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Abstract: Recent advances in artificial intelligence combined with behavioral sciences have led to the
development of cutting-edge tools for recognizing human emotions based on text, video, audio, and
physiological data. However, these data sources are expensive, intrusive, and regulated, unlike plants,
which have been shown to be sensitive to human steps and sounds. A methodology to use plants as
human emotion detectors is proposed. Electrical signals from plants were tracked and labeled based
on video data. The labeled data were then used for classification., and the MLP, biLSTM, MFCC-CNN,
MFCC-ResNet, Random Forest, 1-Dimensional CNN, and biLSTM (without windowing) models
were set using a grid search algorithm with cross-validation. Finally, the best-parameterized models
were trained and used on the test set for classification. The performance of this methodology was
measured via a case study with 54 participants who were watching an emotionally charged video;
as ground truth, their facial emotions were simultaneously measured using facial emotion analysis.
The Random Forest model shows the best performance, particularly in recognizing high-arousal
emotions, achieving an overall weighted accuracy of 55.2% and demonstrating high weighted recall
in emotions such as fear (61.0%) and happiness (60.4%). The MFCC-ResNet model offers decently
balanced results, with AccuracyMFCC−ResNet = 0.318 and RecallMFCC−ResNet = 0.324. Regarding the
MFCC-ResNet model, fear and anger were recognized with 75% and 50% recall, respectively. Thus,
using plants as an emotion recognition tool seems worth investigating, addressing both cost and
privacy concerns.

Keywords: emotion recognition; artificial intelligence; deep learning; plant sensor; classification;
emotion models

1. Introduction

Emotions are an integral part of the human being. They condition our actions and
decisions [1]. There’s nothing more personal than an emotion. Ekman and Friesen [2],
however, have demonstrated the universal nature of basic emotions, enabling everyone to
recognize them, independently of their culture or education.

Human emotion recognition is a widely studied topic in human behavioral research.
Different types of data such as video [3–5], speech [6,7], and text [8–10] are used for analysis.
However, the high cost (in terms of acquisition, operation, and maintenance), as well as
the privacy intrusiveness and regulations surrounding these types of data, are obstacles
to the development of human emotion detection [11]. Unlike these sensors, which are
difficult to accept, plants are part of people’s daily lives. In addition to their benefits for the
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quality of human life [12], it has been shown that plants can sense human steps [11] and
sounds [13]. The question then arises of whether this ability of plants can be leveraged to
detect human emotions.

This article proposes a methodology using plants as sensors to detect human emotions.
This approach addresses the concerns and high costs of traditional emotion-tracking meth-
ods and will pave the way for new research in human emotion detection and recognition.

The article is structured as follows. Section 2 provides an overview of the research
on human emotion detection as well as the use of plants as sensors. Then, Section 3
presents the material and methodology necessary to use plants as human emotion detectors.
Section 4 will describe the results obtained by applying the proposed methodology to a
real-world experiment. The limitations and directions for further research are discussed in
Section 5. Finally, Section 6 concludes the article by recalling the contributions and limits of
the proposed methodology, as well as future research directions.

2. State of the Art

Although both plants and emotions are an integral part of people’s daily lives, the use
of the former to recognize the latter is unprecedented. In order to better understand the
foundations supporting the development of a methodology enabling the use of plants as
human emotion detectors, an overview of the research on emotion recognition (Section 2.1)
and plant-based sensors (Section 2.2) is given in the following section.

2.1. Emotion Recognition

What could be more personal than an emotion? Emotions reflect an automatic, uncon-
scious evaluation of a situation based on past personal experience and human evolution [14].
Thus, emotions are, by definition, subjective and personal. Since each person has their own
personal history, the same situation can provoke a wide variety of emotions of varying
intensity in different people [15]. Despite the various psychological and philosophical
debates on the rational (cognitive and intellectual) or irrational (emotional and social)
nature of human beings [16], the power and omnipresence of emotions, as well as their
influence on decision-making, is widely accepted [1]. Emotions have a major influence on
an individual’s reactions (choices and actions) and on the assessment of others’ behavior in
a given situation [15]. The structure of emotional spaces is still up for debate [17]. Since
Darwin [18] first introduced the notion of emotions, different approaches have been pro-
posed. For Ekman [19], six basic emotions are present in all cultures and are recognizable
by the same facial expressions. This supports the universalist theory of emotions to the
detriment of the cultural hypothesis [2,14]. Thus, for Ekman [19], fear, anger, joy, surprise,
disgust, and sadness are the primary colors of the chromatic palette of emotions. When
the basic emotions are mixed, they form a vast variety of more complex emotions, such
as pride, excitement, or amusement [14]. Others, such as Russell [20], model emotions on
a continuum. The valence-arousal model describes a person’s emotional state according
to the level of pleasantness (valence positive or negative), and arousal (arousal high or
low) of the emotion felt [20]. These two models are not mutually exclusive. Indeed, the six
basic emotions defined in [19] and the resulting complex emotions can be placed on the
continuum proposed in [20], as illustrated in Figure 1.

With the advancement of new technologies and the constant increase in computing power,
these conceptualizations of human emotion form the basis of automatic emotion recognition
(AER). Although the discrete conceptualization of emotions (such as Ekman [19]) results in
a classification problem and is cited frequently in the relevant literature [17], the valence-
arousal continuum can also be used for regression purposes [4,5]. Regardless of the
chosen framework, a wide range of data sources can be used to detect emotions. When
leveraging the most recent advances in AI and deep learning, the main input sources for
AER are natural language processing (NLP) for text, facial emotion recognition, and speech
emotion recognition.
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Text analysis is one of the most widely used techniques due to the abundance of opin-
ions and emotions shared by individuals on social networks or ecommerce platforms [9,10].
Emotion detection from text can be handled by a keyword-based approach or, more rarely,
a rule-based approach. However, the most commonly used approach is based on learning
since it offers the best performance when dealing with the implicit expression of emotions
(such as irony or sarcasm) [9,10]. Within this approach, we find machine learning tools
(support vector machine (SVM), decision trees, random forest (RF), k-NN, and the hidden
Markov model (HMM) [8]) and deep learning tools (convolutional neural networks (CNNs),
long short-term memory (LSTM), and transformers) [9,10]. SVM, CNN, and LSTM are also
commonly used for emotion detection using image analysis [3].

Figure 1. Approximate position of the Ekman [19] basic emotions on the Russell [20] valence-arousal model.

Image analysis is extremely relevant for emotion detection since two-thirds of the
information transmitted by an individual is in the form of non-verbal elements, particularly
through facial expressions [3]. The work of Ekman and Friesen [21] makes it possible to
characterize the basic emotions described by Ekman [19], which are felt by an individual
and are represented by facial expressions. More recently, the hand-crafted attributes used in
conventional methods have been replaced by training automated facial emotion recognition
(FER) models, such as in the work of Mühler [22], which automatically generate attributes
for classification [3,23]. Although non-verbal information is omnipresent, speech remains
the most natural and fastest method of communication for humans. Speech analysis is,
therefore, an important element of AER.

