Original Article Structural Health Monitoring

Structural Health Monitoring
2024, Vol. 23(3) 1725-1741

Predictive probability of detection © The Author() 2023

Article reuse guidelines:

curves based on data from undamaged DO 101 1774755217231 199088
journals.sagepub.com/home/shm
structures JS Sagg:a

Alexander Mendler'®, Michael Déhler*® and Christian U Grosse'

Abstract

This paper develops a model-assisted approach for determining predictive probability of detection curves. The approach
is “model-assisted,” as the damage-sensitive features are evaluated in combination with a numerical model of the exam-
ined structure. It is “predictive” in the sense that probability of detection (POD) curves can be constructed based on
measurement records from the undamaged structure, avoiding any destructive tests. The approach can be applied to a
wide range of damage-sensitive features in structural health monitoring and non-destructive testing, provided the statis-
tical distribution of the features can be approximated by a normal distribution. In particular, it is suitable for global
vibration-based features, such as modal parameters, and evaluates changes in local structural components, for example,
changes in material properties, cross-sectional values, prestressing forces, and support conditions. The approach expli-
citly considers the statistical uncertainties of the features due to measurement noise, unknown excitation, or other
noise sources. Moreover, through confidence intervals, it considers model-based uncertainties due to uncertain struc-
tural parameters and a possible mismatch between the modeled and the real structure. Experimental studies based on a
laboratory beam structure demonstrate that the approach can predict the POD before damage occurs. Ultimately, sev-
eral ways to utilize predictive POD curves are discussed, for example, for the evaluation of the most suitable measure-
ment equipment, for quality control, for feature selection, or sensor placement optimization.
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Introduction destructive tests have to be performed, regardless of
the employed POD method. However, this data is typi-
cally not available for large or expensive engineering
systems, such as bridges, dams, and power plants, and
this is why POD curves are barely used in structural
; LT Py health monitoring (SHM). The goal of the paper is to
railway syste13ns, mlhtaf,y applications,” or nuclle.ar develop a method, appropriate for SHM or NDT, that
power plants.” The POD is defined as the probability can “predict” POD curves based on measurements

of detecting damage, given that it is present. Since the from the undamaged specimen and a numerical model
measurement signals are typically scattered, the POD

can be understood as the relative number of results
beyond a prescribed threshold, cf. the black area in
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Probability of detection (POD) curves are commonly
used to assess the performance of non-destructive test-
ing (NDT) methods, with applications in safety-critical
systems, such as aircraft and spacecraft, high-speed
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Figure 1. Creating a probability of detection (POD) curve by
counting the relative number of tests beyond a safety threshold
for varying damage extents.

of the examined structure. Before doing that, the exist-
ing methods are critically reviewed.

NDT methods

The 29/29 method* was among the first attempts to
quantify the POD. It counts the number of damages
detected n and divides it by the total number of
inspected damages ny,; to obtain an estimate for the
POD =n/ne. Such binary approaches are appropriate
for crack detection, fluorescent penetrant testing, mag-
netic particle testing, and ultrasonic testing. They
require a clear criterion to distinguish faults, but the
actual magnitude of the response signal is not impor-
tant once it exceeds the safety threshold. The approach
can be explained at the opening example of the 90/95
POD: the 90% POD is given if more than 9/10 flaws
are found, but the confidence level of 95% is reached
once 29/29 specimens are tested and all damages are
identified. Later, such binomial approaches were con-
sidered inadequate, as the POD changes with flaw size.

The hit/miss method® considers the flaw size using
logarithmic regression. The development led to seminal
works that remained the industry standard for many
years.® Initially, the confidence intervals were deter-
mined using the Wald statistic, but shortly after, the
likelihood ratio took its place, as it appeared to deliver
more accurate, and less conservative results.>’ The
data from hit/miss analyses contains little information
regarding the correlation between crack size and dam-
age indicator, or external factors such as the variance
of the inspector’s judgment. Hence, many data sets
from damaged specimens are needed for the POD
determination and the confidence interval is typically
wider than for other methods.

The @ versus a method® is a suitable POD method
for NDT techniques that quantify the damage extent
through a more pronounced signal response. Typical
examples include eddy current methods, infrared mea-
surements, or radar-based approaches. The underlying
assumption is that the apparent damage size a (the sig-
nal of the measurement device or the extracted damage

indicators) and the physical damage size a are linearly
related, or can be linearized by plotting a against a on
semi-log or log-log paper. As for the hit/miss method,
linear regression is used in combination with the maxi-
mum likelihood operator to evaluate the mean curve
as well as the confidence intervals, which describe the
uncertainty in the regression model.

SHM methods

Virkkunen et al.” outline that the @ versus a may be
more suited for automated monitoring applications
but further enhancements are necessary for SHM
applications. The major differences of SHM, in com-
parison to NDT, are the fixed sensor layout, repeated
measurements with correlated diagnosis results, and
time-dependent effects.'® This disqualifies all previ-
ously discussed methods for the generation of POD
curves. Originally developed by Schubert Kabban
et al.,'! the linear-mixed-effects method can deal with
correlated data. They replaced the ordinary least
square estimator and the maximum likelihood estima-
tor with generalized square models, which can handle
dependencies in measurement results. Kessler et al.'?
improved the model by assuming not only a random
intercept but also a random slope and called it the ran-
dom effects model. The length-at-detection (LAD)
method, developed by Roach et al.,'* is another suit-
able method to evaluate crack growth for permanently
installed sensors and repeated inspections. This method
only uses the crack length values when cracks are first
detected. A crack is detected if a clear and stable signal
response is produced, and the remaining task is to
determine the probability density function of the crack
LAD, for example, using the normal or log-normal dis-
tribution. The resulting cumulative density function is
then identical to the POD, and confidence intervals
can be computed based on standard statistical meth-
ods. Representative applications are documented by
Falcetelli et al.'* who applied the LAD method in com-
bination with fiber-optical strain measurements.

