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Abstract
Background: Deep learning models are being applied to more and more
use cases with astonishing success stories, but how do they perform in
the real world? Models are typically tested on specific cleaned data sets,
but when deployed in the real world, the model will encounter unexpected,
out-of -distribution (OOD) data.
Purpose: To investigate the impact of OOD radiographs on existing chest x-ray
classification models and to increase their robustness against OOD data.
Methods: The study employed the commonly used chest x-ray classification
model, CheXnet, trained on the chest x-ray 14 data set, and tested its robust-
ness against OOD data using three public radiography data sets: IRMA, Bone
Age, and MURA, and the ImageNet data set. To detect OOD data for multi-
label classification,we proposed in-distribution voting (IDV).The OOD detection
performance is measured across data sets using the area under the receiver
operating characteristic curve (AUC) analysis and compared with Mahalanobis-
based OOD detection, MaxLogit, MaxEnergy, self -supervised OOD detection
(SS OOD), and CutMix.
Results: Without additional OOD detection, the chest x-ray classifier failed to
discard any OOD images, with an AUC of 0.5. The proposed IDV approach
trained on ID (chest x-ray 14) and OOD data (IRMA and ImageNet) achieved,on
average, 0.999 OOD AUC across the three data sets, surpassing all other OOD
detection methods. Mahalanobis-based OOD detection achieved an average
OOD detection AUC of 0.982. IDV trained solely with a few thousand Ima-
geNet images had an AUC 0.913,which was considerably higher than MaxLogit
(0.726), MaxEnergy (0.724), SS OOD (0.476), and CutMix (0.376).
Conclusions: The performance of all tested OOD detection methods did not
translate well to radiography data sets, except Mahalanobis-based OOD detec-
tion and the proposed IDV method. Consequently, training solely on ID data
led to incorrect classification of OOD images as ID, resulting in increased false
positive rates. IDV substantially improved the model’s ID classification perfor-
mance, even when trained with data that will not occur in the intended use case
or test set (ImageNet), without additional inference overhead or performance
decrease in the target classification. The corresponding code is available at
https://gitlab.lrz.de/IP/a-knee-cannot-have-lung-disease.
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1 INTRODUCTION

Modern machine learning models are achieving
great successes in real world medical applications,
such as diabetic retinopathy diagnosis,1 skin cancer
classification,2 or lung disease assessment.3–5 Due to
the early and profound digitization of imaging tech-
niques, machine learning in radiology can already show
convincing successes, such as the detection of certain
critical pathologies of the lung on x-ray images with
performance non-inferior to radiologists.3 Considering
the increasing demand for imaging, while the number
of radiologists remains insufficient, the aforementioned
and similar models can help improve medical patient
care, for example, by screening acquired radiographs
for critical findings prior to radiologist interpretation.6–11

Then, patients with time sensitive illnesses will receive
treatment earlier, potentially saving their lives.

What all of these chest x-ray classifiers have seen,
once trained, validated and tested, are chest x-rays of
a certain type, the in-distribution (ID) images. Conse-
quently, the features learned depend on the assumption
that the input is ID. But despite the advanced level of
digitization, individual workflows for creating and archiv-
ing radiological images and linking them to other patient
data are subject to manual intervention by staff and
are consequently prone to human error, breaking this
assumption. Just one example would be that mixed-up
labeling can arise of patients for whom x-ray images
of several body parts have been taken. For example, a
significant part of the x-ray outliers found during the cre-
ation of the VinDr-CXR data set contained body parts
other than the chest due to incorrect DICOM tags.12

Consequently, images of a knee joint, for example,would
be fed to a model for detecting pulmonary pathologies.
Hence, in the aforementioned scenario, the presenta-
tion of out-of -distribution (OOD) images, erroneous and
potentially patient-harming events are possible.

A major problem of current deep learning models
is that they make high confidence predictions when
facing unexpected (OOD) data, like a knee x-ray.13–15

In our scenario, prioritization based on false, high-
confidence, OOD x-rays can lead to longer waiting
times for other patients with time critical conditions, like
a pneumothorax, potentially risking their life until the
error is discovered and resolved. Moreover, repeated
instances of such misreporting will - if not balanced with
transparency measures sufficiently, for example, using
saliency maps11 - quickly lead physicians to distrust
the model, eventually leading them to refrain from using
it.16–18

Therefore, in recent years, several methods, have
been proposed to detect OOD samples.19–24 Commonly,
the OOD detector converts the output of a model to an
ID score. For example, one of the earliest approaches,
Max. Probability20 uses the highest class probability as

ID probability. In their experiments, the authors noticed
lower confidence scores for the highest class proba-
bility for OOD inputs compared to ID inputs. Another
approach, proposed by Lee et al.,25 also applied to
chest x-rays,24 models OOD data based on the small-
est Mahalanobis distance between the input and a class
conditional Gaussian distribution in the latent space.
Furthermore, Hendrycks et al. propose to use a self -
supervised training scheme to improve OOD detection
performance.23 Instead of including an OOD detector,
other methods such as CutMix,26 aim to improve model
robustness using data augmentation during training.