Speech analysis uses the same classification tools as image or text analysis. These
include machine learning methods, such as SVM, HMM, or k-NN [6], but also deep
learning approaches, such as DNNs, CNNs, and LSTM [7]. One of the most important
challenges faced in speech analysis is the extraction of attributes with significant emotional
representativeness, regardless of the lexical content used. El Ayadi et al. [6] describe
continuous, qualitative, spectral, and Teager energy operator (TEO)-based attributes as
the four categories of attributes that can be extracted from speech analysis. Spectral
attributes are used as a short-term representation of speech signals, and Mel frequency
cepstral coefficient (MFCC) feature extraction is an important data-processing tool since
these features hold promise for the representation of speech in multiclass classification [6].
Although many advances have been made in the use of text, images, and speech for emotion
recognition, they are based on elements that can be consciously manipulated by individuals.
Physiological data can limit that risk.

The expression of emotions generates physiological changes in individuals that are
hard to fake [24]. Thus, physiological data, such as brain activity (EEG), body temperature,
heart rate signals (ECG), muscle activity (EMG), sweat levels, and respiration levels, can
be used as “honest” input into emotion recognition models [24]. Once again, machine
learning and deep learning tools, such as SVM, k-NN, RF, CNN, LSTM, and DNN, are used
in this context.
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The influence of emotions on people’s choices and behavior makes AER an exciting
field of study for many sectors, such as robotics, marketing, education, healthcare [9,10],
and also finance [8]. For an in-depth discussion of AER, see the work of Kruse [25].

However, the high cost (in terms of acquisition, operation, and maintenance), as well
as privacy intrusions and regulatory restrictions when collecting these types of data (video,
audio, text, EEG, etc.), are an obstacle to the development of automated human emotion
detection systems [11].

2.2. Using Plants as Sensors

Unlike cameras, microphones, or EEG, plants are part of people’s daily lives. In addi-
tion to their benefits for the quality of human life [12], it has been shown that plants can be
used as sensors that are able to monitor their environment [26]. More precisely, plants are
sensitive to changes in luminous intensity, pressure, and temperature, as well as changes
in the electromagnetic or gravitational fields [27]. They respond to these environmental
changes by generating different types of electrical signals within and between cells [26].
The effects of environmental changes on plants can be rapidly observed thanks to the
propagation speed of bioelectric signals, ranging from 0.05 cm/s to 40 m/s [27]. In order to
detect electrical reactions in plants, electrodes can be placed on the plant [28] or directly
inside the plant, in contact with the targeted cells [29]. The resulting signal corresponds to
the difference in potential between the plant cells and the soil. The electrical analysis of
plants has been carried out for many plant species; for instance, Oezkaya and Gloor [11]
used Mimosa pudica for their experiments, whereas Peter [13] used Codariocalyx motorius.
Frequently, basil (Ocimum basilicum) is used, as its leaves are sensitive to the electrodes,
and it is easily available in local supermarkets.

The use of electrical signals emanating from plants as sensors has been exploited in a
limited number of works. Chatterjee et al. [30] used electrical signals from tomato plants
to recognize the chemicals that the plants are exposed to. Signals collected using internal
electrodes placed in roots, stems, and leaves are statistically processed, and the extracted
attributes are used as input to a linear discriminant analysis (LDA) classification model.
The study classifies the sodium chloride (NaCl), sulphuric acid (H2SO4), and ozone (O3) to
which plants are exposed, with an accuracy of approximately 70%.

In addition to their ability to recognize chemicals, plants can also be useful for rec-
ognizing individuals and their moods (happy or sad) [11]. Oezkaya and Gloor [11] used
external electrodes with the SpikerBox [31] to record electrostatic changes caused by a per-
son’s gait. The signal generated by the plant is processed by MFCC and then classified
using a random forest (RF) model. By using this method, one can recognize one individual
among six others with an accuracy of 66%. It can also determine a person’s mood with an
accuracy of 85%. Finally, Peter [13] showed that plants are also sensitive to sound. Using
statistical modeling of plant signals combined with an MLP classifier, the three sounds
used in the experiments were classified with an accuracy of 72%.

Thus, it has been shown that the external sensing capabilities of plants can be used
for the development of sensors with a quality comparable to that of dedicated devices.
With simple, inexpensive operations and no need to record personal data, plants appear to
represent an interesting data-acquisition tool that remains relatively unexploited. In the
remainder of this paper, we investigate the ability of plants to detect human emotions.

3. Method

Traditional sensors to capture human emotions are often perceived as intrusive; they
are highly regulated and can be costly to acquire, operate, and maintain. On the other
hand, plants are an integral part of our environment. In addition to their aesthetic aspects,
it has been shown that plants are endowed with an astonishing capability for sensing
their environment [11,13,30]. This study seeks to further this knowledge and proposes
a methodology for enabling the use of plants as human emotion detectors. As has been
mentioned above, earlier work [11] has shown the promise of plants to be used as sensors



Sensors 2024, 24, 1917 5 of 22

to recognize the positive and negative moods of humans by measuring electrical changes
in the voltage between the roots and leaves of a plant. In this research, we investigate if
a plant is capable of identifying more granular emotions, distinguishing between the six
Ekman emotions [19]. The main challenges of this work were two-fold: first, an apparatus
needed to be developed capable of measuring these potential differences of the plant at the
millivolt level. Secondly, a machine learning model needed to be developed, which could
use these voltage change time series as input and predict the emotions of humans near the
plant based on these voltage changes. In order to test this research hypothesis, a method
was developed and verified in an experiment.

3.1. Experimental Setup

In order to develop a methodology to detect human emotions using a plant, an ex-
periment was designed to simultaneously collect the emotions of an individual and the
reactions of a plant to the human [25]. The purpose of the experiment was to induce strong
emotions in the participant and to record the responses obtained by the plant as a sensor.
The experiment was structured into five steps:

1. First, the participant’s consent was collected, and the observer in charge of running
the session answered any open questions.

2. Then, the observer quickly described the task that the participant would be asked to
perform. The task was to watch a video sequence designed to elicit strong emotional
responses from participants. The video sequence was created based on previous work
by Gloor et al. [32], and the details of the video are described in Table 1.

Table 1. Description of the video sequence used to elicit participants’ emotions (adapted from [32]).