Model-assisted methods

Another group of methods, suitable for NDT or SHM,
are based on numerical models and they are typically
referred to as model-assisted POD (MAPOD) meth-
ods. Their purpose is to synthetically generate mea-
surement data, which are evaluated in combination
with real laboratory data, and to obtain reliable confi-
dence intervals with a minimum number of data sets.
Thompson et al.'> summarize the first group of meth-
ods as transfer function-based approaches. The main
idea is to determine a baseline POD curve in a fully
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empirical laboratory experiment. Then, a physics-based
model of the inspection process is employed so the
POD curves can be transferred to a similar inspection
process on a different component or material.
Applications of this method are documented by
Harding et al.'® and Demeyer et al.,!” who applied the
approach for ultrasonic fatigue crack detection in air-
plane wings and aluminum plates.

Thompson et al.'® juxtapose those methods with so-
called fully model-assisted methods. The models pre-
dict the signal response based on the examined compo-
nent, material, and flaw type with well-understood
damage mechanisms, and superimpose it with various
noise sources, for example, due to different measure-
ment systems or operators. As shown by Thompson
et al," transfer function-based methods and fully
model-assisted methods can be incorporated into a
common framework. Both approaches were applied by
Carboni and Cantini,'® who performed ultrasonic tests
on railway axles, and Rosell and Persson,'” who exam-
ined fatigue cracks in titanium plates.

Metamodels, also known as surrogate models, are
simplified models of the physics-based model and can
also be used for data generation and POD estimation.
Foucher et al®>®?! implemented this in software
packages and gave an overview of existing methods.
Spencer’ employed meta-models to derive non-
parametric POD curves, and Dominguez et al.>* devel-
oped an approach to determine POD curves and confi-
dence intervals for generic structures such as beams.

Bayesian methods

Bayesian methods are convenient because they inher-
ently include information on the confidence bounds,
they can treat multiple measured signal responses and
damage phenomena at the same time, and may further
reduce the number of required data sets, as the prior
knowledge on the distribution can be considered (engi-
neering judgment or model-assisted information). In
general, Bayesian models can be combined with purely
data-driven methods or model-assisted ones. Knopp
et al.,* for example, used a data-driven approach and
combined the hit/miss method with Bayesian models.
They concluded that the confidence interval can be
defined more accurately in comparison to non-Bayesian
models and this was also the driving factor behind other
studies by Abdessalem et al.?® Aldrin et al.?® presented
a Bayesian model for estimating POD curves for eddy-
current testing that mixed real measurement data with
synthetically generated ones. Jenson et al.”” supplement
experimental data from eddy current-based fatigue
crack inspections with synthetically generated data and
applied Bayesian methods. Hovey® used Bayesian

models to simultaneously identify the POD curve and
the crack size distribution.

Problem statement

The goal of this paper is to develop a method, suitable
for NDT and SHM, to predict the POD based on data
from the undamaged state. The literature review shows
that most of the existing methods are not suitable for
this task, as they require a substantial number of data
sets from damaged structures. The hit/miss method
requires the largest number of data sets of 60 to 90,>%
and conservative analysts** propose up to 300 data sets
for an accurate estimation of confidence intervals. In
contrast, the a versus a method requires fewer data sets
of 3040, as the magnitude of the signal response is
considered. If Bayesian methods are employed, the
confidence interval can be determined with even fewer
data sets, and model-informed methods postulate
enhancing experimental data with synthetically gener-
ated data to reduce the required number of destructive
tests to a minimum. In this sense, fully model-assisted
methods are the most appropriate group of methods to
develop POD curves without data from the damaged
state. However, they require synthetically generated
data sets, and correctly modeling the noise properties is
challenging. In many cases, the synthetically generated
measurements exhibit different properties than the real
ones, and this introduces bias into the POD curves.
Moreover, they do not offer a framework to evaluate
several features at the same time and to link changes in
local structural components to global damage-sensitive
features, such as natural frequencies. This is why an
appropriate POD method is developed in this paper
that considers the real noise properties from non-
destructive measurements, recorded on the undamaged
specimen, and predicts the POD based on model-based
sensitivity matrices that map changes onto local struc-
tural components.

The proposed method is based upon a statistical
framework for change detection that considers the
uncertainties in damage-sensitive features, and maps
changes in the mean values onto local structural com-
ponents using sensitivity vectors.’>3' Recently, an
approach was developed in this framework to analyze
the detectability of damage for subspace-based fea-
tures.*> This paper also employs this framework, and
extends the previous approaches to predict entire POD
curves as continuous functions over hypothetical dam-
ages. Moreover, the approach is generalized from
subspace-based features to arbitrary features in NDT
and SHM—whose distribution can be approximated as
Gaussian—and uncertainties in the physics-based
model are considered through confidence intervals for
the first time.
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The paper is organized as follows: the first section
recaps how damage can be detected based on statistical
tests. The subsequent section develops a method to pre-
dict the test response to damage based on numerical
models and measurement data from the undamaged
structure, and to construct POD curves without any
measurement data from the damaged structure. In the
application section, the approach is applied to a labora-
tory beam structure for proof of concept. Ultimately,
possible ways to utilize the predictive POD curves for
the optimization of NDT and SHM systems are dis-
cussed, followed by the conclusions.

