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Abstract 

Decentralized Autonomous Organizations (DAOs) are multifunctional systems that mediate 

transactions between humans and blockchains or operate entirely autonomously. While considerable 

attention has been given to their organizational structure, their characteristics as online communities 

remain largely unexplored. This study aims to fill this research gap by analyzing a dataset comprising 

31,002 DAOs, 220,960 proposals, 51,987,413 votes, 154,087,070 token ownerships, and 46,695 

historical governance token prices. The research addresses several key aspects. First, it confirms the 

presence of the 90-9-1 rule. Second, it highlights the unequal distribution of voting power through a 

deciding voter analysis. Third, it validates the scale-free network properties by fitting a power-law 

function to the degree distribution of DAO memberships and proposal participation suggesting the 

existence of influential nodes within the network. Last, the study indicates that the diffusion of 

information is uninfluenced by the level of connectedness among voters, as determined by their shared 

memberships in DAOs. 

 

Keywords: Decentralized Autonomous Organizations, Online Communities, Network Analysis  

1 Introduction 

Decentralized Autonomous Organizations (DAOs) are multifunctional systems, functioning either to 

mediate interactions between humans and blockchains or operating as entirely autonomous systems with 

capabilities for storage, transaction of value, notary (voting) functions, autonomous execution, and a 

decentralized environment (Hassan & Filippi, 2021; Rikken et al., 2023; Schillig, 2021). 

Decisions within DAOs are made through online voting mechanisms known as proposals, where the 

voting power is most commonly determined by the number of tokens held by a member. These tokens 

represent a virtual stake in the DAO (Fan et al., 2023). DAOs consist of three primary pillars: Treasury, 

governance, and community. The treasury manages all assets and financial resources, governance 

allocates funds and sets the overall direction, while the community engages in deliberations on 

objectives and responsibilities, overseeing the governance process (Ziegler & Welpe, 2022). 

Each pillar employs different tools to provide value. Treasuries, represented as multi-signature wallets 

on the blockchain, use tools like Discord and Discourse for communication in the community section. 

Governance, in many DAOs, is implemented through Snapshot,1 an off-chain voting portal utilizing 

decentralized file storage for proposals and votes, offering the advantage of no transaction fees for 

 

1 https://snapshot.org/#/ 
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creating or casting votes. Snapshot has seen over 230,000 proposals, with DAO treasuries collectively 

holding $15.8 billion in assets across 2373 tracked DAOs (DeepDAO Ventures Ltd., 2023). The growing 

interest in DAO governance could be attributed in part to airdrops (Allen et al., 2023) issued to the 

community. 

While DAOs have traditionally been viewed as organizations (Hassan & Filippi, 2021; Wright, 2021), 

we argue that DAOs fundamentally stem from online communities. Drawing from the definition of 

Preece (2000), online communities comprise people interacting socially, sharing a common purpose, 

following policies that guide interactions, and utilizing computer systems to support and mediate social 

interactions. These properties align with DAOs, where social interactions occur through provided 

community-building tools, a shared purpose and policies are defined in governance, and the blockchain 

serves as the computer system supporting social interactions. 

Governance is crucial for all Decentralized Finance (DeFi) protocols operating as DAOs, as the 

governance proposals effectively decide on the most important applications of blockchain-based 

systems. They are seen as public good by blockchain users and play an important role in the daily usage 

of blockchains. Therefore, they are expected to be governed by the community that receives tokens as 

payment for work or through airdrops (Allen et al., 2023) to participate in the governance. However, 

this is in most DAOs not the case (Feichtinger et al., 2023; Fritsch et al., 2022), which highlights the 

problem, why more quantitative research is needed into community networks and voting power 

distributions. 

In the early days of online community research, it was uncertain whether established techniques for 

analyzing offline communities, such as network analysis, are applicable (Preece, 2000). Subsequently, 

it became evident that theories applicable to offline communities were also relevant to online 

communities (Chang et al., 2023; Easley & Kleinberg, 2019; Panzarasa et al., 2009; Yang et al., 2011). 

Most online communities relying on user contributions exhibit a participation pattern following the 90-

9-1 rule, where 90% read or observe, 9% contribute occasionally, and 1% contribute the majority 

(Nielsen, 2006). This inequality leads to situations where a small percentage of users produce content 

consumed by the majority, posing challenges in areas like customer feedback, restaurant reviews, and 

hotels (Nielsen, 2006). 

Applying this participation pattern to DAOs, we hypothesize that 1% create content (proposals), 9% 

comment on the content (vote), and 90% hold tokens but do not participate in governance. This creates 

a situation where the decision-making power lies with the 1%, influencing the DAO’s direction, while 

the 9% approve or disapprove, and the 90% observe. The introduction of Web3 adds a financial incentive 

for contributors, contrasting with the mainly intrinsic incentives in Web2 (Jin et al., 2015). 