Video ID Name Short Description Expected
Emotion

Duration
(s)

1 Puppies Cute puppies running Happiness 13

2 Avocado A toddler holding an avocado Happiness 8

3 Runner
Competitive runners supporting a girl
from another team over the finish line Happiness 24

4 Maggot A man eating a maggot Disgust 37

5 Raccoon Man beating raccoon to death Anger 16

6 Trump Donald Trump talking about foreigners Anger 52

7 Montain bike Mountain biker riding down a rock bridge Surprise 29

8 Roof run Runner almost falling of a skyscraper Surprise 18

9 Abandoned Social worker feeding a starved toddler Sadness 64

10 Waste
Residents collecting electronic

waste in the slums of Accra Sadness 31

11 Dog Sad dog on the gravestone of his master Sadness 11

12 Roof bike Person biking on top of a skyscraper Fear 28

13 Monster
A man discovering a

monster through his camera Fear 156

14 Condom ad
Child throwing a tantrum

in a supermarket Multiple 38

15 Soldier Soldiers in battle Multiple 35

3. The participant then sat in the experimental room, and the sensors (plant and camera)
were activated. Figure 2 is a photograph of the experimental setup.
A screen displayed the videos to elicit the participants’ emotional reactions (see
Table 1). These reactions were filmed by a wide-angle Logitech Meetup camera
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placed just below the screen. The camera was set up to obtain a zoomed image
of the participant’s face. Additionally, the participants each wore a wired headset
microphone connected to a hand-held voice recorder that was used to record their
voices. The camera also recorded the voice and provided an additional backup data
source for this modality. Finally, a basil plant, Ocimum basilicum, equipped with a
sensor, SpikerBox [31], was positioned in front of the participant.

Figure 2. Experimental setup to detect human emotions with a plant-based sensor.

4. Then, the observer started the video sequence and left the room to allow the participant
to watch the video.

5. Once the video sequence was finished, all sensors were deactivated, and the data
collected by the plant sensor and the camera were saved.

This protocol was repeated for each participant in the study. As the participants
watched the videos, their emotional reactions were recorded by the plant-based sensor and
the camera. The individual files were then stored in two databases called “plant signals”
and “video”.

3.2. Analysis

In order to analyze the data, the four-step algorithm illustrated in Figure 3 was used.
First, the data were preprocessed. The plant signals were cleaned and formatted so

that the classification algorithms could use them. They were also labeled using video data,
which computed the emotions felt by the participants during each second of the experiment
from their facial expressions. Once the plant signals were formatted and labeled, they were
used in the subsequent classification model generation step.

In the classification model generation step, different deep learning models were tested
and parameterized using the cross-validation and grid-search algorithms. The grid-search
algorithm used the cross-validation folders to find the best combination of hyperparameters
for both model architecture and data preparation. The best parametrization for each of the
models was saved and used in the model training step.

In the model training step, training and validation sets were once again used to
train the selected models further. The trained models were finally tested with the test set.
The goal was for the plant sensor to exclusively predict the emotion of the viewer.
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Each step of the methodology is detailed below.

Figure 3. Four-step algorithm to detect human emotions with a plant-based sensor.

3.3. Data Preparation

Data preparation is a necessary step to transform raw data into data that can be used by
artificial intelligence algorithms. Although both data sources needed to be pre-processed,
the signals from the plant sensor underwent more significant transformations. In our
research, we implemented two distinct methodologies for data preprocessing, each yielding
divergent outcomes. The initial method, henceforth referred to as “MFCC Extraction”,
involves segmenting the electrical signal into 20 s intervals, followed by the extraction of
Mel Frequency Cepstral Coefficients (MFCCs) from these segments. The second method,
which we designate as “Raw Signal Analysis”, entails isolating 1 s fragments from the raw
electrical signal. These fragments directly correspond to the facial emotions detected over
the duration of 1 s. This approach focuses on analyzing the amplitude variations within
the signal. The methodologies are described in detail in the subsequent sections.

3.3.1. Initial Data Preparation Approach—MFCC Extraction with Windowing

First, each signal needed to be treated in order to limit the effect of the experimental
conditions on signal analysis. Indeed, although the experimental conditions were con-
trolled, interferences due to the environment or the position of the sensors on the plant can
alter the signal. These conditions are considered constant throughout the same experimen-
tal session. The signals were normalized using z-normalization on a per-file basis.

Then, the signal was partitioned in order to transform it into a set of shorter win-
dows. Each window represents a portion of the normalized signal, the length of which
is determined by the hyperparameter window, expressed in seconds. Another hyperpa-
rameter named hop allows one to choose the number of seconds between the beginning
of two successive windows. This specificity allows for the succession of overlapping time
windows if the hop value is smaller than the window size. This is the principle of the
sliding window that is used in time series processing. The hyperparameters were tuned
using the cross-validation and grid-search algorithm presented in the following step of
the methodology.

In order to classify the responses of the plant according to the emotions felt by the
participants, it was important to collect the real emotion felt by them. Image analysis for
emotion detection has been widely studied and recognized by the scientific community
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(see Section 2.1). Thus, the emotions recognized in the images extracted from the videos
are used as ground truth in order to label the signals obtained by the plant-based sensor.
During image labeling, each second of the video results in the extraction of an image. Those
images are then used as input to the well-known emotion detection model face-api.js [22] to
obtain the emotion felt by the participant during the one-second window considered. Face-
api.js offers robust face detection capabilities, primarily through its most accurate single
shot multibox detector (SSD)-based model, which integrates the lightweight MobileNet
V1 CNN with additional layers for box predictions. This setup has been recognized for its
high efficacy in face detection and face emotion recognition tasks, reporting accuracy rates
of between 86% [33] and 90% [34] in various studies. Such performance underscores the
model’s potential for reliable emotion detection, making it a credible choice for establishing
ground truth in emotion recognition research.

A temporal join is then used to associate the labels obtained from the video input with
the processed signals obtained from the plant sensor. The plant data window labels are
assigned based on the label at the end of the data window. Furthermore, those data points
where the label proposed by face-api.js does not match the expected emotion specified in
the column Expected emotion of Table 1 were excluded. The emotions to be detected are
stored in an emotion list containing nbemotion different emotions.

Finally, two independent datasets were created from the short plant signals.

• The first dataset consists of the downsampled short plant signals. Since the plant
sensor has a high sampling rate (10 kHz), a downsampling of the signals is required
before feeding them into the different training models. Downsampling reduces the
complexity of the signal while retaining the relevant information [11]. Its rate is a
hyperparameter called downsampling rate, the value of which is determined by trial
and error.

• The second dataset consists of the computation of the MFCC features from each
window. The result is a 2D matrix [time steps; number of MFCCs] that can be processed
by various deep learning algorithms, such as LSTM or CNN.

Obtaining these two datasets concludes the first step of the methodology: data pro-
cessing. The classification models as well as the optimization of the hyperparameters can
be initiated in the second step of the methodology: model generation.

3.3.2. Alternative Data Preparation Approach—Raw Electrical Signal Analysis

In contrast to the previous approach, the alternative data preparation method focuses
on analyzing the raw electrical signals from the plant sensor without downsampling and
windowing. This approach aims to explore the full complexity and granularity of the
data, potentially revealing subtle nuances in the signals that are associated with different
emotional responses in participants.

The electrical signals are captured from a SpikerBox [31] attached to a plant in the same
environment as participants viewing emotional videos. Each participant’s electrical signal
data, represented as an array, consists of 6,900,000 samples, reflecting the sampling rate
of the sensor (10,000 Hz) and the total length of the watched videos (690 s). The ground
truth for the emotions was derived from video recordings labeled with timestamps and the
corresponding emotions.

