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Zusammenfassung

Eine Schwierigkeit bei der multivariaten Datenanalyse ist es, die Normalisierungskonstante von hochdi-

mensionalen Modellen numerisch zu berechnen. Score Matching ist eine Schätzmethode, die die Berech-

nung der Normalisierungskonstante durch partielle Integration der logarithmischenDichte vermeidet. Der

klassische ScoreMatching Schätzer ist jedoch nicht sehr robust gegenüber Datenverzerrungen. DieseMas-

terarbeit präsentiert eine robustere Variante basierend auf dem geometrischen Median-von-Mittelwerten.

Das Anwendungsziel der vorgestellten Methode ist multivariate Abhängigkeitsanalyse durch Graphische

Modelle, besonders im Falle von hochdimensionalen Daten. Die Robustheit der neuen Methode gegenüber

Verzerrung von ganzen Messungen wird sowohl theoretisch als auch praktisch gezeigt. Die Anwen-

dung des geometrischen Median-von-Mittelwerten in diesem von hochdimensionalen asymmetrischen

Verteilungen geprägten Kontext zeigt außerdem eine willkommene Eigenschaft auf: der geometrische

Median-von-Mittelwerten scheint sich dem gewöhnlichen Mittelwert anzunähern, wenn die Vektorkom-

ponenten nicht allzu statistisch abhängig sind.

Abstract

A challenge in fitting statistical models to multivariate data is the curse of dimensionality when computing

the normalizing constant. Score matching is an estimation paradigm that avoids computing the normal-

izing constant through strategic integration by parts on the gradient of the log density. However, when

applied to data sets with outliers, the basic version of score matching struggles. This thesis presents a

more robust score matching procedure built on the geometric median-of-means. The primary application

is multivariate dependency recovery in graphical models, with special attention to high-dimensional ap-

plications. Robustness of the new procedure with respect to casewise corruption is confirmed through

simulations and theoretical guarantees. Further, employing the geometric median-of-means in this high-

dimensional setting with asymmetric underlying distributions reveals it has a favorable property: the

geometric median-of-means seems to approach the mean with increasing dimension when components

aren’t too dependent.
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1 Introduction

In modern machine learning scenarios, inputs frequently have a large number of features. There is often

inter-dependence between features, which a model should ideally capture. Probabilistic graphical models
can identify and represent such dependency in an interpretable manner.

Often, any single feature only depends on a (relatively) small number of other features. This so-called

sparsity must be kept in mind when fitting a model. In fact, sparsity only permits model fitting in areas like

genetics, where the number of features is often greater than the number of samples due to cost constraints.

Finally, data collection in practice faces unpredictable challenges like instrument errors, unexpected

events and human error. Manually cleaning the resulting measurements becomes very hard or impracti-

cable for large numbers of features. Consequently, robust model fitting procedures are sought.

To summarize, this thesis aims to find robust estimators for sparse graphical models.

We consider the large graphical model class of pairwise interaction models introduced in section 2.1.

Their estimation is challenging due to the curse of dimensionality when computing the normalizing con-

stant, especially in iterative methods. The score matching paradigm avoids this problem. As detailed in

section 2.2, the parameter of interest 𝜃 can be obtained by minimizing a quadratic form
1

2
𝜃TΓ0𝜃 + 𝑔T

0
𝜃 ,

where Γ0 and 𝑔0 are means under the true parameter 𝜃0.

Previous work [LDS16] and [YDS19] has extended this formulation with L1 regularisation to account

for sparsity.

To additionally achieve robustness, this thesis proposes to estimate the means Γ0 and 𝑔0 by a median-
of-means procedure from the sample population. The idea of the classical median-of-means is to divide a

sample of real numbers into blocks, compute the sample means on the blocks, and then aggregate these

block means with the univariate median. This is to strike a balance between robustness from the median

and unbiasedness from the block means. It has gained attention recently in part due to its excellent con-

centration properties. Since Γ0 and 𝑔0 are objects in high dimensions, we consider multivariate extensions

of the univariate median-of-means in section 2.4. We settle on the geometric median-of-means.

The first contribution of this thesis is to extend performance guarantees from [LDS16] and [YDS19] to

the estimator based on the geometric median-of-means. Particularly, robustness is shown by allowing for

corruption of a small number of observations. The result can be found in section 4.2 with work leading up

to it in section 3.3.

Second, this thesis sheds some light on the geometric median-of-means itself, which is applied to pa-

rameter tuning in section 4.4. Concretely, evidence is presented in section 3.2 that the geometric median

gravitates towards the mean in high dimensions when components aren’t too dependent. Further, in sec-

tion 3.1 the breakdown point of the geometric median-of-means is revisited under less extreme corruption

assumptions.

Finally, simulations are carried out in section 4.5 to confirm the newly established theoretical guarantees.

We find that the estimator based on the geometricmedian-of-means performs on parwith the version based

on the sample mean from [YDS19] in an uncorrupted setting and outperforms the sample mean version

under casewise corruption.

Notation Lower case letters (e.g. 𝛽, 𝑝) denote scalars or (column) vectors (e.g. 𝑥, 𝜇), while the upper case

can denote matrices (e.g. 𝑉 , Γ,Θ) or random variables (e.g. 𝑋 ). One exception is 𝐾 , which denotes the

number of blocks in the median-of-means. Random observations lie in ℝ𝑚 and the quantities to estimate

are in ℝ𝑝 (usually 𝑝 ∈ {𝑚4,𝑚2}). For a matrix 𝐴 ∈ ℝ𝑎×𝑏 , we adopt 𝐴𝑖,: := (𝐴𝑖1, . . . , 𝐴𝑖𝑏). When identifying

𝐴 as a vector, we write vec (𝐴 ) := (𝐴1,: , . . . , 𝐴𝑎,:). Some special matrices and vectors we use are the𝑚×𝑚
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identity matrix 𝐼𝑚 and the 𝑗th Cartesian coordinate vector 𝑒 𝑗 ∈ ℝ𝑚 , that is (𝑒 𝑗 )𝑘 = 1 for 𝑘 = 𝑗 and zero

otherwise.

∥ · ∥1, ∥ · ∥2 and ∥ · ∥∞ denote the Manhattan, Euclidean and maximum vector norm respectively. We

sometimes identify matrices as vectors in this thesis, i.e. ∥ · ∥2 particularly expresses the Frobenius norm.

If not specified otherwise, ∥ · ∥ refers to ∥ · ∥2.

Matrix norms have three bars. For a matrix 𝐴 ∈ ℝ𝑎×𝑏 , we use |||𝐴|||∞,∞ = max𝑖=1,...,𝑎

∑𝑏
𝑗=1

|𝐴𝑖 𝑗 |. Further,
if 𝑎 = 𝑏, we write diag(𝐴) for the 𝑎 × 𝑎 matrix satisfying (diag(𝐴))𝑖 𝑗 = 𝐴𝑖 𝑗 if 𝑖 = 𝑗 and zero otherwise.

Further we write tr(𝐴) for the sum of all entries in diag(𝐴).
For a function 𝑓 : ℝ𝑝 → ℝ, the partial derivative with respect to 𝑥 𝑗 is denoted by 𝜕𝑗 𝑓 . The gradient

is denoted by ∇𝑓 and the Laplace operator by Δ𝑓 . Absolute derivatives are written as
d

d𝑥 𝑗
𝑓 , which we

especially need for taking derivatives of the interaction terms from pairwise interactionmodels in a unified

notation. Repeated derivatives with respect to the same variable are denoted as 𝜕
(𝑟 )
𝑗
𝑓 and d

(𝑟 )

d𝑥𝑘
𝑓 .

For a random vector 𝑋 , the expectation is denoted by E [𝑋 ] and the variance-covariance matrix by

Var[𝑋 ]. For a univariate random variable 𝑋 , we further write sd[𝑋 ] :=
√︁

Var[𝑋 ] and skew[𝑋 ] :=

E

[
((𝑋 − E [𝑋 ])/sd[𝑋 ])3

]
.

We write ∝ to denote equivalence up to (problem-specific) constants. Further, for 𝑎, 𝑏 ∈ ℝ𝑝 , the vector

𝑎 ◦𝑏 is defined as (𝑎 ◦𝑏)𝑖 := 𝑎𝑖 · 𝑏𝑖 . A frequently used index set is [𝑎] := {1, . . . , 𝑎} for a natural number 𝑎.

For the cardinality of a set𝐴, we write #𝐴. For a real number 𝑏, the numbers ⌊𝑏⌋ and ⌈𝑏⌉ denote the closest
smaller (greater) integer to 𝑏. The signum function sign(𝑐) is 1 if 𝑐 > 0, zero if 𝑐 = 0 and −1 otherwise.

Finally, we make use of the Landau symbols O(𝑝) and 𝑜 (𝑝).
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2 Background

2.1 Graphical models

Graphical modeling means the endeavor to capture dependencies between observations in a graph [DM17;

Lau04]. Presented with a data matrix where rows are independent observations, the goal is to find a

dependence network describing dependence between the columns. That said, the graphs fitting the models

in this thesis are encapsulated in the zero-structure of the model’s matrix parameter. Hence, one can also

understand the matter of this thesis as an estimation problem for a matrix parameter.

Example 2.1.1 (Dependence between industry sectors). Consider the task of relating revenue across in-
dustry sectors. For instance, increased turnover in the chemical industry can boost both large-scale freight
transport and machinery demand. However, since the freight industry demands minimal machinery and ma-
chines are relatively lightweight, there isn’t a direct relationship between freight movement and machinery
production. Nonetheless, both industries’ revenues might correlate due to stimulation from the chemical in-
dustry. Graphical modeling addresses this absence of direct influence despite potential overall correlation.

Consider an 𝑚-dimensional random vector 𝑋 . Let 𝐺 = (𝑉 , 𝐸) be an undirected graph with vertices

𝑉 = {1, . . . ,𝑚} and an undirected edge set 𝐸. For disjoint subsets 𝐴, 𝐵,𝐶 of 𝑉 we say that 𝐵 separates 𝐴
and 𝐶 if every path from a node in 𝐴 to a node in 𝐶 passes through a node in 𝐵. In this case, we write

⟨𝐴,𝐶 | 𝐵 ⟩𝐺 . We say that𝑋 possesses the (global) Markov property with respect to𝐺 , if ⟨𝐴,𝐶 | 𝐵 ⟩𝐺 implies

that 𝑋𝐴 is conditionally independent of 𝑋𝐶 given 𝑋𝐵 . There are different notions of the Markov property,

which are equivalent under mild conditions by the Hammersley-Clifford theorem, see [Lau04].

Since any distribution is global Markov with respect to the full graph (as there are no separation state-

ments), we seek a faithful graph. The idea is to require that the reverse of the Markov implication should

hold (see [DM17]). With the Markov property above, if 𝑋𝐴 is conditionally independent of 𝑋𝐶 given 𝑋𝐵 ,

then ⟨𝐴,𝐶 | 𝐵 ⟩𝐺 must hold for any disjoint subsets 𝐴, 𝐵,𝐶 of 𝑉 .

Example 2.1.2 (Dependency between industry sectors ctd.). We assumed that turnover in the freight in-
dustry and in machinery production are independent up to influence by the chemical industry. Further, we
assumed direct dependencies between the chemical and freight industry as well as between the chemical in-
dustry and machinery production. The corresponding faithful graph is displayed in fig. 2.1.

This thesis treats pairwise interaction models ([DM17, Sect. 3.5], [LDS16]). We consider the following

model, although extensions will be discussed where appropriate. The model consists of densities 𝑝Θ on

ℝ𝑚 which are assumed to be proportional to

𝑝Θ(𝑥) ∝ exp
©«

∑︁
1≤ 𝑗≤𝑘≤𝑚

Θ𝑗𝑘𝑡 𝑗𝑘 (𝑥 𝑗 , 𝑥𝑘 ) −𝜓 (Θ) + 𝑏 (𝑥)
ª®¬ , 𝑥 ∈ ℝ𝑚 . (2.1)

The natural parameter space consists of all collections of real values {Θ𝑗𝑘 | 1 ≤ 𝑗 ≤ 𝑘 ≤ 𝑚} such that 𝑝Θ
is normalizable.

Chemical industry

Freight

Machinery

Figure 2.1 Graph for industry revenue example.
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Variables 𝑖 < 𝑗 appear jointly in the density 𝑝Θ if and only if Θ𝑖 𝑗 ≠ 0. We consequently define the graph

𝐺Θ on {1, . . . ,𝑚} to have an edge from 𝑖 to 𝑗 if and only if Θ𝑖 𝑗 ≠ 0.

The Hammersley-Clifford theorem (see [DM17; Lau04]) supports the intuition that 𝑝Θ is Markov with

respect to 𝐺Θ. If the interaction functions 𝑡 are non-degenerate, 𝐺Θ is faithful as well.

Example 2.1.3. We consider one classical pairwise interaction model and one slight extension to eq. (2.1):

(a) The Gaussian graphical model (GGM) has density 𝑝Θ proportional to exp(− 1

2
𝑥TΘ𝑥) on ℝ𝑚 (i.e. it is

multivariate Gaussian with mean zero). The interaction matrix Θ is also referred to as the precision
matrix. Since Θ is symmetric, 𝑡 𝑗𝑘 = 𝑥 𝑗𝑥𝑘 for 𝑗 < 𝑘 and 𝑡 𝑗 𝑗 = 1

2
𝑥2

𝑗 .

A well known theorem states that the margins 𝑋𝑖 and 𝑋 𝑗 are conditionally independent given all other
variables if and only if Θ𝑖 𝑗 = 0 ([Lau04]). This theorem is evidence to the fact that the graph 𝐺Θ from
earlier is Markov and faithful to 𝑝Θ.

(b) The square root graphical model from [IRD16] aims to provide a flexible multivariate generalization
of the univariate exponential distribution. It’s supported on the positive orthant and assumed to have a
density proportional to

𝑝Θ ∝ exp

(
−
√
𝑥

T
Θ
√
𝑥 + 2𝜂T√𝑥

)
(𝑥 ∈ ℝ𝑚+ ),

where the parameter 𝜂 is added to account for mean shifts. If 𝜂 is known to be zero, the model is also
referred to as centered square root graphical model.

As turnovers of a company are very seldom negative, the square root graphical model could fit the intro-
ductory example 2.1.1 better than for instance a Gaussian graphical model. For its practical usefulness,
we include this model in the simulation study in section 4.5.

However, restricting to non-negative data requires some extra care at the boundaries. As is shown in
[YDS19], this doesn’t effect estimation too much and some details are given in the next section. Yet, to
simplify exposition, restricted domains aren’t treated formally in this thesis.

2.2 Score matching

Score matching is a general-purpose estimation technique introduced by A. Hyvärinen in [Hyv05]. It’s

particularly useful if the normalizing constant of a density is intractable. This section starts with a gen-

eral introduction to score matching in section 2.2.1 and continues with a treatment of score matching for

pairwise interaction models in section 2.2.2.

2.2.1 General score matching

Assume a statistical model (𝑝𝜃 )𝜃 ∈Θ of densities relative to Lebesgue’s measure on ℝ𝑚 and that data is

drawn from the distribution with parameter 𝜃0 (unknown) such that

(A1) 𝑝𝜃 > 0 for all 𝜃 ∈ Θ (needed to take logarithms).

(A2) 𝜕
(2)
𝑖
𝑝𝜃 (𝑥) is continuous for all 1 ≤ 𝑖 ≤ 𝑚 and 𝜃 ∈ Θ.

(A3) E𝜃

[
∥∇ log(𝑝𝜃 (𝑋 ))∥2

]
< ∞ for all 𝜃 ∈ Θ (where ∇ is taken w.r.t. 𝑥 ).

(A4) 𝑝𝜃0
(𝑥) · 𝜕𝑖 log(𝑝𝜃 (𝑥)) → 0 as ∥𝑥 ∥ → ∞ for all 1 ≤ 𝑖 ≤ 𝑚 and 𝜃 ∈ Θ.

We initially consider the Fisher divergence given by

𝑑𝐹 (𝜃0, 𝜃 ) :=
1

2

∫
ℝ𝑚

𝑝𝜃0
(𝑥)∥∇ log(𝑝𝜃 (𝑥)) − ∇ log(𝑝𝜃0

(𝑥))∥2
d𝑥

(𝐴3)
< ∞.
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It is easy to see that 𝑑𝑓 (𝜃0, 𝜃 ) = 0 if and only if 𝜃 = 𝜃0. Indeed, assumption (A1) with continuity from (A2)

implies ∇ log(𝑝𝜃0
(𝑥)) = ∇ log(𝑝𝜃 (𝑥)) for all 𝑥 ∈ ℝ𝑚 . This entails equality of log(𝑝𝜃 ) and log(𝑝𝜃0

) up to an
additive constant, which in turn is fixed to zero by the requirement that densities integrate to one.

Given observations from the true distribution 𝑝𝜃0
, it seems natural to minimize an empirical version

of the Fisher divergence. While it is promising that the divergence is an expectation under the true dis-

tribution, the second gradient explicitly depends on the unknown parameter 𝜃0. The beauty of the score

matching approach is we can eliminate this dependence through integration by parts. First, note

𝑑𝐹 (𝜃0, 𝜃 ) =
1

2

E𝜃0

[
∥∇ log(𝑝𝜃 (𝑋 ))∥2

]
−

∑︁
1≤𝑖≤𝑚

∫
ℝ𝑚

𝑝𝜃0
(𝑥) 𝜕𝑖 log(𝑝𝜃0

(𝑥)) 𝜕𝑖 log(𝑝𝜃 (𝑥)) d𝑥 + const,

where the constant doesn’t depend on𝜃 . After using the chain rule on 𝜕𝑖 log(𝑝𝜃0
(𝑥)) (which cancels 𝑝𝜃0

(𝑥)),
we can apply integration by parts to the second term. The boundary term vanishes by assumption (A4),

also see the proof of theorem 1 in [Hyv05].∫
ℝ𝑚

𝑝𝜃0
(𝑥) 𝜕𝑖 log(𝑝𝜃0

(𝑥)) 𝜕𝑖 log(𝑝𝜃 (𝑥)) d𝑥 =

∫
ℝ𝑚

𝜕𝑖𝑝𝜃0
(𝑥) 𝜕𝑖 log(𝑝𝜃 (𝑥)) d𝑥 = −E𝜃0

[
𝜕2

𝑖 log(𝑝𝜃 (𝑋 ))
]
.