So far, the problem caused by OOD data has been
investigated mostly on toy data sets, for example, a
model trained on the CIFAR-10 data set,27 learning
to classify automobiles and trucks, is tested on the
SVHN data set28 containing house numbers,or in-house
data sets.24 This raises the question if the test per-
formance of proposed OOD detectors translate to an
existing model trained on chest x-rays. Figure 1 moti-
vates this problem: as the real world data consists of
more than frontal chest x-rays,a classifier like CheXnet3

must handle OOD images safely. Çallı et al. investigated
the effect of an in-house collected OOD x-ray data set
on the task of nodule classification, localization and
lung segmentation.24 In contrast, we focus on the more
general multi-label chest x-ray classification problem.

In this work, we are addressing the practical con-
sequences of OOD data by examining the impact
of non chest radiographs on the chest x-ray classi-
fier CheXnet. We selected this model as it performs
similarly to radiologists,3,4 is considered as state-of -
the-art,29 and used as a strong benchmark.11,29 The
major contributions of our work are: we systematically
explore the OOD detection performance of the CheXnet
chest x-ray classifier on three realistic OOD data sets;
we show that the benchmark performance of current
OOD detection methods mostly do not translate to this
domain; and we demonstrate that our proposed method
in-distribution voting (IDV) improves OOD detection and
generalizes to other data sets without sacrificing chest
x-ray classification performance.

2 METHODS

2.1 Chest x-Ray classification:
CheXnet

Following Rajpurkar et al.,3 we fine-tuned a DenseNet-
12130 on the CXR14 data set. The model was
pre-trained on ImageNet and the weights are avail-
able on pytorch.org.For fine-tuning,we replaced the last
layer with a fully-connected layer with 15 outputs,match-
ing the 14 classes of the CXR14 data set plus the “no
finding” class which represents the absence of any of

https://pytorch.org
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F IGURE 1 Deep learning models in the real world must be able to handle OOD data. (left) A chest x-ray classifier (CheXnet) is trained on
chest x-rays and tested with expected production data: chest X-rays. In a clinic, the model has to handle non chest x-ray images confidently, as
the data cannot be manually cleaned beforehand. (right) A model trained and tested only on chest x-ray images will incorrectly classify OOD
images (here: an x-ray of a knee) as having lung disease. OOD, out-of -distribution.

the 14 pathologies. We expanded the original CheXnet
architecture from 14 to 15 outputs to differentiate
between ID “no finding”CXRs and OOD samples. Since
an image may exhibit signs of multiple pathologies, we
modeled the classification task as a multi-label classifi-
cation task,where each class is predicted independently.
The output scores were converted to a probability for
each class by applying the sigmoid function:

𝜎(x) =
1

1 + e−x .

We used binary cross entropy as loss function and
trained the model using ADAM31 optimization with
default parameters (𝛽1 = 0.9, 𝛽2 = 0.999) and an
initial learning rate of 0.0003. We divided the learning
rate by a factor of ten if the validation loss did not
improve over the last two epochs. We applied weight
decay with a value of 0.0001. We trained the model
for eight epochs and selected the best model based
on the mean area under the receiver operating char-
acteristic curve (AUC) for classifying the ID validation
data set. The input images were resized to 256 × 256
pixels and normalized according to the ImageNet mean
and standard deviation. Then, we applied 224 × 224
ten crop, that is, we took crops from each corner and
the center of the image and repeated the process for
the horizontally flipped image: producing ten 224 ×

224 pixel images per sample. The model predictions
of the ten images were averaged before calculating
the loss.

When including OOD images into the training data,
the model must predict the absence of any pathology.
This is in contrast to healthy CXR images,where the “no
finding” class must be predicted. In the default CheXnet
setup this would result in predicting the same for both

OOD and CXR with no finding. Like the ID images, the
OOD images are normalized according to the ImageNet
mean and standard deviation and passed to the model
in the same fashion as the ID images.

2.2 Proposed method: IDV

To improve the robustness of CheXnet’s predictions and
OOD detection performance we propose IDV. A sample
is classified as ID if at least one class-wise prediction
exceeds the class-wise ID threshold, as illustrated in
Figure 2. If an image was classified as ID, a separate
CXR classification threshold is used equivalently to a
multi-label classification model without OOD detection.