The raw electrical signals were processed without downsampling to preserve the
fidelity of the original signal. The signal for each participant is segmented into 1 s inter-
vals, corresponding to the timestamps of the emotion data. This segmentation results in
690 segments per participant, each containing 10,000 samples. Each signal segment was nor-
malized using z-normalization to reduce the impact of any variations in signal amplitude
and to facilitate comparability across the different participants. Instead of downsampling
or computing the MFCC features, this approach focuses on analyzing the raw, normalized
signal data. This decision is based on the hypothesis that the high-resolution data might
contain intricate patterns associated with different emotional states.
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The labeled emotions from the video data were used to tag each corresponding signal
segment. The process involved aligning the timestamps from the emotion data with the
signal segments, ensuring that each segment was labeled with the corresponding emotional
state of the participant at that specific second. The normalized signal segments and their
associated emotion labels were integrated into a cohesive dataset. This dataset forms the
basis for the subsequent modeling and analysis, wherein the relationship between the raw
electrical signals and the participants’ emotions was explored.

The final dataset comprises two main components: the normalized electrical signal
segments and their corresponding emotion labels. This dataset was taken into the next
phase of the study, which involved the development and training of the models to classify
the signals based on the emotional states of the participants.

3.4. Model Generation

The generation of classification models allows for the definition of their architecture
and also their parameterization. Many hyperparameters influence the performance of the
studied models, which is why it is important to choose them carefully.

The creation of the models aims to define the general architecture of the different
models considered for the detection of human emotions from plant signals. This task
corresponds to a multiclass classification of a time series. As neural networks are known
to perform well in these tasks (see Section 2.1), three different types of architectures were
considered. Table 2 summarizes the key elements of the architecture of each model. All
models produced an output of a vector of size [1, nbemotion], representing the probability of
occurrence of each detected emotion present in the emotions list.

A fully connected multi-layer perceptron neural network (MLP) was used as a base-
line, and LSTM-based models (biLSTM), CNN-based models (MFCC-CNN, and MFCC-
ResNet) were used to process the downsampled signals, and MFCC features, respectively.
ResNet is a deeper convolutional network proposed by He et al. [35] and is trained on
ImageNet [36]. The model MFCC-ResNet uses a neural network ResNet to process the
MFCC data extracted during the data preparation phase. In this work, the architecture
of the neural network ResNet was slightly modified to fit the emotion detection task.
Indeed, the last layer of every model is expected to be a dense layer that is activated by
the SoftMax activation function, containing nbemotion neurons, each representing one of the
detected emotions present in the Emotions list. Additionally, for the raw, unwindowed
plant electrical data, a random forest model was employed, taking advantage of its ability
to handle diverse datasets efficiently. It operates using a large ensemble of decision trees,
configured with parameters such as the number of trees and maximum depth to ensure
a balance in managing complex classification tasks. A one-dimensional CNN (1D CNN),
which is particularly suited to analyzing time series data, was also utilized for handling the
raw plant electrical signals. This model consists of a sequence of convolutional and pooling
layers, followed by dense layers with a ‘SoftMax’ activation function in the output layer
for class probability estimation. Lastly, another variant of the LSTM model, the biLSTM,
was applied to capture the long-term dependencies in the time-series data. This model’s
architecture features bi-directional LSTM layers followed by dense layers, fine-tuned to
optimize performance in emotion detection tasks. All models share the common trait of
outputting a probability vector, indicating the likelihood of each emotion detected in the
dataset. The output vector of all models is then a probability vector of size [1,nbemotion].

Each of the models has hyperparameters; it is important that these hyperparameters
are optimized to ensure the best performance. Table 3 presents the specific values associated
with each of the models’ hyperparameters, which should be tested during the grid search.

In addition to the hyperparameters specific to each model, the general hyperparam-
eters related to data preparation or model training also needed to be taken into account.
Table 3 summarizes all these hyperparameters and defines the ranges of values to be tested
during the optimization of hyperparameters by a grid search.
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Table 2. Synthesis of the architectures of the models.

Model Name Utility Input Architecture

MLP Baseline

Alternation of ReLu-activated
densely connected layers with
dropout layers to limit overfitting.
The last layer is a SoftMax-activated
dense layer of nbemotion neurons.

biLSTM Considers the temporal
dependencies of the plant signal

Two blocks’ model
Downsampled

plant signal
1. LSTM Layers embedded in a
bi-directional wrapper

2. Alternation of two ReLu-activated dense
layers with dropout layers. Each dense
layer is composed of 1024 and
512 neurons respectively.

The last layer is a SoftMax-activated
dense layer of nbemotion neurons.

MFCC-CNN
Specialized in 2D
or 3D inputs, as in

multifeatured time-series

Two blocks’ model.
1. Alternation of convolutional layers
with 2 × 2 max pooling operations.
2. Alternation of ReLu-activated dense layers
with dropout layers.

MFCCs features

The last layer is a SoftMax-activated
dense layer of nbemotion neurons

MFCC-ResNet
Pretrained DeepCNN

to emphasize the
importance of the

network depth

ResNet architecture slightly modified to fit
the emotion detection task. The top
dense layers used for classification are
replaced by a dense layer of 1024 neurons,
followed by a dropout layer.
The last layer is a SoftMax-activated
dense layer of nbemotion neurons

Random Forest
not windowed

Effective for
diverse datasets.

Good overall robustness.

Utilizes an ensemble of decision trees.
Parameters include nestimators:
300 (number of trees), maxdepth:
20 (maximum depth of each tree),
and classweight: None. This
configuration is aimed at handling complex
classification tasks, balancing bias and variance.

1-Dimensional CNN
not windowed

Suitable for
time series analysis

Sequential model with a 1D convolutional
layer (64 filters, kernel size
of 3, ‘swish’ activation, input shape
of (10,000, 1)). Followed by a MaxPooling
layer (pool size of 2), a Flatten
layer, a dense layer (100 neurons,
‘swish’ activation), and an output
dense layer (number of neurons equal
to unique classes in ‘y’, ‘softmax’
activation). Compiled with Adam
optimizer, ‘sparsecategorical_crossentropy’
loss, and accuracy metrics.

Raw plant signal
normalized, not windowed

The last layer is a SoftMax-activated
dense layer of nbemotion neurons

biLSTM
not windowed

Considers the temporal
dependencies of the plant signal

Sequential model with a Bidirectional
LSTM layer (1024 units, return
sequences true, input shape based
on reshaped training data), followed
by another Bidirectional LSTM layer
(1024 units). Concludes with a dense
layer (100 neurons, ‘swish’ activation)
and an output dense layer (number
of neurons equal to unique classes
in ‘y’, ‘softmax’ activation).
Optimized with Adam (learning rate 0.0003),
using sparsecategorical_crossentropy
loss and accuracy metrics.
The last layer is a SoftMax-activated
dense layer of nbemotion neurons
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Table 3. Synthesis of the hyperparameters to be tested by the Grid Search algorithm.

