
Tactile-Based Negotiation of Unknown Objects during
Navigation in Unstructured Environments with Movable
Obstacles

Simon Armleder, Emmanuel Dean-Leon, Florian Bergner, Julio Rogelio Guadarrama Olvera,*
and Gordon Cheng

1. Introduction

Seamless navigation of robots within human environments,
encompassing homes and offices, is essential for their successful
integration into our society. Nevertheless, a significant challenge
emerges when robots encounter unfamiliar objects in these envi-
ronments. Traditional robot navigation techniques primarily rely
on a limited search for collision-free paths,[1] following a strategy
that prioritizes obstacle avoidance at all costs. Consequently,
these algorithms often fail in cluttered situations as they treat

all objects as obstacles, neglecting
the manipulation capabilities of robotic
systems, such as humanoid robots[2,3] or
mobile manipulators.[4,5] This approach
starkly contrasts with the natural behavior
of humans, who leverage their ability to
modify the environment in a way that
assists locomotion. If necessary, even a
child does not hesitate to move an object
to reach an obstructed goal.

Inspired by this behavior, our objective
is to equip robots with the capacity to ana-
lyze the environment and choose when to
manipulate an object. Robot movements
are planned by considering moving objects
when the goal cannot be reached or the
path to the goal can be significantly
shortened.

Figure 1 shows an example of the type of
problem we address in this article. The robot is confronted with
reaching a desired goal, obstructed by unknown objects. In such
a scenario, a conventional path planner would fail to provide a
feasible solution since there is insufficient space to circumvent
obstacles. Therefore, the system needs to identify objects, deter-
mine whether or not they can be moved, and clear them from the
path to create sufficient space for continued navigation. Feedback
is provided by the robot’s onboard camera, LIDAR sensors on the
mobile base, and a robot skin covering its arms and hands.

1.1. State of the Art

Taking into account the possibility of reconfiguring the environ-
ment by moving objects is known in the literature as navigation
among movable obstacles (NAMO). The first planner that solved
NAMO within a practical amount of time was presented in
ref. [6]. In this work, the author reduced the search space by
assuming that disconnected free-space components can be con-
nected independently by moving only a single obstacle. The strat-
egy was successfully realized on the humanoid Robot HRP-2.[7]

However, the authors assumed full knowledge of the environ-
ment. Sensor data were acquired through external cameras
and markers to position priory known models of movable
obstacles. Beyond this, they further solved the domain where
maximally k obstacles have to be moved to restore connectivity
in the robot’s free space, and each object needs to only be moved
once.[8]

S. Armleder, F. Bergner, J. R. Guadarrama Olvera, G. Cheng
Institute for Cognitive Systems (ICS)
Technical University of Munich
Germany
E-mail: rogelio.guadarrama@tum.de

E. Dean-Leon
Department of Electrical Engineering, Automation
Chalmers University of Technology
Gothenburg, Sweden

The ORCID identification number(s) for the author(s) of this article
can be found under https://doi.org/10.1002/aisy.202300621.

© 2023 The Authors. Advanced Intelligent Systems published by Wiley-
VCH GmbH. This is an open access article under the terms of the
Creative Commons Attribution License, which permits use, distribution
and reproduction in any medium, provided the original work is
properly cited.

DOI: 10.1002/aisy.202300621

Traditional robot navigation passively plans/replans to avoid any contact with
obstacles in the scene. This limits the obtained solutions to the collision-free
space and leads to failures if the path to the goal is obstructed. In contrast,
humans actively modify their environment by repositioning objects if it assists
locomotion. This article aims to bring robots closer to such abilities by providing a
framework to detect and clear movable obstacles to continue navigation. The
approach leverages a multimodal robot skin that provides both local proximity
and tactile feedback regarding physical interactions with the surroundings. This
multimodal contact feedback is employed to adapt the robot’s behavior when
interacting with object surfaces and regulating applied forces. This enables the
robot to remove bulky obstacles from its path and solves otherwise infeasible
navigation problems. The system’s ability is demonstrated in simulation and
real-world scenarios involving movable and nonmovable obstacles.

RESEARCH ARTICLE
www.advintellsyst.com

Adv. Intell. Syst. 2024, 6, 2300621 2300621 (1 of 15) © 2023 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH

mailto:rogelio.guadarrama@tum.de
https://doi.org/10.1002/aisy.202300621
http://creativecommons.org/licenses/by/4.0/
http://www.advintellsyst.com


All the previously mentioned approaches rely on a complete
knowledge of the environment and perfect data. The first exten-
sions of NAMO to unknown environments are presented in
refs. [9,10]. The solution in ref. [9] was implemented on the
humanoid Robot HRP-2 using onboard sensors only. Movable
obstacles are detected by active sensing with a force–torque
sensor. Their planning algorithm was a local approach only,
where the robot reacts to a specific movable obstacle without con-
sidering other obstacles in the computation of a new plan. A
planner that achieves local optimality was formulated in
ref. [10]. The authors discretize the world into a planar grid
and employ A*-Search. The solution is then improved by consid-
ering the costs of manipulating or avoiding obstacles.

Only a handful of the proposed algorithms made it to the stage
of real-world experimentation.[7,9,11–13] The main challenge is the
uncertainty in the perceived world state and the action outcome
of a real robotics system. This is why more recent work tries to
incorporate these uncertainties directly into the planning algo-
rithm. In refs. [12,14], the authors leveraged ideas from proba-
bility theory to formulate the NAMO problem as a Markov
Decision Process called NAMO-MDP. In ref. [12], the approach
is further extended to incorporate the learned dynamics of mov-
able obstacles. The robot gathers data by applying manipulation
forces to one or more points on an object and records the force–
torque responses and resulting object trajectory. These data are
then used to discover constraints in the object’s motion. Scholz
et al.[12] evaluated their ideas on a real-world robot but depended

on external cameras. They test the algorithm in an environment
with two constrained obstacles. In ref. [13], the semantics of mov-
able obstacles are obtained through image scene classification.
The system infers movability by assuming that specific object cat-
egories are movable. Tests were performed on a mobile manip-
ulator concerning three different kinds of movable obstacles.
Wang et al.[15] solved NAMO by extracting object affordances
such as pushability and liftability from sensory data. They used
trajectory optimization to plan robot movements. The method is
showcased in a home environment with a moveable chair and a
liftable water bottle. NAMO has also been approached with deep
learning techniques. Zeng et al.[16] trained a forward model of
object interactions that predicts the outcome of push and pull
actions from vision. The method is tested in simulations that
usually require removing a single obstacle to reach the goal.
Wang et al.[17] trained a reinforcement learning agent and suc-
cessfully deployed it on a real robot. The method does not include
force sensing on the end-effector.

In the literature, knowledge about movability is usually given
as input. However, active sensing has also been used based on
visual feedback[18] and F/T-sensors.[9,12] Recently, another sensor
for physical interactions has become available as whole-body tac-
tile feedback. Skin systems such as refs. [19–21] are inspired by
the human sense of touch and have proven to be very useful
when acting in unstructured and dynamic environments.[22]

Of particular interest is the system developed in ref. [23] that
offers multiple modalities such as force, proximity, acceleration,
and temperature.