Statistical damage detection

This section recaps the statistical test the developed
method is based upon. In general, the damage detection
process is split into three basic steps: the acquisition of
measurement data Y through sensors, the signal pro-
cessing and extraction of damage-sensitive features f,
and their subsequent statistical evaluation® where the
processed features are visually inspected or decision-
making tools are applied to summarize the analysis in a
scalar diagnostic test result z. To detect damage, the
diagnostic can be compared against a safety threshold
value 7., and an alarm is raised if the threshold is
exceeded.

Damage assessment requires a comparison between
the undamaged state and the tested state. The unda-
maged state is often divided into a training state, in
which the statistical models are built, and a validation
state to verify the model. Afterwards follows the testing
state, as shown in Figure 2. In this paper, it is assumed
that the statistical distribution of the extracted feature
can be approximated by a normal distribution in all
states, which is the case for many features, and that the
effects of environmental changes have already been
removed. In the training state, the reference value of
the feature vector f° is determined based on some base-
line model, that is, a numerical model or as the mean
value from measurements. During validation and test-
ing, a damage-sensitive residual is formed by extracting
the feature vector and subtracting the baseline vector
from training r=f —f°. Then, it is tested whether or
not the residual approximates the distribution from the
validation state and the significance of possible devia-
tions is assessed. The individual steps are explained in
detail in the following paragraphs.

Residual vector

It is assumed that the residual follows a normal
distribution.

Possibly damaged structure

‘ Undamaged structure

y A\ 4 v

‘ Training ‘ ‘ Validation H Testing ‘

Figure 2. The three states of each monitoring campaign.

r=f—f'~N(m,3), (1)

where m € RV is the mean vector and ¥ € RV is
the covariance matrix. If no structural changes
occurred, the mean vector is zero, that is, m=0.
Damage, on the other hand, manifests itself through
changes in the estimated features f, leading to a shift in
the mean value of the residual’s probability density
function. For problems with two or three features, the
statistical damage detection problem is visualized in
Figure 3.

The covariance matrix describes the statistical uncer-
tainties in the residual, for example, due to measure-
ment noise (noisy sensors, cables, and data-acquisition
systems), unknown excitation, or other epistemic
uncertainties in the feature estimation process. It can,
for example, be evaluated based on the sample covar-
iance using ny realizations from training data

1 2 T
= . 2
p3 nb—lgr“k (2)

Depending on the feature, other techniques such as the
delta method™* are available, which allows one to esti-
mate the covariance based on a single measurement
record.

Many features from SHM or NDT satisfy the
Gaussian assumption (1). For example, features com-
puted from vibration time histories are often asympto-
tically Gaussian distributed after proper normalization
with the square root of the data length /N, due to the
central limit theorem. Representative features include
modal parameters from operational modal analysis*>-°
and experimental modal analysis,?’ features based on
covariance functions,*® or residuals that are formed in
the subspace of covariance functions.** When environ-
mental and operational variables (EOVs) disturb the
Gaussian assumption, their effect on the feature vector
f can be eliminated before the estimation of the covar-
iance matrix, using well-known methods for data nor-
malization such as multivariate linear regression,
principal component analysis,*” or auto-associative
neuronal networks.*! In this sense, the removal of
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EOVs can be decoupled from the damage detection.
Examples of normally distributed signals in NDT
include eddy current methods, infrared measurements,
or radar-based approaches. In POD curves based on
the a versus a method, the signal response from NDT
devices is drawn on linear, semi-log or log-log paper,
and it is assumed that they can be approximated by a
normal distribution in one of these scales before apply-
ing regression methods.

Damage detection test

Statistical tests evaluate the significance of changes in
the mean of the feature vector, and break all changes
down into a scalar test value for change detection,
which can be depicted in control charts, as in Figure 4.
A standard test statistic is

t=r"37'r, (3)

which is known as the squared Mahalanobis distance
or the Hotelling 72-test. It can also be derived from the
generalized likelihood ratio test. Its distribution can be
approximated by a chi-squared distribution,

t~x* (V. A), (4)

with the number of degrees of freedom

v=rank(X), (5)

and the non-centrality parameter A. It should be noted
that the inverse covariance matrix 3~ can be replaced
with the pseudo-inverse if the matrix is rank-deficient.
The non-centrality is zero in the undamaged state, and
unequal to zero in the damaged state. It describes the
shift in the mean value of the test, and therefore, it is
called the “mean test response” from here onward.

The diagnostic test (4) is repeatedly evaluated for
each data set during validation and testing, and plotted
in control charts, with a representative example in
Figure 4. The figure shows the test for 50 observations
before and 50 observations after system changes
occurred, and draws the empirical test distribution in
histograms. In the reference state, the mean value is
identical to the number of degrees of freedom v, and
the more severe the structural changes, the more pro-
nounced is the mean test response A.

Safety threshold

A safety threshold ¢, sometimes also called a control
limit,** helps to distinguish the “normal” system state
from abnormal states, and an alarm is raised if the
safety threshold is exceeded. Typically, the threshold is
determined based on the test distribution in the valida-
tion state, based on one of the following metrics.

The false negative (FN) is an appropriate metric to
define the safety threshold. It is defined as a significant
test response beyond the safety threshold although no
system changes have occurred (in the validation state).
FNs can cause an intact structure to be taken out of
operation for no safety-relevant reasons, so it is desir-
able to minimize them by setting the safety threshold
sufficiently high. An appropriate FN rate depends on
the time scale of the diagnosis results. If multiple diag-
nostics (3) are generated within a short period of time
(e.g., in 1 s), a higher false alarm rate may be justifi-
able, as the majority of diagnostics indicate that no sys-
tem changes occurred. A monitoring system that yields
a diagnostic value every hour, day, month, or year
should minimize FNs, as the course of action (and pos-
sible negative consequences for the structure) depend
on a single diagnostic. In this paper, a false alarm rate
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of 1% is chosen, meaning on average 1 out of 100 tests
is a false alarm.