Unlike other multi-label OOD detection techniques
in the literature, the introduction of distinct multi-label
OOD classification thresholds learned using OOD data
allows to separate actual image classification from OOD
detection. We adapted approaches proposed in the
literature22,32 and included OOD data in the training
data set,known as outlier exposure22 or negative data.33

We motivate the use of OOD data during training to
break the “closed world” assumption. In other words, we
forced the model not to condition the predictions on the
chest x-ray input assumption. In our case, the model was
required to predict the absence of any class for OOD
samples, resulting in a zero vector.

It is noteworthy that although “no finding” samples
do not have any labeled classes, we consider them
as ID, as they are chest x-rays. For such CXRs that
exhibit no indications of the 14 classes, the model had
to predict the “no finding” class. In our experiments, we
also used unrealistic OOD samples such as photos
from ImageNet during training, since they are expected
to exist when employing a pre-trained model.Unlike
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F IGURE 2 OOD detection using our proposed method IDV. The model is trained with ID and OOD images. Before inference, class-wise ID
threshold are used to classify the input images as either ID (chest x-ray, top) or OOD (knee, bottom) In this multi-label setting, a sample is
classified as OOD only if all classes unanimously vote against ID. ID, in-distribution; IDV, in-distribution voting; OOD, Out-of -distribution.

realistic OOD samples that might be discovered only
after development and deployment.

In a production setting, the ID thresholds would be
set independently for each class utilizing the validation
set that contains both ID and OOD images instead of
calculating the AUC to report the general performance,
similar to the selection of the CXR classification thresh-
olds. When training with OOD images, both training
and validation splits are expanded to include the OOD
training/validation splits.

2.3 Other OOD detection methods

In the literature, several methods for OOD detection
have been proposed to explicitly filter OOD samples.
Hendrycks and Gimpel were among the first to tackle
this problem.19 They utilized the maximum value of
the softmax prediction as the ID probability. In their
work, they justify this choice by observing that the
highest prediction for OOD samples is lower than that
of ID samples. Since softmax is commonly used for
single-label classification problems, they extended the
approach to multi-label classification tasks by using
the maximum logit of the classification layer (Max.
Logit).20 In contrast, Wang et al. used the label-wise
energy function34 instead of the sigmoid to transform
the model output to an ID score (Max. Energy).21

Instead of converting the model’s output to an ID
score, several approaches use the activations of the
model to generate class-conditional Gaussian distribu-
tions (Mahalanobis).24,25 This method models OOD
images as unlikely points in the class distribution, that
is, having a large Mahalanobis distance to the modeled
class means in the latent space. Lee et al.25 motivated
the use of the Mahalanobis distance between the mean
representation of a class and the input in the feature
space, instead of performing OOD detection in the label
space due to “label overfitting”, that is, that the model
predictions are conditioned on the training labels. For
Mahalanobis-based OOD detection, we use the output
of the penultimate layer to determine the Mahalanobis
scores similar to the work by Çallı et al.24

Hendrycks et al. propose training the classifica-
tion model with additional self -supervised heads to
improve OOD robustness (SS OOD).23 In this method,
the model has to additionally predict image rota-
tion and translation. OOD detection is performed
by taking the highest class prediction probability as
ID score.

Instead of extending the model to detect OOD sam-
ples, methods like CutMix26 aim to improve model
robustness by augmenting the training data. CutMix
randomly replaces sections of an training image with
another image, combining the targets proportionally to
their image size.
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TABLE 1 Data Sets used in our experiments.

In- Out-of-distribution
Data set CXR14 IRMA MURA Bone age ImageNet Subset

Pre-processing - Remove CXR - - Sample Sample

Training 78,468 3088 35,366 8179 217,818 3088

Validation 11,219 772 772 772 54,455 772

Testing 22,433 3860 3860 3860 3860 3860

Total 112,120 7720 39,998 12,811 276,133 7720

Note: The smallest out-of -distribution data set (IRMA) is split into 40/10/50 % training/validation/testing. To compare different scenarios we used the same number of
images for validation and testing of the other OOD data sets (MURA,36 BoneAge,37 ImageNet38).The remaining images were used for training.Because the ImageNet
data set is an order of magnitude larger than the ID CXR14 data set39 we took a random sample first. To examine the different data set sizes we also fixed the size
of the OOD training data splits to have the same amount of images (Subset).
Abbreviations: CXR, chest radiograph; IRMA, image retrieval in medical applications data set; MURA, musculoskeletal radiographs data set; OOD, out-of -distribution.

