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Genomic prediction (GP) using haplotypes is considered advantageous compared

to GP solely reliant on single nucleotide polymorphisms (SNPs), owing to

haplotypes’ enhanced ability to capture ancestral information and their higher

linkage disequilibrium with quantitative trait loci (QTL). Many empirical studies

supported the advantages of haplotype-based GP over SNP-based approaches.

Nevertheless, the performance of haplotype-based GP can vary significantly

depending on multiple factors, including the traits being studied, the genetic

structure of the population under investigation, and the particular method

employed for haplotype construction. In this study, we compared haplotype and

SNP based prediction accuracies in four populations derived from European maize

landraces. Populations comprised either doubled haploid lines (DH) derived directly

from landraces, or gamete capture lines (GC) derived from crosses of the landraces

with an inbred line. For two different landraces, both types of populations were

generated, genotypedwith 600k SNPs and phenotyped as lines per se for five traits.

Our study explores three prediction scenarios: (i) within each of the four

populations, (ii) across DH and GC populations from the same landrace, and

(iii) across landraces using either DH or GC populations. Three haplotype

construction methods were evaluated: 1. fixed-window blocks (FixedHB), 2. LD-

based blocks (HaploView), and 3. IBD-based blocks (HaploBlocker). In within

population predictions, FixedHB and HaploView methods performed as well as

or slightly better than SNPs for all traits. HaploBlocker improved accuracy for

certain traits but exhibited inferior performance for others. In prediction across

populations, the parameter setting from HaploBlocker which controls the

construction of shared haplotypes between populations played a crucial role for

obtaining optimal results. When predicting across landraces, accuracies were low

for both, SNP and haplotype approaches, but for specific traits substantial

improvement was observed with HaploBlocker. This study provides

recommendations for optimal haplotype construction and identifies relevant

parameters for constructing haplotypes in the context of genomic prediction.
KEYWORDS

haplotype construction, genomic prediction, across population prediction, parameter
tuning, landraces
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1 Introduction

High-density marker technologies have provided researchers

with the opportunity to harness the power of haplotypes. In

genetics, haplotypes refer to the combination of alleles at multiple

loci on the same chromosomal homolog (Griffiths et al., 2010).

Hence, haplotypes allow for a more comprehensive representation

of genetic variation in comparison to single nucleotide

polymorphisms (SNPs). They can capture ancestral information

and identify rare alleles in the population under study (Bhat et al.,

2021). Haplotypes are more likely to exhibit linkage disequilibrium

(LD) with causal polymorphisms of QTL than individual SNPs

(Balding, 2006) and should capture information on local epistasis

(Jiang et al., 2018). In addition, the use of haplotypes can somewhat

mitigate the “large p, small n problem” of linear models (Pattaro

et al., 2008), unless populations under study exhibit high allelic

diversity leading to high number of haplotype variants. These

characteristics are assumed to make haplotypes advantageous

over individual SNPs in many applications of genomic research,

including genome-wide association studies (Mayer et al., 2020) and

genomic prediction (Hess et al., 2017).

In their seminal paper on genomic prediction, Meuwissen et al.

(2001) assumed the QTL alleles to be in LD with haplotypes

constructed from two markers. Various studies have since

investigated the use of haplotypes for genomic prediction, both in

simulations and in experimental studies, in different species, diverse

datasets, for different traits and for different prediction methods. A

comprehensive overview of studies from plant breeding is given in

Difabachew et al. (2023). In general, most studies confirmed the

assumption that employing haplotypes for genomic prediction of

genetic values can be advantageous over SNP-based approaches, but

the performance of haplotype-based prediction depended on

various factors, including the traits under consideration, the

genetic structure of the population under study and in particular

the specific method used for haplotype construction (Sallam et al.,

2020; Won et al., 2020; Ye et al., 2022; Difabachew et al., 2023;

Weber et al., 2023).

Haplotype construction methods differ in their treatment of LD

and relatedness, which in turn are a function of the genetic structure

of the population. Thus, for the same species the same method can

lead to different haplotype structures in different populations.

Fixed-window methods create haplotypes based on genomic

regions spanning a fixed number of adjacent SNPs without

considering LD or relatedness in the population (Cuyabano et al.,

2015; Hess et al., 2017; Sallam et al., 2020). LD based methods form

variable-length haplotype blocks along the genome based on the LD

structure prevalent in the population (Gabriel et al., 2002; Barrett

et al., 2005). The HaploBlocker method defines haplotypes by

considering group-wise identity-by-descent (IBD) chromosome

segments among predefined subgroups in the population (Pook

et al., 2019). This approach could be beneficial when the sub-

populations in the dataset are clearly defined. To investigate the

interaction between construction method and population structure

we assessed the prediction accuracy of haplotype versus SNP-based
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prediction with three different haplotype construction methods in

each of three prediction scenarios differing with respect to the

genomic structure of the training and the prediction data sets.

