
Technische Universität München
TUM School of Engineering and Design

Data-driven battery state estimation

Jacob Clay Hamar, M.Sc.

Vollständiger Abdruck der von der TUM School of Engineering and Design der Technischen Universität
München zur Erlangung des akademischen Grades eines

Doktors der Ingenieurswissenschaften (Dr.-Ing.)

genehmigten Dissertation.

Vorsitz: Prof. Dr.-Ing. Markus Lienkamp
Prüfende der Dissertation: 1. Prof. Dr.-Ing. Andreas Jossen

2. Prof. Dr.-Ing. Fridolin Röder

Die Dissertation wurde am 23.05.2024 bei der Technischen Universität München eingereicht und durch
die TUM School of Engineering and Design am 01.10.2024 angenommen.





Foreword

This dissertation was made possible by the support of the Techinische Universität München (TUM)
and the Bayrische Motoren Werke AG (BMW) under the supervision of Prof. Dr.-Ing. Andreas Jossen
and Dr.-Ing Simon Erhard. Financial support was provided by the BMW AG, with academic and
laboratory support provided by the TUM.

A special thanks is owed to Prof. Dr.-Ing. Andreas Jossen for the opportunity to pursue this col-
laborative thesis, for the intensive discussions and guidance and for the great trust to undertake this
research effort with the Chair of Electrical Energy Storage Technology.

This thesis afforded the chance to forge many new friendships, with those that helped academically
and emotionally, providing a strong foundation for research and in the end making this entire work
possible. To Chris Zoerr, Christian Raubitschek, Thomas Kellner, Sebastian Ludwig, Julius Schmitt,
Johannes Sturm, Tobias Hofmann, Ludwig Kraft and Marcel Rogge, it has been a pleasure working
with each of you and for all of your critical feedback, I am very grateful.

Finally, to my family, who supported me even from across the ocean, and to my wife, the most heartfelt
of thanks. Your belief and unrelenting love helped provide the fortitude and strength to follow my
ambition, and complete this dissertation.

Jacob Clay Hamar
München, 2023

c





Abstract

The explosive growth in the electric vehicle market over the last decade has provided both the challenge
of encouraging customer acceptance by ensuring safe and robust functionality, as well as, the possibility
to develop innovative functions using the massive amounts of data generated by the expanding fleet of
electric vehicles. In order to address the issues of safety and reliability, understanding the state of the
battery is essential. State estimation of batteries is a broad field of research which will be analyzed
primarily through the lens of battery aging. Aiding this research is machine learning– a growing
field offering methods for extracting insights into the complex electrochemical system of batteries
using large data-sets. In this work battery aging is contextualized using real-world data from battery
electric vehicles, and methods for improving state estimation using this data are proposed.

The main body of work is comprised of three papers, each exploring battery state estimation with a
focus on battery aging. The first study addresses the consequence of a changepoint. More specifically,
it seeks to understand how the alternation from one operation condition to another affects the total
aging state, known as path dependent aging. For this, a robust aging study was conducted including
six complimentary aging conditions. By defining alternating paths, the aging behavior under various
cycling frequencies, temperature and C-rate conditions was explored. The result of this study gives
evidence that path dependent aging behavior does exist and should not be dismissed or assumed
negligible. Including path dependence in existing models would add to an already complex task, which
is where the advantage of machine learning can provide support.

Two papers explore the applicability of various machine learning models to support the complex task
of battery state estimation using real-world and electric-vehicle inspired data. The first approach
integrates data-driven and conventional battery state estimation methods for state-of-health estima-
tion yielding a semi-empirical model with k-means clustering, an unsupervised learning technique for
clustering larger data sets into sub-categories, and a neural network based model that is accurate
within 3.4 % under real-world conditions. The final paper showcases the applicability of more modern
regression techniques, for predicting non-measurable internal states of the battery, like the anode po-
tential. Also discussed in the paper is the trade-off between the computational resource demand of the
data-driven approach and accuracy, with more traditional regression algorithms requiring only a few
kilobytes of storage yielding an error of 13 mV, to the previously mentioned random forest requiring
over 100 Mb but offering an error of only 2.6 mV.

The broad toolkit within the machine learning space, when coupled with a high quality data set,
demonstrates advantages to other methods such as the equivalent circuit model, which can oversimplify
complex behavior, or the pseudo two-dimensional model, which is too computationally complex for
many applications, even when not considering path-dependent aging. That being said, these methods
are best used in tandem and should support each other to provide the most suitable state-estimation
approach given the specifics of the task, whether it be online in the battery management system, in
the cloud, or somewhere in between.
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1 Introduction

More than 10 million electric vehicles (EVs) drove on the world’s roads in 2020 with the purchase
of full battery electric vehicles (BEVs) driving the growth of the electrified fleet [1]. The mobility
sector has invested heavily in battery storage technology to facilitate what is known as the ’energy
transition’ [2], leading to an increased demand in EVs. The transition from combustion drive-trains to
electric drive-trains is being propelled by consumer preference, industry production and government
support.

Year after year, consumer spending on EVs continues to rise, even as government support stabilizes [3].
One of the main benefits, motivated by consumer demand, is that the increase in EVs has led to
a reduction in the global green house gas emission [4]. It is estimated that more than one third
of consumers are willing to pay more for sustainability, and 85 % of consumers have become more
environmentally conscious [5]. The demand for more sustainable products is sector agnostic, with
consumers demanding eco-friendly packaging, energy efficient lighting, and locally-sourced produce,
as well as, EVs in order to help combat the looming climate crisis. This new, sustainability-minded,
consumer is helping absorb the costs of transitioning to greener transportation as they are willing to
pay for the more expensive technology, helping support manufacturers’ decision to invest in innovation.

Auto manufacturers are also playing an essential role in the global switch to EVs. Eighteen of the 20
largest original equipment manufacturers (OEMs) have committed to increasing the offer and sale of
EVs [1], with some of the most ambitious pledges coming from Ford and Volvo who are committing to
100 % EV sales from 2026 and 2030, respectively. It is projected that the global automotive market
share of EVs will reach 43 % by 2030 [6]. EVs alone are responsible for a 50 MtCO2 reduction in
2020 and their positive contribution is projected to increase up to 410 MtCO2 in 2030 [4]. Although
strengthening consumer demand is helping offset the investment in EV technology, many OEMs have
committed to investing in the complete overhaul in their supply-chain and production facilities despite
the uncertainty of whether EVs will be the profitable mobility solution in the future.

Governments, for their part, are also helping create policies and incentives to mitigate the risks for the
technology transition and help prop-up consumer demand in green solutions. More than 20 countries
have electrification targets or internal combustion engine bans for cars, and eight countries plus the
European Union (EU) have announced net-zero carbon emission pledges with target dates as early as
2030 [3]. Policy initiatives such as the EU Green New Deal, extension of the New Electric Vehicle
subsidy program in China and even the 2020 Covid Stimulus in the US are in large part responsible
for the 40 % year over year growth of EV sales in recent years, despite extraordinary economic head-
winds [3]. Europe and China continue to push the most progressive policy agendas for EV markets [3].
Europe is leading the way with an EV market share of 34.6 % in Q1/2021, China follows with 11 %
and the USA with 7.3 % [7].

The key enabler to this green, sustainable, emission-saving technology is the battery. In early 2021,
the European Commission announced a 2.9 billion Euro fund to support battery manufacturing and
research [8]. That is on top of an estimated 60 billion Euro that European governments and automakers
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1 Introduction

invested in EVs and batteries. This significant investment has already been directly attributed to
more stringent CO2 emissions targets [9]. As consumers, producers and governments all align on
decarbonizing the mobility sector, enormous pressure is being placed on the electric battery system
propelling these vehicles. The battery alone contributes to 45 % of the total vehicle costs [10] and has
a significant influence on consumer acceptance by determining the range and lifetime of the vehicle.
As such, one of the most effective ways to further support the diffusion of EVs into the market is
to maximize the usable battery energy, which can only be achieved in combination with innovative
production technologies and highly accurate battery state estimation methods helping to optimize the
available energy over the vehicle lifetime.

A by-product of the transition within the automotive sector is the rapid expansion of battery behavior
data. The advent of Industry 4.0, or Internet-of-Things (IoT), is not unique to the electric mobility
sector, but the generation of petabytes of data-stores has led to a race within the automotive industry
to capitalize on data-driven methods to generate a marketable benefit to consumers. According to a
Deloitte Research forecast, the fledgling 1 billion USD automotive artificial intelligence (AI) market is
projected to grow to 27 billion by 2025 [11] as global OEMs invest in digitalization to stay competitive.

Figure 1.1: Exponential increase of global data generation correlates with the increase in EV sales [11].

The growth of data-driven methods has paralleled the growth of EVs over the last two decades as seen
in Fig. 1.1. According to Google’s Ngram Viewer the terms ’EV’ and ’machine learning’ have increased
two an astounding 17-fold from 1989 to 2019 [12]. At the same time, the ubiety of ’machine learning’
in the title of articles from some of the leading energy research publications has increased from less
than half a percent in 2005 to ca. 5 % in 2021 in both the Journal of Power Sources, as well as, the
Journal of Nature [13; 14]. The synergies between these two trends are obvious: the large amounts
of battery data being produced can be combined with innovative machine learning methods to help
improve the understanding of battery behavior.

The explosion of connected systems, sensor networks and simulation techniques has overwhelmed the
science community with data-sets [15] and led to breakthroughs across industries and disciplines, from
material science to pharmaceuticals [16]. The automotive industry is also aware of the opportunity
offered by the large pool of data generated by the over 1 billion vehicles currently on the road, which
is estimated to have a monetization value between 450-750 billion USD [10].

Breakthroughs resulting from tapping into the vast data resource have only just started coming to
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1 Introduction

light. In June 2020, Mark Minevich from Forbes wrote, ”The automotive industry is a perfect example
of an area that has not yet been perceived as a data source for human good by the mainstream school
of thought” [17], however, the digitalization of the automotive industry provides not only the monetary
carrot for OEMs to chase, but also the impetus to deliver a direct customer benefit in terms of safety,
user experience, and vehicle reliability [18–20].

In order to capitalize on the opportunity digitalization in electric mobility presents, one has to match
the benefits of machine-learning to the current problems in battery system development. One area
currently growing in interest is the field of battery state estimation. Battery state estimation typically
refers to the internal descriptor variables of state-of-health (SOH) and state-of-charge (SOC), though a
more broad definition would include all internal parameters required to accurately capture the current
and future behavior of a battery system. This thesis focuses mainly on data-driven methods for SOH
estimation, as well as, relevant internal parameters, such as the anode potential.

Figure 1.2: The trade-off between complexity and error of common state estimation methods [21].

Battery aging, captured by the SOH metric, is a complex phenomenon involving the coupling of
chemical, mechanical and electrical processes. In order to better understand aging within lithium-
ion batteries much research has been devoted to developing models and simulation tools capable
of describing the multi-physics coupling at varying dimensions and time-scales. The major trade-off
between methods is often that of model fidelity and computational efficiency. Figure 1.2 highlights this
trade-off of complexity and state estimation method accuracy. Still, even the most advanced methods
are not able to fully capture the dependence on more nuanced phenomena in battery aging, such as the
occurrence of lithium plating or the coupling between aging mechanisms leading to a path-dependent
aging behavior. By incorporating AI and data-driven methods, an improvement in the trade-off can be
found where a simplified model can substitute a traditionally highly computationally intensive model,
improving model detail and accuracy at the same time.

This thesis focuses on leveraging machine learning for improving battery state estimation. The meth-
ods and functions developed in this thesis provide insights into how OEMs can leverage the Big Data
generated by the expanding EV fleet to improve battery systems. More accurate battery SOH estima-
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1 Introduction

tion, and internal state estimation, lead to an improvement in the quality, safety and usability of the
EV, which directly affects consumer’s willingness to adopt the technology, and improves the financial
viability of BEVs for both OEMs and governments.

1.1 State Estimation

The term state estimation broadly refers to methods describing the electrochemical condition of a
battery by interpreting and eliminating inaccuracies and errors from measurable data. The states of a
battery are many, and can include the current health, charging condition, temperature, and any other
measurable, or model-able features. This section provides a foundation for the modeling of a battery
and describes the various state equations common in battery science.

1.1.1 Lithium-ion Batteries

Lithium-ion batteries are currently the dominating technology in the automotive power-train transition
due to their high energy density, simplicity of mechanical integration and high power capability [22].
All references in this thesis are referring to this general class of battery. The functional principles and
components of a lithium-ion battery are listed below and can be seen in the representation provided
in Fig. 1.3. Structurally, the lithium-ion battery is composed of two porous electrodes, a separator,

Figure 1.3: The main components of a lithium-ion battery are the anode and cathode electrodes, sep-
arator, electrolyte and the current collectors [23; 24].

a liquid medium called the electrolyte and current collectors transferring the electrons out of the
electrodes.

The anode, or negative electrode, is typically constructed from a carbon-based graphite material due
to carbon’s low cost, high thermal stability, and most importantly the low potential against metallic
lithium [25; 26]. The graphite structure, LiC5 [27], offers high flexibility between the graphene layers
allowing for easier lithium-ion insertion. Silicon (Si) or silicon oxide (SiOx) is becoming increasingly
common in the anode as it improves energy capacity but at the cost of higher mechanical strain, thus
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1.1 State Estimation

use as a doping agent is typically limited to compositions of around 1-8 wt. % [28; 29].

The crystalline structure of the electrodes is important for the electron transfer into the non-occupied
vacancies and the intercalation of the lithium-ions. The de-/intercalation of the lithium-ions is a result
of oxidation or reduction processes depending on the charging or discharging state of the battery [30].
The electron transfer resulting from the reduction and oxidation process occurs between electrodes via
the copper current collector at the anode and the (typically) aluminum collector at the cathode, which
are electrically connected through a power sink or source.

The aluminum current collector foil of the cathode is adjacent to a substrate of active materials, such
as, lithium cobalt oxide (LCO), nickel cobalt aluminum (NCA), nickel manganese cobalt oxide (NMC)
and lithium iron phosphate (LFP), to name a few of the most common active materials [31]. The
decision for which composition is most suitable results from an evaluation of the energy density, cost
and stability of each chemistry [32; 33]. The nickel-rich NCA and NMC offer state-of-the-art energy
densities and are becoming a favorite for automotive applications [34]. A strong trend, however, is
also seen moving away from cobalt as an active material and favoring ethically traceable, cheaper and
more stable technologies, like LFP [35; 36].

Both electrodes are porous allowing for electrolyte– an organic solvent solution containing dissolved
lithium salts and other additives– to distribute into the substrate. During the oxidation process (at
the positive electrode (PE) when charging or negative electrode (NE) when discharging) lithium-ions
are transferred through the electrolyte to the other electrode through the porous separator, which acts
as the electronical insulator between the disparately charged electrodes. Closing the electrochemical
process at the other end (reduction at the NE when charging or PE when discharging) the associated
electrons are released to the sink or source via the current collectors and collected again at the respective
opposite electrode. The general redox process follows

Li+ + Θs + e− 
 LiΘs, (1.1)

where Θs represents the respective electrode host lattice site and e− is the free electron [30].

1.1.2 State-of-Charge

The amount of cyclable lithium available for discharge during a single cycle is estimated by the SOC.
The most common definition represents the SOC of a battery to be between 100 % (full) and 0 %
(empty) with

SOC = Cact − Qb

Cact
, (1.2)

where Cact is the actual total capacity of the cell and Qb is the charge balance, which is often estimated
using coulomb counting as Qb =

∫
0 Idt, where I is the current, and at 100 % SOC Qb = 0.

Direct integration of the current is the simplest method for implementing SOC estimation, however,
it is dependent on an accurate current measurement, as well as, an accurate initialization of Cact [37].
Both of these inputs are subject to measurement error, where the current measurement is dependent
on the sensor accuracy– which becomes particularly challenging as larger system architectures reduce
measurement granularity and increase system noise– the Cact is estimated based on the voltage limits
and SOH of the battery. The difficulties presented in estimating Cact are detailed in the following
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1 Introduction

sections.

In addition to directly integrating the current, there are also model-based approaches to estimating
the SOC. Due to its relative simplicity, the equivalent circuit model (ECM) approach is commonly
implemented in the battery management system (BMS). This approach– which is detailed below–
requires a mapping from the open circuit voltage and an estimation of the over-potential using multiple
impedance elements, leading to an increase in fitting difficulty and modeling error. Other methods,
though not often implemented in the BMS, are electrochemcial and machine learning approaches.
Both approaches are detailed in further sections, but generally have the disadvantage when compared
to direct current integration in that they are more challenging to integrate into software and are
computationally expensive.

1.1.3 Overpotential

The measurable voltage of a cell, Ucell is a combination of the stoichiometrically dependent open-
circuit-voltage (OCV) and the use-dependent overpotential, η [30].

Ucell = OCV + η (1.3)

The OCV is measurable at the cell terminals if no load is, or has been applied for a long period of
time. This is also known as a relaxed state. The OCV is a combination of the two half cell potentials
of the electrode materials versus Li/Li+ [30].

UOCV = φcathode − φanode (1.4)

The OCV curve is constant within battery formats, and is characteristic for various battery chemistries
(LCO, NCA, LFP, etc.). It is common for state estimation techniques like SOC estimation, to map
the OCV to the SOC, as this is directly measurable.

The challenge, of course, is that the battery is often operated under loads, giving rise to an overpoten-
tial. The overpotential is typically attributed to an ohmic (ηΩ), charge transfer (ηCT ) and diffusion
potential (ηdiff ) [38]. Thus the total measured voltage during load can be re-written as

Ucell = UOCV + ηΩ + ηCT + ηdiff. (1.5)

Each overpotential component is dependent on the load and temperature during operation making
the fitting and modeling of these polarization elements particularly challenging. Higher temperatures
typically reduce overpotentials as conductivity (lower ohmic resistance), charge transfer and diffusion
are all aided by improved kinetics [39]. Higher currents lead to higher overpotentials as charge transfer
and diffusion processes are increasingly strained by the increased number of lithium-ions.

