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Abstract
Leaf coloring and fall mark the end of the growing season (EOS), playing essential roles 
in nutrient cycling, resource allocation, ecological interactions, and as climate change 
indicators. However, understanding future changes in autumn phenology is challeng-
ing due to the multitude of likely environmental cues and substantial variations in tim-
ing caused by different derivation methods. Yet, it remains unclear whether these two 
factors are independent or if methodological uncertainties influence the environmen-
tal	cues	determined.	We	derived	start	of	growing	season	(SOS)	and	EOS	at	a	mixed	
beech	forest	in	Central	Germany	for	the	period	2000–2020	based	on	four	different	
derivation	methods	using	a	unique	long-	term	data	set	of	in-	situ	data,	canopy	imagery,	
eddy covariance measurements, and satellite remote sensing data and determined 
their	influence	on	a	predictor	analysis	of	leaf	senescence.	Both	SOS	and	EOS	exhibited	
substantial	ranges	in	mean	onset	dates	(39.5	and	28.6 days,	respectively)	across	the	
different	methods,	although	inter-	annual	variations	and	advancing	SOS	trends	were	
similar across methods. Depending on the data, EOS trends were advanced or de-
layed,	but	inter-	annual	patterns	correlated	well	(mean	r = .46).	Overall,	warm,	dry,	and	
less photosynthetically productive growing seasons were more likely to be associated 
with a delayed EOS, while colder, wetter, and more photosynthetically productive 
vegetation periods resulted in an earlier EOS. In addition, contrary to recent results, 
no	clear	influence	of	pre-	solstice	vegetation	activity	on	the	timing	of	senescence	was	
detected. However, most notable were the large differences in sign and strength of 
potential drivers both in the univariate and multivariate analyses when comparing 
derivation methodologies. The results suggest that an ensemble analysis of all avail-
able phenological data sources and derivation methods is needed for general state-
ments on autumn phenology and its influencing variables and correct implementation 
of the senescence process in ecosystem models.
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1  |  INTRODUC TION

Autumn	 phenology	 significantly	 determines	 biogeochemical	 	cycles	 
in terrestrial ecosystems, such as the carbon cycle (Keenan et al., 2014; 
Piao et al., 2007; Richardson et al., 2010; Wu, Chen, et al., 2013; Wu, 
Gough,	et	al.,	2013)	or	the	water	cycle	 (Gaertner	et	al.,	2019; Kim 
et al., 2018), by directly ending carbon uptake or evapotranspira-
tion.	 These	 changes	 in	 the	 growing	 season	 also	 exert	 biophysical	 
feedback on the climate system (Peñuelas et al., 2009; Richardson 
et al., 2013; Stéfanon et al., 2012). In the past, a general trend to-
wards a delay in autumn senescence has been observed in the north-
ern hemisphere, whereby the magnitude, direction, and significance 
of the autumn phenological trends differ significantly depending on 
the	species,	the	observation	period,	and	the	study	region	(Garonna	
et al., 2016;	Gill	 et	 al.,	 2015;	 Liu,	 Fu,	 Zhu,	 et	 al.,	 2016; Menzel & 
Fabian,	1999; Menzel et al., 2020; Piao et al., 2019).	To	explain	these	
observed features as well as to model and forecast future autumn 
phenology, it is of tremendous importance to fully understand all 
(environmental) drivers of leaf senescence; however, recent studies 
found varying and contradicting results.

The temperature is a main driver for leaf discoloration and 
leaf	 fall	 of	 deciduous	 trees	 in	 autumn	 (Gallinat	 et	 al.,	 2015;	 Gill	
et al., 2015), however with varying seasonal and daily patterns. 
Numerous	 current	 studies	 have	 shown	 that	 higher	 temperatures	
before	senescence	or	all-	year	warming	result	in	a	delay	in	the	phe-
nological	autumn	 (Fu	et	al.,	2018; Lang et al., 2019;	Liu,	Fu,	Zeng,	
et al., 2016;	Liu,	Fu,	Zhu,	et	al.,	2016; Menzel et al., 2020;	Zohner	
& Renner, 2019). However, mostly likely due to different temporal 
resolutions and influencing periods, several studies have shown a 
differentiated	picture	 in	 this	 temperature-	senescence	relationship:	
Chen et al. (2020) noted a delay in leaf coloration only with warm-
ing	 night-	time	 temperatures—while	warmer	 daytime	 temperatures	
cause it to start earlier. Estrella and Menzel (2006), Liu et al. (2018), 
and Lu and Keenan (2022) detected a delay in autumn phenology 
only with warmer autumn temperatures but not with higher tem-
peratures in summer or in the growing season. This could be because 
heat stress was shown to lead to earlier rather than later autumn 
phenology (Xie et al., 2015, 2018).	Furthermore,	Zohner	et	al.	(2023) 
recently noted a solstice effect in temperature, with increased tem-
peratures before solstice leading to earlier senescence and after sol-
stice	leading	to	a	lengthening	of	the	autumn	growing	season.	Finally,	
temperature-	related	effects	on	senescence	seem	to	be	also	species-	
dependent	(Grossiord	et	al.,	2022).

Besides air temperature, other factors have also been studied to 
trigger leaf coloring and leaf fall in autumn. Water availability, char-
acterized by precipitation amounts, soil moisture or vapor pressure 
deficit, has been frequently tested, but the results are also contra-
dictory. While drier conditions are generally associated with earlier 
senescence	(Gill	et	al.,	2015), there are also study results that ascribe 
no or even opposite effects of water availability on autumn phenol-
ogy (Estrella & Menzel, 2006; Liu et al., 2018; Xie et al., 2015, 2018; 
Zani	et	al.,	2020). The study region, the biome, the type of phenology 
recorded, and the tree species also represent differentiating factors 

in this relationship (Bigler & Vitasse, 2021;	Grossiord	et	al.,	2022; Liu, 
Fu,	Zeng,	et	al.,	2016;	Liu,	Fu,	Zhu,	et	al.,	2016; Lu & Keenan, 2022). 
Other less considered and discussed factors for autumn senescence 
are	photoperiod	(Gill	et	al.,	2015; Lang et al., 2019), nutrient availabil-
ity	(Fu	et	al.,	2019),	insolation	(Liu,	Fu,	Zeng,	et	al.,	2016;	Liu,	Fu,	Zhu,	
et al., 2016; Lu & Keenan, 2022), and legacy or carryover effects, 
such	as	the	timing	of	preceding	leaf	unfolding	(Fu	et	al.,	2019; Keenan 
& Richardson, 2015;	Liu,	Fu,	Zhu,	et	al.,	2016;	Zani	et	al.,	2020),	and—
more	recently—growing	season	photosynthesis	(Lu	&	Keenan,	2022; 
Norby,	2021;	Zani	et	al.,	2020;	Zohner	et	al.,	2023).

In addition to the multiple potential factors influencing autumn 
phenology, there is also a second source of uncertainty for future 
predictions: the used datasets and methods to derive phenologi-
cal events. While many studies have compared remote sensing and 
ground-	observed	 phenology	 (e.g.,	 Berra	 &	Gaulton,	2021; Mariën 
et al., 2019),	 only	 a	 few	 studies—mostly	 based	 in	 the	 US—have	
compared	multiple	 data	 sources	 in	 autumn	 phenology.	 For	mixed	
forests,	Garrity	et	al.	 (2011)	observed	little	agreement,	while	Zhao	
et al. (2020) found just minor differences between remote sens-
ing	 derived	 and	 ground-	observed	 autumn	 phenology.	 In	 contrast,	
Melaas et al. (2016) found varying correlations between autumn 
phenology from satellite remote sensing, eddy covariance measure-
ments,	 canopy	 images	 and	 in-	situ	 observations	 in	North	America,	
depending on the study area and data source. The spatial resolution 
of the data and the tree species composition may play a major role 
in	this	context	(Klosterman	et	al.,	2018).	Accordingly,	for	deciduous	
forests in Europe, significant differences in the autumn phenology 
from remote sensing indices, eddy covariance measurements, and 
ground-	based	 observations,	 such	 as	 in-	situ	 or	 camera	 data,	 have	
been reported (Jin et al., 2017; Soudani et al., 2021). In contrast, 
comparatively good agreement was obtained by Liu et al. (2019) for 
leaf fall in a Chinese deciduous forest, using radiometer as well as 
satellite	remote	sensing	data	and	leaf-	litterfall	measurements.	Thus,	
D'Odorico et al. (2015) concluded on the phenological data mis-
match for the entire northern hemisphere, that depending on the 
data source, derivation methodology, period and study site, the au-
tumn phenology of deciduous forests is only partially (if at all) con-
sistent with other data sources.

