhe Institute of Technology

The Karlsruhe Institute of Technology (KIT) has contributed six distinct categories of cycling data,
sourced from two of its departments; The Institute of Applied Materials (IAM) and the Institute of
Physical Chemistry (IPC).

In a comprehensive study conducted by IAM, three commercial 18650-type lithium-ion batteries,
namely NCA, NCM, and NCM + NCA, were cycled8. The cycling occurred within a temperature-
controlled chamber at 25 ± 0.2 ◦C, 35 ± 0.2 ◦C, and 45 ± 0.2 ◦C. The charging protocol involved
constant current (CC) with rates ranging from 0.25 C to 1 C, then transitioning to constant voltage
(CV) at 4.2 V until the current reached 0.05. Discharge was treated as residual capacity during cycling,
with a relaxation time of 30 minutes for NCA and NCM batteries and 60 minutes for NCM + NCA
batteries. This dataset initially was intended to improve the understanding of the reliable and safe
operation of lithium-ion (Li-ion) batteries9.

The contribution of IPC is marked by a series of studies involving various types of coin cells, all
automatically assembled using the AUTOBASS system10. A subset of the research focuses on 43 LNO
coins11 with cathode sheets of LNO and anode sheets of Si-C, supplied by BASF and CIDETEC,
respectively. These cells were subjected to a standard cycling procedure that involved charging at a
CC of 1 C until reaching 4.2 V, followed by a CV until the current dropped to 0.23 mA and discharged
at a CC of 1 C.

Furthermore, commercial coin cells were introduced utilizing Lithium Cobalt Oxide (LCO) mate-
rial12. With a nominal capacity of 45 mAh, these cells were charged by a CC-CV protocol of 1 C
until 4.25 V, and discharged similarly until 2.75 V. Additionally, they also included an examination
of NMC622/graphite cells13 with a nominal capacity of 3.28 mAh, provided by the ZSW institute.
The charging procedure followed a CC-CV protocol at 1 C and 4.2 V with a cutoff of 0.164 mA, and
discharge was at 1 C until 2.9 V.

Finally, KIT included self-made Na-ion cells14, with a calculated nominal capacity of 0.15 mAh.
These cells were characterized by the utilization of synthesized cathode material and hard carbon as
anode, complemented by a glass fiber separator and a 1M NaPF6 and EC: EMC 3: 7 electrolyte
with 2 wt% FEC. The charging and discharging protocols remained at aCC of 1 C. Furthermore,
C-rate testing was conducted, covering CC for charge and discharge at various rates, including C/20,
C/10, C/5, C/2, 1 C, 2 C, and 5 C. Despite the inherently short lifetime of these cells, their inclusion
provided valuable insights. In summary, the coins, composed of various materials and subjected to
different charging and discharging protocols, contribute to a dataset of considerable diversity. Here,
some tests are characterized by elevated noise levels, owing to factors such as temperature fluctuations,
environmental shifts, or inherent instability leading to test failures; these have been retained for their
potential to enrich the model’s predictive performance.

Advanced Life Cycle Engineering

The research carried out by the Center for Advanced Life Cycle Engineering (CALCE)15 has
provided significant insights into the health prognostics of Li-ion batteries16,17, with a particular focus
on two distinct groups, CS2 and CX218. These groups consist of prismatic cells, each with LCO as the
defining cell chemistry. In the scope of this study, a total of six CS2 cells and six CX2 cells of types 1
and 2, respectively, were chosen. The CS2 group, with a nominal capacity of 1.1 Ah, were subjected
to cycling at a room temperature of 23 ◦C following a CC-CV protocol. This phase was carried out
at a 0.5 C rate, continuing until a voltage 4.2 V was attained, and subsequently maintained, until the
current fell below 0.05A, with the discharge process ceasing at 2.7 V. The CX2 group, which has a
nominal capacity of 1.35 Ah followed an identical procedure. The discharge protocols for both groups
were conducted at two distinct C-rates, namely 0.5 C and 1 C. All tests were carried out using the
Arbin Battery Tester15.
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NASA Prognostics Center of Excellence

Saha et al.19, explored the behavior of 34 commercial 18650 Li-ion cells with a 2 Ah capacity,
tailored for small aircraft and satellite applications20, as detailed in the NASA Prognostics Center of
Excellence (PCoE) dataset19,21. Here, the charging processes were identical, using a CC of 1.5 A until
4.2 V, then a CV applied until the current reached 10 . During discharge cycles, a subset of batteries
was subjected to constant current levels of 1 A, 2 A and 4 A, and the process was stopped at specific
voltages among different test cells, including 2.0 V, 2.2 V, 2.5 V, and 2.7 V. Cells were cycled to
70% or 80% of their initial capacity in various temperatures of 4 ◦C, 24 ◦C, and 43 ◦C. Additionally,
electrochmical impedance spectroscopy (EIS) was performed using a frequency sweep from 0.1 Hz to
5 kHz. This procedure facilitates understanding of Li-ion cell degradation under various operational
conditions21.

Hawaii Natural Energy Institute

The Hawaii Natural Energy Institute (HNEI) dataset22, available for download from the Battery
Archive23, includes an analytical study of 14 commercial 18650 Li-ion cells, manufactured under the
model ”ICR18650 C2” by LG Chemical Limited. These cells, designed for the use of PC notebooks,
feature a graphite negative electrode and a composite positive electrode containing LCO and NMC.
The cell’s calculated energy density is approximately 208 Whkg−1, and has a nominal capacity of 2.8
Ah. The charging process was carried out with a CC-CV protocol at a rate of C/2, with a cutoff
voltage of 4.3 V, accompanied by a 50 mA cutoff current. The discharge process was conducted at a
1.5 C rate to a full Depth of Discharge (DoD), with a cutoff voltage of 3 V. The study spanned over
1000 cycles at room temperature and was aimed at understanding the effects of inherent variations
between cells on their aging process22.

Sandia National Laboratories

The Sandia National Laboratories (SNL) dataset24 encompasses data from 77 commercial 18650
cells, including chemistries of LFP, NCA, and NMC, cycled between 388 − 19, 174 ranges. Available
on the Battery Archive website23, the study aimed to evaluate the effects of temperature at 15 ◦C, 25
◦C, and 35 ◦C, as well as DoD at 0 − 100%, 20 − 80%, and 40 − 50%, and discharge current at 0.5
C, 1 C, 2 C, and 3 C on long-term degradation. The charge/discharge protocol began with thermal
equilibration, followed by a discharge. The cells were charged at a consistent rate of 0.5 C, continuing
the cycling process until they reached State of Health (SOH) of 80%. An exception was made for NCA
cells, where a 3 C discharge was applied instead. The SNL dataset offers valuable insights into the
behavior of different battery chemistries under varied conditions,24.
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2 Training Procedure

The steps outlined in the training procedure in the Attention-based ReCurrent Algorithm for Neural
Analysis with LSTM (ARCANA) architecture can be seen in Supplementary Figure1.

start training
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calculate early
stopping
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Is prune
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Training Phase
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NoIs 
finetuning

Yes

load and adjust
pretrained model

instantiate model

Supplementary Figure 1: Illustration of the sequence-to-sequence (Seq-to-Seq) model training in the ARCANA workflow, out-
lining data loader initialization, parameter configuration, and model hyperparameter tuning. Additionally, the configuration
allows for specifying whether the model will initiate training from scratch, be instantiated for baseline learning, or follow a
fine-tuning procedure. In the latter, a pre-trained model is loaded, and only selected layers are subject to gradient updates,
while the remaining layers are kept frozen to maintain pre-learned features. After this stage, the training procedure will be
initiated. The process details the epoch-based training with hidden state resets, gradient zeroing, pinball loss computation for
quantile accuracy, the use of masking to maintain loss metric fidelity and gradient clipping. The figure also includes the adaptive
learning rate adjustments and validation phase with early stopping and the Optuna-driven pruning strategy. In the final stage,
all the model parameters will be saved, and a detailed training report will be generated.
*The details of the forward pass are comprehensively described in Figure 2 of the main Manuscript.
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3 Model M(P ) Performance

For training M(P ), the model parameters, architecture components, and their descriptions are detailed
in Table 1. The configurations include input and output sizes, hidden layer dimensionality, batch sizes,
sequence window lengths, and the teacher forcing strategy, which specifies the start and end ratios
and the decay step for gradual adjustment. Encoder- and decoder-specific parameters such as dropout
rates, number of layers, and attention heads are also enumerated. It is important to note that all models
utilize a consistent training strategy, incorporating early stopping criteria based on a combination of
generalization-loss-to-progress-quotient-ratio (GL/PQ) and error-trend evaluation, alongside a learning
rate scheduler using the one-cycle policy for optimal convergence. Additionally, an activation layer
using Leaky ReLU with a negative slope of 0.01 is integrated into the decoder architecture in all model
configurations to add non-linearity and learning capacity. The hyperparameters, optimized over 250
Optuna trials, consist of a learning rate of 0.0223, 370 epochs, a decay rate of 0.3, and an output
dropout of 0.1 (Supplementary Figure 2). The performance of training and validation over the epochs,
along with the one-cycle learning rate scheduler, is depicted in Supplementary Figure 3.

Supplementary Table 1: Summary of the model parameters and configurations, including their names, descriptions, involved
components, types, and values for the architecture and the training strategy.

Variable Name Parameter Name Description Relevant Component Parameter Type Model: M(P)

input size Input Size Size of the input data Model Architecture Architecture Parameter 6
output size Output Size Size of the model output Architecture Parameter 3
hidden dim Hidden Layer Dimension Dimensionality of hidden layers Architecture Parameter 32

batch size Batch Size Number of selected samples Training Strategy Hyperparameter 32

window length Sequence Window Length Length of the input sequence for the Seq-to-
Seq architecture

Seq-to-Seq Architecture Parameter 5

warmup steps Warmup Steps Number of steps of initial training phase to
stabilize the model

Training Strategy 3

weight decay Weight Decay Regularization parameter to prevent overfit-
ting by penalizing large weights

Optimizer Hyperparameter 1e−8

tl start ratio Teacher Forcing Start Ratio Starting ratio of teacher forcing in training Teacher Forcing Training Strategy 0.55
tl end ratio Teacher Forcing End Ratio Final ratio of teacher forcing, indicating when

to decay the use of true data
Training Strategy 0.001

decay stride Teacher Forcing Decay Stride Defines the rate and segments of teacher forc-
ing ratio decay throughout training epochs

Training Strategy 0.3

bidirectional Bidirectional Encoding Indicates if the encoder processes data in both
forward and backward directions

Encoder Architecture Parameter false

dropout encoder Encoder Dropout Rate Dropout rate for layers within the encoder to
prevent overfitting

Hyperparameter 0.2

num layers encoder Encoder Layer Count Number of layers in the encoder Architecture Parameter 1
nhead encoder Encoder Attention Heads Number of heads in the multi-head attention

mechanism of the encoder
Architecture Parameter 8

dropout decoder Decoder Dropout Rate Dropout rate for layers within the decoder to
prevent overfitting

Decoder Hyperparameter 0.15

num layers decoder Decoder Layer Count Number of layers in the decoder Architecture Parameter 1
nhead decoder Decoder Attention Heads Number of heads in the multi-head attention

mechanism of the decoder
Architecture Parameter 4

output dropout Output Layer Dropout Rate Dropout rate for the fully connected layer to
prevent overfitting

Hyperparameter 0.1

Supplementary Table 2: Summary of the evaluation metrics for M(P ), tested on nine unseen cylindrical cells (DNMC+NCA)
and six unseen prismatic cells (DLCO), using 24 and 22 initial cycles of historical data∗, respectively, to predict the cell behavior
up to the 500th cycle. Comparative studies by Roman et al.25 and Tian et al.26 using similar CALCE datasets report MAPE
values ranging from 2 to 4.65. The evaluation by Zhang et al.27 on a subset of the DNMC+NCA shows a MAPE of less than
10. It is important to note that these comparisons are indirect, as the model provides multidimensional predictions on different
data splits.