1.1.4 State-of-Health

The health of a battery over lifetime is a key performance metric for safety and cost considerations,
however, the exact definition of battery health, like in many complex physical systems is multi-faceted.
The main focus in this thesis is the SOH referring to the capacity retention of the battery. This capacity
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1.1 State Estimation

is a measure of the available lithium-ions during cycling and is typically measured during a low and
constant current charge or discharge process. These capacity check procedures allow for a tracking of
the battery capacity fade over time. The ratio of actual remaining capacity and the capacity at the
begin-of-life (BOL), Cact/CBOL, is used to define the SOH,

SOH = Cact

CBOL
. (1.6)

The most common measure of battery health is a measure of the available capacity. There are, how-
ever, other considerations for battery-electric systems, such as how much power can be delivered,
temperature limits, and likelihood of a failure. For this reason there is a need to expand the defini-
tion of battery health to understand underlying aging mechanisms which adversely affect the internal
resistance, physical stability and overall longevity of the battery.

Factors leading to a loss of capacity are generally classified into two operation categories: calendric and
cyclic [40–43]. Calendric aging refers to non-operation conditions, when the battery is mostly affected
by environmental conditions and long-term processes, whereas aging resulting from battery operation
is categorized as cyclic aging. The reason for the separation into these two categories is due to the
different time-scales and aging mechanisms which are dominant in one or the other operation mode.
Aging mechanisms provide a more detailed lens to understand the aging process within the battery as
it relates to both the operation mode, as well as, the principle components constituting the battery.

Aging mechanisms are detectable and measurable processes which work to degrade the health and
performance of a battery. These mechanisms can often be associated with a particular component
and root cause or operating condition. For example, aging mechanisms associated with the anode
mainly occur at the electrode/electrolyte interface [44]. One of the most dominant processes is the
growth of a passivation layer at this interface, most commonly referred to as the solid electrolyte
interphase (SEI) [43; 45]. The formation of the SEI layer is a result of the decomposition of the
electrolyte substance and the subsequent reaction of the precipitated molecules with the graphite
substrate. Growth of the SEI is a function of time, SOC, temperature and electrolyte/electrode
composition, with the fastest growth rate during the first few cycles of a new cell as the presence of
an SEI layer typically inhibits further growth, though it never completely stops [44; 45]. A non-linear,
precipitous capacity fade in a new battery is typically correlated with the early growth of the SEI
layer, but over time, the SEI layer penetrates into the pores or cracks form in the existing SEI layer,
causing additional growth and further consuming cyclable lithium [46].

Another aging mechanism, known as lithium plating, is of particular interest for the automotive in-
dustry due to its relevance for safety and fast charging ability. The most commonly attributed cause
of lithium plating is when the anode potential drops below the standard potential of Li/Li+ [30; 47;
48]. The result is the deposition of metallic lithium onto the anode surface in a dendrite structure. In
addition to the high consumption of cyclable lithium, the dendrite growth poses the risk of bridging
through the separator and creating an internal short circuit [49; 50].

The major aging mechanisms affecting the cathode are surface film formation, transition metal dissolu-
tion and mechanical degradation [43]. Similar to the growth of the SEI at the anode, a solid permeable
interface (SPI) forms at the boundary of the cathode between electrode and electrolyte. The formation
of this layer also consumes cyclable lithium, but is often a minor contributor to capacity fade [43].

There are also a number of mechanical stresses occurring inside the battery. The most frequent stress
occurs during the de-/intercalation process as lithium-ions strain lattice structures. At the extremes
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of the battery SOC, where the electrodes are maximally de-/lithiated the lattice structures experience
the highest stresses, leading to cracks in the passivation layers (resulting in new SEI/SPI growth) and
structural damage of the electrode lattice leading to a loss of active material [43].

The most dominant aging mechanisms are those listed above, however, a number of other mechanisms
are present, including: current collector corrosion, binder decomposition and gas evolution [51]. The
effects of each of these major and minor aging mechanisms have been grouped into three degradation
modes: conductivity loss (CL), loss of lithium inventory (LLI) and loss of active material (LAM) [51;
52]. LLI aging mechanisms are electrolyte decomposition, lithium plating, SEI formation and forma-
tion of lithium-ion grains [51; 53]. CL aging mechanisms are current collector corrosion and binder
decomposition [51; 53]. LLI mechanisms are oxidation of the electrolyte, electrode decomposition,
intercalation gradient strains in the active particles and crystal structure disorder [51; 53].

1.2 Classic Aging Models

Factors leading to the loss of capacity (and thereby decreases in the SOH) include operation influences,
as well as, the environmental conditions. It is the arduous task of aging models to replicate the capacity
fade resulting from the interactions between simultaneous and compounding aging mechanisms using
measurable inputs from the battery.

Aging models are limited primarily by the lack of available measurable inputs. One of the most widely
used and detailed cell behavior models, the pseudo two-dimensional (P2D) electrochemical model, is
highly dependent on internal cell parameters which require detailed half-cell measurements over a wide
range of operation conditions, as well as, intrusive internal geometry measurements to operate at a
single aging state [30; 54–57]. One of the biggest challenges to this method is mapping the influence
of various aging mechanisms onto the myriad of fitting parameters.

The simplified cell model, ECM, is most commonly used in applications where computational resources
are constrained, such as in the BMS. The general approach is to define a battery voltage response
using electric circuit elements such as resistors and capacitors. Aging is integrated into this method
by modifying the values of the circuit elements [58].

There exists no single equation, or set of equations, capable of accurately describing the complex
reaction of a cell to the interaction of factors leading to capacity loss. For this reason, one of the
most common aging models uses linear and non-linear fitting equations, most commonly referred to as
semi-empirical models [59]. This method is much more straightforward to implement, requiring only
easily measurable parameters, however, it is also this limited measurable parameter set which hinders
the fitting of this method, reducing its accuracy on highly dynamic aging profiles. The semi-empirical
methods are best suited for laboratory battery aging experiments.

1.2.1 Equivalent Circuit Models

The ECM represents cells with a voltage source, where the internal cell dynamics are modeled by a
combination of ohmic, capacitive and inductive electric circuit elements [60; 61]. Figure 1.4 shows the
elements of a basic ECM. The goal of these models is to use various combinations of circuit elements
to model the cell response to various current perturbations, and to be able to accurately re-create the
voltage response at a variety of aging states.
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The first element of the circuit is a controlled voltage source. This element provides the OCV of
the cell under no loads. The overpotential, or the voltage response resulting from ohmic resistance,
electrochemical double layer, charge transfer and ionic diffusion are modeled using a combination of
resistors and capacitors [62].

Figure 1.4: Example of an equivalent circuit model.

A series resistor, RΩ represents the ohmic contribution to the resistance, which is dominant at time
scales of ∆t ≈ 0. The dynamic elements consisting of a parallel connected capacitor and resistor are
used to model processes with longer time constants. The charge transfer resistance, Rct, describes
the transition between electronic and ionic conductivity (modeled in the P2D-Model using the Butler-
Volmer Equations) [62] and is combined with Cdl, which models the double layer effect occurring at
phase boundaries between conductors of opposite polarity. As particles accumulate at the boundaries,
an electrochemical potential builds up, resulting in a capacitive behavior similar to that seen in di-
electric capacitors [63]. These two effects, modeled in parallel, also occur within a range of 10 to 100
milliseconds.

The second pair of circuit elements, Rdiff and Cdiff, capture the diffusion resistance in a cell. This is a
result of multiple factors, such as the permeability/porosity of the materials, lattice structure and the
intercalation process [62]. Diffusion is highly affected by the temperature, leading to a lower diffusion
resistance with higher internal energy states at higher temperatures. This process therefore has a
less-defined time constant, ranging from seconds to hours.

A common approach to fitting the various elements of the circuit is to use pulse fitting or electrochem-
ical impedance spectroscopy (EIS) [64; 65]. This procedure involves applying an alternating voltage
or current perturbation to a cell over a broad spectrum of frequencies, from mHz to kHz. The re-
sponse results in a characteristic curve in the imaginary and real impedance domain, allowing for an
interpretation of the resistances based on their time constants read from the frequencies [66]. Thus
the fitting of the ECM is valid only for the conditions these parameters are measured at. EIS is also
typically fitted using small excitation currents in order to have cell responses which are linear or pseudo
linear [67]. It is also common to combine these methods, as well as, introduce machine learning to
fit the RC elements using longer time-series, such as driving profiles. Each of the fitting approaches,
however, require large laboratory studies to fit the ECM well enough to be applicable for use in an
automotive context.

1.2.2 Electrochemical Models

There are a number of electrochemical models which have been proposed in literature [68], however, the
most common are based on the P2D model developed by John Newman and his collaborators [69]. This
method is based on the concentrated solution and porous electrode theory which models the reaction
kinetics, migration and diffusion inside the lithium-ion cell [70]. The model is, most importantly,
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applicable for a variety of lithium-ion cell types.

The term P2D is derived from a macroscopic x-dimension: with two porous electrodes, an insulating
separator and the liquid electrolyte and an r-dimension: modeling the diffusion of lithium-ions inside
the active particles of the electrodes (see Fig. 1.5 for an illustration of the P2D model). The spatial
direction, x, of the electrode stack including the anode, separator and cathode includes equations for
the electrochemical reactions and charge and mass transport (see Fig. 1.5). The electrodes are modeled
as porous media consisting of inactive and active material. The separator is of electrically insulating
solid material and is also porous. The radial direction models the one-dimensional diffusion process of
lithium-ions inside the particles, representing active material particles as idealized spheres.

The radial dimension of the model is defined within the active materials of both electrodes, which are
modeled as particles. The particles are assumed to be ideal spheres and thus this second dimension
can be described along its radius. At each point along the geometrical x-dimension of the electrodes,
a geometrical particle dimension is defined but only coupled via a scalar, giving rise to the moniker
”pseudo-2D” [71].

A brief overview of the equations is given to provide context to the computational complexity required
by a P2D model, as well as, the basis for the simulation tool used to generate data for the anode
potential estimation method in Chapter 5. In general, the dependent variables of the P2D model are
considered to be the lithium-ion concentration in the liquid and solid phase, cl and cs respectively, and
the potential in the electrolyte and in the active material composite Φl and Φs. These are solved by
using a number of differential equations. The ionic flux jn couples the solid and liquid phases [39].

Starting from the separator in the spatial domain (Fig. 1.5), the lithium-ion concentration in the liquid
electrolyte domain, cl is given by

εl
∂cl(x, t)

∂t
= ∂

∂x

(
Deff

l
∂cl(x, t)

∂x
+ il(x, t)

(1 − t0
+)

F

)
, (1.7)

where εl is the volume fraction of the liquid phase (porosity), Deff
l is the concentration dependent

effective electrolyte diffusivity, the transference number of the cations in the solution is t0
+ and F, the

Faraday constant.

In the solid electrode, the concentration of lithium-ions in the active material, cs is modeled in the
particle domain by

∂cs(x, r, t)
∂t

= Ds

(
∂2cs(x, r, t)

∂r2 + 2
r

∂cs(x, r, t)
∂r

)
, (1.8)

with the radius of the active material particles, r, and the diffusivity of the solid phase Ds. The charge
transfer at the particle surface boundary from the electrolyte to the active material is defined as

∂cs(x, r, t)
∂r

∣∣∣∣
r=rp

= − 1
Ds

jn(x, t). (1.9)

The ionic flux, is modeled using the Butler-Volmer equation,

jn(x, t) = i0(x, t)
F

[
exp

(
αaF
RT

η(x, t)
)

− exp
(

αcF
RT

η(x, t)
)]

. (1.10)

The Butler-Volmer kinetics model, relates the reaction rate to the surface overpotential, η, with the ex-
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Figure 1.5: Overview of the P2D’s differential algebraic equations and the related boundary conditions
shown over the relevant main x-dimension and pseudo particle r-dimension reproduced
from [72] (according to Ref. [30; 54–57]).

change current density, i0, which describes the amount of charge that flows in an equilibrium state [71].
The transfer coefficients at the anode and cathode, αa and αc, respectively, relate to how an applied
potential gradient favors one reaction-direction over another, indicating the reversibility of the reac-
tion. The constants in the equation are the Faraday constant, F, and the Gas Constant, R. The
potential difference between the active material composite and the liquid electrolyte, η, is referenced
to the electrode potential at the electrode-electrolyte interface at equilibrium state, Eeq, by

η(x, t) = Φs(x, t) − Φl(x, t) − Eeq(θ(x, t)), (1.11)
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where Φs −Φl is the electrochemical potential of the electrode, which is also influenced by the electrode
stoichiometry, Θ, relating to the degree of lithiation of the active material based on the relationship of
the reactants and products.

The gradient of the electrical state ∂Φl/∂x is built up from an arbitrary position along the thickness
of the electrode stack against a virtual lithium reference electrode in the electrolyte, and represents
the liquid potential [73], is defined as

∂Φl(x, t)
∂x

= − il(x, t)
κeff + 2RT

F
(1 − t0

+)
(

1 + ∂ ln(f±)
∂ ln(cl)

)
∂

∂x
(ln(cl(x, t))), (1.12)

where κeff is the effective conductivity, and the activity coefficient ∂ ln (f±) /∂ ln (cl), which is a function
of the lithium-ion concentration in the electrolyte.

The potential in the solid phase, Φs, is derived using differential Ohm’s law, by equating the solid phase
potential (voltage) to the current density in the solid phase, is (current), over the electric conductivity,
σeff (resistance), as follows:

∂Φs(x, t)
∂x

= − 1
σeff [I(t) − il(x, t)] , (1.13)

where is is substituted for I(t) − il according to Kirchoff’s law [71]. The current density in the solid
phase in the electrolyte, is is derived by Faraday’s law and is related to the ionic flux by

∂il(x, t)
∂x

= asFjn(x, t), (1.14)

where as represents the ratio of surface to volume of the spherical active particles.

As can be seen by the representation above, the disadvantage of these methods is that they require
computation-costly and time-consuming numerical methods to solve the set of differential algebraic
equations [74]. Additionally, in order to achieve the high model fidelity offered by electrochemical mod-
eling methods, age-specific cell parameters are required, such as the material properties of diffusivity
in the active material and electrode porosity [75].

1.2.3 Semi-Empirical Models

A common aging estimation approach, semi-empirical modeling, fits a physics-informed function to
battery aging data [40; 59; 76; 77]. This is a useful method for estimating the SOH with respect
to relevant and measurable variables. Although this approach does not allow for a reproduction of
battery dynamics, such as the voltage and temperature response, it does provide a simplified approach
for estimating the current or future SOH based on directly measurable parameters.

The general approach for this method requires a large input data-set containing the relevant features.
Most often, a holistic aging model is a function of time, SOC, temperature, depth-of-discharge (DOD)
and current. It is often common to separate the complete SOH loss into a calendric and cyclic function,
where the total aging loss, ∆SOHtot, is a superposition of the calendric loss, ∆SOHcal, and the cyclic
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loss, ∆SOHcyc, as seen from the equations below.

∆SOHtot = ∆SOHcal + ∆SOHcyc (1.15)

∆SOHcal = f(t, T , U) (1.16)

∆SOHcyc = f(t, I, DOD, T ) (1.17)

To obtain a final equation out of an aging data-set, the various variables are fit using a regression
technique. The term ’semi-empirical’ comes from the fact that the form of the fitting equation owes
part of its shape to underlying physical equations which describe electrochemical processes occurring
within the battery. Two common empirical models use the Arrhenius equation, which describes the
dependence between temperature and reaction rates [78] and the Tafel equation, which describes the
growth of corrosion layers [79]. It is often a matter of experimental validation providing the degrees
fitted to the remaining parameters. Hahn et al. provided a summary of studies related to fitting the
time term, t, and concluded t0.75 to consistently fit most data [77]. Considering this and the Arrhenius
and Tafel equations mentioned above, a holistic aging equation is proposed of the form

∆SOHtot = a1Ue
− Ea

RT t0.75 − (a2U
2 + a3DOD)Q0.5 (1.18)

where a1-a3 are fitting coefficients, U is the average voltage, Ea is the activation energy, R is the
gas constant, T is the average temperature, DOD is the average DOD and Q is the total charge
throughput. This equation is used as a comparison against a random forest inspired machine learning
approach in Chapter 4.

The relatively low number of parameters and simplicity of the resulting equations makes the semi-
empirical model an ideal solution for many applications where computation limits are a factor. Fitting
the model to a wide variety of aging states presents the largest challenge to this method. In a similar
vein, highly dynamic aging, composed of irregular or intermixed calendric and cyclic aging modes
significantly challenge the performance of the model.

1.3 The Advent of Data-Driven Modeling

Machine learning is a standard modeling tool best suited for when the underlying behavior is unknown
or too complex for traditional approaches and when a sufficient data-set is available. These data-
driven methods have been applied to fields such as cyber security, automation and pharmaceutics, and
in recent years has been applied to the problem of battery state estimation. The growth of machine
learning has expanded to the battery field, with data-driven approaches becoming popular for SOC and
SOH estimation [80]. Over the last decade a number of publications have been released where authors
have successfully used neural networks, support vector machines and Gaussian regression techniques
to estimate SOC and SOH as summarized by Ng et al. [81].

Large collections of data imbue the use of data-driven and machine learning methods. In this section,
two main categories of machine learning– supervised and unsupervised– are reviewed in more detail,
and a brief discussion of other important terms in the field of data-driven methods are discussed. The
necessary terms and approaches which are applied in this work are later detailed.
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1.3.1 Fundamental Algorithms

The back-bones of machine learning algorithms are: a loss function, tuneable parameters, an opti-
mization criterion (typically an objective function), and a routine that utilizes the available training
data to best satisfy the optimization criteria [82]. Regardless of the machine learning approach the
following training loop procedure is followed:

1. Initially (often randomly) parameterize the model tuning parameters (or weights).
2. Compute the loss from estimation to truth.
3. Update weights in the direction that lowers the total loss.

The data-driven techniques used in this work are almost exclusively built around regression (supervised
learning). In this section, the fundamental building blocks of linear regression and logistic regression are
defined as they are core principles to the neural network approaches used in the subsequent chapters.

Linear Regression

For a regression model, the goal is to predict a value, y, given some set of input features x. A standard
representation of a linear model is:

f(x) = wx + b, (1.19)

where w and b are two parameterization values known as weights and bias, respectively. Provided with
a data-set of input and output pairs, D = (xi, yi)n

i , w is a D-dimensional vector the same size as x,
and b is a real number. For a regression model, the task is to find the values of w and b corresponding
to the predicted value of ŷi closest to the target value yi given a set of inputs x̂i, with x̂i and ŷi being
values used for testing, thus a sub-set of the larger data-set. The solution for w∗ and b∗ yielding the
most accurate result is found by minimizing the objective function,

1
n

N∑
i=1

(fw,b(yi) − ŷi)2. (1.20)

The objective function is an estimation of the prediction error and can be the absolute, average or
root mean square error of the prediction versus the target value, for example. This metric provides
feedback to the optimization routine and indicates the level of success any previous change in the
model parameters (or weights) had on satisfying the cost function.