This centralization effect is exacerbated by a few wealthy and influential DAO members owning the 

majority of voting tokens, undermining the perceived decentralization of the 9%. The 90-9-1 rule in 

DAOs mirror characteristics of scale-free networks, where a few nodes, following a power-law 

distribution, accumulate a significant number of connections.  

The concept of scale-free networks, extensively studied in the context of online communities, gained 

prominence with the analysis of a part of the internet from Barabasi and Albert (1999). They revealed 

highly connected hubs and a power-law distribution of link connections. This concept extended to social 

networks, introducing the term “scale-free network” to describe networks exhibiting a power-law degree 

distribution. Information diffusion varies depending on the type of network (C. Jiang et al., 2014). 

From this discussion, we formulate the following research questions:  

• RQ1: To what extent can the 90-9-1 rule be applied to DAOs?  

• RQ2: What is the extent of dominance exerted by deciding voters in the governance process?  

• RQ3: Do DAOs exhibit the characteristics of scale-free networks?  

• RQ4: How does the connectivity of a node in the network influence the diffusion of 

information?  
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The rest of this paper is organized as follows. In Section 2, we present related work covering the 90-9-

1 rule, empirical research on DAOs, and network analysis on online communities. Then, in Section 3, 

we introduce our dataset, emphasizing its capabilities and limitations and detail the methodologies for 

our four empirical analyses—90-9-1, deciding voter, scale-free network, and information diffusion—to 

address the research questions posed. We outline the methodologies for each analysis first and 

subsequently present their applications along with the results. Finally, we discuss our findings and draw 

conclusions in Section 4. 

2 Related Work 

The 90-9-1 rule seeks to elucidate participation patterns within online communities, positing that 90% 

of participants primarily observe without active engagement, 9% contribute sporadically, and 1% are 

responsible for the majority of content creation (Nielsen, 2006). Empirical examinations of the 90-9-1 

rule, as conducted by van Mierlo (2014), Gasparini et al. (2020), Antelmi et al. (2019), validate the 

overarching trend that a significant proportion of members in online communities predominantly partake 

in observational activities. However, the precise ratio of passive observers, sporadic contributors, and 

productive content creators varies among online communities, often deviating moderately from the 90-

9-1 ratio. 

In the case of X, formerly Twitter, Antelmi et al. (2019) found that 75% of users can be considered silent 

observers, while 5% are actively contributing. Mierlo studied Digital Health Social Networks within the 

context of the 90-9-1 rule and obtained an empirical 75-24-1 ratio. A limitation of studies exploring the 

90-9-1 rule is that the definition of an active contributor and a silent observer may differ for each study, 

depending on the specific community. Carron-Arthur et al. (2014) found further evidence that the 

different contribution groups are mostly not separable, and there is a relatively gradual reduction in 

contributions between the three user groups. Nevertheless, empirical results support the general 

hypothesis behind the 90-9-1 rule in the context of online communities. 

Network analysis of online communities has been extensively performed in recent years, revealing a 

substantial body of evidence (Mislove et al., 2007; Newman et al., 2002; Panzarasa et al., 2009; Uzzi & 

Spiro, 2005) for small-world properties characterized by high local clustering coefficients and small 

path lengths in subnetworks. 

Grandjean (2016) empirically studied the social network X and found structural evidence for the small-

world phenomenon. The relevance of specific vertices in the network is quantified by centrality 

measures such as in- and out-degree, betweenness centrality, and eigenvector centrality. The 

distributions of the centrality measures of the users of the network approximately follow a power-law 

distribution. Kim and Hastak (2018) discovered that the in and out-degree distributions of nodes in the 

networks X and Facebook are highly right-skewed, indicating a general tendency toward social hubs.  

While recent research on DAOs is predominantly qualitative (Chao et al., 2022; Kaal, 2021; Kondova 

& Barba, 2019; Marko & Kostal, 2022; Qin et al., 2023; Sharma et al., 2023), there have been 

quantitative studies focusing on the properties of DAOs, particularly decentralization, in recent times. 

Feichtinger et al. (2023) and Fritsch et al. (2022) conducted analyses on the distribution of voting power 

within DAOs on the Ethereum blockchain. Fritsch et al. (2022) demonstrate that voting power is 

significantly centralized, and the dominant parties typically align their votes with the broader 

community. Feichtinger et al. (2023) computed Gini coefficients for voting power distributions, 

revealing that almost all coefficients exceed 0.9, indicating a high degree of centralization. Furthermore, 

they observed that in half of the studied DAOs, three or fewer addresses held most of the voting power. 