DNMC+NCA DLCO

Metrics Voltage drop [V] CE Qdis [Ah] Voltage drop [V] CE Qdis[Ah]

RMSE 0.0566 0.0256 0.1009 0.0335 0.0300 0.0709
MAPE 12.4294 0.2489 2.9455 6.6052 0.9207 4.0527
MAE 0.0378 0.0029 0.0659 0.0258 0.0085 0.0484
medAE 0.0218 0.0009 0.0448 0.0213 0.0061 0.0289

∗The number of initial cycles was chosen randomly to resemble practical scenarios with limited initial data. The
user can specify any preferred number of initial cycles in the provided configuration file, which is detailed at https:

//github.com/basf/ARCANA/blob/master/config/
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Supplementary Figure 2: Graphical representation of hyperparameter optimization using Optuna28: this slice plot delineates
the multidimensional search space explored during the optimization process for Model M(P ). Each axis represents a distinct
hyperparameter, illustrating the range of values explored.
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loss during voltage drop c) Coulomb efficiency, and d) Discharge capacity.
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4 Comparison of M(P ) performance for DNMC+NCA and DLCO
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Supplementary Figure 4: Predictive accuracy and calibration of model M(P ) for voltage drop across DNMC+NCA (Panel I)
and DLCO (Panel II). a) Scatter plot shows close alignment of predicted versus actual values, with color gradients representing
the cycle increment. The density plots in b) represent the model’s predictive distribution against actual measurements. The
calibration curve in c) assumes a normal distribution, where the mean and standard deviation are estimated from the 10th,
50th, and 90th percentile predictions. It depicts the proportion of values that fall within the predicted intervals defined by these
quantiles, with the ideal diagonal line representing perfect calibration. The shaded area indicates the degree of miscalibration,
denoted as A. Additionally, the points in this plot illustrate the observed proportions of actual values that fall within three
specific intervals based on the quantiles: between the 10th and 50th, 50th and 90th, and 10th and 90th percentiles; the shaded
area indicates the degree of miscalibration noted as A. Box plots d) illustrate narrow prediction intervals for DNMC+NCA over
cycles and a decreasing median for DLCO. Histograms in e) provide the quantiles as the width of the prediction interval between
the 10th and 90th percentiles as a measure of sharpness, revealing the skewness for both datasets and diversity for DLCO. The
red dashed line indicates the sharpness as the mean interval width and shows the concentration of the predictive distributions.
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5 Evaluation on DNMC+NCA

All analytical plots supporting the prediction of DNMC+NCA using the pretrained M(P ) can be seen
here.
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Supplementary Figure 5: Showcase of the predictive performance of M(P ) for cylindrical DNCM+NCA on three sample in Panel
I, II and III to predict battery behavior over 500 cycles across different discharge current profile (plot a, Panel I and II) for
three predictors (plots b-d, Panel I and plot a-c, Panel II): Voltage drop [V], CE and Qdis [Ah].
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Supplementary Figure 6: Evaluation of M(P ) prediction for Coulumbic efficiency for DNMC+NCA: a) shows the correlation
between actual and predicted values with a representation of the cycle progression by color gradient, b) compares the density of
actual and predicted values. The calibration curve in c) assumes a normal distribution, where the mean and standard deviation
are estimated from the 10th, 50th, and 90th percentile predictions. It depicts the proportion of values that fall within the
predicted intervals defined by these quantiles, with the ideal diagonal line representing perfect calibration. The shaded area
indicates the degree of miscalibration, denoted as A. Additionally, the points in this plot illustrate the observed proportions
of actual values that fall within three specific intervals based on the quantiles: between the 10th and 50th, 50th and 90th, and
10th and 90th percentiles. d) Illustrates the variability and central tendency of prediction intervals across cycles, e) provides
a histogram of the quantiles as the prediction interval width between the 10th and 90th percentiles as a measure of sharpness.
The dashed red line indicates sharpness as the mean interval width and shows the concentration of the predictive distributions.
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Supplementary Figure 7: Comprehensive predictive performance and sensitivity assessment for M(P ) on a selected sample from
DNMC+NCA. Plots a), b), and c) detail the model’s sensitivity to each predictive cycle, represented on a logarithmic scale,
demonstrating how input variations affect the output. Plots d), e), and f) aggregate the sensitivity data across all given cycles,
providing an overview of the model’s input responsiveness throughout the cycling process.
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Supplementary Figure 8: Multi-head attention weight analysis of M(P ) for a selected sample from DNMC+NCA. The first
four plots (a-d) represent the attention weights of separate heads for selected input cycles. The final plot (e) shows the average
attention weights across all heads, providing an overview of the model’s focus distribution throughout the prediction process.
This composite view illustrates how the model prioritizes different cycles to optimize prediction accuracy.
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6 Evaluation of DLCO

All analytical plots supporting the prediction of DLCO using the pre-trained M(P ) can be seen here.

Idis = 6.70 10 1[A]

23 100 200 300 400 500
Cycle Number

0.2

0.3

0.4

0.5

0.6

0.7

Vo
lta

ge
 d

ro
p 

[V
]

a) Input

23 100 200 300 400 500
Cycle Number

0.2

0.4

0.6

0.8

1.0

1.2

C
E

c) Input

23 100 200 300 400 500
Cycle Number

0.6

0.8

1.0

1.2

1.4

1.6

Q
di
s [

Ah
]

d) Input

Ground Truth
Prediction
Uncertainty

16

18

20

22

24

Ag
gr

eg
at

ed
 A

tt
en

tio
n 

W
ei

gh
ts

Panel I

Idis = 1.35[A]

23 100 200 300 400 500
Cycle Number

0.2

0.3

0.4

0.5

0.6

0.7

Vo
lta

ge
 d

ro
p 

[V
]

a) Input

23 100 200 300 400 500
Cycle Number

0.2

0.4

0.6

0.8

1.0

1.2

C
E

c) Input

23 100 200 300 400 500
Cycle Number

0.6

0.8

1.0

1.2

1.4

1.6

Q
di
s [

Ah
]

d) Input

Ground Truth
Prediction
Uncertainty

20

25

30

35

40

Ag
gr

eg
at

ed
 A

tt
en

tio
n 

W
ei

gh
ts

Panel II

Supplementary Figure 9: Showcase of the predictive performance of M(P ) for prismatic DLCO on two samples in Panel I and
II to predict battery behavior over 500 cycles for three predictors: Voltage drop [V], CE and Qdis [Ah].
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Supplementary Figure 10: Multi-head attention weight analysis of M(P ) for a selected sample from DLCO. The first four
plots (a-d) represent the attention weights of separate heads for selected input cycles. The final plot (e) shows the average
attention weights across all heads, providing an overview of the model’s focus distribution throughout the prediction process.
This composite view illustrates how the model prioritizes different cycles to optimize prediction accuracy.
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Supplementary Figure 11: Evaluation of M(P ) prediction for Coulumbic efficiency for DLCO: a) shows the correlation between
actual and predicted values with a representation of the cycle progression by a color gradient, b) compares the density of actual
and predicted values. The calibration curve in c) assumes a normal distribution, where the mean and standard deviation are
estimated from the 10th, 50th, and 90th percentile predictions. It depicts the proportion of values that fall within the predicted
intervals defined by these quantiles, with the ideal diagonal line representing perfect calibration. The shaded area indicates the
degree of miscalibration, denoted as A. Additionally, the points in this plot illustrate the observed proportions of actual values
that fall within three specific intervals based on the quantiles: between the 10th and 50th, 50th and 90th, and 10th and 90th
percentiles, d) illustrates the variability and central tendency of prediction intervals across cycles. e) provides a histogram of
the quantiles as the prediction interval width between the 10th and 90th percentiles as a measure of sharpness. The dashed red
line indicates sharpness as the mean interval width and shows the concentration of the predictive distributions.
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Supplementary Figure 12: Comprehensive predictive performance and sensitivity assessment for M(P ) on a selected sample
from DLCO. Plots a), b), and c) detail the model’s sensitivity to each predictive cycle, represented on a logarithmic scale,
demonstrating how input variations affect the output. Plot d), e), and f) aggregate the sensitivity data across all given cycles,
providing an overview of the model’s input responsiveness throughout the cycling process.
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7 Model M(P )f Performance

Fine-tuning of M(P) for coin cells (M(P )f ) is accomplished by loading the pre-trained model with
all components initially frozen to preserve the model’s foundational knowledge. For fine-tuning, the
decoder layers are unfrozen; this includes the LSTM layers for capturing long-term dependencies across
diverse degradation mechanisms of coin cells, the multi-head attention mechanism for identifying cycle-
specific features and fully connected layers for mapping features from the LSTM and attention mecha-
nism, to perform accurate lifetime predictions. During the fine-tuning, all the architecture parameters
remain unchanged from the original configuration (Table 1), with the tuned hyperparameters selected
from 85 trials through Optuna’s hyperparameter optimization. These optimal settings include a learn-
ing rate of 0.0117, 200 epochs, a decay rate of 0.54, and an output dropout of 0.06 (Supplementary
Figure 13). The fine-tuning process enabled the model to adjust its parameters and improve its pre-
dictive accuracy and reliability. Additionally, the training and validation performance associated with
the one-cycle learning dynamics of the model over the epochs can be seen in Supplementary Figure 14.
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Supplementary Figure 13: Graphical representation of hyperparameter optimization using Optuna28: this slice plot delineates
the multidimensional search space explored during the optimization process for Model M(P )f . Each x-axis represents a distinct
hyperparameter, illustrating the range of values explored.
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8 Performance comparison between M(P )f and M(B)
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Supplementary Figure 15: Showcase the two model’s predictive performances on coin data DLNO from M(P )f and M(B).
Panel I depicts the M(P )f predictions, which closely match the actual measurements for a) voltage drop [V], b) CE and c)
Qdis [Ah], with a focused attention distribution on early cycle data. Panel II depicts the M(B)’s performance, indicating a
responsive adjustment to mid-cycle protocol changes in Qdis predictions, with attention weights shifted towards later cycles.
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9 Evaluation of DLNO

All the analytical plots supporting the prediction of DLNO using the pretrained M(P )f and M(B)
can be seen here.
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Supplementary Figure 16: Evaluation of M(B) prediction for Voltage drop (Panel I) and Coulumbic efficiency (Panel II) for
DLNO. a) Shows the correlation between actual and predicted values with a representation of the cycle progression by a color
gradient, b) compares the density of actual and predicted values. The calibration curves in c) assumes a normal distribution,
where the mean and standard deviation are estimated from the 10th, 50th, and 90th percentile predictions. It depicts the
proportion of values that fall within the predicted intervals defined by these quantiles, with the ideal diagonal line representing
perfect calibration. The shaded area indicates the degree of miscalibration, denoted as A. Additionally, the points in this plot
illustrate the observed proportions of actual values that fall within three specific intervals based on the quantiles: between the
10th and 50th, 50th and 90th, and 10th and 90th percentiles, d) illustrates the variability and central tendency of prediction
intervals across cycles and e) provides a histogram of the quantiles as the prediction interval width between the 10th and 90th
percentiles as a measure of sharpness. The dashed red line indicates sharpness as the mean interval width and shows the
concentration of the predictive distributions.
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Supplementary Figure 17: Evaluation of M(P )f prediction for voltage drop (Panel I) and Coulumbic efficiency (Panel II) for
DLNO. a) Shows the correlation between actual and predicted values with a representation of the cycle progression by a color
gradient, b) compares the density of actual and predicted values. The calibration curves in c) assumes a normal distribution,
where the mean and standard deviation are estimated from the 10th, 50th, and 90th percentile predictions. It depicts the
proportion of values that fall within the predicted intervals defined by these quantiles, with the ideal diagonal line representing
perfect calibration. The shaded area indicates the degree of miscalibration, denoted as A. Additionally, the points in this plot
illustrate the observed proportions of actual values that fall within three specific intervals based on the quantiles: between the
10th and 50th, 50th and 90th, and 10th and 90th percentiles. d) illustrates the variability and central tendency of prediction
intervals across cycles and e) provides a histogram of the quantiles as the prediction interval width between the 10th and 90th
percentiles as a measure of sharpness. The dashed red line indicates sharpness as the mean interval width and shows the
concentration of the predictive distributions.
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Supplementary Figure 18: Comprehensive predictive performance and sensitivity assessment for M(P )f on a selected sample
from DLNO. Plots a), b), and c) detail the model’s sensitivity to each predictive cycle, represented on a logarithmic scale,
demonstrating how input variations affect the output. Plot d), e), and f) aggregate the sensitivity data across all given cycles,
providing an overview of the model’s input responsiveness throughout the cycling process.
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Supplementary Figure 19: Multi-head attention weight analysis of M(P )f for a selected sample from DLNO. The first four
plots (a-d) represent the attention weights from separate heads for selected input cycles. The final plot (e) shows the average
attention weights across all heads, providing an overview of the model’s focus distribution throughout the prediction process.
This composite view illustrates how the model prioritizes different cycles to optimize prediction accuracy.
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Supplementary Figure 20: Showcase the predictive performance of M(P )f for coin DLNO on three example samples in Panel I,
II, III, to predict battery behavior over 500 cycles for three predictors of Voltage drop [V], Coulumbic efficiency and Qdis [Ah].
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10 Evaluation of DNMC

All the analytical plots and metrics supporting the prediction of DNMC using M(P )f and M(B)
models can be seen here.

Supplementary Table 3: Summary of the evaluation metrics for M(P )f and M(B), tested on 11 unseen coin cells (DNMC),
using 25 initial cycles of historical data∗, to predict the cell behavior up to the 500th cycle.

M(P )f M(B)

Metrics Voltage drop [V] CE Qdis[Ah] Voltage drop [V] CE Qdis[Ah]

RMSE 0.0697 0.0304 0.0002 0.1820 0.0524 0.0002
MAPE 19.2894 2.2022 9.5144 27.7655 2.8842 24.0902
MAE 0.0470 0.0103 0.0002 0.1448 0.0245 0.0002
medAE 0.0293 0.0060 0.0001 0.1240 0.0084 0.0001
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Supplementary Figure 21: Showcase the predictive performance of M(B) for coin DNMC on an example sample to predict
battery behavior over 500 cycles for three predictors of Voltage drop [V], Coulumbic efficiency and Qdis [Ah].

