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Abstract: The shift to electric transportation is crucial to fighting climate change. However, Germany’s
goal of 15 million electric vehicles (EVs) by 2030 remains distant. Therefore, enhancing their economic
viability is essential to promoting EV adoption. One promising option to increase the economics
for the user is PV self-consumption optimization using smart charging EVs. Yet, more research is
needed to explore the use case’s impacts on the German/European energy systems. Therefore, PV
self-consumption optimization using EVs is integrated into an energy system model, assessing its
impact on the energy system in 2030. For this purpose, the use case is modeled for different groups
of people—personas—which are defined in a way that creates a diverse set of personas reflecting
the distribution of different statistical values within Germany. The modified (dis)charging profiles
are then aggregated and integrated into the energy system model. With a high implementation
of PV self-consumption optimization in Germany in 2030, a positive system effect (with a system
cost reduction of 53 million EUR/a) can be observed with a lower need for further storage and less
curtailment of renewable energies (RES). Furthermore, the market values for RES increase by 0.7%,
which fosters the integration of RES.

Keywords: PV self-consumption optimization; electric vehicles; energy system modeling; revenues
and costs; European energy transition; electrification; Germany

1. Introduction

The electrification of the transport sector is seen as a vital element in the German
energy transition. While CO2 emissions in the German energy sector have significantly
declined due to the substantial growth of renewable energy sources (RES), emissions in the
transportation sector have remained mostly unchanged since 1990 [1]. Consequently, the
German government has set an ambitious target of achieving 15 million electric vehicles
(EVs) by 2030 [2]. However, this target is still far from being reached. To promote the
widespread adoption of EVs, it is essential to improve their economic viability compared
to internal-combustion-engine vehicles.

For EVs, smart unidirectional or smart bidirectional charging is discussed frequently
to establish profitable use cases from a user perspective. One particular economic use
case is the optimization of PV self-consumption for households [3]. This use case aims
to maximize the use of self-generated electricity from residential PV systems by shifting
EVs’ charging and discharging times. Usually, the charging times are shifted to midday
during maximal PV generation and the discharging times to peak load hours in the evening.
The economic viability is achieved by the high residential electricity prices and relatively
low feed-in tariffs for PV systems in Germany, which make maximizing the use of the
self-generated electricity from PV systems profitable. The use case is also possible for the
tertiary or industrial sector. Commercial electricity prices, however, are usually much lower
in Germany, reducing profitability. Thus, in this paper, we focus on residential systems
(residential households with EV and PV) in Germany. Since it has, currently, a favorable
setting, a high implementation of the use case can be assumed to lead to systemic effects.
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Numerous studies analyze the effect of PV self-consumption optimization with battery
storage or an EV from the user perspective. In [4,5], the profitability of PV-battery systems
is analyzed. The usage of EVs is compared to battery usage in [6], while [3,7,8] focus on PV-
EV systems. These analyses are not just performed in Germany but also in other countries,
regions, or large cities such as Sweden, Italy, the Mediterranean Area, or Shanghai [4,5,7,8].

Depending on the configuration of the case study, the profitability of the PV-battery
systems varies. The system is profitable in most configurations in [4]. In [5], it is shown that
even though the PV-battery system is economically viable, installing a PV system alone
gives higher revenues.

Analyzing a smart household with heat pumps, thermal energy storage systems,
batteries, PV and EVs [6] shows that the system is profitable compared to a system without
PV and battery/smart EV. In the smart household, the smart EV performing PV self-
consumption optimization can substitute the stationary battery.

The PV-EV system is economically viable for different configurations. In [3], the
revenues are mainly sensitive regarding the difference between the electricity price and
feed-in tariff for the PV system, as well as the PV system design and household demand.

None of the papers, however, address the aggregation of the user-specific results
across a country to analyze nationwide systemic impacts.

There is also literature considering different configurations for one country, for
example, [9] for Sweden. Here, 400 configurations of measured household demand profiles
and driving profiles (with a large variation between the profiles) are used to analyze the use
case of PV self-consumption optimization with EVs and/or battery systems. The focus is on
the technical potential of the use case. This paper does not examine the representativeness
of the entire country, which limits its applicability to energy system modeling.

In addition, there are several analyses of the impact of smart EVs on the distribution
grid. Due to electrification in the residential and transport sectors, a significant increase in
grid load is expected, mostly if EVs and heat pumps are charged/used unmanaged [10].
Refs. [11,12] show that the charging strategy significantly influences the grid load for unidi-
rectionally charged EVs. Refs. [13,14] extend this finding for bidirectionally charged EVs.
While spot market-oriented flexibility marketing can result in high peak-load-simultaneities
and a significant increase in grid load, PV self-consumption optimization can slightly posi-
tively affect the distribution grid [13,15]. These papers analyze the systemic effects of smart
EVs; however, on regional distribution grids rather than the country level.

In [16], a conceptual study was performed on how an energy system based on only
PV and smart EVs can cover the electricity demand of Spain. However, there is neither
an economical assessment nor a detailed energy system optimization, but rather a rough
conceptual study showing general feasibility.

The literature about the systemic effects of smart EVs on a country level, for
example, [17], does not consider PV self-consumption optimization but vehicle-to-
grid/market-oriented optimization (resulting in different (dis-)charging behavior com-
pared to PV self-consumption optimization). Ref. [17] shows that bidirectional charging
proves advantageous for the energy system and reduces the need for thermal power plants
and stationary battery storage.