Fan et al. (2023) propose a framework to analyse these trade-offs involving four dimensions (security, 
efficiency, effectiveness and decentralisation) and looked at “voting mechanisms as democratic 
administration of DAOs without the involvement of central authority”. They singled out specific 
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examples, such as quadratic voting, as a tool to alleviate drawbacks of token-based voting and make 
governance in DAOs with a centralised power control more democratic. 

Goldberg and Schär (2023) present similar findings from their study of voting dynamics in the DAO 

governing the metaverse platform Decentraland. They scrutinized actors with the most significant voting 

power and discovered that the voting outcome matched the dominant voter’s choice nearly 95% of the 

time. Additionally, the study revealed that about 45% of DAO grants were approved by a single voter.  

Q. Wang et al. (2022) conducted an empirical analysis of 581 DAOs organized on the off-chain voting 

platform Snapshot, utilizing a dataset similar to that of this paper. Their study focuses on the employed 

e-voting schemes, infrastructure, project scale, and DAO token usage. Among their findings are 

centralization threats attributed to contract reliance, IPFS storage, and platform dependency. 

The study of scale-free networks in the context of online communities has been undertaken by scholars. 

Aparicio et al. (2015) investigated the structural properties of X, demonstrating that it can be considered 

a scale-free network, as the outgoing and incoming degree distributions of nodes in the network 

approximately follow a power-law distribution. This implies the presence of a few users with a large 

group of followers or friends, while most users have only a few friends or followers. However, the 

scientific community is still debating the evidence for the scale-free nature of many networks. In an 

empirical study, Broido and Clauset (2019) examined nearly 1,000 information networks to determine 

whether they could be classified as scale-free. They concluded that the social networks they studied are, 

at most, weakly scale-free. 

In a similar context, the diffusion of information has been studied in networks, particularly online 

communities, referring to the spread of information among interconnected nodes or entities in a network 

(Kumar & Sinha, 2021). Bakshy et al. (2012) discovered that relationships between people in the 

network significantly influence the diffusion of information in social networks. 

3 Methodologies and Their Applications 

In this paper, we build upon scholars’ previous work in network analysis in online communities by 

conducting four empirical analyses using the same dataset. The first analysis delves into the 90-9-1 rule, 

extending to demonstrate the impact of so-called deciding voters on DAO governance, and subsequently 

visualizing the network of DAOs, proposals, and voters. Following that, we examine evidence 

supporting DAOs as scale-free networks. Finally, we scrutinize information diffusion within DAOs by 

analyzing members and their shared DAO memberships.  

3.1 Field data: Snapshot, CovalentHQ, and Coingecko  

This section provides an overview of the three data sources combined for our analyses. First, the off-

chain voting platform Snapshot “allows DAOs, DeFi Protocols, or NFT communities to participate in 

decentralized governance” (Snapshot, 2023). On Snapshot, users can create spaces representing DAOs, 

where voting strategies can be defined for proposals containing governance decisions. Users then vote 

on these proposals based on the defined voting strategy and mechanism. We obtained the data from 

Snapshot using their GraphQL API (Snapshot, 2023), resulting in 31,002 Spaces representing a DAO, 

220,960 proposals, and 51,987,413 votes on these proposals.  

Second, we collected 154,087,070 data points about token ownership from CovalentHQ. This dataset 

contains precise information about which address owned which token at the block height, representing 

the voting power of every eligible voter at the proposal creation.  

Third, we gathered 46,695 data points on historical prices from Coingecko2 for all voting tokens, 

providing us with the voting power in tokens and corresponding dollar values. The disparity in data 

 
2 https://www.coingecko.com/ 
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points between proposals and historical prices is attributed to tokens that are either not listed, have been 

delisted, or are soulbound, meaning they cannot be traded. 

In blockchain-based systems, two distinct types of networks exist: Mainnet and Testnet. Testnets are 

frequently reset and are exclusively used for testing smart contracts or the blockchain itself. Coins on 

these networks typically do not hold any real-world value, with the exception of rare cases such as the 

Goerli Ethereum (Copeland, 2023). Consequently, we exclude all proposals that involve Testnet assets, 

assuming that spaces using these assets are primarily intended for testing purposes. Lastly, we validated 

our dataset for completeness using the web interface of Snapshot. 