2.4 Data sets

Not every OOD sample is equally likely in a real-world
scenario. In a production setting, the CheXnet model can
encounter OOD x-ray images,as the distinction between
ID and OOD x-ray images is based on manual, error-
prone tagging. Photographs on the other hand are not
part of the image processing pipeline in a radiology
department and can thus be assumed not to be found in
a real-world scenario. However, real-world OOD images
might not be at hand during development and/or are
only discovered after deployment. Therefore, unrealistic
OOD images could address this potential shortage of
OOD samples.

For our OOD detection experiments, we selected
three publicly available radiographic data sets, IRMA,35

MURA,36 and BoneAge,37 containing x-ray images of
various body parts as realistic OOD test data sets to test
cross-data set generalization.33 We specifically chose
publicly available data sets to ensure reproducability of
our findings and encourage future work.Further data set
details are listed in Table 1.

2.4.1 ID chest x-ray 14

We use the train-test split provided by the authors
of the Chest x-ray 14 (CXR14) data set, having non-
overlapping patients. We further randomly split the
provided training data set into training and valida-
tion sets, again with non-overlapping patients resulting
in 78,468 training, 11,219 validation, and 22,433 test
images (see also Table 1). All three splits have a similar
prevalence of class labels. In summary, the original data
set is split into 70% training, 10% validation, and 20%
test data. In contrast to the original CheXnet model, we
expand the target classes and include “no finding” to dif-
ferentiate between healthy CXR and other images. We
also use the images labeled as “no finding” for training,
as 46% of the images are labeled as such. For these

images, the model must predict the absence of all 14
pathologies in the original CheXnet setup.

2.4.2 OOD data sets

For our OOD detection experiments we use the following
data sets:

∙ IRMA: the image retrieval in medical applications data
set35 consists of 14,410 diverse radiographic images;
12,677 are annotated according to the anatomical cat-
egory, 1733 are test images without annotation. The
original task was to predict the correct anatomical
category.

∙ MURA: the musculoskeletal radiographs data set36

consists of 40,561 radiographic images, displaying
different upper extremity bones. The original task was
to predict if the x-ray study is normal or abnormal.

∙ BoneAge: the Bone Age data set37 consists of 12,811
hand radiographs of children.The original task was to
predict the age of the patient.

∙ ImageNet: the ImageNet data set38 contains over
one million web scraped photographs. The data set
is often used for pre-training computer vision mod-
els. There are several tasks for this data set, including
image classification and object detection.

While the CheXnet model has been pre-trained on
predicting the ImageNet classes, the photos are OOD
regarding the target task of chest x-ray classification,
as the data set does not include chest x-rays. There-
fore, we use it as additional non chest x-ray OOD data
set, allowing us to investigate the performance of our
proposed method “In-Distribution Voting” (IDV). This is
relevant for use cases where no or only few realistic
OOD images are available.The OOD data sets are illus-
trated in Figure 3. All models are tested on OOD data
from a different data set.For example,when trained with
ImageNet and IRMA data the model is also tested on
MURA and Bone Age data.
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F IGURE 3 In this work, we utilized four out-of -distribution datasets: the IRMA) data set35 (a), the MURA data set36 (b), the Bone Age data
set37 (c), and the ImageNet data set38 (d). The IRMA data set comprises a diverse collection of radiographic images, while the MURA data set
contains solely upper extremity radiographs, and the Bone Age data set consists of hand radiographs. Lastly, the ImageNet data set is a
collection of web-scraped photographs. All four data sets are publicly available. IRMA, Image Retrieval in Medical Applications; MURA,
Musculoskeletal Radiographs.

Because the IRMA data set is the smallest data set,
we sample every OOD data set so that their test and val-
idation split sizes match the IRMA splits. Furthermore,
we create a subset of every OOD data set to account
for training data size.

IRMA
We only use the provided training images, as we require
the IRMA labels to exclude ID chest radiographs from
the data set. We remove all chest x-rays from the data
set according to their anatomical code and exclude
images with an anatomical code starting with 57, 75, 05,
or 150, resulting in 7720 images. We split the remain-
ing images randomly into training,validation,and testing
using a 30% / 20% / 50% split to ensure enough images
in the test split.

Bone Age
We randomly sample the test and validation images
according to the data split sizes of the IRMA data set
(772 validation images, 3,860 test images, see Table 1).
The remaining 8179 images are either used all or sam-
pled according to the IRMA training set size (3088
images) for the training split.

MURA
We split the MURA data set, containing 40,561 images,
similar to the Bone Age data set: the validation and test
partitions are randomly sampled, matching the size of
the IRMA validation/test splits, listed in Table 1. Either
all remaining images or ones sampled according to
the IRMA training set size (3088 images) are used
for training.