1.2. Our Approach and Contributions

In this article, we address the problem of navigation in a cluttered
environment containing reconfigurable objects. Our approach is
based on the tactile and proximity feedback measured by a
robotic skin system. This sensor allows us to remove the com-
mon assumptions about an object’s movability and replace them
with real-time measurements. For planning object movements,
we approximate their geometry with simple boxes and only
require some rough information about their position and
footprint.

The robot assesses the movability of unknown obstacles by
approaching them with its hand and applying a test force.
Once it is determined whether or not these obstacles can be
moved, a planner decides how to clear the obstacle from the path
or, instead, how to navigate around it (Section 2). To address the
clearance of large and bulky objects, we employ a compliant
pushing strategy that can execute previously planned actions
(Section 3). This process repeats iteratively whenever a new
obstacle is detected until the robot reaches its goal. Our
contribution is a fully functional framework that can solve the
navigation among movable obstacles problem in simulation
and on a real robot. We validate our approach in cluttered simu-
lated environments containing up to 30 obstacles (Section 4.1)
and on a real robot operating in an unknown environment with
six different obstacles (Section 4.2).

Overall, our experiments show that the skin on the robot’s
hand helps to relax the requirements in the perception and plan-
ning pipeline. Local information such as object distance, surface

Figure 1. Navigation among movable obstacles: the robot autonomously
navigates from the initial pose to the goal pose, negotiating movable and
nonmovable obstacles along the way.

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2024, 6, 2300621 2300621 (2 of 15) © 2023 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH

http://www.advancedsciencenews.com
http://www.advintellsyst.com


shape, and interaction forces can be handled through reactive
compliant behaviors rather than exact calibration and planning.

2. Framework

2.1. Overview of Our Approach

The essential steps required by any solution to NAMO problems
are: 1) identify the obstacle that requires relocation, 2) maneuver
the robot to a suitable position for reaching it with the arm, 3) assess
whether the obstacle is movable or static, and 4) negotiate the
obstacle by moving it from the path or navigating around it.

These steps have to be solved iteratively until the robot reaches
the goal position. The overview in Figure 2 depicts our approach
to the problem.

The information flow begins with an object detector that iden-
tifies obstacles in front of the robot. Their position and geometry
information is stored in a movability map. Initially, new obstacles
are unknown and assumed to be movable. A NAMO planner
(Section 2.2) with access to the map simulates possible pushes
on detected obstacles to find the one that leads to enough clear-
ance for further navigation. Once completed, the planner returns
the next obstacle to move and the desired direction to push. At
the next stage, movability detector (Section 3.1.3), the robot
approaches the selected obstacle and applies a small test force
to determine its movability. The map is updated with this
new information. If the obstacle can be moved, the robot initiates
a pushing strategy (Section 3.2) to clear the object from its path.
Conversely, if the object is deemed static, the planner is

reactivated, and with the updated movability map, it has to find
another solution. Whenever the robot creates enough free space,
the navigation process continues toward the goal. The planner
aborts when all known obstacles have been tested, or they are
inaccessible, and no viable path can be found.

2.2. NAMO Planner

A plan consists of a navigation sequence and compliant actions
designed to bring the robot closer to the goal by systematically
removing one movable obstacle at a time from the path. We build
upon the planner that was first developed in ref. [10] since it is
designed to operate in unknown environments. The algorithm
has access to a static 2D map of the environment but no knowl-
edge about obstacles. We make the following assumptions:
1) Connectivity through object manipulation: the planner
assumes that two disjoint free space regions can be connected
by moving a single object, as illustrated in Figure 3. 2) Planar
projection of the environment: the planning domain is restricted
to a planar projection of the three-dimensional environment. and
3) Obstacle detection and movability assessment: the robot can
detect unknown obstacles and actively sense their movability.

The algorithm generates two types of plans: a direct path plan
if a clear path to the goal exists without requiring obstacle inter-
action or a three-step plan if obstacles obstruct the goal. In the
latter case, the procedure involves: first, reaching the obstacle
(c1), second, clearing the obstacle (c2), and finally navigating from
the cleared area to the goal (c3). A visualization of this procedure
is shown in Figure 3.

Figure 2. Overview: the goal is to find a sequence of compliant actions that activity creates clearances for navigation. An onboard camera detects new
obstacles and adds them to a movability map. Subsequently, a NAMO planner decides which obstacle to move next and in which direction. The robot
approaches the selected object and assesses its movability. If it can be moved, a pushing strategy clears it from the path, thereby allowing the robot to
proceed further toward the goal. This process repeats iteratively until the goal is reached, or all known obstacles have been tested, and still no path is
found.

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2024, 6, 2300621 2300621 (3 of 15) © 2023 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH

http://www.advancedsciencenews.com
http://www.advintellsyst.com


The overall cost of a particular path Cpath is formulated as a
combination of these three segments and based on their
Euclidean length:

Cpath o, p, að Þ ¼ jc1j þ jc3jð ÞCnav þ jc2jCact o, p, að Þ (1)

here, Cnav is the step cost associated with moving the robot from
one location to another. Cact (o, p, a) denotes the step-cost
required to execute clearing action a on object o when making
contact at point p on its surface. The notation jc�j indicates
the Euclidean length of a path segment.

The planning procedure outlined in Algorithm 1, finds the
best plan according to Cpath, and can be separated into two steps.
First, namoPlan that computes the plan from start to goal
fwxi, wxgg and second obstaclePlan that computes plans for
individual obstacles.

2.2.1. NAMO-Plan

Starts by evaluating the direct path between the start wxi ∈ SE 2ð Þ
and the goal wxg ∈ SE 2ð Þ pose, using an A*-Search.[24] This initial
path is the current optimal plan, denoted as p*. The manipula-
tion of objects is only considered as long as it decreases this ini-
tial cost. The routine first sorts obstacles based on their distance
to the goal and then starts calling obstaclePlan on the current
object to see if it can reduce the cost (Line 8 in Algorithm 1).

2.2.2. Obstacle-Plan

Possible plans for a single object are evaluated. This involves sim-
ulating the outcome of different clearance actions a on object o
and checking for new paths to the goal. The evaluation is per-
formed iteratively, considering different contact points p ∈ ℝ2

on the faces of the object. For each contact point p, a subroutine
computes a suitable planar mobile base pose (Section 2.3). If a
base pose wxb ∈ SE 2ð Þ can be found, the algorithm plans the first
path segment c1 to reach that pose (Line 4). Next, the algorithm
iterates over possible clearance actions, applying them to o, and
simulating the movements of both the object and the robot. This
simulation is performed for a maximum of nmax steps. The effort
associated with moving the object is determined based on the
displacement of the mobile base robot.x throughout the

Figure 3. Obstacle plan: a plan between the initial robot pose and the goal pose wxg involves three segments. Reaching the blocking object (c1), clearing it
(c2), and finally moving further toward the goal (c3).