3.2 Analysis of participation inequality  

The problem of participation inequality in online communities is well-known, but its manifestations 

vary depending on the type of platform users interact with. For instance, on social platforms like X, the 

majority of users are often considered silent observers, while only a very few actively create content 

(Antelmi et al., 2019). In software development platforms like GitHub, participation inequality is 

referred to as the “volunteer’s dilemma” (Gasparini et al., 2020), where a small number contribute code, 

and the majority silently utilize it. This phenomenon has been previously identified as the “tragedy of 

the commons,” depicting a scenario where individuals, driven by self-interest, deplete a shared resource, 

leading to its degradation or destruction (Feeny et al., 1990). In this analysis, we investigate whether 

participation inequality, specifically the 90-9-1 rule (Nielsen, 2006), holds for DAOs, as we posit they 

exhibit properties of online communities. 

To conduct the 90-9-1 analysis, we take three samples. First, we utilize our complete dataset 

encompassing all DAOs, excluding Testnet data. Second, we randomly sample 10% of DAOs from our 

dataset. Third, we sample 10% of the top DAOs by voters from our dataset. The inclusion of these 

different samples adds rigor to our analysis. In this examination, we calculate entries only when we can 

fully map all proposals, voters, and token holders.  

For the analysis, we establish the following definitions:  

1. Let 𝐷{𝑡10,𝑟10,𝑓𝑢𝑙𝑙} represent the top 10% DAOs, random 10% DAOs, and all DAOs 

2. Let 𝑃(𝑑) represent the set of proposals for a DAO 𝑑  

3. Let 𝑉(𝑝) represent the set of voters for a proposal 𝑝  

4. Let 𝑇(𝑑) represent the set of distinct token holders for a DAO 𝑑  

5. Let 𝐶(𝑑) represent the creator of a proposal 𝑑  

Using the above, the set 𝑉 represents the fraction of voters of 𝐷:  

𝑉𝐷{𝑡10,𝑟10,𝑓𝑢𝑙𝑙}
=

∑ ∑ |𝑉(𝑝)|𝑝 ∈𝑃(𝑑)𝑑 ∈ 𝐷{𝑡10,𝑟10,𝑓𝑢𝑙𝑙} 

∑ |𝑇(𝑑)|𝑑 ∈ 𝐷{𝑡10,𝑟10,𝑓𝑢𝑙𝑙} 
 

The set 𝐶 represents the fraction of creators of 𝐷:  

𝐶𝐷{𝑡10,𝑟10,𝑓𝑢𝑙𝑙}
=

∑ ∑ |𝐶(𝑝)|𝑝 ∈𝑃(𝑑)𝑑 ∈ 𝐷{𝑡10,𝑟10,𝑓𝑢𝑙𝑙} 

∑ |𝑇(𝑑)|𝑑 ∈ 𝐷{𝑡10,𝑟10,𝑓𝑢𝑙𝑙} 
 

Let 𝑇’(𝑑) represent the set of distinct token holders for a DAO 𝑑 excluding 𝑉(𝑝) and 𝐶(𝑝) such that: 

𝑇′(𝑑) = {𝑡 | 𝑡 ∈ 𝑇(𝑑) ∧ 𝑡 ∉ V(d)  ∧ 𝑡 ∉ C(d)} 

Then, the set 𝐿 represents the fraction of lurkers (token holders) of 𝐷:  

𝐿𝐷{𝑡10,𝑟10,𝑓𝑢𝑙𝑙}
=

∑ ∑ |𝑇′(𝑑)|𝑝 ∈𝑃(𝑑)𝑑 ∈ 𝐷{𝑡10,𝑟10,𝑓𝑢𝑙𝑙} 

∑ |𝑇(𝑑)|𝑑 ∈ 𝐷{𝑡10,𝑟10,𝑓𝑢𝑙𝑙} 
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Figure 1. Distribution of voters, lurkers, and creators across the samples. 

From Figure 1, we deduce that the 90-9-1 rule applies to DAOs. However, with a 95-5-1 distribution, 

creators are also considered voters.  

3.3 Analysis of deciding voters 

Next, we analyze the distribution of voting power within the 5.33% of voters in DAOs. Feichtinger et 

al. (2023) and Fritsch et al. (2022) have empirically examined voting power distributions in DAOs, 

focusing on datasets other than the one we are using. They observed a highly centralized voting power 

distribution in DAOs. Our objective is to either corroborate or challenge their findings by leveraging 

our extensive dataset in this analysis. 

We employ a dataset comprising 31,002 DAOs, 220,960 proposals, and 51,987,413 votes to unveil 

power distribution within DAOs. Initially, we filter it based on the following criteria: a minimum of five 

proposals per DAO, at least five votes per proposal, exclusion of DAOs on the Testnet, and ensuring 

DAOs and proposals are not flagged by Snapshot. This filtering leaves us with 47,048 eligible proposals 

and 45,592,752 votes. 