∗The number of initial cycles was chosen randomly to resemble practical scenarios with limited initial data. The
user can specify any preferred number of initial cycles in the provided configuration file, which is detailed at https:

//github.com/basf/ARCANA/blob/master/config/
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Supplementary Figure 22: Evaluation of M(B) prediction for Voltage drop, Coulumbic efficiency and Qdis on DNMC a) Shows
the correlation between actual and predicted values with a representation of the cycle progression by a color gradient, b)
compares the density of actual and predicted values. The calibration curves in c) assumes a normal distribution, where the
mean and standard deviation are estimated from the 10th, 50th, and 90th percentile predictions. It depicts the proportion
of values that fall within the predicted intervals defined by these quantiles, with the ideal diagonal line representing perfect
calibration. The shaded area indicates the degree of miscalibration, denoted as A. Additionally, the points in this plot illustrate
the observed proportions of actual values that fall within three specific intervals based on the quantiles: between the 10th and
50th, 50th and 90th, and 10th and 90th percentiles. d) illustrates the variability and central tendency of prediction intervals
across cycles and e) provides a histogram of the quantiles as the prediction interval width between the 10th and 90th percentiles
as a measure of sharpness. The dashed red line indicates sharpness as the mean interval width and shows the concentration of
the predictive distributions.
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Supplementary Figure 23: Comprehensive predictive performance and sensitivity assessment for M(P )f on a selected sample
from DNMC . Plot a-c show the model’s predictions for voltage drop, CE and Qdis, respectively, alongside the actual measured
values and associated uncertainty. Plots d), e), and f) detail the model’s sensitivity to each predictive cycle, represented on a
logarithmic scale, demonstrating how input variations affect the output. Plot g), h), and i) aggregate the sensitivity data across
all given cycles, providing an overview of the model’s input responsiveness throughout the cycling process.
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Supplementary Figure 24: Multi-head attention weight analysis of M(P )f for a selected sample from DNMC . The first four
plots (a-d) represent the attention weights from separate heads for selected input cycles. The final plot shows the average
attention weights across all heads, providing an overview of the model’s focus distribution throughout the prediction process.
This composite view illustrates how the model prioritizes different cycles to optimize prediction accuracy.
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Supplementary Figure 25: Evaluation of M(P )f prediction for Voltage drop, Coulumbic efficiency and Qdis on DNMC . a)
Shows the correlation between actual and predicted values with a representation of the cycle progression by a color gradient, b)
compares the density of actual and predicted values.The calibration curves in c) assumes a normal distribution, where the mean
and standard deviation are estimated from the 10th, 50th, and 90th percentile predictions. It depicts the proportion of values
that fall within the predicted intervals defined by these quantiles, with the ideal diagonal line representing perfect calibration.
The shaded area indicates the degree of miscalibration, denoted as A. Additionally, the points in this plot illustrate the observed
proportions of actual values that fall within three specific intervals based on the quantiles: between the 10th and 50th, 50th and
90th, and 10th and 90th percentiles. d) illustrates the variability and central tendency of prediction intervals across cycles and
e) provides a histogram of the quantiles as the prediction interval width between the 10th and 90th percentiles as a measure of
sharpness. The dashed red line indicates sharpness as the mean interval width and shows the concentration of the predictive
distributions.
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11 Performance of M(P )Na and M(B)Na on DNa

The fine-tuning of both M(P) and M(B) for Na-ion batteries data, denoted as M(P )Na and M(B)Na

respectively, followed the same strategy of adjusting the decoder’s layer (Sec. 7). Similarly, this ap-
proach was chosen to be applied to novel materials and protocols in our custom batteries, which exhibit
unique and varied degradation pathways. The performance of both models during the training and
validation phases, with details on the optimal hyperparameters determined through Optuna, can be
seen below in Supplementary Figure 26 to 29. The optimal parameters for M(P )Na included a decay
stride of 0.2677, a learning rate of 0.0116, and an output dropout of 0.0525 over 285 epochs. Corre-
spondingly M(B)Na, presented a decay stride of 0.25, a learning rate of 0.0223, an output dropout of
0.06, and 320 epochs.
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Supplementary Figure 26: Graphical representation of hyperparameter optimization using Optuna28: This slice plot delineates
the multidimensional search space explored during the optimization process for the Model M(B)Na. Each axis represents a
distinct hyperparameter, illustrating the range of values explored.
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Supplementary Figure 27: Comprehensive model training and performance analysis for M(B)Na: a) Learning rate dynamics,
which shows the adaptive adjustment of learning rates over epochs using a cycle scheduler, b) Loss trends for tracing training
and validation loss during voltage drop [V] c) Coulomb efficiency, and d) Discharge capacity [Ah].
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Supplementary Table 4: Summary of the evaluation metrics for M(P )Na and M(B)Na, tested on 18 unseen coin cells (DNa).
The evaluation used nine initial cycles of historical data∗ to predict six cells cycled with C-rate protocols up to the 40th cycle
and 12 samples cycled with CC-CV protocol up to the 140th cycle (shown in Supplementary Figure 30).

M(P )Na M(B)Na

Metrics Voltage drop [V] CE Qdis [Ah] Voltage drop [V] CE Qdis[Ah]

RMSE 0.1197 0.1138 11.7× 10−6 0.1106 0.1098 7.65× 10−6

MAPE 24.8176 7.6430 222.1276 34.6403 7.4923 337.2994
MAE 0.0468 0.0451 5.022× 10−6 0.0582 0.0390 4.7× 10−6

medAE 0.0126 0.0137 1.836× 10−6 0.0448 0.0108 2.98× 10−6
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Supplementary Figure 28: Graphical representation of hyperparameter optimization using Optuna28 Algorithm: This slice plot
delineates the multidimensional search space explored during the optimization process for Model M(P )Na. Each axis represents
a distinct hyperparameter, illustrating the range of values explored.
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Supplementary Figure 29: Comprehensive model training and performance analysis for M(P )Na: a) Learning rate dynamics,
which shows the adaptive adjustment of learning rates over epochs using a one-cycle scheduler, b) Loss trends for tracing training
and validation loss during voltage drop c) Coulomb efficiency, and d) Discharge capacity.

∗The number of initial cycles was chosen randomly to resemble practical scenarios with limited initial data. The
user can specify any preferred number of initial cycles in the provided configuration file, which is detailed at https:

//github.com/basf/ARCANA/blob/master/config/
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12 Evaluation of DNa
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Supplementary Figure 30: Evaluation of M(B)Na prediction for Voltage drop, Coulumbic efficiency on DNa. a) Shows the
correlation between actual and predicted values with a representation of the cycle progression by a color gradient, b) compares
the density of actual and predicted values. The calibration curves in c) assumes a normal distribution, where the mean and
standard deviation are estimated from the 10th, 50th, and 90th percentile predictions. It depicts the proportion of values that
fall within the predicted intervals defined by these quantiles, with the ideal diagonal line representing perfect calibration. The
shaded area indicates the degree of miscalibration, denoted as A. Additionally, the points in this plot illustrate the observed
proportions of actual values that fall within three specific intervals based on the quantiles: between the 10th and 50th, 50th and
90th, and 10th and 90th percentiles. d) illustrates the variability and central tendency of prediction intervals across cycles and
e) provides a histogram of the quantiles as the prediction interval width between the 10th and 90th percentiles as a measure of
sharpness. The dashed red line indicates sharpness as the mean interval width and shows the concentration of the predictive
distributions.
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4. Results and Publications

Publication Content

Designing trustworthy workflows for non-aqueous battery systems is a challenging
task, for which Auto-MISCHBARES presents a reliable high-throughput electro-
chemical experimentation framework that mitigates the pitfalls of traditional ap-
proaches, which are often labor-intensive, time-consuming, and prone to human
error. Auto-MISCHABRES integrates hardware, task orchestration, automated quality
control, data analysis, database curation, and live visualization, thereby delivering
reproducible results despite the potential for systemic problems that arise from
miniaturization, evaporation, and salt formation. The system is designed with a
granular control mechanism and establishes four hubs to facilitate orchestration for
a variety of different configuration of electrochemical procedures. The ServerHub

enables researchers to design, schedule and monitor experimental batches using
a user-friendly web interface developed with HTML, CSS, and JavaScript. It is
complemented by Flask, for a backend communication with the Python orchestra-
tor that executes and manages experiments both sequentially and in parallel over
an asynchronous web server for autonomous experimentation as an expansion to
the earlier introduced HELAO framework. Throughout the process, a custom live
Bokeh visualizer, deployed over Websocket, is used to deliver immediate visual
feedback to the user. The DeviceHub consists of an open three-electrode cell setup
connected to a motor, a syringe pumping system, and a multichannel potentiostat
for the execution of electrochemical measurements. The MutliAnalyseHub performs
two tasks, which are the monitoring of experiment quality for reliability and the
real-time analysis of live data. Quality control is orchestrated asynchronously and
is designed to perform computer-vision-aided drop detection, mandatory cleaning
movements and automated contact detection of the electrode in order to minimize
material disruption. Data analysis includes real-time processing of CV data as well
as instantaneous report creation from raw and processed data using statistical and
ML algorithms, all of which expand on the previously introduced MADAP analysis
tool. The DataHub functions as the designed data management system, built with
PostgreSQL for real-time storage of experimental raw and processed data, securing
integrity, lineage, and accessibility in alignment with FAIR principles. In this pub-
lication, the engineered system is showcased in the initial cycle of a charging and
discharging process for a screen-printed half-cell electrode. The system demonstrates
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a high degree of reliability in outcomes not only on electrochemical levels but also
across ex situ X-ray photoelectron spectroscopy (XPS) characterization. The agnostic
nature of the proposed framework is distinctive within the battery research scientific
community and makes it adaptable across organic and inorganic applications for the
discovery of new materials.

Individual Contributions

Fuzhan Rahmanian designed the PostgreSQL database, designed the Object Oriented
Programming (OOP) schema for the application, implemented the code including
the automated testing, the connection to the database, the quality control steps and
expanded the HELAO automated workflow. F.R. designed and implemented the
UI and its backend, curated the GitHub Repository and the documentation. F.R.

expanded MADAP package for voltammetry analysis. B.Z. designed and 3D-printed
the waste and camera holder, while H.S.S. prepared the screen printing mask. S.F. and
F.R., calibrated the setup, performed the electrochemical experiment. S.F. performed
XPS experiment and interpreted electrochemical and spectroscopic results, while F.R.

plotted the results and assembled the paper.
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Autonomous millimeter scale high throughput
battery research system†

Fuzhan Rahmanian, *abdef Stefan Fuchs,ab Bojing Zhang,abdef

Maximilian Fichtner ac and Helge Sören Stein*abdef

Discoveries of novel electrolyte–electrode combinations require comprehensive structure–property–interface

correlations. Herein, we present autonomous millimeter scale high-throughput battery research system (Auto-

MISCHBARES) operated with an asynchronous web-based orchestration framework that integrates modular

research instrumentation designed for autonomous electrochemical experimentation. The platform allows

researchers to define a range of experiments with granular parameter control, start the process, and receive

a live visualization of measurements through a web-based user interface. This paper presents a proof of

concept for cathode electrolyte interphase (CEI) formation in lithium-ion batteries (LiBs) at various potentials,

all controlled through Auto-MISCHBARES and correlating its high-throughput electrochemistry results with

X-ray photoelectron spectroscopy (XPS) characterization. We believe quality control, complex data analysis,

and management to be the missing puzzle pieces toward more complex workflow automation. Auto-

MISCHBARES integrates automatic quality control for both hardware and software using AI enablers to

ensure high reliability through an on-the-fly fidelity assessment of each experiment. In the presented case

study, voltammetry measurements are handled through a modular platform capable of performing fully

automated analysis, while data lineage is provided through relational data storage in adherence with Findable,

Accessible, Interoperable, and Reusable (FAIR) guidelines, all in real-time. Thus, Auto-MISCHBARES represents

a point of contact between the orchestration of automated instrumentation, quality control, real-time data

analysis, and management, enabling reproducible and versatile workflows for the discovery of new materials,

especially for batteries. We demonstrate this integrated workflow for reliable charging/discharging protocols.