Algorithm 1. NAMO-Plan.

Input: wxi , wxg, robot, env

Output: p⋆

1 function namoPlanðwxi , wxgÞ
2 p⋆ ←A⋆ðwxi , wxg, env:mapÞ
3 foreach o ∈ env:obstacles do

4 o.cost← kwxg � o.xk
5 O← sortðenv:obstacles:costÞ
6 o←O.next

7 while o.cost < p⋆ . cost do

8 p⋆ ← obstaclePlanðwxi , wxg, o, p⋆, envÞ
9 o←O.next

10 return p⋆

1 function obstaclePlanðwxi , wxg, o, p⋆, envÞ
2 foreach p ∈ o.poses do

3 wxb ← robot.findBasePoseðp, env:mapÞ
4 c1 ←A⋆ðwxi , wxb, env:mapÞ
5 if c1.cost ¼¼ inf then

6 continue

7 foreach a ∈ o.actions do

8 env:resetðÞ, robot.x ¼ wxb

9 ĉ←Cnav ⋅ ðc1.costþ kwxg � robot.xkÞ
10 nstep, c2 ← 0, ∅

11 while o.movable ∧ ðĉ < p⋆.costÞ ∧ ðnstep < nmaxÞ do
12 o.applyForceðp, robot.doActionðaÞÞ
13 c2.addWayPointðrobot.xÞ
14 c3 ←A⋆ðrobot.x, wxg, env:mapÞ
15 if c3.cost < inf then

16 po ← Planðc1, c2, c3Þ
17 if po.cost < p⋆.cost then

18 p⋆ ← po

19 ĉ←Cnav ⋅ ðc1.cost þ kwxg � robot.xkÞ
20 env:stepSimulationðÞ, nstep ← nstep þ 1

21 return p⋆

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2024, 6, 2300621 2300621 (4 of 15) © 2023 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH

http://www.advancedsciencenews.com
http://www.advintellsyst.com


interaction and stored as the cost of the second plan component
c2 (Line 13). In each iteration, the algorithm checks for the exis-
tence of a new path between the updated robot position and the
goal (Line 14). If a valid path component c3 is found, a complete
object plan po is formed. If this plan has a lower cost than the
current optimal plan p*, it is updated accordingly (Line 18).
There are two termination criteria within the evaluation process.
First, if the object o is static or becomes static because it collides
with a wall or another static object, the evaluation is stopped by
setting o.movable to false (Line 11). Second, a termination crite-
rion based on the heuristic ĉ, which considers the moving costs
required to reach the object (c1.cost) and the estimated remaining
distance to the goal kwxg � robot.xk (Line 19). This heuristic stops
action evaluations as soon as the costs of moving alone become
higher than the current optimal p*, since adding segment c2
would only increase costs.[10]

After running the planner, it returns the optimal plan, which
contains the next navigation goal for the mobile base wxb, the
object to manipulate o, the contact point p on one of its faces,
and the action a to execute.

2.3. Suitable Mobile Base Placement

A mobile-based positioning strategy is necessary to plan path
segments for reaching an object before manipulation. Since
we are interested in pushing bulky obstacles that might exceed
the available workspace of the robot, we have to consider the
robot’s manipulability.

Different base poses are evaluated against each other by
assigning them a performance measure p qð Þ.[25] We consider
two factors: arm manipulability m qð Þ and the distance d qð Þ of
joint angles q to a preselected arm posture qpost which is suitable
for pushing.

mðqÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det 0JhðqÞ0JhðqÞTð Þ

q
dðqÞ ¼ Qna

i¼1 1� qi�qpost,ið Þ2
π2

� �
∈ 0, 1½ �

pðqÞ ¼ mðqÞð1þ w dðqÞ � 1Þð Þ

(2)

here 0Jh qð Þ is the Jacobian of the hand {h} w.r.t. the robot arm
mounting frame {0} and the scalar w ∈ 0, 1½ � a weight factor,
adjusting the influence of the preselected arm posture on the per-
formance index. The goal is to maximize this performance index
by selecting a suitable placement for the mobile base relative to a
detected object.

If the robot’s hand {h} has reached a desired contact
point {obs} on one of the object’s surfaces, such that
wThðqÞ ¼ wTobs. We can re-express this relation using the
kinematic chain of a mobile manipulator as:

wTb
bT0

0ThðqÞ ¼ wTobs

0ThðqÞ ¼ obsTb
bT0

� ��1
(3)

here wTb ∈ SE 3ð Þ represents the transformation of the mobile
base with respect to the world, bT0 ∈ SE 3ð Þ, the fixed transforma-
tion between the arm mounting and the mobile base,
and 0Th qð Þ ∈ SE 3ð Þ, the forward kinematics of the arm.

Rearranging for the kinematics of the arm 0ThðqÞ allows us to
determine the joint angles required to reach for an object given
the south-after base transformation obsTb ∈ SE 3ð Þ. If we assume
that the object’s geometry can be represented with a simple box
during the planning phase, the transformation obsTb only
depends on rotations around the world z axis, and can be
specified with four degrees of freedom:

obsTb ¼ Rz θð Þ
x
y
�h

24 35
0T3x1 1

2664
3775

where h is the height of the object and obsxb ¼ x y θ½ �T is
the planar pose of the base. By sampling these four parameters
within a predefined range and resolution, the corresponding
joint solutions and maximum performance index can be
obtained through inverse kinematics. Finally, these values are
stored in a data structure, indexed by fh, x, y, θg. Building up this
data structure is done once in an offline step. During execution, a
map M of possible base positions wxb ∈ SE 2ð Þ for a given wTobs
is found by slicing the data structure based on the object’s height
h. The base configuration is then selected by optimizing the
performance index within that slice.

obsxb⋆ ¼ argmax obsxb∈DM
wxb⋆ ¼ wTobs

obsxb⋆ (4)

whereD⊂W is a restricted workspace domain that originates from
the required minimum clearances to other obstacles. Examples of
generated base poses for pushing are shown in Figure 4.

2.4. Internal Simulation of Obstacle Clearance

The planning procedure, described in Algorithm 1, requires the
definition of clearance actions capable of removing obstacles
from the robot’s path. In this work, we consider a restricted
set of planar pushes, executed with a constant force, in the
directions A ¼ f0, � π=8, � π=4, � π=2grad.

Of course, a broader range of options is available, but we
opt for pushing actions as they align closely with the physical
capabilities of our real robot. We define possible contact points
for each obstacle to apply pushes at the centers of its vertical
surfaces.

We leverage a physics engine to simulate the effects of pushes
and assess the feasibility of plans before executing them on the
physical hardware. The physics engine is called in every iteration
of the planner (Line 20) and simulates obstacles’ rotation, trans-
lation, and collisions when forces are applied. It also takes into
account the cascading effect when multiple obstacles collide with

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2024, 6, 2300621 2300621 (5 of 15) © 2023 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH

http://www.advancedsciencenews.com
http://www.advintellsyst.com


each other. Given that pushes are inherently planar actions, it is
sufficient to simulate movements in two dimensions and exclu-
sively consider the footprint of obstacles. This simplifying
assumption increases the efficiency of the simulation step a lot.