All in all, we have identified 𝑑𝐹 (𝜃0, 𝜃 ) up to constants in 𝜃 as

𝑑𝐹 (𝜃0, 𝜃 ) =
1

2

E𝜃0

[
∥∇ log(𝑝𝜃 (𝑋 ))∥2

]
+ E𝜃0

[ Δ log(𝑝𝜃 (𝑋 )) ] + const. (2.2)

Provided with observations from 𝑝𝜃0
, we can estimate these expectations for any 𝜃 by sample averages and

search for a 𝜃 that minimizes the empirical divergence. This procedure is illustrated for a specific statistical

model in the next section.

We can now see why score matching works even if the density’s integration constant is intractable: In

eq. (2.2), the integration constant contained in 𝑝𝜃 first gets additively separated by the logarithms and then

eliminated by taking derivatives with respect to the data parameters through ∇ and Δ.

2.2.2 Score matching for pairwise interaction models

We examine how score matching plays out for the pairwise interaction model from eq. (2.1). Additionally,

assume A1 to A4 from the last section. The true parameter is denoted by Θ0.

To write the score matching loss eq. (2.2) more compactly, we first set Θ𝑗𝑘 := Θ𝑘 𝑗 when 1 ≤ 𝑘 < 𝑗 ≤ 𝑚.

Further, similar to [LDS16], we introduce the𝑚 ×𝑚 matrices 𝑉
(𝑟 )
𝑗

via

(
𝑉

(𝑟 )
𝑗

)
𝑘𝑙
(𝑥) :=


d
(𝑟 )

d𝑥𝑘
𝑡𝑘𝑙 (𝑥𝑘 , 𝑥𝑙 ) 𝑗 = 𝑘 ≤ 𝑙

d
(𝑟 )

𝑑𝑥𝑘
𝑡𝑙𝑘 (𝑥𝑙 , 𝑥𝑘 ) 𝑗 = 𝑘 > 𝑙

0 otherwise

(𝑟 ∈ {1, 2}; 1 ≤ 𝑗, 𝑘, 𝑙 ≤ 𝑚). (2.3)

It remains to compute derivatives of log(𝑝Θ(𝑥)). As explained in the last paragraph of section 2.2.1, the

integration constant of 𝑝Θ gets annulled since it does not depend on 𝑥 . The symmetrization of Θ is useful:

𝜕
(𝑟 )
𝑗

log(𝑝Θ(𝑥)) =
∑︁
𝑙≥ 𝑗

Θ𝑗𝑙

d
(𝑟 )

d𝑥 𝑗
𝑡 𝑗𝑙 (𝑥 𝑗 , 𝑥𝑙 ) +

∑︁
𝑙< 𝑗

Θ𝑙 𝑗
d
(𝑟 )

d𝑥 𝑗
𝑡𝑙 𝑗 (𝑥𝑙 , 𝑥 𝑗 ) + 𝜕 (𝑟 )𝑗 𝑏 (𝑥) =

∑︁
𝑙≥ 𝑗

Θ𝑗𝑙

d
(𝑟 )

d𝑥 𝑗
𝑡 𝑗𝑙 (𝑥 𝑗 , 𝑥𝑙 )+∑︁

𝑙< 𝑗

Θ𝑗𝑙

d
(𝑟 )

d𝑥 𝑗
𝑡𝑙 𝑗 (𝑥𝑙 , 𝑥 𝑗 ) + 𝜕 (𝑟 )𝑗 𝑏 (𝑥) =

(
vec

(
𝑉

(𝑟 )
𝑗

(𝑥)
))T

· vec (Θ ) + 𝜕 (𝑟 )
𝑗
𝑏 (𝑥) (𝑟 ∈ {1, 2}; 1 ≤ 𝑗 ≤ 𝑚) .

Since considering the symmetrized Θ as a vector vec (Θ ) ∈ ℝ𝑚
2

will simplify score matching notation

generally, we set 𝜃 := vec (Θ ) ∈ ℝ𝑚
2

.

Take 𝑟 = 1 in the above, define a𝑚 ×𝑚2
matrix 𝑉 (𝑥) as 𝑉𝑗,:(𝑥) := vec

(
𝑉

(1)
𝑗

(𝑥)
)T

and we obtain

∥∇ log(𝑝Θ(𝑥))∥2 = 𝜃T𝑉 T(𝑥)𝑉 (𝑥)𝜃 + 2∇𝑏T(𝑥)𝑉 (𝑥)𝜃 + ∥∇𝑏 (𝑥)∥2.
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To find the Laplacian of log(𝑝Θ(𝑥)), we set 𝑟 = 2 and identify

Δ log(𝑝Θ(𝑥)) =
( ∑︁

1≤ 𝑗≤𝑚
vec

(
𝑉

(2)
𝑗

(𝑥)
))T

𝜃 + Δ𝑏 (𝑥) .

We established the following quadratic form for the ingredients of the score matching loss:

1

2

∥∇ log(𝑝𝐾 (𝑥))∥2 + Δ log(𝑝𝐾 (𝑥)) =
1

2

𝜃T𝑉 T(𝑥)𝑉 (𝑥)𝜃 +
(
𝑉 T(𝑥)∇𝑏 (𝑥) +

∑︁
1≤ 𝑗≤𝑚

vec

(
𝑉

(2)
𝑗

(𝑥)
))T

𝜃

=:

1

2

𝜃TΓ(𝑥)𝜃 + 𝑔(𝑥)T𝜃 . (2.4)

Γ(𝑥) is a symmetric𝑚2 ×𝑚2
matrix and even block diagonal by the structure of𝑉 (𝑥). Taking expectation

with respect to 𝑝Θ0
, by eq. (2.2) we find the following up to constants in Θ:

𝑑𝐹 (Θ0,Θ) ∝
1

2

𝜃TΓ0𝜃 + 𝑔T
0
𝜃, (2.5)

where Γ0 = EΘ0
[ Γ(𝑋 ) ] and 𝑔0 := EΘ0

[𝑔(𝑋 ) ]. Recall from the last section, that the right hand side

of eq. (2.5) is minimized if and only if Θ0 = Θ.

Building a first score matching estimator Assume we are given observations 𝑥1, . . . , 𝑥𝑛 ∈ ℝ𝑚 from

𝑝Θ0
. The preceding theory suggests to plug estimates Γ̂, 𝑔 of Γ0, 𝑔0 into the right hand side of eq. (2.5) and

minimize with respect to Θ.
Concretely, consider Γ̂ := 1

𝑛

∑𝑛
𝑖=1

Γ(𝑥𝑖) and 𝑔 := 1

𝑛

∑𝑛
𝑖=1
𝑔(𝑥𝑖) and (numerically) solve (if the minimizer

exists)

Θ̂ := argminΘ∈ℝ𝑚×𝑚
symmetric

1

2

vec (Θ )T Γ̂ vec (Θ ) + 𝑔T
vec (Θ ) . (2.6)

This first draft of a score matching estimator is extended to account for sparse models and corrupt data

in section 4.1. The coming example explicitly gives Γ(𝑥) and 𝑔(𝑥) in two instances and discusses solutions

to the optimization problem in eq. (2.6).

Example 2.2.1. We continue our study in example 2.1.3:

(a) Recall that the Gaussian graphical model has density proportional to exp(− 1

2
𝑥TΘ𝑥) on ℝ𝑚 , where Θ

is the precision matrix. Assumptions (A1) and (A2) are clear, (A3) reduces to the existence of moments.
Finally, (A4) holds since the negative exponential decreases faster than any polynomial.

To recall, 𝑡 𝑗 𝑗 (𝑥 𝑗 , 𝑥 𝑗 ) = − 1

2
𝑥2

𝑗 and 𝑡 𝑗𝑘 = −𝑥 𝑗𝑥𝑘 for 𝑗 < 𝑘 . Consequently, (𝑉 (1)
𝑗

) 𝑗,: = −𝑥T and zero in other

rows. Hence, the diagonal blocks of Γ(𝑥) are all equal to 𝑥𝑥T. Further, (𝑉 (2)
𝑗

) 𝑗,: = −𝑒T
𝑗 and the the base

measure 𝑏 has zero derivative. Compactly:

Γ(𝑥) = 𝐼𝑚 ⊗ 𝑥𝑥T 𝑔(𝑥) = − vec ( 𝐼𝑚 ) .

We conclude that Γ0 consists of𝑚 blocks all equal to Σ0, the covariance matrix. 𝑔0 is simply equal to
− vec ( 𝐼𝑚 ) in absence of randomness.

We come to the estimator in eq. (2.6). From Γ(𝑥) and 𝑔(𝑥) above, we find Γ̂ = 𝐼𝑚 ⊗ ( 1

𝑛

∑𝑛
𝑖=1
𝑥𝑖𝑥

T
𝑖 ) and

𝑔 = − vec ( 𝐼𝑚 ). First, we consider eq. (2.6) without the symmetry restriction on Θ. In this case, we
simply take derivatives and set to zero. If 𝑛 ≥ 𝑚, the sample covariance matrix is a.s. positive definite,
and we can a.s. invert Γ̂ to find

Θ̂ = Γ̂−1 · (−𝑔) =
(
𝐼𝑚 ⊗ ( 1

𝑛

𝑛∑︁
𝑖=1

𝑥𝑖𝑥
T
𝑖 )

)−1

· (−𝑔) =
(

1

𝑛

𝑛∑︁
𝑖=1

𝑥𝑖𝑥
T
𝑖

)−1

.

There are two things to note. First, the score matching estimator coincides with the maximum likelihood
estimator (MLE). Second, by symmetry of the sample covariance matrix, our result is symmetric and
thus also solves eq. (2.6) with the symmetry constraint on Θ.
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(b) We continue examining the square root graphical model from example 2.1.3 (b). In contrast to the
pairwise interaction models supported on the whole ofℝ𝑚 , the integration by parts in section 2.2.1 would
result in non-trivial boundary terms. A possible solution is to multiply the model densities with a known
function ℎ of the data that forces densities to zero close to the boundary. This approach is discussed in
detail in [YDS19]. One gets a similar quadratic form to eq. (2.5) with Γ0 and 𝑔0 now depending on the
function ℎ.

The additional parameter 𝜂 can be incorporated into the score matching framework without problems,
only calculations typically require case distinctions.

Due to the added parameter 𝜂, now Γ(𝑥) has𝑚 blocks of size (𝑚 + 1) × (𝑚 + 1) and 𝑔(𝑥) is a sequence
of𝑚 vectors 𝑔 𝑗 (𝑥) in ℝ𝑚+1. The blocks are, for 1 ≤ 𝑗 ≤ 𝑚:

Γ𝑗 (𝑥) =
ℎ(𝑥 𝑗 )
𝑥 𝑗

(
−
√
𝑥

1

) (
−
√
𝑥

T
1

)
, 𝑔 𝑗 (𝑥) =

ℎ(𝑥 𝑗 ) − 2ℎ′(𝑥 𝑗 )𝑥 𝑗
2𝑥

3/2

𝑗

(√
𝑥

−1

)
−
ℎ(𝑥 𝑗 )
2𝑥 𝑗

𝑒 𝑗 ,

where 𝑒 𝑗 is the 𝑗 th Cartesian coordinate vector in ℝ𝑚+1. The formulas are taken from example 5.4 in
[YDS19] and adapted to different sign conventions for 𝑔 (compare 2.5 with equation 10 in chapter 3 of
[YDS19]). Again, Γ̂ := 1

𝑛

∑𝑛
𝑖=1

Γ(𝑥𝑖) and 𝑔 := 1

𝑛

∑𝑛
𝑖=1
𝑔(𝑥𝑖).

For the estimator in eq. (2.6), it’s important to keep the symmetry constraint in mind. One multiplies
out the quadratic form first, then identifies Θ𝑗𝑖 with Θ𝑖 𝑗 for 𝑖 ≠ 𝑗 and finally groups all occurrences of
Θ𝑖 𝑗 together. Concretely, with 𝐼 := (𝑖 − 1) (𝑚 + 1), 𝐽 := ( 𝑗 − 1) (𝑚 + 1), 𝑆−𝐼 := [𝑚(𝑚 + 1)] \ {𝐼 + 𝑗} and
𝑆− 𝐽 := [𝑚(𝑚 + 1)] \ {𝐽 + 𝑖}, one obtains:

Θ2

𝑖 𝑗

(
Γ̂𝐼+𝑗,𝐼+𝑗 + Γ̂𝐽 +𝑖,𝐽 +𝑖

2

)
+ Θ𝑖 𝑗

(
1

2

(
Γ̂𝐼+𝑗,𝑆−𝐼 · vec (Θ )𝑆−𝐼 + Γ̂𝐽 +𝑖,𝑆− 𝐽 · vec (Θ )𝑆− 𝐽

)
+ 𝑔𝐼+𝑗 + 𝑔𝐽 +𝑖

)
,

where some terms equal to zero by the block structure of Γ̂ were omitted. Note that Γ𝐼+𝑗,𝑆−𝐼 · vec (Θ )𝑆−𝐼
simplifies further due to the block structure of Γ̂. One can now minimize the new quadratic form in
(Θ𝑖 𝑗 )𝑖≤ 𝑗 . In this thesis, the minimization for (Θ𝑖 𝑗 )𝑖≤ 𝑗 is performed numerically by coordinate descent
to be introduced later. The naive approach Γ̂−1 · (−𝑔) ignoring the symmetry constraint doesn’t yield a
symmetric result in general, since the blocks of Γ̂ explicitly depend on 𝑗 and the optimization decouples.
This is not surprising given that Γ(𝑥) was derived under explicit assumption of symmetry in Θ.

2.3 High-dimensional problems and sparsity

In many modern statistical problems there is a large numbers of parameters to estimate. Sometimes, for

example in gene expression problems, there is even a larger number of parameters than the number of

observations due to cost constraints. This imbalance between parameter dimension and number of obser-

vations is typically what makes a problem to be considered high-dimensional. A well-known textbook in

this domain is [Wai19].

Traditional statistical methods like linear regression break down in high-dimensional scenarios. To

some degree, this is not surprising given that there isn’t enough “information” for all the parameters to be

determined.

Fortunately, there is a low-dimensional structure in many real-world problems. For example, in a re-

gression problem with ten thousand predictors, it is often reasonable to expect that the vast majority of

predictors contributes little to the outcome. In the graphical modeling framework, it is often the case that

any node only interacts with very few neighboring nodes or that there are very few interactions in gen-

eral. The assumption that the vast majority of parameters is zero (i.e. not contributing), is referred to as

sparsity.
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A well known example how sparsity can be exploited in a linear regression context is the celebrated

LASSO by R. Tibshirani [Tib96]. The linear least squares loss is additionally penalized with the L1 norm

of the regression weights 𝛽 , so that the loss becomes

1

2𝑁
∥𝑋𝛽 − 𝑦∥2 + 𝜆∥𝛽 ∥1,

where 𝑋 is the predictor matrix, 𝑦 the observed outcome vector and 𝑁 the number of observations. The

real number 𝜆 > 0 serves as a tuning parameter to determine how “sparse” the resulting minimizer
ˆ𝛽

should be.

The non-smoothness of the L1 norm indeed leads to sparse results. In turn, it also complicates min-

imization of the loss. The important observation can be made that the LASSO optimization problem

with a single predictor 𝛽1 has an exact solution. More concretely, define the soft-thresholding operator
𝑆𝜆 (𝑥) := sign(𝑥) ( |𝑥 | − 𝜆)+. Then, the one dimensional problem has the minimizer 𝑆𝜆 ( 1

𝑁
𝑥T𝑦). Background

on the lasso and its theory can be found in the textbook [HTW15].

This observation suggests coordinate descent, a numerical optimization scheme for LASSO-type opti-

mization problems: all components of a multivariate 𝛽 are cycled through and in each step all but one

component is held constant. The remaining component is then updated via soft-thresholding. The numer-

ical algorithms in section 4.5 are built on coordinate descent.

High-dimensionality is of particular concern for graphical modeling, since the possible number of edges

in a graph scales quadratically with the number of vertices. To account for this, L1 regularization is applied

to the score matching loss in section 4.1.

2.4 Robust estimation

Many estimation methods are adversely affected by outliers in the data set. This thesis develops a robust

score matching estimator by utilizing the median-of-means principle. As the name suggests, observations

are first grouped into blocks, on which the mean is computed. These block means are then aggregated by

a median. The concept will be discussed in more detail in section 2.4.2.

What makes an estimator “robust” is arguably subjective and problem-dependent. We focus on robust-

ness with respect to data perturbations. A general intuition is that a few corrupt observations should not

be able to overpower the estimation procedure entirely. For background on robust statistics, [Mar+19] is

recommended.

This intuition leads to the concept of the breakdown point. Informally, this is the fraction of samples

that, if tampered with arbitrarily, can result in arbitrarily derailed estimates.

Definition 2.4.1 (Breakdown point). Let 𝑋 ∈ ℝ𝑛×𝑝 be an 𝑛-sample of a 𝑝-dimensional random variable
and 𝑡𝑛 : ℝ𝑛×𝑝 → ℝ𝑝 be an estimation procedure. We define the breakdown point at sample X by

𝜀∗(𝑡𝑛, 𝑋 ) := min

1≤𝑚≤𝑛

{
𝑚

𝑛
: sup

𝑌𝑚

∥𝑡𝑛 (𝑋 ) − 𝑡𝑛 (𝑌𝑚)∥ = ∞
}
,

where 𝑌𝑚 can differ arbitrarily from 𝑋 in𝑚 data rows.
If the breakdown point doesn’t depend on 𝑋 , we simply write 𝜀∗(𝑡𝑛).

The breakdown point is a simple-to-understand (and often simple-to-compute) quantity, but it can be

too pessimistic as it allows “infinite” corruption. As this is especially noticeable in the median-of-means

framework, we consider the breakdown probability in section 3.1. There are more nuanced measures of

robustness like influence functions (e.g. chapter 3 in [Mar+19]), however they are out of scope for this

thesis.
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Before discussing some robust estimators, we take a closer look at outliers itself. [Alq+09] surveys

different outlier models and collects some important references.

The breakdown point assumes rowwise corruption (also referred to as casewise corruption or the Tukey-

Huber corruption model), where any observation (a row in the data matrix) is either corrupted or not.

This form of corruption is for example appropriate, when an unexpected event influences many sensors

at once. A more nuanced framework is the cellwise corruption, where only one sensor could be deemed

malfunctioning in a whole data row.

A further distinction is made between sources of corruption. Often, corruption is assumed to be at

random like in the Tukey-Huber model, however in some contexts the corruption originates from an in-

telligent attacker (adversarial corruption).
A related framework is that of heavy tails. In this case, outliers are model-inherent, in that the data

generating process is known to produce extreme values from time to time. When extremes occur, standard

estimation procedures usually also produce extreme values. One motivation behind the median-of-means

principle is to find estimators that are more concentrated in a heavy-tailed setting. See [LM19] for a survey

of estimation under heavy tails.