Based on the research findings regarding autumn phenology in 
deciduous	forests,	two	imminent	research	gaps	merge:	First,	there	
are	hardly	any	detailed	and	long-	term	evaluations	in	Central	Europe	
comparing different data sources for deriving autumn phenology. 
Second, most studies investigating the tricky influential factors of 
autumn phenology of deciduous forests rely on a single data source 
for phenology derivation, despite the potentially significant differ-
ences in derived phenology among datasets. To our knowledge, no 
study	has	explored	the	combined	impact	of	these	two	sources	of	un-
certainty. Consequently, there is a knowledge gap on how divergent 
phenological metrics further complicate the identification of driv-
ers of autumn phenology. This study addresses these gaps through 
a	 detailed	 analysis	 of	 long-	term	 data	 from	Hainich	National	 Park,	
Germany,	which	has	one	of	the	longest	time	series	of	canopy	cam-
era (CC) datasets in combination with continuous eddy covariance 
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measurements worldwide. Our research aims to answer the follow-
ing key research questions:

1. What are the differences in spring and autumn phenology 
of a European deciduous forest when derived indirectly from 
satellite remote sensing data and eddy covariance measure-
ments	or	directly	from	canopy	 imagery	and	 in-	situ	phenological	
observations?

2. How do uncertainties and variations in derived phenology im-
pact the univariate and multivariate analysis of potential factors 
influencing early, mid, and late autumn phenology in deciduous 
forests?

2  |  MATERIAL S AND METHODS

2.1  |  Study site

The	study	site	with	its	associated	flux	tower	is	located	in	Central	
Europe	in	the	Hainich	National	Park	(51.079407°N,	10.452089°E;	
440 m	a.s.l.;	Germany;	Figure 1).	The	National	Park	with	an	area	

of	 approximately	 7600 ha	was	 established	 for	 beech	 forest	 pro-
tection	in	1997.	Due	to	relatively	undisturbed	development,	some	
trees	are	up	to	270 years	old.	 It	has	also	been	a	UNESCO	World	
Heritage Site since 2011 (Thiel et al., 2020). The forest of the 
National	Park	consists	mainly	of	European	beech	(Fagus sylvatica 
L.,	 64%)	 and	 European	 ash	 (Fraxinus excelsior	 L.,	 28%;	 Tamrakar	
et al., 2018). During the study period from 2000 to 2020, the 
mean	annual	temperature	at	the	flux	tower	site	was	8.6°C,	and	the	
mean	annual	precipitation	sum	was	716 mm.	The	flux	tower	is	lo-
cated	on	a	slightly	inclined	north	slope	(2°–3°;	Knohl	et	al.,	2003). 
Further	information	on	the	study	area	and	location	can	be	found	
in Knohl et al. (2003) or Tamrakar et al. (2018).

2.2  |  In- situ phenology

Phenological observations are available from the network of the 
German	 Meteorological	 Service	 (DWD).	 The	 data	 set	 contains	
annual	point	measurements	of	50	different	phenological	phases,	
which are then interpolated for a grid with a spatial resolution 
of	 1 × 1 km	 over	 Germany:	 For	 this	 interpolation,	 Germany	 is	

F I G U R E  1 General	map	of	Hainich	National	Park	(left)	and	its	location	in	Germany	and	Europe	(right).	The	boundaries	of	the	National	
Park	are	marked	in	yellow;	the	site	of	the	eddy	covariance	flux	tower	is	marked	with	a	black	and	yellow	dot	(Source:	Sentinel-	2	[Copernicus	
SciHub],	Esri,	FAO,	NOAA,	USGS;	GDI-	Th,	Earthstar	Geographics;	HERE,	Garmin).	Map	lines	delineate	study	areas	and	do	not	necessarily	
depict accepted national boundaries.
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segmented into 20 regions, each comprising overlapping circles of 
uniform size. Within each region, all observations undergo multi-
ple linear regression analysis, considering altitude, longitude, and 
latitude as regression coefficients. The regression coefficients 
for the four neighboring circles at a specific location are then 
weighted	based	on	the	distances	to	the	circle	centers.	Finally,	for	
each	1 × 1 km	grid	 cell,	 annual	 onset	 dates	 are	 then	 interpolated	
based on these local regression coefficients (DWD Climate Data 
Center, 2022; Yuan et al., 2021).

The grid was used for the complete study period from 2000 to 
2020.	 As	 the	Hainich	National	 Park	mainly	 consists	 of	 beech	 for-
est,	 the	 dataset	RBUBO	 (European	beech—beginning	of	 unfolding	
of leaves: the first leaves have entirely pushed out of the bud and 
unfolded up to the stalk; DWD:LU) was used for spring phenology, 
and	 the	 datasets	 RBUBV	 (European	 beech—autumn	 leaf	 coloring:	
about half of the leaves on the observation tree have turned autum-
nal;	DWD:LC)	and	RBUBF	(European	beech—autumn	leaf	fall:	about	
half	the	leaves	of	the	observation	tree	have	fallen	off;	DWD:LF)	for	
autumn phenology. Unfortunately, leaf unfolding, coloring and fall 
of European ash are not part of the DWD phenological program, 
thus	this	phase	could	not	be	included	in	the	in-	situ	data.	Further	in-
formation regarding the data can be found at DWD Climate Data 
Center (2022). The respective onset dates (DOY, day of year) were 
extracted	bilinearly	 from	all	 raster	 files	 for	 the	 coordinates	of	 the	
flux	tower.

2.3  |  Satellite phenology

The	 remote	 sensing	 based	 phenology	 was	 extracted	 from	
the	 MODIS	 Land	 Cover	 Dynamics	 Product	 MCD12Q2	 (Gray	
et al., 2019), which has been used in many studies dealing with 
remote sensing of phenology (e.g., Lu & Keenan, 2022;	 Zohner	
et al., 2023).	 Plant	 phenology	 is	 derived	 globally	 from	 2-	band	
Enhanced	Vegetation	Index	(EVI)	data	with	a	resolution	of	500 m.	
For	spring	phenology,	the	phases	Greenup	(date	when	EVI2	first	
crossed	 15%	 of	 the	 segment	 EVI2	 amplitude;	 MODIS:GU)	 and	
MidGreenup	 (date	when	EVI2	 first	 crossed	50%	of	 the	 segment	
EVI2	amplitude;	MODIS:MGU)	were	used.	For	autumn	phenology,	
the	phases	senescence	 (date	when	EVI2	 last	crossed	90%	of	the	
segment EVI2 amplitude; MODIS:SE) and dormancy (date when 
EVI2	last	crossed	15%	of	the	segment	EVI2	amplitude;	MODIS:DO)	
were	used.	Data	were	available	from	2001	to	2019.	To	improve	the	
quality of the data set, the quality assurance layer was applied to 
the	 existing	 raster	 files.	 The	 layer	 consists	 of	 scores	 (0 = “best”;	
1 = “good”;	 2 = “fair”;	 3 = “poor”),	 which	 are	 composed	 of	 various	
criteria for calculating the phenology (fraction of missing or filled 
EVI	data	in	the	cycle,	spline	goodness-	of-	fit)	for	each	pixel.	In	our	
study, we only used the highest quality class (=0) in the data set. 
Subsequently, the corresponding DOY for the respective pheno-
logical	phase	was	extracted	bilinearly	from	all	raster	files	using	the	
flux	tower	coordinates.

2.4  |  CC phenology

The	CC	 is	 placed	on	 top	of	 the	 flux	 tower	 above	 the	 tree	 canopy	
and	provided	 recordings	 from	2001	 to	2020.	From	2001	 to	2019,	
the	pictures	were	always	taken	at	12:00	noon,	since	August	2020,	
every	30 min	throughout	the	day.	As	the	camera	position	changed	
a few times, and in some cases, there were longer data gaps in the 
dataset, the annual phenology could only be estimated visually from 
the pictures.