An illustrative example of how the planner, the mobile base
positioning, and the simulation work together is shown in
Figure 5. The example considers a hallway scenario with three
obstacles, two movable and one declared static. Whenever a
new obstacle enters the robot’s field of view or an object changes
its movability, Algorithm 1 is restarted to adapt to the new
circumstances.

Of course, such simulations can deviate from reality.
Therefore, the following section connects the planner with
real-time measurements from the robot and includes strategies
for failure detection.

3. Online Execution

3.1. Perception

The essential information required to solve NAMO problems is
the movability property of obstacles in the environment. Since we

Figure 4. Mobile-base placement: the distribution of possible base poses is visualized as colored spheres on the ground. The blue color indicates a higher
performance index.

(a) (b) (c)

(d) (e) (f)

Figure 5. Simulation of NAMO: Initially, all objects are considered movable (colored in green) since theirmovability attribute is unknown. a) The planner
determines the lowest cost plan by pushing the right object to the left until there is enough to get to the goal. b) However, when the robot executes this
plan, it fails because the object has been declared static (colored in red). c) This triggers a re-planning d). Finally, the updated plan is to push the center
object to the left (colored in blue) e). This leads to a valid path to the goal f ).

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2024, 6, 2300621 2300621 (6 of 15) © 2023 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH

http://www.advancedsciencenews.com
http://www.advintellsyst.com


have no prior knowledge about them, the robot needs to employ
active sensing.

3.1.1. Robot Skin

One way to gather the information is through a distributed
sensing network called robot skin that can cover the surfaces
of a robot, see, e.g., Figure 1.

Robot skin obtains real-time measurements about the type,
location, and intensity of multiple physical interactions.[23] It
is multimodal and senses nearby obstacles through proximity
sensors prior to a contact. Forces during physical contact are
measured with pressure sensors. Both proximity and force feed-
back are valuable to realize the required interactions between an
obstacle and the real robot: first, to determine object movability,
and second, to realize a robust path clearance strategy.

To use the skin’s information, its raw cell-wise measurements
must be converted into 6D wrenches. Each skin cell inside the
sensing network delivers a stream of force f i ∈ ℝ and proximity
pi ∈ ℝ information. They are combined into a virtual force
f i ¼ ωf i þ ð1� ωÞpi through a weighing factor ω that allows
shifting between force and proximity-based responses. Since
the location of every cell is known within the robot’s kinematic
chain, we can compute the resultant wrench of active cells inside
any reference frame, e.g., the hand {h}.

hw ¼
hf
hΓ

" #
¼ γ

P
i∈active f i

hni

γ
P

i∈active
hti � f i

hni

" #
(5)

here hni and hti are the normal and translational vector of the i-th
cell, and γ scales the signals to treat them as wrenches.
Subsequent sections use the obtained skin wrench to implement
the robot–obstacle interactions.

3.1.2. Visual Perception for Object Detection

Besides the movability property, the planner requires geometric
information about an object. This includes an estimation of its
2D footprint and height. In this work, the primary focus is not on
advanced visual perception. Consequently, we achieve object
detection through ArUco markers.[26] More advanced object clas-
sifiers can replace the simplified approach, as demonstrated in
ref. [13].

3.1.3. Tactile Perception for Object Movability

The first interaction between the robot and an obstacle is actively
determining its movability. This process involves establishing a
light contact between the robot’s hand and the object’s surface.
A spline then gradually increases the applied normal force to a
predefined maximum, denoted as fmax. This maximum force is
carefully set to ensure the safety of the robot arm while engaging
with the object. Simultaneously, the contact velocity ẋc ¼ nT

c Jcq̇ is
integrated to calculate the displacement Δxc in the object’s posi-
tion. Here, Jc denotes the contact’s Jacobian matrix, nc the con-
tact’s normal vector, and q̇ the robot’s joint velocity vector. If the
displacement exceeds a defined threshold distance, denoted by
Δxth, the object is classified as movable, and the corresponding

maximum force required for pushing fpush is recorded. Figure 6
illustrates an example of the discrimination process for amovable
and static object. Note that this method can fail when dealing
with soft objects that deform instead of moving linearly.
However, more advanced methods might be able to detect soft
deformable objects from tactile feedback as well.[27]

3.2. Pushing Things Forward

Once the robot classifies an object as movable, an action is
required to clear it from the path. We adopt a pushing strategy
to deal with large furniture-like objects that can not be grasped.

3.2.1. Pushing Strategy

Our goal is not to precisely position objects in the world but to
create enough space for continued navigation. Furthermore, we
assume objects behave like holonomic entities with roughly
uniform mass distribution.

This allows us to break down the pushing problem into two
steps: first, rotating the object toward a desired angle, denoted as
θd and planned by Algorithm 1, followed by a forward push
through the object’s origin until the path is cleared. Figure 7a,
b shows a visualization of this procedure. Here, we assign a con-
tact frame {c} to the contact point with its x-axis pointing toward
the object’s origin {o}. In this new frame, the steps from above
can be described as follows: first, a tangential force f t is applied in
the direction 0 1½ �T primarily causing the object to rotate.
Second, a normal force f n in the direction 1 0½ �T is applied,
which acts through the center of rotation, causing a forward
motion.

A proportional controller based on the current orientation
error δ ¼ θd � θ fuses these two directions and gives the overall
pushing direction in the contact frame.

cn ¼ 1
0

� �
þ kδδ

0
1

� �
(6)

The scalar kδ ∈ ℝ is a gain parameter used to tune the influence
of the orientation error. This strategy leads to trajectories, as visu-
alized in Figure 7c, showing how the object (green) first rotates
and then translates while the mobile base (red) follows to main-
tain contact.

The applied forces have to remain within the object’s friction
cone to prevent slippage during the pushing. However,
determining the exact limits of the cone is difficult. Here, we
limit the pushing angle at the object’s surface, denoted as
∠on, to a fixed range of �0.9 rad.

on ¼ oRcðαÞcn
∠oen ¼ minðmaxð∠on, � 0.9Þ, 0.9Þ
α ¼ atanðty, txÞ

(7)

By further transforming this direction into the robot’s hand
frame {h} and multiplying with the desired object speed vd,
we get the hand velocity

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2024, 6, 2300621 2300621 (7 of 15) © 2023 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH

http://www.advancedsciencenews.com
http://www.advintellsyst.com


hẋd ¼ vdhRo

oen
0

� �
(8)

We opt for a compliant approach rather than directly sending this
command to a velocity controller. Instead, we convert the current

velocity error into a desired force that a compliant force controller
tracks.

hf d ¼ Kv
hẋd � hJh;p qð Þq̇

� �
(9)

(a)

(b)

(c)

(d)

Figure 6. Detection process of movability attribute: object 1 in a), b) is classified as movable after a displacement of Δxo ¼ 0.05m is detected in b). The
maximum recorded force before the object starts moving is fpush= 7 N. Object 2 in c) d) is classified as static after the maximum effort of fmax= 18 N is
reached in c). The slight displacement in d) is due to a deformation of the object.