Score matching for pairwise interaction models requires estimation of the matrix Γ0 and the vector 𝑔0

(see section 2.2.2), both of which are high-dimensional. The main focus of this section is therefore to

review multivariate instances of the median-of-means principle. We start with multivariate medians and

then generalize to median-of-means.

2.4.1 Multivariate medians

The univariate median has a desirable robustness property: moving an already maximal data point to

infinity does not alter the median at all. It’s therefore a natural idea to generalize the univariate median

to the multivariate setting in order to obtain multivariate robust estimators. Plenty of generalizations for

the univariate median have been proposed, each with their own merits and flaws.

There are many desirable properties for a median in higher dimensions (see introduction of [Sma90]).

We can ask the median to be the center of symmetry for symmetric distributions. Additionally, just like

the univariate median is equivariant under monotone transformations, we can require equivariance under

symmetry preserving transformations. Finally, the multivariate definition should reduce to the univariate

median in the one-dimensional case.

We additionally require some properties specific to the score matching setting:

(R1) To estimate the score matching design matrix Γ, we require the median of choice to preserve pos-
itive (semi)definiteness such that the resulting optimization problem to be well-posed.

(R2) The median of choice needs to be computationally feasible in high dimensions.

(R3) Finally, the median of choice should have some robustness properties, for example a decent break-

down point.

In what follows, three median concepts are discussed. Namely, the geometric median, the Tukey median

and the componentwise median. These and more medians are surveyed in [Sma90].

The geometric median

This median generalizes the fact that the univariate median can be obtained as the minimizer of the mean

absolute deviation:

Definition 2.4.2 (Geometric median). Let 𝑥1, . . . , 𝑥𝑛 ∈ ℝ𝑝 . Any𝑦 ∈ ℝ𝑝 minimizing𝐷𝑛 (𝑦) :=
∑𝑛
𝑖=1

∥𝑥𝑖−𝑦∥2

is defined to be a geometric median. If the minimizer is unique, we write Med (𝑥1, . . . , 𝑥𝑛).

Lemma 2.4.3 (Existence and uniqueness of the geometric median). Let 𝑥1, . . . , 𝑥𝑛 ∈ ℝ𝑝 . Then, there exists
at least one geometric median of 𝑥1, . . . , 𝑥𝑛 . If observations don’t fall on a line, it is unique.
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Proof. Clearly, 𝐷𝑛 (𝑦) ≥ 0 and 𝐷𝑛 is continuous. We observe 𝐷𝑛 (𝑦) ≥ ∑𝑛
𝑖=1

|∥𝑦∥2 − ∥𝑥𝑖 ∥2 | by the inverse

triangle inequality, which implies 𝐷𝑛 (𝑦) → ∞ as ∥𝑦∥2 → ∞. Existence of the geometric median follows

as continuous functions attain a minimum on compact sets. If observations fall on a line, the problem

reduces to the univariate median which need not be unique. That this is the only case where uniqueness

is violated is shown in [MD87].

This median is also referred to as spatial median or L1median. The term geometric median likely stems

from fact that the euclidean norm is used. It also possesses an intuitive geometric interpretation: If a

geometric median 𝑦 doesn’t fall one one of the data points 𝑥𝑖 , we have

∇𝐷𝑛 (𝑦) = 0 ⇔
𝑛∑︁
𝑖=1

𝑦 − 𝑥𝑖
∥𝑦 − 𝑥𝑖 ∥

= 0. (2.7)

In other words: if all data points are projected onto the unit sphere around𝑦, then𝑦 must be the barycenter

of the projected points (recall that the barycenter of some points in euclidean space is their arithmetic

mean). Because of the projection, it doesn’t matter how far away a data point is from 𝑦 - only the direction

matters. This is an intuitive explanation why the geometric median is robust against outliers.

We consider our additional requirements R1 to R3 and find that the geometric median satisfies all of

them.

(R1) Preserving positive (semi)definiteness Solving eq. (2.7) for the geometric median 𝑦, we find

𝑦 =
1∑𝑛

𝑖=1
1/∥𝑦 − 𝑥𝑖 ∥

𝑛∑︁
𝑖=1

𝑥𝑖

∥𝑦 − 𝑥𝑖 ∥
. (2.8)

Hence, if the geometric median 𝑦 is not equal to on one of the data points 𝑥𝑖 , it lies in the convex hull of

the data points. Should it fall on one of the data points, it trivially lies in the convex hull as well.

If 𝑥𝑖 were positive (semi)definite𝑚2 ×𝑚2
matrices as in Γ(𝑥), we would treat them as vectors inℝ𝑚

4

for

taking the geometric median. When we reinterpret the geometric median inℝ𝑚
4

as a𝑚2 ×𝑚2
matrix, it is

positive (semi)definite as a convex combination of positive (semi)definite matrices.

(R2) Computational feasibility The relation in eq. (2.8) immediately suggests a simple fixed point algo-

rithm to find the geometric median: an initial estimate is plugged into the right hand side to find a new

estimate and this process is repeated with the new estimate until convergence.

This algorithm is referred to asWeiszfeld’s algorithm. It works quite well in practice, however it can get

stuck on data points 𝑥𝑖 . Slight modifications of Weiszfeld’s algorithm to remedy this issue with conver-

gence guarantees have been discussed in the literature and readily implemented in numerous R packages.

(R3) Robstness As the authors show in [LR91] (Theorem 2.2), the high breakdown point of the univari-

ate median generalizes to the geometric median:

Lemma 2.4.4 (Breakdown point of the geometric median). Let 𝑋 ∈ ℝ𝑛×𝑝 . The geometric median has a
sample-independent breakdown point of

𝜀∗(Med𝑛) := 𝜀∗(Med, 𝑋 ) = ⌊(𝑛 + 1)/2⌋
𝑛

.

Remark 2.4.5. When corruption is below the breakdown point, the geometric median remains bounded by
definition. Two examples for how the geometric median is affected by outliers in this scenario are presented in
the appendix.

To summarize, the geometric median fits the requirements R1 to R3 very well, which is why it is chosen

as the outer median for the median-of-means in this thesis.
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The Tukey median

This median generalizes the intuition that half of the data points should lie to the “left” of the median and

the other half to the “right”.

Definition 2.4.6 (Tukey median). Let 𝑥1, . . . , 𝑥𝑛 ∈ ℝ𝑝 . DefineH to be the set of all closed half-spaces in ℝ𝑝

and let
𝐷 (𝑦) := inf

𝐻 ∈H : 𝑦∈𝐻
#{𝑖 = 1, . . . , 𝑛 | 𝑥𝑖 ∈ 𝐻 }/𝑛

be the Tukey depth of 𝑦 ∈ ℝ𝑝 in the data set. Any 𝑦 with maximal depth is called a Tukey median.

A point𝑦 with depth 1/2 would collect at least half the data points 𝑥𝑖 in any half-space that contains𝑦 on

the boundary. Although a point of depth 1/2 is not guaranteed, this intuition justifies the term “median”.

The Tukey median is also referred to as halfspace median ([Sma90]).

Uniqueness of the Tukey median typically cannot be expected. A common approach is to define the

mean of all points with maximal Tukey depth to be “the” Tukey median ([DG92], p. 1809).

We come to the additional requirements:

(R1) Preserving positive (semi)definiteness As discussed for the geometric median, it suffices that the

median lies within the convex hull of all data points.

Lemma 2.4.7. Any Tukey median lies within the convex hull of 𝑥1, . . . , 𝑥𝑛 .

Proof. In short, any point outside of the convex hull has depth zero, while the depth of any data point is

at least 1/𝑛. Hence, no point outside of the convex hull can have maximal depth.

More concretely, denote the convex hull of 𝑥1, . . . , 𝑥𝑛 by𝐶 . Let 𝑦 ∈ ℝ𝑝 \𝐶 . We show that 𝑦 has depth 0.

Let 𝑦0 be the projection of 𝑦 onto 𝐶 . By assumption, 𝑦0 ≠ 𝑦. Let 𝑣 := 𝑦0 − 𝑦 ≠ 0 and let 𝑃 be the

hyperplane through 𝑦 spanned by the orthogonal complement of 𝑣 .

Assume, 𝑃 intersects 𝐶 at point 𝑐 and denote𝑤 := 𝑐 − 𝑦. For 𝜆 ∈ (0, 1) let 𝑦𝜆 := 𝑦0 + 𝜆(𝑐 − 𝑦0). As𝑤⊥𝑣 ,
we have 𝑐 ≠ 𝑦0 and thus 𝑦𝜆 ≠ 𝑦0 for all 𝜆. We find

∥𝑦𝜆 − 𝑦∥2 = ∥(1 − 𝜆)𝑣 + 𝜆𝑤 ∥2
𝑣⊥𝑤
= (1 − 𝜆)2∥𝑣 ∥2 + 𝜆2∥𝑤 ∥2 ⇒ d∥𝑦𝜆 − 𝑦∥2

d𝜆

��
𝜆=0

= −2∥𝑣 ∥2 < 0.

This means, there is a small lambda such that ∥𝑦𝜆 − 𝑦∥ < ∥𝑦0 − 𝑦∥, which contradicts the projection

property of 𝑦0.

We conclude that 𝑃 doesn’t intersect𝐶 . Consider the halfspace𝐻 with boundary 𝑃 that does not contain

𝐶 . It contains 𝑦 but none of 𝑥𝑖 (as 𝐶 ∩ 𝐻 = ∅), which means 𝐷 (𝑦) = 0.

(R2) Computational feasibility That the Tukey median typically is not unique already hints at a harder

computational problem. There are modern algorithms, which are for example implemented in the R-

package TukeyRegion [BM23]. Since one has to expect a computational complexity of roughly O(𝑛𝑝)
(see [LMM19]), these algorithms struggle in high dimensions.

(R3) Robustness The Tukey median possesses robustness properties, however they seem to vary from

case to case. While the breakdown point can be as high as 1/3 (in the limit for centrally symmetric distri-

butions), a lower bound only guarantees a breakdown point of at least 1/(𝑝 + 1) (see [DG92], [Sma90]).

To summarize, the Tukey median is an interesting contender for the outer median in the median-of-

means, yet the geometric median fits the requirements R1 to R3 better.
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The coordinatewise median

It is a natural idea to define a higher dimensional median by applying the univariate median coordinate-

wise. Explicitly, the 𝑖-th coordinate of the median of 𝑥1, . . . , 𝑥𝑛 would be median(𝑥1𝑖 , . . . , 𝑥𝑛𝑖) for 1 ≤ 𝑖 ≤ 𝑝 .

This construction is usually not considered to be a multivariate “median”, since it is not invariant under

orthogonal transformations. Further, it doesn’t preserve positive definiteness (R1).
However, one can argue that it is very efficient to compute (R2) and that is excellently robust (R3), in

particular to cellwise corruption.
We don’t consider the coordinatewise median further theoretically, mainly because the score matching

optimization problem often fails to be well-posed as the design matrix is typically not positive definite.

This is illustrated by one numerical experiment in section 4.5.1. Yet, paired with positive definiteness

guarantees, the coordinatewise median could be an attractive tool.

2.4.2 Robust mean estimation via median-of-means

We need to estimate the means E𝜃0
[ Γ(𝑋 ) ] and E𝜃0

[𝑔(𝑋 ) ] for score matching. The medians discussed

so far offer attractive robustness properties, however as to be expected from the univariate case, medians

are typically biased estimators for the mean. To rectify this, one divides the 𝑛 data points into 𝐾 blocks

𝐵1, . . . , 𝐵𝐾 and first computes the block means 𝜇𝑖 =
1

|𝐵𝑖 |
∑
𝑗∈𝐵𝑖 𝑥 𝑗 for 1 ≤ 𝑖 ≤ 𝐾 . In the last step, one applies

a median to the block means 𝜇, . . . , 𝜇𝑘 , hence the name median-of-means. See [LSC21] for the original

sources and contemporary results on the univariate median-of-means, notably also under corruption. We

can expect the distribution of the block means to be rather symmetric by the central limit theorem. As

multivariate medians usually reduce to the mean in symmetric settings, the bias should decrease signifi-

cantly.

Next to robustness, its concentration properties are another strong motivation to consider the median-

of-means. To illustrate, we treat the univariate case. Recall that a univariate random variable𝑋 with mean

𝜇 is called sub-Gaussian, if there exists 𝜎 > 0 such that E [ exp(𝜆(𝑋 − 𝜇)) ] ≤ exp(𝜎2𝜆2/2). The Chernoff
bound leads to

P ( |𝑋 − 𝜇 | ≥ 𝑡 ) ≤ 2𝑒
−𝑡2

2𝜎2 ⇔ P
©« |𝑋 − 𝜇 | ≥ 𝜎

√
2

√︄
log(2) + log

(
1

𝛿

) ª®¬ ≤ 𝛿,

which is often called sub-Gaussian tail behavior. It ensures that 𝑋 strongly concentrates around 𝜇 and is

the basis for many statistical error bounds ([Wai19]).

The empirical mean, arguably the most popular mean estimator, only achieves sub-Gaussian tail behav-

ior on an independent identically distributed sample if the underlying distribution itself is sub-Gaussian.

The median-of-means on the other hand can achieve sub-Gaussian tail around the mean even for distri-

bution that only possess a second moment (see [LSC21]). In heavy-tailed situations, the median-of-means

can therefore produce a mean estimate with sub-gaussian tails.

In fact, the (univariate) median-of-means can even guarantee sub-Gaussian concentration under cor-

ruption, be it at the cost of a degraded constant (see [LSC21]).

We now formally define a multivariate median-of-means. As the geometric median suited the require-

ments R1 to R3 best, we choose it as the outer median. Fittingly, the procedure has been termed geometric
median-of-means in [Min15], where it was first introduced.

Definition 2.4.8 (Geometric median-of-means). Let 𝑥1, . . . , 𝑥𝑛 ∈ ℝ𝑝 and 1 ≤ 𝐾 ≤ 𝑛/2 be the number of
blocks. We assume that 𝐾 divides 𝑛. Define the partition B(𝐾,𝑛) = {𝐵1, . . . , 𝐵𝐾 } and corresponding block
means via

𝐵 𝑗 := {( 𝑗 − 1) · 𝑛/𝐾 + 1, . . . , 𝑗 · 𝑛/𝐾} and 𝜇 𝑗 :=
1

𝑛/𝐾
∑︁
𝑖∈𝐵 𝑗

𝑥𝑖 (1 ≤ 𝑗 ≤ 𝐾).
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The block means are then aggregated by the geometric median into

GMoM𝐾 [ 𝑥1, . . . , 𝑥𝑛 ] := Med (𝜇1, . . . , 𝜇𝐾 ) .

Remark 2.4.9. The restriction 𝐾 ≤ 𝑛/2 only excludes the special case of the geometric median (𝐾 = 𝑛). In
this case, the term median-of-means is not very fitting. Additionally, concentration analysis often requires
excluding the median (e.g. [LSC21] and theorem 3.3.2).

We start by investigating the robustness of the geometric median-of-means in terms of its breakdown

point. As the author notes in [Mat21] on p.46, the breakdown point of the univariate median-of-means

equals ⌈𝐾/2⌉/𝑛, or equivalently ⌊(𝐾 + 1)/2⌋/𝑛 in the style of [LR91]. We show that this generalizes to the

geometric median-of-means:

Lemma 2.4.10 (Breakdown point of the geometric median-of-means). Let 𝑋 ∈ ℝ𝑛×𝑝 and 1 ≤ 𝐾 ≤ 𝑛/2

that divides 𝑛. The geometric median-of-means with 𝐾 blocks has a sample-independent breakdown point of

𝜀∗(GMoM𝐾 [ 𝑛 ]) := 𝜀∗(GMoM𝐾 , 𝑋 ) =
⌊(𝐾 + 1)/2⌋

𝑛
.

Proof. If strictly less than ⌊(𝐾 + 1)/2⌋/𝑛 of the samples are altered, that is less than ⌊(𝐾 + 1)/2⌋ samples in

absolute terms, strictly less than ⌊(𝐾 + 1)/2⌋/𝐾 of the block means can be corrupted. Lemma 2.4.4 implies

that the outer geometricmedian cannot be corrupted arbitrarily in this case and therefore 𝜀∗(GMoM𝐾 , 𝑋 ) ≥
⌊(𝐾 + 1)/2⌋/𝑛.
We show that this bound is tight. Let 𝜇1, . . . , 𝜇𝐾 ∈ ℝ𝑝 be the block means as in definition 2.4.8.

By lemma 2.4.4, there exists a sequence

(
𝜇
(𝑚)
1

, . . . , 𝜇
(𝑚)
𝐾

)
𝑚∈ℕ

, such that

#{𝑖 ∈ [𝐾] : 𝜇
(𝑚)
𝑖

≠ 𝜇𝑖} ≤ ⌊(𝐾 + 1)/2⌋ ∀𝑚 ∈ ℕ (2.9)

and

sup

𝑚∈ℕ
∥ Med (𝜇1, . . . , 𝜇𝐾 ) − Med

(
𝜇
(𝑚)
1

, . . . , 𝜇
(𝑚)
𝐾

)
∥ = ∞. (2.10)

We construct a matrix sequence 𝑋 (𝑚) ∈ ℝ𝑛×𝑝 by setting the rows to

𝑋
(𝑚)
𝑗, :

:=

{
𝑛
𝐾
· 𝜇 (𝑚)
𝐾 𝑗/𝑛 −

∑𝑗−1

𝑖=𝑗−𝑛/𝐾+1
𝑋𝑖, : if 𝑗 mod (𝑛/𝐾) = 0

𝑋 𝑗, : otherwise

𝑗 = 1, . . . , 𝑛.

Even though it looks as if 𝑋 (𝑚)
could differ in up to 𝐾 rows from 𝑋 (i.e. from the first case of its

definition), note that 𝜇
(𝑚)
𝑖

= 𝜇𝑖 for some 𝑖 ∈ [𝐾] and𝑚 ∈ ℕ implies 𝑋
(𝑚)
𝑖𝑛/𝐾, : = 𝑋𝑖𝑛/𝐾, :. Hence, by (2.9), we

conclude 𝑋 (𝑚)
differs by at most ⌊(𝐾 + 1)/2⌋ data rows from 𝑋 .

Further, by construction of 𝑋 (𝑚)
, we have that

GMoM𝐾

[
𝑋 (𝑚) ] = Med

(
𝜇
(𝑚)
1

, . . . , 𝜇
(𝑚)
𝐾

)
,

which by (2.10) implies

sup

𝑚∈ℕ
∥ GMoM𝐾 [𝑋 ] − GMoM𝐾

[
𝑋 (𝑚) ] ∥ = ∞.