Most machine learning algorithms considered in this work (and indeed in practice) use a differentiable
optimization function. These differentiable routines employ a gradient decent to identify the local
minimum of the objective function. As the linear and non-linear functions used in regression and
neural networks can be derived, computing the gradient of loss with respect to the weights, one can
tune these parameters in the opposite direction of the calculated gradient. As this is a core attribute
of many machine learning algorithms, and is in essence the learning part of machine learning, it is
worth exploring in more detail.

The objective of regression is to minimize the loss function. Assuming the function is smooth and
differentiable, the function’s minimum is located where the derivative of the function is equal to zero.

14



1.3 The Advent of Data-Driven Modeling

As an example, take the mean squared error as the cost function,

C = 1
N

N∑
i=1

(yi − (wxi + b))2, (1.21)

where y is the target, x the input and w and b forming the slope and intercept of a linear function.
In order to minimize C, the partial derivatives with respect to the tune-able parameters are taken,
allowing for the adjustment of those parameters in the direction of decreasing gradient with each
iteration. The derivatives are as follows,

δC

δw
= 1

N

N∑
i=1

−2xi(yi − (wxi + b)) and (1.22)

δC

δb
= 1

N

N∑
i=1

−2(yi − (wxi + b)). (1.23)

The function then iterates through all samples, i, and calculates new parameters w and b which
approach the minimum of the cost function. A neural network consists of many of these linear functions
above which all search for the minimum value based on the input x, and as such the example above
provides a key insight into the machinery of many machine learning algorithms.

Logistic Regression

Logistic regression blurs the line between classic regression and classification, as it is a classification
algorithm with a binary output yε(0, 1). The underlying model is still linear of the form seen in
Eq. 1.19, where the output could take the form of any value from negative to positive infinity, which
is processed by a standard logistic function whose co-domain is between (0,1). The most common
standard logistic function is known as the sigmoid function and has the form

fw,b = 1
1 + e−wx+b

. (1.24)

In logistic regression, values closer to zero receive a negative label, and values closer to one receive
a positive label. In neural networks, mapping the output to binary values is not strictly necessary,
however, transforming the unbounded linear function to values between zero and one significantly
improves learning performance by scaling all inputs, ensuring that changes between inputs can be
equally weighted, and is a key part of the activation function of neurons, as discussed below.

1.3.2 Machine Learning

Machine learning uses data to define a set of rules to describe patterns allowing for predicting the
behavior of unknown data. The first commercially successful implementation of a neural network
was in 1989 by Yann LeCun from Bell Labs who combined a convolutional neural network with back
propagation for the automated reading of ZIP Codes for the United States Postal Service [83]. Machine
learning is typically divided into two main categories: supervised and unsupervised. Some of the most
common methods per category are shown in Fig. 1.6.

Supervised Learning
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Figure 1.6: Overview of the various machine learning options available and suggestions for algorithm
selection based on goals, adapted from Scikitlearn [84].

Sometimes referred to as predictive learning, supervised learning aims to map from a set of inputs, x,
to a set of outputs, y. The standard notation describing the basic building block of a machine learning
algorithm is a training set of N samples of input and outputs pairs, D = (xi, yi)N

i . The shape of the
input, x, depends on the data collected, whether it is vectors and time series, as in this thesis, or
pictures, movies or even sentences. The output y also depends on the task at hand, but is typically
either a nominal value or a categorical one. When the output is categorical, the machine learning
objective is known as classification which assigns labels to previously unlabeled data after learning
patterns from training data. When the output is a real-value, the problem becomes one of regression,
which builds a model based on patterns from a training set containing a ground-truth of the target
variable.

A core element of many machine learning algorithms is the neural network. A neural network learns
an output by mapping the dependency of a set of inputs through a neural mesh. Depending on the
number of layers in the network, this can also be referred to as ’Deep Learning’, where the number of
layers is greater than two. The main tasks of the ’machine’ in machine learning (the neurons and their
connections performing forward propagation) is to: 1. receive an input, 2. perform a transformation
to calculate the neuron activation and 3. to adjust the connection strength between neurons to reduce
the prediction error and to propagate the value forward.

Figure 1.7: A) Neural networks consist of many neurons holding an activation value, connected by
mappings, indicating the strength of connections between neurons. B) the ’machine’ and
’learning’ aspects of a neural network refer to forward propagation and back propagation,
respectively. Representations inspired by Burkov et al. [82].
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The most basic element of a neural network is the neuron. A neuron is a place-holder for a value,
called an activation. The connections between neurons are tuned via linear algebra and are referred
to as the activation function. By assigning weights to each of the neuron connections, the strength or
relevance of a connection is defined. The weight function is typically a linear function of the same form
discussed above in Eg. 1.19, such that for a single neuron (like ŷ in Fig. 1.7) the expression becomes

ŷl
0 = σ(w(l−1)

n a(l−1) + b(l−1)), (1.25)

where ŷ (or more generally a) represents the activation of a neuron. The weight parameter w, is a
matrix with indices n and l corresponding to the index of the current neuron and the index of the
previous layer, respectively, and is added to the offset or bias, b. Finally a sigmoid function, σ, is used
to scale the value for improved learning performance.

Any layer in a neural network, Zl, can be determined from the weight matrix, W , the activations or
inputs, z, from the previous layer, l − p and the bias vector

Zl = σ(W lzl−p + bl). (1.26)

A fully connected feed-forward neural network is then a nested vector function,

yl
0 = f(l−p)(f(l−1)(fl(x))), (1.27)

where each of the vector functions has the form in Eq. 1.26.

In algebraic notation, a neural network takes the form

Zl =


zl

0
zl

1
...

zl
k

 = σ




w0,0 w0,1 . . . w0,j

w1,0 w1,1 . . . w1,j
...

...
. . .

...
wk,0 wk,1 . . . wk,j




a0
0

a0
1
...

a0
j

 +


bl

0
bl

1
...

bl
j


 , (1.28)

where the subscripts in the weight matrix refer to the neuron index in the previous layer, j, and neuron
index in the subsequent layer, k. The representation of a neural network in Fig. 1.7A helps to show
the flow of the mapping between neurons and their respective indexing.

With this in mind, it becomes clear that the number of tuning parameters is related to the number of
neurons and the number of layers, with each neuron requiring a weight, w, and a bias, b, from each
adjoining neuron from the previous layer in a fully connected setup. This matrix operation enables the
neural network to parameterize a number of linear functions, and therefore its power to model highly
complex functions.

It is common practice to randomly drop connections between neurons, such that the learning does
not over-emphasize a single path through the network. The activation value is often scaled to a value
between zero and one in order to improve model performance. The scaling of the activation value is
aided by one of a number of scaling functions. Common scaling functions are the sigmoid function,
hyperbolic tangent function (tanh), step function, and rectified linear activation unit (ReLU) [82].
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The sigmoid function, also known as the logistics function, has boundaries between (0, 1),

σ(x) = 1
1 + e−x

. (1.29)

This function saturates extreme values often leading it to be more susceptible to the vanishing gradient
problem. The vanishing and exploding gradient problems are discussed once the back propagation has
been introduced as well.

The tanh function is similar to the sigmoid function, including the propensity for the vanishing gradient,
except that it has a range between (−1, 1),

σ(x) = ex − e−x

ex + e−x
. (1.30)

The step function is a binary function with two discrete values, typically 0 and 1.

σ(x) =
{

0 x < 0
1 x ≥ 0

(1.31)

The ReLU function is perhaps the most common sigmoid function used. Similar to the step function, it
is a piecewise function where values less than one are saturated to zero, but unlike the other activation
functions, there is no upper range for positive inputs. All positive inputs take on a linearly increasing
value between zero and infinity, making it less susceptible to the vanishing gradient problem, but more
susceptible to the exploding gradient problem.

σ(x) = max(0, x) =
{

x if x > 0
0 if x ≤ 0

(1.32)

The learning part of machine learning is then the task of updating the weights and bias to improve
performance and is achieved by minimizing a cost function. Figure 1.7B highlights the dependencies
between layers and the flow of forward and backward propagation. In the first step, a cost function is
defined, for example the squared error

C =
l∑

i=0

(
Zl

i − yi

)2 , (1.33)

where C is the cost, yi is the true value being trained on, Zl
i is the estimated value from the neural

network (in the regression case ŷi), both being at the index i.

Back propagation is then the minimization of this cost function, allowing for the optimal parameter
set by employing gradient descent to change parameters iteratively in the direction of a local minimum
and back propagating on each layer. To achieve this, the partial derivative of the cost function is taken
with respect to each parameter utilizing the chain rule, a, w, and b, and successively for each layer,
following the flow diagram in Fig. 1.7B.

−∇C = −∇Σl
i=0

(
Zl

i − yi

)2 = δC

δW l
· δC

δa(l−p) · δC

δbl
(1.34a)
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δC

δW l
= δZl

δW l

δal

δZl

δC

δal
(1.34b)

δC

δa(l−p) = δZl

δa(l−p)
δal

δZl

δC

δal
(1.34c)

δC

δbl
= δZl

δbl

δal

δZl

δC

δal
(1.34d)

As mentioned above about the activation functions, machine learning models can often suffer from a
vanishing gradient problem or conversely, an exploding gradient. This arises during the back propaga-
tion step in the learning. As the cost function calculates the error gradient through each of the layers,
the gradients of each subsequent layer have less impact on the overall model error. As the sigmoid,
tanh and step function are saturating the inputs between a more narrow range, the model does not
have as much variance to learn from. The opposite occurs if the activation function provides too large
of a range, where the gradients during back propagation keep expanding indefinitely. This is known
as the exploding gradient problem [82].

The neural network is a powerfully simple use of linear algebra that functions as a keystone to machine
learning. The size and complexity of the network is in large part dependent on the topology of
the network, allowing the user to define the optimal numbers of neurons and layers. In comparison to
linear or non-linear regression– where the form of the function is explicitly defined based on an assumed
dependency between the inputs and the output, often limiting the number of tune-able parameters
to a small handful– the neural network offers a high level of flexibility, requiring no knowledge of the
physical dependencies being modeled.

Two other types of machine learning methods worth of note are semi-supervised learning and rein-
forcement learning. Semi-supervised learning contains both labeled and unlabeled data. In some cases
the labels are generated by heuristic algorithms using the input data. Autoencoders are often used
in this type of learning which are one way of generating temporally supervised learning, for example,
learning the context of a video frame using the following frames for more context, or by learning the
last word of sentence by using the other words in a sentence. Reinforcement learning takes a state
vector as an input and outputs an action which optimizes a perceived reward. This special class of
machine learning is well adept at solving sequential problems with long-term goals such as resource
management, supply chain logistics or strategy games [85–87].

Unsupervised Learning

Unsupervised learning does not have a defined output y and instead labors to identify patterns or
other useful information contained within the training data D = (xi)N

i . As there is no target value
or ground-truth to compare predictions to, evaluating model accuracy is a complex challenge in this
application, however, it does offer the opportunity to uncover previously unknown patterns. The most
common applications of unsupervised learning are clustering, dimensionality reduction and structure
detection [88]. Supervised methods are also adequate at performing these tasks, however, they require
labeled training data, which often requires manually filtering the data before hand, or acquiring specific
data-sets.

One of the most common uses of unsupervised learning is clustering. The working principles of the
K-means algorithm are detailed here as they are later central to the work in Chapter 4. K-means
clustering identifies groups based on the euclidean distance from a centroid. The objective function,
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J , defining the K-means algorithm is

J = argmin
k=1,...,K

||xk
i − ck||2, (1.35)

where i is the index of a point within the total sample set, k is the cluster under evaluation within
the defined cluster set, K, xi is a single sample and ck is the centroid for the cluster under evaluation.
The minimization iterates through various cluster toplogies until the minimum total distance between
each cluster, given the specified amount of clusters is found.

The number of centroids is an input to the algorithm, and can be any real number. Typically, the
clustering accuracy decreases with increasing number of clusters. There are a few methods for choosing
the optimal amount of clusters: average silhouette method and elbow method, however, these are often
imprecise science [82].

Figure 1.8: The elbow method is a graphical approach to determining the optimal number of K-means
clusters, by finding the ”elbow” in the distribution score plot [82]. In this hypothetical
example the optimal number of clusters is four.

The average silhouette method is a measure of how similar objects within a cluster are compared to
another cluster. The value between (-1,1), with negative values being falsely identified, or outliers,
0, indicating points on the boarder between two clusters and 1 indicating a perfect cluster fit. The
optimal number of clusters found via this method is considered to be the number of clusters which
return the highest average silhouette score for all points in the data-set. The elbow method plots the
average distance within the clusters (see Fig. 1.8). As the number of clusters increase, the average
distance within the cluster to the cluster’s centroid decreases. The elbow refers to the point in this
plot where the average distance within the clusters remains relatively stable.

Other important unsupervised methods utilized to uncover undefined structure in the data are often
rule-based. These methods, such as the Apriori algorithm, are also similar to the random forest method
(which is described in more detail in Chapter 4). In this method, data are split into smaller groups
following binary rules until sufficiently small groups are formed. One last unsupervised method which
is highly relevant for feature engineering is dimensionality reduction. Principle component analysis
(PCA) is one of the most popular approaches for this, where the correlation of each feature to one
another is used to define component directions, helping combine multiple correlated features into a
new component.
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1.3 The Advent of Data-Driven Modeling

1.3.3 The Machine Learning Process

The term machine learning is a broad term comprising many very different models. Although each of
these models can be as different as a P2D and an ECM model, the machine learning process follows a
fairly standard template comprising the following key steps:

Data Processing
The accuracy of a machine learning model depends mostly on the data preparation and collection [89].
In Chapter 2 a detailed exploration of an automotive data-set provides an indication of the quality of
the available data-set for use in data-driven applications. In this step, the data is first evaluated for
quality, removing any outliers or otherwise corrupted data.
Feature Engineering
The term feature is synonymous with input variable. Feature engineering is used here to generally refer
to the selection and pre-processing of the raw data for use in the machine learning model. Depending
on the type of data, various methods such as one-hot encoding, binning or normalization are effective
means of reducing the data to only the most numerically efficient component [82].
Model Training
Perhaps the most important step in model training is first selecting which model is to be trained.
Depending on the task at hand, a number of methods are applicable and multiple may even be suitable
(see Fig. 1.6 for an overview of potential methods). Considerations can also include desired training
speed, categorical vs. numerical features, prediction/training speed and explainability. Another very
important consideration is the potential for over or underfitting– which often results from either too
complex of a model considering the available data or one that is not complex enough, respectively.
Hyperparameter Tuning
In addition to the weights learned during model training, there are a number of hyperparameters
which specify the model training strategy. Common training parameters include the test/train split
(see below), learning rate, activation function, layer type, number of epochs and batch size. A robust
hyperparameter tuning will assess various combinations of these parameters to find the set which yields
the most accurate model. Effective strategies for finding the ideal parameter-set include grid search,
random search and Baysien hyperparameter optimization [83].
Validation
For model development there are typically three data-sets, the training, validation and test data-set. It
is best practice to randomly shuffle the total data-set from the feature engineering step into the three
sub-data-sets. The largest of these three should be the training data-set, with the validation and test
data-set being roughly the same size. The model only sees the training data-set during development
with the test data-set being used for tuning of the hyperparameters and the validation data-set being
used for final model assessment.

1.3.4 Data-Driven Approaches in Battery Applications

A growing area of research focuses on battery state-estimation using data-driven methods. These
methods have grown in popularity because of their ability to map a given input to a desired output
using linear algebra, instead of a pre-determined function. This method is particularly useful when
deployed in areas where the underlying function which is being modeled is unknown or has too many
interdependencies to capture analytically.

By far, the neural network, and its variations are the dominant data-driven method in estimating
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the internal states of batteries in the literature [90; 91]. One of the first publicly available large
data-sets was issued from NASA’s Ames Prognostics Center of Excellence (PCoE), which spurred a
number of research papers applying data-driven techniques onto the data-set [92–97]. Other notable
data repositories include ones from Sandia National Lab, Everlasting and ones from the universities of
Oxford, Berkeley and Karlsruhe (KIT) [98–102].

A small summary of recent work utilizing data-sets for state estimation is provided in Table 1.1. Indeed
these approaches are showing great promise in the fields of state estimation of SOH [93; 103–108]
and SOC estimation [109–112]to fault detection [113; 114] and thermal management [115]. Common
challenges addressed in each of these works, like data quality, model selection and optimization are
also encountered in the further chapters of this thesis. What this current work additionally addresses
is the added complexity when dealing with highly variable and dynamic use conditions, such as those
from non-laboratory studies and path dependent aging.

Table 1.1: Summary of applied data-driven methods for battery state estimation with
the reported errors using root mean square error.

Method Target Error / % Input Values

Support Vector Machine [109] SOC 0.7 U, I, T
Gaussian Process Regression [110] SOC 0.2 U, I, T

Feed-Forward Neural Network [111] SOC 0.8 U, I, T
Recurrent Neural Network [116] SOC 0.7 U, I, T
Recurrent Neural Network [112] SOC 0.91 U, I, T
Recurrent Neural Network [117] SOC 1.81 U, I, T
Support Vector Machine [104] SOH 2.5 ∆T
Support Vector Machine [105] SOH 0.5 E, Ah, Q
Support Vector Machine [106] SOH 1.42 SOC, Q, U

Long Short-Term Memory [107] SOH 0.81 U
Long Short-Term Memory [118] SOC/SOH 3.2 U
Long Short-Term Memory [119] SOH 2.5 U, I, T

Convolutional Neural Network [108] SOH 1.1 U, I, T
1 These errors are listed in as mean absolute error (MAE).
2 These errors are reported in mean absolute percent error (MAPE), all others are
root mean square error (RMSE).