(a) (b) (c)

Figure 7. Obstacle pushing: clearing the path is achieved by first rotating a) and then pushing an object forward b) until the path is cleared. This approach
leads to the trajectories depicted in c) when pushing at 45° to the left. The mobile base is colored red, and the object is green.

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2024, 6, 2300621 2300621 (8 of 15) © 2023 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH

http://www.advancedsciencenews.com
http://www.advintellsyst.com


where Kv ∈ ℝ3�3 is a velocity gain factor and hJh;p qð Þ ∈ ℝ3�n is
the position part of the hand’s Jacobian.

In an unforeseen collision, the controller should not apply
more force than a given maximum denoted as fmax. We set fmax

slightly higher than the required force for pushing, determined
before in Section 3.1.3 when detecting movability.

Δf ¼ γhf d � hf

γ ¼ min 1, f max
khf dk

� � (10)

here hf is the actual external force sensed at the robot’s hand
and γ is a factor that limits the applied interaction force to a
magnitude of fmax.

The final component of the pushing action involves a strategy
to maintain alignment between the hand orientation and the
object’s surface. This alignment is achieved by following the
object orientation reactivity as it turns. The objective can be
formulated by ensuring convergence of moments hΓ, measured
in the hand frame, to zero

ΔΓ ¼ �hΓ (11)

The complete wrench error Δw ¼ ½Δf T ΔΓT �T at the hand is
then minimized by the whole-body controller in Section 3.3.

3.2.2. Selecting the Contact Point

A remaining question is where to make contact on the object’s
surface before applying the pushing strategy. As evident from
Figure 7a, objects can be turned most easily by exerting forces
near the corners. If the goal is to push to the right, the contact
point should be located at the left corner and vice versa. The most
suitable contact point is in the middle when the objective is to
push forward.

The proximity sensing embedded in the skin on the robot’s
hand offers an elegant solution. By setting the skin wrench in
Equation (5) to pure proximity (w ¼ 0), the robot can keep a fixed
distance to the surface f d ¼ 0 0 pz½ �T and scan horizontally
along the contour of an object until a jump in the proximity sig-
nal indicates the presence of a corner. While searching for the
corner, the hand aligns its orientation reactively in the same
way as during pushing. Reliably finding the corner of an object
through other sensors, such as a camera or force–torque sensor,
would be more complex.

3.3. Controller

In the end, all robot actions required in Figure 2, such as
reaching for an object, detecting its movability, pushing it,
and avoiding collision when the mobile base is in motion, must
be converted into torque commands for the real robot.

We make use of our whole-body impedance controller, devel-
oped in ref. [28], which combines the holonomic mobile base and
the arm into a redundant system q ¼ qTarm

wxbT
	 


T.
Every action is a combination of low-level compliant control-

lers, formulated as tasks in Cartesian space[29] for the robot’s

hand and joint space else. Multiple active tasks are fused in a
hierarchical manner using null space projection.[30]

All tasks are expressed in the form of impedance controllers
where Λ,D,K define the desired inertia, damping, and stiffness
matrix. The task error to be minimized is either measured in
Cartesian space by Δx ¼ wxd;h � wxh, in wrench space by
Δw ¼ hwd � hw or in joint space with Δq ¼ qd � q.

3.3.1. Hand Motion Task

This task tracks a desired trajectory fwxd, wẋd, wẍdg and is used for
reaching contact points on an object’s surface with the robot
hand.

wẍh⋆ ¼ wẍd þ Λ�1ðwwh þ KΔxþ DΔẋÞ (12)

here wwh is the external wrench measured at the hand to render
the motion compliant, especially when the object is detected
incorrectly and appears closer than initially anticipated.

3.3.2. Hand Wrench Task

The wrench task controls the force and moment the robot’s hand
applies to an object. It is used in three ways. First, to determine
the movability in Section 3.1.3. Second, to find the corner of an
object with the proximity signals. And third, to realize the
pushing strategy outlined in Section 3.2.

hẍ⋆ ¼ Λ�1ðKΔw� DhẋÞ (13)

3.3.3. Mobile-Base Collision Avoidance Task

This task prevents the mobile base from colliding with the
environment while the hand pushes an object. The method is
based on planar artificial potential fields Ψ wxb, fogð Þ to guide
the mobile base away from all close by objects {o}.[31] The task
has lower priority than the other two to not interfere with the
hand motions.

τ⋆oca ¼ �K∇Ψ wxb, fogð Þ �Dwẋb (14)

3.3.4. Arm Posture Task

The lowest priority task is a joint posture task that keeps the arm
close to a desired configuration qd;arm.

τ⋆post ¼ KΔqarm �Dq̇arm (15)

Finally, in every control cycle, active tasks are evaluated and
fused into the next torque command (see ref. [28] for more
details).

3.4. Error Handling

Since the real dynamics of an object is unknown, the pushing
action is susceptible to errors and requires a recovery strategy
in the case of failures. Errors can occur when the object turns

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2024, 6, 2300621 2300621 (9 of 15) © 2023 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH

http://www.advancedsciencenews.com
http://www.advintellsyst.com


unexpectedly, loses contact with the hand, or collides with
another static item in the environment. These cases can be
detected by monitoring the contact state at the hand to trigger
a replaning.

3.4.1. Contact–Loss

A loss of contact is detected in two ways. First, we monitor the
sensed normal force component, and if it falls below a predefined
minimum threshold, i.e., fc< fmin, this signals a loss of contact.
Second, we examine the magnitude of hand moments. If it sur-
passes a specified maximum threshold, i.e., khΓk > μmax, there is
a misalignment in the hand orientation and the object surface, as
per Equation (11). In either case, the pushing action is aborted,
and we initiate a second attempt by approaching the object once
more.

3.4.2. Collision

Collision scenarios are identified by examining whether the
sensed normal force, fc, exceeds a maximum threshold, fmax.
In this case, the object is marked as static and no longer consid-
ered by the planner in a subsequent replanning step. Figure 8
shows a collision situation involving a pushed chair and a wall.
The objects collide at t= 8 s. The compliant pushing controller of
Section 3.2 successfully limits the maximum force magnitude to
fmax= 2fpush ≈ 9 N.

4. Experimental Section

We evaluate our approach using two testbeds: 1) a software
simulation that can spawn worlds with many obstacles and
2) a real mobile manipulator with a 6 degree of freedom arm.

4.1. Simulation

For the simulation, we use the open-source physics engine
Box2d[32] and the ROS Navigation Stack.[33] Box2d efficiently
simulates the motion and collision events between many objects.

In contrast, the ROS Navigation Stack is a collection of software
packages that can guide a robot to a specified goal location while
avoiding obstacles.