Model Name Parameter Values Number of
Configurations

MLP

dense Units
dense layers

Dropout Rate
Learning Rate

Balancing
Window

Hop

1024, 4096
2, 4

0, 0.2
3 × 10−4, 1 × 10−3

Balance, Weights, None
5, 10, 20

5, 10

288

biLSTM

LSTM Units
LSTM layers
Dropout Rate
Learning Rate

Balancing
Window

Hop

64, 256, 1024
1, 2, 3
0, 0.2

3 × 10−4, 1 × 10−3

Balance, Weights, None
5, 10, 20

5, 10

648

MFCC-CNN

Conv Filters
Conv layers

Conv Kernel Size
Dropout Rate
Learning Rate

Balancing
Window

Hop

64, 128
2, 3

3, 5, 7
0, 0.2

3 × 10−4, 1 × 10−3

Balance, Weights, None
5, 10, 20

5, 10

864

MFCC-ResNet

Pretrained
Number of MFCCs

Dropout Rate
Learning Rate

Balancing
Window

Hop

Yes, No
20, 40, 60

0, 0.2
3 × 10−4, 1 × 10−3

Balance, Weights, None
5, 10, 20

5, 10

432

RF no windowing
Number of estimators

Max Depth
Balancing

100, 200, 300, 500, 700
None, 10, 20, 30

Balance, Weights, None
60

1D CNN no windowing

Conv Filters
Conv layers

Conv Kernel Size
Dropout Rate
Learning Rate

Balancing

64, 128
2, 3

3, 5, 7
0, 0.2

3 × 10−4, 1 × 10−3

Balance, Weights, None

144

biLSTM no windowing

LSTM Units
LSTM layers
Dropout Rate
Learning Rate

Balancing

64, 256, 1024
1, 2, 3
0, 0.2

3 × 10−4, 1 × 10−3

Balance, Weights, None

108

In all models considered, the optimization of the hyperparameters window and hop
used in the partitioning task during the data preparation was needed. This is also the
case for the learning rate and for balancing hyperparameters. The learning rate is used
for the training of each model, whereas the balancing hyperparameter is used to handle
the unbalanced dataset. When the value balance is chosen, rare classes are oversampled,
whereas the majority classes are undersampled. In the case where the value weights is
chosen, the weight of each class is incorporated into the loss function so that all classes
have the same impact on this loss. Finally, if the value none is chosen, nothing is enacted to
compensate for the data unbalancing.

The other hyperparameters are model-specific. In the MLP model, the number of
dense layers (dense layers), the number of neurons per layer (dense units), and the dropout
rate (dropout rate) are the hyperparameters inherent to the model. Similarly, in the biLSTM
model, the number of LSTM layers (LSTM Layers), the number of neurons per layer (LSTM
units), and the dropout rate (dropout rate) are the hyperparameters with which to optimize it.
In the MFCC-CNN model, the dropout rate, the number of convolutional layers (conv layers),
the output dimensionality (conv filter), and the size of the 2D convolution window (conv
kernel size) are the hyperparameters inherent to the model. Finally, In the MFCC-ResNet
model, only two hyperparameters are model-specific. The pretrained hyperparameter
determines if the weights from the ImageNet training were used, whereas the number of
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MFCCs determines the number of MFCC features extracted during the data preparation
step. In the case of the Random Forest model, the key hyperparameters include the number
of trees in the forest (n_estimators), the maximum depth of the trees (max_depth), and the
class weights (class_weight). For the 1D CNN model, the important hyperparameters
comprise the number of filters (filters), the kernel size (kernel_size) in the convolutional
layers, the pool size (pool_size) in the pooling layers, and the number of neurons in the
dense layers (dense units). The model is also characterized by its learning rate (learning_rate)
and loss function (loss). Lastly, in the biLSTM model, the critical hyperparameters include
the number of LSTM layers (LSTM Layers), the number of units in each LSTM layer (LSTM
units), and the learning rate (learning_rate) of the optimizer. These hyperparameters are
crucial for fine-tuning the models’ performance in emotion-detection tasks.

The combinations of each value presented in Table 3 were tested by training each
classification model independently over a predetermined number of epochs.

3.5. Model Training

In order to identify the best parameters for each model, a grid search of the config-
uration was used with cross-validation. A five-fold cross-validation leads to a training,
validation, and test split of 60%, 20%, and 20% of the data.

Since the output of all presented models is a probability vector obtained from the
SoftMax activation function, the standard associated loss function called categorical cross-
entropy (CE) is used for training [37]. As explained by Qin et al. [37], the measurement of the
cross-entropy between the true label y and the label ŷ resulting from the SoftMax activation
function allows for adjusting the model parameters by backpropagation. The stochastic
gradient descent method known as the Adam optimizer [38] was used to train the models
on the training data, grouped by batch sizes of 64. The overfitting of the model was
monitored using the validation set.

Two metrics were used to measure the performance of the models during training.
The overall accuracy presented in Equation (1) measures the rate of the correct prediction of
the model. The average recall per class presented in Equation (2) measures the sensibility of
the model. In other words, it measures the ability of the model to find a good positive class.

Overall Accuracy =
TP + TN

TP + FP + TN + FN
(1)

Average Recall per Class =
1

nbclass
∑

∀class
Recallclass =

1
nbclass

∑
∀class

(
TP

TP + FN
)class (2)

where

TP = True Positive

FP = False Positive

TN = True Negative

FN = False Negative

During the grid search, each configuration is tested with the training and validation
sets of different folds. Thus, the whole dataset is found at least once in the test. The models
are trained on a limited number of epochs. By using the EarlyStopping function, the training
can be stopped if the loss on the validation set does not improve after a predetermined
number of epochs, which is called patience. The performance of each configuration is the
average of the metrics (overall accuracy and recall) obtained for each fold.

Once this first training is finished, the configuration having obtained the best score for
each model was kept and was used for the final training.

The final training is exactly the same as the one used during the grid search, with the
difference being that the number of training periods is higher.

These can now be used in the last step: classification.
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3.6. Classification

The classification step aims to feed the trained models with new data that they have
never observed before (test set) in order to detect the emotion associated with the input
signal. As was explained in Section 3.4, the vector obtained in the output of the model is a
vector of size [1, nbemotion], representing the probability of each of the detected emotions
according to the input signal used. The emotion recognized by the model from the input
signal corresponds to the class associated with the highest probability in the resulting
output vector of the model. The classification performance of the models is evaluated in
the case study presented below (Section 4).

4. Results

The methodology described in Section 3.1 was tested in an experiment with 71 partici-
pants to obtain data suitable for analysis.

4.1. Data Collection

Video data and plant signals were collected during two sets of experiments performed
in a controlled environment. The experiments were performed in accordance with the MIT
Committee on the Use of Humans as Experimental Subjects (COUHES) guidelines.

In the first experiment, 40 individuals participated in the data collection, as described
in Section 3.1. Due to some malfunctions in the plant sensor (no signal recorded) during the
experiment, 12 data points had to be removed from the dataset, leading to 28 data points.

The second experiment was conducted on 31 individuals. As with the first experiment,
an analysis of the quality of the data collected identified five incomplete data points, leaving
26 data points as input for the analysis.

