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Abstract
Leaf coloring and fall mark the end of the growing season (EOS), playing essential roles 
in nutrient cycling, resource allocation, ecological interactions, and as climate change 
indicators. However, understanding future changes in autumn phenology is challeng-
ing due to the multitude of likely environmental cues and substantial variations in tim-
ing caused by different derivation methods. Yet, it remains unclear whether these two 
factors are independent or if methodological uncertainties influence the environmen-
tal cues determined. We derived start of growing season (SOS) and EOS at a mixed 
beech forest in Central Germany for the period 2000–2020 based on four different 
derivation methods using a unique long-term data set of in-situ data, canopy imagery, 
eddy covariance measurements, and satellite remote sensing data and determined 
their influence on a predictor analysis of leaf senescence. Both SOS and EOS exhibited 
substantial ranges in mean onset dates (39.5 and 28.6 days, respectively) across the 
different methods, although inter-annual variations and advancing SOS trends were 
similar across methods. Depending on the data, EOS trends were advanced or de-
layed, but inter-annual patterns correlated well (mean r = .46). Overall, warm, dry, and 
less photosynthetically productive growing seasons were more likely to be associated 
with a delayed EOS, while colder, wetter, and more photosynthetically productive 
vegetation periods resulted in an earlier EOS. In addition, contrary to recent results, 
no clear influence of pre-solstice vegetation activity on the timing of senescence was 
detected. However, most notable were the large differences in sign and strength of 
potential drivers both in the univariate and multivariate analyses when comparing 
derivation methodologies. The results suggest that an ensemble analysis of all avail-
able phenological data sources and derivation methods is needed for general state-
ments on autumn phenology and its influencing variables and correct implementation 
of the senescence process in ecosystem models.
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1  |  INTRODUC TION

Autumn phenology significantly determines biogeochemical cycles  
in terrestrial ecosystems, such as the carbon cycle (Keenan et al., 2014; 
Piao et al., 2007; Richardson et al., 2010; Wu, Chen, et al., 2013; Wu, 
Gough, et al., 2013) or the water cycle (Gaertner et al., 2019; Kim 
et  al., 2018), by directly ending carbon uptake or evapotranspira-
tion. These changes in the growing season also exert biophysical  
feedback on the climate system (Peñuelas et al., 2009; Richardson 
et al., 2013; Stéfanon et al., 2012). In the past, a general trend to-
wards a delay in autumn senescence has been observed in the north-
ern hemisphere, whereby the magnitude, direction, and significance 
of the autumn phenological trends differ significantly depending on 
the species, the observation period, and the study region (Garonna 
et  al., 2016; Gill et  al.,  2015; Liu, Fu, Zhu, et  al.,  2016; Menzel & 
Fabian, 1999; Menzel et al., 2020; Piao et al., 2019). To explain these 
observed features as well as to model and forecast future autumn 
phenology, it is of tremendous importance to fully understand all 
(environmental) drivers of leaf senescence; however, recent studies 
found varying and contradicting results.

The temperature is a main driver for leaf discoloration and 
leaf fall of deciduous trees in autumn (Gallinat et  al.,  2015; Gill 
et  al.,  2015), however with varying seasonal and daily patterns. 
Numerous current studies have shown that higher temperatures 
before senescence or all-year warming result in a delay in the phe-
nological autumn (Fu et al., 2018; Lang et al., 2019; Liu, Fu, Zeng, 
et al., 2016; Liu, Fu, Zhu, et al., 2016; Menzel et al., 2020; Zohner 
& Renner, 2019). However, mostly likely due to different temporal 
resolutions and influencing periods, several studies have shown a 
differentiated picture in this temperature-senescence relationship: 
Chen et al. (2020) noted a delay in leaf coloration only with warm-
ing night-time temperatures—while warmer daytime temperatures 
cause it to start earlier. Estrella and Menzel (2006), Liu et al. (2018), 
and Lu and Keenan  (2022) detected a delay in autumn phenology 
only with warmer autumn temperatures but not with higher tem-
peratures in summer or in the growing season. This could be because 
heat stress was shown to lead to earlier rather than later autumn 
phenology (Xie et al., 2015, 2018). Furthermore, Zohner et al. (2023) 
recently noted a solstice effect in temperature, with increased tem-
peratures before solstice leading to earlier senescence and after sol-
stice leading to a lengthening of the autumn growing season. Finally, 
temperature-related effects on senescence seem to be also species-
dependent (Grossiord et al., 2022).

Besides air temperature, other factors have also been studied to 
trigger leaf coloring and leaf fall in autumn. Water availability, char-
acterized by precipitation amounts, soil moisture or vapor pressure 
deficit, has been frequently tested, but the results are also contra-
dictory. While drier conditions are generally associated with earlier 
senescence (Gill et al., 2015), there are also study results that ascribe 
no or even opposite effects of water availability on autumn phenol-
ogy (Estrella & Menzel, 2006; Liu et al., 2018; Xie et al., 2015, 2018; 
Zani et al., 2020). The study region, the biome, the type of phenology 
recorded, and the tree species also represent differentiating factors 

in this relationship (Bigler & Vitasse, 2021; Grossiord et al., 2022; Liu, 
Fu, Zeng, et al., 2016; Liu, Fu, Zhu, et al., 2016; Lu & Keenan, 2022). 
Other less considered and discussed factors for autumn senescence 
are photoperiod (Gill et al., 2015; Lang et al., 2019), nutrient availabil-
ity (Fu et al., 2019), insolation (Liu, Fu, Zeng, et al., 2016; Liu, Fu, Zhu, 
et al., 2016; Lu & Keenan, 2022), and legacy or carryover effects, 
such as the timing of preceding leaf unfolding (Fu et al., 2019; Keenan 
& Richardson, 2015; Liu, Fu, Zhu, et al., 2016; Zani et al., 2020), and—
more recently—growing season photosynthesis (Lu & Keenan, 2022; 
Norby, 2021; Zani et al., 2020; Zohner et al., 2023).