As	far	as	the	data	availability	for	a	year	allowed,	both	start	of	season	
(SOS;	BBCH	11 = first	 leaves	unfold)	and	end	of	season	(EOS;	BBCH	
95 = 50%	of	the	 leaves	have	fallen/discolored)	were	determined	 (for	
the	BBCH	(Biologische	Bundesanstalt	für	Land-		und	Forstwirtschaft,	
Bundessortenamt und CHemische Industrie) coding see Meier, 2018). 
Due to the different camera positions, an individual region of interest 
(ROI) was created for each year and phase (SOS/EOS). The ROI was al-
ways	set	for	the	two	main	tree	species	of	the	Hainich	National	Park:	F. 
sylvatica	(CC:Fagus)	and	F. excelsior	(CC:Fraxinus).	The	process	of	man-
ually estimating the spring and autumn phenology via the CC images 
was	carried	out	independently	by	three	experienced	and	trained	bio-
climatologists. The mean of the three SOS/EOS estimates represented 
the	respective	CC	phenology	(CC:Fraxinus	and	CC:Fagus).

2.5  |  Flux tower data

The	data	from	the	flux	tower	in	the	Hainich	National	Park	are	part	
of	the	Integrated	Carbon	Observation	System	(ICOS)	network	(DE-	
Hai; https://	www.	icos-		cp.	eu/	)	and	cover	the	period	2000–2020	on	
a	 half-	hourly	 or	 daily	 basis	 (Knohl	 et	 al.,	2022).	 A	 variety	 of	 both	
meteorological and ecosystem CO2	exchange-	related	variables	are	
measured, but only the following variables were used in this study:

•	 Air	temperature	(°C)
• Precipitation (mm).
• Vapor pressure deficit (VPD) (hPa)
•	 Soil	water	content	(16 cm	depth)	(%)
•	 Net	ecosystem	exchange	(NEE)	(g	C	m−2 day−1)
•	 Gross	 primary	 production,	 from	 daytime	 partitioning	 method	
(GPP:DT)	(g	C	m−2 day−1)

•	 Gross	 primary	 production,	 from	 nighttime	 partitioning	 method	
(GPP:NT)	(g	C	m−2 day−1)

Here,	 we	 included	 GPP	 derived	 from	 nighttime	 and	 from	
daytime	 flux-	based	 partitioning	 methods,	 respectively,	 because	
they slightly differ in their approaches and assumptions (Wutzler 
et al., 2018). The nighttime source partitioning method (after 
Reichstein et al., 2005) first derives a relationship between (air 
or	 soil)	 temperature	 and	 the	 measured	 NEE	 during	 nighttime,	
which	 then	 only	 consists	 of	 respiratory	 fluxes.	 By	 extrapolating	
this	temperature-	respiration	response	function,	ecosystem	respi-
ration (Reco) can also be estimated for daytime hours and with 

https://www.icos-cp.eu/
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calculating	 the	 balance	 between	 measured	 NEE	 and	 estimated	
Reco	also	GPP	can	be	obtained.	The	daytime	source	partitioning	
method (after Lasslop et al., 2010)	derives	GPP	and	Reco	during	
daytime	based	on	a	 rectangular	hyperbolic	 light-	response	curve,	
fitting	this	function	to	measured	NEE	data	during	daytime.	Thus,	
this daytime source partitioning approach also considers the im-
pact of varying meteorological conditions, such as incoming ra-
diation	and	VPD,	on	GPP.	Finally,	Reco	during	nighttime	 is	again	
derived	based	on	a	temperature-	respiration	response	function.

2.5.1  |  Flux	tower	phenology

To	derive	 the	 phenology	of	Hainich	National	 Park	 from	 the	 flux	
tower	data,	NEE,	as	well	as	GPP:DT	and	GPP:NT,	were	analyzed.	
Daily resolved data from 2000 to 2020 was used for all three vari-
ables.	As	a	first	step,	all	NEE	values	were	converted	to	net	ecosys-
tem	production	(NEP)	values	(NEP = −NEE)	to	create	a	consistent	
positive sign for CO2	 uptake	with	NEP	 and	GPP.	 To	 derive	 SOS	
and	 EOS	 from	 the	 NEP	 data,	 the	 smoothed-	threshold	 approach	
was chosen (Barnard et al., 2018).	 A	moving-	window	mean	was	
calculated	(central,	5 days)	and	a	threshold	of	0 g	C	m−2 day−1 was 
set. SOS was defined as the day this threshold value was overshot 
for the first time (CO2 uptake) and remained overshot for 20 con-
secutive days. Inversely, EOS was defined as the day on which the 
NEP	undershot	the	threshold	value	again	for	the	first	time	and	was	
no	longer	above	it	for	20 days	in	a	row.	The	phenology	of	GPP:DT	
and	GPP:NT	was	 determined	 in	 a	 comparable	method,	 but	 here	
the	threshold	was	defined	as	a	10%	value	of	the	mean	annual	GPP	
maximum	from	2000	to	2020	(Zhou	et	al.,	2016, 2017). Thus, SOS 
was	defined	as	the	day	this	threshold	value	was	exceeded	for	the	
first time in a year and EOS as the day this threshold was not met 
for	 the	 first	 time.	 In	addition,	SOS < 30	and	EOS > 330	were	dis-
carded	as	extreme	outliers.

2.5.2  |  EOS	predictor	variables

To detect potential influencing factors on autumn phenology in 
Hainich	National	Park,	20	predictor	variables	from	phenology,	me-
teorology and ecosystem CO2	exchange	were	selected	and	derived	
(Table 1)	 from	 literature	 including	Zani	 et	 al.	 (2020). We addition-
ally	 calculated	a	Dryness-	Wetness	 Index	 (DWI)	 to	 incorporate	 the	
aspect of drought as a potential driver of autumn phenology. Since 
dryness/drought can be defined from different perspectives (Wilhite 
&	Glantz,	1985),	an	 index	calculation	combining	different	drought-	
related	variables	was	chosen.	For	the	annual	DWI	used	in	this	study,	
six	different	variables	were	included	in	the	index	calculation:

•	 Growing	 season	precipitation:	Precipitation	 sum	 from	March	 to	
October (mm)

•	 Summer	precipitation:	Precipitation	sum	in	June,	July,	and	August	
(mm)

•	 Growing	season	VPD:	VPD	sum	from	March	to	October	(hPa)
•	 Summer	VPD:	VPD	sum	in	June,	July,	and	August	(hPa)
•	 Growing	 season	 soil	 water	 content:	 Mean	 soil	 water	 content	
(16 cm	depth)	from	March	to	October	(%)

•	 Summer	soil	water	content:	Mean	soil	water	content	(16 cm	depth)	
in	June,	July,	and	August	(%)

For	precipitation	and	for	soil	water	content	both	in	the	growing	
season	and	in	summer,	the	following	index	was	calculated	annually	
for	the	study	period	2000–2020	on	the	basis	of	daily	data:

xi represents the respective value of the year, xmax and xmin, the 
respective	maxima	and	minima	in	the	period	from	2000	to	2020.	The	
value	range	of	the	index	is	accordingly	between	0	and	1.	The	closer	
the	index	is	to	0,	the	drier	the	conditions	in	the	respective	year.	An	
index	was	also	calculated	for	the	VPD	both	 in	the	growing	season	
and in summer:

The variables are congruent with Equation (1); here, values range 
from	0	to	1.	The	closer	the	index	is	to	0,	the	drier	the	VPD	condi-
tions.	Finally,	all	six	calculated	indices	were	added	up	annually	and	
defined	as	DWI.	The	range	of	values	here	extends	from	0	(very dry) 
to	6	(very wet).

2.6  |  Statistical analyses

Phenological data were analyzed using descriptive statistics, includ-
ing trend analysis via linear regression with the year as predictor 
over	the	observation	period,	as	well	as	a	Pearson-	correlation	analy-
sis for the spring and autumn datasets. We identified the factors 
that influence autumn phenology using univariate and multivariate 
analyses.	 In	 the	 univariate	 analysis,	 we	 calculated	 Spearman-	rank	
correlation coefficients between all EOS data and the predictor vari-
ables (see Section 2.5.2).	 For	 the	multivariate	 analysis,	 a	 common	
predictor dataset from the three main predictor groups temperature, 
water availability and photosynthetic activity was selected from the 
20 predictor variables. To achieve this, the previously calculated 
SOS variables from different data sources were averaged for each 
year. Subsequently, to prevent multicollinearity within the dataset, 
variables with a strong (r > .7)	 and	 statistically	 significant	 (p < .05)	
Spearman correlation coefficient (Table S1) were not included in the 
analysis.	Finally,	for	all	EOS	data	sets,	multiple	linear	regressions	with	
two and three predictor variable combinations were calculated and 
the	individual	models	were	compared	with	each	other.	For	reasons	
of	clarity,	we	have	decided	to	show	only	the	3-		and	2-	predictor	com-
binations of the most common temperature (TAU and TSU) and water 
availability (PHY) variables as well as the only directly measured pho-
tosynthesis	variable	(NEP).	Combinations	with	other	variables	from	

(1)Index =

xi − xmin

xmax − xmin

.