Automated quality control and data interpretation are the

missing puzzle pieces towards prolonged walk-away-times in

closed-loop experimentation.1 These advances increase the

efficiency and innovation of the research process by minimizing

the need for human oversight and ensuring the generation of

reliable, insightful data. Early demonstrations of closed-loop

experiments included mostly error resilient measurement and

facile data analysis, but the step towards complex and interre-

lated experimentation necessitates more robust data quality

assessment. The evolution of these automated experiments

towards truly autonomous Material Acceleration Platforms

(MAPs) requires integration of experimental processes, data

management, and strategic decision-making2 self-driving labo-

ratories (SDLs).3,4 Laboratories such as BEAR,5 ARES,6 Clio,7

equipped with advanced frameworks are instrumental in

boosting operational efficiency and research safety.8 These

technological leaps not only streamline experimental processes,

but also enable scientists to undertake deeper and more intri-

cate inquiries, accelerating discovery in various scientic

domains.9,10 Additionally, the integration of AI and machine

learning (ML) allows for efficient exploration of complex

chemical andmaterial terrains.10,11 SDLs, in particular, show the

potential to accelerate research output by up to 30 times.9 By

automating and digitalizing processes, these systems increase

experimental accuracy and walk away time.4

1 The challenge of multifidelity

There is a sprawl of MAPs in various elds12–14 but its progress in

non-aqueous battery applications has been hindered by unique

challenges.15 As a result, only a few established MAP efforts exist,

chief among which is the Battery Interface Genome-Materials
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Acceleration Platform (BIG-MAP) initiative.16 This complexity ari-

ses mainly from the special housing and safety measures neces-

sary to conduct battery research and the vast chemical space

required to optimize, for example, electrolytes, electrodes, design,

and physical properties.17–19 Signicant efforts have been made to

address each aspect; for instance, Dave et al.7 developed an

autonomous workow to optimize the electrolyte formulation for

a single salt and ternary solvent design at various ratios for non-

aqueous battery systems by utilizing a robotic platform. At the

interface level, the autonomous investigation of CEI and solid

electrolyte interphase (SEI) within MAPs are not extensively

explored on an experimental level.20–22 This highlights the ongoing

need for innovative approaches in battery studies, especially in

understanding and optimizing the complex interactions at these

interfaces,23,24 which involve multiple and varied testing

scenarios, such as the correlation of electrochemical and spec-

troscopy characterization. A challenge in developing a system

capable of providing a multifaceted solution for the next genera-

tion of battery materials19 is the integration of all the necessary

devices within a single laboratory.25 Herein, granular control

across each step of the experimentation is crucial for achieving

multidelity. Additionally, due to variations arising from different

samples, experimental correlation and device integration within

a single lab become even more critical to ensure consistency and

reliability of results, as it effectively minimizes discrepancies that

might occur from diverse laboratory environments.

2 The challenge of designing an
integrative database solution

To address the challenges of multi-device testing on a single

sample, the development of a robust data management is

essential.24,26–28 This systemmust enable seamless integration and

communication across various instruments and bridge physical

and temporal gaps in experimental stages that oen exist between

disparate phases.29,30 Such advancements are crucial in SDLs,

where progress has been hindered by a lack of standardized and

user-friendly soware between laboratory instrumentation and

intuitive operational guidelines.15 Efficient data management and

experimental planning enable rapid processing and interpreta-

tion of high dimensional data, which unravel physicochemical

relations that surpass the analytical capacity of conventional

approaches.1,31,32 It also facilitates the incorporation of AI agents

and Deep Learning (DL) tools, which can further accelerate the

exploration of the chemical spaces and reduce recourse

allocation.32–34 This approach is in line with signicant scientic

efforts in chemistry35 and in other domains,10 which emphasize

the importance of consistent data quality protocols and data

acquisition methods, in compliance with FAIR data principles.36

3 AI enablers for reliable
experimentation

In autonomous experimental setups, replicating burdensome

human-intensive tasks, such as material sufficiency manage-

ment or equipment cleaning, is challenging.2,37 Simultaneously,

these ensure the reliability and delity of measurements and

require rigorous validation for experimental accuracy and

consideration of potential hardware and soware aws.38 As

proposed in recent studies,4,39,40 the utilization of AI technology,

such as ML and computer vision methods, can signicantly

improve system robustness, which is crucial to monitor

parameter validity in real time.4 The goal is to achieve data

integrity and support AI planners in informed decision-making.

This is particularly benecial for non-aqueous battery systems

experimentation in gloveboxes, where assembling and control-

ling multiple experiments present complexities that even with

human intervention may prove challenging to manage effec-

tively. The progress in adopting AI enablers, thus, signies

a transformative shi in scientic experimentation towards

enhanced precision and reliability,39 highlighted by the critical

need to recognize and address the technical challenges in

experiment-specic boundaries to ensure results are both

comprehensible and reproducible.14,41

To advance the MAPs and overcome existing constraints of

multidelity, robust data management, and reliable and

reproducible automated experimentation,9,10 we introduce the

Auto-MISCHBARES, an open-source framework designed for

fully unsupervised operations. Building upon our earlier studies

on asynchronous web-based frameworks,30 it orchestrates live

visualization of electrochemical measurements, quality control

and user feedback, data provenance and analysis, thus

enhancing the experimental processes. This platform features

automated capabilities for conducting a variety of electro-

chemical experiments congured over a web user interface (UI),

as showcased in our case study of the CEI formation on screen-

printed battery electrodes. Auto-MISCHBARES performed

sequential measurements using an open-cell setup42 and char-

acterized them using XPS under ultra-high vacuum conditions.

The agnostic nature of our framework ensures its adaptability

for diverse organic and inorganic materials. This platform not

only can accelerate research but also facilitate the sharing of

validated data, helping scientists in the efficient extraction and

transfer of information within the community.37,43

4 Design and methodology
4.1 Framework overview

The Auto-MISCHBARES framework is developed by integrating

four key Hubs overarching hardware and soware of the

experimental workow. The DeviceHub encompasses a set of

hardware that is responsible for the exact placement,

dispensing, and measurement. The ServerHub ensures robust

operations and communication workow through orchestra-

tion and API design. The DataHub manages the database

environment and is key for data integrity and accessibility.

Lastly, the MultiAnalyticHub provides a wide spectrum of

analytics, from statistical assessments to computer vision

methods.46 The integration of all the Hubs is the prerogative of

acceleration in material development,15,47 and therefore, by

following this design philosophy, our Auto-MISCHBARES plat-

form is able to perform fully autonomous electrochemical

measurements tailored to study the formation of CEI and

884 | Digital Discovery, 2024, 3, 883–895 © 2024 The Author(s). Published by the Royal Society of Chemistry
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monitor oxidation state changes in active materials at different

stages of the experiment.

4.1.1 DeviceHub. In this study, the core of our DeviceHub

is an electrochemical system known as SDC.42 This setup is an

open-cell miniaturized 3-electrode-cell construction comprising

a gold reference electrode (RE) and a platinum counter elec-

trode (CE), both positioned within a movable cell housing made

from polytetrauoroethylene (PTFE). This housing utilizes

electrode spots on a planar substrate functioning as the

working electrode (WE). The SDC is connected to a stepper

motor ‡ and a multichannel potentiostat device §. Additionally,

the DeviceHub encompasses a syringe pump system {, which is

connected to this cell via an inlet. Our conguration allows for

precise delivery of the desired electrolyte formulation, as well as

enabling accurate positioning over the targeted measurement

area on the WE substrate and the deposition of a single droplet

of electrolyte. Upon contact of all three electrodes, the system is

ready to execute the selected protocols (Fig. 1b, section setup).

The placement of the SDC and measurement through the

potentiostat are controlled by the ServerHub.

4.1.2 ServerHub. This platform is an advanced extension of

our initial ServerHub presented in HELAO.30 It is capable of

executing experiments both sequentially and in parallel, and

allows for the integration of an active learning decision-maker

to orchestrate tasks across instruments. The complete work-

ow is illustrated in Fig. 1a. At the beginning, researchers

congure experimental setups and schedule multiple, dynamic

batches of experiments through a user-friendly and modular

interface (ESI 1†). The UI is constructed using HTML, and CSS

with dynamic functionalities implemented in Node.js and

facilitates easy browsing with a diverse array of electrochemical

protocols. This interaction layer is further enhanced by Flask,48

a Python-based web framework, to streamline user engagement.

Once single or multiple experimental batches are designed, the

congurations are passed to the Python back-end, requiring no

additional user intervention, and are translated to FastAPI

requests. The central orchestrator will then efficiently schedule

and manage high-throughput experimentation in an asyn-

chronous manner. Aer the execution of all requested experi-

mental batches, the operator receives a response from the

orchestrator with a comprehensive report detailing all experi-

mental steps, their timestamps, and outcomes.

4.1.3 MultiAnalyticHub. A key challenge in automation is

maintaining the reliability of results, which is crucial for

managing potential risks since a plethora of variables and

parameters are prone to errors during experimentation.2 These

include tasks typically simple for humans, such as removing

salt accumulation, replenishing depleted electrolyte bottles,

ensuring electrical connection at the hardware level, and

maintaining safe thresholds for measurement parameters at

the soware level. Failure to address these aspects could lead to

experimental inaccuracies and substantial time and resource

wastage. Mitigation strategies are a crucial aspect in the reali-

zation of a truly autonomous laboratory.47 Thus, our Multi-

AnalyticHub is equipped to enhance the platform by

implementing mechanisms for providing critical feedback

through automated quality control (QC) and real-time analysis

throughout the experimental stages (Fig. 1b, Section Quality

Control & Analysis). This Hub aims to inform researchers of

ongoing progress and potential failures and provide accurate,

statistically driven analysis, increasing trustworthiness in high-

throughput experimentation.

The initial QC assessment in our system is monitoring

material sufficiency at the electrolyte exchange stage for each

measurement. A key component of this process is the Droplet

Detection routine, designed to verify proper ushing. This

detection is implemented using the OpenCV library49 for

computer vision tasks and analyzes a video streams to detect the

presence of a drop.50 The algorithm selects a specic region of

interest (ROI) in the video frame, converts this segment into

grayscale, and applies a Gaussian blur to minimize noise. By

continuously calculating the absolute difference between the

initial frame and subsequent frames within the ROI, the system

can detect motion. A non-zero sum in the thresholded image

within this area indicates of a drop's presence. The selection of

a ROI is motivated by two main reasons. The reduction of

computation time by focusing on a small area of the output and

the elimination of false positives that may arise due to motion

detection in the background of the camera. Given that the SDC

movement is motorized, and the material is ushed at a pre-

dened position, the ROI is calibrated only during the setup

phase and remains unchanged throughout the experimenta-

tion. In addition, visual feedback is provided on the monitor for

user verication and oversight.

Once the electrolyte has been exchanged, a non-negligible

chance persists of residual material remaining attached to the

head of the SDC, which can lead to salt formation, crystalliza-

tion, or inconsistencies in later measurements. We expanded

our quality control protocol and incorporated a mandatory

movement of the SDC head to a wiping pad, ensuring the

removal of any leover electrolytes. Following this preparation,

the stepper motor positions the SDC head over the designated

measurement area of the WE (Fig. 1b, section automated

experiment).

Additional QC is implemented to control the movement of

the SDC head precisely and ensure optimal electrical connec-

tivity with the substrate in the coming measurement. This

mechanism is designed to lower the SDC head gradually, per-

forming the descent in small, constant steps. This approach

secures each movement to stay within a dened threshold to

prevent excessive force on the head. For stepwise monitoring of

electrical potential, frequent control measurements are inte-

grated with potentiostatic endpoints of the ServerHub. The

voltage data is then used to determine successful contact with

the substrate, indicated by a sharp decay in potential towards

zero. If contact is not established within the initial steps, the

routine initiates corrective measures. These include the

controlled addition of electrolytes, periodic potential

‡ https://www.owis.eu/en/.

§ https://www.metrohm.com/de_de/products/a/

ut30/aut302n_s.html.

{ https://www.hamiltoncompany.com/laboratory-products/microlab-600/

syringe-pump.
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Fig. 1 Schematic representation of the experimental setup and automated flow of Auto-MISCHBARES.44 The interface (ESI 1†) allows researchers

to formulate a series of experimental electrochemical protocols, which are then dispatched to a central orchestrator via an API. The orchestrator,

serving as a control system, manages the scheduling, execution, and monitoring of the experimental array by delivering actions to the individual

Hubs, which are the granular unit of activity and can execute actions tasks such as positioning, measurement, real-time analytical processing and

provides the basis for live visualization. Upon the completion of individual experiments or a sequence thereof, the orchestrator compiles and

dispatches a comprehensive analytical report to the experimentalist. The DeviceHub features a high-precision robotic manipulator adept at

positioning the SDC head accurately onto the substrate, where a Hamilton Microlab 600 precision syringe system3 delivers electrolyte directly

when contact is established. The Autolab Potentiostat2 is employed to perform electrochemical measurements once the system is primed for

analysis. Quality control protocols, including drop and contact detection and chatbot-based communication, facilitate automation and oversight

of the experimental processes. Furthermore, experiments proceed in three automated stages: waste disposal, cleaning, and electrochemical

measurement, each executed according to predefined specifications and with real-time plotting provided by a Bokeh45 visualizer for immediate

“at-a-glance” feedback. Post-measurement, the data undergoes immediate analysis via MADAP, which calculates electrochemical markers and

generates corresponding plots for in-depth analysis. This processed data is then systematically cataloged in a DMS, ensuring data provenance,

facile retrieval, and compartmentalization in alignment with the FAIR principles. It is possible to optimize the subsequent experiment with AL

algorithms through the HELAO platform.
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Fig. 2 A sequence diagram representing the interaction between the different proposed Hubs in the Auto-MISCHBARES framework for the

showcased automated experimentation. The web-UI and the orchestrator represent lifelines and are active throughout the experimentation

process. After the user has made the experimental configuration, the settings are saved, and the interface sends the SOE asynchronously to the

orchestrator, which initiates the movement by sending the instruction to the motor in the DeviceHub. The motor moves to a predefined waste

position, where a pump dispenses electrolytes for the desired experiment. Asynchronously, the presence ofmaterial will be checked in the ROI of

the camera where the algorithm is executed on its lifeline in the MultiAnalyticHub. Depending on the outcome, the experiment might be

suspended, and the user notified about the absence of material over a Telegram chatbot. After a predefined waiting time, the pumping is retried.