In addition to the multiple potential factors influencing autumn 
phenology, there is also a second source of uncertainty for future 
predictions: the used datasets and methods to derive phenologi-
cal events. While many studies have compared remote sensing and 
ground-observed phenology (e.g., Berra & Gaulton, 2021; Mariën 
et  al.,  2019), only a few studies—mostly based in the US—have 
compared multiple data sources in autumn phenology. For mixed 
forests, Garrity et al.  (2011) observed little agreement, while Zhao 
et  al.  (2020) found just minor differences between remote sens-
ing derived and ground-observed autumn phenology. In contrast, 
Melaas et  al.  (2016) found varying correlations between autumn 
phenology from satellite remote sensing, eddy covariance measure-
ments, canopy images and in-situ observations in North America, 
depending on the study area and data source. The spatial resolution 
of the data and the tree species composition may play a major role 
in this context (Klosterman et al., 2018). Accordingly, for deciduous 
forests in Europe, significant differences in the autumn phenology 
from remote sensing indices, eddy covariance measurements, and 
ground-based observations, such as in-situ or camera data, have 
been reported (Jin et  al.,  2017; Soudani et  al.,  2021). In contrast, 
comparatively good agreement was obtained by Liu et al. (2019) for 
leaf fall in a Chinese deciduous forest, using radiometer as well as 
satellite remote sensing data and leaf-litterfall measurements. Thus, 
D'Odorico et  al.  (2015) concluded on the phenological data mis-
match for the entire northern hemisphere, that depending on the 
data source, derivation methodology, period and study site, the au-
tumn phenology of deciduous forests is only partially (if at all) con-
sistent with other data sources.

Based on the research findings regarding autumn phenology in 
deciduous forests, two imminent research gaps merge: First, there 
are hardly any detailed and long-term evaluations in Central Europe 
comparing different data sources for deriving autumn phenology. 
Second, most studies investigating the tricky influential factors of 
autumn phenology of deciduous forests rely on a single data source 
for phenology derivation, despite the potentially significant differ-
ences in derived phenology among datasets. To our knowledge, no 
study has explored the combined impact of these two sources of un-
certainty. Consequently, there is a knowledge gap on how divergent 
phenological metrics further complicate the identification of driv-
ers of autumn phenology. This study addresses these gaps through 
a detailed analysis of long-term data from Hainich National Park, 
Germany, which has one of the longest time series of canopy cam-
era (CC) datasets in combination with continuous eddy covariance 
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measurements worldwide. Our research aims to answer the follow-
ing key research questions:

1.	 What are the differences in spring and autumn phenology 
of a European deciduous forest when derived indirectly from 
satellite remote sensing data and eddy covariance measure-
ments or directly from canopy imagery and in-situ phenological 
observations?

2.	 How do uncertainties and variations in derived phenology im-
pact the univariate and multivariate analysis of potential factors 
influencing early, mid, and late autumn phenology in deciduous 
forests?

2  |  MATERIAL S AND METHODS

2.1  |  Study site

The study site with its associated flux tower is located in Central 
Europe in the Hainich National Park (51.079407°N, 10.452089°E; 
440 m a.s.l.; Germany; Figure 1). The National Park with an area 

of approximately 7600 ha was established for beech forest pro-
tection in 1997. Due to relatively undisturbed development, some 
trees are up to 270 years old. It has also been a UNESCO World 
Heritage Site since 2011 (Thiel et  al.,  2020). The forest of the 
National Park consists mainly of European beech (Fagus sylvatica 
L., 64%) and European ash (Fraxinus excelsior L., 28%; Tamrakar 
et  al.,  2018). During the study period from 2000 to 2020, the 
mean annual temperature at the flux tower site was 8.6°C, and the 
mean annual precipitation sum was 716 mm. The flux tower is lo-
cated on a slightly inclined north slope (2°–3°; Knohl et al., 2003). 
Further information on the study area and location can be found 
in Knohl et al. (2003) or Tamrakar et al. (2018).

2.2  |  In-situ phenology

Phenological observations are available from the network of the 
German Meteorological Service (DWD). The data set contains 
annual point measurements of 50 different phenological phases, 
which are then interpolated for a grid with a spatial resolution 
of 1 × 1 km over Germany: For this interpolation, Germany is 

F I G U R E  1 General map of Hainich National Park (left) and its location in Germany and Europe (right). The boundaries of the National 
Park are marked in yellow; the site of the eddy covariance flux tower is marked with a black and yellow dot (Source: Sentinel-2 [Copernicus 
SciHub], Esri, FAO, NOAA, USGS; GDI-Th, Earthstar Geographics; HERE, Garmin). Map lines delineate study areas and do not necessarily 
depict accepted national boundaries.
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segmented into 20 regions, each comprising overlapping circles of 
uniform size. Within each region, all observations undergo multi-
ple linear regression analysis, considering altitude, longitude, and 
latitude as regression coefficients. The regression coefficients 
for the four neighboring circles at a specific location are then 
weighted based on the distances to the circle centers. Finally, for 
each 1 × 1 km grid cell, annual onset dates are then interpolated 
based on these local regression coefficients (DWD Climate Data 
Center, 2022; Yuan et al., 2021).

The grid was used for the complete study period from 2000 to 
2020. As the Hainich National Park mainly consists of beech for-
est, the dataset RBUBO (European beech—beginning of unfolding 
of leaves: the first leaves have entirely pushed out of the bud and 
unfolded up to the stalk; DWD:LU) was used for spring phenology, 
and the datasets RBUBV (European beech—autumn leaf coloring: 
about half of the leaves on the observation tree have turned autum-
nal; DWD:LC) and RBUBF (European beech—autumn leaf fall: about 
half the leaves of the observation tree have fallen off; DWD:LF) for 
autumn phenology. Unfortunately, leaf unfolding, coloring and fall 
of European ash are not part of the DWD phenological program, 
thus this phase could not be included in the in-situ data. Further in-
formation regarding the data can be found at DWD Climate Data 
Center (2022). The respective onset dates (DOY, day of year) were 
extracted bilinearly from all raster files for the coordinates of the 
flux tower.

2.3  |  Satellite phenology

The remote sensing based phenology was extracted from 
the MODIS Land Cover Dynamics Product MCD12Q2 (Gray 
et  al., 2019), which has been used in many studies dealing with 
remote sensing of phenology (e.g., Lu & Keenan,  2022; Zohner 
et  al.,  2023). Plant phenology is derived globally from 2-band 
Enhanced Vegetation Index (EVI) data with a resolution of 500 m. 
For spring phenology, the phases Greenup (date when EVI2 first 
crossed 15% of the segment EVI2 amplitude; MODIS:GU) and 
MidGreenup (date when EVI2 first crossed 50% of the segment 
EVI2 amplitude; MODIS:MGU) were used. For autumn phenology, 
the phases senescence (date when EVI2 last crossed 90% of the 
segment EVI2 amplitude; MODIS:SE) and dormancy (date when 
EVI2 last crossed 15% of the segment EVI2 amplitude; MODIS:DO) 
were used. Data were available from 2001 to 2019. To improve the 
quality of the data set, the quality assurance layer was applied to 
the existing raster files. The layer consists of scores (0 = “best”; 
1 = “good”; 2 = “fair”; 3 = “poor”), which are composed of various 
criteria for calculating the phenology (fraction of missing or filled 
EVI data in the cycle, spline goodness-of-fit) for each pixel. In our 
study, we only used the highest quality class (=0) in the data set. 
Subsequently, the corresponding DOY for the respective pheno-
logical phase was extracted bilinearly from all raster files using the 
flux tower coordinates.