The basis for the three prediction scenarios was the phenotypic

and genotypic data of four maize landrace derived populations

generated by two different breeding approaches. Two populations

comprise doubled-haploid (DH) lines generated directly from S0
plants of two different landraces, the other two populations were

derived from the same two landraces but by crossing landrace S0
plants with a common inbred line and subsequent selfing (Hölker

et al., 2019; Hölker et al., 2022). Differences in genetic diversity, LD

patterns, and levels of relatedness within and among these

populations make the dataset ideal for the investigation of

haplotype-based genomic prediction within populations, across

populations from the same landrace and across landraces.

Objectives of our study were to (i) assess the accuracy of

haplotype- and SNP-based genomic prediction for five agronomic

traits in landrace derived maize populations, (ii) compare haplotype

construction methods with respect to their prediction accuracies in

different prediction scenarios, and (iii) investigate impacts of

parameter settings conditional on the prediction scenario.
2 Materials and methods

2.1 Data set

2.1.1 Plant material
We used four different maize populations developed from the

two European flint maize landraces, Kemater Landmais Gelb (KE)

and Petkuser Ferdinand Rot (PE) (Hölker et al., 2019; Mayer et al.,

2020). From each landrace, a doubled haploid (DH) population was

derived directly from S0 plants, and a gamete capture (GC)

population of S1:2 plants was generated by crossing S0 plants with

the capture line, FV2, and subsequent selfing (Hölker et al., 2022).

The entire dataset comprises 1,417 landrace derived lines

(DH_KE = 471, DH_PE = 402, GC_KE = 274, GC_PE = 270).

2.1.2 Phenotypic data
Field design and trait assessment were described in detail by

Hölker et al. (2019) and Hölker et al. (2022). In brief, the DH lines

and GC-S1:2 lines were evaluated at two different locations,

Roggenstein (ROG) and Einbeck (EIN), in Germany in two years

(2017 and 2018). Line per se performance was assessed for five traits,

early vigor at V6 stage (EV_V6, 1-9 score), plant height at V6 stage

(PH_V6, cm), final plant height (PH_final, cm), female flowering

time (DtSILK, days from sowing to 50% of plants in a plot silked)

and severity of root lodging at R6 stage (RL_R6, 1-9 score). For all

traits, we calculated adjusted means across the four environments as

described in Hölker et al. (2019).

2.1.3 Genotypic data
All DH lines and GC-S1 plants were genotyped with the 600k

Affymetrix Axiom Maize Array (Unterseer et al., 2014). Quality
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filtering and imputation followed Hölker et al. (2019) for DH

populations and Hölker et al. (2022) for GC populations. Only

markers of the best quality class (Unterseer et al., 2014) were

selected. Subsequently, markers with ambiguous physical

positions on the B73 reference genome AGPv4 (Jiao et al., 2017)

and markers and individuals with >10% missing rate were removed.

In DH populations, markers and individuals with >5%

heterozygosity were discarded. The remaining heterozygous

genotype calls were set as missing values. Imputation and phasing

were performed separately in each population. Missing genotype

calls in DH populations were imputed with Beagle version 5.0

(Browning et al., 2018). Imputation and gamete phasing of GC-S1
lines were done using Beagle version 5.0, with parameters iteration

= 50, phase-segment = 10, and phase-states = 500. After all filtering

steps, a total of 486,971 polymorphic SNPs remained and were used

for further analysis.
2.2 Prediction scenarios

Three prediction scenarios were devised (illustrated in

Figure 1). In scenario 1 (within population prediction) the

training set (TS) and the prediction set (PS) originated from the

same population. In scenario 2 (across population prediction)

the TS and PS were of different population type but from the

same landrace. In scenario 3 (across landrace prediction) TS and

PS were of the same population type but from different

landraces. In scenario 1, all lines of a given population were used

for ten iterations of five-fold cross-validation. In scenario 2

and 3, the sample size for the training set was restricted

to 270 lines by the smallest population, GC_PE. To align

sample sizes with the five-fold cross-validation approach in

scenario 1, 200 lines from one population were randomly

sampled as TS, and 50 lines from the other population were

sampled as PS. This sampling procedure was repeated 100 times.