The case study, therefore, focusses on the analysis of 54 data points using the method-
ology presented in Section 3.2.

4.2. Analysis

The data were analyzed using Python 3.8 and the available libraries, such as keras [39],
scipy [40], scikit-learn [41], and Numpy [42]. The 54 data points from the video data and
plant signals were used as input. Subsequently, normalization, partitioning, labeling,
downsampling, and MFCC extraction were executed. The dowsampling hyperparameter
was empirically set to 500 Hz. The video data were transformed into images with a
frequency of 1 Hz. These images were labeled using face-api.js [22]. The following emotions
were computed: Anger, Disgust, Fear, Happiness, Neutral, Sadness, Surprise.

Thus, the number of detectable emotions was nbemotion = 7, which was used for
generating the models, as described in Table 2.

The approach described above applies to the first four models in our study, where
windowing and downsampling techniques were utilized. In contrast, for the last three
models (Random Forest, 1D CNN, and biLSTM), a different preprocessing strategy was
employed. These models did not utilize downsampling due to their distinct handling
of the raw data. Furthermore, during the analysis, it was observed that the classes of
emotions were significantly unbalanced when no windowing preprocessing was carried
out. Specifically, a large majority of instances were being classified as Neutral, leading to
skewed results.

In order to address this imbalance and enhance the performance of the last three
models, the Neutral emotion was excluded from the analysis. This adjustment resulted
in a more balanced distribution of emotion classes and improved the models’ ability to
distinguish between the remaining emotions. Consequently, for the Random Forest, 1D
CNN, and biLSTM models, the set of emotions considered was reduced to six, namely
Anger, Disgust, Fear, Happiness, Sadness, and Surprise. Therefore, in these cases, the num-
ber of detectable emotions was nbemotion = 6. This modification was crucial for ensuring
the effectiveness and accuracy of these models in emotion detection tasks, as outlined in
Table 2.



Sensors 2024, 24, 1917 14 of 22

In order to optimize the other hyperparameters, grid searches were performed on the
MIT SuperCloud high-performance compute cluster [43] using its GPU compute nodes
with two Intel Xeon Gold 6248 20-core processors, 384 GB RAM, and two Nvidia Volta
V100 GPUs with 32 GB VRAM each. A maximum of 50 epochs was used for the grid
search. Table 4 shows the optimized parameters obtained by the grid-search algorithm for
each model.

Table 4. Synthesis of the optimized hyperparameters.

Model Name Parameters Values

Dense Units 4096

Dense Layers 2

Dropout Rate 0.2

Learning Rate 0.001

Balancing Balanced

Window 20 s

MLP

Hop 10 s

LSTM Units 1024

LSTM Layers 2

Dropout Rate 0

Learning Rate 0.0003

Balancing Balanced

Window 20 s

biLSTM

Hop 10 s

Conv Filters 96

Conv Layers 2

Conv Kernel Size 7

Dropout Rate 0.2

Learning Rate 0.0003

Balancing Balanced

Window 20 s

MFCC-CNN

Hop 10 s

Pretrained No

Number of MFCCs 60

Dropout Rate 0.2

Learning Rate 0.001

Balancing Balanced

Window 20 s

MFCC-ResNet

Hop 10 s

Number of Estimators 300

Max Depth 20RF no windowing
Balancing None

Conv Filters 96

Conv Layers 2

Conv Kernel Size 7

Dropout Rate 0.2

Learning Rate 0.0003

1D CNN no windowing

Balancing None

LSTM Units 1024

LSTM Layers 2

Dropout Rate 0

Learning Rate 0.0003

biLSTM no windowing

Balancing None
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Once the hyperparameters were defined, model training was undertaken on the same
MIT SuperCloud high-performance computing cluster that was used for the grid search.
Final training was carried out over a maximum of 1000 epochs. The test set was then used
to compute the overall accuracy (Equation (1)) and average recall per class (Equation (2)).
In this study, the number of classes was either nbclass = 6 or nbclass = 7 since there are
nbemotion = 6 or nbemotion = 7 emotions.

4.3. Evaluation

The results obtained for each of the models are presented in Table 5. Since five-split
cross-validation was used, the values presented in Table 5 correspond to the average from
the five splits.

Table 5. Final performance of all model architectures for the plant emotion data.

Model Test Set Accuracy Test Set Recall

MLP 0.399 0.220

biLSTM 0.260 0.351

MFCC-CNN 0.377 0.275

MFCC-RestNet 0.318 0.324

RF (no windowing) 0.552 0.552

1D CNN (no windowing) 0.461 0.514

biLSTM (no windowing) 0.448 0.380

According to the results shown in Table 5, MLP gives the best accuracy (AccuracyMLP =
0.399) but also the worst recall (RecallMLP = 0.220). This is often a sign of an overfitting in the
majority class. This behavior can also be observed for MFCC-CNN (AccuracyMFCC−CNN =
0.377 and RecallMFCC−CNN = 0.275). In the opposite case, biLSTM proposes a low
AccuracybiLSTM = 0.260 but a relatively high RecallbiLSTM = 0.351. Finally, MFCC-ResNet
proposes the best balance between accuracy and recall with AccuracyMFCC−ResNet = 0.318
and RecallMFCC−ResNet = 0.324, respectively (see Figure 4).

Figure 4. Confusion matrix of the final MFCC-ResNet plant classier, normalized per row for true
emotion. The numbers represent the recall values. The labels represent the following emotions:
AN = anger, SU = surprise, DI = disgust, JO = happiness, FE = fear, SA = sadness, and NE = neutral.

In contrast, the models utilizing the “raw data with no windowing” preprocessing approach
show different performance characteristics. The RF (no windowing) model achieved the high-
est accuracy (WeightedAccuracyRFnowindowing = 0.552) and recall (WeightedRecallRFnowindowing =
0.552) among all models, indicating a strong overall performance. The 1D CNN (no window-
ing) model also showed promising results, with an accuracy of Accuracy1DCNNnowindowing=
0.461 and a recall of Recall1DCNNnowindowing = 0.514, suggesting a good balance in its ability
to correctly classify emotions. Lastly, the biLSTM (no windowing) model exhibited an ac-
curacy of AccuracybiLSTMnowindowing = 0.448 and a recall of RecallbiLSTMnowindowing = 0.380,
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which reflects its competent performance, although it slightly lags behind the RF and 1D
CNN models in this specific setup (see Figure 5).

The confusion matrix resulting from the MFCC-ResNet model shows the model’s
strong potential for detecting fear and anger, with 75% and 50% correctly predicted
emotions for these two classes. Sadness is correctly detected in 39% of cases but can
be mistaken for a neutral emotion, and fear is correctly detected in 29% and 11% of
cases, respectively. Neutral, happiness, and disgust are difficult for the model to predict.
The model’s performance for these classes is below 20%.