ImageNet
Due to the size of the ImageNet Large Scale
Visual Recognition Challenge (ILSVRC) data set
compared to the Chest x-ray 14 data set we use

only 50% of the 544,546 images provided in the
“LOC_train_solution.csv” file for training and another
20% for validation, see Table 1. When accounting for
OOD data set sizes, we sample the training and val-
idation sets according to the size of the IRMA splits.
For both cases we sample the test set according to the
IRMA test split size. All train/validation/test splits were
created with non-overlapping images.

3 RESULTS

3.1 Chest x-ray classification

We trained the CheXnet model successfully on the
Chest x-ray 14 (CXR14) data set and evaluated the
impact of training with OOD data on chest disease clas-
sification performance by measuring the performance
on the ID test data set, without any OOD samples. Fur-
thermore, we report the CXR classification results when
training with SS OOD heads and CutMix augmentation.

We report the mean AUC over all 15 classes, as
well as the AUC for each individual class. The model
achieved a mean AUC of 83% when trained and tested
on the CXR14 data set without any OOD images, as
shown in Table 2. Figure 4 displays the corresponding
receiver operating characteristic (ROC) curves for all 15
classes in the CXR14 data set.

To further evaluate the performance of the model,
we trained it with additional self -supervised heads, as
it modifies the training procedure, which resulted in a
reduction in the classification mean AUC to 81.1%.Simi-
larly, using CutMix reduced the classification mean AUC
to 82.2%.We also tested the model’s performance when
trained with OOD samples from the IRMA and ImageNet
data sets. In contrast to the self -supervised training
scheme,the mean AUC improved to 83.3% when includ-
ing IRMA and ImageNet OOD data (3088 samples).
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TABLE 2 CXR14 classification performance evaluated by the AUC.

IDV IDV IDV IDV CXN IDV IDV IDV IDV CM SO IDV IDV IDV

Training Data

CXR14 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

IRMA ✓ - - - - - - ✓ - - - ✓ - -

MURA - - - ✓ - - ✓ - - - - - - -

Bone Age - ✓ ✓ - - ✓ - - - - - - ✓ -

ImageNet ✓ - - - - ✓ - - ✓ - - ✓ ✓ ✓

OOD Train Samples 3088 8179 3088 3088 0 3088 35366 3088 3088 0 0 220906 225997 217818

Atelectasis 81.9 81.7 81.9 81.8 81.8 81.9 81.2 82.0 81.6 81.3 80.6 81.1 80.4 79.8

Cardiomegaly 90.3 90.3 90.6 89.4 90.1 90.1 90.7 90.8 91.0 90.0 88.7 91.0 89.9 89.2

Consolidation 80.5 80.1 81.0 80.8 80.3 80.7 79.4 80.6 79.8 79.8 79.5 79.7 80.3 78.9

Edema 89.3 88.9 88.5 89.1 88.8 88.5 88.0 88.3 88.7 88.1 88.1 86.3 87.0 86.5

Effusion 88.0 87.9 88.1 87.7 88.0 88.1 87.7 88.0 87.5 87.9 87.8 87.1 87.5 87.3

Emphysema 91.4 92.2 91.4 92.0 91.6 91.3 91.1 90.2 91.2 89.9 87.0 87.8 87.3 87.4

Fibrosis 82.6 82.1 79.9 82.1 82.1 80.4 82.3 79.6 79.3 81.8 79.0 79.4 77.9 78.3

Hernia 93.6 94.3 91.5 92.8 91.3 90.9 92.9 89.7 91.1 87.2 84.2 82.6 83.5 82.1

Infiltration 71.0 71.3 71.1 70.8 70.2 71.1 70.3 70.8 69.2 70.5 69.1 70.1 69.3 69.0

Mass 83.7 84.7 84.8 84.4 84.2 83.9 84.5 84.5 84.0 83.8 82.6 82.7 81.7 80.6

Nodule 77.4 77.9 78.5 75.7 77.3 77.6 76.9 77.9 76.6 76.5 75.0 74.7 73.8 72.8

Pleural Thickening 77.6 77.1 77.7 77.6 77.3 77.5 78.1 78.2 75.7 77.1 76.4 75.6 75.0 74.8

Pneumonia 77.7 75.9 77.6 75.5 76.0 76.8 75.0 76.4 76.1 75.8 75.6 74.8 74.3 74.2

Pneumothorax 86.9 86.6 86.2 87.3 87.4 86.7 85.6 86.2 86.4 86.2 85.1 84.7 85.3 84.5