1.4 Structure of the Dissertation

The composition of this work can be broken into three main parts. In order to provide a quick overview
of the contents of the thesis, a graphical outline is provided in Figure 1.9. To help highlight the degree
of focus from the more classical battery modeling and those with a more data-driven approach, the
graphical outline is color-coded, with blue corresponding to battery modeling and green representing
the inclusion of data-driven methods. Chapter 1 should have provided the context for the scope of
this work, detailing fundamentals of battery state estimation and machine learning. Chapter 2 focuses
on the automotive context and provides a detailed description of the real-world data-set from BEVs
which is used to help structure the path dependent measurements found in Chapter 3 and which
was available for the data-driven approaches of Chapter 4. This chapter is a statistical evaluation
of data and is therefore strictly focused on the data, its distribution and generation. Although the
data is analyzed through the lens of battery operation, there is no direct application of classic battery
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modeling methods in this section (and is therefore classified as green according to the legend used in
the graphical abstract). The main contribution in this work comes in the form of three peer-reviewed
papers. The first paper, published via the Journal of the Electrochemical Society [120], investigates
path dependent aging from a measurement study and is included as Chapter 3. This paper relies
solely on the state-of-the-art differential voltage analysis methods, and is therefore the only section
completely classified as blue using the legend in the graphical abstract. In order to improve battery
aging model accuracy– with the potential to compensate for path dependent aging– an investigation
into the application of machine learning on automotive field data is carried out in Chapter 4. This paper
has been published by the Journal of Power Sources [121], and highlights the power of machine learning
for battery state estimation, at least with respect to aging. A second application of machine learning
is investigated in Chapter 5, namely the potential to improve fast charging, and was published in the
Journal of the Electrochemical Society [72]. Chapter 5 presents three methods for online estimation
of the anode potential during charging operation. As these two papers contain both classic and data-
driven modeling, they are shown as both green and blue in Fig. 1.9. Finally, Chapter 6 details the
results and discusses their relevance in a larger context, as well as, elaborates on the connection between
the publications.
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Figure 1.9: The graphical outline of the thesis highlighting the contribution of battery state domain
knowledge (blue) and machine learning domain knowledge (green).
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2 Aging Behavior in the Automotive Context

Figure 2.1: Crop from the thesis structure highlighting the focus of this chapter.

The automotive context referred to in this thesis describes vehicles driven in real-world conditions with
no artificial influence on the driving behavior or environment. A large data-set from the BMW i3 was
available for analysis to inform data-driven battery model development [122; 123]. In this section, the
statistical lens through which the data is interpreted, as well as, a presentation of this automotive
context is provided. To the best of the author’s knowledge, the analysis in this section is conducted on
the largest and most complete collection of BEV measurements. The BMW i3 fleet is one of the first
BEVs from the modern era, offering over eight years of collection history. The purpose of this section
is to first explore the data and provide an overview of effective data analysis techniques saving a more
confirmatory analysis for future sections.

2.1 Data Acquisition

In this section, the data collection context is established. Data generation is a key step to machine
learning, and all model-based approaches for battery state estimation, therefore, an understanding of
the origin and acquisition process of the data is tantamount to a proper handling and interpretation.

2.1.1 The BMW i3

The BMW i3 is one of the oldest modern BEVs. Production for the BMW i3 started on Sept. 18th,
2013, and ended in 2022. In October 2020, the 200,000th BMW i3 was produced. There were three
distinct generations of BMW i3 models, the 60 Ah, 94 Ah and 120 Ah battery systems. For this section
only the 60 Ah version is presented. This first BMW i3, produced from 2013-2017 is estimated to
have sold over 98,000 units in over 74 countries [124]. The wide distribution offers a varied data-set
reflecting the diverse conditions experienced by BEVs. What distinguishes the available data-set from
the state-of-the-art is access to hundreds of thousands of measurements from thousands of vehicles
in non-laboratory conditions. In contrast, the maximum number of cells measured from a publicly
available battery data-set is 233 cells [91].
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2.1.2 Online Measurements and Embedded Systems

All modern battery systems are accompanied by a BMS. The BMS provides battery control and
monitoring functions for the safe and optimal operation of the energy storage system and vehicle.
Common BMS functions include: cell balancing within a pack, over and under voltage protection, fault
detection, SOC estimation, SOH estimation, communication with other onboard vehicle controllers and
external charging controllers, as well as others [125; 126]. The BMS connects with the numerous sensors
installed in the energy storage system responsible for measuring the current, voltage and temperature.
In addition to raw data collection from the multiple sensors, basic control functions are programmed
into the control unit to provide some of the functionality above based on these measured inputs.

As the central controller for safe and robust battery operation, the BMS is required to meet numerous
industrial standards such as IEEE 1679.1, UL 1973 and IEC 62619, all relating to the safety speci-
fications for lithium-ion battery operation [127]. Logged data must be permenantly available on the
BMS and stored in a flash-resistant manner, such that it is not lost during routine software updates.
The demand for system robustness requires premium materials resulting in a high cost-to-performance
ratio. For auto manufacturers, ensuring the safest and most reliable battery and BMS involves defining
efficient data collection and data handling functions to help minimize the cost of the BMS. This means
that every byte of data collected is evaluated for its contribution to the overall safety and cost of the
system.

This trade-off between data collection and system cost often results in a more narrow sub-set of data
which is optimized for achieving or monitoring the functions listed above. In addition to the strict
focus on relevant parameters, customer privacy also restricts potentially relevant data. Data collection
should be limited to information regarding the performance and safety of the system, and as such,
superfluous data reflecting personal or private information from the user of the system is excluded
from collection. The effect on the data-set presented in this chapter is that a few of the relevant
battery information signals: SOC, temperature, C-rate and power, are collected in the form of time-
integrated binned histograms. These histograms obfuscate any information which could be gained by
collecting the data as a time-series, showing the behavior of a user over a linear time-segment, and
instead shows only how many seconds a vehicle was operated in a specific region.

2.1.3 Cloud-Data Collection

Cloud computing and connected vehicles offer the opportunity to understand collected data in a larger
context. As mentioned above, the BMS is limited due to costs, restricting the potential functionality
of an onboard BMS. Additionally, these onboard systems can only view the behavior of the specific
energy system they are connected with. Cloud-based platforms are able to store limitless amounts
of data in a flexible system. Cloud platforms help connect these single systems to a larger network
offering the potential to learn macro-trends and develop functions based on a more broad set of data.

As seen in Fig. 2.2 data is first collected from the BMS. The BMS collates multiple measurement
signals describing the current state of the vehicle to be used for safety and reliability analysis of
the fleet. These data packages from the field are collected at a central storage server in the Cloud.
Combining this battery data from all available vehicles enables Big Data analytics and the application
of machine learning methods, which will be further discussed later in this work.
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Figure 2.2: A standard process diagram depicts how raw data is measured and processed by an onboard
battery management system and then transferred to the cloud for fleet analytics.

2.2 Statistical Data Review

Before the data is used for model development, a non-bias evaluation of the data is first considered.
In this section the major statistical properties of the data is explored. This not only introduces the
data to the reader, but it also highlights strengths and weaknesses contained within the data-set.

2.2.1 Statistical Evaluation of a Data-set

Terminology and notation used in data science varies between, and sometimes even within, disciplines.
In this thesis a few terms will be discussed for standardization and familiarization for the readers.

Raw data is collated into a relational database assuming a rectangular form. The raw data is a mixture
of continuous, discrete and categorical types. Continuous data is bound within a specified interval and
can be any value in this interval, such as temperature or vehicle age. A discrete data-set can only
be specific integer values and is sometimes referred to as integer or count data types. One example
of discrete data from this data-set is the number of vehicles in a specific country. Finally, categorical
data types ascribe a label from a specified list within a category, as the name would imply. Categorical
data types are also known as enumerated or factors. A common categorical data in this work is the
origin country for the vehicle.

The rectangular database is referred to as a data frame in this work and can be thought of as a
spreadsheet with each column, or feature, coming from a raw signal input from the vehicle. Other
terms used to describe these features, which will be used interchangeably in this work, are input and
variable. A measurement or readout makes up the rows of the data frame. Other common terms for
this are record, observation and sample.

The process of data exploration was first defined by John Tukay in 1977, and was a first departure
from classic probability theory to approach data-set with no confirmatory requirements [128]. Data
exploration can be broken down in three categories to get a feel for what the data contains: location,
variability and distribution [129].

The location provides an estimate of the central tendency of the data and includes measures of mean,
median and outliers. For data analyzed in this thesis, two mean estimations are used: the classic mean
and a weighted mean which is used for calculating the mean of time-based histogram information. The
mean is given by

x̄ = Σn
i xi

n
, (2.1)
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and the weighted mean,

x̄w = Σn
i wixi

Σn
i wi

, (2.2)

where x represents the feature, n is the number of observations, i indicates the observation index and
w the weight (which is time for much of the subsequent analysis) [129].

Handling variability in a data-set is a core tenet to data analysis. The key metrics used to discuss the
variably in a feature are the variance, standard deviation, range, percentile and inner quartile range.
The variance, σ2, is calculated as the squared standard deviation, σ, by

σ2 = Σ(x − x̄)2

n − 1 , (2.3)

and standard deviation as

σ =
√

σ2. (2.4)

The range is the spread of the values from minimum to the maximum and the percentile, represents
the value at which at least P-percent of the values are equal to or greater than. The inner quartile
range (IQR) is a common term denoting the span of values between the 25th and 75th percentile [129].

The final data exploration technique used in this work is to investigate the distribution of the data using
box-plots, histograms and density plots. These graphical techniques help characterize the location and
variability of the data-set as well as provide information on the skewness and kurtosis [128]. Figure 2.3
shows three common graphical techniques used to investigate a data-set. Figure 2.3A shows randomly
generated normally distributed data to highlight a standard distribution and the correlation to the
location metric, mean, and the variance, where 95.4 % of the data lies within 2σ. If more data is lying
outside the 2σ threshold then the data set is considered to have a high kurtosis, and as well, if the
mean is not centered, the data-set is said to be skewed (see Fig. 2.3C).

Figure 2.3: A randomly generated dataset shows three classic graphical techniques for data exploration:
A) variance plot, B) boxplot and C) distribution plot.

Skewness is a measure of asymmetry. A normal distribution will have zero skew, where the left and right
side distribution of the mean are equal [128]. The skewness coefficient λG is negative for left skewness
and positive for right skewness. One method often used for computing skewness is the Galton skewness
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which is a function of the quartiles, where:

λG = Q1 + Q3 − 2Q2
Q3 − Q1 , (2.5)

with Q2 representing the median and Q1 and Q3 representing the upper and lower quartile or 25th

and 75th percentile, respectively. The boxplot is also a common method for showing this distribution,
also providing a good visualization of outliers in the data, as demonstrated in Fig. 2.3B.

Kurtosis measures the tail distribution. A normal distribution has a kurtosis value of 3, which is why
it is common to measure the excess kurtosis as

λP = Σn
i=1(xi − x̄)4/n

σ4 − 3. (2.6)

Using this definition, a ’heavy-tailed’ distribution will have a positive value, and a ’light-tailed’ distri-
bution will have a negative value of kurtosis.

2.2.2 Fleet Data Availability

One of the enabling factors for this work was the access to a large store of BEV data from the
automotive sector. The data collected and used throughout this section was recorded from BMW i3
vehicles operating in the field. Access to this data is required for monitoring fleet safety and alert to
any issues which may affect the fleet as a whole. One requirement for the data collection process is
that the customer’s privacy must be protected at all times. This restriction causes some challenges
when using the data for algorithm development, however, some insights into general driving trends
can be gained. A quick overview of the total number of measurements from the available BMW i3 is
provided in Fig. 2.4.

Figure 2.4: One million readouts from over 4000 BMW i3 60 Ah vehicles were used to analyze driving
behavior in the automotive context.

The era of big-data means that over 100 million measurements were recorded from the total BMW i3
60 Ah fleet. Available fleet in this context refers to the accessible data used for monitoring purposes.
In total, there are ca. 4000 unique vehicles available for analysis which have sufficient data quality
and are not restricted due to privacy or other concerns. From these ca. 4000 vehicles, ca. 1,000,000
measurements are available from the total set of 100 million. A measurement is considered as a
single readout from a vehicle which includes a package of relevant operation information which will
be discussed in more detail shortly. On average there are ca. 260 measurements per vehicle as seen
in Fig. 2.5A, with an average time between readouts of ca. 10 days as seen in Fig. 2.5B. In Fig. 2.6
the availability is shown also with respect to the global distribution of data. In the global map, it
can be seen that a significant portion of vehicles are reporting from the US, with Europe as a whole
providing over 1000 vehicles. The rest of the vehicles are distributed around the world, with grey
shaded countries being excluded from this analysis due to low data availability.

A breakdown of the readout frequency, or the time between two measurements from a vehicle is shown
in Figure 2.5B. Many of the measurements are recorded daily and 95 % of them occur within 30 days
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Figure 2.5: A) A distribution of the number of readouts per vehicle from the i3 data-set. B) Mea-
surements are transmitted from the vehicles typically every ten days. A small portion of
readings however are separated by over 30 days.

Figure 2.6: A global map shows the number of vehicles per country, and where the data is distributed.

of the previous measurement.

In order to put the data analysis in the next section into the proper context, it is important to
understand what is recorded in a measurement. Table 2.1 is a reproduction of a small snippet from
the collected data-set where the vehicle and measurement ID have been anonymized. From this table
it can be seen that each measurement and each vehicle have a unique identifier which allows for the
grouping of information for a specific vehicle, as shown in Fig. 2.7. The Measurement ID never repeats,
whereas the Vehicle ID does. The Vehicle ID JPA488C7, found in Tab. 2.1 is repeated multiple times.
Using the Vehicle ID, the history for a single vehicle can be analyzed and extracted from the larger
data-set (for example see Fig. 2.7).

Data from the fleet is continually collected and updated. The data analyzed in this section was last
updated in 2023 and as such contains measurements from over 8 years of BMW i3 data. As can be
seen from the single vehicle in Fig. 2.7, measurements are collected regularly, however, there are also
extended periods where no data is available for some vehicles.

A few of the variables recorded in the readout are included in Tab. 2.1 to explore a readout in more
detail. One can see from Tab. 2.1 how this data can be used to understand the history of a vehicle.
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Figure 2.7: A scatter plot of the driven kilometers over the vehicle age from all measurements from
every vehicle provides a cloud of information. A single vehicle is highlighted showing the
history which can be rebuilt using the collected data. The single vehicle, and larger trend
from the data cloud show a steady increase in the kilometers driven over vehicle age.

Tracking the JPA488C7 vehicle, an increase in kilometers and decrease in SOH can be observed
between the two measurements. As mentioned above, there are over 1 million measurements for the
BMW i3 used for this analysis and 4000 unique vehicles. To help represent this massive cloud of data,
Figure 2.7 plots each available measurement of kilometers driven over the vehicle age at the time of
the readout. This representation is useful to see the range of values expected in the field data and
highlight macro-trends in the data. Isolating a single vehicle, using the Vehicle ID, shows the collected
historical data from a single vehicle (Fig. 2.7) showing how the history of a single vehicle can also be
tracked.

Table 2.1: Snippet from the data-set showing key details from the measurements. Vehicle and mea-
surement IDs have been anonymized.

Measurement ID Vehicle ID Kilometers Temperature / °C ... State-of-Health / %

BTGJSMAP G2BB6LDS 42876 16.7 ... 97.7
BMSP52WP 3FGRBLWT 23430 17.4 ... 98.8
LLA4SDHF JPA488C7 17403 16.3 ... 99.3

... ... ... ... ... ...
57H4U7YQ AVDVW2JN 92010 20.5 ... 96.2
62ZVKJDK JPA488C7 18309 16.8 ... 99.3

As the data is collected from each vehicle, it is aggregated for the entire vehicle life, which is why
the kilometers driven are continually increasing for the single vehicle in Fig. 2.7. This aggregation
also occurs for other variables which are collected in time-based histograms, including temperature,
charge and discharge C-rate and SOC. As is potentially best illustrated in the temperature plot in the
subsequent section, Fig. 2.10, a cumulative average over all readouts flattens significantly the values
as compared with taking the average between two readouts. For this reason, attention is given to the
measurement presentation in this section, labeling values reflecting a Cumulative or Readout Average
as such. Figure 2.8 is provided to show the readout difference over age when considering either the
cumulative or readout average values.

31



2 Aging Behavior in the Automotive Context

Figure 2.8: Time-aggregated histograms are used to calculate the average of a variable in two ways:
the cumulative average representing the total average up until the last readout (A, C and
E) and the average during only one readout period (B, D and F).

2.2.3 Operation Data

Batteries used in the automotive context experience a wide range of operation conditions. In addition
to the environmental factors detailed above, factors such as driver aggressiveness, charging habits
and driving frequency significantly influence the battery. In this section data reflecting the operation
conditions of the vehicle is presented. Table 2.2 describes the measured variables in more detail. An
accompanying histogram plot, Fig. 2.9, helps visualize the spread of some of the meta-data parameters
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taken from the last readout per vehicle.

Table 2.2: An overview of the measured variables available for model development.
Variable Name Units Variable Description

Age years Each vehicle saves the date of production, marking the first time
the high voltage system (HVS) is activated. This date is used as
the beginning of life for the HVS. Using this date and the date of
each readout, the current age of the HVS can be calculated.

Readout date Each measurement is readout with a corresponding time stamp
including the day, month and year.

Kilometers km The kilometers are saved just as they are displayed on the vehicle
odometer and represent the total accumulated number of driven
kilometers.

Current
Through-
put

Ah Two values are saved for current throughput, one corresponding to
the flow in the positive direction, or charging of the battery, and
the other in the negative direction, or discharging. The integral
counters are registered in ampere-hours and when taken together
represent the total current flow through the battery.

State-of-
Health

% The SOH is a ratio of the remaining battery capacity over the
nominal capacity as estimated by the onboard BMS. The recorded
SOH value represents the cumulative degradation the battery ex-
perienced up to the readout.

State-of-
Charge

% The SOC is a ratio of the remaining charge over the total available
charge as a function of the SOH as estimated by the onboard BMS.
The recorded SOC value represents the cumulative average SOC
the vehicle has experienced up to the readout measured when the
vehicle is on and off. The value is calculated by recording the
amount of time the battery has experienced each SOC value in a
histogram, and then calculating a time weighted average.

C-rate h-1 A normalized measure of charge and discharge current, C-rate, is
calculated by dividing the cumulative average current by the nomi-
nal battery capacity. Both charging and discharging measurements
are recorded only when the vehicle is in operation. This feature is
originally collected as a histogram, where the values analyzed in
this thesis represent the time weighted average of the histogram.

Temperature °C A temperature sensor records the cumulative time average over the
life of the vehicle from multiple sensors located within the battery
system. This temperature is very closely related to the environmen-
tal temperature the vehicle experiences during aging. This feature
is originally collected as a histogram, where the values analyzed in
this thesis represent the time weighted average of the histogram.