2.4  |  CC phenology

The CC is placed on top of the flux tower above the tree canopy 
and provided recordings from 2001 to 2020. From 2001 to 2019, 
the pictures were always taken at 12:00 noon, since August 2020, 
every 30 min throughout the day. As the camera position changed 
a few times, and in some cases, there were longer data gaps in the 
dataset, the annual phenology could only be estimated visually from 
the pictures.

As far as the data availability for a year allowed, both start of season 
(SOS; BBCH 11 = first leaves unfold) and end of season (EOS; BBCH 
95 = 50% of the leaves have fallen/discolored) were determined (for 
the BBCH (Biologische Bundesanstalt für Land- und Forstwirtschaft, 
Bundessortenamt und CHemische Industrie) coding see Meier, 2018). 
Due to the different camera positions, an individual region of interest 
(ROI) was created for each year and phase (SOS/EOS). The ROI was al-
ways set for the two main tree species of the Hainich National Park: F. 
sylvatica (CC:Fagus) and F. excelsior (CC:Fraxinus). The process of man-
ually estimating the spring and autumn phenology via the CC images 
was carried out independently by three experienced and trained bio-
climatologists. The mean of the three SOS/EOS estimates represented 
the respective CC phenology (CC:Fraxinus and CC:Fagus).

2.5  |  Flux tower data

The data from the flux tower in the Hainich National Park are part 
of the Integrated Carbon Observation System (ICOS) network (DE-
Hai; https://​www.​icos-​cp.​eu/​) and cover the period 2000–2020 on 
a half-hourly or daily basis (Knohl et  al., 2022). A variety of both 
meteorological and ecosystem CO2 exchange-related variables are 
measured, but only the following variables were used in this study:

•	 Air temperature (°C)
•	 Precipitation (mm).
•	 Vapor pressure deficit (VPD) (hPa)
•	 Soil water content (16 cm depth) (%)
•	 Net ecosystem exchange (NEE) (g C m−2 day−1)
•	 Gross primary production, from daytime partitioning method 
(GPP:DT) (g C m−2 day−1)

•	 Gross primary production, from nighttime partitioning method 
(GPP:NT) (g C m−2 day−1)

Here, we included GPP derived from nighttime and from 
daytime flux-based partitioning methods, respectively, because 
they slightly differ in their approaches and assumptions (Wutzler 
et  al.,  2018). The nighttime source partitioning method (after 
Reichstein et  al., 2005) first derives a relationship between (air 
or soil) temperature and the measured NEE during nighttime, 
which then only consists of respiratory fluxes. By extrapolating 
this temperature-respiration response function, ecosystem respi-
ration (Reco) can also be estimated for daytime hours and with 

https://www.icos-cp.eu/
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calculating the balance between measured NEE and estimated 
Reco also GPP can be obtained. The daytime source partitioning 
method (after Lasslop et al., 2010) derives GPP and Reco during 
daytime based on a rectangular hyperbolic light-response curve, 
fitting this function to measured NEE data during daytime. Thus, 
this daytime source partitioning approach also considers the im-
pact of varying meteorological conditions, such as incoming ra-
diation and VPD, on GPP. Finally, Reco during nighttime is again 
derived based on a temperature-respiration response function.

2.5.1  |  Flux tower phenology

To derive the phenology of Hainich National Park from the flux 
tower data, NEE, as well as GPP:DT and GPP:NT, were analyzed. 
Daily resolved data from 2000 to 2020 was used for all three vari-
ables. As a first step, all NEE values were converted to net ecosys-
tem production (NEP) values (NEP = −NEE) to create a consistent 
positive sign for CO2 uptake with NEP and GPP. To derive SOS 
and EOS from the NEP data, the smoothed-threshold approach 
was chosen (Barnard et  al., 2018). A moving-window mean was 
calculated (central, 5 days) and a threshold of 0 g C m−2 day−1 was 
set. SOS was defined as the day this threshold value was overshot 
for the first time (CO2 uptake) and remained overshot for 20 con-
secutive days. Inversely, EOS was defined as the day on which the 
NEP undershot the threshold value again for the first time and was 
no longer above it for 20 days in a row. The phenology of GPP:DT 
and GPP:NT was determined in a comparable method, but here 
the threshold was defined as a 10% value of the mean annual GPP 
maximum from 2000 to 2020 (Zhou et al., 2016, 2017). Thus, SOS 
was defined as the day this threshold value was exceeded for the 
first time in a year and EOS as the day this threshold was not met 
for the first time. In addition, SOS < 30 and EOS > 330 were dis-
carded as extreme outliers.

2.5.2  |  EOS predictor variables

To detect potential influencing factors on autumn phenology in 
Hainich National Park, 20 predictor variables from phenology, me-
teorology and ecosystem CO2 exchange were selected and derived 
(Table  1) from literature including Zani et  al.  (2020). We addition-
ally calculated a Dryness-Wetness Index (DWI) to incorporate the 
aspect of drought as a potential driver of autumn phenology. Since 
dryness/drought can be defined from different perspectives (Wilhite 
& Glantz, 1985), an index calculation combining different drought-
related variables was chosen. For the annual DWI used in this study, 
six different variables were included in the index calculation:

•	 Growing season precipitation: Precipitation sum from March to 
October (mm)

•	 Summer precipitation: Precipitation sum in June, July, and August 
(mm)

•	 Growing season VPD: VPD sum from March to October (hPa)
•	 Summer VPD: VPD sum in June, July, and August (hPa)
•	 Growing season soil water content: Mean soil water content 
(16 cm depth) from March to October (%)

•	 Summer soil water content: Mean soil water content (16 cm depth) 
in June, July, and August (%)

For precipitation and for soil water content both in the growing 
season and in summer, the following index was calculated annually 
for the study period 2000–2020 on the basis of daily data:

xi represents the respective value of the year, xmax and xmin, the 
respective maxima and minima in the period from 2000 to 2020. The 
value range of the index is accordingly between 0 and 1. The closer 
the index is to 0, the drier the conditions in the respective year. An 
index was also calculated for the VPD both in the growing season 
and in summer:

The variables are congruent with Equation (1); here, values range 
from 0 to 1. The closer the index is to 0, the drier the VPD condi-
tions. Finally, all six calculated indices were added up annually and 
defined as DWI. The range of values here extends from 0 (very dry) 
to 6 (very wet).