The true positive (TP) rate is another important
quantity that depends on the safety threshold. It quan-
tifies the relative number of test responses beyond the
safety threshold after damage occurred (in the testing
state). The TP rate is equivalent to the probability of
detecting damage.

Receiver operating curves are an appropriate tool to
determine a safety threshold if data is available from
the damaged structure.** The optimal threshold is cho-
sen as the one that minimizes the false alarm rate while
maximizing the TP rate. Graphically speaking, the
optimal point can be found by plotting the TP rate
over the false positive rate for different thresholds, and
by choosing the point with the smallest Euclidean dis-
tance to the perfect classifier, where the TP is 100%
and the FN rate is 0% (i.e., the point in the top left of
Figure 5).

Predictive POD curves

This section introduces an approach for constructing
predictive probability of detection (P-POD) curves
based on non-destructive data from the examined sys-
tem and a parametrized numerical model.

Parametric system model

Numerical models are suitable tools to physically inter-
pret “damage,” for example, based on changes in struc-
tural parameters. It is assumed that the feature vector f
can be modeled as

erfect claséifier

g ©
2} ®

<
~

True positive rate

— — — Random classifier
ROC curve

0.2 L
/ Fln.dlng the 3
/ optimal classifier
O 1 1 1 1
0 0.5 1 0 0.5 1

False alarm rate

Figure 5. Receiver operating curves: finding the optimal safety
threshold (classifier) as the one that maximizes the POD and
minimizes false alarms.

f=h(0)+¢ (6)

where /4 is the (non-linear) function that maps struc-
tural parameters @ onto the feature vector, and ¢ is a
noise term that can be characterized based on data (2).
Damage is defined as a relative change in the structural
parameters from their reference state 8° (material prop-
erties, cross-sectional values, etc.), with

AO=0—0". (7)

Using Taylor series expansion, the mapping function
h(@) (6) can be linearized, and changes in features can
be expressed as

h(0)~f’+ 7 A6, (8)

where J is the first-order derivative of data-driven fea-
tures with respect to structural parameters

_oh

g =— =
30),_ g

(30 9, ... 3] (9)

Each column 7, in the Jacobian describes the rate of
change of the feature vector f for the single parameter
change Af,. The linearization (8) allows one to “pre-
dict” the changes in features based on hypothetical
damage scenarios, without having to generate measure-
ments and estimate features in the damaged state. This
simplification is justified for small structural changes,
which are the primary focus when constructing POD
curves and for applications, where the mapping func-
tion from features to parameters /(0) exhibits moder-
ate non-linearities.

Predicted test response

In contrast to the traditional damage detection
approach, where the test distribution is evaluated
empirically (as in Figure 4), the presented approach is
based on the theoretical distribution of the diagnostic
test (3), rendering empirical evaluations unnecessary.
As explained above, the test’s distribution can be
approximated by a chi-squared distribution x*(v,A)
with a mean value » in the undamaged state and a
mean test response A. Let us assume that the analyzed
damage scenario manifests itself through a change in a
single parameter 6. Then, the mean test response can
be calculated analytically®” as

A= (65— 69)°FuN, (10)
where F, is the Fisher information
Fu=3137"3,, (11)
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and 7, is the sensitivity vector that corresponds to the
analyzed parameter 6;,. Note that all quantities in
Equation (10) are known from the training state, so
empirical data from the validation or testing state is
not required. In principle, multiple parameter changes
can be analyzed simultancously with the presented
framework, but the simplification of a single parameter
change is made here to reduce the complexity of the
mathematical expressions.

Probability of detection

The traditional approach quantifies the POD as the
relative number of diagnostic tests beyond the safety
threshold when damage has occurred, see Figure 4. In
contrast, the POD is now quantified based on the theo-
retical distributions of the diagnostic test, as the area
under the probability density function beyond the
safety threshold

o0

POD= J S (v, A)(1)de,

Lerit

(12)

that is, the gray area in Figure 6, where f,2(v,A) is the
probability density function of the chi-squared distri-
bution. The POD is the complement of the cumulative
distribution function, evaluated at the safety threshold
POD =1 — F,2(v,A)(ti), which is uniquely defined
through the number of degrees of freedom v (5) and
the mean test response A. In other words, the POD
depends on the mean test response A, and the mean test
response depends on the parameter change due to dam-
age 0, — 02 (10), so there is a mathematical relation
between the POD and the parameter change.

The developed framework creates a mathematical
relation between the POD and the parameter change,
and the most intuitive way to visualize this relation is
by plotting it in so-called P-POD curves, see Figure 13.
The P-POD curves are drawn over a change in single
structural parameters 6, based on Equations (10) and
(12), and the location of this parameter is known from

non-centrality

healthy state
~ 1 (v, 0)

damaged state

~22 (v, 1)
/ !

probability of
false alarms
(PFA)

probability
of detection
(POD)

Probability density

v terit VL t

Figure 6. Theoretical distribution of the diagnostic test before
and after a damage event.

the numerical model. That means that the POD can be
evaluated for local structural components, even if glo-
bal features (such as modal parameters) are evaluated.