The breakdown point of the geometric median-of-means is noticeably decreased compared to the geo-

metric median through division by the sample size 𝑛. The reason is simply that a single outlier is enough

to corrupt an entire block mean, as demonstrated in the proof above. However, the block structure also has

an advantage: a block doesn’t get “more” corrupted if it contains two or more outliers and can therefore

neutralize more than one outlier. This added robustness is not quantified in the breakdown point, which

is why we consider the breakdown probability in section 3.1.
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When it comes to concentration, the geometric median-of-means can mostly live up to the univariate

expectations. As the authors note in [Dev+16], the geometric median-of-means fails to achieve optimal

multivariate sub-Gaussian concentration. Very recently, improved (albeit yet still slightly suboptimal)

bounds for large class of distributions were shown in [MS23]. Optimal sub-Gaussian tails are achieved

by so-calledmedian-of-means tournaments introduced in [LM16]. These tournaments are computationally

not tractable, although approximations and variants have been proposed (see the survey article [LM19]).

To summarize, we should not expect optimal sub-Gaussian tails from the geometric median-of-means, yet

can still hope for very good concentration properties. This thesis features a multivariate concentration

result under corruption in section 3.3.

Remark 2.4.11. The assumption that 𝐾 divides 𝑛 and that blocks are connected subsets of {1, . . . , 𝑛} can be
relaxed. Similar to U-statistics, one could consider all subsets of a fixed cardinality 2 ≤ 𝐽 ≤ 𝑛:

Med
©«


1

𝐽

∑︁
𝑗∈𝑆 𝑗

𝑥 𝑗 : 𝑆 𝑗 ⊂ {1, . . . , 𝑛} satisfies #𝑆 𝑗 = 𝐽

ª®¬ .
Since it’s computationally infeasible to consider all subsets with cardinality 𝐽 , one would randomly sample

a large number of them. Note that the theoretical analysis gets harder since the block means aren’t guaranteed
to be independent anymore. Some results for the univariate case are presented in section 2.6 of [Min19]. To
keep analysis simple, we stick to definition 2.4.8.
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3 Results on the geometric median-of-means

This chapter contains three results that enable proving a robustness result for a score matching estimator

(section 4.2) and that provide us with intuition on the geometric median (of means), which we apply in

section 4.4.

3.1 Breakdown probability of the geometric median-of-means

If an intelligent attacker can compromise 𝜀 percent of data points in a median-of-means procedure, they

would aim to spread their attack on as many different blocks as possible, since one corrupt sample in a

block is enough to alter the block mean arbitrarily. In this scenario, one should ideally work to limit 𝜀 by

the breakdown point of ⌊(𝐾 + 1)/2⌋/𝑛 found earlier.

If instead of an adversarial source, we assume a random source of corruption (e.g. malfunctioning sen-

sors), it’s likely that two corruptions fall into the same bin. In this case, the median-of-means tolerates

more corrupt samples than ⌊(𝐾 + 1)/2⌋.and the breakdown point could be too pessimistic.

The goal of this section is to answer the following question: If a fixed proportion of samples is corrupted
at random, what is the probability that at least ⌊(𝐾 + 1)/2⌋ blocks are affected, in which case the geometric
median-of-means can diverge uncontrollably?

Definition 3.1.1 (Breakdown probability of the geometric median-of-means). Let 𝑛, 𝐾 and B(𝐾,𝑛) =

{𝐵1, . . . , 𝐵𝐾 } as in definition 2.4.8. For 𝑆 ⊂ [𝑛] define 𝑈B(𝐾,𝑛) (𝑆) to be the number of unique bins that 𝑆
intersects, i.e.

𝑈B(𝐾,𝑛) (𝑆) := #{𝑘 ∈ [𝐾] : 𝐵𝑘 ∩ 𝑆 ≠ ∅}.

Let 𝜀 ∈ [0, 1/2) such that 𝜀𝑛 is a whole number. Define S𝜀𝑛 (𝑛) := {𝑆 ⊂ [𝑛] : #𝑆 = 𝜀𝑛}. As sets don’t
distinguish the order of their elements, we have #S𝜀𝑛 (𝑛) =

(
𝑛
𝜀𝑛

)
.

Let 𝑆 be distributed according to the uniform distribution on S𝜀𝑛 (𝑛). We define the breakdown probability

of the geometric median-of-means under uninformed corruption as

BdPr𝜀 (GMoM𝐾 [ 𝑛 ]) := P

(
𝑈B(𝐾,𝑛) (𝑆) ≥ ⌊(𝐾 + 1)/2⌋

)
.

Note that finding the breakdown probability is a purely combinatorial problem. Consequently, it applies

to other median-of-means like the univariate version as well.

We now establish an explicit formula for the breakdown probability. The proof uses generating functions
of combinatorial sequences (see chapter 5 of [Bee15] for an introduction). The correctness of the formula

is numerically verified in fig. 3.1.

Theorem 3.1.2. Let 𝑛, 𝐾, 𝜀 be like in definition 3.1.1. Then,

BdPr𝜀 (GMoM𝐾 [ 𝑛 ]) =
1(
𝑛
𝜀𝑛

) 𝐾∑︁
𝑘=⌊ (𝐾+1)/2⌋

(
𝐾

𝑘

) 𝑘∑︁
𝑙=0

(
𝑘

𝑙

)
(−1)𝑘−𝑙

(
𝑙 𝑛
𝐾

𝜀𝑛

)
.

Proof. Using 𝑈B(𝐾,𝑛) and S𝜀𝑛 (𝑛) from definition 3.1.1, we define the counts 𝐼𝜀𝑛 (= 𝑏 ;B(𝑐, 𝑑)) and 𝐼𝜀𝑛 (≥
𝑏 ;B(𝑐, 𝑑)) as

#

{
𝑆 ∈ S𝜀𝑛 (𝑛) : 𝑈B(𝑐,𝑑 ) (𝑆) = 𝑏

}
and #

{
𝑆 ∈ S𝜀𝑛 (𝑛) : 𝑈B(𝑐,𝑑 ) (𝑆) ≥ 𝑏

}
,

where 1 ≤ 𝑏, 𝑐 ≤ 𝑑 are natural numbers such that 𝑐 divides 𝑑 . Further, let 𝐾∗
:= ⌊(𝐾 + 1)/2⌋.
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Figure 3.1 For 𝑛 = 100 and 𝐾 ∈ {4, 10, 25}, the breakdown probability BdPr𝜀 (GMoM𝐾 [ 𝑛 ]) is simulated for a

range of corruption levels 𝜀 and reported in black with a 95% Agresti-Coull binomial confidence interval from 10
4

observations. The corresponding theoretical values from theorem 3.1.2 are plotted as blue dots. The breakdown

point is marked with an arrow at the bottom. The simulation confirms the correctness of theorem 3.1.2. We further

see that as𝐾 increases, the probability at the breakdown point (=arrow) decreases and grows more slowly thereafter.

In summary, the breakdown point is most relevant when 𝐾 is small.

Since all index sets of corrupted rows are assumed to be equally likely and as noted #S𝜀𝑛 (𝑛) =
(
𝑛
𝜀𝑛

)
, it

suffices to show that the double sum in the theorem statement equals 𝐼𝜀𝑛 (≥ 𝐾∗
;B(𝐾,𝑛)). It holds that

𝐼𝜀𝑛 (≥ 𝐾∗
;B(𝐾,𝑛)) =

𝐾∑︁
𝑘=𝐾∗

𝐼𝜀𝑛 (= 𝑘 ;B(𝐾,𝑛)) =
𝐾∑︁

𝑘=𝐾∗

∑︁
{𝐵𝑖

1
,...,𝐵𝑖𝑘 }⊂B(𝐾,𝑛)

𝐼𝜀𝑛 (= 𝑘 ;

𝑘⋃
𝑗=1

𝐵𝑖 𝑗 ) =

𝐾∑︁
𝑘=𝐾∗

𝐼𝜀𝑛 (= 𝑘 ;B(𝑘, 𝑘𝑛
𝐾

)) ·
∑︁

{𝐵𝑖
1
,...,𝐵𝑖𝑘 }⊂B(𝐾,𝑛)

1 =

𝐾∑︁
𝑘=𝐾∗

𝐼𝜀𝑛 (= 𝑘 ;B(𝑘, 𝑘𝑛
𝐾

)) ·
(
𝐾

𝑘

)
.

We calculate the (ordinary) generating function of 𝐼𝜀𝑛 (= 𝑘 ;B(𝑘, 𝑘𝑛
𝐾
)) in the subscript parameter. The

symbolic argument will be denoted by 𝑧. Note that 𝐼𝑚 (= 𝑘 ;B(𝑘, 𝑘𝑛
𝐾
)) can equivalently be phrased as the

number of choices to distribute𝑚 indistinguishable balls into 𝑘 boxes with 𝑛/𝐾 slots each such that each

box contains at least one ball. As there are

(𝑛/𝐾
𝑙

)
choices to put 𝑙 balls into 𝑛/𝐾 slots and there must be

between one and 𝑛/𝐾 balls in each box, the generating function for each box is given by

∑𝑛/𝐾
𝑙=1

(𝑛/𝐾
𝑙

)
𝑧𝑙 .

Hence the generating function of all 𝑘 boxes combined (i.e. of 𝐼𝑚 (= 𝑘 ;B(𝑘, 𝑘𝑛
𝐾
))) is given by(

𝑛/𝐾∑︁
𝑙=1

(
𝑛/𝐾
𝑙

)
𝑧𝑙

)𝑘
=

(
−1 + (1 + 𝑧)𝑛/𝐾

)𝑘
=

𝑘∑︁
𝑙=0

(
𝑘

𝑙

)
(−1)𝑘−𝑙 (1 + 𝑧)𝑙𝑛/𝐾 .

As the subscript parameter𝑚 equals 𝜀𝑛, we must find the coefficient of 𝑧𝜀𝑛 in this generating function. By

linearity, this reduces to the coefficient of 𝑧𝜀𝑛 in (1 + 𝑧)𝑙𝑛/𝐾 , which equals

(
𝑙𝑛/𝐾
𝜀𝑛

)
by the binomial formula.

Putting everything together yields the claim.

From the visualization in fig. 3.1 we can deduce that for fixed 𝑛,

• the breakdown probability at the breakdown point decreases as 𝐾 increases. (Note the important

exception 𝐾 = 𝑛 where the breakdown probability equals one at the breakdown point).
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• the breakdown probability grows more slowly beyond the breakdown point as 𝐾 increases.

To summarize, the breakdown point is most relevant for the robustness of the median-of-means when

the number of blocks𝐾 is small. For larger𝐾 , the median-of-means can even withstand corruption slightly

above the breakdown point with high probability, when the corruption happens randomly.

3.2 Population bias of the geometric median as a mean estimator

From the univariate setting, we expect the geometric median to be a biased estimator of the mean. Sur-

prisingly, it seems like this bias can decrease with the ambient dimension when the components aren’t too

dependent.

This section consists of an informal (yet mostly rigorous) derivation of this phenomenon when all com-

ponents are fully independent. The derivation leads to eq. (3.4), an expansion of the geometric median in

the ambient dimension. Intriguingly, the expansion features the skewness of the component distribution.

We consider a univariate distribution 𝐹 with mean 𝜇 that satisfies the following conditons:

• 𝐹 has a density that allows exchanging expectation and derivative (e.g. an absolutely continuous
density).

• 𝐹 has finite fourth moments.

• It holds inf𝑚∈ℝ 𝐸2(𝑚) > 0where 𝐸2(𝑚) := E𝐹

[
(𝑋 −𝑚)2

]
. This ensures that 𝐹 doesn’t concentrate

essentially at a single point.

For 𝑝 ∈ ℕ≥2, let 𝑋𝑝 denote a random vector in ℝ𝑝 with components that are iid according to 𝐹 . Define

the geometric median
Med𝑝 (𝐹 ) := argmin𝑚∈ℝ𝑝 E

[
∥𝑋𝑝 −𝑚∥2

]
.

This is the population version of definition 2.4.2. Existence is guaranteed similar to 2.4.3 since second

moments exist (also see chapter 3 of [MNO10] for an alternative definition with relaxed moment assump-

tions). Uniqueness follows since the independent components prohibit concentration on a line almost

surely (see [MD87]).

We start by finding an expression for Med𝑝 (𝐹 ). Since the geometric median is unique and since the loss

is symmetric under the iid assumption, we can conclude that all 𝑝 components of Med𝑝 (𝐹 ) are equal and
are denoted by𝑚𝑝 ∈ ℝ. The definition of Med𝑝 (𝐹 ) above hence reduces to a univariate problem. Under

our assumptions on 𝐹 , we can exchange the derivative with respect to 𝑚 ∈ ℝ with the expectation and

find the following expression for𝑚𝑝 after setting the derivative to zero:

0 = E

[ ∑𝑝

𝑖=1
(𝑚𝑝 − 𝑋𝑖)

∥𝑋 −𝑚𝑝 ∥2

]
=𝑚𝑝 E

[
1

∥𝑋 −𝑚𝑝 ∥2

]
− E

[
𝑋1

∥𝑋 −𝑚𝑝 ∥2

]
⇔

𝑚𝑝 = 𝜇 + E

[
1

∥𝑋 −𝑚𝑝 ∥2

]−1

E

[
𝑋1 − 𝜇

∥𝑋 −𝑚𝑝 ∥2

]
. (3.1)

To show that 𝑚𝑝 is close to 𝜇 in high dimensions, it remains to examine the second term. We use

the notation 𝐸2(𝑚) from the assumptions on 𝐹 . By applying Jensen’s inequality to 1/
√
𝑥 in the inverse

expectation, we bound the absolute value of the second term in eq. (3.1) by

√︃
𝑝 𝐸2(𝑚𝑝)

���� E [
𝑋1 − 𝜇

∥𝑋 −𝑚𝑝 ∥2

] ���� =
���������E


𝑋1 − 𝜇√︂

1

𝑝

∑𝑝

𝑖=1

(𝑋𝑖−𝑚𝑝 )2

𝐸2 (𝑚𝑝 )


��������� =: |𝜀𝑝 (𝑚𝑝) |.
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As E

[
(𝑋𝑖 −𝑚𝑝)2/𝐸2(𝑚𝑝)

]
= 1 by the iid assumption, we expect the denominator in 𝜀𝑝 (𝑚𝑝) to be very

close to one by the law of large numbers. A natural next step is to conduct a first order Taylor expansion

of 1/
√
𝑥 around one. As the components of 𝑋 are independent and E [𝑋1 − 𝜇 ] = 0, the approximation

simplifies drastically:

𝜀𝑝 (𝑚𝑝) ≈ E

[
(𝑋1 − 𝜇)

(
1 − 1

2

(
1

𝑝

𝑝∑︁
𝑖=1

(𝑋𝑖 −𝑚𝑝)2

𝐸1(𝑚𝑝)
− 1

)) ]
=

−1

2𝑝
E

[
(𝑋1 − 𝜇)

(𝑋1 −𝑚𝑝)2

E

[
(𝑋1 −𝑚𝑝)2

] ]
=:

1

𝑝
· 𝑡1(𝑚𝑝) . (3.2)

This approximation indicates that the deviation of 𝑚𝑝 from 𝜇 is of order 1/𝑝 as 𝑝 → ∞. There are two

concerns with this conclusion:

(a) 𝑡1(𝑚𝑝) also depends on 𝑝 through𝑚𝑝 , which could in theory affect the rate 1/𝑝 .

(b) The higher order Taylor terms also contain terms with 1/𝑝 , which could diverge in infinite sum or

at least change the coefficient 𝑡1(𝑚𝑝) for the order 1/𝑝 .

We begin by addressing (a). Applying Cauchy-Schwarz, we obtain

|𝑡1(𝑚𝑝) | ≤
sd[ 𝐹 ]

2

·

√︃
E

[
(𝑋1 −𝑚𝑝)4

]
𝐸2(𝑚𝑝)

≤ sd[ 𝐹 ]
2

𝑐𝐹 ,

where 𝑐𝐹 := sup𝑚∈ℝ 𝑓 (𝑚) := sup𝑚

√︁
E [ (𝑋1 −𝑚)4 ]/𝐸2(𝑚) only depends on the distribution 𝐹 . Under our

assumptions on 𝐹 , we have 𝑐𝐹 < ∞. To see this, first note that E

[
(𝑋1 −𝑚)𝑘

]
is a continuous function

of𝑚 for 𝑘 = 2, 4 as fourth moments are assumed to exist. The additional assumption inf𝑚∈ℝ 𝐸2(𝑚) > 0

ensures that 𝑓 is continuous in𝑚. As both the numerator and the denominator of 𝑓 are O(𝑚2), we find
lim𝑚→±∞ 𝑓 (𝑚) = 1. Therefore, 𝑓 attains a finite maximum by continuity.

To summarize, 𝑡1(𝑚𝑝) stays bounded when 𝑝 → ∞. This addresses our concerns regarding (a).

Concern (b) is harder to address as it involves the interplay of infinitely many higher-order Taylor terms.

We consider some numerical evidence that eq. (3.2) may capture the order 1/𝑝 correctly in standard cases.

As we don’t know𝑚𝑝 , we confirm by simulation that lim𝑝→∞ 𝑝 𝜀𝑝 (𝑚) = 𝑡1(𝑚) for a range of values𝑚 ∈ ℝ

and for 𝐹 being the standard exponential distribution. The results are shown in fig. 3.2. It’s hypothesized

that the alternating sign in the derivative of 1/
√
𝑥 plays a crucial role.

m: 0.1 m: 0.7 m: 1.2

0 20 40 60 80 0 20 40 60 80 0 20 40 60 80
−4
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p
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p(m
)

(a) Dimension 𝑝 < 100

m: 0.1 m: 0.7 m: 1.2

100 200 300 100 200 300 100 200 300

−1.2
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p

p
⋅ε

p(m
)

(b) Dimension 𝑝 ≥ 100

Figure 3.2 Numerical validation that lim𝑝→∞ 𝑝 · 𝜀𝑝 (𝑚) = 𝑡1 (𝑚) for𝑚 ∈ ℝ and 𝐹 = Exp(1). We simulate 𝑝 · 𝜀𝑝 (𝑚) for
a range of dimensions 𝑝 and𝑚 = {0.1, 0.7, 1, 1.2}. Each black dot represents the mean of 10

3
Monte Carlo simulations

with a corresponding bootstrap confidence interval. The horizontal lines state the values of 𝑡1 (𝑚). We observe that

𝑝 · 𝜀𝑝 (𝑚) indeed approaches 𝑡1 (𝑚) when 𝑝 is large.
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We are now more confident that

|𝑚𝑝 − 𝜇 | ≤
1

𝑝
𝑡1(𝑚𝑝) + 𝑜 (1/𝑝) (𝑝 → ∞). (3.3)

With some more intuition, we can guess an explicit expansion of𝑚𝑝 . First, note that eq. (3.3) with the

fact that 𝑡1 is bounded implies𝑚𝑝 → 𝜇 as 𝑝 → ∞. For 𝑝 large, we can therefore replace 𝑡1(𝑚𝑝) by 𝑡1(𝜇).
Next, we can expect E

[
1/∥𝑋 −𝑚𝑝 ∥2

]−1 ≈
√︁
𝑝 𝐸2(𝑚𝑝) for large 𝑝 with the law of large numbers in mind.