In our simulation environment, we approximate obstacles
with simple boxes of varying sizes. To apply pushing forces,
we add potential contact points on each of the four vertical sur-
faces of these obstacles.

Initially, the robot is supplied with a static map of the environ-
ment but does not know the location of obstacles. We assume
that new obstacles can be detected once they are within 2m range
of the robot’s camera. We set the stepping cost for obstacle clear-
ing in Equation (1) twice as high as the stepping cost for naviga-
tion: Cact= 2.0 and Cnav= 1.0.

To validate the effectiveness of the NAMO planner detailed in
Section 2.2, the mobile-base placement in Section 2.3, and the
pushing strategy in Section 3.2, we conduct experiments within
this simplified setup. As a reference baseline, we use the stan-
dard ROS Navigation Stack planner, referred to as Move_base.
Move_base follows the “avoid at all cost” strategy and, therefore,
needs to navigate around every single obstacle in the
environment.

4.1.1. Random Obstacles

The first experiment aims to address the scalability of the
NAMO planner with respect to the number of obstacles in the
environment. We configure a 12m� 12m maze environment,
and the robot’s objective is to navigate from a predefined
starting pose to a fixed goal pose. Obstacles are added to the
map by randomly sampling their positions, orientations, and
sizes. Note that there is no guarantee that a direct path to the
goal exists.

In each iteration of the experiment, we increase the number of
obstacles in steps of 5 s, starting with an empty map and gradu-
ally reaching up to 30 obstacles.

We conduct each experiment 10 times, employing both the
standard Move_base planner and the NAMO planner to collect
statistical data. Figure 9 shows four successive key-frames of
the navigation process when the NAMO planner is active, and
25 obstacles are distributed over the map.

Figure 8. Collision situation: a pushed object accidentally collides with the static environment at 8 s. The compliant pushing controller limits the exerted
force fc to a maximum of fmax≈9 N a). The corresponding object speed is shown in b).

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2024, 6, 2300621 2300621 (10 of 15) © 2023 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH

http://www.advancedsciencenews.com
http://www.advintellsyst.com


The experiment’s results are depicted in Figure 10. In the first
plot, we show the total success rate of reaching the goal relative to
the number of obstacles in the environment. The Move_base
planner frequently returns infeasible from 15 obstacles onward
when the path to the goal becomes too obscured. The NAMO
planner can still reach the target up to the maximum number
of obstacles. However, its performance drops when the number
of obstacles becomes large because there is often not enough
space to position the mobile base when reaching for an obstacle
that needs to be moved.

Figure 10b compares the total path length required to reach
the goal. In the case of 0–15 obstacles when both planners still
manage to complete the task, NAMO consistently produces

shorter paths than Move_base. Move_base often has to take
large detours when a new obstacle comes into view and blocks
the way.

Quantitative time measurements from the experiment can be
found in Table 1. It lists the total execution time for NAMO and
the time spent in different plan stages relative to the number of
obstacles. The occupancy field measures the ratio of occupied
map area to total map area after an inflation radius of 0.3 m
is applied. The time spent on planning suggests a linear relation
between planning time and the number of obstacles.

These simulations show that even if the environment becomes
quite cluttered with 30 obstacles (75% of the gird map is occupied
space), the common assumption in NAMO[10] of only having to

Figure 9. Simulation: four successive key-frames of the random obstacle simulation. The robot discovers objects within its vicinity and pushes them away
to reach the goal. Objects that the planner has moved are displayed in blue.

Figure 10. Simulation: comparison between Move_base (green) and NAMO (red) in a simulated maze environment. Left: the success rate for reaching
the goal.Move_base fails to reach the goal when the map contains more than 20 obstacles. Right: the total path length required to reach the goal. Without
the ability to move obstacles, the path length is higher.

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2024, 6, 2300621 2300621 (11 of 15) © 2023 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH

http://www.advancedsciencenews.com
http://www.advintellsyst.com


move a single object to connect two regions of free space, works
well in practice and could potentially scale to even larger maps.

4.2. Real Robot

4.2.1. Experimental Platform

We perform the real experiments on our robotics platform tactile
omnidirectional mobile manipulator (TOMM),[4] see Figure 1.
TOMM is a dual-arm mobile manipulator composed of two
UR5 industrial robots with six degrees of freedom mounted
on a holonomic mobile base. In the experiments, we use the right
arm on which an Allegro hand is mounted. The robot is equipped
with an RGB-D camera in the front and two LIDARs on its base.
TOMM’s arms and mobile base are velocity-controlled with a
fixed control loop frequency of 125Hz for the arms and
1 kHz for the mobile base. Control algorithms are implemented
in Cþþ using ROS.

4.2.2. Electronic Skin

For the experiments, we use an electronic skin system (e-skin)
capable of large-area tactile sensing.[23] It consists of
hexagonal-shaped sensing modules, the skin cells.[20] Each skin cell
embeds a microcontroller and a set of multimodal tactile sensors.
It measures normal forces with three capacitive pressure sensors,
light touch and distance with an optical proximity sensor, vibra-
tions with a three-axis accelerometer, and temperature with tem-
perature sensors. Assembled together, these skin cells form
bendable skin patches mounted on our robot’s arms and hands.

Self-configuration and efficient event-driven communication
allow the e-skin system to scale to large areas without the need
to reduce the effective sample rate of the system.[34] This enables
us to deploy 700 cells on the robot that provide information at a
frequency of 250Hz. Manually locating every single cell within
the kinematic tree of the robot is impractical. To overcome this
challenge, the e-skin can automatically reconstruct its 3D surface
coverage and determine the positions and orientations of its sen-
sors. When the proximity signals are converted into distance
measures, they can reliably detect objects in the range of
0–0.06m.

4.2.3. Obstacle Clearance

The initial real-world experiment evaluates the pushing control-
ler as outlined in Section 3.2. In this scenario, the robot is posi-
tioned in front of a chair, and the objective is to execute pushes in
various directions as specified by the planner in Section 2.4. The
chair is marked with an AruCo marker to get a rough estimation
of its location through the camera system. Subsequently, the
robot approaches this position and comes to rest if the skin prox-
imity sensors on the hand detect the chair’s surface. Before push-
ing can start, the robot needs to locate the object’s corner. This is
achieved by moving the hand along the surface while maintain-
ing a constant distance with the proximity sensors. The motion

Table 1. Simulation timings: total execution times for NAMO planner
when executed in environments with increasing the number of objects.
The planning time scales linearly with the number of obstacles,
suggesting that the strategy could be used for even larger maps with
more obstacles.

Obstacles 5 10 15 20 25 30

Occupancy [%] 0.48 0.54 0.59 0.64 0.70 0.75

Avg no. of moves 0.6 2.1 3.6 4.2 6.8 9.1

Plan time [s] 1.5 4.1 7.1 14.4 11.3 16.6

Time nav [s] 118.7 150.4 139.9 182.5 169.4 188.0

Assess time [s] 0.3 0.82 1.5 2.8 4.0 7.2

Push time [s] 2.7 3.6 6.7 16.3 20.5 37.0

Total time [s] 123.1 158.8 155.3 216.0 205.2 248.8

Figure 11. Obstacle clearance: resulting trajectories when clearing obstacles in front of the robot. In this experiment, pushes are executed five times in the
directions {0, �π/4, �π/2}rad.