Once drop detection is successful, orchestration resumes with a mandatory movement to the wiping pad to remove excess material and

subsequent positioning on the WE. Here, an additional quality control loop is implemented, joining the DeviceHub to the MultiAnalyticHub in the

case of absent electrical contact. Herein, the connection is checked while the SDC head is moved downwards. If successful, the experiment can

proceed. Mitigation strategies in case of non-contact are planned to dispense small amounts of electrolyte and additional connection checks. All

the attempts are displayed in a live visualizer activated in the ServerHub. Ultimately, if no connection is established, the experiment is suspended,

and the user is notified. A successful contact is a prerogative to start the measurement, which is asynchronously analyzed by MADAP in the

MultiAnalyticHub, reported to the ServerHub for visualization, and stored in the DataHub. The live visualization continues throughout the

© 2024 The Author(s). Published by the Royal Society of Chemistry Digital Discovery, 2024, 3, 883–895 | 887
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measurements, and emergency procedures in place for unre-

solved non-contact situations. Upon measurement initiation,

an established safety threshold for experimental procedures

prevents overshooting. Throughout the entire QC process,

continuous feedback is provided with logging and the option of

communication through a Telegram chatbot, which update the

experimentalist at checkpoints and about potential failures,

especially benecial of walk-away experimentation.

Our previously designed modular and versatile data analysis

framework, MADAP,51 capable of analyzing a variety of electro-

chemical protocols, is additionally integrated into the Multi-

AnalyticHub of our high-throughput automated workow. It

enables the real-time transformation of raw measurement into

analyzed results for each experiment. The strength of this

framework lies in its ability to simultaneously plot the raw and

processed data (Fig. 1b, section analysis). The integration of this

modular package was a facile solution for Auto-MISCHBARES to

gain the ability to generate reports and summaries in compli-

ance with FAIR principles, expanding the platform to include

rapid assessment of experimental quality for valuable scientic

insights.3,46 Tailored to our case study, MADAP was expanded

with voltammetry tests that include the statistically driven

identication of parameters as, for instance, half-wave potential

and current, peak-to-peak separation, oxidation and reduction

peaks to include them in the report. Additional information

about the expanded implementation can be found in ESI 5.†

4.1.4 DataHub. The provenance of data is central in

drawing conclusions from raw experimental recordings.29,52,53

This necessitates active tracking of acquisition and processing.

To address the challenge of managing these complexities, our

DMS implements a real-time approach in the context of the

DataHub, which is backed by a locally hosted PostgreSQL

database designed to dynamically handle meta, raw, and

analyzed data. It consists of several interconnected tables that

capture specic details of the proposed experiments. The

experiments table forms the core of the database and stores

essential metadata, such as material, date, and operator infor-

mation (Fig. 1b, Section DMS). This is complemented by the

users table, which details the researchers involved, ensuring

traceability and accountability. The motor-positions table logs

the specic operational data, such as precise motor positions of

the SDC head, adding further detail to the experimental records.

Each type of electrochemical measurement in the database

features paired procedures and raw tables. The procedure tables

encapsulate the unique parameters and settings of every

measurement, while the raw tables record granular empirical

data. Key metrics, provided by MADAP from the Multi-

AnalyticHub and passed to HELAO in the ServerHub, support

processing large data volumes through web server communi-

cation. Robust data integrity is ensured through primary and

foreign keys, enabling complex queries that link procedures,

raw data, and experimental metadata. Additionally, the

database incorporates sequences for auto-generating Unique

Identiers (UIDs), streamlining data entry and retrieval. This

cohesive database system is designed to maintain the integrity,

accessibility, usability, and interpretability54 of experimental

data by incorporating both FAIR principles36 and atomicity,

consistency, isolation, and durability (ACID) standards55 for

modern data management and reliable operational processing.

Herein, the DataHub offers a unied platform for comprehen-

sive multi-modal data analysis engineered to facilitate the

correlation of electrochemical and spectroscopic tests.

The integration of the four key Hubs denes our robust Auto-

MISCHBARES platform,44,50 streamlining sequential experi-

mentation through unied process control, scheduling, feed-

back, and advanced real-time data management, encompassing

measurement, validation, and analysis. Herein, experiments are

started in the ServerHub, which schedules and orchestrates the

measuring step performed by the instruments in the Device-

Hub. The procedure is controlled for its quality and analyzed for

its outcome by the MultiAnalyticHub while the DataHub

records all trackable data points. A detailed representation of

the asynchronous interaction between these Hubs is depicted as

a sequence diagram in Fig. 2. The modular design of Auto-

MISCHBARES as an open-source Python framework and

multiple unit-tests ensure ease of expansion and adaptability

for users.

4.2 Experimental procedure

To showcase the efficacy of Auto-MISCHBARES, we investigate

the formation of the CEI, as it is inuenced signicantly by the

type of active material, the inactive components of the

composite electrode, and the electrolyte formulation.56,57 The

presented electrochemical setup, SDC, eliminates the need for

cell disassembly for ex situmeasurements, thus minimizing the

risk of mechanical alterations. To demonstrate the reliability

and reproducibility of our proposed Auto-MISCHBARES

framework, we investigate the evolution of CEI in lithium iron

phosphate (LFP), a well-studied cathode material used in

commercial batteries.58–60 We used 1 M LiPF6 solution in

a mixture of ethylene carbonate (EC) : ethyl methyl carbonate

(EMC) in a 3 : 7 weight ratio as the electrolyte (E-lyte, Germany).

The entire setup was maintained in a nitrogen-lled glovebox. It

is important to note that electrolyte evaporation can occur due

to the open-cell setup. This poses challenges for long-term

cycling tests, however, it offers distinct advantages for

a variety of short-term measurements, which would otherwise

require extensive assembly, disassembly, and electrode post-

treatment. We designed our high-throughput sequential

experimentation protocol using cyclic voltammetry (CV) tests,

which are stopped at different potentials during the second

cycle to analyze features related to redox reactions and repeated

the procedure two times. Our novel approach to cathode elec-

trode preparation involves screen-printing onto the substrate in

measurement. Orchestration now considers the experiment complete, will notify the user, and will move to the next instance defined in the SOE.

The process is repeated until the experimental list defined by the research is completed. The orchestrator will shut down all remaining active

components, and details of inputs, outputs, and metadata will be saved in .hdf5 formatted file.
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an open atmosphere due to the stability of the active material

and slurry components. This method minimizes material usage

and precisely denes the active material area. Aer preparation,

the electrodes are transferred to the glovebox for further pro-

cessing and analysis. For each experiment, the SDC head is

positioned at the predened measurement spot, where it

dispenses a droplet of electrolyte and ensures electrical

connection before performing CV. Upon completing a series of

experiments, it is necessary to remove the excess LiPF6 salt

residue, a byproduct of electrolyte evaporation, from the elec-

trodes. This is achieved by depositing a droplet of propylene

carbonate (PC) on each measurement spot, allowing it to soak

for three minutes to dissolve the salt, and then aspirating it

using the SDC head. This cleaning process is repeated three

times. Once the cleaned samples are dried, they are transferred

within the glovebox directly into the XPS's sample environment

for ex situ analysis, preventing air exposure. The analysis aims to

characterize the synthesized CEI at different potentials and

identify the formation stages of its components. The CasaXPS

soware61 is utilized to evaluate the outcomes.

5 Results and discussions
5.1 Reproducibility towards electrode fabrication

In our setup, electrodes were fabricated through screen-printing

to ensure reproducible dimensions and alignment on a pre-

dened grid. This method effectively decouples the electrodes

from the electrolyte spreading area, thereby minimizing cross-

contamination risks associated with electrolyte dispersion on

the substrate. Additionally, this technique signicantly reduces

waste of active material. Unlike other coating methods such as

doctor blading, which produce cut-out waste, screen-printing

only coats the specic spots required for measurements.

The electrodes were coated as circular points with a 1.5 mm

diameter, arranged in an 11 × 11 square grid with each point

spaced 4.9 mm apart. Details can be found in Section 4 of the

ESI.† To evaluate the uniformity of the coating, these electrodes

were analyzed using XRF. Fig. 3a illustrates the distribution of

Fe signal intensity across the grid, with the colorbar reecting

the relative Fe content as determined by the integrated signal at

each point. As a direct measurement of the active material mass

on this type of coating is challenging, the Fe signal in XRF

images was used as a proxy for estimating Fe distribution and

the active material content. By weighing the Al-foil before and

aer coating and drying, an average active material mass of

0.0218 mg was calculated. The Fe count per second (CPS) is

centered around a central peak, indicating an underlying

normal distribution with a maximum spread of ±6.5%, as

depicted in Fig. 3c. Our two distinct sets of measurements are

represented by red and blue markers in Fig. 3a. The color

distribution across the grid indicates a uniform Fe coating,

although some areas exhibit higher or lower concentrations.

This is crucial for evaluating the consistency of the screen-

printing process. The XRF spectrum of a representative coated

point is shown in Fig. 3b and features Fe peaks at 6.41 keV and

7.06 keV. While the spectrum is primarily characterized by Fe,

minor peaks for Cr and Ni indicate their subordinate presence.

Additional elements including P and Al, with peaks at 2.02 keV

and 20.19 keV respectively, are also identied. The peaks, with

lower CPS, are detailed in ESI 3.† In the electrochemical

Fig. 3 (a) Spatial distribution of the integrated relative Fe signal intensity from screen printed electrodes, as measured by XRF. The Fe signal is

integrated over a circular area of 1.8 mm in diameter at eachmeasurement point, with color coding indicating the intensity percentage. Set 1 and

Set 2 refer to two different batches under which the electrodes were tested, showcasing potential variability in Fe distribution across the samples.

(b) Averaged XRF spectrum representing cumulative signals from one of the screen-printed spots, highlighting characteristic X-ray peaks. Peaks

are labeled with corresponding elemental symbols, with prominent feature for Fe observed at around 6.4 keV. Other elements such as Cr and Ni

are represented at their respective energies, illustrating the composition of the samples. (c) Histogram representing the distribution of Fe intensity

percentages across the measurement points. The distribution shows a rightward skew, with a predominant concentration of data points on the

lower side of the Fe intensity scale. Despite the skew, the bulk of the data clusters around a central peak, suggesting an underlying normal

distribution tendency with some deviations, possible due to variations in the screen-printing process or material heterogeneity.
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procedures, such as galvanostatic cycling, this data can be

utilized for setting the correct current to achieve the desired C-

rate during charging and discharging protocols. For CV, as

employed in this study, the information is essential to

normalize the obtained current response.

5.2 Reproducibility at electrochemical level

Electrochemical data that derived from the automated experi-

ments orchestrated with Auto-MISCHBARES platform demon-

strated high reliability, with no observable failures or hardware

errors that could compromise the results. All the measurements

are stored on-the-y in our DMS. The CV proles of LFP elec-

trodes, cycled between 1.8 V and 4.7 V at a scan rate of 5 mV s−1

are presented for two identical experimental sets for compar-

ison, as shown in Fig. 4a and b. The scan rate selected for our

study was an order of magnitude higher than typically reported

for battery electrodes.62 This choice aimed to mitigate issues

associated with electrolyte evaporation in our open setup. Such

evaporation could disrupt electrical contact between the WE

and the RE during measurement and increase salt concentra-

tions in electrolyte.63 However, these effects were minimized by

using a fast scan rate and routine ushing of the SDC head with

fresh electrolyte aer each measurement. The high scan rate

can cause the change of slope in current density for CV

measurements.64

In both sets of experiments, anodic and cathodic peaks were

observed at approximately 3.8 V and 3.15 V, respectively, with

a characteristic pair of redox peaks around 3.47 V correspond-

ing to the charge–discharge reaction of Fe2+/Fe3+. In the rst set,

a minor anodic peak at 4.4 V was also detected, the origin of

which remains unclear but aligns with ndings reported by

Chen et al.65 Our observed peak values, including anodic ones at

3.7 V, cathodic ones at 3.25 V, and half-wave potentials of 3.4 V

at a scan rate of 0.1 mV s−1, closely match those documented in

their study. It is also important to mention that the reference

potential was calibrated against a 5mM ferrocene solution prior

to experimentation.