In summary, the literature review lacks studies addressing the systemic impacts of PV
self-consumption optimization using an EV at a national or international level concerning
the integration of RES (in Europe)—regarding market values or curtailment—and the total
system costs of the resulting energy system. In [18], it is discussed that the use case can have
a positive effect in summer but may have a negative systemic effect in winter. However, no
energy system modeling has analyzed it so far. This paper aims to fill this research gap.

To evaluate the systemic effects of PV self-consumption optimization, it is necessary
to create results of the actor-driven use case of PV self-consumption optimization that are
representative of a country. Since the people in one country are very heterogeneous, a great
number of possible types of persons (personas) exist. This large quantity should be reduced
by a suitable reduction method to reduce complexity and computational time.
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Various reduction or clustering methods exist in the literature, such as k-means or
dbscan [19]. In k-means, clusters for a given data set are created based on the minimal
variance between the elements in one cluster, while in dbscan, the selection criterion is
the density between elements. k-means is the most popular clustering algorithm, as it is
advantageous in many ways.

However, these clustering methods require a complete data set (real or simulated
data for the entire country) to group into representative clusters. If no complete data set
exists but only possible data combinations (generated by combinatorics), other methods are
required. In this case, instead of clustering algorithms, using statistical data for individual
features is a possible approach. These statistical data define how often a feature should be
present in the resulting clusters. The selection of how these features are combined could be,
for example, a random combination. Another approach—chosen in this paper—is to create
an optimization problem using this partial information about a data set that calculates a
possible or best possible distribution.

The main contributions of this paper are as follows:

• Creating a methodology to integrate PV self-consumption optimization using EVs
from a user perspective into an energy system model.

• Modeling the profitability of PV self-consumption optimization for different groups
of people to analyze for which groups of people in Germany PV self-consumption
optimization is profitable.

• Modeling the European energy system with a focus on Germany for the year 2030
while considering PV self-consumption optimization using EVs to answer the research
question of whether PV self-consumption optimization using EVs is always beneficial
to the energy system.

2. Methods

A three-step methodology is created to evaluate the systemic effect of the user-driven
use case of PV self-consumption optimization using EVs. First, relevant personas to explain
the different groups of people in Germany are defined. Second, PV self-consumption
optimization profitability—for relevant personas—is calculated from a user perspective,
to obtain all profitable personas. Third, the results are aggregated for Germany and
implemented as fixed input in an energy system model to evaluate PV self-consumption
optimization from a systemic perspective. All three steps are explained in detail in the
following subchapters and summarized in Figure 1.

2.1. Methodology for the Definition of Relevant Personas

One main challenge is that the user-perspective evaluation needs to represent the
entire country of Germany. This representativity can be achieved using an average actor.
This approach, however, does not represent the heterogeneity of Germany (with varying
user groups, household demands, and EV types) and produces more uniform results than
are truly realistic. Therefore, we define personas in this paper to reflect this heterogeneity.
Personas represent a group of people in Germany. A representative person in one group
would be, for example, a single pensioner living in a rental apartment without an EV.

To define possible personas, it is necessary to specify relevant categories and their
respective features for the use case of PV self-consumption optimization. Possible categories
for this use case are the type of EV, the PV system, and household demand. For the type of
EV, the feature could be, for example, minis, middle-class vehicles, and SUVs. The number
of categories and features then results in the total number of possible personas Npos pers
(Equation (1)):

Npos pers = ∏cat
j=1 Nj (1)

with Nj as the number of features of the category j.
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Figure 1. Methodology to determine the impact of PV self-consumption optimization on the energy
system, split in user and systemic perspective.

Not all possible personas are calculated since not all are realistic; some features contradict
other features (for the use case of PV self-consumption optimization). To factor out these
contradictions, excluding statements are created. These excluding statements are, for example,
that a large family cannot have the electricity demand of a single-person household.

The number of realistic personas is still high, so we reduce it further in a second step
via an optimization program. This program selects the best combination and smallest
number of personas that optimally fulfill the statistical values given by the categories and
their features. For example, the distribution of EVs (minis, middle-class vehicles, and
SUVs) among all chosen personas has to match the distribution in Germany. The resulting
nonlinear optimization program is structured as follows (Equations (2)–(4)):

min ∑cat
j=1 ∑ f eat

k=1

( (
∑pers

i=1 xi·ci,j,k

)
− wj,k

)2
+

1

∑
pers
i=1 (xi)2

(2)

s.t. ∑ xi = 1 (3)

xi ∈ R+. (4)

The optimization variable xi is the share of the persona i with values ranging from
zero to one, as indicated in Equations (3) and (4). A value of zero indicates that this persona
is not selected. In contrast, values above zero indicate the degree to which it is considered.
Equation (3) defines that the sum of all shares xi equals 1.
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Equation (2) minimizes the squared difference between the modeled and statistical
values given by the features k of each category j. wj,k is the statistic share to reach (with
values between 0 and 1, for example, the distribution of EVs in Germany given by a
statistical office), and xi·ci,j,k the modeled value. The binary parameter ci,j,k indicates
whether this feature is present in the persona.