Figure 5. Confusion matrix of the final Random Forest (without windowing) plant classifier, normalized
per row for true emotion. The numbers represent the recall values. The labels represent the following
emotions: AN = anger, SU = surprise, DI = disgust, JO = happiness, FE = fear, and SA = sadness.

In comparison, the RF (no windowing) model shows varied performance across
different emotions. For anger (AN), it has a recall of 0.373, a precision of 0.721, and an
F1 score of 0.492. The model is unable to effectively detect surprise (SU), disgust (DI),
and sadness (SA), with the recall, precision, and F1 score all being 0.000 for these emotions.
Happiness (JO) and fear (FE) are better detected, with the model achieving a recall of 0.604
and 0.610, a precision of 0.556 and 0.540, and F1 scores of 0.579 and 0.573, respectively. This
indicates that the model has a stronger ability to recognize emotions such as happiness and
fear, whereas it struggles significantly in recognizing surprise, disgust, and sadness.

These results can be explained using Figure 6, with the valence-arousal emotional model
from Russell [20] and the basic emotions of Ekman [19] presented in Section 2.1.

Figure 6. Confusion matrix results applied to the valence-arousal model.

As we can see in Figure 6, emotions with a high intensity of arousal, whether high
or low, are relatively well-predicted by the MFCC-ResNet model. Fear and anger are
two emotions with a high arousal value and a negative valence. These two emotions are
recognized best by the model, with 75% and 50% correct classifications. For the RF (no
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windowing) model, anger shows a moderate performance, with a recall of 0.373 and an
F1 score of 0.492, whereas fear is better recognized, with a recall of 0.610 and an F1 score
of 0.573.

Sadness has a relatively low arousal value and negative valence. The MFCC-ResNet
model’s performance for classifying this emotion is equivalent to that for detecting the
emotion of surprise, which has high arousal but positive valence. The rate of correct
detection of the two emotions, which are symmetrical with the neutral emotion in the
valence-arousal conceptualization of emotions, is equivalent to around 38%. Both emotions
are poorly predicted by the RF (no windowing) model, with the recall, precision, and F1
scores all being 0.000 for sadness and surprise.

Finally, emotions with a medium level of arousal, such as joy, disgust, and neutral
emotions, are difficult for the MFCC-ResNet model to classify, with a correct classification
rate of no more than 20%. However, joy shows a relatively better performance in the RF
(no windowing) model compared to disgust, with a recall of 0.604 and an F1 score of 0.579.

Note that the accuracy of the MFCC-ResNet model is unweighted, which makes sense
because the underrepresented categories have been oversampled during training to get
a balanced distribution, as the original data distribution was as follows: anger: N = 6,
surprise: N = 8, disgust: N = 10, joy: N = 95, fear: N = 4, sadness: N = 149, and neutral:
N = 194. For the RF (no windowing) model, the unbalanced data were directly used for
the model, which led to a higher weighted accuracy than that of the MFCC-ResNet model.
The N, in this case, equates to the following: fear: 141, joy: 4927, surprise: 390, anger: 588,
sadness: 4676, and disgust: 230.

Using the confusion matrix associated with the valence-arousal model of emotions
also enables the analysis of the distribution of the model’s classification errors. Indeed,
if the different emotions are grouped according to the quadrant to which they belong,
as shown in Figure 7, one can see that the models rarely make classification errors within
a single quadrant, but rather, they tend to decipher an emotion as belonging to another
quadrant of the valence-arousal model.

Figure 7. Intra-quadrant analysis of the confusion matrix based on the valence-arousal model. Colors
in confusion matrix correspond to colors of quadrant in valence-arousal model.

The first frame, shown in orange in Figure 7, corresponds to emotions with positive
valence and high arousal, i.e., surprise and joy. When surprise is detected, it is never
confused with joy. Conversely, when joy is detected by the MFCC-ResNet model, it is
confused with surprise in 9% of cases. Surprise is the second-least confused emotion (with
joy) after disgust (4% confusion).

The MFCC-ResNet model’s ability to distinguish between emotions within the same
quadrant is all the more apparent when the model’s second quadrant is studied since the
frame represents a negative valence and a high arousal level, shown in yellow in Figure 7,
no inter-class confusion is found, with the exception of the model’s classification of disgust
as fear.
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5. Discussion

Based on the results introduced above, the use of plants as sensors for emotion
recognition deserves further investigation. The best model (MFCC-ResNet) shows an
overall accuracy of nearly 32% and an average recall per class of 32.4%. The model is
particularly good at recognizing emotions with high arousal levels and negative valences,
with 75% and 50% accuracy for the fear and anger classes.

Furthermore, the RF no windowing model demonstrates even more promising results
in this context. This model achieved an overall accuracy of 55.2% and displayed significant
strengths in recognizing certain emotions. For instance, it had a high recall of 61.0% for fear,
60.4% for happiness, and 37.3% for anger, indicating its effectiveness in identifying these
high-arousal, negative-valence emotions. However, it is important to note that the model
struggled with emotions such as surprise, disgust, and sadness, as indicated by a recall and
precision of 0.000 for these classes. This variation in performance across different emotions
highlights the complexity of emotion recognition using plant signals and underscores the
potential of further refining these models to improve their accuracy and recall across a
broader spectrum of emotions.

This phenomenon might be explained by the type of sensor used to collect signals
from the plant and the physiological responses associated with emotions. As described
in Section 2.2, the SpikerBox sensor measures the potential difference between the plant
and the soil. According to Rooney et al. [44], emotional arousal increases skin conductivity.
Thus, the study of plants’ ability to detect variations in emotional arousal based on the
electrical activity of individuals’ skin could be explored in future research.

Another hypothesis would explain the model’s performance by the physical reactions
triggered by the respective emotions. Emotions such as fear, anger, or surprise lead to more
body movements than emotions such as disgust or joy. The latter emotions result in small
movements, often facial expressions, which only marginally influence the environment
surrounding the plant. Thus, the strength of the physical reactions triggered by an emotion
could explain the model’s recognition performance.

The fact that the emotion of sadness is also overused for the classification of other
emotions also raises the question of the uniqueness of sadness. Although considered
a basic emotion by [19], Shirai and Suzuki [45] argue that sadness is not unique and is
more complex. “The exact nature of sadness is still quite vague in comparison to other
emotions” [45]; this vagueness could be one of the explanations for the lack of precision
observed in the classification of sadness. Since signal labeling is based on the recognition
of emotions via images (see Section 3.3.2), a poor definition of the emotion of sadness can
lead to poor signal labeling, resulting in model confusion for this class.

Nevertheless, these results also demonstrate that the deep learning tools typically used
for multiple classification tasks, such as emotion recognition, can also be used to process
signals from plants. As mentioned by He et al. [35], the depth of the CNN network does
have a positive impact on model performance (RecallMFCC−CNN < RecallMFCC−ResNet).
Moreover, taking into account the temporal aspect of signals improves model sensitivity
(RecallbiLSTM > RecallMLP). A relevant line of research would be to join these two models
to make a hybrid model, utilizing the performance of the ResNet model while taking
into account the temporality of signals with LSTMs. This combination has already been
successfully used by Yu and Sun [46] in recognizing emotions from physiological data.