In the rst set of experiments, a slight shi in anodic peaks

was observed, while the cathodic peak potential remained

constant. The slight increased peak to peak separation, suggests

lower reversibility,66,67 likely due to the higher scan rate62,64 used

in our measurements. However, the experiments were able to

replicate features documented in related literature.65,66 The

growing asymmetry in peaks, observed as measurements pro-

gressed, can be attributed to increasing conductivity

constrains,65 a result of SEI growth at the CE and the RE, as

these were not exchanged between measurements. In the

second set of experiments, consistency was observed across all

CV tests, with only minor variations in samples 4 and 5. The

half-wave potential and peak separation showed a slight shi

towards higher values. These changes in polarization might be

partially attributed to the distance between the WE and the

RE,68 or to an uneven substrate. Despite these complexities, the

overall results from the SDC demonstrated a high degree of

reproducibility across both sets of experiments. The synthesized

CEI outcomes from these data are suitable for further explora-

tion using ex situ techniques.

5.3 Reproducibility at spectroscopic levels

Upon completing both sets of electrochemical experiments, the

electrodes were rinsed with a PC solution, using SDC system to

remove any residual dried electrolyte. Aer drying, an ex situ

Fig. 4 Demonstration of the second cycle of CV profiles derived from high-throughput experimentation utilizing Auto-MISCHBARES. Experi-

ments were applied within a voltage range between 1.8 V and 4.7 V at a scan rate of 5 mV s−1, starting from the OPC in the anodic direction. The

CV curves reveal distinct redox peaks and the anodic peaks align closely at approximately 3.8 V while the corresponding cathodic peaks are

positioned near 3.15 V, indicating similar consistent electrochemical response with a high degree of overlap across all measurements. (a)

illustrates the first set and (b) the second, with each set consisting of six different experiments. For comparative analysis, CV tests that conclude at

the same stop potential between the two batches, are color-matched. The exact termination potentials, corresponding to either the anodic or

cathodic directions, are denoted in the legend. The reported current density is normalized to the mass of LFP, determined by XRFmeasurements

of the Fe signal as a proxy for the LFP content.
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XPS analysis was performed on the initial experimental set to

evaluate the development of the CEI. This analysis identied

various species and functional groups, as demonstrated in

Fig. 5a across all panels, which presents the spectra from

sample 1 (S1) of this set. The C]C peak, representative of the

conductive carbon at the electrode surface, was selected as the

reference with a relative concentration of 1. All subsequent

signals are scaled and normalized to this benchmark.

Within the C 1s region (Fig. 5a, panel I), a variety of carbon-

containing species were identied. Peaks at 284.3 eV and

284.8 eV correspond to sp2 (C]C) and sp3 (C–C) carbon bounds,

respectively. Additional peaks at higher binding energy, such as

286.3 eV, 288.8 eV, and 290.7 eV, were assigned to C–O, carboxyl

(O–C]O), and carbonates CO3 groups. In other samples of this

set, a C]O signal was also detected near 287.8 eV (ESI 7 and 9†).

These signals are complemented by corresponding peaks in the

Fig. 5 Characterization of the synthesized CEI from Auto-MISCHBARES on screen-printed electrode using ex situ XPS analysis. In all panels, (a)

present the XPS spectra of CEI from sample 1 (S1) in the first experimental series, obtained during the second anodic scan at the stopping

potential of 3 V from the CV test. These spectra reveal the diverse chemical composition of this layer, with peaks corresponding to various

functional groups and compounds: (panel I) C 1s spectrum with multiple peaks indicative of carbon-based species, including C–C, C–O, and

contributions from other carbon-oxygen groups. (Panel II) The O 1s spectrum with a peak for C–O bonds. (Panel III) The Li 1s region with

presence of lithium-containing compounds depicted by LiF peak, originating from the decomposition of LiPF6. (Panel IV) The F 1s region

characterized by peaks associated with fluorinated compounds. Each chemical state identified is denoted by a distinct color in the spectra. The

overlaid black line represents the envelope of the aggregated measured data, indicating the sum of contributions from all fitted peaks. The

bottom bar charts (b) provide a comparative analysis of the evolution of XPS signals for various species, observed from the first set and aligned by

sequence of appearance in the CV tests, illustrating the binding energy signatures of specific chemical states within the CEI with relative

concentration at these regions. The C]C peak intensity is set as a reference with the relative concentration of 1, representing the conductive

carbon additive at the electrode surface, with other species normalized to this reference. The relative concentration of C–O in the C 1s region

shows a significant increase from sample 2 (S2) to sample 4 (S4), followed by a decrease in sample 5 (S5). In contrast, the LiF signal in the Li 1s and

F 1s regions decreases up until S4 and then exhibits a sharp increase from S4 to S5. The behavior for LixPFyOz species in the O 1s and F 1s regions

follows a similar pattern to that of the C–O group.

© 2024 The Author(s). Published by the Royal Society of Chemistry Digital Discovery, 2024, 3, 883–895 | 891
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O 1s region, with a major contribution from C–O bonds,

centered at 532.4 eV (Fig. 5a, panel II). In the F 1s spectrum

(Fig. 5a, panel IV), the residuals from the LiPF6 salt is discern-

ible at 688.0 eV. The remaining salt from the rinsing process

suggests a need for further investigation by utilizing EMC or

dimethyl carbonate (DMC) to potentially enhance the efficiency

of the washing procedure, due to their higher LiPF6 and lower

LiF solubility. In the O 1s region, uorophosphates, as degra-

dation products of LiPF6 observed at 534.0 eV, with corre-

sponding signals at 686.6 eV in the F 1s region. The signal for

LiF, indicating the presence of uorinated and lithiated species,

is evident at 684.8 eV in the F 1s and 55.6 eV in the Li 1s region

(Fig. 5a, panel III). The similarity between the C–O and LixPFyOz

compounds reects the dynamic alterations of the CEI

composition throughout the electrochemical cycling process.

Fig. 5b for all panels, illustrate the evolution of the XPS

signals across all the samples of this series. During the anodic

scan of the CV measurement, an increase in the intensity of

signals from organic species, such as C–O is observed in both C

1s and O 1s regions. These signals are attributed to the

decomposition products of the electrolyte and contribute to the

formation of the outer layer of the CEI. Notably, the increase in

these signals becomes apparent in S3, at 4.3 V, coinciding with

the peak of the anodic feature and subsequent potential eleva-

tion, consistent with ndings reported by Kühn et al.56 In

contrast, during the cathodic scan, the intensity of these species

decreases signicantly from 4.6 V to 3.7 V. This pattern further

supported by Fig. 6, exhibiting the C 1s trends across all

samples. The observed increase in organic species during the

anodic scan is indicative of a thickening of the CEI, presumably

due to electrolyte decomposition at elevated voltages, which is

supported by several studies69–72 and evidenced by the reduced

LiF signal from S1 to S4 (Fig. 5b, panel IV). During discharge,

the cathodic scan shows an increasing LiF signal, suggesting

the reformation of LiF, along with a decrease in C–O species.73

At last, the XPS analysis validates the electrochemical data at

every potential, pinpointing key regions within the CV prole.

This correlation further enhances the integrity of our designed

Auto-MISCHBARES workow, contributing to the robustness

and advancement of MAPs.

6 Conclusions

A critical question that arises with high-throughput platforms is

whether they truly accelerate processes or inadvertently cause

deceleration. Answering this, requires considering three key

aspects: reliability, time efficiency, and reproducibility.

Regarding reliability, Auto-MISCHBARES, represents a signi-

cant advancement in laboratory automation and scientic

experimentation by integrating a comprehensive array of key

components for robust, sequential experimentation. It covers

a wide range of functionalities, from conguring and sched-

uling experiments to robust online control assessment, and

provides real-time feedback on critical failures and experi-

mental progress. Encompassing computer vision and statistical

tools, the platform not only ensures the reliability of outcomes

but also streamlines tasks to minimize researcher intervention

and reduce human errors. Its real-time measurement capabil-

ities, enable live visualization and can further optimize the

workow, from data acquisition to comprehensive analysis. The

structured PostgreSQL database environment within the plat-

form efficiently manages data formats, strengthen data corre-

lation across multiple measurements and lays the ground for

transfer learning. In our SDC system, the modications to

mechanical integrity are minimal as opposed to coin cell setups

where disassembly can lead to the breaking of coatings at the

edges of the electrodes, and sometimes even cause the coating

to stick to the separator. Our SDC system is a more reliable and

less intrusive approach to cell handling and is suitable for

applications in electrochemical studies.

Fig. 6 Representation of the XPS spectra in the C 1s region for all samples from the first set of high-throughput experimentation (a–f). The key

potentials at which measurements were paused during the second cycle of CV test are depicted in (g). During the anodic scan (a–d), an increase

in the intensity of signals from organic species, such as C–O, is observed, indicative of the evolving composition of the CEI. During the cathodic

scan (e and f), this intensity decreases significantly.
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To establish time efficiency, our hierarchical framework

demonstrates signicant advantages due to its uninterrupted

operational capabilities, which minimize the need for manual

cell exchanges. For instance, considering our study scenario

where our substrate consists of 121 electrode spots, each

requiring a one-hour CV test. In this case, our Auto-

MISCHBARES platform, using the SDC head, would complete

the measurements in 121 hours, with an additional 10 hours for

rinsing, and moving for a total of 131 hours. In contrast, the

traditional manual approach would require extra time for cell

assembly and disassembly, which takes an experienced

researcher an additional 24 hours. Assuming an 8 hour workday

without breaks, the manual process would span several days.

Additionally, considering the limitation of processing only

about 10 coin cells simultaneously due to channel availability in

the cycler, this manual approach could extend the duration

even further. While the measurement times are similar between

our platform and manual methods, our framework's ability to

operate continuously substantially enhances the time effi-

ciency. As demonstrated in our previous study,30 the capability

of our framework for parallelization across multiple SDCs as

well as its integration with AL frameworks can further accelerate

the process.

To address the nal aspect of reproducibility, our platform

proves validity in both electrode fabrication and electro-

chemical measurements. The use of screen-printing to create

miniaturized, dened areas of measurement not only saves

materials but also facilitates automated ex situ analysis. This is

attributed to the precisely arranged grid of measurement posi-

tions established by the screen-printed mask on the substrate.

Further enhancements in future studies can be achieved by

integrating XRF measurement results into the platform, allow-

ing for the identication of mask defects and the selection of

points with minimal deviation, thus reducing issues related to

electrode thickness variation. Such variations can also affect the

distance between the WE and RE, potentially leading to devia-

tions in measurements.64 These challenges can be further

minimized by directly coating onto the substrate holder and

avoid the use of a bendable foil for electrode fabrication. The

consistency of our high-throughput electrochemical protocols,

along with their correlation with XPS results that align with

ndings in the literature, further underscore the reproducibility

and delity of our system. Auto-MISCHBARES enables in-depth

investigation into the synthesis of SEI/CEI, especially for post-

lithium battery materials, an area that still holds vast poten-

tial for exploration. It should be noted that the proposed elec-

trochemical experimentation setup is bound by the availability

of the measurement devices and their licensed soware.

However, through the modularity and agnosticism of the plat-

form, Auto-MISCHBARES can be expanded with minimal effort

following the provided templates to include any laboratory

device needed for any specic experimental scenario.

Integrating the comprehensive capabilities of our platform,

we establish a trustworthy foundation with online analytical

characterization, robust data delity and management systems.

This integration facilitates the incorporation of ML and AL

algorithms, enhancing decision-making and accelerating

material optimization. Our hierarchical web server framework,

which has been previously integrated with AL, now allows for

further integration with more complex experimental planning

algorithms such as Chimera74 and Griffyn.75 Additionally, for

future study, the inclusion of cutting-edge approaches such as

large language modeling (LLM) can further assist researchers,13

steering us towards the ultimate goal of a fully reliable material

acceleration platforms. Our user-friendly framework,

committed to digitalization and technological integration,

represents a crucial step towards the development of fully

autonomous laboratories, which can signicantly expanding

the scope of scientic exploration.

Additional information

Additional information can be found in the ESI.†

Data and code availability

Data, supporting the ndings of this study, are available online

at https://doi.org/10.5281/zenodo.10444324. The Auto-

MISCHBARES framework44 can be cloned from https://

github.com/fuzhanrahmanian/MISCHBARES. In addition,

videos recorded from our fully autonomous workow50 can be

accessed at https://doi.org/10.5281/zenodo.10445749.
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5. Conclusion and Outlook

“We must develop a comprehensive and globally shared view of how technology

is affecting our lives and reshaping our economic, social, cultural, and human

environments. There has never been a time of greater promise, or greater peril.”

— Klaus Schwab

This chapter expounds the conclusive thoughts and realizations of the presented
dissertation, along with a perspective on the future of this field and an additional
personal viewpoint on the ethical considerations involved in the development of AI
tools.

5.1. In aid of digital intelligence

This dissertation introduces an ensemble of digitalization tools and enablers from in-
terdisciplinary domains, such as informatics, data analytics, and artificial intelligence,
designed for developing reliable Materials Acceleration Platforms. It elucidates how
the strategic integration of these tools advances the functionality and efficiency of
these frameworks and enables digitizable knowledge creation in machine-readable
formats. The endeavors begin with the implementation and demonstration of a
high-throughput orchestration platform, HELAO, designed to enable modular au-
tonomous feedback loops for experimental processes. This framework utilizes FastAPI
for communication across distributed hardware and software laboratory systems,
which facilitates system interoperability and broadens the principles of the Internet of
Things to scientific research. This closed-loop architecture also incorporates machine
learning algorithms to dynamically optimize experimental parameters through an
iterative process and further supports parallelization and multi-threading. Addition-
ally, it adheres to research data management standards by documenting every step of
the experimental processes, including inputs, outputs, and metadata. A simulated
example illustrates how the framework accelerates insight generation and achieves a
reduced “time to solution”.