The second term in Equation (2), 1
∑

pers
i=1 (xi)2

, serves as a penalty term to reduce the

number of personas. The term becomes large if the shares xi are all in a similar range, and
small if there are a small number of shares with large values and the remaining shares
are very small. Therefore, this term encourages a reduction in the number of personas.
However, since it is not a mixed-integer optimization program, xi typically takes values
greater than zero (for example, 0.01 instead of 0). Therefore, to reduce the number of
personas, all small shares are removed, and the remaining shares are normalized.

We repeat the above-explained optimization program with different random start
parameters to avoid ending in local minima.

2.2. Methodology for the Evaluation of PV Self-Consumption Optimization Profitability to Obtain
Profitable Personas

In the second step, the profitability of PV self-consumption optimization using EVs is
calculated for the identified personas in order to obtain all profitable personas. This profitability
calculation includes the revenue from the optimized (dis-)charging of the EV as well as the
additional costs caused by the additional components compared to unmanaged charging.

The actor-model eFlame (electric Flexibility assessment modeling environment) calcu-
lates the revenues. eFlame is an optimization model that models several use cases, such as
arbitrage trading, PV self-consumption optimization, FCR trading, and peak shaving for
different flexible assets [3,20–22].

The general structure of eFlame is displayed in Figure 2. It is built modularly with
different elements, such as PV systems, industrial loads, and stationary batteries. For the
use case of PV self-consumption optimization with an EV, we need the household profile
generator coupled with the EV profile generator, the EV with charging infrastructure (EVSE),
the PV system, and the grid. These elements are displayed in dark blue in the figure.
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In the household and EV profile generator, a fixed electrical consumption profile of a
specific household and the EV driving profile are modeled based on consecutive activity
plans [23]. Depending on the persona, 20 to 30 profiles for each persona are created, based
on an analysis in [24], to obtain representative results. For the PV system, a fixed generation
profile is integrated depending on the region, orientation, and slope of the PV system. For
the EV, three different charging strategies are considered: unmanaged, smart unidirectional,
and smart bidirectional charging. In the case of unmanaged charging, the EV is charged as
soon as it arrives (if it is plugged in) with full power, and, therefore, no optimization takes
place. For smart unidirectional and bidirectional charging, the charging (and discharging)
are optimized for PV self-consumption. The model minimizes the total electricity costs for
the individual grid connection point (GCP) by shifting charging (and discharging) times
(see Equation (5)).

min(∑(pel, buy(t)·PGCP, in(t)− pel, sell(t)·PGCP, out (t))) (5)

The total electricity costs result from the costs of the electricity procurement at the grid
connection point (pel, buy(t)·PGCP, in(t)), subtracting the revenues of selling excess energy
based on the feed-in tariff (pel, sell(t)·PGCP, out (t)). The electricity procurement costs are
the energy procurement (PGCP, in(t)) multiplied by the electricity price (including SIPs and
grid fees) (pel, buy(t)). If solutions have the same total electricity costs, the EV is charged
at the earliest possible time to achieve the most robust result for the user, even in the
event of uncertainty. We refrain from presenting the complete mathematical formulation
of the model eFlame here; see [3] for a detailed description. As discussed in [3], for PV
self-consumption optimization via an EV, a variable efficiency is modeled since a constant
efficiency significantly overestimates revenues due to the often small (dis)charging power
in this use case.

We refer to [25] for calculating the additional costs for smart unidirectional and
bidirectional charging compared to unmanaged charging. Relevant components that cause
additional costs are, for example, the costs of a bidirectional charging system. All relevant
components that cause additional costs for smart unidirectional and bidirectional charging
compared to unmanaged charging are listed and quantified in a range (minimal and
maximal value). For this paper, these cost components from [25] were updated in dialogue
with experts in the project unIT-e2 [26] and with a literature review of currently existing
systems (such as the charging systems of Eli, QUASAR, and ABL).

To calculate the profit ranges for each persona, the additional cost range is combined
with the revenue range, leading to a minimal and maximal profit. This profit can be
negative if the revenues do not cover the costs (mainly for the minimal profit). To obtain the
profitable share of personas si, pro f , we assume that the distribution between minimal and
maximal profit is equally distributed so that it can be described by a linear profit function
(Equation (6)):

si, pro f =

0 i f pmax,i < 0
1 +

(
pmin,i

pmax,i−pmin,i

)
i f pmin,i < 0 and pmax,i > 0

1 i f pmin,i > 0
(6)

pmin,i and pmax,i is the minimal and maximal profit for each persona i. We assume that
users only perform the use case if it is profitable for them. Therefore, only the profitable
shares of the personas are passed to the energy system model.

2.3. Methodology for the Evaluation of PV Self-Consumption Optimization from a Systemic Perspective

In the third and final step, the different (dis-)charging profiles of the personas for Ger-
many are aggregated and then implemented as fixed inputs into the energy system model
ISAaR (Integrated Simulation Model for Unit Dispatch and Expansion with Regionalization)
to evaluate the optimization of PV self-consumption from a systems perspective [20,27,28].
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ISAaR is a linear optimization model for the European energy system using perfect
foresight, optimizing asset expansion and dispatch with hourly time steps. Electricity,
district heating, hydrogen, biomass, and gaseous and liquid hydrocarbons are considered
energy carriers (see central part of Figure 3). Several assets couple these energy carriers,
such as power-to-X technologies. Furthermore, there are storage systems for the different
energy carriers, such as pump storage for electricity. The demand of the industrial, trans-
port, residential, and tertiary sectors is a fixed input for the ISAaR (see left side of Figure 3).
Moreover, energy can be imported from outside Europe (see lower part of Figure 3). The
RES expansion is modeled endogenously but with exogenous model input (see right side
of Figure 3).