Confidence intervals

Due to a possible mismatch between the real and the
modeled structure, numerical models are an additional
source of uncertainty for P-POD curves, which can be
considered through confidence intervals. The predictive
formula (10) contains the Fisher information (11),
which in turn considers the statistical uncertainties in
the estimation of the features through the covariance
matrix . Model-based uncertainties would affect the
Jacobian matrix J, but are not considered yet. A
straightforward way to derive confidence intervals is to
calculate the Jacobian matrix based on probabilistic
finite element models (P-FEMs), and to describe the P-
POD curves through the mean curve and, for example,
the 95% confidence interval from Figure 1. Therefore,
the confidence interval is not determined through the
accuracy of the regression techniques (as it is the case
for other POD methods) but the uncertainties in the
model. P-FEMs are a powerful tool to capture model-
based uncertainties, and in theory, all structural para-
meters that affect the Jacobian matrix should be treated
as random variables. The randomness in one or multi-
ple structural parameters can be represented through
random fields. Besides point discretization methods
(e.g., the midpoint method, the integration point
method, and the average discretization point method),
series expansion methods can be employed, such as the
Karhuen-Loéve expansion, the spectral representation
method, and others, with a concise introduction in the
referenced literature.** In addition to the field represen-
tation, an appropriate evaluation method has to be
selected, where the most widely employed methods are
the perturbation method,*’ the spectral finite element
method,*® and the Monte Carlo method.*’

For simplicity, an approach is chosen in this paper
that can be reproduced by readers that work with finite
element modelling FEM software without stochastic
modeling capabilities. Only the monitored structural
parameters are assumed to be random. Each parameter
is modeled as a Gaussian random variable and no
correlation between different parameters is assumed

0~ N (g, %) (13)

where u, is the mean value and 2 is the diagonal cov-
ariance matrix. A Monte Carlo approach is pursued,
meaning the sensitivity calculation is performed multi-
ple times with varying structural input parameters.
First, a sample is drawn from the distribution (13), and
the Jacobian is computed with the corresponding
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model, for example, based on the finite difference
method. After completing the computation, the analy-
sis is rerun for many other samples, resulting in a suite
of sensitivity matrices, which can be translated into a
suite of POD curves based on Equations (10) to (12).
Finally, the mean curve and the confidence interval
can be computed.

Laboratory application

For proof of concept, the P-POD method is applied to
a laboratory steel beam, where added masses take the
role of damage. After elaborating on the predictive
POD curve, a validation study is presented to demon-
strate that the P-POD is close to the empirical POD
after damage is applied.

Laboratory experiment

The considered structure is a hollow structural steel
beam (HSS 152 mm X 51 mm X 4.78 mm) with a
length of 4.1 m. The beam is pin-supported on both
ends and the material is characterized by a modulus of
elasticity of £ = 210,000 MPa and a total mass of
m = 56.8 kg, Figure 7. The beam is located at the
University of British Columbia and has already been
described in the referenced literature.**** The instru-
mentation includes eight equispaced accelerometers
that measure the vibration in the vertical direction at a
sampling rate of f; =330 Hz, and one shaker in the cen-
ter of segment 3 that injects white noise vertically into
the beam. Each sensor has a weight of 1.28 kg, and the
shaker exhibits a static mass of 3.6 kg and a moving
mass of 360 g. The expected damage scenario is a
change in mass in any of the nine beam segments. To
detect mass changes, natural frequencies f, of the first
three modes of vibration are monitored, Figure 8.
They are estimated using covariance-driven opera-
tional modal analysis (SSI-Cov), and stored in a fea-
ture vector

N
f= | £
f3

(14)

Predictive POD curves

Before the POD curves can be constructed, a FEM is
built in ANSYS, so damage can be parametrized and
sensitivities can be calculated. Note that the model is
only used to extract numerical modal parameters for
the sensitivity computation, but no vibration data is
generated. To simulate different damage locations, a

Figure 7. Laboratory HSS beam with eight sensors and one
shaker (left) and extra masses applied (right).

f, =9.07 Hz, ¢, = 0.89%

f, =35.71 Hz, ¢, = 0.58%

f3 =79.38Hz, (,= 0.30%

Figure 8. Modal parameters estimated based on operational
modal analysis (OMA).

different mass parameter is assigned to each beam seg-
ment, and the parameter vector is defined as

mi
o=| : |. (15)

mg

Various methods exist to compute the derivative of
modal parameters with respect to structural para-
meters,*>° with the most straightforward one being
the finite difference method. To compute the first-
order derivatives, the baseline features f° are created
through numerical modal analysis of the undamaged
structure. Then, as many finite element analysis runs
are performed as there are structural parameters in 6.
In each run, a single parameter 6, is perturbed, and the
resulting modal parameters f are extracted, so each
Jacobian entry can be calculated as

© 10
/i (16)
0, — 06,
where i=1,...,N; is the number of features and
h=1, ..., N, is the number of parameters (15).

The covariance matrix is estimated based on real
measurement data and describes the uncertainties
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Figure 9. Predictive probability of detection (POD) curve for
changes in mass parameter 65 at midspan and g close to the
support, together with empirical POD values for validation.

Ch2 Ch3 Ch4 Chs Ché Ch7 Chs

FICHF I

Cross-section

[m—1

0.69 m

411 m

Figure 10. Laboratory beam with eight segments.

related to the feature extraction process. As explained
above, it can be estimated based on a single measure-
ment record if the uncertainties are propagated through
the feature estimation process (the operational modal
analysis) using the delta method.** In this paper, a sin-
gle measurement record of 60 s is recorded on the beam
to evaluate the covariance matrix.