(2)Index =

xmax − xi

xmax − xmin

.



6 of 18  |     KLOOS et al.

the same predictor groups led to similar results, which is why they 
are not shown here.

Following	Zohner	et	al.	(2023),	who	identify	pre-	solstice	vegeta-
tion activity/temperature and autumn temperature as the main driv-
ers of autumn phenology, two additional analyses were performed. 
First,	for	each	derivation	methodology,	a	multiple	linear	regression	
was calculated with the respective EOS as the dependent variable 
and	 growing	 season	 first	 half-	NEP	 (N1) and autumn temperature 
(TAU) as predictors. Using the median of one predictor variable and 
the dynamic variable of the other predictor, regression lines were 
then calculated for the respective methodology.

To gain a better understanding of the interaction of autumn 
temperature	and	NEP,	particularly	in	extreme	years,	we	dissected	
the	observed	period	(2000–2020;	21 years)	into	all	possible	com-
binations of these two variables: years with low TAU	and	N1 (sce-
nario 1), high TAU	and	N1 (scenario 2), low TAU	and	high	N1 (scenario 
3), and high TAU	and	low	N1 (scenario 4). To ensure comparability, 
5 years	were	 allocated	 to	 each	 scenario	 as	 follows:	The	10 years	
with the lowest or highest photosynthetic activity in the first half 
of	 the	 growing	 season	 (according	 to	 N1)	 were	 determined,	 ex-
cluding	the	median	N1	year.	Within	these	10-	year	subgroups,	the	
5 years	with	the	coldest	or	warmest	autumn	temperatures	(by	TAU) 

TA B L E  1 Predictor	variables	for	autumn	phenology	used	including	abbreviation,	description,	and	unit.	The	hydrological	year	runs	from	
01.11. of the previous year to 31.10. of the current year.

Variable Abbreviation Description Unit

Start of season SOS Respective SOS of the data source, for MODIS: 
Greenup

Day of year

Summer temperature TSU Mean	daily	temperature	in	June,	July,	and	August °C

Autumn	temperature TAU Mean daily minimum temperature in September and 
October

°C

Extreme	heat	events TEX Number	of	days	with	maximum	temperature	>30°C	
in the hydrological year

Days

Frost	days FHY Number	of	days	with	minimum	temperature	<0°C	in	
the hydrological year

Days

Frost	days	in	spring FSP Number	of	days	with	minimum	temperature	<0°C	
from	SOS	until	60 days	later

Days

Annual	precipitation PHY Number	of	days	with	>2 mm	precipitation	in	the	
hydrological year

Days

Summer precipitation PSU Number	of	days	with	>2 mm	precipitation	in	June,	
July,	and	August

Days

Heavy rain days PEX Number	of	days	with	>20 mm	precipitation	in	the	
hydrological year

Days

Growing	season	vapor	pressure	deficit VPD Sum of daily VPD between SOS and September (30 
September/DOY: 274)

hPa

Dryness-	Wetness-	Index DWI Combined	drought	index	ranging	between	0	(very 
dry)	and	6	(very wet)

—

Growing	season	net	ecosystem	production NT Sum	of	daily	NEP	between	SOS	and	September	(30	
September/DOY: 274)

g C	m−2

Growing	season	gross	primary	production,	
daytime method

GDT Sum	of	daily	GPP:DT	between	SOS	and	September	
(30 September/DOY: 274)

g C m−2

Growing	season	gross	primary	production,	
nighttime method

GNT Sum	of	daily	GPP:NT	between	SOS	and	September	
(30 September/DOY: 274)

g C m−2

Growing	season	first	half	net	ecosystem	
production

N1 Sum	of	daily	NEP	in	April,	May,	and	June g C m−2

Growing	season	second	half	net	ecosystem	
production

N2 Sum	of	daily	NEP	in	July,	August,	and	September g C m−2

Growing	season	first	half	gross	primary	
production, daytime method

GD1 Sum	of	daily	GPP:DT	in	April,	May	and	June g C m−2

Growing	season	second	half	gross	primary	
production, daytime method

GD2 Sum	of	daily	GPP:DT	in	July,	August,	and	September g C m−2

Growing	season	first	half	gross	primary	
production, nighttime method

GN1 Sum	of	daily	GPP:NT	in	April,	May	and	June g C m−2

Growing	season	second	half	gross	primary	
production, nighttime method

GN2 Sum	of	daily	GPP:NT	in	July,	August,	and	September g C m−2
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were then selected. Remarkably, the reverse classification order 
(first by TAU	 then	by	N1)	 yielded	almost	 identical	 results.	 Finally,	
for	 each	 of	 the	 four	 5-	year	 subgroups,	 the	 mean	 EOS	 for	 each	
derivation methodology was determined and compared to each 
other. The general workflow of this study is shown in Figure 2.	All	
relevant work steps were carried out in R (version 4.2.1; R Core 
Team, 2022).

3  |  RESULTS

3.1  |  Spring and autumn phenology

Mean	SOS	in	the	Hainich	National	Park	started	between	the	begin-
ning	of	April	 (94.6;	MODIS:GU)	and	mid-	May	 (134.1;	CC:Fraxinus),	
depending on the source of data (see Figure 3 and Table S2). The 
single	SOS	metrics	exhibited	strong	year-	to-	year	fluctuations	(SDs)	
between	5.75	(DWD:LU)	and	11.48	(GPP:NT)	days.	The	earliest	SOS	
in	 the	observation	period	was	 recorded	 in	mid-	March	2019	 (DOY	
69;	GPP:NT),	 the	 latest	 in	 late	May	 2017	 (DOY	145;	CC:Fraxinus;	
Figure 4). The linear SOS trends from 2000 to 2020 mostly indicated 
advancing	 onset	 dates	 (−0.23	 to	 −0.78 days	 per	 year),	 and	 even	 a	
statistically	 significant	 trend	 for	 MODIS:GU.	 A	 clear	 exception	 is	
the	SOS	for	ash	observed	via	CC	(CC:Fraxinus),	which	showed	a	sig-
nificant	 positive,	 that	 is	 delayed,	 trend	 of	 0.82 days	 per	 year.	 It	 is	
also worth noting that metrices from indirect derivation methods 
(MODIS/GPP)	 are	more	 likely	 to	 indicate	 spring	 phenology	 earlier	
than those from direct methods (DWD/CC).

Comparing the SOS of different data sources, the large range of 
values was striking (Figure 4):	In	some	extreme	years,	the	difference	
between	individual	data	sources	was	more	than	70 days,	and	in	gen-
eral,	the	SOS	values	diverged	by	almost	40 days.	The	earliest	values	
were	detected	on	average	by	MODIS	 (Greenup	data,	MODIS:GU),	
usually	 followed	 by	 GPP	 data.	 The	 mean	 onset	 dates	 of	 DWD,	
NEP,	 and	MODIS:MGU	data,	 as	well	 as	 the	CC	data	of	 the	beech	
(CC:Fagus)	were	similar	and	highly	correlated	(Figure S1). The latest 

SOS	 was	 usually	 observed	 for	 the	 ash	 tree	 via	 CC	 (CC:Fraxinus),	
which was less well correlated with the other SOS variables, such as 
GPP:DT	and	GPP:NT.

The	mean	start	of	autumn	phenology	(2000–2020)	in	the	Hainich	
National	 Park	 ranged	 from	 the	 beginning	 of	 October	 (DWD:LC,	
MODIS:SE)	 to	 the	 beginning	 of	 November	 (MODIS:DO)	 for	 the	
period from 2000 to 2020 (Figure 3 and Table S3). Unlike spring 
phenology, the variation between individual years was smaller and 
ranged	 from	3.09	 to	11.09 days	SD.	The	earliest	 recorded	autumn	
phenology	was	 in	 late	September	2004	 (DOY	268;	CC:Fagus)	 and	
the	latest	in	mid-	November	2009	(DOY	320;	MODIS:DO;	Figure 5). 
The linear trends from 2000 to 2020 were by far not as clear for 
autumn	as	for	spring	phenology:	Six	of	nine	data	sources	indicated	
a	weak	delay	(0.06–0.94 days	per	year),	and	three	data	sources	indi-
cated	a	weak	trend	towards	earliness	(−0.10	to	−0.26 days	per	year).	
None	of	the	autumn	trends	was	statistically	significant.