The project then elaborates on the deployment of an open-source analysis software
package, MADAP, tailored for electrochemical tests. Its architecture, developed with
an abstract design and enhanced by a variety of data-driven algorithms, provides a
modular and versatile framework. The software maintains transparency throughout
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operational stages, from initial execution to modeling and fitting, and, in compliance
with the FAIR data principle, it records all these steps and configurations. Addition-
ally, MADAP delivers immediate analytical insights for researchers by providing
comprehensive visualizations through a user-friendly interface design. The disser-
tation advances the discourse on factors in efficient modeling and enhances their
explainability through two applications. On one hand, the one-shot active learning
pipeline illustrates the role of rich prior knowledge in optimizing learning processes
and the interpretability of polynomial models for insightful decision-making; on the
other hand, ARCANA, a highly regularized deep sequence-to-sequence framework,
represents its unique architectural design through a high level of explainability, gen-
eralization, and transparency. It validates the framework’s robustness with bespoke,
customized model elements and provides local explainability through attention scores.
The model further quantifies prediction uncertainty and analyses the impact of input
variability on predicting battery lifetime parameters. Its capability for multi-output
prediction further elucidates its rationale for decision-making. This framework’s
versatile and adaptable design remains agnostic across various applications, and
its modular architecture supports various operational modes, including training,
tuning, predicting, and fine-tuning. This pipeline, deployed as a Python package and
grounded in FAIR principles, accelerates the testing process, is especially beneficial
for lengthy cycling procedures, and enhances optimization capabilities through active
learning and real-time monitoring. The model highlights the significance of data-
centric approaches by evaluating the impact of data size and quality on predictions
and validating the applications’ utility and fidelity.

Lastly, the Auto-MISCHBARES framework is presented, which integrates various
developed tools alongside two additional components, namely a data infrastructure
utilizing a locally hosted PostgreSQL database for data management and storage, and
quality control protocols for validating experimental steps. This framework allows
users to conduct numerous experimental procedures through a modular web interface.
Additional functionalities, such as a live visualizer and chatbot, enable researchers to
monitor intermediate measurements in real-time and stay informed throughout a fully
autonomous experimentation process. The framework’s functionality is demonstrated
using a miniaturized scanning droplet cell setup for electrochemical experiments.
This downsampled setup minimizes material usage and further accelerates data
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generation through high-throughput experimental settings. Auto-MISCHBARES
demonstrates reliability, reproducibility, and autonomy, making it suitable for au-
tonomous platforms.

Conclusively, revisiting the research question outlined at the outset of this disserta-
tion, whether the integration of AI technology and informatics tools can accelerate
insights in battery-related studies, the response is unequivocally affirmative. The
effective deployment of these tools can accelerate the discovery and understanding
in this field. However, achieving such acceleration is contingent upon maintaining
transparency at various levels of granularity. This includes functional transparency,
which describes the underlying mechanisms of algorithms, structural transparency,
detailing the execution processes of each algorithm, and run transparency, which
requires a thorough grasp of how the system integrates and interacts with various
elements. All frameworks developed within this thesis adhere to these transparency
standards. Beyond these principles, these systems, in particular ARCANA and Auto-
MISCHBARES, provide the groundwork for explainability and interpretability to
elucidate the processes and reasoning behind decisions. Offering holistic explanations
and localized insights becomes essential where decisions originate solely from auto-
mated processes, which might otherwise promote automation bias, the presumption
of correctness based on perceived objectivity. Additionally, the commitment to democ-
ratizing AI and ensuring ethical practices in technology deployment is emphasized
by the open-source availability of all project deliverables, covering both software and
data.

The suite of tools has proven indispensable in designing a robust Materials Accelera-
tion Platform and positions it at the forefront of self-driving laboratory realization.
Its broad applicability extends from small-scale laboratory settings to expansive man-
ufacturing facilities, suggesting insights across various scales. Many material systems
remain unexplored; strategically deploying these tools can unlock their potential
and accelerate breakthroughs in scientific discoveries. It can be therefore concluded
that the reliance on digital tools and frameworks is beneficial for advancing energy
storage technology and offering more defined strategies for green energy solutions,
an intertwining that can and will sustain the ecological responsibility of the scientific
community.

189



5. Conclusion and Outlook

5.2. Perspectives on scalable efforts

Looking back to the beginning of this work, it is now clear that the success of
next-generation batteries fundamentally depends on the dimensions of "time" and
"data availability." The most influential factor will be the strategic integration and
utilization of AI enablers within the architectural framework of acceleration plat-
forms, which must comply with the FAIR principles. In the near term, the focus will
be on expanding MAPs for battery materials optimization methodologies through
improved explainability and integration of large language models i.e., GTPs, that
will assist researchers as co-scientists in a variety of tasks spanning from reporting to
documentation or code execution and advanced literature research.

In addition, the emerging Digital Twin technology will allow for the real-time diag-
nostic of equipment performance and the optimization of battery chemistries and
protocols. The path forward also involves a concerted effort towards standardization,
interoperability, and interchangeability where digitally mirrored components and
physical systems interact seamlessly, with the goal of overcoming the physicochemical
barriers of battery optimization. The information flow from all data creators will
be exposed to advanced AI toolkits, allowing the resulting model predictions to be
continuously updated and the learning processes to be dynamically adapted. These
innovations draw a future where AI not only speeds up material discovery but also
ensures sustainability and precision in production, closing the loop from material
discovery to commercialization. The holistic integration of these digital systems and
their AI-assisted software will allow for the predictive modeling of battery life cycles
and behaviors, ensuring that every aspect of production is enhanced and aligned
with the demands of modern energy solutions.

5.3. Ethics for the present and the future

In the past century, scientists awakened the power of the atom, and this century
is turning out to be the one in which scientists are awakening the power of AI. In-
creasingly, it appears inevitable that we will develop a General Artificial Intelligence
possessing the sophistication necessary to transcend its initial programming and
operational confines to tackle challenges not envisioned by either the designers or
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the users. The digital timescale is accelerating, surpassing the gradual biological
evolution that has carried humanity to and on the moon during mere slivers of our
250,000 existential generations. Today, central processing units operate at gigahertz
speeds, overtaking the limits of the natural plasticity of the remarkable biology of
our brain. Shortly, AI may not only complement but assume distinct social roles,
necessitating new standards in design for transparency, predictability, and ethical
alignment. Sufficiently general AI algorithms will evolve beyond predictable environ-
ments, necessitating adaptation to ensure safety and to embed ethical considerations.
The objectives we set for AI, the parameters within which it seeks optimization, and,
conclusively, acceleration, must reflect ethical values that align with our deepest
moral convictions as an evolved species. In other words, the superintelligence that
humanity is assembling, beyond the singularity, should be capable of superethics,
an advanced form of ethical reasoning consistent within current frameworks and
adaptable to unforeseen contexts. Our current and future ethical standards should be
incorporated into today’s designs, steering AI through present-day challenges and
future scenarios along our shared trajectory. In the context of MAPs and automation,
this means considering data privacy and intellectual property rights amidst extensive
data sharing and biases in AI algorithms that may influence experimental outcomes
and material properties. Concurrently, a pressing societal urgency in addressing
global climatic challenges relies on an accelerated process that goes from scientific
discovery to commercialization. Finding the safety and ethical balance is an endeavor
that adds another layer of complexity to the possibly most significant human achieve-
ment represented by general Artificial Intelligence. Nick Bostrom, contemporary
philosopher and founder of the Future of Humanity Institute at Oxford University,
can be quoted saying, ’Machine intelligence is the last invention that humanity will
ever need to make’ in a warning of the fading control of humanity over scientific
discovery. Facing the reality that machines may soon surpass human capabilities
in cognitive speed, trust, and intelligence, our ethical expectations and standards
should rise, and AI should not merely replicate human decency but achieve, instead,
unreached levels of excellence.
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1.1. Comparative overview of material design strategies, namely direct and
inverse approaches. In the direct approach, experiments include the
entire range of possible combinations of materials A and B through
HTE or manual experimentation. This process segregates regions
based on a prior search into physically infeasible areas (inaccessible)
and previously explored (quantified) regions, while also identifying
unmeasured (under exploration) and unknown (uncharted) ones. Here,
the combinations of each material with their known ACS, are explored
for a potential functionality P(ACS). In contrast, the inverse strategy
reverses the sequence by estimating the target functionality, P(ACS),
and guides the search toward optimal ACS combinations in fewer steps.
This approach is illustrated in a contour plot, where the estimated
functionality is derived from the quantified ACS data from the lower
grid space, and the measurements are directed to compounds with
predicted maximized functionality53. Such a strategy enables a more
efficient, targeted exploration and can accelerate the discovery of novel
materials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
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1.2. Schematic representation of MAPs. The process begins by collecting
prior knowledge, such as empirical data, literature reviews, and sta-
tistical analyses of previous experiments. This information is then
used by the scientist to formulate a hypothesis for a research question.
Following this step, the MAPs carry out an iterative high-throughput
experiment using a closed-loop feedback mechanism that integrates
the robotic experimentation platform, real-time analysis, and AI/ML-
driven algorithms to optimize experimental parameters and plan the
subsequent run. This iterative process is orchestrated by web inter-
faces that communicate between devices and servers at every stage
to accelerate data transfer. Every phase, from setup and prepara-
tion to characterization, is stored in a unified data repository and is
documented in reports that adhere to FAIR data principles. . . . . . . 9

1.3. An overview of the data and information flow across various domains
in the BIG-MAP project196. It showcases the integration of experimental
workflows, computational tools, and data-driven strategies within a
unified and shared data infrastructure. Herein, standardized protocols
and ontologies, together with public repositories, ensure data exchange
and interoperability across theoretical, experimental, and AI-driven
domains. The commitment to FAIR principles187 is further reinforced
by the open-source publication of data in the cloud and the collection
of tools and developed software within the BIG-MAP registry199 to
allow for efficient collaboration among project partners. Applications
such as SDLabs, HELAO, and tomato for experimental design and
laboratory automation are curated, along with computational resources
such as the SEI Modeler and Quantum Espresso. Other applications,
including PRISMA and EVA, are designed for spectral characterization
and electrochemical analysis. The BIG-MAP project is a collaborative
platform that aims to unravel the complexities of batteries from mate-
rials development to end-use applications to ultimately accelerate and
advance the frontiers of energy storage technology. . . . . . . . . . . . 18
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1.4. Tracing the trajectory of chronological scientific innovation, this fig-
ure encapsulates the evolution of data repositories, AI technology,
and MAPs through four paradigm shifts, including empirical, the-
oretical, computational, and data-driven science24. It illustrates the
progression from Edison’s methodical materials experiments in 1870s,
which established the basis for HTE25, to the introduction of systematic
DoE approaches in the early 20th century26. Initial databases such
the CSD204 and the ICSD205 laid the groundwork for the integration
of materials science into the digital age after the emergence of the
term AI in 195632. Advancements in CMS1 were initiated by Hanak’s
gradient libraries in the 197036 and Xiang’s optimization of solid-state
material in 199538. These, among other efforts, resulted in MGI, which
aimed to reduce development time and cost69, 71 of experimentation.
The Materials Project66 and OQMD72 were among the core outcomes
of this initiative. The evolution of additional repositories, such as
AFLOW67, 68 along with technological advances, led to the coining of
the term MAPs in 201818. Among these platforms, ARES stands out
as one of the inaugural MAPs94. Others, such as ChemOS102, 100 and
ESCALATE111, contribute to orchestration and data management. In
parallel, the AI leaps forward with advanced models such as GANs
and libraries like TensorFlow and PyTorch24, 27. This further accel-
erates the development of repositories such as NOMAD206, 207, and
Material’s Cloud186. All these progressions led to the growth of MAPs,
including RAPID112, Ada109, and AMANDA108, among others. In the
battery-related studies, the figure highlights platforms such CLO163,
Clio140, and ExpFlow208. In this research domain, the BIG-MAP196, 10

project is the largest European collaborative platform that aims to
advance material studies for the next generation of batteries. These
endeavors are presented as introductions to the present era, where the
term MAPs has evolved into SDLs102, 209. Recent advancements in AI
such as AlphaFlow210, A-Lab211, and BayBE212, 213 represent an addi-
tional step towards a potential scientific singularity, an event where
AI-enabled materials discovery may exceed human capabilities and
trigger a transformative shift of explorative power. . . . . . . . . . . . 20
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2.1. Design of enablers and tools for a reliable materials acceleration plat-
form for battery-related studies engineered for the fulfillment of this
thesis’ objectives and achieved through the integration of various build-
ing blocks. These include the development of hardware components for
the experimental setup (SDC), the design of an asynchronous Python-
based web interface for orchestrating sequential or parallel experiments
for orchestration (HELAO), the implementation of a real-time qual-
ity control mechanism, the development of a data analysis package
(MADAP), the design of a FAIR-based data management system, a
user-friendly interface, and two AI-based frameworks. In particular,
an ML pipeline for active learning applications and a DL pipeline for
predicting high-dimensional scenarios such as battery lifetime (AR-
CANA). Together, these tools contribute to an advanced intelligent
acceleration platform (Auto-MISCHBARES). . . . . . . . . . . . . . . . 24