No Finding 77.6 78.2 78.3 77.9 78.1 78.0 77.9 78.0 77.7 77.6 77.7 77.8 77.4 77.3

Mean AUC 83.3 83.3 83.2 83.0 83.0 82.9 82.8 82.7 82.4 82.2 81.1 81.0 80.7 80.2

Note: Experiments are sorted by mean AUC, with the best AUC highlighted in bold. The CheXnet baseline method achieved a mean AUC of 83%. Our proposed IDV
method, which trained with few (3088) OOD images, had no clear negative effect on CXR classification, with mean AUCs ranging from 82.4% to 83.3%. However,
training with an OOD data set larger than the in-distribution data set reduced the mean classification AUC by up to three percentage points. Additionally, incorporating
self -supervised heads (SO, SS OOD) had a negative effect on the classification AUC by two percentage points, similar to using CM.
Abbreviations: AUC, area under the ROC curve; CM, CutMix; CXN, CheXnet (Baseline); CXR, Chest x-ray; OOD, out-of -distribution; SO, SS OOD.

Trained with only IRMA or ImageNet data the mean
AUC resulted in 82.7% and 82.4%, respectively. Table 2
shows the AUCs obtained when training with all data
set combinations, including MURA and Bone Age,which
resulted in similar AUCs of 83.2% and 83.0%, respec-
tively.However,using the full ImageNet OOD set resulted
in a lower AUC of 81.1%.

3.2 OOD detection

The objective of OOD detection is to classify each
image as either ID or OOD. For each of the three OOD
data sets (IRMA, MURA, and BoneAge), we evaluate
the performance of the OOD detection methods by
measuring how many ID and OOD samples from the
test set are correctly classified as such. As a baseline,
we employed the default CheXnet model with no extra
OOD detection mechanism, which represents the cur-
rent CXR classification models. We report the AUC as
our evaluation metric.

Figure 5 shows the ROC plots for the three different
OOD data sets with their corresponding AUCs.CheXnet,
without any OOD detection method, failed to filter any
OOD image in all data sets, with a false positive rate of
100% and an AUC of 50%.

Training CheXnet with self -supervised heads (SS
OOD) increased the OOD AUC to 51.2% on the IRMA
data set but resulted in a worse OOD detection per-
formance on the MURA and Bone Age data sets with
47.7% AUC and 43.9% AUC, respectively. Similarly,
using CutMix during training resulted in OOD detection
AUCs between 34% and 43.5%.

The conversion of the logits to an OOD score using
MaxLogit and MaxEnergy improved the OOD perfor-
mance considerably compared to the CheXnet model
with MaxLogit achieving AUCs of 67.5%, 71.6%, and
78.6%, respectively on the IRMA, MURA, and Bone Age
data sets. MaxEnergy performed similarly, with 67.2%,
71.2%, and 78.8%, respectively.

Using the Mahalanobis distance increased the
OOD detection performance significantly compared to
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F IGURE 4 ROC curves of all CXR14 classes for the main experiment settings. Training with OOD data, as proposed by our method, IDV,
had no clear negative effect on CXR classification. In contrast, training with self -supervised heads (SS OOD) or CutMix affected the
classification negatively. The depicted IDV runs were trained with 3088 OOD images (subset). CXR, chest x-ray; IDV, in-distribution voting; OOD,
out-of -distribution; ROC, receiver operating characteristic.

MaxLogit and MaxEnergy with an AUC of 97.3% on
the IRMA data set, 98.5% on MURA, and 98.8% on
Bone Age.

Our method, IDV, trained with 1544 ImageNet and
1544 IRMA images surpassed the Mahalanobis perfor-
mance on all three data sets with an AUC of 99.8%
on the IRMA data set, 99.9% on the MURA data set,
and 100% on the Bone Age data set. Training with
IRMA images resulted in 99.8%, 99.6%, and 100% AUC

on IRMA, MURA, and Bone Age, respectively. IDV with
ImageNet in 93.8%, 89.8%, and 90.3%, respectively.