Prediction accuracy was calculated as the Pearson correlation

between predicted genetic values and observed phenotypic values

divided by the square root of the heritability, h2, of the prediction set

(Dekkers, 2007).
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2.3 Haplotype construction methods

Three haplotype construction methods were implemented in

this study. The first two were the fixed-window and LD-based

method, where haplotype blocks (loci), consisting of groups of SNP

markers, were defined either according to their number and order

on the physical map or based on the LD between the markers,

respectively. Haplotype alleles were then defined as combinations of

gamete SNP alleles within these blocks. The third method used in

this study was an IBD-based method suggested by Pook et al.

(2019). This method generates haplotype alleles of arbitrary length

without specifying haplotype loci. In scenario 1, haplotypes were

constructed separately for each of the four populations. In scenario

2 and 3, haplotypes were constructed using merged genotypic data

of the TS and PS.

2.3.1 Fixed-window method (FixedHB)
Haplotype blocks were created using a fixed number of adjacent

SNPs, forming non-overlapping blocks from the first to the last SNP

at the end of a chromosome on the physical map. To explore the

impact of block size on prediction accuracy, five different block sizes

(5, 10, 20, 50 and 100 SNPs) were tested.

2.3.2 LD-based method (HaploView)
We utilized the software HaploView (Barrett et al., 2005) which

offers three different algorithms for clustering SNPs based on their

LD. The first algorithm, GAB, employs the measurement of D’, the

coefficient of linkage disequilibrium D normalized by the maximum

value, to define SNP pairs in LD. SNP pairs were in “strong LD” if

the 95% confidence interval of D’ had an upper bound above 0.98

and a lower bound above 0.7 (default threshold). A block would be

formed if 95% of the SNP pairs exhibit LD (Gabriel et al., 2002). The

second algorithm uses the four-gamete rule [4GAM; (Wang et al.,

2002)] and defines a SNP pair to be in LD if one of the four

possible two-marker haplotypes has a frequency below 0.01.

Blocks are formed by consecutive markers in LD. The third

algorithm, solid spine of LD (SPINE), uses the same

measurement as GAB (D’) for defining SNP pairs in LD. If the

first and the last SNP are in LD, all the intermediate SNPs will be

included in a block. Parameter settings for each algorithm were kept

at their default values given by HaploView. To preserve the gamete

phase information of double heterozygotes in GC lines, the two

phased gametes of a GC individual were treated as two pseudo-

inbred individuals.
2.3.3 IBD-based method (HaploBlocker)
To construct a haplotype library, the R-package HaploBlocker

(Pook et al., 2019) was used. With HaploBlocker, a set of haplotypes

is defined that captures a large proportion of the genetic variation

with a limited number of haplotypes. The program allows the

identification of haplotypes with a pre-defined minimum

frequency, which enables the identification of genomic segments

identical-by-descent (IBD) across populations. Four essential

parameters of the haplotype library were tested to investigate

their impact on haplotype library construction.
FIGURE 1

Scenarios of genomic prediction. Scenario 1 is prediction within
population. Scenario 2 is prediction across DH and GC populations
of the same landrace. Scenario 3 is prediction across landraces with
a focus on populations that use the same breeding approach (DH
or GC).
frontiersin.org

https://doi.org/10.3389/fpls.2024.1351466
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Lin et al. 10.3389/fpls.2024.1351466
2.3.3.1 Window size

The window size parameter determines the number of SNPs that

form the initial window at the beginning of cluster-building. Its value

will affect the length of haplotypes in the final haplotype library. Five

different values (5, 10, 20 (default), 50 and 100) were used in this study.

Additionally, a special mode (multi_window_mode) allowing multiple

window sizes (5, 10, 20, and 50) simultaneously was also evaluated.

2.3.3.2 Minimum number of cells as the most
relevant block

The MCMB (parameter min_majorblock in R/HaploBlocker)

plays a crucial role in the haplotype filtering process. It serves as a

control to achieve a balance between information conservation

(genome coverage) and reduction of variants (total number of

haplotypes). Lower values result in more haplotypes and higher

genome coverage. The default value is 5000, and six different values

(1, 500, 1250, 5000, 20000 and 80000) were tested in this study.

2.3.3.3 Target coverage

To achieve the desired genome coverage, i.e. proportion of

genome covered by at least one haplotype, the HaploBlocker

program will automatically adapt the MCMB value for haplotype

library construction. Target coverage values of 80, 85, 90, 95, and 99

were tested. If target coverage is not selected, the program will

construct the haplotypes only with the designatedMCMB value. For

all haplotype libraries, with or without setting of target coverage,

genome coverage was calculated after haplotype construction for

further comparison.

2.3.3.4 Minimum occurrence of a haplotype in subgroup

By setting a minimum occurrence threshold for each haplotype

in pre-defined subgroups, e.g. the TS and PS in scenarios 2 and 3, we

can exclude haplotypes with very low frequency in either subgroup

and retain only the common shared ones. Six different values (0, 5,

20, 40, 80, and 160) were tested to assess their impact on the

resulting haplotype library. To identify haplotypes from the capture

line, FV2, its genotypic data was included in the GC population

during haplotype construction in scenario 2.