The histograms from Fig. 2.9 each contain 100 bins. The x-axis of the histogram shows the value of the
corresponding variable and the y-axis the count of how often it was recorded in the last readout per
vehicle data-set. In addition to the occurrence frequency of each value from a variable, the histogram
also provides an indication on the distribution of the collected data. Two distributions stand apart from
the more normally distributed variables of Fig. 2.9, the vehicle age (Fig. 2.9C) and the throughput per
kilometer (Fig. 2.9D), with the age histogram having a significant right-ward skew, and the throughput
per kilometer showing a left tail. As these readouts come from the the last readout per vehicle and
reflect cumulative values, it makes sense that the age skews to higher values. The left tail seen in the
throughput per kilometer plot, however, may indicate vehicles which either do not have sufficient data
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2 Aging Behavior in the Automotive Context

Figure 2.9: A histogram showing the distribution of various cumulative variables as read from the most
recent readout per vehicles: A) kilometers driven, B) current throughput, C) vehicle age,
D) throughput per kilometer, E) daily trip distance and F) state-of-health.

or are otherwise reporting outlier behavior.

One interesting trend shows that the total kilometers driven and the total current throughput do not
have as significant of a skew towards the higher end of the range as seen in the vehicle age (Fig. 2.9A-C).
There is, however, a tail in the distribution pulling the averages to the right from vehicles experiencing
a significant amount of driving. There are few vehicles driving over 150,000 km and the average total
kilometers driven is 61,000 km. According to two studies investigating driver behavior in the US
and EU, the average yearly distance for drivers is between 18,000-21,000 km which would indicate an
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expected average between 108,000-126,000 km at six years [130; 131]. In this data-set, however the
average driven kilometers per year is only 12,000 km, which can be read from Fig. 2.9E by scaling the
daily distance to a whole year. This lower than expected trip distance maybe explained by the early
generation of EV having smaller batteries and early customers having range-anxiety, however, the i3
is also by its DNA a city-vehicle and therefore would not likely be used for longer trips [132].

The low kurtosis seen in the cumulative throughput per kilometer plot in Fig. 2.9D indicates the narrow
range of efficiency from various users in the field. Looking to the tails, a user demanding 0.8 Ah

km is likely
driving with much higher C-rates on average (possibly a commuter with a high portion of highway)
than one driving with 0.4 Ah

km , but that the count of occurrences is very low indicates that the i3 fleet
maintains the 0.52 Ah

km efficiency over a very broad range of use conditions.

The SOH is also an interesting plot (Fig. 2.9F) to compare with the distribution from age, as it could
be expected that the SOH would have a mirrored left-ward skew to the skew seen in the age plot. The
correlation of SOH and the other measured variables is presented in Chapter 4.

More user-specific variables, C-rate and SOC are presented in Fig. 2.8 with both their cumulative
averages over lifetime and the averages as recorded between single readouts. This comparison helps
to highlight how the time-aggregated histogram data could obfuscate more dynamic behavior, as the
variability in the readout average plots are significantly higher compared with the cumulative averages.

The cumulative average SOC reflects the effective aging SOC. Similar to the cumulative average tem-
perature, the cumulative average SOC settles to a more constant value over the life of the vehicle due
to the nature of cumulative time averages. It is also possible to take the difference between two cu-
mulative readouts and analyze the behavior between readouts. As shown in Fig. 2.10, the cumulative
average temperature for a vehicle settles to an equilibrium, whereas the average per readout shows
significant seasonal temperature variation.

Figure 2.10: The cumulative average temperature and the average temperature per readout show the
stabilization to a lifetime average temperature and seasonal variation, respectively.

The charge and discharge C-rate histograms (Fig. 2.8C and Fig. 2.8E) reflect the total lifetime average
C-rate seen in the vehicle fleet. The charge C-rate includes regenerative charging during braking and is
significantly more narrow with values centering around the mean 0.3 h−1. This is likely due to the fact
that the vehicles are most often charged with a level-2 charger as these are the most popular chargers
for private use [133] and with an average power output around 7.2 kW, the 400 V, 60 Ah battery would
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2 Aging Behavior in the Automotive Context

experience a C-rate of ca. 0.3 h−1. The discharge C-rate is much more varied and shows the extreme
differences in driver aggressiveness with a spread between 0 h−1 and 1.25 h−1.

Due to the fact that the average time between readouts is 10 days this operation data does not reflect
the behavior over a single trip. At best, the average data provides a snapshot into the lifetime operation
of a vehicle from the cumulative averages, and a slightly more detailed snapshot of the average behavior
over a week when using only the averages per readout. The data-set provides significant insights into
macro trends in the operation conditions for the i3. Where this data-set does not provide adequate
resolution, however, is identifying or assessing specific events in the driving history, as these are lost due
to the sampling frequency and collection method using the time histograms. There is, for example,
no possibility of identifying how often the vehicle was above a specified C-rate and at a specified
temperature as the histogram data does not combine these features.

2.3 Case Studies in Data Analysis

This section uses a few case studies to explore the information contained in the available data-set.
As mentioned in the previous section, there are limitations to the data collected, however comparing
different members from the data-set can offer some insights into larger trends. The methods developed
in this section to analyze the data will help inform further insights into aging behavior which will be
discussed in a later section.

2.3.1 Influence of Climate on Collected Data

One of the most influential factors affecting the health of a battery is the environment it is operated
in. This data-set represents a global amalgamation including data from each continent which helps
capture the extreme variety of possible environments experienced by BEVs.

From the list of possible environmental factors including: humidity, temperature and elevation– tem-
perature is often the only condition considered in battery aging experiments [43; 134–136]. From the
global map in Fig. 2.11 the difference in average temperature measured from the vehicles is 16 °C. This
average temperature represents the total cumulative average temperature of the vehicle over the vehi-
cle life. In Fig. 2.11, all vehicles in each country were grouped together and the average temperature
from the most recent readout was calculated. The cumulative time average temperature represents a
stable value after many years as the variation due to daily, weekly or seasonal swings are smoothed and
as such, this value is a good indicator for the average aging temperature experienced by the battery,
which is further analyzed in Section 2.3.1.

This case study selects two countries representing the two extremes of the data collected. As tem-
perature plays an important role in the health and safety of the battery, it is critical to understand
the environmental conditions the vehicles find themselves in. The average temperature per country
is shown in Fig. 2.11 and Tab. 2.3 with the two extremes being Malaysia (including Singapore) and
Norway. Spain was also included in the case study to represent a moderate country with a mediter-
ranean climate which is different than the tropical climate of Malaysia or the nordic climate of Norway.
Additionally, three groups were created out of vehicles with a cumulative average temperature of 14 °C,
21 °C and 27 °C. From this group the affect of temperature on the setting time of the cumulative
average temperature can be investigated.
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Figure 2.11: A temperature heat map shows the recorded average temperature from the vehicles
grouped by country. This view also provides insight into the global distribution included
in the data-set.

Table 2.3: Recorded temperature data from three countries used for the case study on temperature.
Group Nr. Readouts Nr. Vehicles Tavg / °C Tmin / °C Tmax / °C

Malaysia 569 4 27.6 14.3 32.5
Spain 610 5 19.9 6.1 31.4

Norway 567 3 11.1 -7.3 26.8

Tavg=27°C 411 3 26.7 14.3 32.5
Tavg=21°C 1380 8 21.7 6.1 35.4
Tavg=14°C 1440 9 14.3 -2.8 30.4

From each of the three countries, 3-5 vehicles were randomly selected which had regular measurement
frequency for multiple years to better show the seasonal dependency in those regions. In total there
are 1746 measurements with an average of 145 measurements per vehicle. The readout period shows
three full years of data from 2017-2020, capturing the periodicity of the seasons in the data.

The four vehicles from Malaysia have an average of 27.6 °C with a spread from 14.3-32.5 °C. A
maximum temperature of 40.2 °C was recorded from the global data-set. Vehicles experiencing a more
moderate mediterranean climate, represented by Spain, show an average temperature of 19.9 °C and
fall within a range of 6.1-31.4 °C. The coldest average temperature was seen in Norway, with an
average of 11.1 °C and low/high split from -7.3-26.8 °C.

In Fig. 2.12A the seasonal variation in temperature for the three countries is displayed. Using the
average temperature per readout, the affect of these seasons can still be captured. Although the
maximum temperature the vehicles experienced is lost due to the time histogram averaging, significant
differences between these three groups can still be observed. The vehicles aging in a warm country
experience a relatively constant average temperature with low fluctuations during the season. This
average temperature is also located at the upper extremes of the collected data. In contrast, the
vehicles from the warm country span the entire range of data. The cooler country of Norway also has
more pronounced temperature extremes with a temperature difference of ±17 °C from the average.
This swing is the largest, compared to ±12.5 °C for the warm country and only ±9.1 °C from the hot
country.

The temperature swings from the seasons also impact the cumulative average temperature. To in-

37
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Figure 2.12: A) The average temperature per readout from vehicles in three example countries shows
the effect of seasonal variability. B) Seasonal variability is smoothed-out using the cumu-
lative average temperature value. The settling time for when this value remains within
0.5 °C depends on the average temperature experienced.

vestigate this effect, three groups at various cumulative average temperatures at the time of the last
readout were collected. For example, in the group labeled as Tavg=27°C, only vehicles with a cumulative
average temperature at the time of the last readout within 0.5 °C of 27 °C were collected. This group-
ing criterion resulted in around 1000 readouts per category from 15 vehicles. The highest temperature
grouping has the smallest data-set with 411 readouts from three vehicles. As the behavior from this
group does not deviate from what is seen using the average temperature per readout from the hot
vehicle group discussed above, the relative small size of the data-set still helps to confirm the trend
observed.

The cumulative average temperature smooths out the variation between readouts as this is a time-
based average. It can be seen form Figure 2.12B that the higher temperature variability seen in the
warmer and cooler climates leads to a longer settling time in the data. This settling time can be
described as a damped sinusoidal with

Ts = T̄ce−λtcos(ωt + φ), (2.7)

where the settling time, Ts is a function of the initial seasonal variation, Tc, the period ω and a phase
shift φ. The seasonal variation, Tc can be taken from the country within which the vehicle is operating
as this provides a good approximation for most vehicles. The ω and φ represent the seasonal swing
and time of year the function is applied. The period for the settling time is one year, ω = 2π/365, and
assuming the vehicle data for fitting starts in the summer at the peak of the amplitude the phase shift
is set to zero. Once the data is fit with the damped sinusoidal, a criterion for when the temperature
is settled can be defined. After this period, the strong seasonal swings no longer pull the cumulative
average outside of this criterion.

In general, the settling time increases with decreasing temperature. At one end of the spectrum,
vehicles experiencing an average of 14 °C require up to four years before the cumulative average stays
within 0.2 °C of the final settling temperature. For warmer climates, as apparent from the relative
stability of the temperature, the average value can be taken after 2.5 years. Knowing when the value
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reliably represents the lifetime average is useful for aging estimation, as this input is a main factor
affecting the aging rate.

The temperature data collected from the time histograms is able to capture both seasonal effects
and the effective lifetime aging temperature of the vehicle. There are significant differences between
countries, mostly a result of the climate, reflecting the need to further break down the data from larger
countries into specific climate zones.

2.3.2 Car Sharing in Germany

In this case study a group of 54 former DriveNow [137] i3 vehicles is available for further analysis. The
available vehicles are located in Germany and as such a comparison between the i3 data collected from
German vehicles and the DriveNow vehicles is performed. The DriveNow vehicles offer an interesting
comparison to the other data collected in the field because the usage profile for on-demand mobility is
assumed to be different than that from private ownership. The typical car-sharing customer is limited
to driving within major urban centers as most mobility service providers do not operate in more rural
areas. Another important distinction is that the vehicles are not privately owned and as such drivers
may behave differently. DriveNow customers have totaled over 200 million miles driven [138], and in
this study three million of those kilometers are analyzed.

One of the first steps to understanding the differences between these two groups is to look at the current
conditions of the vehicles. Starting with the first two subplots from Fig. 2.13A-B it can be seen that
the control group of German cars was selected to have similar age and temperature characteristics
by filtering for all vehicles between two and six years of age within an average temperature range
between 13 °C and 17 °C. Indeed the selected German cars experience very similar climates as the
average temperature is only 0.2 °C apart. Where they differ slightly is in the average age, with the
German subset being five months older on average. This is most likely due to the fact that the i3 fleet
is older on average and there are significantly more vehicles in the German car data-set, containing
170 vehicles. The average total kilometers within each group is also similar with 60,700 km for the
DriveNow vehicles and 52,300 for the German i3s.

The next comparison looks into the battery state parameters of SOC and discharge C-rate and can shed
insight into the driving behavior. The DriveNow vehicles show one of the most significant differences in
the average SOC with values 17 % lower compared to the German subset (Fig. 2.13C). It can be inferred
from this difference that the DriveNow vehicles both experience higher DOD and are often parked at
lower SOC leading to a lower average. The Charge C-rate showed no significant difference with a mean
charging C-rate around 0.32 h−1 and for the German car and DriveNow data-sets, respectively, and
was therefore not included in the figure. For the discharging C-rate, Fig. 2.13D, a larger difference
was observed with the German car average of 0.59 h−1, and the DriveNow average of 0.47 h−1. It is
supposed that the higher C-rates seen in the German car data-set comes from more frequent highway
driving.

The final comparison which can be pulled from the data reflects the usage of the vehicles. As mentioned,
the DriveNow subset is slightly younger on average, however, the kilometers driven are more. This is
reflected in the average kilometers per day in Figure 2.13E. The consumption, shown in Fig. 2.13F and
measured in Ampere-hours per kilometer (in the discharge only) is also higher in the DriveNow subset.
These two plots indicate that the vehicles are driven more frequently and most likely experience higher
inefficiencies by starting and stopping.
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Figure 2.13: A comparison between shared vehicles and privately driven i3 vehicles shows differences in
the collected data. A) cumulative age, B) cumulative average temperature, C) cumulative
average state-of-charge, D) cumulative average discharge rate, E) cumulative average trip
distance and F) cumulative throughput per kilometer.

From the case study it can be concluded that there is a noticeable difference in operation between the
i3 DriveNow vehicles in Germany and the i3 vehicles not operating as part of a car-sharing service. The
trends in kilometers per day and throughput per kilometer for the DriveNow vehicles would suggest a
higher degradation rate and wear on the vehicles, however with lower average SOC, discharging C-rate
and age, no significant difference in SOH is seen, with the average SOH of the two data-sets being 84 %
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and 85 % for the German Cars and DriveNow, respectively (see Fig. 2.14).

Figure 2.14: An SOH histogram for two distinct use-classes for the i3 show similar aging characteristics.

What this analysis does show, however, is that aging is a complex phenomenon that is a combination
of multiple influences, from environment, driving behavior and use-frequency. By piecing the vehicle
history data together, one can start to build an understanding for which types of clusters or aging
conditions are most relevant in the automotive industry, and which factors have contributed most to
the degradation behavior.

2.4 Path Dependence in the Automotive Context

An overview of the aging conditions seen in the automotive context is provided in Fig. 2.9 from
Section 2.2. Table 2.4 reviews the statistical properties of the collected driving data and highlights
the upper and lower bounds. From this analysis the average and the extreme driving behavior can
be quantified. From the data available, the average driver of an i3 has been driving for five years,
driven 61.300 km with an average SOC around 66 %, discharged with about 0.53 h−1 C-rate and charged
with 0.31 h−1 C-rate.

Table 2.4: Statistical properties of collected vehicle data.
Variable Units Average σ Min Max

Vehicle Age years 5.2 1.1 1.5 8.9
Total Kilometers km·10−3 61 30 0.5 229

Trip Distance km/day 32.7 15.2 0.3 139
Average SOC % 66.8 15.2 19.5 90.4

Average Discharge C-Rate h-1 0.31 0.12 0.02 1.1
Average Charge C-Rate h-1 0.53 0.04 0.01 0.68

Due to the variability in real-world aging conditions, it is difficult to isolate specific aging paths or
data-sets which differ only in one variable, i.e., vehicles driving the same distance, with the same C-
rate and SOC but with different average temperatures. Due to this variability a controlled experiment
using real-world conditions is extremely challenging. In lieu of this, a laboratory study was used to
collect path dependent aging data, which is discussed in Chapter 3. Using the available data, however,
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it was at least possible to identify significant changes in driving behavior using a changepoint detection
algorithm.

In this section, a ‘changepoint’ detection algorithm from the R (programming language) package [139]
is combined with electric vehicle driving data, to illustrate that dynamic aging conditions can be
grouped into clusters of similar aging behaviors. This grouping could then be used to further inform
and improve battery models or identify changes in behavior patterns which may indicate a deviation
from prescribed operation conditions.

The data available for the changepoint analysis is described in detail in Section 2.2. For this analysis
multiple years of vehicle data from the i3 was available and only vehicles which were at least 1 year
old, had over 175,000 kilometers and over 100 readings were selected. The final sample size for this
application was 300 vehicles. Three variables were analyzed: kilometers per day, discharge rate and
temperature. The variable kilometers per day provides information on driving frequency and has
a significant impact on the calendric and cyclic contribution to battery aging. The discharge rate is
selected to showcase a variable relevant to battery safety systems, as well as, aging. Finally temperature
was also analyzed as this is known to have a cyclic changing pattern dependent on the seasons.

This is best visualized in Fig. 2.15A where a significant jump in the average discharge rate can be seen
in the measurement signal from one vehicle. A measurement index, seen as the x-axis in Figure 2.15
and Fig. 2.16 refers to one measurement period (typically 6-7 days).
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Figure 2.15: A) An example measurement for discharge C-rate from a representative vehicle. B) Two
distinct histograms seen within the signal– an indicator for a changepoint.

As was shown in Sec. 2.2, the measurement data can be broken down into a distribution function,
where p(x = x|µ, Θ) is the probability density function consisting of two parameters: mean, µ, and
standard deviation, σ. An example of a measured C-rate signal (see Fig. 2.15A) is shown to highlight
a statistical variation in the data. In this figure a binomial distribution is clearly evident (also see
Fig. 2.15B) representing two distinct probability functions with their own respective mean and standard
deviation.

The changepoint algorithm was developed to identify these sections within a measurement signal.
Given a time-series measurement 1:n = (y1, ..., yn) a changepoint is said to occur if there exists a time
period τ ∈ 1, ..., n − 1, such that the properties of two subsets 1, ..., τ and τ+1, ..., n are significantly
different.