2.6  |  Statistical analyses

Phenological data were analyzed using descriptive statistics, includ-
ing trend analysis via linear regression with the year as predictor 
over the observation period, as well as a Pearson-correlation analy-
sis for the spring and autumn datasets. We identified the factors 
that influence autumn phenology using univariate and multivariate 
analyses. In the univariate analysis, we calculated Spearman-rank 
correlation coefficients between all EOS data and the predictor vari-
ables (see Section 2.5.2). For the multivariate analysis, a common 
predictor dataset from the three main predictor groups temperature, 
water availability and photosynthetic activity was selected from the 
20 predictor variables. To achieve this, the previously calculated 
SOS variables from different data sources were averaged for each 
year. Subsequently, to prevent multicollinearity within the dataset, 
variables with a strong (r > .7) and statistically significant (p < .05) 
Spearman correlation coefficient (Table S1) were not included in the 
analysis. Finally, for all EOS data sets, multiple linear regressions with 
two and three predictor variable combinations were calculated and 
the individual models were compared with each other. For reasons 
of clarity, we have decided to show only the 3- and 2-predictor com-
binations of the most common temperature (TAU and TSU) and water 
availability (PHY) variables as well as the only directly measured pho-
tosynthesis variable (NEP). Combinations with other variables from 

(1)Index =

xi − xmin

xmax − xmin

.

(2)Index =

xmax − xi

xmax − xmin

.
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the same predictor groups led to similar results, which is why they 
are not shown here.

Following Zohner et al. (2023), who identify pre-solstice vegeta-
tion activity/temperature and autumn temperature as the main driv-
ers of autumn phenology, two additional analyses were performed. 
First, for each derivation methodology, a multiple linear regression 
was calculated with the respective EOS as the dependent variable 
and growing season first half-NEP (N1) and autumn temperature 
(TAU) as predictors. Using the median of one predictor variable and 
the dynamic variable of the other predictor, regression lines were 
then calculated for the respective methodology.

To gain a better understanding of the interaction of autumn 
temperature and NEP, particularly in extreme years, we dissected 
the observed period (2000–2020; 21 years) into all possible com-
binations of these two variables: years with low TAU and N1 (sce-
nario 1), high TAU and N1 (scenario 2), low TAU and high N1 (scenario 
3), and high TAU and low N1 (scenario 4). To ensure comparability, 
5 years were allocated to each scenario as follows: The 10 years 
with the lowest or highest photosynthetic activity in the first half 
of the growing season (according to N1) were determined, ex-
cluding the median N1 year. Within these 10-year subgroups, the 
5 years with the coldest or warmest autumn temperatures (by TAU) 

TA B L E  1 Predictor variables for autumn phenology used including abbreviation, description, and unit. The hydrological year runs from 
01.11. of the previous year to 31.10. of the current year.

Variable Abbreviation Description Unit

Start of season SOS Respective SOS of the data source, for MODIS: 
Greenup

Day of year

Summer temperature TSU Mean daily temperature in June, July, and August °C

Autumn temperature TAU Mean daily minimum temperature in September and 
October

°C

Extreme heat events TEX Number of days with maximum temperature >30°C 
in the hydrological year

Days

Frost days FHY Number of days with minimum temperature <0°C in 
the hydrological year

Days

Frost days in spring FSP Number of days with minimum temperature <0°C 
from SOS until 60 days later

Days

Annual precipitation PHY Number of days with >2 mm precipitation in the 
hydrological year

Days

Summer precipitation PSU Number of days with >2 mm precipitation in June, 
July, and August

Days

Heavy rain days PEX Number of days with >20 mm precipitation in the 
hydrological year

Days

Growing season vapor pressure deficit VPD Sum of daily VPD between SOS and September (30 
September/DOY: 274)

hPa

Dryness-Wetness-Index DWI Combined drought index ranging between 0 (very 
dry) and 6 (very wet)

—

Growing season net ecosystem production NT Sum of daily NEP between SOS and September (30 
September/DOY: 274)

g C m−2

Growing season gross primary production, 
daytime method

GDT Sum of daily GPP:DT between SOS and September 
(30 September/DOY: 274)

g C m−2

Growing season gross primary production, 
nighttime method

GNT Sum of daily GPP:NT between SOS and September 
(30 September/DOY: 274)

g C m−2

Growing season first half net ecosystem 
production

N1 Sum of daily NEP in April, May, and June g C m−2

Growing season second half net ecosystem 
production

N2 Sum of daily NEP in July, August, and September g C m−2

Growing season first half gross primary 
production, daytime method

GD1 Sum of daily GPP:DT in April, May and June g C m−2

Growing season second half gross primary 
production, daytime method

GD2 Sum of daily GPP:DT in July, August, and September g C m−2

Growing season first half gross primary 
production, nighttime method

GN1 Sum of daily GPP:NT in April, May and June g C m−2

Growing season second half gross primary 
production, nighttime method

GN2 Sum of daily GPP:NT in July, August, and September g C m−2
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were then selected. Remarkably, the reverse classification order 
(first by TAU then by N1) yielded almost identical results. Finally, 
for each of the four 5-year subgroups, the mean EOS for each 
derivation methodology was determined and compared to each 
other. The general workflow of this study is shown in Figure 2. All 
relevant work steps were carried out in R (version 4.2.1; R Core 
Team, 2022).

3  |  RESULTS

3.1  |  Spring and autumn phenology

Mean SOS in the Hainich National Park started between the begin-
ning of April (94.6; MODIS:GU) and mid-May (134.1; CC:Fraxinus), 
depending on the source of data (see Figure 3 and Table S2). The 
single SOS metrics exhibited strong year-to-year fluctuations (SDs) 
between 5.75 (DWD:LU) and 11.48 (GPP:NT) days. The earliest SOS 
in the observation period was recorded in mid-March 2019 (DOY 
69; GPP:NT), the latest in late May 2017 (DOY 145; CC:Fraxinus; 
Figure 4). The linear SOS trends from 2000 to 2020 mostly indicated 
advancing onset dates (−0.23 to −0.78 days per year), and even a 
statistically significant trend for MODIS:GU. A clear exception is 
the SOS for ash observed via CC (CC:Fraxinus), which showed a sig-
nificant positive, that is delayed, trend of 0.82 days per year. It is 
also worth noting that metrices from indirect derivation methods 
(MODIS/GPP) are more likely to indicate spring phenology earlier 
than those from direct methods (DWD/CC).