Continuing, we ascertain the voting power of each voter on every proposal and calculate the total voting 

power for each proposal by summing up individual voting powers. Using this total voting power, we 

compute the relative voting power as a percentage for every voter on every proposal. 

Subsequently, we arrange the voting power for each proposal in descending order and calculate a 

running total of the voting power. For instance, in a proposal where voters possess relative voting powers 

of [40%, 30%, 20%, 10%], their corresponding running total voting powers would be [40%, 70%, 90%, 

100%]. Following, we identify the count of voters required for each proposal to surpass 50% of the total 

voting power. In our example, this count is 2, and we refer to them as the deciding voters.  

 

Figure 2. Number of deciding voters based on the number of proposals, presented as absolute 

counts and percentages. 
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Figure 2 illustrates that in 86.3% of proposals, fewer than 10 voters determine their outcome. This 

indicates a concentration of voting power within DAOs among a select few. While this observation 

would be adequate if we were exclusively analyzing large DAOs, Figure 2 contextualizes this discovery 

by revealing that less than 20% of all votes influence over 60% of all proposals. However, considering 

the presence of non-negligible proposals with a limited number of votes, we must align the count with 

the total number of voters for each proposal, presenting the distribution of deciding voters as a 

percentage. This corroborates the findings of Feichtinger et al. (2023), who observed similar results in 

their restricted dataset. 

 

Figure 3. Relationship between the share of deciding voters and the number of proposals. 

Figure 3 illustrates this relationship. The x-axis represents binned percentages, indicating the proportion 

of total voters that constitute deciding voters. The chart reveals two key insights. Firstly, there are 

numerous proposals where less than 10% of the voters wield over 50% of the voting power. Moreover, 

almost 3,500 proposals are determined by less than 1% of the voters. Secondly, the chart highlights 

proposals that are not influenced by a minority but instead, decisions are made with equal voting power, 

as indicated by the significant number of proposals at 50%. Upon closer examination, we identified that 

these proposals employ a one-vote-per-address method implemented through a whitelist, ERC721 (Non-

Fungible-Token, NFT), or a single ERC20 token. Consequently, we argue that the development of 

decentralized protocols governed by DAOs is not driven by the community as a whole but by a small 

group of participants who actively participate in proposal creation and voting. 

3.4 Analysis of connections between DAOs, proposals, and voters  

Until now, we have demonstrated that only 5.33% of all token holders participate in voting. Within this 

subset, the distribution of voting power is highly unequal, with 45% of the votes determining 80% of all 

proposals. In the subsequent analysis, we delve into the observation that not only is the total voting 

power centralized, but the monetary value of this voting power is also highly concentrated. 

The following graphs illustrate the connections within our combined datasets. Each colored circle 

represents a proposal, with each DAO having its distinct color, while the black dots represent voters. 

The size of each circle is determined by the exercised total voting power in dollar value, with the dollar 

value being taken from when the proposal was created. Figure 5 showcases the connections through 

exercised votes, while Figure 4 represents all potential votes. Both figures highlight the strong 

interconnectedness between most DAOs. However, some DAOs exhibit voters without connections to 

other DAOs, a phenomenon possibly explained by airdrop farming or privacy practices. The presence 

of large DAOs and their affluent token holders is evident in both figures. Further investigations are 

imperative, not only into the connections between voters and multiple DAOs but also into how they 

acquired their governance tokens, to draw a clearer picture of the connections within the DAO 

ecosystem. 
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Figure 4. Snapshot’s DAO network with all potential voting edges. 

 

Figure 5. Snapshot’s DAO network with all asserted voting edges. 
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3.5 Analysis of scale-free network properties 

Scale-free networks are characterized by a degree distribution that conforms to a power-law distribution, 

and they are believed to emerge spontaneously in diverse and unrelated domains. Examples include 

technological realms such as the internet, social networks involving academic references and 

collaborations among film actors, and biological systems like protein interaction networks (Broido & 

Clauset, 2019). A fundamental concept considered the underlying principle of a scale-free network is 

the preferential attachment rule, stating that during network creation, the probability that a node gains a 

new connection is proportional to its current degree (Barabási, 2009). 

Our objective is to verify the presence of scale-free networks in online communities, focusing on the 

structure of DAO membership and proposal sizes. We utilize power-law functions to gather evidence 

for the emergence of scale-free networks in our DAO datasets, relying on goodness-of-fit metrics to 

quantify the results. Subsequently, we fit selected statistical distributions and assess their goodness of 

fit using a well-known statistical test. Each distribution is evaluated based on the fit visualization and 

the test, aiming to prove or disprove the hypothesis that the data is sampled from a power-law 

distribution, essentially determining if the network can be described as scale-free (Broido & Clauset, 

2019). 