With the Jacobian matrix and the covariance matrix
at hand, the Fisher information can be calculated using
Equation (11). Moreover, the theoretical distribution
of the diagnostic test can be determined as a central
chi-squared distribution x?(v) with v=9 degrees of
freedom (5). The safety threshold is set based on an
allowable false alarm rate of 1% to £ = 18.2, meaning
one out of 100 tests is beyond the threshold even if the
structure is undamaged. Ultimately, the sample size
during testing is fixed to N=990 (T = 3 s), and the
POD curve is predicted using Equations (10) to (12),
where Figure 9 shows the resulting P-POD curves for
the two parameters 0s and 6g. By looking at the figure,
it can be appreciated that the POD curve is different
for different structural parameters. The locations of

the parameters are well-defined in the model, with 65
being at midspan and 6s closer to the right support, see
Figure 10. That means that the POD is evaluated for
local structural components, even if it is applied to glo-
bal vibration-based features.

Empirical validation

The results from the previous section are based on
vibration data from the undamaged structure, with no
extra masses applied to the beam. In this section, extra
masses are applied to analyze whether the “predictive”
POD are close to the empirical ones, and thus, to vali-
date that the developed method is accurate. The main
idea is to apply the mass, run the diagnostic test (3)
100 times, and draw the distribution of the test. If the
prediction is correct, the empirical POD (i.e., the rela-
tive number of tests beyond the threshold) should be
close to the analytical prediction using P-POD curves.

The first validation study sets out to verify that an
increasing mass leads to a higher POD, see Figure 11.
The figure displays the empirical distributions of the
test diagnostic for four different damage scenarios with
extra masses on a beam segment close to the support,
together with a y?-distribution that is fitted to the his-
tograms. Increasing the mass from Afg=2.5% t05.0%,
leads to an increase in the POD from 28% to 57%, sim-
ilar to how it was predicted based on the analytical P-
POD curves, see Figure 10. Further increasing the dam-
age extent to 7.5% and 10% leads to a POD of 96%
and 100%, respectively. Consequently, an increasing
damage extent leads to a higher POD, and the devel-
oped approach could accurately predict the POD for
all considered mass changes.

The second study compares the POD for mass
changes at different locations along the beam. Where
an extra mass of Ag=2.5% close to the support leads
to a POD of 28%, the same mass leads to a POD of
only 3% at midspan (As=2.5%), see Figure 12.
Regardless of the considered damage scenario (i.e., an
extra mass of 2.5%, 5.0%, 7.5% or 10%), a higher
extra mass close to the support leads to a higher POD
in comparison to the scenarios with masses at midspan,
confirming the prediction of the P-POD curve. That
means that the detectability of damage is lower at mid-
span, and it varies depending on the considered beam
element. No empirical studies in the damaged state are
necessary, because the information on the detectability
of damage is already contained in the P-POD curve
from Figure 10, and they are only performed here for
validation.

The prediction accuracy is indicated through the
blue lines between the P-POD curve and the empirical
POD in Figure 10. In all cases, the empirical POD for
masses close to the support (black squares) is higher
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Figure 12. Validation of the empirical probability of detection (POD) for mass changes at midspan (parameter 6s).
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than for masses at midspan (black dots), so the data
points follow the same trends as the P-POD curves,
where the prediction error ranges between 0.5% and
21%. The largest deviations occur for the smallest mass
changes of 2.5%, where 155 g are added to a beam
with a total beam mass of 65.8 kg, in which case the
modeling errors may have the most significant effect.
Other reasons for the deviation might be approxima-
tion errors due to limited data length, possibly leading
to slightly non-Gaussian components in the feature dis-
tribution or a slightly changing covariance over differ-
ent damage states. For real data these are acceptable
errors, as the predictions are mostly more conservative
than the empirical values. Related studies based on
numerical simulation led to a prediction error below
0.5%, confirming the predictive qualities of the under-
lying statistical framework.*? Therefore, the validation
is concluded, and model-based uncertainties are dis-
cussed in the next section on confidence intervals.

Confidence intervals

To evaluate the confidence intervals, the sensitivity
computation is repeated 500 times, while assuming a
normal distribution for each mass parameter. The
parameter distributions are assumed to be uncorre-
lated, with the mean vector u, from Equation (15), a
coefficient of variation of 0.05 each, and a normal

distribution of 0~N(M6,diag(0.05~ue)2). The 500

POD curves are drawn in Figure 13 through gray solid
lines. Assuming a symmetrical distribution about the
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Figure 13. Probability of detection (POD) curve for mass
changes close to the support (parameter 6g) with confidence
interval.

mean POD curve, standard techniques can be applied
to estimate the 95% confidence interval and to draw
the lower bound (solid black line). By looking at the
plot, it can be appreciated that the POD is unequal to
zero for a parameter change of zero. This is because
the safety threshold was set based on an allowable FN
rate of 1%, and the FN rate is identical to the POD
for a parameter change close to zero. Furthermore, the
POD for a 2.5% parameter change varies between
7.3% and 17.7% for the individual runs, highlighting
the importance of the confidence interval and explain-
ing the possible discrepancies between predicted and
empirical POD in Figures 11 and 12.

Discussion

The presented P-POD method exhibits distinct differ-
ences to traditional approaches, such as a versus a.
The method is based on a different statistical frame-
work, underlying assumptions, and data requirements,
which are critically discussed in this section. Moreover,
the strengths and limitations of the developed P-POD
method are elaborated on.

Method comparison

One of the fundamental differences between the P-
POD and the a versus «a is definition of the POD and
the number of damage-sensitive features that are evalu-
ated. In the a versus a, the POD is defined based on
the Gaussian probability density function of each fea-
ture individually, which would be drawn on the y-axis
of Figure 1, and it is uncommon to evaluate multiple
features at the same time. The developed P-POD
method combines the information from all Gaussian
features into a single diagnostic test value. It combines
the features while considering their uncertainties, see
Equation (3), and the POD is defined based on the dis-
tribution of the diagnostic and not the features.
Therefore, the P-POD method can evaluate changes in
multiple features at the same time.