This means, we can replace “≤” by “=” in eq. (3.3) and and hypothesize that

𝑚𝑝 = 𝜇 + 𝑡1(𝜇)
𝑝

+ 𝑜 (1/𝑝) = 𝜇 − sd[ 𝐹 ]
2

skew[ 𝐹 ] 1

𝑝
+ 𝑜 (1/𝑝) (𝑝 → ∞). (3.4)

This expansion is supported by numerical experiments for three different distributions 𝐹 (see fig. 3.2).

The appearance of the skewness is particularly intriguing, since according to statistical folklore the sign

of the skewness determines whether the median lies to the right or to the left of the mean in the univariate

case. Here skew[ 𝐹 ] > 0 implies𝑚𝑝 < 𝜇 up to first order, which is in line with the univariate intuition.

Beta Exponential Pareto

1 10 100 1 10 100 1 10 100

1e−04

1e−03

1e−02

1e−01

Dimension p

|m
p

−
µ|

Confirming the asymptotic expansion of mp

Figure 3.3 Validation of expansion 3.4 for Beta(5,1) (negatively skewed), Exp(1) and Pareto(1,5) distributions. For a

range of 𝑝 ≤ 600, the quantity of interest𝑚𝑝 is simulated from 10
3
observations. Plotted together on double loga-

rithmic scale are |𝑚𝑝 − 𝜇 | with bootstrap confidence intervals from 100 observations as well as the exact value of

|𝑡1 (𝜇) |/𝑝 . Even though the Pareto observations converge rather slowly, the simulation clearly supports the expan-

sion in eq. (3.4). It would have been interesting to consider Pareto distributions with shape less than 4 to test the

assumption of fourth moments, however the even slower convergence and increased variance would have consumed

a lot more computational resources.

To make the derivation in this section rigorous, it remains to make approximation in eq. (3.2) precise.

This is left as an open problem. What makes it hard is the fact that 1/∥𝑋 − 𝑚∥2 doesn’t have higher

moments (also see lemma 1 in [MNO10]) and that the approximation remainder depends on the unknown

value of𝑚𝑝 .

3.3 Concentration of the geometric median-of-means under corruption

Themedian-of-means principle was advertised for its good concentration and robustness properties in sec-

tion 2.4.2. Here, we quantify this claim and show that the geometric median-of-means can concentrate
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tightly around the mean even if a portion of the sample is corrupted arbitrarily. Unsurprisingly, the con-

centration gets worse when the amount of corrupt samples increases. Figure 3.4 plots the constant in the

concentration inequality versus the corruption parameter 𝜏 .

As discussed in section 2.4.2, we should not expect an optimal multivariate sub-Gaussian concentration

result. Some details are provided in the remark after the theorem statement.

The concentration result is a variant of corollary 4.1 in [Min15]. As in [Min15], let

𝜓 (𝛼, 𝑝) := (1 − 𝛼) log

(
1 − 𝛼
1 − 𝑝

)
+ 𝛼 log

(
𝛼

𝑝

)
(3.5)

and for 0 < 𝛼 < 1/2 let

𝐶𝛼 := (1 − 𝛼)
√︂

1

1 − 2𝛼
. (3.6)

We base the proof on the following robustness result on the geometric median of independent estimators

(from [Min15] Remark 3.1.a)

Lemma 3.3.1 (Minsker, 2015). Let 𝜇 ∈ ℝ𝑝 and 𝜇1, . . . , 𝜇𝑘 ∈ ℝ𝑝 be a collection of independent estimators of
𝜇. Let the hyperparameters 0 < 𝛼 < 1/2, 0 < 𝑝 < 𝛼 and 𝜀 > 0 be such that

P

(
∥𝜇 𝑗 − 𝜇∥2 > 𝜀

)
≤ 𝑝 ∀𝑗 ∈ 𝐽 ,

where 𝐽 ⊂ {1, . . . , 𝐾} has cardinality at least (1 − 𝜏)𝐾 , and 𝜏 <
𝛼−𝑝
1−𝑝 . Then

P (∥ Med(𝜇1, . . . 𝜇𝑘 ) − 𝜇∥2 > 𝐶𝛼𝜀) ≤ 𝑒−𝐾 (1−𝜏 )𝜓 ( 𝛼−𝜏
1−𝜏 ,𝑝) .

In the following theorem, 𝜏 is a parameter that quantifies the amount of corruption.

Theorem 3.3.2 (Concentration of GMoM, possibly under corruption). Let 𝑥1, . . . , 𝑥𝑛 ∈ ℝ𝑝 be independent
samples from a 𝑝-dimensional random variable 𝑋 . Assume the covariance Σ exists. Fix a confidence level of
0 < 𝛿 ≤ 1. We allow for up to 𝜏 (⌊log(1/𝛿)/𝜓 (0.25, 0.125)⌋ + 1) samples to be arbitrarily corrupted, where
0 ≤ 𝜏 < 1/2. Split the samples into 𝐾 blocks of equal size ⌊ 𝑛

𝐾
⌋, where

𝐾 = 𝐾 (𝛿, 𝜏) :=


log(1/𝛿)

(1 − 𝜏)𝜓
(
(1/2−𝜏 )2

1−𝜏 , 1

2

(
1

2
− 𝜏

)
2

)  + 1.

Further, define

𝑐 (𝜏) :=
2 · (3/4 − 𝜏2)

(1/2 − 𝜏)
√︁

1/2 − 2𝜏2

√︂
(1 − 𝜏)𝜓

(
(1/2−𝜏 )2

1−𝜏 , 1

2

(
1

2
− 𝜏

)
2

) .
If for the confidence level 𝛿 it holds that 𝐾 ≤ 𝑛/2, then

P

(
∥ GMoM𝐾

[
𝑥1, . . . , 𝑥𝐾 · ⌊𝑛/𝐾 ⌋

]
− E [𝑋 ]∥2 > 𝑐 (𝜏)

√︄
log

(
4

(1 − 𝜏)2

1

𝛿

)
tr(Σ)
𝑛

)
≤ 𝛿.

Proof. The main step of this proof is applying Lemma 3.3.1 to the block means 𝜇1, . . . , 𝜇𝐾 . We start by

fixing 𝛼, 𝑝 and 𝜀 in the Lemma. Consider the following choices depending on the corruption parameter 𝜏 :

𝑝 (𝜏) :=
1

2

(
1

2

− 𝜏
)

2

𝛼 (𝜏) :=2𝑝 (𝜏) + 𝜏 = 𝜏2 + 1

4

𝜀 (𝜏) :=

√︄
2𝐾 tr(Σ)
𝑛 𝑝 (𝜏) .
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It remains to verify that these choices can satisfy the conditions in Lemma 3.3.1. To choose the set 𝐽 , first

note that 𝐾 (𝛿, ·) is an increasing function. By assumption, at most 𝜏𝐾 (𝛿, 0) samples are corrupted. So, the

proportion of corrupted blocks is at most

(𝜏𝐾 (𝛿, 0))/𝐾 (𝛿, 𝜏) = 𝜏 (𝐾 (𝛿, 0)/𝐾 (𝛿, 𝜏)) ≤ 𝜏 · 1 = 𝜏 .

Therefore, we can set 𝐽 to be the set of uncorrupted blocks.

To show the probabilistic bound for all blocks 𝑗 ∈ 𝐽 , we set 𝜇 := E [𝑋 ] and assume w.l.o.g. that 𝑗 = 1.

Using the fact that ⌊𝑛/𝐾⌋−1 ≤ 2𝐾/𝑛 due to 𝐾 ≤ 𝑛/2, we find

E

[
∥𝜇1 − 𝜇∥2

2

]
=

1

⌊𝑛/𝐾⌋2

⌊𝑛/𝐾 ⌋∑︁
𝑖, 𝑗=1

E

[
(𝑋𝑖 − 𝜇)𝑇 (𝑋 𝑗 − 𝜇)

]
=

1

⌊𝑛/𝐾⌋2

⌊𝑛/𝐾 ⌋∑︁
𝑖=1

E

[
(𝑋𝑖 − 𝜇)𝑇 (𝑋𝑖 − 𝜇)

]
=

E

[
∥𝑋 − 𝜇∥2

]
⌊𝑛/𝐾⌋ ≤ 2𝐾

𝑛
tr(Σ) .

The probabilistic bound now follows from Chebycheff’s inequality, where everything but 𝑝 (𝜏) cancels.
For the second condition, check

𝛼 (𝜏) − 𝑝 (𝜏)
1 − 𝑝 (𝜏) =

2𝑝 (𝜏) + 𝜏 − 𝑝 (𝜏)
1 − 𝑝 (𝜏) =

𝑝 (𝜏)
1 − 𝑝 (𝜏) +

𝜏

1 − 𝑝 (𝜏) > 0 + 𝜏
1

= 𝜏 .

To simplify notation, let

𝜇 := GMoM𝐾

[
𝑥1, . . . , 𝑥𝐾 · ⌊𝑛/𝐾 ⌋

]
= Med(𝜇1, . . . , 𝜇𝐾 ).

By lemma 3.3.1, we have established

P

(
∥𝜇 − 𝜇∥2 > 𝐶𝛼 (𝜏 )𝜀 (𝜏)

) 3.3.1
≤ 𝑒

−𝐾 (1−𝜏 )𝜓
(
𝛼 (𝜏 )−𝜏

1−𝜏 ,𝑝 (𝜏 )
)
. (3.7)

We start by simplifying the exponent in the right hand side of (3.7) for our choice of 𝐾, 𝛼 (𝜏) and 𝑝 (𝜏).
We drop the dependency on 𝜏 for simplicity. First, note that

𝐾 =


log(1/𝛿)

(1 − 𝜏)𝜓
(

2𝑝

1−𝜏 , 𝑝
)  + 1,

which allows the following simplifications:

𝐾 (1 − 𝜏)𝜓
(𝛼 − 𝜏

1 − 𝜏 , 𝑝
)
=

©«


log(1/𝛿)

(1 − 𝜏)𝜓
(

2𝑝

1−𝜏 , 𝑝
)  + 1

ª®®¬ (1 − 𝜏)𝜓
(

2𝑝

1 − 𝜏 , 𝑝
)

for some 𝑐∈[0,1)
=

©«
log(1/𝛿)

(1 − 𝜏)𝜓
(

2𝑝

1−𝜏 , 𝑝
) − 𝑐 + 1

ª®®¬ (1 − 𝜏)𝜓
(

2𝑝

1 − 𝜏 , 𝑝
)
=

log(1/𝛿) + (1 − 𝑐) (1 − 𝜏)𝜓
(

2𝑝

1 − 𝜏 , 𝑝
)
𝑐∈[0,1)
≥ log(1/𝛿) + 0 = log(1/𝛿) .

Since the negative of the initial term is the exponent, we can bound the right hand side of (3.7) by

𝑒−𝐾 (1−𝜏 )𝜓 ( 𝛼−𝜏
1−𝜏 ,𝑝) ≤ 𝑒− log(1/𝛿 ) = 𝑒 log(𝛿 ) = 𝛿.
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Figure 3.4 Logarithmic plot of the constant in theorem 3.3.2.

All that remains is to simplify 𝐶𝛼𝜀:

𝐶𝛼𝜀 = 𝐶𝛼

√︄
2𝐾 tr(Σ)
𝑛𝑝

=
𝐶𝛼

√
2

√
𝑝

√︃
(1 − 𝜏)𝜓

(
𝛼−𝜏
1−𝜏 , 𝑝

) · √︂𝐾 · (1 − 𝜏)𝜓
(𝛼 − 𝜏

1 − 𝜏 , 𝑝
)
·
√︂

tr(Σ)
𝑛

≤

𝑐 (𝜏)

√√√√√√©«
log(1/𝛿)

(1 − 𝜏)𝜓
(

2𝑝

1−𝜏 , 𝑝
) + 1

ª®®¬ · (1 − 𝜏)𝜓
(

2𝑝

1 − 𝜏 , 𝑝
)
·
√︂

tr(Σ)
𝑛

=

𝑐 (𝜏)

√︄
log(1/𝛿) + (1 − 𝜏)𝜓

(
2𝑝

1 − 𝜏 , 𝑝
)
·
√︂

tr(Σ)
𝑛

First term of𝜓 negative

≤

𝑐 (𝜏)

√︄
log(1/𝛿) + (1 − 𝜏) 2𝑝

1 − 𝜏 log

(
2𝑝

(1 − 𝜏)𝑝

)
·
√︂

tr(Σ)
𝑛

𝑝≤1

≤

𝑐 (𝜏)

√︄
log(1/𝛿) + 2 log

(
2

1 − 𝜏

)
·
√︂

tr(Σ)
𝑛

= 𝑐 (𝜏)

√︄
log

(
4

(1 − 𝜏)2 · 𝛿

)
·
√︂

tr(Σ)
𝑛

.

Remark 3.3.3. The concentration inequality in theorem 3.3.2 looks similar to the univariate sub-Gaussian
concentration from section 2.4.2. This results in decent concentration, yet the mean of multivariate Gaussians
concentrates even better (equation (3.1) in [LM19]):

P

(
∥𝑋 − 𝜇∥2 >

√︂
tr(Σ)
𝑛

+
√︁

2𝜆max

√︂
log(1/𝛿)

𝑛

)
≤ 𝛿,

where 𝑋 is the empirical mean of 𝑛 iid Gaussians with mean 𝜇 and covariance matrix Σ having maximal
eigenvalue 𝜆max. Note that other than in theorem 3.3.2, the “dimension” tr(Σ) appears separated from the
confidence level 𝛿 . As discussed at the end of section 2.4.2, improved concentration results closer to the con-
centration of the multivariate Gaussian mean have been proven very recently in [MS23] for a large class of
distributions.
Interestingly, the coordinatewisemedian concentrates similarly to theorem 3.3.2, see remark 4.1 (c) in [Min15].
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4 A robust score matching estimator for sparse
graphical models

4.1 Definition of the estimator

This section defines a score matching estimator for the pairwise interaction model from eq. (2.1) that

is robust and well-suited for high-dimensional problems with sparse interaction matrices. A first score

matching estimator for the pairwise interactionmodel was already defined in eq. (2.6), however it’s built on

the non-robust empirical mean and has no special properties in high-dimensional problems. We therefore

extend the estimator in eq. (2.6) in two main ways.

First, we regularize eq. (2.6) with the L1 norm, as this has been fruitful for many high-dimensional

problems. Additionally, to increase robustness, we replace the empirical means in eq. (2.6) by geometric

median-of-means, as introduced in section 2.4.2.

Let 𝑥1, . . . , 𝑥𝑛 ∈ ℝ𝑚 be an iid sample from the pairwise interaction model from eq. (2.1) with interaction

matrix Θ0 satisfying the additional assumptions from section 2.2.2. Again, we symmetrize such that Θ0 ∈
ℝ𝑚×𝑚

and denote 𝜃0 := vec (Θ0 ) ∈ ℝ𝑚
2

. Further, we re-use Γ : ℝ𝑚 → ℝ𝑚
2×𝑚2

and 𝑔 : ℝ𝑚 → ℝ𝑚
2

from eq. (2.4). Finally, let 𝐾 ≤ 𝑛/2 be a natural number. Similarly to 3.3.2, we truncate the data matrix

until the number of rows is divided by 𝐾 .

A first approach to incorporate the two modifications to eq. (2.6) discussed above would be to define

Γ̂𝐾 := GMoM𝐾

[
Γ(𝑥1), . . . , Γ(𝑥𝐾 · ⌊𝑛/𝐾 ⌋)

]
, 𝑔𝐾 := GMoM𝐾

[
𝑔(𝑥1), . . . , 𝑔(𝑥𝐾 · ⌊𝑛/𝐾 ⌋)

]
(4.1)

and then for some 𝜆 > 0 minimize

1

2

𝜃TΓ̂𝐾𝜃 + 𝑔T
𝐾𝜃 + 𝜆∥𝜃 ∥1.

However, Γ̂𝐾 is only guaranteed to be positive semidefinite, not positive definite. If there is a vector
˜𝜃

in its kernel and if 𝑔T
𝐾

˜𝜃 + 𝜆∥ ˜𝜃 ∥ < 0, the optimization problem is unbounded from below (consider 𝑎 ˜𝜃 for

𝑎 > 0).

If 𝑛 is large enough relative to𝑚, the estimator Γ̂𝐾 is often positive definite. Note that Γ̂𝐾 is a convex

combination of (Γ(𝑥𝑖))𝑖 for 𝑖 = 1, . . . , 𝐾 · ⌊𝑛/𝐾⌋, which was one of the reasons why we chose the geometric

median (see R1 in section 2.4.1). In the multivariate Gaussian case (see example 2.2.1 (a)), each block of

Γ̂𝐾 is thus a convex combination of (𝑥𝑖𝑥T
𝑖 )𝑖 . Only when less than𝑚 weights are nonzero can the convex

combination be indefinite with positive probability (see [Gup71]).

Still, especially since we are interested in the high-dimensional case where 𝑛 is not necessarily large

relative to𝑚, it’s important to ensure that Γ̂𝐾 is guaranteed to be positive definite.

Following [YDS19], we introduce a diagonal multiplier 𝛽 > 0 and define the final estimator as

Definition 4.1.1. Using Γ̂𝐾 and 𝑔𝐾 from eq. (4.1), we define for 𝛽, 𝜆 > 0

ˆ𝜃 (𝐾, 𝛽, 𝜆) := argmin
𝜃 ∈ℝ𝑚2

1

2

𝜃T
(
Γ̂𝐾 + 𝛽 · diag(Γ̂𝐾 )

)
𝜃 + 𝑔T

𝐾𝜃 + 𝜆∥𝜃 ∥1.

Remark 4.1.2. To simplify the theoretical analysis, we follow [LDS16] and do not require ˆ𝜃 to be symmetric
in definition 4.1.1 (in contrast to eq. (2.6)). The algorithms in section 4.5 solve the symmetrized problem as
shown in 2.2.1 (b).
For theoretical simplicity, the L1 regularization is placed on all components of 𝜃 equally. Since the diagonal

of Θ0 and the parameter 𝜂 in the square root graphical model typically aren’t sparse, they aren’t penalized
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in the implementation. This also clears a small inconsistency: taking 4.1.1 literally, off-diagonal entries of Θ0

would appear twice in ∥𝜃 ∥1 and thus receive twice the weight compared to the diagonal (which as explained,
isn’t penalized at all in practice).