Comparing the SOS of different data sources, the large range of 
values was striking (Figure 4): In some extreme years, the difference 
between individual data sources was more than 70 days, and in gen-
eral, the SOS values diverged by almost 40 days. The earliest values 
were detected on average by MODIS (Greenup data, MODIS:GU), 
usually followed by GPP data. The mean onset dates of DWD, 
NEP, and MODIS:MGU data, as well as the CC data of the beech 
(CC:Fagus) were similar and highly correlated (Figure S1). The latest 

SOS was usually observed for the ash tree via CC (CC:Fraxinus), 
which was less well correlated with the other SOS variables, such as 
GPP:DT and GPP:NT.

The mean start of autumn phenology (2000–2020) in the Hainich 
National Park ranged from the beginning of October (DWD:LC, 
MODIS:SE) to the beginning of November (MODIS:DO) for the 
period from 2000 to 2020 (Figure  3 and Table  S3). Unlike spring 
phenology, the variation between individual years was smaller and 
ranged from 3.09 to 11.09 days SD. The earliest recorded autumn 
phenology was in late September 2004 (DOY 268; CC:Fagus) and 
the latest in mid-November 2009 (DOY 320; MODIS:DO; Figure 5). 
The linear trends from 2000 to 2020 were by far not as clear for 
autumn as for spring phenology: Six of nine data sources indicated 
a weak delay (0.06–0.94 days per year), and three data sources indi-
cated a weak trend towards earliness (−0.10 to −0.26 days per year). 
None of the autumn trends was statistically significant.

A comparison between the individual data sources of autumn 
phenology also showed extreme differences in the annual range 
of values, mostly between 30 and 40 days (Figure  5). The senes-
cence detected by MODIS and DWD data usually was at the start 
of autumn, followed by CC and flux tower data. Autumn ended with 
DWD leaf fall (DWD:LF) and the subsequent dormancy by MODIS 
(MODIS:DO). Thus, a clear temporal separation of the two main 
phases of autumn phenology, leaf discoloration and leaf fall, could be 
observed with derivation methods that measure these specifically 
(DWD/MODIS). Derivation methods that did not imply this differ-
entiation (GPP/NEP/CC) are settled in between. Compared to spring 
phenology, there was even a larger agreement in EOS variables, as 
indicated by correlation coefficients (Figure S2).

3.2  |  Drivers of autumn phenology

Spring phenology correlated only weakly with EOS (rs = −.28–.19, not 
significant), depending on the data source (Figure 6). Temperature-
related explanatory variables, such as summer (rs = −.06–.62, not 

F I G U R E  2 Flowchart of used data sources (white boxes) and applied methodology (grey boxes). The main aim is to relate plant phenology 
data (green box) and meteorological or ecosystem CO2 exchange-related data (blue box).
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significant) or autumn temperature (rs = .09–.33, not significant), as 
well as extreme heat days (rs = .04–.64, not significant), correlated 
mostly positively for the EOS, indicating that under warm/hot con-
ditions in summer or assessed by extreme heat days, EOS should be 
observed later. Throughout positive correlations could also be seen 
for annual frost days (rs = .02–.55, not significant; i.e., frosty winters 
should be linked to later EOS in autumn). In contrast, spring frost 
gave ambiguous results depending on the data source (rs = −.16–.32, 
not significant).

The different variables of water availability had an evident 
(and sometimes significant) influence on autumn phenology: The 
less water—be it defined by precipitation in the hydrological year 
(rs = −.76–.08) or during summer (rs = −.69–.05), by VPD (rs = −.52 

to −.02, not significant) or DWI (rs = −.58 to −.18, not significant)—
was available, the later EOS took place (significant: rs = −.76 and p-
value = .0007 for PHY and CC:Fagus; rs = −.67 and p-value = .0046 for 
PSU and CC:Fagus).

The variables of ecosystem CO2 exchange provided a differen-
tiated picture: The lower the NEP or GPP (and correspondingly less 
CO2 uptake), the later EOS usually was. These effects were especially 
pronounced for the entire and the second half of the growing season 
and the NEP/GPP:NT explanatory variables (rs = −.60–.31, not signif-
icant). In contrast, regarding the variables concerning the first half of 
the annual growth period (N1, GD1, GN1), the correlations with the 
EOS were more spread, including positive and negative associations 
depending on the data source (rs = −.39–.51, not significant).

F I G U R E  3 Schematic representation of the descriptive statistics of spring and autumn phenology from 2000 to 2020 for the respective 
data sources (orange: in-situ observation; blue: satellite remote sensing; green: flux tower; purple: canopy camera), ordered by mean DOY. 
The middle line within each box indicates the mean, the outer boundaries ±one SD. The arrows represent the trends over the observation 
period of 21 years, with gray coloring indicating statistical significance (p < .05). The dashed lines correspond to possible (extrapolated) future 
trends based on the arrows. The exact values of means, SD and trends are summarized in Tables S2 and S3.

F I G U R E  4 Time series of the derived 
spring phenology from the different data 
sources (orange: in-situ observation; blue: 
satellite remote sensing; green: flux tower; 
purple: canopy camera) in the Hainich 
National Park from 2000 to 2020.
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If only the direct methods (DWD and CC) are considered in this 
respect, a similar picture emerges: While spring phenology and 
photosynthetic activity in April, May, and June indicate an ambig-
uous influence, higher temperatures in summer and autumn, more 
frost days, drier conditions, and lower photosynthetic activity in the 
growing season and in July, August, and September are associated 
with a later EOS.

This general variance in the sign and/or strength of correlation 
coefficients depending on the data source and variable was strik-
ing (Figure 6; e.g., summer temperature or precipitation). Among the 
phenological metrics, in-situ, CC, and remote sensing approaches 

tended to display stronger correlation coefficients (except TAU and 
PEX) than flux-related ones (NEP, GPP:DT, GPP:NT). Differences be-
tween direct (DWD/CC) and indirect (MODIS/GPP/NEP) derivation 
methodologies and between early (DWD:LC/MODIS:SE) and late 
autumn phenological (DWD:LF/MODIS:DO) metrics could not be 
detected in the univariate analysis.

In the multivariate analysis, the results of the univariate analyses 
were mostly confirmed (Figure 7 and Figures S3–S5). In the combi-
nation of the predictors from the groups of temperature, precipita-
tion and photosynthesis, an increased autumn temperature and, in 
some cases, an increased summer temperature had an EOS-delaying 

F I G U R E  5 Time series of the derived 
autumn phenology from the different data 
sources (orange: in-situ observation; blue: 
satellite remote sensing; green: flux tower; 
purple: canopy camera) in the Hainich 
National Park from 2000 to 2020.