Window size and target coverage were tuned in within population

prediction (scenario 1), whileMCMB andMin Subgroupwere evaluated

for their impact on across population prediction (scenario 2 and 3). Due

to the high genotyping accuracy of the SNP array data, error control

when building the haplotype library was set to 0 (parameter

merging_error in R/HaploBlocker). For all other parameters which

were not explicitly mentioned default values were used.
2.4 Genomic prediction model

We employed genomic best linear unbiased prediction

(GBLUP) following Hölker et al. (2022). In the GBLUP model:

  y = 1m + Zu + e

y is a vector of adjusted means averaged across environments of

the training set, 1 is a vector of ones, m is the overall mean, Z is an
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incidence matrix. u is a vector of random genetic effects with the

distribution u   ∼  N(0,  Us 2
g ), U is the realized relationship matrix

calculated on the basis of genotypic data, and s 2
g is the genetic

variance pertaining to the GBLUP model. e is a vector of residuals

assumed to be independent and identically distributed with e   ∼
 N(0,  Is 2

e ), where I is the identity matrix, and s2
e is the residual

variance pertaining to the GBLUP model. For SNP-based genomic

prediction the matrix US was the genomic relationship matrix

(GRM) calculated by VanRaden method 1 (VanRaden, 2008).

For haplotype-based genomic prediction, the relationship

matrix UH , was calculated using haplotype matrix Mnxp (n =

number of genotypes, p = total number of haploblock alleles).

Each haplotype allele was treated as a pseudo-marker, coded as 0,

1 or 2 representing the count of the haplotype carried by an

individual. Haplotype alleles present in only one individual in a

defined population were excluded from the analysis. Estimation of

variance components and the GBLUP model were implemented

using R/ASReml 4.1 (Gilmour et al., 2015).

Genomic relationship matrices built on SNPs and different

haplotype construction methods were compared with the Mantel

test (Mantel, 1967). The Mantel test assesses the correlation

between the c(c−1)/2 entries below the diagonal of two symmetric

c×c-dimensional matrices. The significance of the correlation is

evaluated by permuting columns and rows of the first matrix while

keeping the second matrix fixed. We conducted the Mantel test by

using mantel() in R/vegan (Oksanen, 2010) with default settings.

Differences in prediction accuracies between haplotype-based and

SNP-based methods were tested with a Wilcoxon signed-rank test

with Bonferroni correction for multiple testing using function

wilcox.test and p.adjust in R (R Core Team, 2022).
2.5 FV2 haplotype composition in
scenario 2

We hypothesized that the haplotypes shared between FV2 and

the DH population had a negative effect on prediction accuracy.

These haplotypes might be alike in state but might have different

QTL effects in DH and GC. To assess the influence, we quantified

the prevalence of FV2 haplotypes in the DH population. We

calculated the ratio of FV2 haplotype alleles found in the

respective DH population divided by the total number of

haplotype alleles present. We minimized the number of FV2

haplotypes to maximize the overlap of haplotypes between DH

and GC populations, tuning the Min Subgroup parameter from 10

to 160 under the default MCMB value 5000.
3 Results

3.1 Characteristics of haplotypes using
three different construction methods

Figure 2 provides an overview of the characteristics of

haplotypes generated by three different construction methods. In

the FixedHB method, haplotype length was predetermined and
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fixed, in general, resulting in the highest total haplotype allele

number among the three methods. As the haplotype length

increased, particularly in the range of 5 to 50 SNPs, the total

allele number decreased due to the presence of LD between

adjacent SNPs. The HaploView methods produced haplotype

blocks ranging from 14 to 34 SNPs in average length. The 4GAM

method generated the shortest haplotype blocks, while the SPINE

method produced the longest haplotype blocks. For the

HaploBlocker method, the length and total number of haplotypes

varied significantly depending on the specific settings used. Both

window size and target coverage parameters had an impact on

haplotype length, with target coverage showing a particularly strong

effect in DH populations (Supplementary Figure S1). Generally,

HaploBlocker generated the fewest and longest haplotypes

compared to the other methods. It also displayed a clear

differentiation in haplotype structures between DH and GC

populations. The GC populations exhibited a higher total number

of haplotype alleles compared to the DH population, which can be
Frontiers in Plant Science 05
attributed to the introduction of new haplotype alleles from FV2

and the occurrence of new recombination events in the GC

populations. Longer haplotypes were observed in the DH

populations. The presence of quite long haplotypes with low allele

frequencies suggested some large identical-by-descent (IBD)

segments between DH lines. These segments were most likely

broken up by recombination when GC lines were produced and

by potential phasing errors during GC imputation (Figure 2).