The geographical scope is EU27 + UK, Norway, and Switzerland. The calculations
are performed at the country level, except for the UK and Denmark. In these cases, Great
Britain and Northern Ireland, as well as Denmark West and Denmark East, are further
subdivided for the analysis.

In ISAaR, the total system costs are minimized under the constraint that for every
timestep t, region r, and energy carrier c, the energy balance is met (see Equation (7)). The
sectoral demand Pdemand equals the sum of all generation of all elements Pgen minus the sum
of all consumption elements Pcons added to the imports Pimport subtracted by the exports of
the energy carrier Pexport.

Pdemand(t, r, c) = ∑
elements

Pgen(t, r, c)− ∑
elements

Pcons(t, r, c) + Pimport(t, r, c)− Pexport(t, r, c)

(7)
The complete mathematical formulation of the optimization problem can be found

in [27].
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In the ISAaR, the EVs are modeled in two different ways. Unmanaged charging is a
fixed load profile from the transport sector delivered to the ISAaR (left side in Figure 3).
Smart unidirectional and bidirectional EVs are integrated directly into the ISAaR as an
expansion element. In the optimization model, an endogenous integration of smart EVs
is optimized based on the additional costs (upgrade of unmanaged charging to smart
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charging). In the case of an expansion of smart EVs, the fixed demand of unmanaged
charging EVs is reduced analogously, representing the upgrading of unmanaged charged
EVs to smart EVs (see [20] for further information and the mathematical formulation).

To consider PV self-consumption optimization via EVs in the ISAaR, the profitable
personas from the user perspective are aggregated to obtain the total number of users in
Germany in 2030. We refer to [29] for the total number of possible users performing PV
self-consumption optimization with EVs (considering the achievable potential). The total
number of users nuser, total is split into relevant personas nrel i for each persona i according
to the shares obtained in Equations (2)–(4).

nrel i = nuser, total ·xi, (8)

As users are expected to only implement profitable use cases in reality, the number of
users is further reduced by the linear profit function si, pro f in Equation (6). The linear profit
function is used both for unidirectional and bidirectional charging, displayed as suni

i, pro f and

sbidi
i, pro f . In this work, we assume that 50% of all possible users choose unidirectional and

50% bidirectional charging, leading to Equation (9).

npro f i = nrel i ·(0.5 suni
i, pro f + 0.5 sbidi

i, pro f ), (9)

The modified (dis)charging profiles for each persona i are then scaled with npro f i and
aggregated to one profile. This profile is integrated into the energy system model as a
fixed input. To model the upgrade rather than additional EVs, the number of unmanaged
charging EVs in the transport sector is reduced.

To quantify the effect of PV self-consumption optimization with EVs on the energy
system, two scenarios are compared: a base scenario without PV self-consumption opti-
mization and a second scenario with PV self-consumption optimization.

3. Results

In line with the methodology, we divide the results into three sections. In Section 3.1,
the results of the definition of relevant personas are presented, followed by the evaluation of
PV self-consumption optimization profitability from the user perspective in Section 3.2, and
finished by the evaluation of PV self-consumption optimization from a systemic perspective
in Section 3.3.

3.1. Definition of Relevant Personas

For the definition of relevant categories, we consider the necessary input of eFlame
for modeling the use case of PV self-consumption optimization. Required assets are the EV
with EVSE, the household load, and the PV system. For all these assets, at least one category
is necessary. The household load profiles and the EV driving profiles also depend on the user
behavior, which is added as a further category. To avoid redundant categories, we aggregate
categories (for example, two EV categories), leading to the following four categories:

1. EV: consumption and battery capacity;
2. Household: yearly electricity consumption (profile);
3. PV: installed capacity;
4. Type of actor/User group: number of children, amount of driving, work situation.

For the category EV, the share of vehicle types in Germany according to the Federal
Motor Transport Authority (KBA) (1 January 2022) [30] is taken and aggregated to the three
features: small, medium, and large. Small contains minis and small cars, medium contains
compact and middle-class vehicles, and large contains all remaining cars. These vehicle
types are combined with assumed average battery capacities from the project unIT-e2 [25],
which are the result of an extensive consultation process with relevant stakeholders from
the automotive and energy industries.
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For the yearly electrical household demand, including the distribution in Germany,
we use data from the Federal Statistical Office of Germany (destatis) [31,32]. The electrical
household demand (without electrical heating) can be split into three features: small,
medium, and large, with corresponding consumptions of 1623 kWh/a, 2731 kWh/a, and
4394 kWh/a.

All PV systems in Germany are listed in the “Marktstammdatenregister” (MaStR, mar-
ket master data register) [33]. We consider residential systems between 1 kWp and 20 kWp
on rooftops of buildings and facades to be suitable for PV self-consumption optimization
(analog to [29]). The total number (until 1 January 2023) is split into three equal shares to
define the installed capacity for the features small, medium, and large, with corresponding
values of 3.9 kWp, 7 kWp, and 11 kWp.

For the user groups (UGs), we refer to the dissertation of Steffen Fattler [34].
Twelve UGs are defined there, with shares ranging from 1.2% to 19.3%. We only consider
UG1, UG2, UG4, UG6, UG8, UG9, and UG10 (all shares > 6%) from the dissertation, with
rescaled shares resulting in small deviations from the original statistics. This way, we can
reduce the number of user groups in this work.