To see why the minimization problem in definition 4.1.1 has a positive definite design matrix and in

turn why
ˆ𝜃 (𝐾, 𝛽, 𝜆) hast at least one solution (for uniqueness see theorem 4.2.2), consider in the notation

of section 2.2.2 that for 𝑖 ∈ {0, . . . ,𝑚 − 1} and 𝑗 ∈ [𝑚]

(Γ(𝑥))𝑖𝑚+𝑗,𝑖𝑚+𝑗 = ∥𝑉 (𝑥):, 𝑖𝑚+𝑗 ∥2 = ((𝑉 (1)
𝑖

)𝑖 𝑗 )2 =


(

d𝑡𝑖 𝑗 (𝑥𝑖 ,𝑥 𝑗 )
d𝑥𝑖

)
2

if 𝑖 ≤ 𝑗(
d𝑡 𝑗𝑖 (𝑥 𝑗 ,𝑥𝑖 )

d𝑥𝑖

)
2

otherwise

.

In most cases of interest,
d𝑡𝑖 𝑗 (𝑥𝑖 ,𝑥 𝑗 )

d𝑥𝑖
≠ 0 almost surely (e.g. in the Gaussian case

d𝑡𝑖 𝑗 (𝑥𝑖 ,𝑥 𝑗 )
d𝑥𝑖

= 𝑥 𝑗 ). In this case,

Γ(𝑥) has a positive diagonal almost surely. As the geometric median-of-means is a convex combination

of its arguments, the diagonal of Γ̂𝐾 is also positive almost surely. As Γ̂𝐾 is positive semidefinite (since the

Γ-matrices are positive semidefinite), we conclude that Γ̂𝐾 +𝛽 ·diag(Γ̂𝐾 ) is a positive definite matrix almost

surely in standard cases.

4.2 Performance guarantee under corruption

The aim of this section is to prove that
ˆ𝜃 (𝐾, 𝛽, 𝜆) from definition 4.1.1 approximates the true parameter

well with high probability even if a part of the sample is corrupted arbitrarily.

Again, consider the pairwise interaction model 𝑝Θ in eq. (2.1) with the additional assumptions from

section 2.2.2 and symmetrized interaction matrix Θ ∈ ℝ𝑚×𝑚
and 𝜃 := vec (Θ ) ∈ ℝ𝑚

2

. True parameters

are denoted by Θ0 and 𝜃0. We re-use notation from section 2.2.1 and section 2.2.2.

Definition 4.2.1. Define 𝑑𝜃0
to be the maximum degree of any nodes in 𝐺𝜃0

, i.e. the maximum number of
non-zero off-diagonal entries in any column of Θ0. Let 𝑐𝜃0

:= |||Θ0 |||∞,∞.
Write 𝑆 (𝜃 ) for the support of a parameter vector 𝜃 , i.e. for {𝑖 ∈𝑚2

: 𝜃𝑖 ≠ 0}. Abbreviate 𝑆0 := 𝑆 (𝜃0).
Further, if Γ0,𝑆0𝑆0

is invertible, set
𝑐Γ0

:=
������(Γ0,𝑆0𝑆0

)−1

������
∞,∞.

Finally, we say Γ0 satisfies the irrepresentability condition with incoherence parameter 𝛼 ∈ (0, 1] and edge
set 𝑆0, if ������Γ0,𝑆𝑐

0
𝑆0
(Γ−1

0,𝑆0𝑆0

)
������
∞,∞ ≤ (1 − 𝛼) .

Recall from section 2.2.2 that 𝜃0 minimizes 𝜃TΓ0𝜃 + 𝑔T
0
𝜃 . In definition 4.1.1, the minimization is L1

regularized and (Γ0, 𝑔0) are replaced by random quantities. The following theorem ensures that when the

random deviation from (Γ0, 𝑔0) is small, the minimization problem from definition 4.1.1 admits a unique

minimizer which is reasonably close to 𝜃0. The theorem was first proven in [LDS16]; the idea to include a

diagonal multiplier was first reported in [YDS19].

Theorem 4.2.2 (Lin et al.). Suppose, Γ0,𝑆0𝑆0
is invertible and satisfies the irrepresentability condition with

incoherence parameter 𝛼 . Assume

∥
(
Γ̂𝐾 + 𝛽 · diag(Γ̂𝐾 )

)
− Γ0∥∞ < 𝜀1, ∥𝑔𝐾 − 𝑔0∥∞ < 𝜀2,

and 𝑑𝜃0
𝜀1 ≤ 𝛼/(6𝑐Γ0

). If
𝜆 >

3(2 − 𝛼)
𝛼

max(𝑐𝜃0
𝜀1, 𝜀2),

then it holds that he minimizer ˆ𝜃 (𝐾, 𝛽, 𝜆) in definition 4.1.1 is unique with 𝑆 ( ˆ𝜃 (𝐾, 𝛽, 𝜆)) ⊂ 𝑆0 and satisfies

∥ ˆ𝜃 (𝐾, 𝛽, 𝜆) − 𝜃0∥∞ ≤
𝑐Γ0

2 − 𝛼 𝜆.
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Remark 4.2.3. Theorem 4.2.2 can readily be adapted to include additional parameters like 𝜂 in the square
root graphical model. Only 𝑑𝜃0

needs to be slightly altered to account for the extra parameters. See chapter 6.1
in [YDS19] for details.

To guarantee maximal deviations by 𝜀1, 𝜀2 in theorem 4.2.2 with high probability under corruption, we

extend the previous concentration result of the geometric median-of-means from theorem 3.3.2 to allow

for a diagonal multiplier. Set 𝑏 := 𝛽 · vec ( 𝐼𝑚 ) in the following lemma to obtain the diagonal multiplier as

in definition 4.1.1. The technical treatment of the diagonal multiplier in the following proof is similar to

theorems 15 to 17 in [YDS19], however since we don’t assume normality, the restriction on the diagonal

multiplier depends on the underlying distribution.

Lemma 4.2.4. Let 𝑥1, . . . , 𝑥𝑛 ∈ ℝ𝑝 be independent samples from a 𝑝-dimensional random variable𝑋 . Assume
the covariance Σ exists. Fix a confidence level of 0 < 𝛿 ≤ 1. We allow for up to 𝜏 (⌊log(1/𝛿)/𝜓 (0.25, 0.125)⌋+1)
samples to be arbitrarily corrupted, where 0 ≤ 𝜏 < 1/2. Split the samples into 𝐾 blocks of equal size ⌊ 𝑛

𝐾
⌋,

where 𝐾 = 𝐾 (𝛿, 𝜏) as in theorem 3.3.2. Further, let 𝑐 (𝜏) as in theorem 3.3.2.
Assume that tr(Σ) > 0 and let 𝑏 ∈ ℝ𝑝 such that

∥𝑏∥∞ ≤ 1

1 + (∥ E [𝑋 ] ∥2/
√︁

2 tr(Σ))
√︁
𝑛/𝐾

.

If for the confidence level 𝛿 it holds that 𝐾 ≤ 𝑛/2, then

P

(
∥ (1 + 𝑏) ◦ GMoM𝐾

[
𝑥1, . . . , 𝑥𝐾 · ⌊𝑛/𝐾 ⌋

]
− E [𝑋 ] ∥∞ > 2 · 𝑐 (𝜏)

√︄
log

(
4

(1 − 𝜏)2

1

𝛿

)
tr(Σ)
𝑛

)
≤ 𝛿,

where ◦ denotes elementwise multiplication.

Proof. To simplify notation, let 𝜇 := E [𝑋 ] and

𝜇 := GMoM𝐾

[
𝑥1, . . . , 𝑥𝐾 · ⌊𝑛/𝐾 ⌋

]
, 𝑡 := 𝑐 (𝜏)

√︄
log

(
4

(1 − 𝜏)2

1

𝛿

)
tr(Σ)
𝑛

.

We show the implication

∥𝜇 − 𝜇∥2 ≤ 𝑡 ⇒ ∥𝑏 ◦ 𝜇∥2 ≤ 𝑡 . (4.2)

If the left hand side of eq. (4.2) holds, we find (recall 𝑡 > 0 since tr(Σ) > 0 )

∥𝜇∥2 ≤ ∥𝜇∥2 + 𝑡 = 𝑡
(
∥𝜇∥2

𝑡
+ 1

)
⇔ 1

1 + ∥𝜇∥2/𝑡
∥𝜇∥ ≤ 𝑡 (4.3)

We can use eq. (4.3) for the right hand side of eq. (4.2). Recalling the definitions of 𝛼 (𝜏), 𝑝 (𝜏) and 𝜀 (𝜏) from
the proof of theorem 3.3.2 as well as the fact that the end of said proof can be rephrased as 𝐶𝛼 (𝜏 )𝜀 (𝜏) ≤ 𝑡 ,
we find

∥𝑏 ◦ 𝜇∥2 ≤ 1

1 + (∥ E [𝑋 ] ∥2/
√︁

2 tr(Σ))
√︁
𝑛/𝐾

∥𝜇∥2

√
𝑝 (𝜏 )≤1

≤

1

1 +
√︁
𝑝 (𝜏) (∥𝜇∥2/

√︁
2 tr(Σ))

√︁
𝑛/𝐾

∥𝜇∥2

𝐶𝛼 (𝜏 ) ≥1

≤

1

1 + ∥𝜇∥2/(𝐶𝛼 (𝜏 )𝜀 (𝜏))
∥𝜇∥ ≤ 1

1 + ∥𝜇∥2/𝑡
∥𝜇∥

𝑒𝑞. (4.3)

≤ 𝑡 .

This bound proves eq. (4.2) which allows us to deduce the inclusion of events

{∥𝜇 − 𝜇 + 𝑏 ◦ 𝜇∥2 > 2𝑡} ⊂ {∥𝜇 − 𝜇∥2 + ∥𝑏 ◦ 𝜇∥2 > 2𝑡}
𝑒𝑞. (4.2)
⊂ {∥𝜇 − 𝜇∥2 > 𝑡}.
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Hence, by inclusion of events {∥ · ∥∞ ≥ 2𝑡} ⊂ {∥ · ∥2 ≥ 2𝑡} and theorem 3.3.2

P ( ∥(1 + 𝑏) ◦ 𝜇 − 𝜇∥∞ > 2𝑡 ) ≤ P ( ∥𝜇 − 𝜇∥2 > 𝑡 )
𝑡ℎ𝑒𝑜𝑟𝑒𝑚 3.3.2

≤ 𝛿.

Combining lemma 4.2.4 and theorem 4.2.2, we can prove the desired performance guarantee:

Theorem 4.2.5. Let 𝑥1, . . . , 𝑥𝑛 ∈ ℝ𝑚 be independent samples from a pairwise interaction model 𝑝Θ0
sat-

isfying the additional assumptions from section 2.2.2. Assume that Γ0, 𝑆0𝑆0
is invertible and satisfies the ir-

representability condition with incoherence parameter 𝛼 . Further, suppose ΣΓ0
:= VarΘ0

(Γ(𝑋 )) < ∞ and
Σ𝑔0

:= VarΘ0
(𝑔(𝑋 )) < ∞.

Fix a confidence level 0 < 𝛿 ≤ 1. We allow for up to 𝜏 (⌊log(1/𝛿)/𝜓 (0.25, 0.125)⌋ + 1) samples to be
arbitrarily corrupted, where 0 ≤ 𝜏 < 1/2. Split the samples into𝐾 blocks of equal size ⌊ 𝑛

𝐾
⌋, where𝐾 = 𝐾 (𝛿, 𝜏)

as in theorem 3.3.2. Further, let 𝑐 (𝜏) as in theorem 3.3.2. Assume tr(ΣΓ0
) > 0 and let

0 ≤ 𝛽 ≤ 1

1 + (∥Γ0∥2/
√︁

2 tr(ΣΓ0
))

√︁
𝑛/𝐾

.

Finally, with constants and notation from definition 4.2.1, if

𝑛 >

(
24𝑑𝜃0

𝑐Γ0
𝑐 (𝜏)

𝛼

)
2

log

(
4

(1 − 𝜏)2

1

𝛿

)
tr(ΣΓ0

)

𝜆 >
6𝑐 (𝜏) (2 − 𝛼)

𝛼

√︄
log

(
4

(1 − 𝜏)2

1

𝛿

)
1

𝑛
· max

(
2𝑐𝜃0

√︁
tr(ΣΓ0

),
√︃

tr(Σ𝑔0
)
)
,

thenwith probability at least 1−2𝛿 , the estimator ˆ𝜃 (𝐾, 𝛽, 𝜆) in definition 4.1.1 is unique with 𝑆 ( ˆ𝜃 (𝐾, 𝛽, 𝜆)) ⊂ 𝑆0

and satisfies

∥ ˆ𝜃 (𝐾, 𝛽, 𝜆) − 𝜃0∥∞ ≤
𝑐Γ0

2 − 𝛼 𝜆.

Proof. Define

𝜀1 := 4𝑐 (𝜏)

√︄
log

(
4

(1 − 𝜏)2

1

𝛿

)
tr(ΣΓ0

)
𝑛

𝜀2 := 2𝑐 (𝜏)

√︄
log

(
4

(1 − 𝜏)2

1

𝛿

)
tr(Σ𝑔0

)
𝑛

.

Treating Γ̂𝐾 + 𝛽 diag(Γ̂𝐾 ) by lemma 4.2.4 and 𝑔𝐾 by theorem 3.3.2 (together with the inclusion of events

{∥ · ∥∞ > const} ⊂ {∥ · ∥2 > const}), we find by applying the union bound that with probability at least

1 − 2𝛿

∥Γ̂𝐾 + 𝛽 diag(Γ̂𝐾 )∥∞ ≤ 𝜀1/2 < 𝜀1, ∥𝑔𝐾 − 𝑔0∥∞ ≤ 𝜀2/2 < 𝜀2.

Further, the growth condition on𝑛 ensures𝑑𝜃0
𝜀1 ≤ 𝛼/(6𝑐Γ0

) and by construction 𝜆 > 3(2−𝛼) max(𝑐𝜃0
𝜀1, 𝜀2)/𝛼 .

The claim thus follows from theorem 4.2.2.

To to compare theorem 4.2.5 with the results in [YDS19], set 𝛿 :=𝑚3−𝜏
as done in the proofs in [YDS19],

where 𝜏 is the tuning parameter in [YDS19] not to be confused with the corruption parameter 𝜏 in this

thesis. Then, the requirements on 𝑛 and 𝜆 read similarly, apart from the tr(Σ·) terms. Some discussion of

this discrepancy is provided in chapter 5.
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4.3 Asymptotic bias induced by the diagonal multiplier

Following [YDS19], we introduced the diagonal multiplier 𝛽 in section 4.1 to ensure positive definiteness

of the score matching design matrix. Since the diagonal multiplier increases the diagonal of Γ̂𝐾 , we must

expect some form of bias in the estimate
ˆ𝜃 (𝐾, 𝛽, 𝜆). As discussed in section 4.1, altering Γ̂𝐾 can especially

make sense in high-dimensional regimes.

In this section we aim to understand the consequences of “overbiasing”, i.e. what happens to the esti-

mates when Γ̂𝐾 was already positive definite and no diagonal multiplier was necessary. Experiments in

[YDS19] show that overbiasing can improve support recovery performance. Here, a drawback of overbias-

ing is presented.

To simplify we assume 𝜆 = 0, i.e. we don’t consider regularization. However, by continuity of the

solution paths, the results carry over qualitatively for small 𝜆 > 0.

Lemma 4.3.1. Let Γ̂𝐾 ∈ ℝ𝑚
2×𝑚2

be a positive definite matrix, 𝑔𝐾 ∈ ℝ𝑚
2

and 𝛽 > 0. For 𝛽 large enough, we
have on the support of 𝑔𝐾 that

sign

(
ˆ𝜃 (𝐾, 𝛽, 𝜆 = 0)𝑖

)
= − sign

(
(𝑔𝐾 )𝑖

)
(𝑖 ∈ 𝑆 (𝑔𝐾 )) .

Proof. To simplify notation, let 𝐴 := Γ̂𝐾 , 𝐴𝛽 := Γ̂ + 𝛽 · diag(Γ̂) and 𝑎 := −𝑔𝐾 . With this notation, defini-

tion 4.1.1 reads

ˆ𝜃 (𝐾, 𝛽, 𝜆 = 0) = argmin
𝜃 ∈ℝ𝑚2

1

2

𝜃T𝐴𝛽𝜃 − 𝑎T𝜃 .

Since𝐴 is positive definite (and 𝛽 > 0), the matrix 𝛽 diag(𝐴) is positive definite and thus𝐴𝛽 is also positive
definite. We can therefore conclude that

ˆ𝜃 (𝐾, 𝛽, 𝜆 = 0) = 𝐴−1

𝛽
𝑎 by smooth optimization theory.

We show that
ˆ𝜃 (𝐾, 𝛽, 𝜆 = 0) → (𝛽 diag(𝐴))−1 𝑎 as 𝛽 → ∞ using bound (7.5) in VII.7.2 of [AE06]:

∥𝐴−1

𝛽
𝑎 − (𝛽 diag(𝐴))−1 𝑎∥ ≤ ∥𝐴−1

𝛽
− (𝛽 diag(𝐴))−1 ∥ ∥𝑎∥ ≤

2∥ (𝛽 diag(𝐴))−1 ∥2 ∥𝐴𝛽 − 𝛽 diag(𝐴)∥ ∥𝑎∥ = 2∥ 1

𝛽
diag(𝐴)−1∥2 ∥𝐴∥ ∥𝑎∥ =

2

𝛽2
∥ diag(𝐴)−1∥2 ∥𝐴∥ ∥𝑎∥

𝛽→∞
−−−−→ 0.

Since 𝐴 is positive definite and 𝛽 > 0,

sign

( (
(𝛽 diag(𝐴))−1 𝑎

)
𝑖

)
= sign(𝑎𝑖) = − sign(𝑔𝐾 ) ∀1 ≤ 𝑖 ≤ 𝑝.

The convergence implies that the signs of
ˆ𝜃 (𝛽) and −𝑔𝐾 are the same for 𝛽 large, unless sign ((𝑔𝐾 )𝑖) =

0.

It’s best to illustrate lemma 4.3.1 with a concrete example:

Example 4.3.2. We consider the square root graphical model from example 2.2.1 (b). It will turn out that
the estimated interaction matrix is biased towards positive entries. This means, the estimated density is biased
to contain −√𝑥𝑖𝑥 𝑗 over

√
𝑥𝑖𝑥 𝑗 in the exponent, which downweights amplifying effects between 𝑥𝑖 and 𝑥𝑖 .