Table 1 compares the genomic relationship matrix (GRM)

derived from SNPs and GRMs constructed with haplotypes using

the three methods with optimal parameter settings (described in the

following section). All haplotype-based GRMs were significantly

correlated with the SNP-based GRM in the Mantel test (p < 0.001),

with the HaploBlocker method showing the lowest Mantel

correlation with the SNP-based GRM. Table 2 shows the

reduction in explanatory variables for the three haplotype

methods compared to the number of SNPs. The strongest

reduction was observed for the HaploBlocker method with the

number of haplotypes being only 3-15% of the number of SNPs.

Despite this strong reduction, the HaploBlocker GRMmaintained a

high correlation (> 0.9) with the SNP-based GRM.
3.2 Impact of parameter settings on
haplotype construction and
prediction accuracy

Haplotype construction was profoundly affected by parameter

settings. Therefore, we investigated how selected parameters

influenced our success criterion, prediction accuracy. Considering

the multitude of parameters and the constrained sample size in this

study, our objective was not the exhaustive search for optimal

parameter settings in each scenario. Instead, we analyzed the effect

of individual parameters on prediction accuracy.

The impact of parameter settings on prediction accuracy of

within population prediction (scenario 1) is shown in

Supplementary Figure S2. With FixedHB, differences in

prediction accuracies were negligible when varying window size

for the traits under study in the DH populations. In the GC

populations, variation in window size affected the five traits

differently, with larger windows leading to an increase or decrease

of PAs (Supplementary Figure S2A). Thus, we chose FixedHB
A

B

C

FIGURE 2

Characteristics of haplotypes generated from three methods,
FixedHB (A), HaploView (B) and HaploBlocker (C), with different
parameter settings in scenario 1. Each data point corresponds to a
distinct haplotype set, with the x-axis indicating the averaged
haplotype length and the y-axis representing the total number of
haplotype alleles. Colors differentiate the four populations. For
HaploView, symbols indicate the algorithm used. HaploBlocker
parameter settings are not distinguished to maintain clarity.
TABLE 1 Comparison of SNP-based and haplotype-based genomic
relationship matrices (GRM).

FixedHB
(window
size: 20)

HaploView
(GAB)

HaploBlocker
(window size: 20,

target coverage: 99%)

DH_KE 0.996 0.980 0.930

DH_PE 0.996 0.980 0.941

GC_KE 0.992 0.966 0.944

GC_PE 0.995 0.972 0.984
Mantel correlations between the SNP-based GRM and GRM generated by each respective
haplotype method with optimal parameter settings are given.
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haplotype sets with window size 20 for further comparisons. With

HaploView, the three algorithms lead to very similar prediction

accuracies, none of them being consistently superior across traits

(Supplementary Figure S2B). Therefore, we will restrict

presentation of results to the default method (GAB) in further

comparisons. Regarding HaploBlocker, we observed that haplotype

libraries with higher target coverage lead to higher prediction

accuracies. For window size setting no clear trend was found

(Supplementary Figure S2C). We chose maximum target coverage

(99) and default window size (20) for further comparisons.

In scenario 2, prediction accuracies of FixedHB decreased for

window sizes greater than 20 for most traits (Supplementary Figure

S3A). With HaploBlocker, the parameterMin Subgroup was used to

control the minimum number of alleles for each haplotype in each

pre-defined subgroup, here DH and GC. Increasing the parameter

Min Subgroup from 0 to 5, more than halved the length of the

haplotypes (Supplementary Figure S4A) with only small reductions

in genome coverage (Supplementary Figure S4B). Based on the

general prediction performance of the settings, we identified an

optimal value, 40, for Min Subgroup for both KE and PE

(Supplementary Figure S4C), which implied that the best

predicting haplotype libraries comprised haplotypes with

frequencies higher than ~5% in DH and 8% in GC, respectively.

We also tuned the parameter MCMB which controls the filtering of
Frontiers in Plant Science 06
haplotypes, with lowerMCMB resulting in higher genome coverage

(Supplementary Figure S4B). Lower MCMB values were also

preferred for prediction, with 1 being the best for KE and 1250

being the best for PE (Supplementary Figure S4C).

In scenario 3, window size 10 appeared to be a stable value for

FixedHB, although the optimal value varied depending on the

specific trait being analyzed (Supplementary Figure S3B).