All four categories and their respective (three to seven) features are shown in Table 1,
resulting in 189 possible personas.

Table 1. All categories and their respective features, IDs, values, and shares. The numerical values
are based on [30–34].

Category Feature ID Value Share

EV Small EV1 47.5 kWh and 17.1 kWh/100 km 27%
EV Medium EV2 80 kW and 20.5 kWh/100 km 40%
EV Large EV3 120 kWh and 28.1 kWh/100 km 33%

Household Small HH1 1623 kWh/a 42%
Household Medium HH2 2731 kWh/a 33%
Household Large HH3 4394 kWh/a 25%

PV Small PV1 3.9 kWp 33%
PV Medium PV2 7 kWp 33%
PV Large PV3 11 kWp 33%

User group Group 1 UG1 Full-time, low driver, childless 16%
User group Group 2 UG2 Full-time, frequent driver, childless 16%
User group Group 3 UG3 Full-time, frequent driver, with children 11%
User group Group 4 UG4 Part-time, frequent driver, childless 11%
User group Group 5 UG5 Part-time, frequent driver, with children 11%
User group Group 6 UG6 Unemployed, low driver, childless 26%
User group Group 7 UG7 Unemployed, frequent driver, childless 11%

An important influencing factor is the feed-in tariff. As it greatly impacts the results
(shown, for example, in [3]) and the user in 2030 will be a mix of old and new funding
schemes, it is not sufficient to assume one feed-in tariff. Therefore, we assume two different
funding schemes: low and high. Depending on the size of the PV system, the small tariff is
assumed to be either 8.6 ct/kWh or 7.5 ct/kWh. The high tariff is assumed to be 15 ct/kWh.
These values are oriented toward the development of remuneration in Germany over the
last 13 years [35]. For all personas, both possibilities—small and high tariffs—are calculated
and aggregated later.

To reduce the number of personas before using the optimization program, we assume
logic, excluding statements. These excluding statements are supposed to create unique,
differing personas. These statements are not intended to apply to every person in Germany
but exclude rarer combinations.

• Statement 1: No small PV system (PV1) with a large household load (HH3). It is
assumed that households with higher demand install larger PV systems, as PV system
installers or online guidelines recommend different PV sizes depending on the number of
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people and electricity consumption of the household. This impacts the typical household
load-to-PV ratio, even if it also depends on other factors such as the suitable roof size.
Additionally, larger demand often implies larger houses with a larger roof area.

• Statement 2: No large PV system (PV3) with a small household load (HH1). Same
argumentation as in statement 1. PV system installers or online guidelines recommend
different PV sizes depending on the number of people and electricity consumption of
the household, and a small household load can imply a smaller roof area.

• Statement 3: No small PV system (PV1) with a large EV (EV3). It is assumed that
wealthy people with expensive vehicles also more often invest in a medium or large
PV system instead of a small PV system. Furthermore, larger EVs result in greater
total demand.

• Statement 4: No large EV (EV3) with unemployed (UG6, UG7). It is assumed that
unemployed people more often cannot afford a large, expensive EV.

• Statement 5: No childless (UG1, UG2, UG4, UG6, UG7) with a large household load
(HH3). There is a correlation between household load and the number of persons in a
household, which can be found in the data provided by destatis [31].

• Statement 6: No small EV (EV1) with a frequent driver (UG2, UG3, UG4, UG5, UG7).
Frequent drivers are assumed to prefer comfort and generous space in the first row
of seats as they spend much time driving. This often leads to larger vehicles, as the
ADAC (German automobile club) also states. In addition, smaller EVs imply smaller
battery capacities and shorter minimum driving distances.

• Statement 7: No small household load (HH1) with children (UG3, UG5). The same
argumentation as in statement 5. There is a correlation between household load and
the number of people in a household.

If several combinations are available, the PV size that fits the household size is pre-
ferred (for example, a large PV system (PV3) with a large household load (HH3)). This
results in 25 of the previous 189 combinations (see Table A1 in the Appendix A). The
optimization program (Equations (2)–(4)) can further reduce this number, leading to seven
combinations that reflect well all chosen statistics (see Table 2).

Table 2. Resulting combinations and their respective features for the categories EV, household, PV,
and user group. Shares represent the shares of the personas to reflect Germany.

ID EV Household PV User Group Share

1 EV1 HH1 PV1 UG6 26%
2 EV2 HH1 PV1 UG2 14%
3 EV2 HH2 PV2 UG7 11%
4 EV2 HH3 PV3 UG5 15%
5 EV3 HH2 PV2 UG1 14%
6 EV3 HH2 PV2 UG4 9%
7 EV3 HH3 PV3 UG3 12%

As shown in Figure 4, these seven personas satisfy the statistics similarly well as
the 25 combinations. The highest deviations are for the PV system size (PV1 and PV3),
followed by deviations for HH1, UG3 and UG5. As the deviations are in the same range for
both all 25 personas and the seven personas, we assume seven personas in the following,
as demonstrated in Table 2.

