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Abstract
Aim: Natural disturbances are key drivers of forest ecosystem dynamics and are highly 
sensitive to global change. Despite their importance, central disturbance character-
istics remain unknown for many forests worldwide. Here, we quantified an impor-
tant component of the forest disturbance regime—the distribution of patch sizes—in 
strictly protected areas by asking: (i) How are patch sizes of naturally occurring distur-
bances distributed across the Alps and how can they best be quantified? (ii) Are patch 
size distributions stochastic or can they be explained by environmental drivers? (iii) 
What are the return periods of extreme disturbance events?
Location: European Alps.
Methods: We analysed satellite-based disturbance maps for the period 1986–2020 
across a network of 12 strictly protected areas, modelling patch sizes of all observed 
disturbance patches as well as of annual extreme events. We tested the influence 
of temperature, precipitation, topographic complexity and forest type on patch size 
distributions.
Results: Disturbance patch sizes across the Alps (median 0.36 ha, 5th percentile 0.18 ha 
and 95th percentile 1.71 ha) as well as their annual extremes (0.72 ha, 0.18–7.11 ha) 
are best described by a Fréchet distribution. The size of annual extreme events sig-
nificantly increased with intra-annual temperature amplitude (+0.98 ha with a one 
standard deviation increase) and the share of evergreen trees (+0.63 ha). On average, 
disturbance patches of 5.5 ha (95% credible interval 2.6–17.5 ha) occur once every 
30 years, whereas patches of 2.6 ha (1.2–7.0 ha) occur once every 10 years.
Main Conclusions: Disturbances caused by natural agents are generally small and sto-
chastic across the Alps. Extreme events are driven by climate, suggesting sensitivity 
of disturbance patch sizes to climate change. Our results provide a baseline for moni-
toring climate-induced changes in forest disturbance regimes, and provide important 
information for the management and conservation of forest ecosystems.
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1  |  INTRODUC TION

Natural disturbances are pulses of tree mortality caused by nat-
urally occurring agents such as windthrow, wildfire, avalanches, 
landslides or bark beetle outbreaks and drive the dynamics of 
forest structure across temporal and spatial scales (Perry, 2002; 
Romme et al., 1998; Senf et al., 2021). From a temporal perspec-
tive, they are discrete events, occurring abruptly over minutes to a 
few years, yet they have long-lasting impacts on the demography 
of forest ecosystems (McDowell et al., 2020; Senf et al., 2021). 
The spatial extent of disturbances ranges from the death of in-
dividual trees, leaving a small gap in the canopy, to large-scale 
resets of successional trajectories following stand-replacing dis-
turbances (Seidl & Turner, 2022; Sommerfeld et al., 2018). This 
considerable variation in the temporal and spatial patterns of for-
est disturbances creates diverse habitats for many forest-dwelling 
species (Swanson et al., 2011).

Natural disturbances are of particular importance in mountain 
forests. The steep topographic gradients characteristic for mountain 
forests generate gravitational forces that create disturbances that 
are unique for mountain areas, such as snow avalanches, rock fall, de-
bris flows or landslides (Kulakowski et al., 2017; Scheidl et al., 2020; 
Stritih, Bebi, et al., 2021; Vacchiano et al., 2017). Moreover, weather 
phenomena related to mountain topography, such as foehn winds 
as well as convective thunderstorms, can result in windthrow and 
stem breakage (Bebi et al., 2017; Nagel et al., 2017). Furthermore, 
mountain slopes are often characterised by shallow, well drained 
soils that have low water-holding capacity (Zhang et al., 2018). This 
can increase the susceptibility to drought and further predispose 
forests to biotic disturbance agents, such as bark beetles (Hlásny 
et al., 2021).

Disturbances in mountain forests are of high ecological and 
socioeconomic importance, because they have widespread impact 
on biodiversity and ecosystem services (e.g. Thom & Seidl, 2016; 
Viljur et al., 2022). Disturbances, for instance, determine the 
patchiness and thus heterogeneity of mountain forest landscapes, 
rendering disturbances crucial drivers of biodiversity (Beudert 
et al., 2015; Mori et al., 2018; Swanson et al., 2011). More spe-
cifically, disturbed forests provide important habitat for ground 
nesting birds, ungulates and apex predators (Filla et al., 2017; 
Kortmann et al., 2018; Oeser et al., 2020). Disturbances also 
generate ecologically valuable early-successional stages and bio-
logical legacies, such as standing and downed deadwood, which 
have positive effects on biodiversity (Franklin et al., 2002; Hilmers 
et al., 2018; Swanson et al., 2011). However, disturbances can 
also have detrimental effects on wildlife populations, for ex-
ample, via the fragmentation or loss of key habitat (Fischer & 
Lindenmayer, 2007; Venier et al., 2022). From a socioeconomic 
perspective, mountain forests provide numerous ecosystem ser-
vices, among which the protection of human infrastructure against 
gravitational processes such as avalanches, rock fall, debris flows 
and landslides is of prime importance (Maroschek et al., 2015; 
Stritih, Bebi, et al., 2021; Vacchiano et al., 2016). This protective 