A	 comparison	 between	 the	 individual	 data	 sources	 of	 autumn	
phenology	 also	 showed	 extreme	 differences	 in	 the	 annual	 range	
of	 values,	 mostly	 between	 30	 and	 40 days	 (Figure 5). The senes-
cence detected by MODIS and DWD data usually was at the start 
of	autumn,	followed	by	CC	and	flux	tower	data.	Autumn	ended	with	
DWD	leaf	fall	(DWD:LF)	and	the	subsequent	dormancy	by	MODIS	
(MODIS:DO). Thus, a clear temporal separation of the two main 
phases of autumn phenology, leaf discoloration and leaf fall, could be 
observed with derivation methods that measure these specifically 
(DWD/MODIS). Derivation methods that did not imply this differ-
entiation	(GPP/NEP/CC)	are	settled	in	between.	Compared	to	spring	
phenology, there was even a larger agreement in EOS variables, as 
indicated by correlation coefficients (Figure S2).

3.2  |  Drivers of autumn phenology

Spring phenology correlated only weakly with EOS (rs = −.28–.19,	not	
significant), depending on the data source (Figure 6).	Temperature-	
related	 explanatory	 variables,	 such	 as	 summer	 (rs = −.06–.62,	 not	

F I G U R E  2 Flowchart	of	used	data	sources	(white	boxes)	and	applied	methodology	(grey	boxes).	The	main	aim	is	to	relate	plant	phenology	
data	(green	box)	and	meteorological	or	ecosystem	CO2	exchange-	related	data	(blue	box).
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significant) or autumn temperature (rs = .09–.33,	not	significant),	as	
well	 as	extreme	heat	days	 (rs = .04–.64,	not	 significant),	 correlated	
mostly positively for the EOS, indicating that under warm/hot con-
ditions	in	summer	or	assessed	by	extreme	heat	days,	EOS	should	be	
observed later. Throughout positive correlations could also be seen 
for annual frost days (rs = .02–.55,	not	significant;	i.e.,	frosty	winters	
should be linked to later EOS in autumn). In contrast, spring frost 
gave ambiguous results depending on the data source (rs = −.16–.32,	
not significant).

The different variables of water availability had an evident 
(and sometimes significant) influence on autumn phenology: The 
less	water—be	 it	 defined	 by	 precipitation	 in	 the	 hydrological	 year	
(rs = −.76–.08)	 or	 during	 summer	 (rs = −.69–.05),	 by	 VPD	 (rs = −.52	

to	−.02,	not	significant)	or	DWI	 (rs = −.58	to	−.18,	not	significant)—
was available, the later EOS took place (significant: rs = −.76	and	p-	
value = .0007	for	PHY	and	CC:Fagus;	rs = −.67	and	p-	value = .0046	for	
PSU	and	CC:Fagus).

The variables of ecosystem CO2	exchange	provided	a	differen-
tiated	picture:	The	lower	the	NEP	or	GPP	(and	correspondingly	less	
CO2 uptake), the later EOS usually was. These effects were especially 
pronounced for the entire and the second half of the growing season 
and	the	NEP/GPP:NT	explanatory	variables	(rs = −.60–.31,	not	signif-
icant). In contrast, regarding the variables concerning the first half of 
the	annual	growth	period	(N1,	GD1,	GN1), the correlations with the 
EOS were more spread, including positive and negative associations 
depending on the data source (rs = −.39–.51,	not	significant).

F I G U R E  3 Schematic	representation	of	the	descriptive	statistics	of	spring	and	autumn	phenology	from	2000	to	2020	for	the	respective	
data	sources	(orange:	in-	situ	observation;	blue:	satellite	remote	sensing;	green:	flux	tower;	purple:	canopy	camera),	ordered	by	mean	DOY.	
The	middle	line	within	each	box	indicates	the	mean,	the	outer	boundaries	±one SD. The arrows represent the trends over the observation 
period	of	21 years,	with	gray	coloring	indicating	statistical	significance	(p < .05).	The	dashed	lines	correspond	to	possible	(extrapolated)	future	
trends	based	on	the	arrows.	The	exact	values	of	means,	SD	and	trends	are	summarized	in	Tables S2 and S3.

F I G U R E  4 Time	series	of	the	derived	
spring phenology from the different data 
sources	(orange:	in-	situ	observation;	blue:	
satellite	remote	sensing;	green:	flux	tower;	
purple: canopy camera) in the Hainich 
National	Park	from	2000	to	2020.
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If only the direct methods (DWD and CC) are considered in this 
respect, a similar picture emerges: While spring phenology and 
photosynthetic	activity	 in	April,	May,	and	 June	 indicate	an	ambig-
uous influence, higher temperatures in summer and autumn, more 
frost days, drier conditions, and lower photosynthetic activity in the 
growing	season	and	in	July,	August,	and	September	are	associated	
with a later EOS.

This general variance in the sign and/or strength of correlation 
coefficients depending on the data source and variable was strik-
ing (Figure 6;	e.g.,	summer	temperature	or	precipitation).	Among	the	
phenological	 metrics,	 in-	situ,	 CC,	 and	 remote	 sensing	 approaches	

tended	to	display	stronger	correlation	coefficients	 (except	TAU and 
PEX)	than	flux-	related	ones	(NEP,	GPP:DT,	GPP:NT).	Differences	be-
tween	direct	(DWD/CC)	and	indirect	(MODIS/GPP/NEP)	derivation	
methodologies and between early (DWD:LC/MODIS:SE) and late 
autumn	 phenological	 (DWD:LF/MODIS:DO)	 metrics	 could	 not	 be	
detected in the univariate analysis.

In the multivariate analysis, the results of the univariate analyses 
were mostly confirmed (Figure 7 and Figures S3–S5). In the combi-
nation of the predictors from the groups of temperature, precipita-
tion and photosynthesis, an increased autumn temperature and, in 
some	cases,	an	increased	summer	temperature	had	an	EOS-	delaying	

F I G U R E  5 Time	series	of	the	derived	
autumn phenology from the different data 
sources	(orange:	in-	situ	observation;	blue:	
satellite	remote	sensing;	green:	flux	tower;	
purple: canopy camera) in the Hainich 
National	Park	from	2000	to	2020.

F I G U R E  6 Spearman's	rank	correlation	coefficient	between	the	derived	EOS	and	the	respective	predictor	(variables	see	Table 1). Positive 
correlations indicate a delay in the EOS, while negative correlations mean an advance in EOS if the amount of the respective variable 
increases.	To	simplify	the	interpretation	of	the	graph,	the	sign	of	VPD	(−)	has	been	changed	(high	VPD	therefore	means	humid	conditions).	
Symbols marked in bold represent a statistically significant correlation (p < .05,	Bonferroni	corrected).
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effect. In contrast, wetter conditions and increased photosynthetic 
activity over the entire vegetation period and in the second half 
(July/August/September)	had	an	advancing	effect	on	the	EOS,	while	
photosynthetic activity in the first half of the vegetation period 
(April/May/June)	 showed	 diverging	 results	 depending	 on	 the	 data	
source. This also applies if only the direct methods (CC and DWD) 
are	considered,	except	for	photosynthetic	activity	in	the	first	half	of	
the growing season (the higher, the earlier EOS).

In general, the data source significantly influenced the sign, mag-
nitude, and significance of the regression coefficient of the multiple 
linear regression models. This also became clear in the key statis-
tics of the individual models (Table 2): With the identical predictor 
data set and only changing EOS data source, R2	(.03–.62),	adjusted	
R2	 (−.17–.52)	 and	 p-	value	 (.01–.91)	 varied	 considerably.	 As	 in	 the	

univariate analysis, differences between direct (DWD/CC) and in-
direct	 (MODIS/GPP/NEP)	 derivation	 methodologies	 and	 between	
early	(DWD:LC/MODIS:SE)	and	late	autumn	phenological	(DWD:LF/
MODIS:DO) metrics could not be detected.