For our analysis, we curated two datasets:  

1. DAOs and their active voters: In this dataset, individual DAOs and voters serve as nodes, with 

edges representing the act of voting within a DAO. The degree distribution indicates the 

presence of a small number of highly popular DAOs, with 924 DAOs having a maximum of 

5,000,000 active voters.  

2. Proposals and their voters: In this dataset, individual proposals and voters are nodes, and edges 

represent the act of voting on a proposal. The degree distribution suggests the existence of a 

small number of highly popular proposals, with 45,932 proposals having a maximum of 600,000 

votes.  

Following, we applied various curves and distributions to the datasets mentioned above:  

1. Power-law function 𝑃(𝑥) = 𝐶𝑥−𝛼: This function is employed to model datasets where a small 

number of items are clustered at the top of the distribution, dominating the majority of 

resources.  

2. Power-law function with exponential cutoff 𝑃(𝑥) = (𝑎𝑥−𝛼 + 𝑐)𝑒−𝑑𝑥: Since the power-law 

function exhibits a “heavy tail,” meaning it converges to zero more slowly than exponential 

functions, the exponential multiplier is introduced to ensure a more exponential curve beyond a 

certain point, enhancing the fit to the noise in the tail.  

3. Power-law distribution 𝑓(𝑥, 𝑎) =  𝑎𝑥𝑎−1: This continuous random variable is also known as 

the Pareto distribution and is often found to describe processes driven by the rule of preferential 

attachment.  

4. Log-normal distribution 𝑓(𝑥, 𝑠) =  
1

𝑠𝑥√2𝜋
exp (−

𝑙𝑜𝑔2(𝑥)

2𝑠2 ): This continuous random variable has 

a logarithm that is distributed normally. It is identified as describing natural growth processes 

driven by an accumulation of small changes over time, which are additive on the log scale.  

5. Weibull distribution 𝑓(𝑥, 𝑐) =  𝑐𝑥𝑐−1exp (−𝑥𝑐): A unimodal continuous random variable 

widely applied in modeling quality control, biological processes, or reliability analysis due to 

its flexibility.  

To assess the goodness of fit for the curves, we calculated R-squared and Summed Squared Error (SSE). 

Additionally, we conducted the Kolmogorov–Smirnov statistical test for distributions. The KS test 

informs us about the likelihood of a sample being drawn from a given distribution. It indicates the 

similarity of the sample function to the reference distribution, and the p-value helps estimate our 

confidence in the hypothesis. The power-law curves show a good fit for both datasets, with high R-

squared values and low SSE. Specifically, for the power-law and truncated power-law DAO-member 
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dataset: {0.999532, 182.827804}, {0.998842, 452.691648}, and the proposal-voter dataset: {0.999844, 

237,188.711232}, {0.999525, 720,178.488603}. This suggests that both networks may be identified as 

scale-free.  

It seems that no distribution can be confidently described as a likely candidate (KS test with significance 

level of 95%) from which either dataset can be drawn. In both datasets, the log-normal distribution is 

the most probable candidate among the three, considering the relatively large p-value (0.000027 for the 

proposal-voter dataset and a negligible value for the DAO-member dataset) and a visual interpretation 

of the fit. While the degree distributions seem to be modeled by a power-law function, other distributions 

may be preferred over the power-law. Scale-free networks contribute to the resilience of online 

communities against random disruptions due to their many low-connectivity nodes, but the same 

structure also creates a dependency on a few critical hubs (Ercal & Matta, 2013). Previous research has 

found limited direct evidence for social networks to be scale-free, leading us to believe that mechanisms 

other than preferential attachment may govern the growth and information dissemination within DAO 

networks (Broido & Clauset, 2019). In the next section, we explore how information diffusion occurs 

within DAOs in the context of voting procedures to delve deeper into how these networks evolve over 

time.  

 

Figure 6. Comparison of curve and distributions fit of DAO-member (linear and log scales) 

 

Figure 7. Comparison of curve and distribution fits of proposal-voter (linear and log scales) 
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3.6 Analysis of information diffusion in DAOs 

Information diffusion involves understanding how information spreads within a network (F. Wang et 

al., 2012). This propagation is quantified by measuring the time it takes for information to reach 

predefined thresholds, such as 20%, 40%, 60%, or 80% of a network’s critical mass. Network 

connectivity, referring to the degree of interconnectedness among nodes, plays a crucial role in this 

phenomenon. Information diffusion has been the subject of extensive research, particularly in the 

domain of social networks (J. Jiang et al., 2013; Schneider et al., 2009). Attempts have also been made 

to forecast information diffusion using logistic functions (F. Wang et al., 2012).  