function of forests essentially depends on a continuous forest 
cover and disturbances can thus impair the provisioning of these 
vital ecosystem services (Sebald et al., 2019).

A key characteristic of forest disturbances is their patch 
size (Turner, 2010). A patch here describes a contiguous area 
affected by one distinct disturbance event. The size of distur-
bance patches is an important determinant of many ecological 
processes. Tree regeneration after stand-replacing disturbance, 
for instance, is strongly driven by patch size, because distance to 
undisturbed forest edges of mature trees dictates seed availabil-
ity (Dobrowolska et al., 2022; Mantero et al., 2023). Particularly, 
the establishment of late-seral species, which often have heavier 
seeds and low frequency of mast years, will be delayed in large 
disturbance patches (Muscolo et al., 2014; Terborgh et al., 2020). 
Likewise, local microclimatic conditions are strongly affected by 
disturbance patch size. Larger openings in the canopy dispro-
portionally affect radiation, temperature and humidity close to 
the forest floor (Thom et al., 2020) leading to a temporary loss 
of the microclimatic buffering capacity of closed canopy forests 
(De Frenne et al., 2019). The resultant climatic differences, in turn, 
influence processes like nutrient and water cycling (Mikkelson 
et al., 2013), which are key to seed germination and seedling es-
tablishment. Changes in disturbance patch sizes, for example, as 
a result of increased disturbance activity under climate change, 
might thus alter post-disturbance recovery trajectories and ulti-
mately the structure and composition of future forests (Seidl & 
Turner, 2022). Also a number of important ecosystem services are 
influenced by disturbance patch size. The protective function of 
forests, for instance, frequently decreases with increasing area of 
canopy openings (Maroschek et al., 2015; Sebald et al., 2019). As 
such, patch size is a crucial metric for characterizing and under-
standing forest disturbance regimes (Goulamoussène et al., 2017; 
Hobi et al., 2015; Jucker, 2021), especially in mountain forests. 
Likewise, information on patch sizes of naturally occurring distur-
bances is key for the sustainable management of forest ecosys-
tems (Zimová et al., 2020), and can inform management that aims 
to mimic natural processes (Aszalós et al., 2022).

In general, the frequency distribution of patch sizes tends to 
be positively skewed with a heavy tail, that is, there are much 
more small patches than large patches (De Lima et al., 2008; 
Romme et al., 1998). Although rare, large patches are of dispro-
portional ecological and economic importance (Katz et al., 2005; 
Mahecha et al., 2022; Millington et al., 2006). Yet, they re-
main difficult to quantify, because of limited data availability 
at local scales. Substantial efforts have been made to quantify 
patch size distributions in a variety of ecosystems (De Römer 
et al., 2007; Malamud et al., 2005; Moritz, 1997); especially 
given the recent increase in the availability of remote sensing 
data (Goulamoussène et al., 2017; Jucker, 2021). However, many 
forest ecosystems are intensively managed (e.g. most of Europe, 
large parts of the United States), restricting the analysis of distur-
bance patch sizes by means of remote sensing data to both human 
and natural disturbances (Senf & Seidl, 2021). In such areas, the 
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characteristics of disturbances that are caused by natural agents 
often remain unknown. An important means for understanding 
disturbance regimes in the absence of human intervention is to 
learn from protected areas, that is, landscapes where naturally oc-
curring disturbances can unfold unimpeded (Potterf et al., 2022; 
Sommerfeld et al., 2018). While protected areas allow insights 
into forest dynamics in the absence of human intervention, gener-
alization from one area to a larger region remains challenging, be-
cause protected areas are often located in distinct environmental 
settings with often unique land use legacies (Muise et al., 2022; 
Sabatini et al., 2020). To gain a comprehensive picture of the char-
acteristics of disturbances caused by naturally occurring agents, 
synthesizing over a range of protected areas might strongly in-
crease inferential capacities. Specifically, comparing disturbance 
regimes between landscapes allows for insights into how strongly 
disturbance patch size distributions are determined by local id-
iosyncrasies, or whether generalizable disturbance patch size 
distributions can be derived across landscapes. The generaliz-
ability of disturbance patch size distributions has been discussed 
intensively in the context of wildfire (Malamud et al., 2005; 
Schoenberg et al., 2003), yet remains largely unanswered for for-
est disturbance regimes dominated by other agents. Developing 
robust statistical models of patch size distributions is, however, 
essential for deriving meaningful statistics (e.g. return intervals) 
from short observations.