Limitations and Further Research

It is important to underline certain limitations of the present study to identify relevant
areas of research for future investigation.

First of all, data collection by the SpikerBox Brains [31] sensor allows for the acquisition
of the plant’s electrical signals using external electrodes. However, the use of external
electrodes can lead to inaccuracy in the collected signal [13]. The use of internal electrodes
could be considered to improve the quality of the collected signal and quantify its influence
on the plants’ ability to recognize emotions.
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Moreover, the effectiveness of plant-based sensors has only been proven in extremely
controlled environments [11,13,30]. This is also the case in this study. However, it is rare
that the environment in which individuals operate on a daily basis is strictly controlled.
Therefore, to propose real applications for emotion recognition based on plants, it would
be interesting to test the model’s performance in a real-world environment and to carry out
a sensitivity analysis of the model’s external influence factors.

Another limitation can be found in the data preparation phase. The proposed method
uses the last image of a time window as a representation of the emotions felt during that
period. This method enables rapid labeling but may limit the coherence of the emotion
associated with the plant signal. However, this consistency of emotions over time is crucial
for model learning. The labeling task could be improved by taking the class of the majority
of emotions detected by the face-api interface over the period as a representation of the
emotional state of the time window. Additionally, the use of another deep learning model
for signal labeling (face-api [22]) might lead to an accumulation of errors. An estimate of this
risk could be of interest to better analyze the results obtained by the plant-based emotion
recognition model.

Moreover, as with any deep learning model, a lack of explicability and overfitting
are two limitations of the proposed method. The presumed overfitting in the MLP and
MFCC-CNN models is a risk that it is important to mitigate. The use of the EarlyStopping
function and the optimization of hyperparameters by using a grid search help to limit it.
However, overfitting remains an inherent limitation of deep learning models.

Finally, we need to address the issue of obtaining varying results based on the win-
dowing and no windowing data preprocessing approaches.

In the domains of signal processing and time-series analysis, the choice of prepro-
cessing techniques plays a crucial role in the performance of machine learning models.
The observed variation in the results between the models using windowing and those
employing a no-windowing approach can be attributed to fundamental differences in how
these preprocessing strategies manipulate and represent the underlying data.

Windowing, a technique commonly used in time-series analysis, involves segmenting
the signal into smaller, fixed-size segments or ‘windows’. This process enables the model
to capture temporal dynamics and short-term patterns within each window, which can
be crucial for understanding signals in time-dependent structures. By focusing on these
localized segments, windowing can enhance the model’s ability to detect subtle changes
and temporal patterns that might be indicative of specific emotional states. Moreover, win-
dowing can also help reduce noise and manage computational complexity by simplifying
the data structure.

On the other hand, the no-windowing approach processes the signal in its entirety or
in larger segments. This method preserves the global context and long-range dependencies
in the data, which can be particularly beneficial for capturing overall trends and patterns
across the entire signal. However, this approach may overlook finer, localized temporal
features that are critical for distinguishing between certain emotional states. The larger
data segments also increase the complexity of the model, which can lead to challenges in
learning and generalization, especially when dealing with high-dimensional data.

Furthermore, the inherent characteristics of the plant signals being analyzed also
contribute to the differential performance of these models. Plant-based bio-signals might
exhibit variations in both short-term and long-term patterns when responding to emotional
stimuli. Therefore, models employing windowing may be better suited to capture rapid,
transient responses, while no windowing models might be more effective in detecting
sustained or cumulative signal responses over time.

Therefore, the choice between windowing and no windowing approaches reflects
a trade-off between capturing localized temporal features and preserving global signal
characteristics. The effectiveness of each method is contingent upon the nature of the
data and the specific requirements of the emotion detection task. This underscores the
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importance of selecting an appropriate preprocessing strategy in signal-based emotion
recognition, especially in novel and complex domains such as plant signal analysis.

This research opens the way to emotion recognition using non-intrusive elements
such as plants. Other research, such as the use of a continuous paradigm [20] to carry
out regression on plant signals, the use of the inter-class confusion of the model to better
understand the links between emotions, and the use of personal characteristics such as
personality traits as dependent variables in recognizing emotions, should be investigated
to improve the proposed methodology.

6. Conclusions

The recognition of human emotions is a popular research topic in behavioral science.
Several conceptualizations have made it possible to structure emotions discretely [19] or
continuously [20] from a behavioral point of view. Current technologies enable emotion
recognition from audio recordings [6,7], video recordings [3–5], text [8–10], and even physi-
ological data [24]. However, these data sources are expensive, intrusive, and regulated [11].
This is why it is important to find new sources of information that can monitor people’s
emotions without bothering them. In this paper, we introduce a novel method that uses
plants as biosensors to measure human emotions. As plants have no privacy concerns,
using them as sensors provides a privacy-respecting way of measuring human emotions,
opening up new ways of using emotion recognition in environments sensitive to privacy
in public spaces such as supermarkets and museums. Even more, using plants as sensors
to measure human emotions will increase human well-being, as interaction with nature
and plants is good for all aspects of human health and will increase creative and cognitive
performance [47].

Plants do not just have amazing abilities to recognize chemical elements in their envi-
ronment [30]; they are able to detect sounds [13], people, and moods [11]. For these reasons,
a four-step methodology enabling the use of plants as human emotion detectors has been
introduced. First, the data were prepared by denoising, formatting, and labeling the plant
signals using video data. Then, different machine learning and deep learning models
(MLP, biLSTM, MFCC-CNN, MFCC-ResNet, Random Forest, and 1D CNN) were created
and parameterized using the cross-validation and grid-search algorithms to optimize the
parameterization for each model. The best models were trained and used for classification.
The detection of an emotion based on only a plant sensor is the result of this method.
This study demonstrates that plants might, indeed, be used to measure human emotions,
opening up new areas of research as well as new areas of practical application for this
technology. For instance, plant-based sensors could also be used to distinguish between
different persons, providing a non-intrusive way of access control, thus extending earlier
research by Oezkaya and Gloor [11]. In ongoing research, our team is currently investi-
gating the capability of plants to identify different types of body movements, for instance,
distinguishing arm movement from leg movement, further exploring the fine-grained
sensitivity of plants.

In view of the results presented in Section 4, the hypothesis that plants can be used
for the recognition of emotions is worth investigating further. However, it is important to
note that the use of external electrodes, the need for a controlled environment, the labeling
process based on the last emotion felt, the lack of applicability, and the overfitting of models
remain limitations in this type of study. However, these limitations can also be seen as
fantastic research opportunities that should be explored in future work. Other avenues of
research, such as the use of the continuous paradigm [20] to regress by using plant signals,
the use of model inter-class confusion to better understand the links between emotions,
and the use of personal characteristics, such as personality traits, as a dependent variable
to recognize emotion, should also be investigated.

The proposed methodology is a first step toward an innovative sensor that will address
the concerns and high costs of traditional sensors and pave the way for new areas of research
in human emotion detection and recognition.
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