3.2. Evaluation of PV Self-Consumption Optimization Profitability to Obtain Profitable Personas

The model eFlame includes one PV system, one EV with EVSE, an electrical household
load without a heat pump or battery storage, and a constant electricity price and feed-in
tariff for the PV system to calculate the revenues. The specific parameters of the components
are shown in Table 3. Regarding variable values depending on the persona, please see
Table 1. The parameters result from an extensive consultation process as part of the unIT-e2

project [26] with relevant stakeholders from the automotive and energy industries.
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Table 3. Simulation parameters for the calculation of the revenues. The numerical values are based
on [23,31,33] and the consultation process in the project unIT-e2.

Component Parameter Value

EV+ EVSE Type of vehicle Depending on the persona (see Table 1)
EV+ EVSE Battery capacity Depending on the persona (see Table 1)
EV+ EVSE Charging power 11 kW
EV+ EVSE SOC safety 30%
EV+ EVSE SOC departure 60%
EV+ EVSE Plug-in probability 100%
EV+ EVSE Efficiency Variable plus const loss and standby loss
EV+ EVSE Driving profiles Generated by the EV profile generator (see Section 2.2, [23])

PV Power Depending on the persona (see Table 1)
PV Generation profile Based on CAMS data [36]

Household Yearly demand Depending on the persona (see Table 1)

Household Demand profile Generated by the household demand generator
(see Section 2.2, [23])

Prices Feed-in tariff Depending on PV size and option
Prices Household electricity price 30 ct/kWh

The average household demand of one day for each persona is shown in Figure 5.
Depending on the persona, different characteristics can be identified. While persona 3 has
a high peak around midday, persona 2 has a much less volatile consumption with only a
small peak in the evening.

These different characteristics, combined with different EVs and PV systems, result
in different average optimized (dis-)charging profiles (see Figure 6 for persona 3 and
Figure A1 in the Appendix B for the remaining personas).

If no optimization is performed (unmanaged charging), charging takes place quite
regularly, with a peak time of around 6 p.m. and an average power of 0.8 kW. Introducing
smart unidirectional charging leads to an earlier, narrow peak at midday with an average
power of 2 kW. The effect is slightly increased if bidirectional charging is possible, as the ad-
ditional energy can be discharged in the evening to cover part of the evening consumption
of the household (see Figure 5). This applies to all days and not only to the weekend, as it
does in the cases of personas with work during the daytime (see personas 2, 4, 6, and 7),
where just the necessary amount is charged during the week, leading to smaller charging
power during the week as for unmanaged charging.
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Figure 6. (Dis-)charging power of an average week for persona 3. The week starts on Sunday (1) and
ends on Saturday (7).

The different (dis-)charging profiles lead to different revenue ranges (compared to un-
managed charging) as well (see Figure 7). Since 20 to 30 optimizations for each persona with
slightly different input data are performed (30 for frequent drivers, 20 for the remaining),
and two different feed-in tariffs are considered, we obtain revenue ranges. Generally, higher
revenues can be obtained with bidirectional charging instead of unidirectional charging,
although the differences vary greatly depending on the persona. For personas 1 and 2,
almost no additional revenue can be generated with bidirectional charging compared to
unidirectional charging since almost no discharging takes place (see Figure A1). In contrast,
revenues for persona 5 increase largely with bidirectional charging.

To obtain the profit ranges, the additional costs of smart unidirectional and bidirec-
tional charging compared to unmanaged charging have to be defined. The costs in [25] are
updated for 2030, generating additional costs for smart unidirectional charging of 13 EUR/a
to 117 EUR/a and smart bidirectional charging of 60 EUR/a to 196 EUR/a. These addi-
tional costs lead to the profit ranges shown in Figure 8. In the case of smart unidirectional
charging, a positive profit is always reached (up to 412 EUR/a), as the additional costs are
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small compared to the revenue potential. In the case of smart bidirectional charging, not
all personas are always profitable. The profit can also be negative in the case of personas
1 and 2. In these cases, the revenues are similar to those of smart unidirectional charging
(see Figure 7), as discharging can be rarely used. These negative profits are reached just
for the high feed-in tariff, as the difference between household price and feed-in tariff is
rather small. Together with high additional costs, negative profit is obtained. In summary,
smart bidirectional charging can lead to additional revenues in comparison to smart unidi-
rectional charging (but not necessarily), together with higher additional costs, leading to a
broader range of profit potential between negative profit (min −67 EUR/a) and 447 EUR/a.
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These profit ranges result in a share of profitable users for personas 1 and 2 for
bidirectional charging of 76%, with all other personas and smart unidirectional charging
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being 100% profitable. The share of 76% is composed of 51% profitable users with a high
feed-in tariff and 100% with a low feed-in tariff.

3.3. Evaluation of PV Self-Consumption Optimization from a Systemic Perspective

To obtain the aggregated new load profile for the ISAaR, the shares of profitable per-
sonas are multiplied by the total potential of 4.3 million users, obtained from [29], leading
to 4.0 million profitable users. The number of users for each persona, charging strategy,
and feed-in tariff are used to scale the modified (dis)charging profiles (see exemplarily
Figure 6). The aggregated new demand profile is integrated into the demand profile of the
unmanaged EV demand in Germany and later into the total demand.

Generally, the yearly demand is increasing by around 0.8 TWh/a due to increased
charging and discharging losses caused by load shifting. This absolute increase signifies an
increase in the EV demand of 1.8% (48.2 TWh/a compared to 47.4 TWh/a) but just 0.1%
for the total German demand (677.8 TWh/a compared to 677.0 TWh/a). However, larger
changes occur for the peak load. As shown exemplarily in Figure 6, due to smart charging,
the peak load is not only shifting but also increasing. The peak load of the EV demand
increases from 19 GW to 27 GW (+43%), the peak load of the total transport sector increases
from 24.7 GW to 31.9 GW (+29%), and the total peak load increases from 135.6 GW to
137.5 GW (+1.4%).