It first achieves this by defining the test statistic using the likelihood ratio method [140]. This method
requires the calculation of the maximum log-likelihood of a distribution, logp(y1 : n)|Θ̂, where p(.) is
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the probability density function associated with the distribution of the data and Θ̂ is the maximum
likelihood estimate of the mean and standard deviation parameters. The maximum likelihood for a
given time τ1 with τ1 ∈ 1, .., n − 1 is given by

ML(τ1) = logp(y1:τ1Θ̂1) + logp(y(τ1+1):nΘ̂2), (2.8)

where the maximum over all possible changepoint locations is used to determine if a changepoint is
greater than some threshold, c, using the test statistic

λ = 2[max
τ1

ML(τ1) − logp(y1:n|θ̂)], (2.9)

where a changepoint is confirmed if λ > c. The selection of the threshold is used to tune the sensitivity
of the algorithm to deviations in the data. Smaller thresholds result in more changepoints.

For detecting multiple changepoints a cost function, C, is introduced,

Σm+1
i=1 [C(y(τi−1+1):τ1)]βf(m), (2.10)

where βf(m) is a penalty to guard against overfitting. The changepoint algorithm implements multiple
methods for solving this cost function which allows further user input such as the number of expected
changepoints or the expected segment length [141; 142].

The application of the changepoint detection algorithm on the provided data found 20 vehicles with
significant deviations in driving behavior. Within these 20 vehicles, an average of one distinct driving
behavior change occurred every 3.2 years (excluding temperature). The results of the analysis can
be found in Table 2.5. The average change in the means between two significantly different driving
behaviors was 2 % for kilometers/day, 13 % for discharge rate and 12 % for temperature.

Table 2.5: Average number of change points and average change for relevant aging related variables
during vehicle lifetime.

Kilometers per Day Discharge Rate Temperature

Years per Changepoint 3.2 3.1 0.64
Average Changepoint 2 % 13 % 12 %

Figure 2.16 shows how the algorithm performed for one of the 20 vehicles. In this plot there are several
changes in the discharge rate, one change in the kilometers per day and seasonal changes in tem-
perature. Temperature changepoints were identified with a much higher frequency, as these correlate
with seasonal differences more so than driving behavior. The average time between changepoints of
0.64 years for the temperature case reflects the diurnal seasonal cycle.

This method was found to be successful in detecting changes in discharge rate (Fig. 2.16C), average
trip distance (Fig. 2.16D) and temperature (Fig. 2.16B) from real-world driving measurements. In
some cases it was found that changes in behavior could deviate by up to 50 % of their averages (see
Fig. 2.16D). The ability to detect these variations can help improve aging modeling performance, as
well as, allow for potential fault detection use cases.
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Figure 2.16: Example of a significant changes in an aging-related variable during driving operation. A)
An estimation of the SOH, B) periodic changes in temperature likely related to seasonal
fluctuations, C) two distinct discharge rates, with 50 % deviation from average and D) a
change in trip distance.
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3 Path Dependent Battery Aging During Race-Inspired
Cycling Conditions

Figure 3.1: Crop from the thesis structure highlighting the focus of this chapter.

It is well evidenced that battery degradation is influenced by usage conditions resulting in various aging
mechanisms which often present themselves in hierarchies and can even occur simultaneously [41; 43;
51; 143–145]. To which extent these hierarchical and simultaneous mechanisms are coupled with one
another, however, is not well understood [41; 136; 146; 147]. In this work, an investigation into the
degradation modes present during aging, and their potential influence on path dependent aging is
investigated.

Path dependence refers to the time-dependent and sequential influence of aging conditions, and more
specifically for this research, refers to the switching of a stress condition after an equal amount of
cycles, or PD II as defined by Roeder et al. [148; 149]. The premise of this investigation is that one can
not simply superimpose various degradation events because the order in which these events occur has
a direct influence on the total degradation. This experiment is set-up to test this hypothesis, posing
two complimentary aging paths against each other. By allowing the cells to experience the same aging
events, only in different sequences, coupling between event sequences can be identified.

This research is of particular interest for holistic aging models which often assume that the end aging
state of a battery is an addition of time spent or stress accumulated due to calendric or cyclic aging [40;
59; 150]. The validity of this assumption has a direct influence on the accuracy of the aging model.
Further relevance of this study is that it breaks down the aging modes into main aging mechanisms,
offering more insights into the reason for coupled aging. The finer resolution, compared to just calendric
and cyclic aging modes, means that the impact the operation conditions have on the battery can be
better distinguished.

In order to identify the dominant degradation modes, the relative change in the differential voltage
curves can be analyzed using the differential voltage analysis (DVA) method [43; 151–157]. DVA
requires a low constant current charge or discharge cycle (C-rate < C/5), and plots the derivative of
the voltage over the derivative of capacity on the y-axis and the capacity on the x-axis [52; 158]. By
analyzing the shift of characteristic peaks and valleys resulting from this plot, the aging modes can be
characterized. The study design is set-up such that the dominant degradation modes occurring within
an interval can be quantified and compared to the aging mechanisms from the complimentary path. If
there was no path dependence, for example, than the end DVA curve from both complimentary paths
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would also look the same.

The profiles chosen for analysis were ones relevant to BEVs aging. Boundary use-cases were chosen
where the identification of the dominant aging mechanism should be easier. These conditions included
various combinations of high C-rates and high temperatures. The result was that some paths led
to dominant LLI, such as the fast charging profile at lower temperatures, and some lead to more
accelerated LAM, such as those with higher discharging C-rates. In particular, categorizing aging
mechanisms into aging modes for the cycled NCA cells helped to highlight a potential path dependence
between LLI and LAM [46; 51; 159–168].
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4 State-of-Health Estimation Using a Neural Network
Trained on Vehicle Data

Figure 4.1: Crop from the thesis structure highlighting the focus of this chapter.

The degradation of a battery is an extremely complex process, even under controlled laboratory con-
ditions, let alone in the automotive context. The advent of BEVs has not only generated new op-
portunities to help the transition from fossil fuels, but also new areas of battery research [170–172].
Understanding the aging of batteries, especially those used in the mobility sector, is essential to the
feasibility and financial success of the electric drive train. Much work has been focused on building
holistic aging models describing battery capacity fade over lifetime [40; 59; 77; 80; 150; 173–175]. These
models often use a semi-empirical approach which superimposes a calendric and a cyclic degradation
function to form the total loss equation.

Data-driven models do not rely on underlying physical equations, but instead rely on the availability
of adequate data which describes the complete range of potential aging behaviors. This is where the
explosive growth of electric vehicles provides the most potential for advancement in battery modeling,
because data is now becoming available which describe highly diverse and dynamic aging conditions,
which in turn can be used to train data-driven models.

The paper in this chapter compares some of the state-of-the-art modeling techniques, like the semi-
empirical model, with that of a machine learning approach trained on automotive data under real-world
operation conditions. In a first approach, a holistic aging model was coupled with K-means clustering
to better fit the semi-empirical model [176; 177]. K-means is an unsupervised learning method which
mathematically groups like measurements together. In this case, the same features which were used to
train the semi-empirical model and the neural network are used for grouping the K-means clusters. As
a result of the clustering, it is possible to select and fit a holistic aging function more accurately. This
approach is most similar to fitting a holistic aging function using various input data-sets from specific
temperature, C-rate or load profiles, as is often done in literature [40; 59; 77; 150], but the benefit of
K-means is that a combination of multiple features can be used to form these clusters. This reduces
the influence of manual cluster selection while still allowing for a better fitting of data sub-sets.

A second data-driven technique used a neural network to fit the aging data. Although there have
been recent advancements in using data-driven modeling for improving the performance of battery
health estimation, few have been validated in the dynamic and complex conditions experienced in the
automotive context, and instead are restricted to constant laboratory conditions [80; 93; 175; 178].
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The machine learning was implemented using the Keras framework in Python [82; 83; 179; 180].
Neural networks, like the one used in this study, have been shown to be highly effective at solving
regression problems, like battery degradation [104–107; 118; 119]. What helps this approach succeed is
the availability of a training label. One of the biggest challenges to data-driven approaches is the lack
of access to labeled reference points to train against. While this issue is particularly relevant for some
internal parameters of battery cells, the possibility to directly measure the SOHs of a battery means
that generating a suitable training data-set is only a matter of time and cost, and not feasibility.
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H I G H L I G H T S

• Battery aging studied using eight years of battery electric vehicle data.
• Two data-driven methods trained and evaluated using BEV data.
• Estimation error using a semi-empirical model was 3.4%-SOH.
• Estimation error using a neural network model was 3.0%-SOH.

A R T I C L E I N F O
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A B S T R A C T

The validation of battery aging models in automotive applications requires reliable aging data to compare the
accuracy of each proposed model. Using a sample of 704 vehicles aged up to eight years under diverse nominal
conditions two aging estimation models are proposed. By analyzing relevant automobile battery data a more
relevant fit of a semi-empirical holistic model is provided with an Arrhenius temperature dependence and
pseudo-Tafel voltage dependence. As a comparison, a neural network capturing the aging behavior using the
most correlated variables available in the data-set was also developed. Over 110,000 measurements from seven
relevant indicators are available as aging predictors, as well as, highly-accurate capacity measurements which
is used as the ground truth capacity targets to train and validate the proposed models. Against these points the
Semi-Empirical and Neural Network models achieved a root mean squared error of 3.4%-SOH and 3.0%-SOH,
respectively.

1. Introduction

Modern lithium-ion batteries are critical to the automotive indus-
tries transition to renewable energy and to the global reduction of
greenhouse gas emissions [1]. Many companies have been producing
electric vehicles (EV) for several years, allowing for two interesting
opportunities in automotive battery research. The first opportunity is to
investigate the aging behavior under nominal driving conditions. This
work is the first to use vehicle data collected over eight years under
nominal driving conditions to validate novel state-of-health (SOH) esti-
mation algorithms. A second opportunity resulting from the increased
production of electric vehicles is the access to large data-sets for
training and deploying machine learning data models. In this work, two
machine learning supported SOH estimation models are presented and
validated using a data-set of over 700 vehicles.

✩ This document is the results of the research funded by the Bayerische Motoren Werke AG.
∗ Corresponding author at: Technical University of Munich, Arcistrasse 21, 80333 Munich, Germany.

∗∗ Corresponding authors.
E-mail addresses: jacob.hamar@tum.de (J.C. Hamar), simon.erhard@bwm.de (S.V. Erhard), andreas.jossen@tum.de (A. Jossen).
URL: http://linkedin.com/in/jacob-hamar-41a10068 (J.C. Hamar).

Aging behavior in automotive applications vary significantly from
those reproduced in a laboratory setting. Understanding the aging
behavior of lithium-ion batteries in an automotive context has long
been an area of intense research as summarized by reviews from Si
et al. and Waag et al. [2,3]. The major challenges present in battery
aging estimation within automotive applications arise from the highly
dynamic and variable conditions the vehicles experience. As is shown
in this work, vehicles experience a wide range of physical and electrical
demands which result in a significant spread of aging behavior.

Most holistic aging models, which treat both calendric and cyclic
aging modes, are developed and validated using artificially generated
aging data on a cell level [4–6] or use a select few publicly available
cell testing data-sets which can be found in literature [7,8]. Due to
intense time and resource limitations inherent in battery cell aging
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data generation, this often limits studies to a patch-work of testing
conditions requiring significant interpolation and extrapolation. The
availability of aging information from the highly dynamic and various
conditions that exist in the current data-set provide a much more
colored picture to the range of possible aging scenarios and represent
the most accurate validation metric for a proposed holistic aging model.

The methods developed for this work were necessarily analytic in
nature. As a first approach, a well-established semi-empirical model
method was fit to the data [6,9–11]. This method attempts to ana-
lytically describe the aging behavior based on known stress factors
such as temperature and current, and as such, is more closely related
to the physics resulting in aging. The second model proposed uses a
neural network framework to learn aging behavior of the data-set with
no a priori information from the underlying physics. This method is
chosen as it has proven capable of accurate capacity estimation using
cell tests [8,12] and has long been a tool for regression analysis using
larger data-sets. Many novel methods have been presented with respect
to battery SOH estimation as summarized from the reviews of Li et al.
and Vidal et al. [5,6] where models have ranged from feed-forward,
recurrent and radial bias neural networks, among others. In this work,
a single feed-foreword neural network method is presented.

This research addresses the gap in SOH estimation methods vali-
dated on automotive batteries aged under the highly dynamic nominal
driving conditions. The methods proposed do not attempt to capture
potential path dependence or sequence effects in aging as the mod-
eling of these effects and the consensus of the relevance of any path
dependence is still an area of open research with few studies sup-
porting path dependent aging [13,14], while few others offer contrary
results [15–17]. With only a few notable exceptions, most aging models
are validated on data generated under artificial conditions [5,6,9,18].
Two methods were chosen to highlight the advantages of incorporating
machine learning techniques for SOH estimation when analyzing larger
data-sets.

In the following sections a detailed review of the methodology (Sec-
tion 2)– including a review of the acquired data-set and the two models
chosen for this study– will provide the context in which the estimation
results were generated. The later sections will highlight these estima-
tion results (Section 3) and discuss the implications, short-comings and
next steps in the conclusion (Section 4).

2. Method

In this section, the data-set will be described, including the aging
data collected (Section 2.1) and the method of obtaining the Off-board
Capacity Measurements (OCM) (Section 2.2) which were used as the
ground truth for validating and training the analytic models. Next, data
handling methods including a correlation analysis (Section 2.3) and
a clustering of similar vehicles, are detailed. Finally, both estimation
algorithms model are presented: the Semi-Empirical (Section 2.5) and
the Neural Network (Section 2.6).

2.1. Vehicle data

For this investigation, a large data-set representing 704 vehicles
was analyzed. The bulk of the data available for this work includes
over 110,000 measurements of seven variables over the life of the ve-
hicle. These variables include: kilometers, current throughput, state-of-
charge (SOC), discharge/charge C-rate and temperature (see Table 1).
Each vehicle was indicated with a unique identification number allow-
ing for the tracing of each measurement variable over the life of the
vehicle, as well as, connect the field measurements to the corresponding
OCM. The data collected is from the high-voltage battery pack, and
not from individual cells. The temperature is collected from the outside
out of storage system. The decision to use the temperature data from
this sensor location is motivated in large part by the fact that this
feature is found in the calendric portion of the semi-empirical model

Table 1
An overview of the measured variables available for model development.

Variable Name Variable Description

Kilometers Accumulated number of driven kilometers.
charge throughput Integral of the charge and discharge current.
State-of-Charge (SOC) Cumulative average of the ratio of the remaining capacity

over the nominal capacity.
C-rate Both charging and discharging measurements are

cumulative averages of the ratio of current over battery
capacity, first registered as a binned histogram.

Temperature Cumulative average of the temperature as measured on
the outside of the battery pack.

Age Total vehicle age.

see Section 2.5, and the chosen temperature sensor reflects the average
aging temperature over the life of the vehicle.

Weekly uploads of essential battery information is provided by the
selected vehicles as part of maintenance and safety observation. Much
of the collected data comes in the form of binned histograms, where the
cumulative amount of time in each bin is registered. This measurement
aggregation is a strong departure from traditional laboratory aging
data, which is recorded as time-series values.

From these histograms, an average value was extracted and used
for model development. Variables which are registered as histograms
and then averaged are: SOC, C-rate and temperature. The reminding
variables, kilometers, charge throughput and time, are registered as a
cumulative amount up to the moment of the reading. Since these mea-
surements occur under nominal vehicle operation, the data includes
some errors resulting in missing values (‘NaN’) or faulty measurements
(‘Inf’). Reasons for faulty signals can include: flash update of the on-
board computer, transcription error of data, faulty sensor, as well as
others.

An overview of the data is provided in form of a cumulative distribu-
tion function (CDF) plot Fig. 1. The CDF is an alternative representation
to the scatter distribution and the histogram (lower triangle and diag-
onal of Fig. 3, respectively). The 𝑦-axis of the CDF shows the range
of the values. The 𝑥-axis is the percent of readings. This is useful
for determining, for example, what percent of readings are under the
mean, or as indicated on the plot, where the 5th or 95th percentile are
found. For data with a normal distribution, the mean would fall at 50%.
Similarly, for normally distributed data, the tails characteristic of the
Gaussian distribution would also be seen in the CDF.

The discharge C-rate shown in Fig. 1D is most representative of a
normal distribution, which reflects the wide range and highly dynamic
operation of the vehicles during driving. As a comparison, the charg-
ing C-rate has a flat CDF function, reflecting the relatively standard
charging procedures. From this plot, a comparison of the samples with
and without OCM can be performed quickly to identify significant
variations in the data used for learning the model and the expected
global data-set. The distributions of SOC, charge and discharge C-
rate are consistent between the two data-sets. The OCM data has a
slightly higher average kilometers driven and a higher average charge
throughput, though the distribution (left-skew Weibull) is consistent.
Similarly, the average temperature from the OCM measurement data-
set is slightly lower, however, the distribution pattern remains are very
similar.

2.2. Off-board capacity measurements

Among these data are a relatively small sub-set of samples which
include results from an Offboard Capacity Test (OCM). From the larger
data-set of over 110,000 measurements, 704 measurements contain
the additional OCM measurement. When combined with the vehicle
data (Section 2.1), a powerful data-set is created which contains the
aging history of a vehicle (same as recorded in the larger data-set) with
an accurate estimation of the capacity fade at some time during the life
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Fig. 1. Six variables (seven including time) which were recorded over the life of the vehicles, are available for use in capacity estimation (dark blue). These measurements are
combined with Off-board Capacity Measurement readings (light gray) to provide a detailed picture of vehicle aging under nominal driving conditions. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

of the vehicle. The highly accurate OCM occurs only when the vehicle
is taken to a service center, and as such there is a limited number of
these measurements available.

The OCM procedure is standardized to be the same across all global
service centers, and should therefore be a equivalent for all vehicles.
Each test was performed with a constant current constant voltage
(CCCV) discharge procedure to the nominal operation voltage. With a
low discharge rate at a standard temperature, a highly accurate and
consistent capacity measurement data point is generated. The exact
pre-conditioning, tempering and current protocols cannot be described
in more detail as they are covered by intellectual property, but this
procedure can be compared to similar methods used in laboratory
settings to estimate cell capacity [10]. This capacity measurement is
combined with the aforementioned aging history up to the point of the
measurement and provides the most detailed snapshot of vehicle use.
These 704 read-outs are used as the ground truth for the state-of-health
(SOH) estimation.