Regarding HaploBlocker, preferred settings differed substantially

between DH and GC populations. For DH populations, settingMin

Subgroup > 0 lead to a significant reduction in genome coverage of

the haplotype library (Supplementary Figure S5B), but to a

significant increase in prediction accuracy (Supplementary Figure

S5C). This indicated an advantage of excluding population specific

haplotypes and focusing on haplotypes shared by the two landraces.

For GC populations, the impact of Min Subgroup on genome

coverage (Supplementary Figure S5B) and prediction accuracy

(Supplementary Figure S5C) was not as pronounced. Ultimately,

settings with theMin Subgroup of 20 for DH and 0 for GC; MCMC

1250 for DH and 1 for GC in the MCMB were selected as optimal

haplotype libraries for comparison (Supplementary Figure S5C).
3.3 Haplotypes slightly outperformed SNPs
in within population prediction

Accuracies for haplotype-based and SNP-based predictions in

scenario 1 are shown in Figure 3 and Supplementary Figure S6.

FixedHB and HaploView methods yielded similar results. None of

the 20 possible trait-population combinations showed a significant

decrease in prediction accuracy neither for FixedHB nor for

HaploView methods (Supplementary Table S1). With FixedHB and

HaploView, the highest improvement in prediction accuracy was

obtained for final plant height in the GC_KE population (9.1 and

11.6%, respectively).With the HaploBlockermethod, none of the tested

parameter settings consistently outperformed SNP-based prediction.

With window size 20 and target coverage 99, HaploBlocker showed the

highest improvements of all three methods in GC populations (11.8%
TABLE 2 Number of explanatory variables (haplotype alleles or SNPs)
used for genomic prediction.

FixedHB
(window
size: 20)

HaploView
(GAB)

HaploBlocker
(window size:
20, target
coverage:

99%)

SNP

DH_KE 84,406 51,860 10,225 369,680

DH_PE 106,620 77,314 14,236 375,204

GC_KE 112,092 72,215 53,178 366,079

GC_PE 127,420 93,445 41,239 392,016
FIGURE 3

Comparison of accuracies in within population prediction (scenario 1). The x-axis shows the prediction accuracy of SNP-based GBLUP, and the
y-axis displays the prediction accuracy of three haplotype-based genomic prediction methods. Colors correspond to the population used as
prediction set, different symbols represent five agronomic traits. The haplotype sets were generated using FixedHB with a window size of 20 SNPs,
the GAB algorithm for HaploView, and HaploBlocker with a window size of 20 and a target coverage of 99.
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for final plant height), but it performed below par in four of the five

traits in DH_PE.
3.4 Focusing on shared haplotypes
improves prediction across populations

FixedHB and HaploView based prediction did not show a

consistent advantage in scenario 2. Results of HaploView were

generally better than the SNP-based method, but for prediction of

plant height in DH_PE, accuracies were remarkably inferior (Figure 4).

In contrast to the other two methods, it was possible with

HaploBlocker to focus on haplotypes shared in pre-defined

subgroups, here DH and GC. HaploBlocker haplotype libraries

with optimized settings, where population specific haplotypes

were excluded, showed improved prediction accuracies compared

to SNP-based prediction in most cases. Average improvement was

5%, with a maximum improvement of 33.5% in the best case (early

vigor V6 in PE), and a decrease of 6.8% in the worst case (plant

height V6 in PE) (Figure 4).
3.5 Improvement from haplotype-based
prediction is trait-dependent in across
landrace prediction

The prediction results in scenario 3 differed substantially for

predictions across landraces in DH populations and in GC

populations. In DH populations, both haplotype and SNP-based

predictions yielded generally low prediction accuracies (<0.25)

(Figure 5). However, consistent significant improvements in

prediction accuracies were observed for root lodging and female

flowering time with all three methods. When predicting in GC

populations, prediction accuracies were clearly separated by trait,

with the early development traits showing low accuracies. For

female flowering time and final plant height, haplotypes

somewhat improved the predictions (Figure 5).
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4 Discussion

Using haplotypes instead of individual SNPs can be beneficial

for a wide range of applications (Bhat et al., 2021). In plant

breeding, haplotypes have been shown to lead to higher

accuracies in genomic prediction (Jiang et al., 2018; Sallam et al.,

2020; Difabachew et al., 2023) and to be advantageous in the

discovery of novel genetic variation in plant genetic resources

(Mayer et al., 2020). In the latter case, the construction of

haplotypes is obligatory to assess if alleles discovered in genetic

resources for traits of interest are already present in elite material or

represent novel sources of diversity. However, determining the

optimal approach to define haplotypes is not straightforward

because the result of haplotype construction methods heavily

depend on the genotyping method and density, the linkage

disequilibrium in a given species and population, the relatedness

of the individuals in that population and haplotype sharing when

several populations are analyzed together.