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2024, 6, 2300621 2300621 (12 of 15) © 2023 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH

http://www.advancedsciencenews.com
http://www.advintellsyst.com


stops if skin cells detect a sudden increase in the distance, indi-
cating the corner location. Finally, the hand makes contact and
applies the pushing force based on Section 3.2 to move the chair.
We repeat this procedure for the desired pushing directions of
f0, � π=4, � π=2grad, with a path length of 1.4 m. Each direc-
tion is repeated five times, and the trajectories are recorded.
Figure 11 shows the resulting motions. The robot can reliably
push the obstacle within an area of around 15 cm radius around
the goal location. For our intended application, this accuracy is
sufficient.

4.2.4. Navigation Among Movable Obstacles

In the final experiment, we tested the entire system within a real-
world scenario. The objective is to navigate a distance of approxi-
mately 12m from one end of a hallway to the other. Objects are
randomly placed in the environment, and no direct path to the
goal position exists, as shown in Figure 1. This scenario high-
lights the limitations of a standard planner, which would not
be able to plot a path.

Like in simulation, we record a static map of the environment
without any objects and use it for localization purposes. We
selected two chairs, one table, and multiple boxes as obstacles.
All of them fulfill the assumptions made earlier in
Section 3.2.1 (holonomic entities with roughly isotropic friction).

Some boxes are not labeled with ArUco tags and, therefore, are
not visible to the camera system. Nevertheless, they are avoided
by the mobile base during navigation and the object-pushing
process.

To introduce a static object into the environment, we have
increased the weight of the largest box to a level that exceeds
the maximum pushing force fmax= 18 N of the robot. The system
must identify this box as static.

Key-frames of the experiment are shown in Figure 12.
Planning and execution proceed as follows: the first obstacle that
obstructs the path is a chair, as seen in Figure 12a. Once the cam-
era detects it, it triggers a search by the NAMO planner. The plan-
ner simulates various pushing actions on the object and selects a
leftward push as the most cost-effective action to create free
space. The robot then approaches the chair with its hand and

(a)

(b)

(c)

(d)

Figure 12. Experiment: key-frames of the real execution. The task is to autonomously reach the opposite side of the hallway.

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2024, 6, 2300621 2300621 (13 of 15) © 2023 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH

http://www.advancedsciencenews.com
http://www.advintellsyst.com


applies a preliminary test force to assess whether it can be
moved. The relatively lightweight chair starts moving at a force
of 4.6 N. With this confirmation, the robot executes the push and
can continue navigation.

The next visible obstacle blocking the path is the table shown
in Figure 12b. Following the same procedure, the planner opts
for a push to the right. After checking that it can indeed bemoved
and locating the table’s corner, the robot clears the path.

Then, two new objects appear in the field of view, Figure 12c.
The planner attempts to first manipulate the large box since the
goal is behind it. However, when applying a test force to the box,
it will not move and is therefore classified as static. This triggers a
replanning process, leading the robot to consider the chair as the
next viable option, Figure 12d. Ultimately, the robot successfully
reaches the goal by relocating the chair to the right.

Quantitative results from this experiment are listed in Table 2.
As before, we show the total time spent in different planning
phases and the real force required by the robot to remove
obstacles. For comparison, we also replicated the corridor environ-
ment in simulation and rerun the experiment. Reality and simu-
lation match the time taken for planning and navigation but differ
greatly in accessing movability and pushing. This discrepancy
arises because themovability attribute in simulation is determined
instantaneously and because the real robot needs to perform addi-
tional actions, such as folding and unfolding its arms.

5. Conclusion

In this work, we tackled the challenge of enabling robots to
navigate common human environments filled with unknown
and potentially movable obstacles. The framework we developed
effectively addressed this problem and allowed our robot to reach
desired goals even if the path was obscured.

Instead of relying on given knowledge about an obstacle’s
manipulability, we use tactile signals from a robot skin system
to actively sense movability.

Object movements are planned in a simulator before execut-
ing them on the real robot and only require approximate
information about the object’s location and a 2D footprint.

To remove blocking obstacles from the robot’s path, we devel-
oped a pushing strategy that can realize the planner’s action on a
real robot. The method employs proximity information to reach
for unknown obstacles and detect their corner location. Then, a
feedback controller based on tactile information pushes the
obstacle aside, creating space for further navigation. During
pushing, the system can identify collisions with other static items
of the environment and unexpected object motions to trigger a
second attempt. Our simulation experiments show that the
NAMO approach substantially increases the chance of success
over standard “avoid at all costs” navigation. In simulated
environments where ≈75% of the map is occupied, NAMO
was still able to reach the goal in 80% of the cases.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.

Acknowledgements
Correction added on 12 February 2024 after online publication: Algorithm
is updated in this version.

Conflict of Interest
The authors declare no conflict of interest.

Data Availability Statement
Data sharing is not applicable to this article as no new data were created or
analyzed in this study.

Keywords
e-skin, mobile manipulation, motion planning, navigation among movable
obstacles, tactile interactions

Received: September 30, 2023
Revised: November 7, 2023

Published online: January 16, 2024

[1] J.-C. Latombe, Robot Motion Planning, The Springer International
Series in Engineering and Computer Science (SECS), Vol. 124,
Springer Science & Business Media, New York 2012.

[2] G. Cheng, S.-H. Hyon, J. Morimoto, A. Ude, J. G. Hale, G. Colvin,
W. Scroggin, S. C. Jacobsen, Adv. Rob. 2007, 21, 1097.

[3] K. Kaneko, K. Harada, F. Kanehiro, G. Miyamori, K. Akachi, in 2008
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, IEEE 2008, pp.
2471–2478.

[4] E. Dean-Leon, B. Pierce, F. Bergner, P. Mittendorfer,
K. Ramirez-Amaro, W. Burger, G. Cheng, in 2017 IEEE Int. Conf.
on Robotics and Automation (ICRA), IEEE 2017, pp. 2441–2447.

[5] T. Asfour, L. Kaul, M. Wächter, S. Ottenhaus, P. Weiner, S. Rader,
R. Grimm, Y. Zhou, M. Grotz, F. Paus, D. Shingarey, H. Haubert,
in 2018 IEEE-RAS 18th Int. Conf. on Humanoid Robots
(Humanoids), IEEE 2018, pp. 447–454.

[6] M. Stilman, J. J. Kuffner, Int. J. Humanoid Rob. 2005, 2, 479.

Table 2. Timings real experiment: planning and execution times of the
NAMO experiment on the real robot in a 12m� 3m corridor. Note
that the time for assessing and pushing during real execution also
includes the time for unfolding and homing of the robotic arm and is,
therefore, much longer than simulation.