2.3. Correlation analysis

An evaluation of each (independent) variable as it correlates to the
capacity (predictor variable) is performed using the Pearson correla-
tion coefficient. For this analysis, only the OCM data-set was used as
this data-set contains the dependent variable which is the target of
the estimation algorithms. The Pearson correlation coefficient gives a
value between −1 and 1 indicating the degree and direction of the
correlation [19]. Fig. 3 shows, in the first column, the scatter plot of
each variable against the capacity, and also in the first row, a list of
the corresponding correlation coefficients (with higher absolute values
corresponding to higher correlations). This metric is highly relevant for
selecting independent variables for a data-driven model ensuring that
the variance of the dependent variable is modeled by the independent
variables.

Also relevant for the data-driven method is understanding the co-
linearity of the independent variables, which is a measure of the

Fig. 2. Cumulative distribution functions are used to compare the 704 samples with the
OCM measurement and the larger data-set of over 110,000 measurements to highlight
any significant difference in the aging history (kilometers driven, charge throughput,
average state-of-charge, average discharge/charge C-rate during operation and average
temperature) collected in both data-sets.

redundancy of information contained within a pair of variables. The use
of colinear variables should be avoided in order for a regression fitting
to have a well-defined solution [19]. From Fig. 3, colinearity was de-
termined from the Pearson’s correlation coefficient of the independent
variables (all rows except row one) as any 𝑟-value above 0.7.

An initial analysis of the correlation of the independent variables
reveals that the highest correlation with capacity exists between the
kilometers (𝑟 = −0.69) and the charge throughput (𝑟 = −0.67). With
a consideration of the colinearity, only one variable of either charge
throughput or kilometers is selected for use with the Neural Network.
Two other independent variables are considered as they demonstrate
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Fig. 3. A correlation analysis of each of the available input feature to the target variable (SOH) and each other helps select the leanest set of predictor variables. The lower triangle
of the figure shows each variable plotted against the others. The central diagonal is the histogram distribution (with a relative frequency between 0 − 1 as seen on the 𝑦-axis of
the first plot in row one and column one, and the bins shown on the figure’s x-axis). The upper corner of the figure lists the Pearson correlation coefficient, 𝑟. Charge/discharge
C-rate and state-of-charge were not included in the plot as their correlation was not significant (𝑟 < 0.1).

reasonably high correlation: age (𝑟 = −0.43) and temperature (𝑟 =
−0.42) and do not show significant correlation between the other
variables. Three variables (not shown in Fig. 3) were not considered for
use in the Neural Network model as they did not demonstrate a high
correlation with the dependent variable: discharge C-rate (𝑟 = −0.16),
charge C-rate (𝑟 = −0.06) and SOC (𝑟 = −0.05). This should not be
interpreted, however, as the C-rate and SOC do not play a significant
role in the SOH values over lifetime, but rather that the averaged
values based on the specific binning of the histograms collected from
the vehicles in this work did not adequately capture this correlation
in the data sample analyzed. This result is seen by the authors as
an indication that the average values collected from the discharge C-
rate histogram and possible the SOC histogram did not reflect the
contribution either feature has on aging as seen from more controlled
laboratory experiments [8,20]. It should also be noted that the Pearson
correlation coefficient of 𝑟 = −0.16 for the discharge C-rate does
indicate some degree of dependency with the target variable, but was
excluded due to the fact that the discharge C-rate exhibited significant
co-linearity with other predictor variables.

2.4. Clustering

As can be seen in Fig. 2 the variance, or spread, of the SOH distri-
bution increases with the age of the vehicle. This increasing variance
would lead to decreasing regression accuracy over time with a single
regression function. In order to reduce the effect of this spread, a
K-means clustering algorithm was applied [21,22].

K-means allows for splitting the data into a set 𝑆 = 𝑆1, ..., 𝑆𝑘
of 𝑘 clusters of similar behavior. Once clustered, a regression can be
performed on each cluster of the data improving the overall regres-
sion accuracy (see the implementation of the cluster fitting using the
Semi-Empirical regression model from below (Section 2.5).

The K-means algorithm then seeks to minimize the average squared
distance between points 𝑋 = (𝑥1, ... , 𝑥𝑛) with 𝑥𝑖 ∈ 𝑑 within the
same cluster 𝑘 with the following objective function:

argmin
𝑆

𝑘
∑

𝑖=1

∑

𝑥𝑗∈𝑆𝑖

‖𝑥𝑗 − 𝜇𝑘‖
2 (1)

where 𝜇𝑘 is the centroid of cluster 𝑘. Six variables were selected for
clustering as they are the same inputs selected for the Semi-Empirical
function (see Section 2.5). The variables used for clustering are: time,
charge/discharge rate, SOC, charge throughput and temperature. For
this clustering task, four clusters were specified. The number of clus-
ters is a variable parameter which can be changed by the developer
and is commonly identified by using the elbow and/or silhouette
methods [23]. It was determined by both the elbow and silhouette
method that the optimal number of clusters is four according to the
respective distance scores. Additionally, when iterating the model for
accuracy optimization, there were no improvements when choosing
a different number of clusters. Since many programming languages
offer specific K-means packages, the implementation of the clustering
algorithm is quite accessible, however there are a few disadvantages.
K-means assumes that clusters are spherical and that each cluster has
roughly an equal numbers of observations. Although the nominal data-
set is skewed over time due to the fact that there are fewer older
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Fig. 4. The K-means algorithm clusters data points to the nearest centroid with respect
to multiple input criteria. The four clusters are also fit with the Semi-Empirical
regression, with the color corresponding to the cluster. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version
of this article.)

vehicles to sample from, the OCM data is normally distributed (this
assumption was satisfied after considering the results of the Shapiro–
Wilks test [24], which tests the assumption that a sample comes from
a normally distributed population). By training the K-means clustering
algorithm on the OCM data, it is possible to fit a clustering function on
a normally distributed data-set which is representative of the nominal
data-set the algorithm is applied to (see Fig. 1). The results of the
clustering can be see in Fig. 4.

2.5. Semi-empirical model

When estimating battery behavior (including aging), pseudo-2D
models are often considered a highly accurate method with an accept-
able computation demand, however, these models require an extensive
characterization set and a series of complex differential equations [25].
For this reason, semi-empirical models have been suggested as a com-
promise between capturing physical dependencies and allowing for
simple parameterization [10]. The Semi-Empirical analytic model used
in this work was inspired by the works of Schimpe et al. Hahn et al. and
Schmalstieg et al. [10,11,26] and uses both the Arrhenius temperature
dependency during calendric aging, as well as, a charge dependency
during cyclic aging.

The proposed model is listed below. A more interested reader in the
identification of these dependencies from cell tests is encouraged to find
more information there; this work, however, focuses on the suitability
of such an analytic method for use with automotive data and therefore
does not consider the derivation of the model.

𝑆𝑂𝐻𝑐 = 100 − 𝑆𝑂𝐻𝑐𝑎𝑙,𝑐 − 𝑆𝑂𝐻𝑐𝑦𝑐,𝑐 (2)

𝑆𝑂𝐻𝑐𝑎𝑙,𝑐 = 𝑎1𝑈 𝑐𝑒
− 6975

𝑇 𝑐 𝑡0.75𝑖 (3)

𝑆𝑂𝐻𝑐𝑦𝑐,𝑐 = (𝑎2𝑈
2
𝑐 + 𝑎3𝐷𝑂𝐷𝑐 )𝑄

0.5
𝑐 (4)

The model (Eq. (2)) consists of two terms, calendric aging (Eq. (3))
and cyclic aging (Eq. (4)), contributing independently to the SOH
calculation. The Semi-Empirical model captures the dependency on
the aging conditions by considering: average voltage (𝑈), average
temperature (𝑇 ), time (t), average depth-of-discharge (𝐷𝑂𝐷) and av-
erage total charge throughput (𝑄). The average terms are calculated
per cluster and are then fixed coefficients in Eq. (2) per cluster, as
denoted by the subscript ‘‘c’’. These computed averages are also listed
in the parameterization set found in Table 2. An estimated activation
energy from literature, divided by the gas constant yields the exponent

constant −6975𝐾 [10]. One term from the set of inputs is not a constant,
and that is the time.

In the calendric portion of the aging equation (Eq. (3)), the Ar-
rhenius temperature dependency is modeled with the factor 𝑇 , which
represents the average temperature the battery experienced up to the
moment of the readout. A voltage dependency using the variable 𝑉 , is
also included, as suggested by Schimpe et al. [10]. Although voltage
was not directly measured, it was calculated from the measured 𝑆𝑂𝐶
using a proprietary mapping based on the cell voltage range giving 𝑉 .
This same 𝑉 factor is used in the cyclic aging portion of the aging
equation (Eq. (4)). The cyclic aging term also includes a depth-of-
discharge dependency 𝐷𝑂𝐷, which is calculated as 1−𝑆𝑂𝐶. Although
the SOC value is used for generating the clusters and the complement
1 − 𝑆𝑂𝐶 is used in the Semi-Empirical calculation, since these values
contain the same information, it is reasonable to assume that using
the SOC for clustering did not negatively impact the results. The final
term in the cyclic aging term is 𝑄, which represents the total charge
throughput from charging and discharging of the vehicle.

For the fitting of each cluster, the cluster specific averages are used–
in combination with the Levenberg–Marquardt method of solving the
non-linear least square problem– to derive the fitting parameters: 𝑎1,
𝑎2, and 𝑎3. The final regression line for each cluster (seen in Fig. 4) is
computed using these fitting parameters and the cluster specific aver-
ages. In order to calculate the SOH of a new vehicle measurement at an
instant in time, 𝑡𝑖, using the method above, the associated cluster must
first be determined. This is accomplished by inputting the measured
state-of-charge (𝑆𝑂𝐶𝑖), temperature (𝑇𝑖) and charge throughput (𝑄𝑖)
at the time-step (𝑡𝑖) at the measurement instance (𝑖) into the fitted K-
means clustering algorithm. Once a cluster has been assigned for the
time-step, the SOH value is determined using Eq. (2).

The fitting of Eq. (2) is carried out on each cluster resulting from the
K-means clustering (see Section 2.4). The clustering algorithm yields a
grouping of 172 vehicles in Cluster 0, 156 in Cluster 1, 151 in Cluster 2
and 225 vehicles in Cluster 3. A visual of the clustered OCM is shown
in Fig. 4. From this figure, the resulting fitted Semi-Empirical function
is also plotted as a colored dashed-line corresponding to each of the
four clusters. The fitting parameters and average cluster values for each
cluster are listed in Table 2.

The three fitting parameters, 𝑎1-𝑎3, combined with the average
input values per cluster, fit the Semi-Empirical function to varying
aging trends. Cluster 3 results in nearly the highest average charge
throughput and has the highest average temperature which leads to
the empirical model fitting for low SOH values. The cluster with the
least aggressive fit is Cluster 0, which contains more moderate values
for temperature and average charge throughput, however, the average
SOH for this cluster is 94, which is the highest from all cluster, showing
the relevance of each parameter used for clustering. The most variation
between the clusters was seen in the average charge throughput and
the average temperature. The relatively constant voltage and DOD may
reflect a superfluous inclusion in the k-means clustering algorithm,
however, as these were inputs to the Semi-Empirical model, these
values may still be relevant, especially when considering a different
data set where these averages are likely to deviate more than was seen
in the data collected for this work.

The fitting parameters, 𝑎1-𝑎3 indicate that each term in the fitting
function of Eq. (2) lead to a lowering of the SOH, which is to be
expected. The parameter 𝑎1 is not negative due to the negative sign in
the exponent of the term. The 𝑎1 term is the highest in Cluster 0, which
indicates the calendric aging portion is more relevant. Together with
the moderate average temperature and low average charge throughput
values from the cluster, this line represents vehicles experiencing lower
calendric aging. Cluster 3, conversely, has the lowest value for 𝑎1,
and with a significant charge throughput and temperature average,
indicates vehicles with a larger overall aging contribution. The fitting
parameters of 𝑎2 and 𝑎3 impact the calendric portion of the aging equa-
tion, and the contribution of the average voltage and DOD, receptively.
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Table 2
A complete list of the parameterization values fitted to the Semi-Empirical model for
each cluster.

Fitting Parameter Unit Cluster 0 Cluster 1 Cluster 2 Cluster 3

𝑎1 𝑉 𝐾𝑠(−
3
4
) 1.31 ⋅ 105 3.71 ⋅ 104 3.10 ⋅ 104 2.66 ⋅ 104

𝑎2 𝑉 −2 −1.41 ⋅ 102 −9.00 ⋅ 101 −5.55 ⋅ 102 −1.18 ⋅ 101

𝑎3 𝐴ℎ−0.5 −1.30 ⋅ 102 −8.80 ⋅ 101 −5.34 ⋅ 102 −1.12 ⋅ 101

𝑄 𝐴ℎ 0.41 0.44 0.50 0.48
𝑈 𝑉 3.62 3.65 3.64 3.63
𝐷𝑂𝐷 % 64 66 65 65
𝑇 ◦𝐶 17.3 17.9 16.7 18.1

In this regards, Cluster 3 again stands out as having the lowest values,
again indicating the dominant role the calendric term 𝑎1 has in the
fitting equation. Finally, as seen with the average values per cluster,
there is little difference between the average voltage and DOD fitting
coefficients of 𝑎2 and 𝑎3 which reflects the low variation in the average
DOD and voltage values from each cluster.

2.6. Neural network model

Neural networks have proven highly effective at modeling the ca-
pacity fade from batteries aged in a variety of conditions [5,12]. These
methods are adept at filtering irrelevant information from noisy data-
sets and building strong connections based on patterns displayed in
the training data-set. For the 704 samples available for training, a deep
learning approach is not ideal due to over-fitting, however, a shallow
feed-forward neural network is able to provide valuable insights into
the viability of purely data-driven methods for predicting SOH using
measured automotive data.

A neural network with a single hidden layer was employed to
carry out a regression of the remaining capacity. The sequential model
was developed in Keras using Python programming language [27,28].
Using the sequential implementation a hyper-parameter tuning using a
search matrix was performed. The tuning parameters investigated are
summarized in Table 3.

The Neural Network model consists of three inputs: age, kilometers
and temperature which were chosen due to their high correlation value
and low colinearity (see Section 2.3). During the development of this
model, other combinations of input features were investigated but
did not yield significantly improved results. The results of the search
matrix also indicated that the combination of a densely connected input
layer of 27 neuron layer and a single hidden layer with 300 neurons
was the most accurate. The size of the hidden layer had the largest
impact on overall model accuracy, as well as model size. The final
combination resulted in a model with 11,545 trainable parameters
(assuming 32-bit integers, the model would occupy 369 kB of memory).
A relu activation function was used at each layer in the model as
these help reduce the vanishing gradient problem (where the derivative
of the loss function goes to zero) by extending the activation range
linearly and not squishing it between 0 and 1, and it also encourages
sparseness by assigning a binary 0 at the low end. Both features then
contribute to improved learning performance compared with other
sigmoid activation functions [23,29]. A single drop-out layer was also
introduced with a 30% dropout rate to reduce over-fitting [29]. A more
detailed review of how neural networks function is not within the scope
of this paper, however, a well-written book on the subject can be read
from Francois Chollet (the founder of Keras) [29].

The final neural network model was trained using a train-test ran-
dom split of 75−25 % with 528 samples for training and 176 samples for
testing from the OCM data-set. For the model training and estimation
all values were scaled to between 0 and 1 to improve training per-
formance. The Keras Regressor model was optimized using the adam
optimizer as this is well suited to dealing with sparse gradients (see
above) and noisy data [28]. The final optimization parameters are the
number of epochs, 500, and the batch size, one, which also showed the
best results from the search matrix.

3. Results

This section considers the validation method for the proposed mod-
els. The evaluation of the accuracy relies heavily on the OCM data-set
as these are considered ground truth SOH values with respect to the
vehicles aging under nominal automotive conditions. A comparison
of the error between the models estimation is discussed. Finally a
representative selection of four vehicles is used to show the estimation
behavior over vehicle life.

One of the most reliable methods for evaluating the accuracy of an
estimation model is to consider the root mean squared error (RMSE)
between the estimation and the ground truth [23]. Fig. 5 shows various
model estimations against the OCM, as well as, the RMSE of the error
between the OCM and the Semi-Empirical model (Fig. 5A) and the
Neural Network model (Fig. 5B). The end-of-service life of traction
batteries is typically considered to be 70 %-SOH. An improvement of
0.4%-SOH RSME error from the Semi-Empirical model to the Neural
Network model reflects a 1.3% improvement in lifetime usage of the
battery. Additionally, the Pearson correlation coefficients provide an
estimate for how well the estimated SOH correlates with the OCM
and are 0.75 and 0.8 for the Semi-Empirical and Neural Network
models respectively. The linear 𝑅 = 1 line was plotted to help visually
demonstrate the skew present in the models. It can be seen from
the Pearson correlation coefficient that the Semi-Empirical model has
significant variance which is unaccounted for in the model. The 𝑟2 value
for each model is 0.52 and 0.65 for the Semi-Empirical and Neural
Network model, respectively. The 𝑟2 is a metric showing the variance
of the dependent variable explained by the model, therefore, the Semi-
Empirical model explains 54% of the variance in the SOH, whereas the
Neural Network covers 65% [30].

Another metric used to evaluate the error was to plot the residuals
(or error) against the available input features as seen in Fig. 7. These
residual plots help highlight any correlation of an existing input feature
with the residuals, highlighting any variance which has not yet been
captured in the structure of the model. A balanced model will have
residuals evenly distributed above and below the zero-line, indicating
a noisy or random distribution of the prediction error. In addition
to the distribution about the zero-line, the darkness of the point in-
dicates the corresponding state-of-health of the data-point. In these
plots, only the residuals of the Semi-Empirical model plotted against
temperature exhibit a noticeable correlation 𝑟 = 0.47 using the Pearson
correlation coefficient which suggests the Semi-Empirical model using
the Arrhenius temperature dependence does not sufficiently capture
the influence of temperature on aging using the data provided. This
correlation shows that the Semi-Empirical model is under-predicting
at lower temperatures and over predicting at higher temperatures.
Temperature plays an important role in battery aging in the automotive
industry due to the extended periods of calendric aging. The color-
mapping to SOH did not reveal any error dependency with respect
to new or old aged vehicles — the error remains evenly distributed
throughout the life of the vehicle.