F I G U R E  6 Spearman's rank correlation coefficient between the derived EOS and the respective predictor (variables see Table 1). Positive 
correlations indicate a delay in the EOS, while negative correlations mean an advance in EOS if the amount of the respective variable 
increases. To simplify the interpretation of the graph, the sign of VPD (−) has been changed (high VPD therefore means humid conditions). 
Symbols marked in bold represent a statistically significant correlation (p < .05, Bonferroni corrected).
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effect. In contrast, wetter conditions and increased photosynthetic 
activity over the entire vegetation period and in the second half 
(July/August/September) had an advancing effect on the EOS, while 
photosynthetic activity in the first half of the vegetation period 
(April/May/June) showed diverging results depending on the data 
source. This also applies if only the direct methods (CC and DWD) 
are considered, except for photosynthetic activity in the first half of 
the growing season (the higher, the earlier EOS).

In general, the data source significantly influenced the sign, mag-
nitude, and significance of the regression coefficient of the multiple 
linear regression models. This also became clear in the key statis-
tics of the individual models (Table 2): With the identical predictor 
data set and only changing EOS data source, R2 (.03–.62), adjusted 
R2 (−.17–.52) and p-value (.01–.91) varied considerably. As in the 

univariate analysis, differences between direct (DWD/CC) and in-
direct (MODIS/GPP/NEP) derivation methodologies and between 
early (DWD:LC/MODIS:SE) and late autumn phenological (DWD:LF/
MODIS:DO) metrics could not be detected.

The data source played a crucial role in investigating the interplay 
between EOS, N1, and TAU, as proposed by Zohner et al. (2023). When 
keeping autumn temperature constant, the various EOS responses 
showed a nuanced pattern relative to N1 (Figure 8a): While higher pho-
tosynthetic activity in the first half of the growing season lead to a 
delay in the autumn phenology of GPP:DT, MODIS:DO, and especially 
CC:Fagus, some of the EOS variables were hardly affected, or even oc-
curred earlier (CC:Fraxinus, GPP:NT, and DWD:LC). Conversely, under 
stable N1 conditions, a rise in autumn temperature predominantly re-
sulted in delayed EOS (except CC:Fraxinus and GPP:NT).

F I G U R E  7 Regression coefficients of 
the respective predictor variable within 
the linear multiple regression models 
between EOS metrics and (a) TAU, PHY,  
and NT; (b) TAU, PHY, and N1; (c) TAU, 
PHY, and N2; (d) TSU, PHY, and NT; (e) 
TSU, PHY, and N1; (f) TSU, PHY, and N2. 
Statistically significant (p < .05) regression 
coefficients are marked with an asterisk.
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When comparing four 5-year scenarios across the EOS metrics 
(Figure 8b), it is most noticeable that in years with low photosyn-
thetic activity in the first half of the growing season and high autumn 
temperature at the same time, a delayed EOS is observed in most of 
the methodologies. All other scenarios behave differently depend-
ing on the methodology, but the EOS values are always close to each 
other. In both analyses, no differences were observed between di-
rect/indirect and early and late autumn phenological metrics.

4  |  DISCUSSION

Both spring and autumn phenology in the Hainich National Park over 
the last 20 years differed widely by up to 1.5 months when different 
sources of derivation, such as remote sensing, carbon fluxes, CC im-
ages, or in-situ observations, are considered. However, the resulting 
time series still had remarkable similarities in their temporal courses. 
Whereas there is largely consensus that spring phenology in temper-
ate deciduous forests is mainly driven by spring temperatures (besides 
winter chilling and photoperiod), the drivers of autumn phenology are 
less clear and heavily debated (e.g., Lu & Keenan, 2022). Consequently, 
our main intention was to analyze whether EOS data sources influence 
analyses' outcome on autumn phenology drivers, such as temperature, 
water availability, and/or photosynthetic activity. In the following sec-
tions, we will discuss the considerable differences found between the 
data sources and their implications for predicting changes in the grow-
ing season length of deciduous forests under climate change.

4.1  |  Spring and autumn phenology

Spring phenology metrics from different data sources, such as satel-
lite remote sensing, carbon flux data, CC, and in-situ observations, are 
well-known to differ (Berra & Gaulton, 2021). However, their seasonal 

order seems not random but well justified by inherent properties of 
the different indices. The MODIS Greenup, with its low threshold of 
15% of EVI2 amplitude, mainly focuses on the greening of understory 
vegetation such as Allium ursinum L., Mercurialis perennis L., Anemone 
nemorosa L., usually occurring earlier in the year than the greening of 
the overstory (Filippa et al., 2018; Ryu et al., 2014; Uphus et al., 2021). 
Equally, the flux tower phenology also partially records the photosyn-
thetic activity of the understory, leading to earlier GPP-based SOS 
dates (D'Odorico et al., 2015), albeit slightly later than MODIS:GU. This 
difference can be interpreted to signify as meaning that the greening 
of understory vegetation occurs before any relevant carbon uptake 
processes are initiated. The observation that indirect derivation meth-
ods are the first to indicate the start of spring phenology, compared 
to direct methods observing the trees themselves can therefore be 
primarily explained by the recording of the understory, which shows 
a clear drawback of the recording method. Unsurprisingly, the CC 
and the interpolated DWD phenology of F. sylvatica largely match. 
Corresponding to literature findings (Ahrends et  al.,  2009; Smith & 
Ramsay, 2020) F. excelsior leaves out later than F. sylvatica.

Advancing trends of SOS in the Hainich National Park from 
2000 to 2020 are predominantly in line with the current litera-
ture (Caparros-Santiago et  al.,  2021; Menzel et  al.,  2020; Piao 
et al., 2019) and are mainly caused by rising spring temperatures 
(Hamunyela et  al.,  2013; Jin et  al.,  2019). On the contrary, the 
statistically significant delay of F. excelsior SOS might be a conse-
quence of the pathogenic fungus Hymenoscyphus pseudoalbidus, 
which is currently damaging ash trees across Europe (Kowalski & 
Holdenrieder, 2009; but then Queloz et al., 2011). This phenom-
enon is also increasingly observed in the Hainich National Park. 
More severely damaged trees tend to leave out later than healthy 
ones (McKinney et al., 2011; Stener, 2013). These results highlight 
that “ecosystem-scale” indirect approaches are not very reliable 
in addressing species-specific phenology trends and could lead to 
large errors for species experiencing a phenological shift that is 

F I G U R E  8 Analysis of EOS metrics in combination with the predictor variables autumn temperature (TAU) and growing season first 
half net ecosystem production (N1): (a) Multiple linear regressions with the other variable kept constant (median); (b) mean EOS (metrics 
ordered by mean date of onset), for 5 years each with low TAU and N1 (scenario 1), with high TAU and N1 (scenario 2), with low TAU and high N1 
(scenario 3), with high TAU and low N1 (scenario 4), and for the total period (mean).
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inverse to the other plants in the community. Furthermore, since 
SOS dates are often used as predictors for EOS onset dates (as-
suming a constant length of the growing season; for example, 
Keenan & Richardson, 2015; Liu, Fu, Zhu, et al., 2016), it is essen-
tial to note that all SOS data sources, except for the ash CC, show 
similarly inter-annually varying time series and have a similar range 
(e.g., MODIS:MGU, DWD:LU, NEP, CC:Fagus). This indicates that 
for this specific assumed driver of EOS, differences in SOS metrics 
should not play a major role.