Consider ℎ(𝑥) := 𝑥2, the original choice due to Hyvärinen as discussed in section 2.2 of [YDS19]. Plugging
this choice into the formulas for Γ(𝑥) and 𝑔(𝑥) in example 2.2.1 (b) and recalling that 𝑥 ∈ ℝ𝑚+ , we conclude
𝑔𝐾 < 0 in the parameter Θ (i.e. everything but the last coordinate corresponding to 𝜂 𝑗 ) for all choices of 𝐾 .
Lemma 4.3.1 implies that all interactions are estimated to be positive when 𝛽 is large enough - even if the true
interaction is negative or zero.
A simulation study confirming the bias is presented in fig. 4.1.

We have seen in example 4.3.2 that the diagonal multiplier can bias the parameters of a pairwise inter-

action model significantly when it’s chosen too large. Further, note that the convergence rate in the proof
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Figure 4.1 A centered square root graphical model with interaction matrix Θ ∈ ℝ10×10
was constructed such that a

random selection of interaction strengths appeared both as positive and negative off-diagonal entry in Θ. The model

was then re-estimated from 𝑛 = 400 observations using
ˆ𝜃 (𝐾 = 1, 𝛽, 𝜆 = 0) in 100 Monte Carlo simulations for a

range of diagonal multipliers. Reported in black are bootstrap confidence intervals for the percentage of positive

off-diagonal entries in Θ. We see that rather quickly the vast majority of interactions are estimated to be positive,

even though in reality only half of them are.

of lemma 4.3.1 is quadratic in the 𝛽 , which substantiates the caution towards large values of the diagonal

multiplier 𝛽 .

As shown in section 5.2 of [YDS19], one can at least prevent a bias on parameters similar to 𝜂 in the

square root graphical model, since it suffices to apply the diagonal multiplier to the entries in Γ that corre-

spond to the interaction matrix Θ. In the experiment reported in fig. 4.1, the square root graphical model

was centered (i.e. 𝜂 = 0 was known), hence 𝜂 didn’t play a role since it was “estimated” perfectly.

4.4 Practical choice of hyperparameters

The estimator
ˆ𝜃 (𝐾, 𝛽, 𝜆) contains three hyperparameters. We discuss some practical considerations on

how to choose these.

4.4.1 Number of blocks 𝐾

The (geometric) median-of-means is parametrized by the number of blocks𝐾 . We already defined a choice

for 𝐾 in theorem 3.3.2 under corruption, however this choice was engineered to guarantee good concen-

tration with probability 1 − 𝛿 . In practice, one would be more interested in choosing 𝐾 such that the

procedure achieves a low error rate, for example low mean squared error (MSE).

Themean squared error of a 𝑝-dimensional estimator𝑇 with respect to the true parameter 𝜃0 decomposes

into variance and squared bias like

MSE(𝑇 ;𝜃0) := E𝜃0

[
∥𝑇 − 𝜃0∥2

2

]
= tr (Var[𝑇 ]) + ∥ E𝜃0

[𝑇 ] − 𝜃0∥2.

This section investigates how the number of blocks 𝐾 influences the variance and squared bias of the

geometric median-of-means as an estimator for the population mean. In a next step, we fuse variance

and bias together to gain insight into the MSE depending on 𝐾 . In a simulation, the best choice of 𝐾 for

estimating Γ in the Gaussian graphical model from 2.2.1 (a) is found for different scenarios.

The more formal parts of the derivation apply asymptotic theory for the (geometric) median-of-means,

which hasn’t been discussed in the thesis so far. Further, we find instances of the reduced bias phenomenon

from section 3.2.
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Note that there is no corruption assumed in this section. To treat corruption in the MSE framework

would require some assumptions on the corruption distribution and a general statement seems hard to ob-

tain. Further note that a decent MSE on the geometric median-of-means guarantees reasonable estimation

of Γ and 𝑔 - whether this carries over to a reasonable
ˆ𝜃 (𝐾, 𝛽, 𝜆) also depends on the diagonal multiplier 𝛽

and the L1 regularisation with 𝜆.

Variance We begin with the variance of the univariate median-of-means. Consider the case that both

𝐾 and 𝑛/𝐾 are large, i.e. that we can apply the central limit theorem both to the block means and to the

outer median. The block means then roughly follow 𝜇 𝑗 ∼ 𝑁 (𝜇, 𝐾
𝑛
𝜎2). The asymptotic distribution of the

median is given in the following

Lemma 4.4.1 (Example 24 in [Pol84]). Let 𝑓 be a density on ℝ with respect to Lebesgue measure such that
𝑓 (𝑚) > 0 for the median𝑚. With independent observations 𝑥1, . . . , 𝑥𝐾 from 𝑓 for 𝐾 odd, we have

√
𝐾 · (median(𝑥1, . . . , 𝑥𝐾 ) −𝑚) 𝑑−→ 𝑁 (0, (4𝑓 (𝑚)2)−1) .

From lemma 4.4.1, we deduce that the median-of-means is roughly normal with mean 𝜇 and variance

1

𝐾
𝜋
2
(𝐾
𝑛
𝜎2) = 𝜋

2

𝜎2

𝑛
, which is independent of 𝐾 .

A rigorous asymptotic analysis of the univariate median-of-means in section 2.5 of [Min19] finds the

same asymptotic variance 𝜋𝜎2/2 - under additional assumptions including a growth restriction on 𝐾 to

ensure that 𝑛/𝐾 is large enough.

To summarize: if both 𝐾 and 𝑛/𝐾 are large, we expect that the variance of the univariate median-of-

means doesn’t depend on 𝐾 and should be higher than the variance of the sample mean by a factor of

𝜋/2.

This intuition is confirmed in a small simulation study for three different univariate distributions in

fig. 4.2. The black horizontal line marks the variance of the sample mean scaled by 𝜋/2 and we see that

variances are close to the line in the middle of the plot. Additionally, we see that if 𝐾 is large (the case

excluded in the central limit theorm from [Min19]), the underlying distribution determines the variance

curve. Under the exponential distribution, the median-of-means has favorable variance (comparable to the

mean), the variance in the bimodal case is larger than the variance of the mean.

When we increase the ambient dimension and look at the geometric median-of-means, the qualitative

picture stays the same. However, there are two points to notice.

First, the asymptotic efficiency of the geometric median for Gaussian distributions improves with the

ambient dimension. Concretely, what was 𝜋/2 in the univariate case converges to one as the dimension

grows to infinity. This effect was first reported and quantified in [Bro83].

Second, we’ll observe that if the underlying distribution is exponential, the variance of the geometric

median is now better than the variance of the mean. This improvement is not unheard of (e.g. for the

univariate double-exponential distribution, the median has a smaller variance than the sample mean), still

it’s a bit unexpected. There is asymptotic theory for the geometric median (see [MNO10]) so the variance

is “known”, however it requires computing difficult expectations. Understanding under which conditions

the geometric median has strictly better asymptotic variance than the mean is an open problem.

We consider the same experiment from fig. 4.2 in dimension 𝑝 = 10. The exponential and the bimodal

distribution were extended to a random vector by defining the components to be iid, and for the Gaussian

a random covariance matrix was drawn. The asymptotic variance of the geometric median-of-means in

dimension 𝑝 = 10 is only by a factor of 65536/(19845𝜋) ≈ 1.05 higher than the variance of the mean (see

[Bro83]). Again, the experiment supports this intuition for the variance of the geometric median-of-means

as shown in fig. 4.3.

There is another slight difference as compared to the univariate case. While in fig. 4.2 the variance rose
from the mean (𝐾 = 1) to the black line as 𝐾 increased, in dimension 𝑝 = 10 the variance jumps above
the black line and then descends on the line as 𝐾 increases (see fig. 4.3). This seems to be a more general

pattern, however it’s unclear why the jump happens.

Concerning the choice of𝐾 , it can thus make sense to avoid this jump in variance and restrict to𝐾 ≥ 10.
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Figure 4.2 𝑛 = 900 (roughly 1000 but with more divisors) samples from three distributions were drawn. The distri-

butions were the Bimodal (Equal mixture between standard Gaussians with mean one and minus one respectively

standardized to have variance one), the standard exponential and the standard Gaussian. Then, the median-of-

means was computed with the number of blocks 𝐾 ranging through all divisors of 𝑛. This was repeated in 10
3
Monte

Carlo runs. Bootstrap confidence intervals for the variance of all estimators are reported. The black horizontal line

marks the variance of the empirical mean (i.e. 1/900) scaled by 𝜋/2. We see that when both 𝐾 and 𝑛/𝐾 are large,

the variances approach the theoretical line. When 𝐾 is large, the variance curve depends on the underlying distri-

bution. While the variance decreases with growing 𝐾 for the exponential distribution, it increases for the bimodal

distribution.
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Figure 4.3 A repeat of fig. 4.2 in ambient dimension 𝑝 = 10, thus using the geometric median-of-means. The expo-

nential and bimodal random vectors are 10 iid copies of the corresponding univariate distribution, and the Gaussian

is based on a random covariance matrix with trace 𝑝 (to fit the other two). We see that the variances group around

the asymptotic theoretical horizontal line when both 𝐾 and 𝑛/𝐾 are large with the fit being noticably better in the

Gaussian and exponential case. Further, note that for the exponential distribution, the geometric median (𝐾 = 𝑛) has

a smaller variance than the sample mean.
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Figure 4.4 For the univariate estimators from fig. 4.2, bootstrap confidence intervals for the squared bias are shown.

While there is no significant bias for the symmetric distributions, the exponential distribution displays a strictly

increasing bias with 𝐾 .

Squared bias Even if the pairwise interaction model has a symmetric distribution, we cannot expect

the distributions of Γ or 𝑔 to be symmetric. Consequently, we have to expect a bias when employing

median-like procedures to estimate the mean.

Again, we start with the univariatemedian-of-means and simulate the squared bias for the distributions

from fig. 4.2. The result is shown in fig. 4.4. For the asymmetric distribution (i.e. the exponential distri-

bution), the squared bias of the median-of-means increases strictly with 𝐾 . This is to be expected, since 𝐾

interpolates between the mean (unbiased) and the median (biased). When the underlying distribution is

symmetric, we see no significant bias.

When we repeat the same experiment in dimension 𝑝 = 10 (as in fig. 4.3), the qualitative picture for the

squared bias doesn’t change. The results are reported in fig. 4.5.

One detail we can observe is the reduced bias phenomenon described in section 3.2. Since the random

vector for the exponential distribution contains iid components, we would expect the squared bias to scale

like 𝑝 . However, for example the squared bias of the geometric median equals roughly 0.06 for 𝑝 = 10 and

is thus actually lower than the squared bias of roughly 0.09 for the univariate median.

Applying the results from section 3.2, we expect the component squared bias to be of order 1/𝑝2
. When

the component squared biases get summed up to the vector squared bias, this becomes 1/𝑝 . We don’t quite

observe a factor of 10 between the two squared biases though. This could be because 𝑝 = 10 is too small

for the asymptotic result and because the univariate median behaves slightly differently to the geometric

median (e.g. taking derivatives of the expected loss like in section 3.2 wouldn’t work).

Mean squared error (MSE) As the MSE is the sum of variance and squared bias, the optimal choice

in terms of MSE will depend on the magnitude of variance and squared bias relative to each other. This

relative magnitude depends on the sample size 𝑛: While the variance asymptotically decreases with rate

1/𝑛, the squared bias roughly stays constant in 𝑛. More precisely, set 𝐾 (𝑛) := 𝜀 𝑛 for some fixed 0 < 𝜀 < 1

to compare concrete estimators 𝜇𝜀
𝐾 (𝑛) only depending on 𝑛. For the choice of 𝐾 (𝑛), each block contains

a fixed number of samples 1/𝜀, hence the block means have a population median 𝑚𝜀 independent of 𝑛.

The central limit theorem for the geometric median implies 𝜇𝜀
𝐾 (𝑛) ≈ 𝑁 (𝑚𝜀, Σ𝜀/𝑛). Thus, the squared bias

of 𝜇𝜀
𝐾 (𝑛) approximately equals (𝑚𝜀 − 𝜇)2

, which is independent of 𝑛, and the variance of 𝜇𝜀
𝐾 (𝑛) is roughly

Σ𝜀/𝑛, which decreases at rate 1/𝑛.
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Figure 4.5 For the multivariate estimators from fig. 4.3, bootstrap confidence intervals for the squared bias are

shown. The qualitative picture is very similar to the one in fig. 4.4, yet notice that the squared bias for the geometric

median (𝐾 = 𝑛) in the exponential case is actually lower than in the univariate setting. This can be explained by the

results from section 3.2.

Consequently, the MSE will be bias-dominated for large 𝑛. What happens in the opposite case of small

𝑛 depends on the initial relative magnitude between variance and squared bias. We will see an example

from a pairwise interaction model where the MSE is variance dominated for small 𝑛.

We conjecture that the MSE of the geometric median-of-means is often variance-dominated in high-
dimensional scenarios, i.e. when the sample size 𝑛 is not too large relative to the dimension 𝑝 . As described

in the preceding discussion on squared bias, we can expect the squared bias to be of order 1/𝑝 when

components aren’t too dependent (the setting from section 3.2). On the other hand, the trace of the variance

usually grows with order 𝑝 . In the scenario of section 3.2, the trace of variance thus surpasses the squared

bias for large 𝑝 .

In this scenario, the choice of 𝐾 is hence mostly determined by the variance when 𝑛 is small relative to
𝑝 , and determined by the bias when 𝑛 is large relative to 𝑝 .

Consider the task of Gaussian covariance estimation, i.e. to estimate Γ in the Gaussian graphical model

(GGM) from example 2.2.1. The block means are Wishart-distributed, which fits best to the exponential

examples in fig. 4.3 and fig. 4.5. For the exponential distribution, we observed

• optimal variance for 𝐾 = 𝑛 in fig. 4.3, and

• a monotonically increasing bias with 𝐾 in fig. 4.5.

When the sample size𝑛 is small relative to the dimension 𝑝 , we expect variance dominance and therefore

𝐾 = 𝑛 to be the optimal choice. When 𝑛 is large relative to 𝑝 , we expect bias dominance and thus 𝐾 = 1 to

be the best choice.

This intuition is confirmed by an experiment. A positive definite 10×10 covariancematrix was randomly

sampled and re-estimated using the geometricmedian-of-meanswith the three sample sizes𝑛 = 12,𝑛 = 105

and 𝑛 = 900 (roughly powers of 10 but with more divisors). The results of a Monte Carlo simulation are

presented in fig. 4.6. The optimal block sizes are 𝐾 = 𝑛 for 𝑛 = 12, the second-to-max choice 𝐾 = 35 for

𝑛 = 105, and for 𝑛 = 900, the mean (𝐾 = 1) and most 𝐾 ≤ 150 are tied or very close to being tied in terms

of MSE.
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Figure 4.6 The geometric median-of-means was used to estimate a random 10×10 Gaussian covariance matrix from

𝑛 samples. For 𝑛 ∈ {12, 105, 900} (chosen roughly as powers of 10 but with more divisors), the number of blocks

𝐾 ranged through all divisors of 𝑛. Reported in black are bootstrap confidence intervals for the MSE based on 10
3

Monte Carlo repetitions. While the geometric median (𝐾 = 𝑛) performs best for 𝑛 = 12, it performs the worst for

𝑛 = 900. This comes from the changing of the relative magnitude of bias and variance, as discussed in section 4.4.1.

Remark 4.4.2. In this experiment, it’s not quite clear what dimension 𝑝 the sample size 𝑛 should be compared
to in order to designate the problem high-dimensional. On the one hand, the estimation problem is 100-
dimensional, so naturally 𝑝 = 100. On the other hand, there are only 10 (not even fully) independent sources
of randomness, so maybe a lower 𝑝 would be more appropriate. This is an open question.

To conclude, what number of blocks 𝐾 should be chosen when estimating Γ from a Gaussian graphical

model?

In a high-dimensional setting, it can be attractive to chose a large 𝐾 in order to obtain optimal MSE.

Further, a large 𝐾 improves the breakdown point. And unless 𝐾 = 𝑛 (the geometric median), the estimator

even has a low breakdown probability beyond the breakdown point if corruption location is random (see

section 3.1).

If on the other hand the sample size 𝑛 is rather large, very large 𝐾 perform poorly because of the

dominating bias. In this case, it would be better to choose 𝐾 ≈ 𝑛/10 to ensure some symmetrization by

the block means to limit the bias. In theory one could choose 𝐾 even lower, but one loses robustness, the

bias doesn’t reduce much further and variance-wise, it’s best to avoid the “jump” reported at the end of

the variance discussion.

Remark 4.4.3. For the univariate exponential distribution and an odd number of blocks 𝐾 , one can compute
the variance and bias of the median-of-means exactly. Since the block means are Gamma-distributed and
the median is an order statistic, the problem reduces to moments of Gamma order statistics for which explicit
recursive formulas are known (see [Gup60]). Routines for this approach are contained in the appended code
files. However, due to the combinatorics involved the computation is only numerically stable for small 𝑛
(roughly 50).

4.4.2 Regularization parameter 𝜆

One can consider extensions to the Bayesian information criterion (BIC) for choosing the L1 regularization

parameter 𝜆.
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In the classical BIC, having 𝑛 observations and models with a different number of parameters to choose

from, one picks the number of parameters 𝑘 minimizing

BIC(𝑘) = −2𝑙𝑛 ( ˆ𝜃𝑘 ) + 𝑘 log(𝑛),

where 𝑙𝑛 is the log likelihood of the 𝑛 observations and ˆ𝜃𝑘 the maximum likelihood estimator for 𝑘 param-

eters. The rationale is to find a balance between high likelihood and the number of parameters.

There are two problems with the BIC in the setting of score matching for graphical models.

First, the classical BICwas found to select overly complex graphicalmodels, especially in high-dimensional

cases. This is because in its derivation, the BIC places a uniform prior on all possible models (see chapter

2 of [CC08]). Particularly on many vertices, the number of sparse graphs is greatly outmatched by the

number of denser graphs. Extended BICs remedy this imbalance with additional dimension-dependent

terms ([BD15; CC08] and others).

Second, the log likelihood requires the intractable normalizing constant. In [YDS19], this was addressed

by exchanging the log likelihood with the (unregularized) score matching loss.