The effect of PV self-consumption optimization on EV demand is presented in Figure 9.
The overall characteristic of the annual duration curve remains, although the total peak
increases with PV self-consumption optimization. On the average, the effects mentioned
above can be found: There is a peak shifting to midday, resulting in a second, larger peak.
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Figure 9. Modified demand profile of the EV demand in Germany: (a) Annual duration curve.
(b) Average day.

The modified demand profile is integrated into the ISAaR. Two scenarios for 2030
(target scenarios according to the current government plans [37]) are calculated:

1. Base: Base scenario without PV self-consumption optimization and fixed expansion
of RES in Europe.

2. PVSys: Scenario including PV self-consumption optimization and fixed expansion of
RES in Europe.
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In the following, the usage of EVs, the total system costs, the installed capacities
with their respective energy usage and RES curtailment, and the market values for RES
(Figure 10) are analyzed. The focus of the analysis is on Germany.

In total, four different charging options/use cases for EVs exist: unmanaged unidi-
rectional charging, smart charging with the use case PV self-consumption optimization,
and the optimized expansion of smart unidirectional and bidirectional charging within
the energy system model. The allocation of the use cases depends on the scenario. There
will be, in total, 16.5 million EVs in Germany in 2030, according to the chosen scenario. In
the scenario Base, only the three options without PV self-consumption optimization are
available, resulting in a maximum of 6.1 million unidirectional and bidirectional charging
and the remaining 4.3 million unmanaged charging. The number of unmanaged charging
decreases in the scenario PVSys to 0.2 million EVs, with 4 million EVs that perform the
use-case PV self-consumption optimization. In both scenarios, the maximum amount
of smart unidirectional and bidirectionally charged EVs are installed, as it is the most
favorable electrical storage for the model compared to battery storage.

Around 600 billion EUR/a are necessary for energy procurement in Europe as total
system costs. Besides electricity costs, these costs imply the costs for the other energy
carriers but not the costs within the sector models. If PV self-consumption optimization in
Germany is used, the costs are reduced by about 0.01%, or 53 million EUR/a. Therefore,
from a systemic perspective, the use case of PV self-consumption optimization is favorable
as it reduces the total system costs.

To understand how this cost reduction in the scenario of PVSys arises, we analyze
the installed capacities and their usage. As both scenarios imply a fixed expansion of
RES in Europe, no difference in installed capacities for RES exists. In general, there are
only marginal changes for the installed capacities in Germany, which are in the range of
the model uncertainty. The energy balance, however, does look different. There is less
curtailment for RES and less usage of the dispatched electrical storages (mainly bidirectional
charging), implying that the shifted demand better fits the volatile RES.

Between the scenarios, the interactions between Germany and Europe differ. However,
the effects in general—less storage usage and curtailment for RES—can also be seen in
Europe. Here, the installed capacity of electrical storage also decreases slightly.

For the curtailment of RES in Germany, a reduction of 1.3 TWh/a to 0.86 TWh/a
occurs, resulting in a reduction of 0.44 TWh/a (or 34%). Depending on the technology, this
is a reduction of 29% (wind offshore) to 46% (rooftop PV and wind onshore). In absolute
terms, the curtailment reduction is highest for wind offshore, with 0.24 TWh/a. In the
scenario Base, the curtailment of all technologies is below 1% of the potential energy (wind
offshore with a maximum of 0.63%). The same effects can be observed in Europe, although
they are less relevant since the changes occur mainly in Germany. Therefore, the relative
reduction in curtailment is only −3% instead of −34%.

The general usage of smart unidirectionally and bidirectionally charged EVs (market-
oriented) is similar in their characteristics in both scenarios, but the peaks are less pro-
nounced, resulting in lower usage overall.

Due to the demand shifting into the midday, the residual load is getting less volatile in
the scenario PVSys, resulting in a lower (average daily) standard deviation. This change also
implies a less volatile electricity price with a decreasing average daily standard deviation
from 24.9 EUR/MWh to 24.1 EUR/MWh (a decrease of 3.4%). Furthermore, the market
values for all RES (PV, wind onshore, and wind offshore) are increasing. For all renewables,
the annual market value increases by 0.7%, while the market value of wind offshore
increases by 0.2%, wind onshore by 0.6%, and PV by 1.2%. Here, it is interesting to look
deeper into the hourly deviations of the market values (see Figure 10).

When aggregating the hours (night(1): 0 a.m. to 3 a.m., morning: 4 a.m. to 7 a.m.,
daytime: 8 a.m. to 3 p.m., evening: 4 p.m. to 8 p.m., night(2): 9 p.m. to 11 p.m.), there
is an increased market value (for all RES) by 2% during the day (69 EUR/MWh versus
67.7 EUR/MWh) and a decreased market value by 0.6% in the evening hours (95 EUR/MWh
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versus 95.6 EUR/MWh). This effect applies to all three technologies with varying degrees of
intensity (maximal increase around midday for wind onshore with 2.4%, maximal reduction
for PV in the evening hours with −2.5%).
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Figure 10. Average market values (all RES) for different times of the day. Night(1) represents 0 a.m. to
3 a.m., morning 4 a.m. to 7 a.m., daytime 8 a.m. to 3 p.m., evening 4 p.m. to 8 p.m., and night(2) 9 p.m.
to 11 p.m.