3.3 Effect of OOD training data

To investigate the impact of OOD training data selec-
tion, we conducted a series of experiments to measure
the performance of OOD detection,using the area under
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F IGURE 5 ROC curves for OOD detection on the test datasets of CXR14 + IRMA, MURA, Bone Age with their respective AUC. The CXR
classifier, CheXnet, cannot handle OOD data itself, resulting in a false positive rate of 100% on all test datasets. This means that all OOD
images were classified as having lung disease by the base model. Training the model with self -supervised heads (SS OOD) improved the OOD
detection AUC only on the IRMA dataset, not on MURA and Bone Age. Using CutMix during training resulted in a worse OOD detection
performance compared to the CheXnet baseline. Converting the model’s output to an OOD detection score (MaxLogit, MaxEnergy) improved
the OOD AUC on all three datasets. Using the Mahalanobis distance to the class means in the feature space as an OOD signal resulted in an
AUC greater than 97% on all three datasets. Our proposed method, IDV, performed best with an average OOD detection AUC of 99.9% across
all three datasets when trained with ImageNet and IRMA data. Training with a domain-specific OOD dataset (IRMA) performed better than using
only a general dataset (ImageNet), and training with a diverse OOD dataset containing domain-specific OOD data as well (ImageNet + IRMA)
performed best. All IDV runs were trained with a subset (3088 images) of the available OOD training data, using 1044 ImageNet and 1044
IRMA images in the case of ImageNet + IRMA. AUC, area under the ROC curve; CXR, Chest x-ray; CXR14, Chest x-Ray 14; IDV, in-distribution
voting; IRMA, image retrieval in medical applications data set; MURA, musculoskeletal radiographs data set; OOD, out-of -distribution; ROC,
Receiver Operating Characteristic.

the ROC curves. We trained our model using all avail-
able OOD data sets, including IRMA, MURA, Bone Age,
and ImageNet. To account for the smaller sample size
of IRMA and Bone Age data sets, we combined them
with the ImageNet data set. Specifically, we chose Ima-
geNet training data larger than the ID CXR14 training
data to measure the effect of using more OOD than ID
data. To ensure a fair comparison among different OOD
training data sets, we randomly sampled a subset of
3088 images from each data set, matching the smallest
data set size (IRMA). When training using two data sets
(ImageNet+ IRMA,ImageNet+ Bone Age),we selected
50% from each,resulting in 1544 images from ImageNet
and 1544 radiographs from either IRMA or Bone Age. In
all experiments, we used a test set consisting of 3860
samples (see Table 1).

Figure 6 shows the ROC curves and AUC values
for the different IDV runs evaluated on the thee test
data sets: IRMA, MURA, and Bone Age. Generally, our
proposed method outperformed the CheXnet baseline
(AUC 50%) when trained on any OOD data. Also, the
models performed best on the Bone Age data set, con-
taining only hand x-rays, and worst on the IRMA data
set, containing a wide variety of radiographs. Training
with ImageNet data generalized to x-ray OOD data sets
with AUCs from 97% to 100% when trained on the whole
data set and from 90% to 94% when trained on the sub-
set. Training on the Bone Age data set performed worst
on the IRMA data set (AUC 71%) but achieved an AUC
of 100% on the Bone Age test set; using only a subset

improved the performance and combining the data with
ImageNet even further.Training on the MURA and IRMA
data set individually performed best, but was exceeded
only by the combination of ImageNet and IRMA data.
Overall, our results suggest that incorporating diverse
data sets, such as ImageNet and IRMA, is a promis-
ing approach to improve OOD generalization for x-ray
classification tasks.

4 DISCUSSION

Assessing whether the tested model performance in a
benchmark translates to an intended production set-
ting, including potential OOD data is a necessary step
before deploying a machine learning model. This is
particularly important in safety critical applications, for
example, when classifying chest x-rays to assist radi-
ologists in diagnosing patients. Our results show that
the CheXnet model cannot handle OOD samples out-
of -the-box. However, combining it with our proposed
method, IDV, and trained with any OOD data, even the
photographs of ImageNet, improved the OOD detec-
tion performance compared to the baseline CheXnet
model and most OOD detection methods considerably
with OOD detection AUCs up to 100% without affecting
CXR classification performance negatively.

In their paper, Rajpurkar et al. conclude that their
CheXnet model exceeds practicing radiologists in
detecting pneumonia3 and note as limitation that only
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F IGURE 6 ROC curves and AUCs of all OOD detection runs using IDV on three OOD test data sets: IRMA, MURA, and Bone Age with
CXR14 in-distribution data. IDV OOD detection with any OOD data improved OOD detection performance. Generally, all models performed best
on the Bone Age data set, which includes only hand x-rays, and the worst on IRMA, which comprises a variety of x-rays. Consequently, using
only the specific Bone Age data during training improved OOD detection performance less than using the diverse ImageNet data set, expect on
the Bone Age test data. Training with ImageNet OOD images provided strong OOD detection performance, with an AUC greater than 96% on all
data sets. Additionally, training with the most diverse data set, ImageNet + IRMA, provided the overall best performance, using only 3088 training
images (subset). AUC, area under the ROC curve; CXR, Chest x-ray; IDV, in-distribution voting; IRMA, image retrieval in medical applications
data set; MURA, musculoskeletal radiographs data set; OOD, out-of -distribution; ROC, Receiver Operating Characteristic.

frontal CXR were used,giving a potential low estimate of
the model’s performance. Our experiments showed that
a further limitation was not considered: OOD images. A
model that cannot handle OOD images, making confi-
dent predictions based on wrong evidence, will lead to
worse quality of care, eroding the trust of physicians
into the model’s predictions when facing ID images, and
impede the potential benefits of computer assisted diag-
nosis. Having robust models trusted by radiologists is
necessary to leverage such classifiers to assist radiol-
ogists in clinical practice. Out-of -the-box, the CheXnet
model failed to provide this robustness against realistic
OOD images.