In our analysis, voters serve as nodes in our network, and their memberships in DAOs establish 

connections within the network. We use the Jaccard value, specifically the intersection over the union 

of DAO memberships, as a measure of interconnectedness among nodes. For instance, if voter X is a 

member of DAOs {A, F}, and voter Y is a member of {A, B, C, D, E}, then the ratio would be |{A, 

F}|/|{A, B, C, D, E}| = 0.2. To compute the Jaccard value for each voter, we group the dataset by 

proposals, calculate the Jaccard value for each pair of voters within a proposal, and then take the average 

of all pairwise Jaccard values for every voter. We apply certain limitations, specifically focusing on 

proposals with less than 100,000 votes, proposals with more than 10 votes, and DAOs with at least 10 

proposals. This filtering leaves us with 19,638,924 votes and 47,704 proposals. This approach aligns 

with the research proposed by F. Wang et al. (2012), where they analyzed information diffusion based 

on two metrics: friendship hops and shared interests. 

Continuing, we delve into the analysis of voting behavior within DAOs, employing the Cumulative 

Density Function (CDF). The CDF tracks the progression of votes on a proposal, organizing each vote 

by its timestamp to create a consistently ascending curve. This curve effectively illustrates the pace at 

which eligible voters engage in a vote, considering that voting timespans can vary significantly across 

different proposals. To consolidate this data at the DAO level, where multiple proposals exist, we 

leverage relative time. This metric measures the duration from the start of voting to a specific timestamp, 

and normalized hours, a metric that scales the entire voting period from 0 to 1, covering the span from 

the beginning to the end. We categorized the Jaccard indices into intervals [0, 0.25), [0.25, 0.5), [0.5, 

0.75), [0.75, 0.99), [0.99, 1.0]. Subsequently, we aggregated the first and second intervals, labeling them 

as low, and the remaining intervals as high, effectively splitting the dataset in half at Jaccard value 0.5. 

To address our research question regarding how the connectivity of a node in the network influences 

information diffusion, we explore the time elapsed from the start of voting until various thresholds are 

reached—specifically, when 20%, 40%, 60%, and 80% of eligible voters have cast their votes. To 

present aggregated results at the DAO level, we normalized the time and scaled it from 0 to 1, ensuring 

comparable results. 

  

Figure 8. Distribution of Jaccard index and CDFs for largest DAOs based on Jaccard 

coefficients. 
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Figure 8 demonstrates that highly connected voters tend to react much faster to the voting process than 

weakly connected voters. This phenomenon was explored on a large scale by categorizing 1,397 DAOs 

by size. We computed the CDF for labels low and high for each proposal, then employed relative time 

to aggregate at the DAO level, allowing us to infer the average time when specific thresholds were met. 

DAO Size  Nr. of  

DAOs 

10% 

threshold * 

20% 

threshold * 

40% 

threshold * 

60% 

threshold 

80% 

threshold * 

1-50 268 170 (63.4%) 158 (59.0%) 160 (59.7%) 151 (56.3%) 132 (49.3%) 

51-100 235 150 (63.8%) 152 (64.7%) 132 (56.2% 125 (53.2%) 111 (47.2%) 

101-150 168 111 (66.1%) 112 (66.7%) 94 (56.0%) 86 (51.2%) 85 (50.6%) 

151-1,000 527 334 (63.4%) 332 (63.0%) 303 (57.5%) 296 (56.2%) 275 (52.2%) 

1,001-10,000 165 85 (51.5%) 93 (56.4%) 95 (57.6%) 96 (58.2%) 94 (57.0%) 

10,001-100,000 29 9 (31.0%) 12 (41.4%) 11 (37.9%) 12 (41.4%) 12 (41.4%) 

100,001+ 5 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 1 (20.0%) 

Total 1397 859 (61.4%) 859 (61.4%) 795 (56.9%) 766 (54.8%) 710 (50.8%) 

Median time diff between 

highly and weakly connected 

subset of DAO achieving 

thresholds 

14.51% 25.52% 12.28% 4.61% 0.35% 

* % of DAOs with highly connected voters achieving the threshold faster than weakly connected 

Table 1. Number of DAOs where the normalized time for reaching thresholds (40%, 60%, 

80%) for highly connected voters is lower than for weakly connected voters. 

We examined for each bucket the percentage of DAOs where highly connected voters require less time 

to reach the specific thresholds than weakly connected voters. Table 1 shows that for smaller or medium 

DAOs, the share of DAOs with highly connected voters voting faster than weakly connected voters is 

slightly higher than for larger DAO. This hints that the effect is more important for smaller sized DAOs. 