The data source played a crucial role in investigating the interplay 
between	EOS,	N1, and TAU,	as	proposed	by	Zohner	et	al.	(2023). When 
keeping autumn temperature constant, the various EOS responses 
showed	a	nuanced	pattern	relative	to	N1 (Figure 8a): While higher pho-
tosynthetic activity in the first half of the growing season lead to a 
delay	in	the	autumn	phenology	of	GPP:DT,	MODIS:DO,	and	especially	
CC:Fagus,	some	of	the	EOS	variables	were	hardly	affected,	or	even	oc-
curred	earlier	(CC:Fraxinus,	GPP:NT,	and	DWD:LC).	Conversely,	under	
stable	N1 conditions, a rise in autumn temperature predominantly re-
sulted	in	delayed	EOS	(except	CC:Fraxinus	and	GPP:NT).

F I G U R E  7 Regression	coefficients	of	
the respective predictor variable within 
the linear multiple regression models 
between EOS metrics and (a) TAU, PHY,  
and NT; (b) TAU, PHY,	and	N1; (c) TAU, 
PHY,	and	N2; (d) TSU, PHY, and NT; (e) 
TSU, PHY,	and	N1; (f) TSU, PHY,	and	N2. 
Statistically significant (p < .05)	regression	
coefficients are marked with an asterisk.



    |  11 of 18KLOOS et al.

TA
B

LE
 2
 
St
at
is
tic
al
	ra
tio
s	
(c
oe
ff
ic
ie
nt
	o
f	d
et
er
m
in
at
io
n,
	a
dj
us
te
d	
co
ef
fic
ie
nt
	o
f	d
et
er
m
in
at
io
n	
an
d	

p-
	va
lu
e)
	o
f	t
he
	m
ul
tip
le
	li
ne
ar
	m
od
el
s	
be
tw
ee
n	
th
e	
re
sp
ec
tiv
e	
EO
S	
an
d	
th
e	
th
re
e	
pr
ed
ic
to
r	

va
ria

bl
e 

va
ria

nt
s 

(s
ee

 F
ig
ur
e 

7)
.

Va
ria

bl
e 

co
m

bi
na

tio
n

St
at

is
tic

al
 ra

tio
D

W
D

: L
C

D
W

D
: L

F
M

O
D

IS
: S

E
M

O
D

IS
: D

O
N

EP
G

PP
: D

T
G

PP
: N

T
CC

: F
ra

xi
nu

s
CC

: F
ag

us

(a
)

T A
U

R2
.2

1
.1
8

.1
0

.3
0

.0
7

.3
4

.0
5

.2
9

.4
6

P H
Y

R2  (a
dj

.)
.0
6

.0
3

−.
08

.1
6

−.
10

.2
2

−.
13

.1
0

.3
2

N
T

p-
	va
lu
e

.2
7

.3
4

.6
7

.1
4

.7
4

.0
7

.8
4

.2
6

.0
5

(b
)

T A
U

R2
.3

0
.1

7
.0

3
.1
6

.0
8

.3
4

.0
5

.0
8

.4
6

P H
Y

R2  (a
dj

.)
.1

7
.0

1
−.
16

.0
0

−.
09

.2
1

−.
13

−.
17

.3
2

N
1

p-
	va
lu
e

.1
1

.3
9

.9
1

.4
3

.6
9

.0
8

.8
3

.8
0

.0
5

(c
)

T A
U

R2
.2

0
.1
9

.1
3

.4
0

.0
7

.3
5

.0
3

.2
3

.4
6

P H
Y

R2  (a
dj

.)
.0
5

.0
4

−.
04

.2
8

−.
10

.2
3

−.
15

.0
2

.3
2

N
2

p-
	va
lu
e

.2
9

.3
3

.5
4

.0
4

.7
4

.0
7

.9
1

.3
9

.0
5

(d
)

T SU
R2

.0
6

.1
2

.1
5

.3
0

.0
4

.3
1

.1
9

.3
1

.6
2

P H
Y

R2  (a
dj

.)
−.
12

−.
05

−.
02

.1
6

−.
14

.1
8

.0
4

.1
2

.5
2

N
T

p-
	va
lu
e

.8
1

.5
6

.4
6

.1
4

.8
7

.1
1

.3
2

.2
3

.0
1

(e
)

T SU
R2

.2
1

.1
1

.1
5

.2
6

.0
6

.2
9

.1
1

.0
8

.5
9

P H
Y

R2  (a
dj

.)
.0

7
−.
06

−.
02

.1
2

−.
12

.1
6

−.
06

−.
17

.4
9

N
1

p-
	va
lu
e

.2
7

.5
8

.4
7

.1
9

.7
9

.1
3

.6
0

.8
1

.0
1

(f)
T SU

R2
.0
6

.1
2

.1
7

.3
8

.0
4

.3
2

.1
5

.2
4

.6
1

P H
Y

R2  (a
dj

.)
−.
11

−.
05

.0
0

.2
5

−.
14

.1
9

−.
01

.0
3

.5
2

N
2

p-
	va
lu
e

.7
9

.5
3

.4
2

.0
6

.8
8

.1
0

.4
4

.3
8

.0
1



12 of 18  |     KLOOS et al.

When	comparing	four	5-	year	scenarios	across	the	EOS	metrics	
(Figure 8b), it is most noticeable that in years with low photosyn-
thetic activity in the first half of the growing season and high autumn 
temperature at the same time, a delayed EOS is observed in most of 
the	methodologies.	All	other	scenarios	behave	differently	depend-
ing on the methodology, but the EOS values are always close to each 
other. In both analyses, no differences were observed between di-
rect/indirect and early and late autumn phenological metrics.

4  |  DISCUSSION

Both	spring	and	autumn	phenology	in	the	Hainich	National	Park	over	
the	last	20 years	differed	widely	by	up	to	1.5 months	when	different	
sources	of	derivation,	such	as	remote	sensing,	carbon	fluxes,	CC	im-
ages,	or	 in-	situ	observations,	are	considered.	However,	 the	resulting	
time series still had remarkable similarities in their temporal courses. 
Whereas there is largely consensus that spring phenology in temper-
ate deciduous forests is mainly driven by spring temperatures (besides 
winter chilling and photoperiod), the drivers of autumn phenology are 
less clear and heavily debated (e.g., Lu & Keenan, 2022). Consequently, 
our main intention was to analyze whether EOS data sources influence 
analyses' outcome on autumn phenology drivers, such as temperature, 
water availability, and/or photosynthetic activity. In the following sec-
tions, we will discuss the considerable differences found between the 
data sources and their implications for predicting changes in the grow-
ing season length of deciduous forests under climate change.

4.1  |  Spring and autumn phenology

Spring phenology metrics from different data sources, such as satel-
lite	remote	sensing,	carbon	flux	data,	CC,	and	in-	situ	observations,	are	
well-	known	to	differ	(Berra	&	Gaulton,	2021). However, their seasonal 

order seems not random but well justified by inherent properties of 
the	different	indices.	The	MODIS	Greenup,	with	its	low	threshold	of	
15%	of	EVI2	amplitude,	mainly	focuses	on	the	greening	of	understory	
vegetation such as Allium ursinum L., Mercurialis perennis L., Anemone 
nemorosa L., usually occurring earlier in the year than the greening of 
the	overstory	(Filippa	et	al.,	2018; Ryu et al., 2014; Uphus et al., 2021). 
Equally,	the	flux	tower	phenology	also	partially	records	the	photosyn-
thetic	 activity	 of	 the	 understory,	 leading	 to	 earlier	 GPP-	based	 SOS	
dates (D'Odorico et al., 2015),	albeit	slightly	later	than	MODIS:GU.	This	
difference can be interpreted to signify as meaning that the greening 
of understory vegetation occurs before any relevant carbon uptake 
processes are initiated. The observation that indirect derivation meth-
ods are the first to indicate the start of spring phenology, compared 
to direct methods observing the trees themselves can therefore be 
primarily	explained	by	the	recording	of	the	understory,	which	shows	
a clear drawback of the recording method. Unsurprisingly, the CC 
and the interpolated DWD phenology of F. sylvatica largely match. 
Corresponding	 to	 literature	 findings	 (Ahrends	 et	 al.,	 2009; Smith & 
Ramsay, 2020) F. excelsior leaves out later than F. sylvatica.