In autumn, as in spring, the order of the determined phenology 
was in line with the current process understanding. The data sources 
that explicitly detect the beginning of autumn phenology—namely 
leaf discoloration—(DWD:LC and MODIS:SE) estimated the earliest 
onset dates on average. The data sources indicating a later EOS were 
related to leaf fall (DWD:LF and MODIS:DO), with the MODIS data 
occurring significantly later (over 10 days on average).

The other autumn phenology metrics had a similar range of val-
ues in between, whereby two points are particularly noteworthy: 
Firstly, the DWD:LC data (which are based on 50% leaf discolor-
ation of F. sylvatica) were more than 1 week earlier than CC:Fagus, 
although by definition the same is measured—in the top canopy (CC) 
and from the ground (DWD). This lag of 1 week could be because the 
phenological variability of individual trees is quite large and differ-
ences within certain phenological phases of more than 7 days are not 
uncommon (Capdevielle-Vargas et al., 2015; Marchand et al., 2020). 
Moreover, the DWD data are interpolated data, which per se rep-
resents an uncertainty factor, and thus can explain these differ-
ences. The Hainich site is slightly elevated to the Thuringen Becken, 
so it could be that the interpolation does not capture properly the 
elevational effect at this site. Secondly, ash leaf discoloration or leaf 
fall was later than the corresponding autumn phenology of beech, 
as also reported by Ahrends et al.  (2009) for the Hainich National 
Park. The CC analysis clearly showed the dissimilarity: While F. syl-
vatica has intensive leaf discoloration and both leaf discoloration and 
leaf fall are longer lasting processes, the leaves of F. excelsior hardly 
change color and then fall to the ground relatively abruptly.

The autumn phenological trends across different data sources 
were rather delayed than advanced (but no single significant trend 
in either direction). This aligns well with existing research (Gill 
et al., 2015; Piao et al., 2019), although no directly comparable study 
with a similar observation period and area is available. Another strik-
ing difference is the sign of the two species observed via the CC. 
While the ash tends to enter dormancy earlier, the phenological 
autumn of the beech is clearly delayed. Contrasting the results of 
McKinney et al. (2011) and Stener (2013), we assume an influence of 
ash dieback also on the autumn phenology, which can be seen due to 
an advance in leaf senescence. The observed differences can be jus-
tified here based on a different research area, method, and period. 
In summary, there were thus two opposing trends in the length of 
the growing season for the Hainich National Park: a lengthening for 
F. sylvatica and a shortening for F. excelsior. Despite the high variance 
of the individual data sources in the value range of EOS, there is a 
high degree of temporal agreement. Above all, DWD:LC, DWD:LF, 

MODIS:SE, NEP and CC:Fraxinus show similar temporal courses and 
thus form a solid EOS construct for the Hainich National Park.

4.2  |  Predictor analysis of autumn phenology

The predictor analysis of autumn phenology revealed that spring 
phenology, spring frost, and (partly) summer temperatures exhibit 
minor or contradicting effects—depending on the data source for 
autumn phenology. However, years with higher autumn (and partly 
summer) temperatures and more heat and frost days tend to be as-
sociated with a later EOS. These outcomes hold a dual nature, align-
ing with some and diverging from other research findings. While 
many studies support the idea that higher autumn temperatures 
cause leaves to change color and fall later (e.g., Gallinat et al., 2015; 
Gill et al., 2015; Zohner et al., 2023), there are some studies that do 
not offer evidence for a later EOS with higher summer temperatures 
(Liu et al., 2018; Lu & Keenan, 2022). However, a noteworthy dis-
crepancy arises concerning our consistently positive link between 
the number of extreme hot days and the EOS, that is more hot days 
are associated with later autumn senescence contrasting with re-
sults of Xie et al.  (2015, 2018) who associate extreme heat stress 
with an earlier autumn phenology. This discrepancy could be due to 
the methodology: Xie et al. (2015) analyzed remote sensing data in 
the US from 2001 to 2012, defining heat stress in July and August 
as temperatures exceeding 32 or 35°C, whereas Xie et  al.  (2018) 
also considered ground observations with a threshold of 35°C. Their 
findings on the relationship between heat stress and EOS changed 
depending on the threshold (Xie et al., 2015) and tree species (Xie 
et al., 2018), which is in agreement with our results. Consequently, 
there is a need to further investigate in detail whether higher tem-
perature thresholds than applied in our study lead to the detection 
of possible drought effects associated with heat waves in remote 
sensing products, resulting in this reverse relationship with EOS.

A clear influence was seen for water availability: the less pre-
cipitation falls in the previous hydrological year, in summer, and as 
extremes, the later the autumn phenology. This finding was also con-
firmed for VPD and DWI influences in our study. When considering 
the impact of water availability, some studies observe a later EOS in 
drier conditions (Xie et al., 2015, 2018), although other studies can-
not confirm this finding (Bigler & Vitasse, 2021; Liu et al., 2018; Zani 
et al., 2020). In general, the understanding of this topic is still un-
clear, since there are many different variables (e.g., precipitation, soil 
moisture, VPD) and methods (mean values or extremes) involved.

The impact of photosynthetic activity on EOS requires a more 
differentiated assessment, particularly given the conflicting state-
ments in current literature. While some studies support the idea 
that photosynthetic activity regulates autumn phenology (Zani 
et al., 2020; Zohner et al., 2023), others oppose this hypothesis (Lu 
& Keenan, 2022; Norby, 2021). We found that the effect for the first 
part of the growing season varied based on how EOS is determined, 
and the analysis method used (univariate/multivariate). This was 
equally the case, when only photosynthetic activity in the first half 
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of the growing season and autumn temperature were considered 
as predictor variables. On the other hand, reduced photosynthetic 
activity over the entire growing season and in the second half of 
the season (July, August, September) was more likely to delay EOS. 
Nevertheless, the dominating effect was autumn temperature, with 
a high temperature being associated with a later EOS in most cases. 
Consequently, years with low photosynthesis in April, May, and June 
and high autumn temperature were particularly associated with de-
layed EOS, indicating the autumn temperature effect. However, in 
detail this was again true not for all EOS data sources and the pho-
tosynthesis definition (NEP, GPP) influenced the results significantly.