Due to these differences, a meaningful method com-
parison is not straightforward. Where the a versus a
assumes Gaussian distributions for each feature, the
single diagnostic test value in the P-POD method exhi-
bits a y?-distribution, as it squares up and scales multi-
ple Gaussian features in Equation (3). Consequently,
the safety thresholds for each of the features in a versus
a cannot be directly compared to the threshold of the
diagnostic in P-POD even for identical quantile values.
However, both methods could be compared if the diag-
nostic (which evaluates and combines the features sta-
tistically) is considered as the feature itself for which
the a versus a curves are drawn. For this purpose, the
diagnostic is drawn on logarithmic paper (y-axis in
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Figure 14. Comparing the P-POD: predictive probability of
detection (P-POD) to the a versus a curve for changes in beam
segment 5. Both curves are drawn for the diagnostic test from
Equation (3).

Figure 1), so the y?-distribution of the diagnostic
approximates a normal distribution. The results are
shown in Figure 14. The figure shows the a versus a
curve and its confidence bounds based on identical
safety thresholds as for the P-POD method (the 99%-
quantile value). The P-POD method leads to lower
probabilities of detection than the a versus a, but higher
POD than the lower bound. This evokes another ques-
tion, as to what curve the P-POD is to be compared to.

The confidence bound of the a versus a describes
both statistical uncertainty in the diagnostic as well as
epistemic uncertainty in the regression model. The P-
POD method, on the other hand, already explicitly
considers the statistical uncertainty in the features in
the POD computation based on the covariance matrix,
see Equation (3). An evaluation of confidence bounds
that result from epistemic uncertainty is not necessary
for the P-POD method, since the distribution proper-
ties can be described through theoretical investigations
even for the damaged states, see Equation (4), unlike
in the a versus a approach. The confidence bounds for
P-POD curves, developed in this paper, relate to a dif-
ferent source of uncertainty, that is, modeling errors in
the employed numerical model, whereas modeling
uncertainty in MAPOD approaches is not reflected in
a vs. a curves. Therein, a separation of the two sources
of uncertainty is not possible either, and that is why
the P-POD curve (without considering modeling
errors) is comparable to the lower bound of the a ver-
sus a. As a result, the P-POD leads to higher PODs
than the a versus a, see Figure 14. This is because no

(empirical) regression model is used but the theoretical
distribution of the diagnostic is exploited. Epistemic
uncertainty is only introduced if large parameter
changes are analyzed, because then the first-order
Taylor series expansion (9) loses accuracy. However,
for such large parameter changes the POD is already
close to 100%, so the computation of the POD is
hardly affected. More information on this is given in
the next section.

Model validation

The way the structural model is used in traditional
MAPOD approaches is different than in the developed
P-POD method. MAPOD approaches require the gen-
eration of many data sets from different damage sce-
narios, whereas P-POD constructs POD curves based
on data from the undamaged structure and sensitivity
vectors, which are calculated based on the numerical
model in the undamaged state alone. Hence, model
validation with MAPOD approaches would be neces-
sary for each damaged state, whereas in the P-POD
approach, the validity of the sensitivity vectors (com-
puted in the undamaged state) should be verified for
the damaged states. Suppose that the numerical model
is calibrated in the undamaged state, using standard
techniques such as model updating based on sensitivity
vectors,”! Bayesian approaches, interval, or Fuzzy
approaches.”® In the underlying statistical framework
of sensitivity-based statistical tests,*® the sensitivity vec-
tors are valid in the damaged state under the assump-
tion of small parameter changes, since the relation
between structural parameter changes and measured
damage-sensitive features is linearized in Equation (9).
The small change assumption is relevant for the com-
putation of the POD curve in P-POD methods; how-
ever, a structural change is in general small when the
POD is smaller than 100%, so this is a reasonable
assumption.

A simple way to assess the limits of the “small dam-
age assumption” is the evaluation of the linearization
error

_filin _fi

&i (AQJ) fl‘ >

which quantifies the relative deviation between the lin-
early predicted feature " and the actual feature f; as
the output of a non-linear function. The subscripts i
and ;j indicate that this error is evaluated for each
feature and parameter individually, as shown in Figure
15. For example, the maximum linearization error for
a mass change at beam segment 8 is 3.0% for the third
natural frequency, even for large parameter changes of

(17)
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Figure 16. Non-centrality error from Equation (18) for
changes in 0g.

Am=100%. That means that the linearization error is
negligible in this specific case study.

Besides the linearization error, small changes in the
covariance matrix between undamaged and damaged
states could possibly contribute to deviations in the
predicted POD. Hence, a more comprehensive way to
assess the validity of the small damage assumption is
the deviation between the predicted and the empirical
distribution of the diagnostic over gradually increasing
damage extents, which may lead to deviations in the
predicted POD. For this purpose the non-centrality
error (NCE) is introduced

mary, the small damage assumption is reasonable for
the critical domain of parameter changes, where the
POD is smaller than 100%. Note that the presented
NCE takes on the largest values for parameter 63 and
smaller values have been observed for all other
parameters.

Assumptions

For conciseness, the underlying assumption of the P-
POD method are summarized in the following list:

®  Gaussian features. It is assumed that the measured
damage-sensitive features can be approximated
through a normal distribution (1).