Advancing	 trends	 of	 SOS	 in	 the	 Hainich	 National	 Park	 from	
2000 to 2020 are predominantly in line with the current litera-
ture	 (Caparros-	Santiago	 et	 al.,	 2021; Menzel et al., 2020; Piao 
et al., 2019) and are mainly caused by rising spring temperatures 
(Hamunyela et al., 2013; Jin et al., 2019). On the contrary, the 
statistically significant delay of F. excelsior SOS might be a conse-
quence of the pathogenic fungus Hymenoscyphus pseudoalbidus, 
which is currently damaging ash trees across Europe (Kowalski & 
Holdenrieder, 2009; but then Queloz et al., 2011). This phenom-
enon	 is	 also	 increasingly	 observed	 in	 the	Hainich	National	 Park.	
More severely damaged trees tend to leave out later than healthy 
ones (McKinney et al., 2011; Stener, 2013). These results highlight 
that	 “ecosystem-	scale”	 indirect	 approaches	 are	 not	 very	 reliable	
in	addressing	species-	specific	phenology	trends	and	could	lead	to	
large	 errors	 for	 species	 experiencing	 a	 phenological	 shift	 that	 is	

F I G U R E  8 Analysis	of	EOS	metrics	in	combination	with	the	predictor	variables	autumn	temperature	(TAU) and growing season first 
half	net	ecosystem	production	(N1): (a) Multiple linear regressions with the other variable kept constant (median); (b) mean EOS (metrics 
ordered	by	mean	date	of	onset),	for	5 years	each	with	low	TAU	and	N1 (scenario 1), with high TAU	and	N1 (scenario 2), with low TAU	and	high	N1 
(scenario 3), with high TAU	and	low	N1 (scenario 4), and for the total period (mean).
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inverse	to	the	other	plants	in	the	community.	Furthermore,	since	
SOS dates are often used as predictors for EOS onset dates (as-
suming	 a	 constant	 length	 of	 the	 growing	 season;	 for	 example,	
Keenan & Richardson, 2015;	Liu,	Fu,	Zhu,	et	al.,	2016), it is essen-
tial	to	note	that	all	SOS	data	sources,	except	for	the	ash	CC,	show	
similarly	inter-	annually	varying	time	series	and	have	a	similar	range	
(e.g.,	MODIS:MGU,	DWD:LU,	NEP,	CC:Fagus).	This	 indicates	that	
for this specific assumed driver of EOS, differences in SOS metrics 
should not play a major role.

In autumn, as in spring, the order of the determined phenology 
was in line with the current process understanding. The data sources 
that	explicitly	detect	 the	beginning	of	autumn	phenology—namely	
leaf	discoloration—(DWD:LC	and	MODIS:SE)	estimated	the	earliest	
onset dates on average. The data sources indicating a later EOS were 
related	to	leaf	fall	(DWD:LF	and	MODIS:DO),	with	the	MODIS	data	
occurring	significantly	later	(over	10 days	on	average).

The other autumn phenology metrics had a similar range of val-
ues in between, whereby two points are particularly noteworthy: 
Firstly,	 the	 DWD:LC	 data	 (which	 are	 based	 on	 50%	 leaf	 discolor-
ation of F. sylvatica)	were	more	than	1 week	earlier	than	CC:Fagus,	
although	by	definition	the	same	is	measured—in	the	top	canopy	(CC)	
and	from	the	ground	(DWD).	This	lag	of	1 week	could	be	because	the	
phenological variability of individual trees is quite large and differ-
ences	within	certain	phenological	phases	of	more	than	7 days	are	not	
uncommon	(Capdevielle-	Vargas	et	al.,	2015; Marchand et al., 2020). 
Moreover, the DWD data are interpolated data, which per se rep-
resents	 an	 uncertainty	 factor,	 and	 thus	 can	 explain	 these	 differ-
ences. The Hainich site is slightly elevated to the Thuringen Becken, 
so it could be that the interpolation does not capture properly the 
elevational effect at this site. Secondly, ash leaf discoloration or leaf 
fall was later than the corresponding autumn phenology of beech, 
as	also	reported	by	Ahrends	et	al.	 (2009)	 for	 the	Hainich	National	
Park. The CC analysis clearly showed the dissimilarity: While F. syl-
vatica has intensive leaf discoloration and both leaf discoloration and 
leaf fall are longer lasting processes, the leaves of F. excelsior hardly 
change color and then fall to the ground relatively abruptly.

The autumn phenological trends across different data sources 
were rather delayed than advanced (but no single significant trend 
in	 either	 direction).	 This	 aligns	 well	 with	 existing	 research	 (Gill	
et al., 2015; Piao et al., 2019), although no directly comparable study 
with	a	similar	observation	period	and	area	is	available.	Another	strik-
ing difference is the sign of the two species observed via the CC. 
While the ash tends to enter dormancy earlier, the phenological 
autumn of the beech is clearly delayed. Contrasting the results of 
McKinney et al. (2011) and Stener (2013), we assume an influence of 
ash dieback also on the autumn phenology, which can be seen due to 
an advance in leaf senescence. The observed differences can be jus-
tified here based on a different research area, method, and period. 
In summary, there were thus two opposing trends in the length of 
the	growing	season	for	the	Hainich	National	Park:	a	lengthening	for	
F. sylvatica and a shortening for F. excelsior. Despite the high variance 
of the individual data sources in the value range of EOS, there is a 
high	degree	of	temporal	agreement.	Above	all,	DWD:LC,	DWD:LF,	

MODIS:SE,	NEP	and	CC:Fraxinus	show	similar	temporal	courses	and	
thus	form	a	solid	EOS	construct	for	the	Hainich	National	Park.

4.2  |  Predictor analysis of autumn phenology

The predictor analysis of autumn phenology revealed that spring 
phenology,	 spring	 frost,	 and	 (partly)	 summer	 temperatures	exhibit	
minor	 or	 contradicting	 effects—depending	 on	 the	 data	 source	 for	
autumn phenology. However, years with higher autumn (and partly 
summer) temperatures and more heat and frost days tend to be as-
sociated with a later EOS. These outcomes hold a dual nature, align-
ing with some and diverging from other research findings. While 
many studies support the idea that higher autumn temperatures 
cause	leaves	to	change	color	and	fall	later	(e.g.,	Gallinat	et	al.,	2015; 
Gill	et	al.,	2015;	Zohner	et	al.,	2023), there are some studies that do 
not offer evidence for a later EOS with higher summer temperatures 
(Liu et al., 2018; Lu & Keenan, 2022). However, a noteworthy dis-
crepancy arises concerning our consistently positive link between 
the	number	of	extreme	hot	days	and	the	EOS,	that	is	more	hot	days	
are associated with later autumn senescence contrasting with re-
sults of Xie et al. (2015, 2018)	who	associate	extreme	heat	 stress	
with an earlier autumn phenology. This discrepancy could be due to 
the methodology: Xie et al. (2015) analyzed remote sensing data in 
the	US	from	2001	to	2012,	defining	heat	stress	in	July	and	August	
as	 temperatures	 exceeding	 32	 or	 35°C,	whereas	 Xie	 et	 al.	 (2018) 
also	considered	ground	observations	with	a	threshold	of	35°C.	Their	
findings on the relationship between heat stress and EOS changed 
depending on the threshold (Xie et al., 2015) and tree species (Xie 
et al., 2018), which is in agreement with our results. Consequently, 
there is a need to further investigate in detail whether higher tem-
perature thresholds than applied in our study lead to the detection 
of possible drought effects associated with heat waves in remote 
sensing products, resulting in this reverse relationship with EOS.

A	clear	 influence	was	 seen	 for	water	 availability:	 the	 less	 pre-
cipitation falls in the previous hydrological year, in summer, and as 
extremes,	the	later	the	autumn	phenology.	This	finding	was	also	con-
firmed for VPD and DWI influences in our study. When considering 
the impact of water availability, some studies observe a later EOS in 
drier conditions (Xie et al., 2015,	2018),	although	other	studies	can-
not confirm this finding (Bigler & Vitasse, 2021; Liu et al., 2018;	Zani	
et al., 2020). In general, the understanding of this topic is still un-
clear, since there are many different variables (e.g., precipitation, soil 
moisture,	VPD)	and	methods	(mean	values	or	extremes)	involved.