Recent results by Zohner et  al.  (2023), according to which in-
creased pre-solstice vegetation activity advances senescence in 
Northern Hemisphere forests, cannot be confirmed by our study. 
EOS metrics determined the overall picture and the phases specif-
ically related to the beginning of senescence (e.g., MODIS:SE and 
DWD:LC) provided different results, which makes this hypothesis 
questionable, at least in a temperate mid-latitude deciduous forest.

One finding is valid for all influencing factors: the different data 
sources for phenology matter. Although some studies already link de-
rived autumn phenology with potential predictors using different data 
sources and methodologies (e.g., Keenan & Richardson, 2015; Lu & 
Keenan, 2022), to our knowledge, there is no systematic evaluation of 
how different derivation approaches of EOS affect a predictor analysis 
in a given study area. We found large differences in the magnitude, 
sign, and significance of effects on autumn phenology depending on 
the data source and derivation methodology. For example, beech CC 
EOS dates were highly correlated with temperature and water vari-
ables, suggesting a strong relationship, whereas correlations for the 
same variables were much weaker or even opposite for flux tower 
phenology. Similar observations can be made at the multivariate level, 
where, for example, the NEP, GPP, and ash CC autumn phenology were 
negatively related to summer temperature. In contrast, the DWD and 
MODIS phenology showed (mostly) a positive correlation. Both ex-
amples illustrate that conclusions about drivers of autumn phenology 
can diverge considerably depending on the data source. This finding is 
noteworthy, as many studies within this field of research base state-
ments about relationships between phenology and possible influ-
encing factors on only one data source and derivation methodology. 
On the other hand, however, it must also be noted that despite the 
large number of different data sources and derivation methods, the 
correlations in the more general variable groups (temperature, water 
availability, photosynthesis) with the EOS variables provide a largely 
uniform picture. There were no discernible structural differences in 
the relationships with the individual predictor variables found either 
in the differentiation between direct and indirect recording methods 
or in early, mid-, and late autumn phenological metrics.

However, the choice of methods can lead to substantial variations 
in EOS-related findings (especially just looking at one predictor vari-
able), whereby for general statements on potential predictors of au-
tumn phenology, an ensemble evaluation of all available data sources 
of a study area is recommendable but requires considerably larger 
data sets. In the context of machine learning ensemble analysis, the 

fundamental premise is that inherent inaccuracies of individual mod-
els can be mitigated through the combination of multiple models. This 
approach is expected to enhance predictive accuracy compared to 
relying on single models (Sagi & Rokach, 2018). In our specific con-
text, where various phenological data sources or derivation methods 
were employed for a given location and observation period to analyze 
phenological trends and their drivers, we constructed several regres-
sion models using a singular model type. Thus, this above-mentioned 
methodology would open up new avenues, particularly for exten-
sive phenological data sets which amalgamate diverse data sources. 
However, ensemble methods from the field of machine learning, such 
as boosting (Elith et al., 2008) and bagging (Breiman, 1996), have not 
yet received much attention in plant phenology but hold potential 
for refining models for various research questions. Nevertheless, for 
differentiated views, especially concerning spatial resolution (ecosys-
tem, species, individual tree, etc.), individual data sources still have 
importance for specific applications.

In light of our study findings, it is evident across all EOS metrics 
that warmer and drier growing seasons lead to a later EOS. At the 
same time, cooler and wetter conditions tend to prompt an earlier 
EOS in the Hainich National Park, with the role of photosynthetic 
activity remaining unclear, contingent on the definition, observation 
period, and EOS methodology.

4.3  |  Limitations of the data sources

However, there are also specific limitations related to the data and 
methods. Only individual trees of the respective species were ob-
served by DWD and CC data. As previously mentioned, there can 
be substantial variability within a phenological phase among trees 
(Capdevielle-Vargas et al., 2015; Marchand et al., 2020), and thus, 
in the worst case, the determined phenological phase might not ac-
curately represent the species studied. The interpolation of DWD 
data adds another layer of uncertainty. Particularly worth noting is 
the manual and, thus semi-objective nature of evaluating phenology 
in the case of the CC data. Also, since the camera position changed 
several times over the time series, the same tree was not always ob-
served consistently. In the case of the remote sensing and flux tower 
data, the homogeneous and spatially undifferentiated observation 
must be pointed out, which can lead to distorted results, especially 
in respect to the understory. Across all data sources and phenology 
studies (Berra & Gaulton, 2021; Templ et al., 2018; Zeng et al., 2020), 
there is also concern about consistent definitions of the phenologi-
cal phases. Especially in autumn, due to the more complex process 
of leaf discoloration and fall, phenology can be measured differently. 
Additionally, indirect measurement methods such as remote sensing 
or derivation via ecosystem CO2 exchange, can sometimes lack clar-
ity in terms of what exactly is being measured, making comparisons 
challenging. For eddy covariance data, uncertainties arise from qual-
ity checks, gap-filling, and the source partitioning approach. Finally, 
GPP:DT and GPP:NT are just modelled values; only NEP is directly 
measured. Uncertainties also extend to the predictor variables. The 
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defined threshold values and the periods can be designed differ-
ently, influencing evaluations. However, careful selection of robust 
variables was prioritized when avoiding collinearity within the multi-
ple linear regression models. Lastly, the limitations of the statistical 
analyses conducted here should be acknowledged. The dataset size 
(maximum 21 years) upon which the statistical metrics are based was 
relatively small, making it sensitive to outliers.

5  |  CONCLUSION

The analysis of spring and autumn phenology in the Hainich National 
Park from different data sources revealed significant variability in 
the determined onset dates and corresponding trends, dependent 
on the specific data source employed. While spring phenology gen-
erally exhibited advancement over the observed period (except for 
European ash), autumn trends were less distinct, aside from the de-
layed leaf coloring in European beech. The factors possibly influenc-
ing autumn phenology include temperature, water availability, and/
or photosynthetic activity. Warmer and drier years tend to be linked 
to a delayed end of season, although the exact role of photosynthe-
sis remains unclear. Notably, the predictors derived for autumn phe-
nology exhibit substantial disparities across the EOS data sources, 
whereby no structural differences are found between direct and 
indirect data sources or between early and late autumn phenologi-
cal metrics. Considering these findings, it appears prudent to adopt 
an ensemble approach by using multiple phenological data sources 
in future research, particularly when addressing broader questions 
concerning plant phenology.
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