In our experiments, we noted that other OOD detec-
tion methods based on a model’s output (MaxLogit,
MaxEnergy, and SS OOD) performed considerably
worse than in their original works.Model robustness was
also not improved when using CutMix. This suggests
that the presented OOD data sets are more challenging,
highlighting the importance of considering OOD data in
the medical domain. Our experiments showed that even
limited OOD data leveraged by IDV had a large effect
on the OOD detection performance without negatively
affecting the intended classification task.

We interpret the large OOD detection difference
between the output based methods, MaxLogit and Max-
Energy, and Mahalanobis as evidence for the “label
overfitting” hypothesis. Our approach, including an “no
finding” / OOD label into the training procedure, breaks
this overfitting problem and improves the OOD detection
performance without a complex clustering component
like the Mahalanobis distance. We interpret the IDV
results as indicating that the model incorporates the fact
that OOD images exist into its output.

While training with OOD data improves OOD detec-
tion performance, it is important to consider the intended
use-case: CXR classification. We can conclude that
training with OOD data, as proposed in our method IDV,
does not affect chest disease classification performance
negatively. This means that diversifying the training and
validation data set with OOD samples improves the
model performance in real-world scenarios, as potential
OOD images are filtered.

Regarding the choice and availability of OOD training
data our results showed that only few thousand sam-
ples are sufficient and even unrelated OOD data, such
as ImageNet, is immensely useful. When comparing the
OOD performance trained on the very specific Bone Age
data set and the general ImageNet for cross-data set
generalization we note that training with unrelated Ima-
geNet data generalized better. We therefore conclude
that using a generic OOD data set alone could improve a
model’s OOD detection performance. Including domain
specific, diverse OOD images improves the OOD detec-
tion AUC even further (cf. ImageNet vs. ImageNet +
IRMA in Figure 6).

In this work, we investigated the effect of OOD
images on a chest x-ray classifier. We showed that the
model, reportedly performing as good as radiologists,3,4

was not able to filter OOD images, leading to obvious
false positives to the human observer. We assume its
predictions are conditioned on chest x-rays, because
the model was only trained on chest x-rays, lead-
ing to overconfident predictions given OOD images.
As hypothesized by Lee et al.,25 this leads to an
ID-overfitted output space. This interpretation explains
why established output-based OOD detection methods
failed in our experiments, when compared to detecting
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OOD samples in the feature space. Our solution, ID vot-
ing and training with OOD images,regularizes the output
space and expands the model’s knowledge horizon,
leading up to a 100% ID OOD detection AUC.

One reason why OOD data are rarely considered
is their dependency on the intended application. We
showed that including a small OOD training data set
from the same data set as the OOD test data resulted
in a better OOD detection performance than a general
OOD data set. While this suggests that there is no ideal
application independent OOD data set, we found that
training with any OOD data improved the baseline per-
formance considerably. Furthermore, we showed that
even a few thousand OOD samples from the intended
application boosted the specificity considerably. There-
fore, when creating a data set to train and evaluate
a model in a production setting, we recommend to
remove anomalies, outliers and other OOD with caution.
Instead, including this “real-world” data not only in the
training process, but also into the model validation, will
lead to more robust ML models and ultimately improve
clinical acceptance

One limitation of this work is that we use the CheXnet
model as a representative for other chest x-ray classifi-
cation models. While a DenseNet-121 is still considered
as state-of -the-art for chest x-ray classification,11,29

further research is necessary to determine if our find-
ings translate to other architectures. Furthermore, we
only tested our model on chest x-ray images, even
though our approach remains relevant to all multi-label
OOD detection data sets. Finally, this retrospective work
was performed only on public data and further work
is necessary to evaluate our findings on real-world
clinical data.

5 CONCLUSION

In conclusion, our study demonstrated that training
solely on ID data leads to incorrect classification of
OOD images as ID, resulting in increased false positive
rates. We also showed, that our proposed method, IDV,
substantially improves the model’s ID classification
performance, even when trained with data that will not
occur in the intended use case or test set.Consequently,
our approach makes the final model more robust and
considerably improves its predictive performance in a
real-world setting.
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