Real Simulated

Obstacles 6 6

Occupancy 0.6 0.6

No. of moves 3 3

Plan time [s] 1.6 1.6

Time nav [s] 115.2 104.0

Assess time [s] 119.6 1.4

Push time [s] 135.3 23.1

Force push [N] {4.6, 8.1, 18.0, 4.3} –

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2024, 6, 2300621 2300621 (14 of 15) © 2023 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH

http://www.advancedsciencenews.com
http://www.advintellsyst.com


[7] M. Stilman, K. Nishiwaki, S. Kagami, J. J. Kuffner, in 2006 IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems 2006, pp. 820–826, ISSN:
2153-0866.

[8] M. Stilman, J. Kuffner, Int. J. Rob. Res. 2008, 27, 1295.
[9] Y. Kakiuchi, R. Ueda, K. Kobayashi, K. Okada, M. Inaba, in 2010 IEEE/

RSJ Int. Conf. on Intelligent Robots and Systems 2010, pp. 1696–1701,
ISSN: 2153-0858.

[10] H.-N. Wu, M. Levihn, M. Stilman, in 2010 IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems 2010, pp. 1433–1438, ISSN: 2153-0858.

[11] M. Levihn, L. P. Kaelbling, T. Lozano-Pérez, M. Stilman, in 2013 IEEE/
RSJ Int. Conf. on Intelligent Robots and Systems 2013, pp. 224–231,
ISSN: 2153-0866.

[12] J. Scholz, N. Jindal, M. Levihn, C. L. Isbell, H. I. Christensen, in 2016
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), IEEE
2016, pp. 3706–3713.

[13] Z. Meng, H. Sun, K. B. H. Teo, M. H. Ang, in 2018 IEEE/ASME Int.
Conf. on Advanced Intelligent Mechatronics (AIM) 2018, pp. 156–163,
ISSN: 2159-6255.

[14] M. Levihn, J. Scholz, M. Stilman, in Algorithmic Foundations of
Robotics X, Springer Tracts in Advanced Robotics (Eds: E. Frazzoli,
T. Lozano-Perez, N. Roy, D. Rus), Springer, Berlin, Heidelberg
2013, pp. 19–35, ISBN 978-3-642-36279-8.

[15] M. Wang, R. Luo, A. Ö. Önol, T. Padir, in 2020 IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems (IROS), IEEE 2020, pp. 2734–2740.

[16] K.-H. Zeng, L. Weihs, A. Farhadi, R. Mottaghi, in 2021 IEEE/CVF Conf.
on Computer Vision and Pattern Recognition (CVPR), IEEE 2021,
pp. 9863–9872.

[17] H.-C. Wang, S.-C. Huang, P.-J. Huang, K.-L. Wang, Y.-C. Teng,
Y.-T. Ko, D. Jeon, I.-C. Wu, IEEE Rob. Autom. Lett. 2023, 8,
2740.

[18] H. Sun, Z. Meng, M. H. Ang, in 2017 IEEE Int. Conf. on Cybernetics and
Intelligent Systems (CIS) and IEEE Conf. on Robotics, Automation and
Mechatronics (RAM) 2017, pp. 207–212, ISSN: 2326-8239.

[19] G. Cannata, M. Maggiali, G. Metta, G. Sandini, in 2008 IEEE Int. Conf.
on Multisensor Fusion and Integration for Intelligent Systems, IEEE 2008,
pp. 434–438.

[20] P. Mittendorfer, G. Cheng, IEEE Trans. Rob. 2011, 27, 401.
[21] A. Cirillo, F. Ficuciello, C. Natale, S. Pirozzi, L. Villani, IEEE Rob.

Autom. Lett. 2015, 1, 41.
[22] A. Jain, M. D. Killpack, A. Edsinger, C. C. Kemp, Int. J. Rob. Res. 2013,

32, 458.
[23] G. Cheng, E. Dean-Leon, F. Bergner, J. R. G. Olvera, Q. Leboutet,

P. Mittendorfer, Proc. IEEE 2019, 107, 2034.
[24] P. Hart, N. Nilsson, B. Raphael, IEEE Trans. Syst. Sci. Cybern. 1968, 4, 100.
[25] N. Vahrenkamp, T. Asfour, R. Dillmann, in 2013 IEEE Int. Conf. on

Robotics and Automation, IEEE 2013, pp. 1970–1975.
[26] F. J. Romero-Ramirez, R. Muñoz-Salinas, R. Medina-Carnicer, Image

Vision Comput. 2018, 76, 38.
[27] M. Kaboli, G. Cheng, IEEE Trans. Rob. 2018, 34, 985.
[28] S. Armleder, E. Dean-Leon, F. Bergner, G. Cheng, Adv. Intell. Syst.

2022, 4, 2100047.
[29] O. Khatib, IEEE J. Rob. Autom. 1987, 3, 43.
[30] A. Dietrich, C. Ott, A. Albu-Schäffer, Int. J. Rob. Res. 2015, 34, 1385.
[31] O. Khatib, Int. J. Rob. Res. 1986, 5, 90.
[32] E. Catto, https://github.com/erincatto/box2d (accessed: December

2020).
[33] K. Zheng, Robot Operating System (ROS): The Complete Reference

(Volume 6) (Ed: A. Koubaa), Studies in Computational Intelligence
962, Vol. 6, Springer, Cham, Switzerland 2021, pp. 197–226.

[34] F. Bergner, E. Dean-Leon, G. Cheng, Sensors 2020, 20, 1965.

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2024, 6, 2300621 2300621 (15 of 15) © 2023 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH

https://github.com/erincatto/box2d
http://www.advancedsciencenews.com
http://www.advintellsyst.com

	Tactile-Based Negotiation of Unknown Objects during Navigation in Unstructured Environments with Movable Obstacles
	1. Introduction
	1.1. State of the Art
	1.2. Our Approach and Contributions

	2. Framework
	2.1. Overview of Our Approach
	2.2. NAMO Planner
	2.2.1. NAMO-Plan
	2.2.2. Obstacle-Plan

	2.3. Suitable Mobile Base Placement
	2.4. Internal Simulation of Obstacle Clearance

	3. Online Execution
	3.1. Perception
	3.1.1. Robot Skin
	3.1.2. Visual Perception for Object Detection
	3.1.3. Tactile Perception for Object Movability

	3.2. Pushing Things Forward
	3.2.1. Pushing Strategy
	3.2.2. Selecting the Contact Point

	3.3. Controller
	3.3.1. Hand Motion Task
	3.3.2. Hand Wrench Task
	3.3.3. Mobile-Base Collision Avoidance Task
	3.3.4. Arm Posture Task

	3.4. Error Handling
	3.4.1. Contact-Loss
	3.4.2. Collision


	4. Experimental Section
	4.1. Simulation
	4.1.1. Random Obstacles

	4.2. Real Robot
	4.2.1. Experimental Platform
	4.2.2. Electronic Skin
	4.2.3. Obstacle Clearance
	4.2.4. Navigation Among Movable Obstacles


	5. Conclusion