4. Discussion and Conclusions

Electrifying the German transport sector is essential for our goals set in the Paris
Agreement and the Green Deal. However, the goal of 15 million EVs by 2030 remains distant.
To boost EV adoption, enhancing their profitability is, therefore, essential. Smart charging,
both unidirectional and bidirectional, can create profitable EV use cases. One such use
case involves optimizing PV self-consumption. In this paper, we study how promoting PV
self-consumption optimization in Germany affects the German/European energy system.

To reflect the heterogeneity of Germany, we create representative personas performing
PV self-consumption optimization. With these personas, varying results are achieved
compared to an average actor. Different (dis)charging profiles result, with a shift in charging
from the week to the weekend for frequent drivers and a more regular characteristic for
low drivers. These profiles subsequently lead to different revenues and profits, ranging
from −67 EUR/a to 447 EUR/a profit, depending on the personas and charging strategy.
For two of the seven chosen personas, the use case is only sometimes profitable and would
not occur. Therefore, using different personas when analyzing smart charging use cases
is sensible.

In the second step, we aggregate the different charging profiles to integrate them into
the energy system model. Due to the different personas, we can integrate only the share
of profitable personas, which is more realistic. We show that with the integration of PV
self-consumption optimization, the following effects occur:

(1) The total system costs decrease by about 53 million EUR/a.
(2) The installed capacities change only marginally, but the usage does change, resulting

in less RES curtailment and less electrical storage usage.
(3) The market values of RES increase due to the demand shift, leading to a favorable

framework for the expansion of RES.
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In [21], a positive effect in summer but a negative effect in winter is discussed. We
could not verify this hypothesis, as in our scenario, we can identify a positive effect but no
fundamental differences between the seasons. The hour of the day has a higher impact due
to the load shifting from the evening to the midday hours.

Limitations

However, there are some limitations to the modeling and the results that show the
need for further research.

The methodology for creating representative personas for Germany is highly sensitive
to the input data/used statistical values. Furthermore, the excluding statements have to be
updated every time the number of features or statistical values are updated. The excluding
statements are, however, necessary to obtain sensible results from the optimization program,
which has to be fine-tuned every time something changes. These statements are a weak
point in the methodology since no statistical data exists to verify them. This high effort
and weakness should be reduced in further work. One option might be two mean actors
(a commuter and a non-commuter) if only systemic effects are to be analyzed. Taking just
two mean actors might not significantly influence the final results regarding the effect of
PV self-consumption optimization on the energy system. For detailed analyses of different
users, however, the above methodology should be used to reflect the heterogeneity in
Germany. The statements should be modified as soon as representative population surveys
on the selected categories for Germany are available.

In this work, the focus is on Germany. Therefore, PV self-consumption optimization is
only implemented there. However, the impact on the European energy system will increase
if the use case is implemented in several European countries. Consequently, the same
methodology should be applied to other countries as well, provided that similar statistics
can be found and the EV and household profile generators are adapted to the behavior of
the respective country.

The same applies to the scenarios. Currently, only one scenario is evaluated for 2030.
The analysis should be expanded to different scenarios, and instead of calculating only the
year 2030, we should calculate in five-year steps from today up to climate neutrality (for
example, 2025, 2030, 2035, 2040, and 2045). In a further analysis, another scenario (free RES
expansion) has already been studied, and generally similar statements have been drawn.
However, further scenario deviations should be analyzed, such as other sectoral demands
and different EV use case potentials. When defining new scenarios, it should, however, be
taken into account that scenario deviations often have a higher impact than the use-case
PV self-consumption optimization. For example, the scenario free RES expansion leads to a
totally different energy system.

Last, as in both scenarios in this paper, the maximum expansion of smart charging is
installed, it cannot be shown whether a substitution of use cases would be more favorable.
That should be analyzed in detail.

In summary, the use case of PV self-consumption optimization with an EV makes
installing a PV system and the investment in an EV almost always more profitable. Thus,
the use case is positive from the user’s perspective. Furthermore, the actor-driven use case
of PV self-consumption optimization in Germany can have a slightly positive effect on the
energy system; thus, a promotion of this use case by the German government can help the
energy transition in Germany.
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Appendix A

The following section contains a list of all 25 personas, after applying the excluding
statement. The structure is analogs to Table 2.

Table A1. Resulting 25 combinations (after excluding statements) and their respective features for the
categories EV, household, PV, and user group.

ID EV Household User Group PV
1 1 1 1 1
2 1 1 6 1
3 1 2 1 2
4 1 2 6 2
5 2 1 1 1
6 2 1 2 1
7 2 1 4 1
8 2 1 6 1
9 2 1 7 1

10 2 2 1 2
11 2 2 2 2
12 2 2 3 2
13 2 2 4 2
14 2 2 5 2
15 2 2 6 2
16 2 2 7 2
17 2 3 3 3
18 2 3 5 3
19 3 2 1 2
20 3 2 2 2
21 3 2 3 2
22 3 2 4 2
23 3 2 5 2
24 3 3 3 3
25 3 3 5 3

Appendix B

The following section contains an overview of the different charging strategies of all
seven personas analogs to Figure 6.
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