For data-driven models, there is most often a trade-off between
accuracy and storage requirements. A comparison of the storage re-
quirement and accuracy for the two selected models is shown in
Table 4. The Semi-Empirical model would require less than 1 kB in
order to parameterize the prescribed formula with a few 32-bit integers,
however, the final model described in this work includes a clustering
algorithm requiring an additional 79 kB, for a total model size of 80 kB.
In comparison, the Neural Network requires 369 kB to completely
describe the mapping of the input to the output layer.

In addition to the estimation accuracy of the OCM, it is important to
evaluate the model estimation performance over the useful life of the
battery. For this reason, an arbitrary selection of four vehicles is used
to understand the behavior of each model in more detail. From Fig. 6,
one of the biggest differences between the modes becomes evident: the
step behavior of the Semi-Empirical model. As described in Section 2.4,
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Table 3
A search matrix of hyper-parameters was used to identify the optimal set for the Neural Network model.

Neurons (Input layer) Neurons (Hidden layer) Dropout rate Epochs Batch size

3, 9, 27, 63 100, 300, 900, 1500 0.2, 0.3, 0.4, 0.5 50, 250, 500, 1000 1, 3, 10, 25

Fig. 5. A validation method plotting the correlation between the (A) Semi-Empirical Model and (B) Neural Network Model against the Off-board Capacity Measurements allows
for a quick assessment of the respective prediction accuracy. The root mean squared error is also calculated for each method yielding 3.4% and 3.0% error, respectively.

Fig. 6. The capacity estimation over the lifetime of four selected vehicles from the data-set (A–D) using the Semi-Empirical model (solid line) and the Neural Network model
(dashed line) is shown. The black singular dot denotes an Off-board Capacity Measurement, and is considered the ground truth for validation; all other points are estimations.

each point is assigned a cluster and follows the corresponding fit of the
Semi-Empirical model. The visible steps result when there was a change
in the cluster.

The Neural Network model also exhibits a noticeable susceptibility
to minor fluctuations in the input data. Whereas the Semi-Empirical
model follows a pre-determined trajectory from the fitted function,

using only time and the assigned cluster as the input for new measure-
ments estimation, the Neural Network model uses the raw measured
input features. As this is data recorded direct from vehicles in nomi-
nal conditions the input data can be highly dynamic, which directly
impacts the SOH estimation as seen in the early estimation period in
Fig. 6B and C. The accuracy difference between the two models is
highlighted in Fig. 6. The average difference in SOH estimation from
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Fig. 7. The residual of the Neural Network model (A–F) and the Semi-Empirical model (G–L) is plotted against each of the available input parameters.

Table 4
Each model is evaluated in terms of its accuracy and hardware resource requirements.

Model Accuracy (RMSE)/% Storage Requirements/kB

Semi-Empirical 3.4 80
Neural Network 3.0 369

the Neural Network model to the Off-board Capacity Measurements for
these four vehicles is 1.5%-SOH whereas the estimation difference for
the Semi-Empirical model is 2.5%-SOH which reflects the larger trend
from Fig. 5.

4. Conclusions

The main focus of this work was to provide insight into the modeling
of automotive battery aging under nominal aging conditions. A more
detailed interpretation of the model results and a critique of potential
short-comings of the methods, as well as, a look into future work
related to automotive battery SOH estimation using novel estimation
algorithms on vehicle data follows.

When considering the accuracy of the presented models, it was
assumed that the OCM were a reliable ground truth and that the input
feature data was accurate. This study did not focus on an evaluation

of the data in terms of quality or to interpret the aging data to analyze
driving behavior. The datasets were evaluated to show the location and
distribution of the values contained in each feature vector, however,
since the normality of the predictor variables is not a pre-requisite for
regression problems, the location and skew of the data was not used
for further model development [31]. As such the effects of changing
driver behavior, or sampling frequency is not evaluated. Although
this is certainly relevant for battery aging models, especially when
considering path dependent aging behavior, and as such, more detailed
investigation into the influence of driving behavior is saved for future
work.

With respect to the model performance, the goal of this work is
to provide competing models achieving a similar level of accuracy,
and was not to promote a single best-method. Each model has its
respective advantages and disadvantages. The Semi-Empirical model
with a clustering algorithm achieved an RSME value of 3.4% which
is comparable to similar proposed aging models [5,6]. As seen in
Section 3, a significant change in the SOH estimation occurs at the
boundary between two clusters. This step could be reduced with a
higher resolution of clusters, however, as the available training data-
set contained 704 samples, increased clustering resulted in each cluster
being less relevant to an actual aging mode. Additionally the Semi-
Empirical model tends to over-estimate SOH values below 85 %-SOH
and underestimate values above 95 %-SOH (see Fig. 5).
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This skew represents poor training performance of the model. This
Semi-Empirical model includes a cyclic and calendric model, however,
due to the highly dynamic aging behavior inherent in automotive
conditions, the traditional semi-empirical methods do not have enough
degrees of freedom to capture all potential aging modes. Semi-empirical
methods are better suited to fitting laboratory data where the aging
behavior is more rigorously controlled. One potential error source was
identified in the residual plot of Fig. 7G, which suggests that the tem-
perature dependence is not adequately captured by the Semi-Empirical
formula. As these models are reliant on the underlying physics being
described by the formula, they are highly influenced by the complexity
of that physical process. As mentioned, the Arrhenius exponential
dependence on temperature was used in the Semi-Empirical model
following the advice of numerous papers on the subject [6,9–11]. It was
not within the scope of this paper to identify a more suitable relation to
the temperature which may better fit the data, however the asymmetric
distribution of the model prediction error plotted over temperature
highlights that the Semi-Empirical formulation would benefit from
further investigation. One possible source of error is that the activation
energy term used in the exponent is estimated from literature, and may
not reflect the true activation energy of the cell chemistry used in the
vehicles investigated.

One motivation for introducing a clustering feature for the Semi-
Empirical model was to help reduce the overall variance in the training
data, which would improve fitting performance by collecting similarly
aged vehicles together similar to how laboratory measurements focus
on distinct aging profiles. Another factor further motivating the use of
K-means was to help deal with the high level of variation in the input
data. By using the average values (𝑈 𝑐 , 𝑇 𝑐 , 𝐷𝑂𝐷𝑐 and 𝑄𝑐) instead of the
measurement values at the current time-step (𝑈𝑖, 𝑇𝑖, 𝐷𝑂𝐷𝑖 and 𝑄𝑖), the
model produced much more reliable and stable results.

One significant advantage, however, is that the fitted Semi-
Empirical model can be efficiently stored with 1 kB, and coupled with
the existing K-means algorithm, a modest 80 kB are required, compared
to the 369 kB required for the Neural Network model. In addition to
the storage requirements, the output of the Semi-Empirical model is
predictable and stable, as the output– depending only on the cluster and
time– will follow a given trajectory. One could also assume that for a
given amount of time in the future, the cluster would remain the same,
and have a simple prediction for the SOH. On the data-set provided, a
Semi-Empirical model with out a clustering algorithm would not have a
reasonable accuracy as there is considerable variation in the dependent
variable and the input features. A semi-empirical model is best suited
to more static conditions, such as in laboratory experiments, where
factors such as temperature, average SOC and charging conditions are
kept within specified ranges. The improvement of the Semi-Empirical
model proposed in this work by adding the k-means clustering (from an
RSME value greater than 10 %-SOH, to the 3.4%-SOH presented here)
helps highlight the role data-driven methods can have in battery state
estimation.

The Neural Network model is not without its own advantages. This
model allows for a much finer estimation as it is not restricted to a
set amount of clusters, and is able to capture more complicated inter-
dependencies of the input variables than the holistic aging function
provided by the Semi-Empirical model, as demonstrated by the lower
RSME value of 3.0% and the symmetric distribution of residuals over
temperature as seen in Fig. 7A. This improved accuracy is likely to
increase further given a larger data-set as the neural network is able
to extract more meaningful connections between neurons, however, it
also comes with a cost of higher computational resources and storage
requirements. In addition, as seen in Section 3, the model can behave
unexpectedly given a more dynamic input, which, under nominal op-
erating conditions could be expected. There are methods to reduce this
effect such as: training the model with noise, filtering input signals and
filtering the estimation output.

It is also presumed that the accuracy using neural networks should
improve as the amount of input data increases. A small investigation
into this was performed during model development by first training
models on only 100, 300, 500 and finally all available 704 samples, to
understand how accuracy is changed with increasing data. The results
of this study showed that both methods were equally poor in estimation
performance when 300 or fewer training samples were available, with
an RMSE of less than 6 %-SOH. At 500 samples, the Neural Network
model started to out-perform the Semi-Empirical model at 3.5%-SOH
compared to 4.2%-SOH, finally, still showing the marginal gains seen
above when all samples are made available.

The collection method of the data would also play a critical role
in the models prediction ability, as some information could be over-
represented or missing from the training data. For example, assessing
the distributions in the CDF of Fig. 1, or the histograms in Fig. 3, it
can be seen that the SOH values collected skew to higher SOH values,
with few points available for aging less than 80 %-SOH. Similarly,
the observable left-skew in kilometers and temperature may suggest
the sample data over-represents lower-aged vehicles with fewer driven
kilometers at lower temperatures, and may contribute to the residual
error in temperature seen in Fig. 7G.

One of the major advantages of neural networks is their ability to
capture dependencies with out explicit knowledge of these relation-
ships. As demonstrated in this work, data-driven methods are well
adept to estimating battery state parameters and are increasingly rele-
vant the more data is available and the more complex analytic mod-
els become. When considering methods for automotive applications,
the data-driven models can learn from a large collection of behavior
from the fleet, however, the computational resources of these methods
are not well suited for implementation on modern automotive con-
trollers. For online and onboard applications, analytic models carry the
advantage as these models can be stored efficiently in few bytes.

This study has focused on two novel holistic aging estimation al-
gorithms for use on automotive battery data collected under nominal
conditions which provide upwards of 3% estimation error. As the
automotive sector transitions to a more sustainable and electric future,
many companies, and customers can benefit from the insights into
aging data to enable more accurate aging estimations and predictions.
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5 Anode Potential Estimation in Lithium-Ion Batteries
Using Data-Driven Models for Online Applications

Figure 5.1: Crop from the thesis structure highlighting the focus of this chapter.

One of the biggest challenges facing many battery management systems is the inability to measure
internal states of the battery. The anode potential, or potential difference at the graphite/electrolyte
interface, is a highly relevant internal state parameter for improving fast charge performance. The
anode potential is directly linked to lithium plating, which not only leads to accelerated aging of the
battery but could also lead to a short circuit if the plated lithium dendrite structure grows long enough
to puncture through the separator [181; 182]. The anode potential is of particular importance during
fast charging, as fast charging conditions exacerbate the likelihood of plating onset. In fact, most fast
charging algorithms are based on a regulation of the anode potential [183].

Lithium plating is caused by a break-down of the intercalation process. During intercalation, a charge
transfer between the lithium-ion and graphite structure occurs allowing for a lithium-ion to settle
between the layered electrode structure. Under conditions where this charge transfer is limited, such
as low temperatures and high current flux, the inability of ions to settle into intercalation sites leads to
a build up of ions at the interface. Finally, as the potential difference at the interface drops, lithium-
ions become increasingly likely to attach directly to the graphite surface and each other, forming a
dendrite structure, as shown in Figure 5.2.

Figure 5.2: The lithium plating process occurs at the anode electrode interface and can result in den-
drite formations puncturing the separator causing a short circuit.

Chapter 5 highlights the power of machine learning for internal battery state estimation, at least with
respect to the anode potential. In this chapter a second application of machine learning is investi-
gated, namely, the potential to improve fast charging. In order to reduce range anxiety in potential
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customers, many auto manufacturers are working to reduce charging time to under 30 minutes [184].
One of the largest challenges to achieving shorter charging times is to avoid the potential lithium
plating during fast charging [44; 143; 185–188]. Disadvantages of lithium plating are that it leads to a
significant capacity fade and can also lead to a short circuit if the dendrite lithium deposit punctures
the separator [49; 50].

Estimating the anode potential is often handled with electrochemical models or measured directly with
invasive and sensitive reference electrodes [54; 189–191]. When the anode potential is known, batteries
can be charged with higher currents, only reducing the current when diffusion becomes critical, thus
decreasing the overall charging time [192–194]. The recent rise in data-driven state-estimation methods
in battery development offers an alternative to these time and resource intensive methods [82; 88; 129;
178; 195–202].

As was recently shown by Lin et al., anode potential can be estimated using Long Short Term Memory
neural networks [200]. This paper takes an empirical approach to fit a linear and non-linear equation
and compare the results against a simple machine learning method, random forest, to better understand
the accuracy versus complexity trade-off between various data-driven models. The training data in
this paper was generated using an electrochemical simulation model [54; 189; 190; 203]. As a first step,
a correlation analysis coupled with a variable inflation factor was performed to extract the relevant
features for fitting the models [204; 205].
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6 Summary and Conclusion

The combination of high-quality data sets, insights into battery behavior and the correct data-driven
models has been effective at solving complex battery state estimation tasks. As the EV market con-
tinues to grow, the opportunity to improve state estimation functionality also grows. Harnessing the
information contained in large data sets led to the development of machine learning, and supplements
conventional battery state estimation approaches which often rely on complex differential equations or
narrow equivalent circuit models.

One of the key enablers to this thesis was the large data set from the BMW i3 fleet. Applying
statistical analysis to this data helps define the context of automotive operation. The distribution
of highly relevant battery data from over 4000 vehicles driven under real-world conditions defines
the extremes and the averages which can be anticipated for the majority of automotive battery aging
scenarios. This information can be used as an input for battery design as well as for battery simulation.
Two sub-sets from this data also shed light into the variation with the automotive context. When
looking at the global temperatures, it was found that the higher latitudes experience a 17 K swing
in average temperature due to the seasons, however, that variability can be ignored after as soon
as 2.5 years in warmer countries (or 4.0 years in cooler regions) as the cumulative average settles.
Another study looking into the difference between car sharing vehicles and privately owned vehicles
confirmed the assumption that car sharing vehicles are more affected by cyclic aging as the average
consumption is 18 % higher while also experiencing higher C-rates and lower average SOC. The ability
to identify significant changes in the vehicle operation is also critical when monitoring battery health.
The application of a changepoint detection algorithm on the data set highlights that even within a
single vehicle, changes of up to 50 % in average discharge rate or 2 % in the average kilometers per year
can be expected.

The insights into the variability within the real-world operation provided the impetus to investigate
path dependent aging behavior in Chapter 3. Using a laboratory experiment where aging paths could be
controlled, the assumption that path dependence could be ignored was tested. This experiment defined
three path dependent conditions: cycling frequency, temperature and C-rate which were inspired by
the more extreme operation spectrum seen during race operation. From the results, a path dependence
was assumed under the temperature and C-rate conditions where deviations of up to 2 % in SOH were
observed. A method of identifying aging mechanisms using the DVA curve helped confirm lithium
plating as a significant aging mechanism for the profiles exhibiting a path dependence. A reversibility
of plating due to higher discharge C-rate conditions seems to have also contributed to a path dependent
aging behavior. Considering the large variation of SOH between complimentary paths, it is a strong
recommendation of this thesis to consider the consistency of aging conditions, and further explore
aging under dynamic conditions. The results from this paper support the efforts of a changepoint
detection and clustering explored in Chapter 2 and Chapter 4, respectively, as they would help reduce
variability and noise in the data.

Due to the difficulty in modeling health degradation under highly dynamic conditions, data-driven
SOH estimation algorithms were also explored. Using the BMW i3 data as a basis– and the highly
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accurate capacity measurements obtained from the offboard capacity tests– a novel machine learning
approach using a neural network was compared with a more conventional semi-empirical method. The
differences between the two approaches were minimized in part by combining the semi-empirical model
with an unsupervised learning technique: K-means clustering, allowing for fitting of specific clusters
of data exhibiting similar operation characteristics. The combined semi-empirical method provided an
estimation error of 3.4 % in SOH and the neural network based approach an error of 3.0 % in SOH for
over eight years of aging data. These results alone demonstrate the applicability of machine learning
for supporting conventional and new SOH estimation techniques. Considering the results of Chapter 4
and the fact that few, if any, other algorithms have been tested on such a diverse data-set, the accuracy
of these methods shows a high relevance for use in the automotive context.

Finally, the use of data-driven algorithms was expanded in Chapter 5 to estimate the internal state
of a battery, namely the anode potential. Using various regression techniques, an estimation accuracy
within 15 mV of the simulated value was achieved. The most successful approach incorporated the
machine learning method of random forest regression, which resulted in an accuracy of 2.6 mV. This
approach is highly relevant for improving battery performance as manufactures continue to push the
boundary of charging time, which is mainly limited by the onset of plating around the 0 V Li/Li+

potential threshold, therefore knowing precisely where the anode potential is, allows for safe and
effective battery use during fast charging. In addition to the model accuracy, the focus of this work
was also on the applicability of data-driven methods for online estimation. By proposing two alternative
empirical equations, an analysis on the trade-offs between the data and computational requirements
and the accuracy was performed. This analysis showed that while the highly efficient random forest
could produce a viable model using 100 Mb for 500 trees, linear and non-linear models could achieve
an error under 15 mV using only a few kilobytes, which would be more acceptable in most battery
management systems.

This thesis highlights the relevance of data-driven methods for battery state estimation. The key to
unlocking the potential of the machine learning methods is the availability of data, and understanding
the context for its application, which is why the focus on the data in Chapter 2 is so critical. As
illustrated by Chapter 3, aging is a complex phenomenon, where understanding the specific aging is
paramount to accurate modeling and estimation. But, when provided with adequate data, machine
learning offers a powerful toolbox to improve battery state estimation, as confirmed in Chapter 4 and
Chapter 5.

The methods in this thesis can be further improved by expanding the application of the data-driven
methods to more areas within the battery state estimation context, such as SOC estimation and failure
identification. More specifically, it would be of great interest to generate a large data-set containing
more aging mechanism specific information, such as post-mortem measurements of SEI or lithium
plating growth. The additional data could help isolate the potential coupling of aging mechanisms
for improved modeling performance, but also provide more features for machine learning methods.
Additionally, testing of the methods in a vehicle would clarify the applicability of these methods for
onboard use. Many questions are still open regarding the measurement signal quality, data storage
potential and system noise which can only be addressed on a system level. As more data-driven methods
are adopted for solving more complex problems, the quality and specificity of the data collected will
also have to be observed. Only by combining meaningful data with the appropriate methods can the
desired outcome be achieved. Luckily, with the boom in EV production coinciding with the advent of
digital cloud connectivity, the opportunities abound.
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