In this study, we explored the suitability of three different

haplotype construction methods to capture marker trait

associations for quantitative traits. As success criterion we used

the accuracy of haplotype-based prediction within and across

populations of different genetic structure in comparison to SNP-

based prediction. We could show that haplotype-based prediction

consistently outperformed SNP-based prediction within and across

populations but the choice of the haplotype construction method

and the parameter settings determined its success.
4.1 Choice of haplotype
construction method

FixedHB and HaploView are well suited as haplotype

construction methods for maize populations without substructure

e.g. scenario 1 in our study. Differences in prediction accuracies

were small, but both methods outperformed or performed equally

to the SNP-based method across traits, irrespective of the
FIGURE 4

Comparison of accuracies in across population prediction (scenario 2). The x-axis shows the prediction accuracy of SNP-based GBLUP, and the
y-axis displays the prediction accuracy of three haplotype-based genomic prediction methods. Colors correspond to the population used as
prediction set, different symbols represent five agronomic traits. For FixedHB window size 20 was used; for HaploView the GAB algorithm was used;
and for HaploBlocker selected parameter settings were: MCMB: 1 for KE and 1250 for PE, Min Subgroup: 40 for both landraces.
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population type (DH or GC) and in both landraces. The landrace

with the higher LD (KE) seemed to profit a little more from

haplotype-based prediction (Figure 3). For the two methods,

prediction accuracies were very similar, most likely because both

integrate information on LD patterns in the population, HaploView

by building blocks based on the LD parameter D’, FixedHB by

forming haplotypes from adjacent SNPs and leading to haplotypes

of comparable length. The advantage of HaploView is that no

parameter tuning is necessary and that the total number of

haplotype alleles is smaller compared to FixedHB with optimal

window size. With HaploView, the total number of haplotypes

decreased to 14-24% of the original SNP number. Dimensionality

reduction of the genotypic marker matrix was also considered

advantageous with LD-based and short-range haplotype methods

in other studies (Won et al., 2020; Li et al., 2021; Ye et al., 2022).

Depending on the prediction model, the reduction in explanatory

variables can also be beneficial for decreasing memory use and

computation time, as well as for incorporating interactions between

explanatory variables in the statistical model (Vojgani et al., 2021,

2023). When including SNPs that had remained unassigned to

haplotypes as additional explanatory variables in the statistical

model as proposed by Difabachew et al. (2023), we observed a

reduction in prediction accuracy compared to models that did not

include them (data not shown). This could be the result of an

increase in dimensionality of the model but also of additional noise

due to presumably higher genotyping errors of the unassigned

SNPs. When deciding on the optimal method to use, it should be

noted that with HaploView additional computational work is
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required compared to FixedHB when new individuals are added

to the population, as the LD in the population will change.

HaploBlocker on the other hand did not perform as well in

scenario 1 as the other two methods, particularly in the DH

populations. There was a striking difference in haplotype length

between HaploBlocker and the other two methods in scenario 1

(Figure 2). HaploBlocker produced very long haplotype blocks with

low frequency in the DH populations especially when target

coverage was not at its maximum (Supplementary Figure S1).

This was a clear disadvantage for prediction (Figure 3;

Supplementary Figure S2C). Our findings are in contrast to the

increase in prediction accuracy for haplotypes constructed with

HaploBlocker as compared to SNP-based prediction in a wheat

diversity panel reported by Difabachew et al. (2023). This

discrepancy can very likely be explained by the difference in

population structure between the two studies. The wheat diversity

panel presumably had a complex IBD structure giving

HaploBlocker-based prediction an advantage over SNP-based

prediction despite some loss of genome coverage. In the landrace

derived maize DH populations, although some IBD patterns exist

due to the finite number of landrace S0 plants used for DH line

generation, the gain in accuracy due to IBD information might not

be sufficient to compensate for the loss of information from the

reduction in genome coverage.

Due to the strong variation in haplotype lengths generated by

HaploBlocker, we modified the genomic relationship matrix in the

GBLUP model by weighting each haplotype based on its length on

the linkage map, as well as with the number of genes and SNPs it
FIGURE 5

Comparison of accuracies in across landrace prediction (scenario 3), DH at the top and GC at the bottom. The x-axis shows the prediction accuracy
of SNP-based GBLUP, and the y-axis displays the prediction accuracy of three haplotype-based genomic prediction methods. Colors correspond to
the population used as prediction set, different symbols represent five agronomic traits. For FixedHB window size 10 was used; for HaploView the
GAB algorithm was used; and for HaploBlocker selected parameter settings were: MCMB: 1250 for DH and 1 for GC, Min Subgroup: 20 for DH and 0
for GC.
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encompasses (see Supplementary Methods). Although weighting

with the number of genes or SNPs could potentially enhance the

accuracy of haplotype-based prediction for certain traits, our

findings indicated that these improvements were still insufficient

to outperform the SNP-based method (Supplementary Figure S7).