The extended BIC from [YDS19] in the setting of this thesis reads

eBIC(𝜆) = −𝑛 · ( ˆ𝜃 )TΓ̂𝐾 ˆ𝜃 − 2𝑛𝑔T
𝐾

ˆ𝜃 + #𝑆𝜆 · log(𝑛) + 2 log

(( (𝑚
2

)
#𝑆𝜆

))
,

where
ˆ𝜃 = ˆ𝜃 (𝐾, 𝛽, 𝜆), again 𝑛 is the sample size, Γ̂𝐾 and 𝑔𝐾 come from eq. (4.1), 𝑆𝜆 = {(𝑖, 𝑗) : Mat( ˆ𝜃 )𝑖 𝑗 ≠

0, 𝑖 < 𝑗} is the support of ˆ𝜃 interpreted as an interaction matrix, and𝑚 is the dimension of the pairwise

interaction model. As in [YDS19], we don’t include the diagonal multiplier in the substitute for the log

likelihood. Background to this extended BIC is given in [LDS16], [YDS19] and the references therein. The

version from [YDS19] is closest to the one in [BD15].

It’s an open problem to show consistency results for this extended BIC, especially under corruption.

Lacking theoretical insights, we judge the performance of estimators in section 4.5 by receiver operating

characteristic curves, which don’t require to fix 𝜆.

4.4.3 Diagonal multiplier 𝛽

As mentioned in section 4.1, it’s typically not necessary to pick a positive diagonal multiplier 𝛽 when the

problem isn’t high-dimensional. When one still chooses 𝛽 > 0, one risks a directional bias as shown in

section 4.3. On the other hand, this bias was experimentally found to aid support recovery in [YDS19].

We set a bound on the diagonal multiplier in theorem 4.2.2 to ensure sufficient concentration. Its dis-

advantage is that the bound depends on the (unknown) Γ0. For the numerical experiment in section 4.5.3,

estimates of Γ0 are plugged into the bound and the middle between zero and this bound is chosen as the

diagonal multiplier. This is to balance between the larger-is-better from [YDS19] and the directional bias

from section 4.3.

As an alternative, [YDS19] derives a data-free bound for the diagonal multiplier based on the (truncated)

normal distribution, which also is the default in the genscore package ([YLG23]). It’s important to only

employ this rule in high-dimensional settings since it would have evaluated to 0.67 in the example of

fig. 4.1, where it would have severely biased the interactions.

4.5 Numerical experiments

We study the performance of
ˆ𝜃 (𝐾, 𝛽, 𝜆) from definition 4.1.1 for different pairwise interaction models. A

special emphasis is placed on performance on rowwise corrupted samples.
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ˆ𝜃 was computed using coordinate descent. Some details on the sub-problem for each coordinate are

given in example 2.2.1 (b). The implementation can be found in the appended code files.

The interaction matrixΘwas determined such that in expectation 70% of the interactions would be zero.

Following [YDS19], the remaining entries were randomly sampled between 0.5 and 1 with random sign.

The diagonal was also randomly sampled and raised until the smallest eigenvalue was 0.1.

4.5.1 Gaussian graphical models

We begin with the classical graphical model, the Gaussian graphical model from example 2.2.1. We set

the dimension𝑚 := 20 and choose an interaction matrix Θ ∈ ℝ20×20
as described in the introduction of

section 4.5.

In an experiment, 𝑛 = 200 independent samples were drawn from a Gaussian distribution with mean

zero and precision matrix Θ. On a grid of 20 values for 𝜆 resulting in very sparse to very dense graphs, the

classical regularized score matching estimator
ˆ𝜃 (𝐾 = 1, 𝛽 = 0, 𝜆) based on the sample mean from [LDS16]

was compared to
ˆ𝜃 (𝐾 = 40, 𝛽 = 0, 𝜆), a version based on the geometric median-of-means with 𝐾 = 40

blocks.

The number of blocks 𝐾 was chosen with fig. 4.6 and the findings from section 4.4.1 in mind: choose 𝐾

rather large to profit from the MSE optimum in the middle column of fig. 4.6, but not too large to avoid

biasing.

Since 𝑛 >> 𝑚, we chose the diagonal multiplier 𝛽 to be zero as discussed in 4.1.

In a second step, 19 out of the 𝑛 = 200 samples were corrupted randomly (the largest corruption amount

below the breakdown point for𝐾 = 40). They were replaced by draws from an independent𝑚-dimensional

Gaussian whose variance was roughly 10 times as high as the original distribution. Afterwards, as before

ˆ𝜃 (𝐾 = 1, 𝛽 = 0, 𝜆) and ˆ𝜃 (𝐾 = 40, 𝛽 = 0, 𝜆) were computed. The experiment was repeated 1000 times and

the results reported in fig. 4.7.

The estimator based on the geometric median-of-means performs favorably in both the corrupted and

uncorrupted setting. Explicitly, its performance is on par with the previous estimator based on the mean

from [LDS16] in the uncorrupted setting, and it outperforms the previous estimator under corruption.

We support this visual conclusion from fig. 4.7 by computing the paired difference in AUC (area under

curve) between
ˆ𝜃 (𝐾 = 1, 𝛽 = 0, 𝜆) and ˆ𝜃 (𝐾 = 40, 𝛽 = 0, 𝜆). The difference in AUC is neglible in the

uncorrupted case (0.0011 ± 0.0005), yet is quite pronounced in favor of 𝐾 = 40 under corruption (0.16 ±
0.004). The uncertainty estimates are 95% bootstrap confidence intervals.

Remark 4.5.1. Figure 4.7 judges ˆ𝜃 from a graphical model perspective, i.e. by whether or not the correct edges
were identified. From an estimation perspective, it would also be interesting to judge the distance between ˆ𝜃

and the true interaction matrix Θ0 in some norm. The appended computer code generates this information,
however the results are qualitatively very similar to fig. 4.7, which is why they aren’t reported separately.

Finally, we come back to the natural idea of using the componentwise median in the median-of-means.

Briefly discussed in section 2.4.1, the componentwise median wasn’t pursued further because it doesn’t

preserve positive definiteness. Still, it’s computationally attractive and very robust. Consequently, we

simply try it out here without theoretical analysis.

Again, 𝑛 = 200 samples were drawn from a multivariate Gaussian with mean zero and precision matrix

Θ0. This time, the previously used estimator
ˆ𝜃 (𝐾 = 40, 𝛽 = 0, 𝜆) based on the geometric median-of-means

was compared with
ˆ𝜃comp(𝐾 = 40, 𝛽 = 0, 𝜆), an analogous version of

ˆ𝜃 employing the componentwise

median-of-means, if the optimization problem to definition 4.1.1 admits a minimizer. Only in 5.5% of 3000

Monte Carlo runs was the matrix Γ̂𝐾 from the componentwise median-of-means actually positive definite,

i.e. only in 5.5% of the runs could
ˆ𝜃comp be computed.

In a second step, the same corruption procedure as earlier in this section was applied. Among the 5.5% of

runs where
ˆ𝜃comp existed, in 72% of cases did

ˆ𝜃comp exist on the corrupted data. This may seem surprisingly
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Figure 4.7 Receiver operating characteristic (ROC) curves for how well the zero structure of a Gaussian precision

matrix is estimated from simulated data. The two competing versions of
ˆ𝜃 (𝐾, 𝛽, 𝜆) are 𝐾 = 1 (Mean) and 𝐾 = 40

(Geometric median-of-means (GMoM)). Both ROC curves are on par if the data is uncorrupted, yet the version with

GMoM outperforms the mean version when a portion of the samples is corrupted. This figure reports the results

of 10
3
Monte Carlo runs. The colored lines represent smoothed aggregate ROC curves, while the transparent dots

are points in ROC space originating from different choices of 𝜆 in each run. Only a random fraction of these dots is

plotted to simplify the visual. Details on the simulation setup and corruption procedure are given in section 4.5.1.
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Figure 4.8 The same experiment from fig. 4.7, this time testing a version of
ˆ𝜃 where the geometric median-of-means

(GMoM) is replaced by the componentwise median from section 2.4.1. A Monte Carlo simulation with 3000 runs is

performed, however only in 165 of the runs did the componentwise median-of-means result in a positive definite Γ̂𝐾
for which the optimization problem from definition 4.1.1 admits a minimizer. The support recovery performance in

these 165 runs is reported in the left column. For the right column, data in these 165 runs was corrupted as in fig. 4.7.

In 119 cases the the estimator based on the componentwise median-of-means existed. We see that
ˆ𝜃 based on the

GMoM outperforms the mean version in both corruption scenarios.
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high, but ironically the heavy-tailed corruption gets squared for the diagonal of Γ̂𝐾 , i.e. the block means

tend to have larger positive diagonals, which carries over through the componentwisemedian and explains

the relatively high proportion of positive definite Γ̂𝐾 under corruption.

The support recovery performance of
ˆ𝜃comp (when it existed) is detailed in fig. 4.8.

We conclude from fig. 4.8 that
ˆ𝜃comp is outperformed by

ˆ𝜃 in support recovery with the gap being smaller

in the corrupted case. The analysis in section 4.4.1 suggests that the bias of the univariate median for

asymmetric distributions could play a role.

The componentwise median-of-means thus won’t be pursued further here.

4.5.2 Square root graphical models

We also investigate how
ˆ𝜃 performs for the practically relevant square root graphical model from exam-

ple 2.1.3 and example 2.2.1. Since we include a location-like parameter 𝜂 and since the blocks of the Γ
matrix are no longer equal, the optimization is more expensive. We consider the dimension𝑚 = 10 and

choose the interaction matrix Θ0 ∈ ℝ10×10
as described in section 4.5. The parameter 𝜂0 is randomly sam-

pled from a standard normal distribution.

Similar to before, 𝑛 = 200 samples were drawn from a square root graphical model with parameters

(Θ0, 𝜂0). On a grid of 10 values for the regularization parameter 𝜆, the classical estimator
ˆ𝜃 (𝐾 = 1, 𝛽 = 0, 𝜆)

was compared to
ˆ𝜃 (𝐾 = 40, 𝛽 = 0, 𝜆). The function ℎ to smooth at the boundaries (see example 2.2.1) was

chosen as ℎ(𝑥) := 𝑥3/2
, the optimal choice found in [YDS19]. For the reasoning behind the choices of 𝛽

and 𝐾 = 40, see section 4.5.1.

In a second step, again 19 out of the 200 data rows were corrupted. They were replaced by iid draws

from a Pareto distribution whose threshold was set to the grand mean of all (clean) data points. The shape

parameter was set to one. This way, most of the corrupted points would not stand out, yet the very heavy

tails would produce some outliers. The experiment was repeated 200 times and the results are reported in

fig. 4.9.

As in section 4.5.1, the results in fig. 4.9 suggest that both the choices 𝐾 = 1 (Mean) and 𝐾 = 40 (GMoM)

perform equally well on uncorrupted data, while the estimator involving the GMoM outperforms the mean

version under corruption. As in section 4.5.1, we analyze the difference in AUC. Here, there is no significant

difference in AUC in the uncorrupted case, and under corruption the difference is 0.24 ± 0.02 in favor of

the GMoM procedure.

Remark 4.5.2. Several choices for the smoothing function ℎ in the square root graphical model are compared
in section 7.3.1 of [YDS19]. It’s investigated whether truncating ℎ away from the boundary is beneficial. While
the optimal candidate ℎ(𝑥) = 𝑥3/2 also used here performed best without truncation, it’s worth noting that
truncation naturally improves robustness, since outliers can no longer be amplified through ℎ or its derivative.

4.5.3 High-dimensional Gaussian graphical model

To conclude the experiments, we consider a truely high-dimensional example where the sample size𝑛 = 40

is exceeded by the number of nodes𝑚 = 60. As discussed in section 4.4.3, we require a diagonal multiplier

𝛽 > 0.

Similar to before, 𝑛 = 40 samples are drawn from a multivariate Gaussian distribution with mean zero

and a randomly chosen interaction matrix Θ0 ∈ ℝ60×60
as described in section 4.5. On a grid of 15 values

for the regularization parameter 𝜆, the estimator
ˆ𝜃 (𝐾 = 1, 𝛽, 𝜆) was compared to

ˆ𝜃 (𝐾 = 10, 𝛽, 𝜆). The

diagonal multiplier 𝛽 was chosen as discussed in section 4.4.3. The same rationale of choosing 𝐾 as in

section 4.5.1 was applied.

In a second step, 4 out of the 40 samples (again, the corruption amount just below the breakdown

point) were corrupted through the same corruption model as in section 4.5.1, and both
ˆ𝜃 (𝐾 = 1, 𝛽, 𝜆) and
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Figure 4.9 A repeat of the experiment in fig. 4.7 for the square root graphical model with 200 Monte Carlo runs. We

draw the same conclusion that choosing 𝐾 = 1 (Mean) versus 𝐾 = 40 (geometric median-of-means (GMoM)) in
ˆ𝜃 has

little effect on uncorrupted data, while under corruption the estimator based on the GMoM outperforms the mean

version. Details on the simulation and corruption procedure are given in section 4.5.2. The randomly determined

underlying graph on𝑚 = 10 nodes had 7 edges, which is why only 8 different values for the true positive rate are

possible. In contrast to fig. 4.7, all transparent points in ROC space could be shown without overloading the plot.
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Figure 4.10 A repeat of fig. 4.7 for the high-dimensional case 𝑛 < 𝑚. Again, both methods are on par in the

uncorrupted case and the method based on the geometric median-of-means outperforms the mean version under

corruption. Better coverage of the FPR range would have required a denser grid of regularization parameters 𝜆,

which would have increased computation time in addition to the scaling in𝑚. For details, see section 4.5.3.
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ˆ𝜃 (𝐾 = 10, 𝛽, 𝜆) were re-computed. The experiment was repeated 200 times and the results are shown in

fig. 4.10.

Visually, our previous conclusion is upheld that both methods perform equally well on uncorrupted

data, while the method with 𝐾 = 10 based on the geometric median-of-means has the upper hand under

corruption. The difference in AUC is neglible without corruption (0.003±0.001) and an order of magnitude

higher under corruption (0.039 ± 0.003) in favour of the geometric median-of-means estimator.
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5 Discussion and future work

This thesis presented a score matching approach involving the geometric median-of-means. The simula-

tions in section 4.5 demonstrate promising performance, especially under corruption. It would have been

interesting to include other robust estimation procedures in the comparison, but this is out of scope for the

thesis. Comparison would have been immediate for the Gaussian graphical model, as there is extensive

literature on robust (sparse) precision matrix estimation (see [ÖC15] and references therein). For a general

pairwise interaction model, especially on restricted domains, it’s less clear what kind of methods make for

a good comparison.

Theoretical guarantees for the new estimator are presented in section 4.2. However these don’t fully

live up to similar guarantees in the literature. Concretely, note that theorem 15 in [YDS19] applies to

ˆ𝜃 (𝐾 = 1, 𝛽, 𝜆), i.e. the special case that the geometric median-of-means reduces to the mean. The difference

in the scaling of 𝜆 and 𝑛 between said theorem and theorem 4.2.5 is that theorem 4.2.5 additionally includes

tr(ΣΓ0
) and tr(Σ𝑔0

). Since e.g. the diagonal of Γ0 has𝑚
2
entries, the term tr(ΣΓ0

) introduces a strong scaling
with the number of nodes𝑚.

There are two explanations for this discrepancy. First, theorem 15 in [YDS19] applies to the Gaussian

distributions and as discussed in remark 3.3.3, the concentration result from theorem 3.3.2 cannot quite

deliver multivariate gaussian concentration. Second, theorem 4.2.2 requires a deviation bound from ∥ · ∥∞
on Γ0 and𝑔0, while the geometric median controls ∥ · ∥2 as in theorem 3.3.2. This gap is bridged by bounding

the former norm by the latter in lemma 4.2.4 and theorem 4.2.5, which introduces inefficiency.

Closing this thought, controlling Γ̂𝐾 − Γ0 in the Frobenius norm (as opposed to e.g. a matrix norm like

the spectral norm) could seem peculiar in the first place. However, note that theorem 4.2.2 from [LDS16]

also works with the vector maximum norm as opposed to the matrix norm.

The diagonal multiplier 𝛽 was introduced following [YDS19] in section 4.1 to guarantee that the score

matching optimization problem is always well posed. As shown in section 4.3 and particularly in exam-

ple 4.3.2, this multiplier can bias parameter estimates in a certain direction. It consequently would be

desirable to study alternatives to the diagonal multiplier in future work.

Finally, it should be stressed that theory and experiments in this thesis considered the corruption of

entire observations (rowwise corruption). Alternatives like cell-wise corruption are harder to study. Very

recently, it was shown in [RR24] that a large class of robust estimators including the geometric median can

only roughly achieve a cell-wise breakdown point of 1/𝑝 , where 𝑝 is the ambient dimension. This suggests

that there are better robust estimators than the geometric median-of-means under such corruption.

Staying with corruption assumptions, the theoretical analysis in this thesis discarded corrupted bins

entirely and only made use of completely uncorrupted bins. This has the advantage that results hold

universally without a corruption model and that they even cover adversarial corruption. On the other

hand, results can be too pessimistic. Although the breakdown probability from section 3.1 loosened some

worst-case assumptions, it too considers the estimation failed once enough blocks are corrupted.
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6 Conclusion

A robust estimator for sparse pairwise interaction models was constructed using the median-of-means

principle. Robustness against corruption of a few observations was established theoretically and verified

in simulations.

The geometric median was chosen for the median-of-means, since it fit the problem-specific require-

ments best. Surprisingly, the geometric median has another advantage. Usually, tuning the number of

blocks in a median-of-means procedure is a tradeoff between robustness from the median and unbiased-

ness from the block means. Evidence was presented that bias is less of an issue for the geometric median

when the ambient dimension is large and components relatively independent. This insight was applied to

tuning the number of blocks of the geometric median-of-means in terms of MSE.
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A Appendix

The following two plots illustrate how the geometric median changes when a part of the sample is cor-

rupted arbitrarily. The resulting regions are more rich than in the univariate case, but remain bounded

since we corrupt below the breakdown point.
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Figure A.1 This purple shape shows the resulting geometric median, when two out of six points are corrupted

arbitrarily (i.e. four points remain fixed). The shape remains bounded as two corruptions is below breakdown point

of three. However, the geometric median can still vary considerably. There definitely is some structure, but it’s an

open problem to theoretically derive the purple shape - and as shown in fig. A.2, the picture is much less clear when

more points are involved. A more detailed explanation of the experimental setup: four red points are placed in the

plane and remain fixed in the coming experiment. Their mean (blue) and geometric median (green) are shown as

dots. Two points are added and the geometric median of all six points computed. The two new points are moved

to infinity in fixed directions until the geometric median changes little, when it is plotted as a purple point. All

combinations of the two corruption directions are iterated through and yield the purple shape.
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Figure A.2 A repeat of fig. A.1 with more points: ten points remain fixed and three corrupt points are added. This

time, the three corruption directions are sampled randomly, which is why the shape seems to be less structured on

the inside. We see that the purple shape seems more detached from the fixed points when compared to fig. A.1.
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