® Linearized models. The relation between damage-
sensitive features and changes in structural para-
meters can be linearized using first-order Taylor
series expansion (9). For strongly non-linear rela-
tions, this assumption limits the P-POD method to
the analysis of small structural damages.

® Calibrated models. The numerical model used for
the sensitivity computation should be sufficiently
calibrated to ensure an accurate sensitivity
computation.

®  [dentical variance. Due to the small change assump-
tion, the covariance of the damage-sensitive fea-
tures is assumed to remain constant between
undamaged and damaged states.

It should be noted that the Gaussianity and the line-
arity assumption do not hold for some features in
SHM or NDT, but after their transformation on semi-
log or log-log paper. For some features, for example,
in acoustic emission testing, the linearization may not
be accurate enough even before the POD converges to
100%. Therefore, the assumptions should always be
critically verified.
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Figure 17. Feature selection based on Probability of detection
(POD) curves.

Fields of application

This section discusses possible ways to utilize P-POD
curves for the performance evaluation and optimiza-
tion of NDT or SHM systems. For example, the P-
POD can serve as a performance criterion for feature
selection and sensor placement optimization, and can
assist with choosing the most appropriate measure-
ment equipment.

Feature selection

P-POD curves quantify the probability of detecting
damages in model-based parameters, based on mea-
sured changes in damage-sensitive features. Therefore,
they can be employed to compare different damage-
sensitive features, and to select the one that is the most
sensitive to small and critical structural changes. In the
following, three different feature vectors are examined,

including natural frequencies, mode shapes, and a com-
bined vector,

fi

1 ®, j?
fi=|f| b= |® | 6= | (19)

f D, !

oD,

P,

Note that all available information should be used in
practice (f3 in this case), and that this example is merely
for demonstration. The corresponding mean curves for
parameter 05 are shown in Figure 17 (bottom). For
small changes of Afs=15%, the combined vector exhi-
bits the highest POD of close to 100%, followed by the
mode shapes and the frequencies in descending order.
Looking at the lower bounds in Figure 17 (top) reveals
that features with higher damage sensitivity can also
have wider confidence bounds, as the curves for mode
shapes and frequencies are swapped. Consequently, the
feature selection should always be based on the lower
bound of the POD curve.

Another aspect that affects the POD is the number
of monitored features. An increased number of features
increases the available information on the structural
state, provided that no redundant information is mea-
sured, so the sensitivity to small damages is increased.
In this sense, the developed approach can be employed
to decide on an appropriate number of features.

Sensor placement optimization

The POD is different for each sensor layout, so it may
be an appropriate optimization criterion for sensor pla-
cement optimization. Optimization criteria are often
categorized into three groups, that is, methods for opti-
mized data acquisition, optimized feature extraction,
or optimized damage detectability.*® Following this
train of thought, POD curves can be categorized in the
third group, as they optimize the detectability for the
diagnostic test from Equation (3). Typically, the sensor
layout is determined before sensors are installed, so the
optimization has to be done based on numerically gen-
erated data in the undamaged state. Obviously, the
generated measurements should exhibit similar noise
properties as experimental data to represent the true
measurement conditions on the structure. This could
either be ensured based on preliminary tests on the
examined structure, using identical sensors as for long-
term monitoring, or based on engineering judgment
with similar structures. Then, the P-POD is a function
of the sensor layout, and can be used as a performance
criterion for the sensor placement optimization. Since
the P-POD is drawn for individual structural
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parameters, a decision rule has to be implemented on
how to merge the information from multiple curves,
for example, based on the least sensitive parameter.

Hardware noise specification

A powerful aspect of the developed POD method is
that uncertainties due to measurement noise are expli-
citly considered. Lower measurement noise leads to a
shift in the POD curve to the left side, meaning the
POD increases for identical parameter changes.
Therefore, POD curves are an appropriate tool for the
performance assessment of measurement equipment,
as sensors and data-acquisition systems with different
specifications lead to varying signal-to-noise ratios,
and thus, different POD curves. This may assist in the
selection of the most appropriate hardware as the one
with the highest POD curves.

Quality control

POD curves offer a convenient way to verify the effi-
cacy of the entire measurement chain, even after several
years of operation. In this paper, the POD curves are
validated by comparing the analytical to the empirical
POD after extra masses have been applied. This verifies
that the damage detection method is calibrated. Static
load tests based on extra masses are a standard proce-
dure to evaluate the load-bearing capacity of bridges,
so it could be repeated in regular intervals to ensure
that the entire measurement chain, including hardware
and software components, is fully functional, even after
several years of operation.

Conclusion

This paper introduces a model-assisted approach for
determining P-POD curves. Traditional POD methods
require a minimum of 30 destructive tests with varying
damage extents, which can lead to high experimental
costs. In contrast, the developed approach requires no
destructive tests but a single measurement record from
the undamaged specimen. This can lead to significant
economic benefits for applications where the costs for
laboratory testing are greater than the costs for numer-
ical modeling. Therefore, the approach is particularly
suited for large, expensive, or unique engineering struc-
tures, where destructive tests are impossible, or struc-
tures where numerical models are readily available
from the design phase.

In contrast to many existing POD methods, no
regression models are employed to approximate the
signal response over varying damage extents. Instead,
the method employs statistical tests that combine the
information from multiple feature changes into a single

diagnostic, and this diagnostic explicitly considers the
uncertainty in the data-driven features. Additional con-
fidence intervals have been developed to account for
modeling uncertainty, for example, due to a mismatch
between the modeled and the real specimen, which are
not considered in traditional approaches. Additional
differences to existing methods, such as the a versus a,
as well as all underlying assumptions are elaborated on
in the “Discussion” section.
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