Consequently, we did not observe any clear advantages resulting

from this modification.

In across population prediction (scenarios 2 and 3) none of the

three methods outperformed SNP-based prediction consistently.

However, with HaploBlocker parameter tuning could be optimized

so that specific settings were advantageous in comparison to SNP-

based prediction. The most important parameters determining the

prediction success of across population and across landrace

prediction with HaploBlocker are discussed in the following section.
4.2 Choice of HaploBlocker parameter
settings for across population prediction

When predicting across populations with the HaploBlocker

method, haplotypes should be able to capture IBD genome

segments shared by the different populations (Pook et al., 2019).

The varying levels of relatedness of the TS and the PS in the three

scenarios under study allowed us to investigate how parameters of

haplotype construction affected prediction accuracy and how they

should be tuned to obtain optimal results.

We investigated the performance of haplotype-based prediction

across DH and GC populations derived from the same landrace in

scenario 2. The two types of populations differ with respect to the

alleles contributed by the capture line, allele frequencies, LD and

linkage phase similarities (Hölker et al., 2022). With HaploBlocker,

it was possible to build a common haplotype library for DH and

GC, with an increasing number of shared haplotypes (parameter

Min Subgroup) at the expense of genome coverage. Specific

parameter settings in HaploBlocker lead to higher prediction

accuracy than SNP-based prediction and predictions using the

other two haplotype methods (Figure 4). The same effect was

observed in scenario 3 for DH populations where exclusion of

landrace specific haplotypes also led to improved prediction

accuracies (Supplementary Figure S5C).

In scenario 3, predictions across landraces rely on population-

wide LD between markers and QTL in ancestral founders (Habier

et al., 2013; Wientjes et al., 2013; Schopp et al., 2017). The low

accuracy in prediction across landrace DH populations could be

attributed to the low linkage-phase similarities between KE and PE

(Hölker et al., 2022). To overcome this, we attempted to increase the

level of ancestral LD by increasing the frequency of shared

haplotypes, which are assumed to capture IBD information.

Despite these efforts, the effectiveness of haplotype-based genomic

prediction varied depending on the trait, aligning with findings in

similar studies (Won et al., 2020; Weber et al., 2023). This variability

might stem from the influence of population-specific QTL, which

might play a substantial role in controlling specific traits. In

addition, the constructed haplotypes in our study may not

capture the IBD segments linked to the QTL that impact these

traits comprehensively, leading to the observed discrepancies in
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prediction accuracy. In prediction across landrace GC populations,

haplotypes somewhat improved the accuracy for female flowering

time and final plant height, which could potentially be attributed to

the shared haplotypes of ancestor FV2 as demonstrated by Hölker

et al. (2022).

In scenario 2, we hypothesized that the proportion of

haplotypes shared between FV2 and the DH population had an

effect on prediction accuracy, with higher values being

disadvantageous for prediction, because these haplotypes might

be alike in state but have different QTL effects in DH and GC. Thus,

the FV2 composition could be an indicator for tuning the

HaploBlocker parameter Min Subgroup in scenario 2 independent

of phenotypic data. Only when setting Min Subgroup > 0,

HaploBlocker will account for subgroups in the genotypic data

and will construct a library of haplotypes shared by both

populations. The response of FV2 composition to an increase in

Min Subgroup showed a convex behavior (Supplementary Figures

S8A, B). This pattern is likely due to the trade-off between filtering

out FV2 exclusive haplotypes and loosing rare haplotypes in the

landrace. When choosing the settings with lowest FV2 composition

(Supplementary Figures S8A, B), 30 for KE and 50 for PE, we

arrived at the optimal value (40) chosen based on the success

criterion prediction accuracy and the resulting haplotype sets

displayed superior or equal performance than the SNP-based

prediction for most of the traits (Supplementary Figure S8C).

These findings emphasize the importance and feasibility of

leveraging population background knowledge to establish criteria

for optimizing haplotype construction settings.

In this study, our primary focus was on identifying relevant

parameters for haplotype construction and comparing the efficiency

of different haplotype libraries in genomic prediction in comparison

to each other and to SNP-based methods. We could show that

haplotypes have the potential to increase prediction accuracies with

optimal parameter settings. However, to identify the optimal

parameter setting for haplotype construction with broad

applicability, it is crucial to tune the parameters in specific

training sets accounting for the respective population structure of

the prediction sets to ensure the robustness and applicability of the

identified parameters across a range of populations and

genetic material.
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