3.1. Schematic representation of concurrent multithreading system, where
the non-blocking execution of tasks is achieved through parallelism
across multiple CPU cores and concurrency within threads. Here,
each horizontal lane represents a single thread running in parallel
with others. Threads 1 and 2 illustrate the concurrent execution of a
sequence of experimental tasks in separate setups. Thread 3 manages
real-time auto-inspection and dynamic data management tasks, and
Thread 4 maintains a live visualization throughout the operation. This
depiction exemplifies the two different types of executions applicable
in the design of laboratory automation frameworks. . . . . . . . . . . . 29

3.2. An asynchronous event-driven execution framework, where multiple
tasks submit requests to an event queue. A single-threaded, non-
blocking event loop processes these requests and orchestrates the
execution flow by scheduling and delegating events in the queue and
registering callbacks without awaiting operation completion. Once
operations are finished, the registered callbacks will be triggered, and
the event loop will continue to process new requests. Completed
responses are asynchronously returned to the tasks. . . . . . . . . . . . 30
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3.3. Illustration of the API communication process and endpoint configu-
ration in the FastAPI framework, showcased at an exemplary function,
which contains the components of an API request and its correspond-
ing validation mechanism. The provided code snippet shows a FastAPI
POST decorator that defines an asynchronous endpoint. This request
includes experiment_id as the path parameter for unique experiment
identification and the query parameter experiment_type. Addition-
ally, this example illustrates the request header, scientists_username,
implemented for tracking and authentication. The Experiment class,
which inherits from the BaseModel module of the Pydantic package,
defines the schema of the request body, with attributes such as de-
scription, duration, and voltage. This is used to validate the type of
the incoming request. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4. Overview of RDM lifecycle. This diagram illustrates the sequential
phases of RDM, beginning with Project Planning, where strategies
for data management and compliance with FAIR principles187 are
established. It progresses through Data Acquisition and Preprocessing
to create and structure the planned databases and assure data quality.
The next phase continues with the Analysis and Prediction, where AI,
ML, and statistical algorithms are applied, and code developments
are supported by version control systems. In the following phase,
data sharing is achieved through visualization tools such as Matplotlib
and Plotly234 and results are shared via interactive web UIs or GUIs.
The cycle is completed with the Access and Reuse of data across local
storage or cloud-based repositories such as Zenodo235 to facilitate its
extended use and impact. . . . . . . . . . . . . . . . . . . . . . . . . . . 34
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3.5. A feedback loop for high-throughput experimentation. The schematic
illustrates a closed-loop system, initiating with a randomly selected
trial from a predefined list of experiments. The automated sequential
process includes testing, measurement, and data analysis to derive the
experiment’s FOM that is then incorporated into an AL framework;
here, the data of the completed experiment is added to the training
dataset and is simultaneously removed from the testing queue. The
selected ML model, represented here by a RF regressor, is retrained
with the updated dataset and proceeds to predict the FOM for the
remaining unsampled trials, accompanied by an estimated mean (µ)
and standard deviation (σ). Following this prediction, an acquisition
function, represented here by an upper confidence bound heuristic,
is applied to acquire these predictions to target areas of the greatest
model uncertainty. This function balances between explorative and
exploitative strategies via a tunable parameter, λ . The experiment that
maximizes the acquisition function’s criteria is thus selected for the
subsequent execution, with its parameters sent to the devices. This
iterative feedback loop perpetuates until a predefined experimental
budget is reached or the optimal solution within the search space is
empirically determined. . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.6. Estimation of prediction interval using the jackknife+ method. The
series of panels enclosed in the yellow frame represents the model
evaluations (M1, . . . , M17, . . . , M25, . . . ), with each model trained on
subsets of the data excluding one observation (X−i) in successive LOO
iterations to calculate the corresponding conformity score from the
residual error. The process loops across the entire training dataset. The
rightmost panel combines all these evaluations, utilizing the empirical
quantiles of the conformity scores to establish the prediction interval
for new observations, depicted as a shaded area. This provides a
reliable measure of uncertainty for future predictions. . . . . . . . . . 43
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3.7. The schematic illustration of common neural network activation func-
tions and their derivatives. a) represents the sigmoid activation func-
tion, which maps input to values between 0 and 1, and its derivative,
which is maximal at the function’s inflection point, indicating maxi-
mum input sensitivity. b) depicts the tanh function, which produces
outputs ranging from −1 to 1, with its derivative reaching its highest
absolute value at the origin. c) presents the Leaky ReLU activation
function, which prevents gradient vanishing during backpropagation
for negative inputs by allowing a small and non-zero gradient. The
derivative of this function maintains a constant positive slope for neg-
ative inputs and a slope of one for positive ones. . . . . . . . . . . . . . 45

3.8. Schematic of an RNN. The circuit diagram on the left illustrates the
compact cyclic architecture of an RNN in which the hidden state h, is
recurrently updated based on the current input (x) and the previous
states. This update process is parameterized by weight matrices U and
W, for input-to-hidden and hidden-to-hidden connections, respectively.
The graph on the right side depicts the unfolded RNN across multiple
time steps, detailing the processing of input sequences. At each time
step t, the hidden state is updated by applying a tanh activation func-
tion to the weighted sum of the input x(t) and the previous hidden state
h(t−1). The output y(t) at this time step is then calculated from the hid-
den state through another transformation involving the weight matrix
V, which connects this state to the output. This unfolded computa-
tional graph demonstrates how RNN captures temporal dependencies
within sequences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
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3.9. Schematic representation of an LSTM unit during the t-th time step.
This structure illustrates the information flow from the input vector
(x(t)), the previous hidden state (h(t−1)), and the cell state (s(t−1))
through various gates: the forget f (t), input g(t)q(t), and output gate
o(t). Each gate executes a pointwise operation that combines x(t),
h(t−1), and their corresponding weights with their bias, subsequently
passing through a non-linear activation function. The forget gate
calculates the amount of short-term information remembered from
h(t−1) in the long-term memory s(t−1) while ignoring the rest. The
input gate consists of two sections that decide both the quantity of
short-term information to be acquired and its proportion to be stored
in the long-term memory. The combination of these two gates results
in a state update, which is the new long-term memory, s(t). Lastly,
the information from the output gate is multiplied by the transformed
updated cell state, resulting in a new hidden state, h(t). . . . . . . . . . 49

3.10. The electrochemical process of a rechargeable Li-ion battery during
charging and discharging cycles is illustrated by the "rocking chair"
model. The anode consists of a graphite-based composite on a copper
current collector, and the cathode comprises LFP on an aluminum
foil. The direction of electron and lithium-ion flow is indicated by the
orange and blue arrows for charge and discharge. Lithium ions are
transferred during charging from the cathode to the anode across the
electrolyte and intercalate into the graphite layers. This is accompanied
by the flow of electrons through the external circuit, resulting in a
reduction reaction within the anode to balance the charge. Reversely,
the discharge process involves the deintercalation of lithium ions from
the graphite layers at the anode, whereby they flow back through the
electrolyte and towards the cathode, with electrons traveling through
the external circuit to the aluminum sheet, thus delivering electric
energy. Crystal structures of LFP, FePO4, and graphite were obtained
from the Materials Project66. . . . . . . . . . . . . . . . . . . . . . . . . 54
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3.11. Schematic representation of Nyquist plot illustrating the impedance
characteristics of a Randles ECM over a wide range of frequencies.
The circuit elements consist of the solution resistance Rs, which is
positioned at the highest frequency and intercepts on the real axis,
representing the ionic transport resistance of the electrolyte. The
charge transfer resistance, Rct, is indicative of the kinetic barriers at the
electrode-electrolyte interface, and the capacitance, Cdl, is representa-
tive of the accumulated charge in the electrode’s double layer. All these
charge transfer-controlled features can be observed in the semicircle
in the Nyquist plot. The total impedance at low-frequency intercept
on the real axis is the sum of Rs and Rct. The line at a 45° angle is
indicative of a Warburg impedance Zw, which models the mass transfer
limitations, such as the diffusion of lithium ions in the electrolyte. It is
important to note that in non-ideal systems, variations in electrolyte
properties and electrode surface conditions result in deviations from
ideal capacitive behavior. These deviations can be modeled by a con-
stant phase element, which alters the representation of the Nyquist
plot from ideal behavior281. . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.12. Schematic presentation of a voltammogram obtained from a CV test.
The graph illustrates a curve obtained during a potential sweep, includ-
ing anodic and cathodic scans, that recorded the current responses. In
the forward pass, an oxidation reaction occurs, followed by the double
layer’s charging and an anodic peak(Epa, Ipa). During the backward
scan, the oxidized species are reduced, resulting in a cathodic peak
(Epc, Ipc). The peaks provide further insights into the reversibility of
the electrochemical system. . . . . . . . . . . . . . . . . . . . . . . . . . 58
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Abbreviations

ACID atomicity, consistency, isolation, and durability.

ACS atomic fingerprint, composition, and structure.

AFLOW Automatic-FLOW.

AI Artificial Intelligence.

AL Active Learning.

AMANDA Autonomous Materials and Device Application Platform.

ANNs Aritificial Neural Networks.

API Application Programming Interface.

ARCANA Attention-based ReCurrent Algorithm for Neural Analysis.

ARES Autonomous Research System.

ASGI Asynchronous Server Gateway Interface.

Auto-MISCHBARES autonomous millimeter scale high-throughput battery research
system.

BattINFO Battery interface ontology.

BayBE Bayesian Back End.

BEAR Bayesian experimental autonomous researcher.

BIG-MAP Battery Interface Genome – Materials Acceleration Platform.

BMS battery management systems.

BO Bayesian Optimization.
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Abbreviations

BPTT backward propagation through time.

CAMEO closed-loop, autonomous system for materials exploration and optimiza-
tion.

CE coulombic efficiency.

CEI cathode electrolyte interphase.

ChASM Chemical Assembly.

CLO closed-loop optimization.

CMS Combinatorial Materials Sciences.

CNN Convolutional Netral Network.

CNTs carbon nanotubes.

CPUs Central Processing Units.

CRUD Create, Read, Update, Delete.

CSD Cambridge Structural Database.

CV cyclic voltammetry.

DL Deep Learning.

DMPs data management plans.

DMS Data Management System.

DoE Design of Experiments.

EaaS Experiment-as-a-Service.

EC ethylene carbonate.

ECM equivalent circuit model.

EIS Electrochemical Impedance Spectroscopy.
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Abbreviations

EMMC European Materials Modelling Council.

EMMO Europeean Materials Modelling Ontology.

ESCALATE Experiment Specification, Capture and Laboratory Automation Technol-
ogy.

ESS energy storage solutions.

FAIR Findable, Accessible, Interoperable, and Reusable.

FFNNs feed-forward neural networks.

FOM figure-of-merit.

GANs Generative Adversarial Networks.

GAs genetic algorithms.

GIL Global Interpreter Lock.

GPUs Graphics Processing Units.

GRU Gated Recurrent Units.

GUI graphical user interface.

HELAO hierarchical autonomous laboratory automation and orchestration.

HGP Human Genome Project.

HTE High-Throughput Experimentation.

I/O Input/Output.

ICSD Inorganic Crystal Structure Database.

i.i.d. independent and identically distributed.

Leaky ReLU leaky rectified linear unit.

LFP lithium iron phosphate.
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Abbreviations

LIBs Lithium-ion batteries.

LiBs Lithium-ion batteries.

LiPF6 lithium hexafluorophosphate.

LLMs Large Language Models.

LOO leave-one-out.

LSTM long short term memory.

MADAP Modular and Autonomous Data Analysis Platform.

MAOS Materials Acceleration Operation System.

MAPs Materials Acceleration Platforms.

MGI Material Genome Initiative.

ML machine learning.

MSE mean square error.

NLP Natural Languages Processing.

NOMAD Novel Materials Discovery.

OOP Object Oriented Programming.

OQMD Open Quantum Materials Database.

PC propylene carbonate.

QRL quality, reliability, and life.

RAPID Robot-Accelerated Perovskite Investigation and Discovery.

RDBMS relational database management system.

RDM Research Data Management.
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Abbreviations

REST Representational State Transfer.

RF random forest.

RL reinforcement learning.

RMSE root mean squared error.

RNN Recurrent Neural Network.

SDC Scanning Droplet Cell.

SDLs Self-Driving Laboratories.

SEI solid electrolyte interphase.

Seq-to-Seq sequence-to-sequence.

SoH State of Health.

tanh hyperbolic tangent.

TDD test-driven development.

TRL Technology Readiness Level.

UI User Interface.

UUIDs Universally Unique Identifiers.

VAE variational autoencoder.

VR virtual reality.

w.r.t. with respect to.

XPS X-ray photoelectron spectroscopy.
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