The impact of photosynthetic activity on EOS requires a more 
differentiated assessment, particularly given the conflicting state-
ments in current literature. While some studies support the idea 
that	 photosynthetic	 activity	 regulates	 autumn	 phenology	 (Zani	
et al., 2020;	Zohner	et	al.,	2023), others oppose this hypothesis (Lu 
& Keenan, 2022;	Norby,	2021). We found that the effect for the first 
part of the growing season varied based on how EOS is determined, 
and the analysis method used (univariate/multivariate). This was 
equally the case, when only photosynthetic activity in the first half 
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of the growing season and autumn temperature were considered 
as predictor variables. On the other hand, reduced photosynthetic 
activity over the entire growing season and in the second half of 
the	season	(July,	August,	September)	was	more	likely	to	delay	EOS.	
Nevertheless,	the	dominating	effect	was	autumn	temperature,	with	
a high temperature being associated with a later EOS in most cases. 
Consequently,	years	with	low	photosynthesis	in	April,	May,	and	June	
and high autumn temperature were particularly associated with de-
layed EOS, indicating the autumn temperature effect. However, in 
detail this was again true not for all EOS data sources and the pho-
tosynthesis	definition	(NEP,	GPP)	influenced	the	results	significantly.

Recent	 results	 by	 Zohner	 et	 al.	 (2023), according to which in-
creased	 pre-	solstice	 vegetation	 activity	 advances	 senescence	 in	
Northern	Hemisphere	 forests,	 cannot	 be	 confirmed	 by	 our	 study.	
EOS metrics determined the overall picture and the phases specif-
ically related to the beginning of senescence (e.g., MODIS:SE and 
DWD:LC) provided different results, which makes this hypothesis 
questionable,	at	least	in	a	temperate	mid-	latitude	deciduous	forest.

One finding is valid for all influencing factors: the different data 
sources	for	phenology	matter.	Although	some	studies	already	link	de-
rived autumn phenology with potential predictors using different data 
sources and methodologies (e.g., Keenan & Richardson, 2015; Lu & 
Keenan, 2022), to our knowledge, there is no systematic evaluation of 
how different derivation approaches of EOS affect a predictor analysis 
in a given study area. We found large differences in the magnitude, 
sign, and significance of effects on autumn phenology depending on 
the	data	source	and	derivation	methodology.	For	example,	beech	CC	
EOS dates were highly correlated with temperature and water vari-
ables, suggesting a strong relationship, whereas correlations for the 
same	 variables	were	much	weaker	 or	 even	 opposite	 for	 flux	 tower	
phenology. Similar observations can be made at the multivariate level, 
where,	for	example,	the	NEP,	GPP,	and	ash	CC	autumn	phenology	were	
negatively related to summer temperature. In contrast, the DWD and 
MODIS	phenology	 showed	 (mostly)	 a	 positive	 correlation.	Both	ex-
amples illustrate that conclusions about drivers of autumn phenology 
can diverge considerably depending on the data source. This finding is 
noteworthy, as many studies within this field of research base state-
ments about relationships between phenology and possible influ-
encing factors on only one data source and derivation methodology. 
On the other hand, however, it must also be noted that despite the 
large number of different data sources and derivation methods, the 
correlations in the more general variable groups (temperature, water 
availability, photosynthesis) with the EOS variables provide a largely 
uniform picture. There were no discernible structural differences in 
the relationships with the individual predictor variables found either 
in the differentiation between direct and indirect recording methods 
or	in	early,	mid-	,	and	late	autumn	phenological	metrics.

However, the choice of methods can lead to substantial variations 
in	EOS-	related	findings	(especially	just	looking	at	one	predictor	vari-
able), whereby for general statements on potential predictors of au-
tumn phenology, an ensemble evaluation of all available data sources 
of a study area is recommendable but requires considerably larger 
data	sets.	In	the	context	of	machine	learning	ensemble	analysis,	the	

fundamental premise is that inherent inaccuracies of individual mod-
els can be mitigated through the combination of multiple models. This 
approach	 is	 expected	 to	 enhance	 predictive	 accuracy	 compared	 to	
relying on single models (Sagi & Rokach, 2018). In our specific con-
text,	where	various	phenological	data	sources	or	derivation	methods	
were employed for a given location and observation period to analyze 
phenological trends and their drivers, we constructed several regres-
sion	models	using	a	singular	model	type.	Thus,	this	above-	mentioned	
methodology	 would	 open	 up	 new	 avenues,	 particularly	 for	 exten-
sive phenological data sets which amalgamate diverse data sources. 
However, ensemble methods from the field of machine learning, such 
as boosting (Elith et al., 2008) and bagging (Breiman, 1996), have not 
yet received much attention in plant phenology but hold potential 
for	refining	models	for	various	research	questions.	Nevertheless,	for	
differentiated views, especially concerning spatial resolution (ecosys-
tem, species, individual tree, etc.), individual data sources still have 
importance for specific applications.

In light of our study findings, it is evident across all EOS metrics 
that	warmer	and	drier	growing	seasons	 lead	to	a	 later	EOS.	At	the	
same time, cooler and wetter conditions tend to prompt an earlier 
EOS	 in	 the	Hainich	National	Park,	with	 the	 role	of	photosynthetic	
activity remaining unclear, contingent on the definition, observation 
period, and EOS methodology.

4.3  |  Limitations of the data sources

However, there are also specific limitations related to the data and 
methods. Only individual trees of the respective species were ob-
served	by	DWD	and	CC	data.	As	previously	mentioned,	 there	can	
be substantial variability within a phenological phase among trees 
(Capdevielle-	Vargas	et	al.,	2015; Marchand et al., 2020), and thus, 
in the worst case, the determined phenological phase might not ac-
curately represent the species studied. The interpolation of DWD 
data adds another layer of uncertainty. Particularly worth noting is 
the	manual	and,	thus	semi-	objective	nature	of	evaluating	phenology	
in	the	case	of	the	CC	data.	Also,	since	the	camera	position	changed	
several times over the time series, the same tree was not always ob-
served	consistently.	In	the	case	of	the	remote	sensing	and	flux	tower	
data, the homogeneous and spatially undifferentiated observation 
must be pointed out, which can lead to distorted results, especially 
in	respect	to	the	understory.	Across	all	data	sources	and	phenology	
studies	(Berra	&	Gaulton,	2021; Templ et al., 2018;	Zeng	et	al.,	2020), 
there is also concern about consistent definitions of the phenologi-
cal	phases.	Especially	in	autumn,	due	to	the	more	complex	process	
of leaf discoloration and fall, phenology can be measured differently. 
Additionally,	indirect	measurement	methods	such	as	remote	sensing	
or derivation via ecosystem CO2	exchange,	can	sometimes	lack	clar-
ity	in	terms	of	what	exactly	is	being	measured,	making	comparisons	
challenging.	For	eddy	covariance	data,	uncertainties	arise	from	qual-
ity	checks,	gap-	filling,	and	the	source	partitioning	approach.	Finally,	
GPP:DT	and	GPP:NT	are	just	modelled	values;	only	NEP	is	directly	
measured.	Uncertainties	also	extend	to	the	predictor	variables.	The	
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defined threshold values and the periods can be designed differ-
ently, influencing evaluations. However, careful selection of robust 
variables was prioritized when avoiding collinearity within the multi-
ple linear regression models. Lastly, the limitations of the statistical 
analyses conducted here should be acknowledged. The dataset size 
(maximum	21 years)	upon	which	the	statistical	metrics	are	based	was	
relatively small, making it sensitive to outliers.

5  |  CONCLUSION

The	analysis	of	spring	and	autumn	phenology	in	the	Hainich	National	
Park from different data sources revealed significant variability in 
the determined onset dates and corresponding trends, dependent 
on the specific data source employed. While spring phenology gen-
erally	exhibited	advancement	over	the	observed	period	(except	for	
European ash), autumn trends were less distinct, aside from the de-
layed leaf coloring in European beech. The factors possibly influenc-
ing autumn phenology include temperature, water availability, and/
or photosynthetic activity. Warmer and drier years tend to be linked 
to	a	delayed	end	of	season,	although	the	exact	role	of	photosynthe-
sis	remains	unclear.	Notably,	the	predictors	derived	for	autumn	phe-
nology	exhibit	substantial	disparities	across	the	EOS	data	sources,	
whereby no structural differences are found between direct and 
indirect data sources or between early and late autumn phenologi-
cal metrics. Considering these findings, it appears prudent to adopt 
an ensemble approach by using multiple phenological data sources 
in future research, particularly when addressing broader questions 
concerning plant phenology.
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