Also, there is an estimation of the median difference in time required for reaching the specific thresholds: 

it subsides as time evolves meaning that the effect of connectivity is more pronounced at the beginning 

of the voting rather than at the end. The relationship is very weakly negative for lower thresholds and is 

negligible at the higher thresholds. 

Statistical 

Test 

1% 

threshold 

5% 

threshold 

10% 

threshold 

20% 

threshold 

40% 

threshold 

60% 

threshold 

80% 

threshold 

Spearman -0.197 -0.149 -0.117 -0.072 -0.007 0.014 0.056 

Pearson  -0.083 -0.073 -0.065 -0.027 0.019 0.026 0.065 

Kendall -0.163 -0.115 -0.088 -0.054 -0.004 0.010 0.041 

Table 2. Statistical tests showing the correlation between Jaccard index and the average 

normalized time of reaching a certain threshold. 

Our data shows that highly connected voters vote marginally faster than weakly connected voters. The 

effect has the most considerable magnitude initially and subsides over time. To achieve the 10% 

threshold, DAOs with highly connected voters need 14.51% less time in comparison to DAOs with 

weakly connected voters. When reaching the 40% threshold, highly connected voters need 12.28% less 

time; for the 80% threshold, they require 0.35% less time. However, since the statistical tests range from 

-0.197 to 0.065, with a p-value of less than 0.001, we deem the results to not be statistically significant. 
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Additionally, we performed the Kolmogorov-Smirnov (K-S) test (Massey, 1951) to compare 

distributions across different Jaccard bins. The results show high p-values (ranging from 0.5361 to 

0.9985) for all bins, indicating a strong similarity between the distributions. Since p-values above 0.05 

suggest that the null hypothesis, in this case, that the distributions are the same, cannot be rejected 

(Dowdy et al., 2004), these findings imply that the distributions across the Jaccard bins are very similar.  

4 Conclusion and Outlook  

While there have been empirical studies on DAOs in recent years, no work has yet connected DAOs to 

online communities. Our research bridges theoretical and empirical evidence, establishing DAOs as a 

new type of online community. 

We gathered data on 31,002 DAOs, 220,960 proposals, 51,987,413 votes, 154,087,070 token 

ownerships, and 46,695 historical token prices. Utilizing this extensive dataset, we conducted a 90-9-1 

analysis, previously confirmed for online communities. We proceeded with a deciding voter analysis to 

highlight the unequal distribution of voting power in DAOs. The exploration culminated in two network 

analyses, revealing that DAOs exhibit properties of scale-free networks and that information diffusion 

is not affected by the connectedness of voters. 

Our contribution to theory and practice begins by aligning DAO properties with the working definitions 

of online communities from Preece (2000), providing a fresh perspective on understanding DAOs. We 

then present empirical evidence, demonstrating that analyses traditionally applied to online communities 

also apply to DAOs in four distinct areas. First, we successfully apply the 90-9-1 rule to DAOs, 

extending its applicability from online communities. Second, through the deciding voter analysis, we 

reveal that even within the exemplary 5.33% of active users in a DAO, voting power is unevenly 

distributed, concentrating at the top, where 20% of all votes decide 60% of all proposals. Third, we 

establish that DAOs exhibit properties of scale-free networks, a concept widely studied in other domains 

but not conclusively applied to DAOs.  

Last, we explore information diffusion within DAOs, assessing the impact of connectivity on the rate of 

information spread. Our findings indicate that more connected nodes disseminate information at the 

same rate as weakly connected nodes, contributing to the theoretical understanding of communication 

within decentralized governance structures. 

While we made a considerable effort to compile a comprehensive dataset, our evaluation of DAOs was 

limited to those utilizing an ERC20 Token strategy for creating network graphs and analyzing the 90-9-

1 rule, as both require token holder data. Unfortunately, accurate historical data for other voting 

strategies such as whitelist voting, ERC721, and ERC1155 was unavailable. Moreover, in creating 

network graphs that include pricing data, our analysis was confined to tokens listed on Coingecko or 

similar platforms; for those not listed, we could not reliably confirm the actual value of a token. Reasons 

for this limitation include scenarios where a token has never been listed, is soulbound (non-transferable), 

falls under ERC721 and ERC1155 (NFTs), or has a daily trading volume below $100, resulting in 

extreme price fluctuations. Despite these constraints, as our initial dataset includes all DAOs available 

on Snapshot and is not a sample, we assert that our results remain rigorous. 

Our study establishes a foundation for advanced network analysis within the DAO domain. We 

anticipate that network analysis holds significant potential to unveil the factors contributing to the 

success or failure of various DAOs. Given the rapid evolution of DAOs, each possessing unique 

properties, the field promises exciting avenues for future analysis.  
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