Here our aim was to quantify patch size distributions of for-
est disturbances across unmanaged forest landscapes of the 
European Alps. Focusing on a large network of protected areas 
and harnessing an existing remote sensing-based dataset on for-
est disturbances (Senf & Seidl, 2021), we addressed the following 
questions:

1. How are patch sizes of naturally occurring, high-severity dis-
turbances distributed across the European Alps and how can 
they best be quantified? To answer this question, we tested 
different theoretical distribution models against observed data 
for (i) all observed disturbance patches and (ii) annual extreme 
events. Distribution models were chosen based on theoretical 
grounds and prior studies quantifying patch size distributions.

2. Are patch size distributions and their extremes purely stochas-
tic or do they vary with environmental drivers? To answer this 
question, we estimated the effects of a set of environmental pre-
dictors on the distribution of disturbance sizes and their annual 
extremes.

3. What are the return periods of extreme disturbance events in 
the European Alps? To answer this question, we calculated return 
levels (i.e. patch sizes) of events with return periods of 3, 10 and 
30 years.

Our study provides a baseline for the assessment of disturbance 
change in a rapidly changing environment (Thom et al., 2022) and 
fills an important information gap for the management and conser-
vation of forest ecosystems in the European Alps.

2  |  MATERIAL S AND METHODS

2.1  |  A network of protected forest landscapes

We compiled information on 12 strictly protected forest land-
scapes in seven countries (Austria, France, Germany, Italy, 
Lichtenstein, Slovenia and Switzerland) across the European Alps, 
covering a total area of 5383 km2 in 2020 (Figure 1). The spa-
tial extent of the European Alps was defined by the perimeter 
of the Alpine Convention (Permanent Secretariat of the Alpine 
Convention, 2020). Criteria for the selection of forest landscapes 
were strict protection status according to the International Union 
for Conservation of Nature (IUCN categories I or II; Dudley, 2013) 
and a forest area exceeding 4 km2. Using the World Database on 
Protected Areas (UNEP-WCMC & IUCN, 2021), we preselected 
protected areas that met these criteria (21 preselected, 12 fi-
nally included in the study, the remaining nine were not able to 
contribute or had no spatial information on zonation). We invited 
protected areas to participate by providing spatial information 
on extent and zonation (i.e. non-intervention zone, management 
zone) for the period of 1986–2020. Furthermore, protected area 
representatives were asked to provide qualitative information on 
forest cover, land use legacies and dominant disturbance agents 
via a questionnaire (cf. Data S1). For the protected areas included 
in the analysis, we homogenized all spatial datasets, resulting in 
maps delineating non-intervention and management zones at an-
nual resolution to account for changes in extent and zonation. The 
12 protected areas had a total forest area of 1724 km2 (median: 
106 km2) within the non-intervention zones in 2020.

2.2  |  Disturbance data

We used an existing forest disturbance map derived from Landsat 
time series for quantifying disturbances patch sizes (Senf & 
Seidl, 2021). The map has a spatial grain of 30 × 30 m and provides in-
formation on where and when a disturbance has occurred between 
1986 and 2020 at annual resolution. It is based on the analysis of 
all available Landsat images. Disturbances are defined as a loss of 
the majority of the trees forming the canopy (minimum mapping 
unit: 0.18 ha). An analysis across Europe by Senf and Seidl (2022) 
showed that the average disturbance severity in the dataset was 
66%, with approximately 75% of all disturbances being high-severity 
events with >50% canopy loss and approximately 10% being very 
high-severity events (>90% canopy loss). Consequently, we focus on 
high-severity disturbance events, low-severity disturbances such as 
ephemeral defoliation or the breakage of individual stems are not 
considered. The current version of the forest disturbance map does 
not differentiate between disturbance agents and we thus analyse 
all agents jointly. We vectorized the disturbance map using an eight-
neighbour rule, converting disturbed pixels of each year to polygons 
of contiguous disturbance patches. We focused on disturbance 
patches that had their centroid within a non-intervention zone of 
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one of the 12 protected landscapes. This effectively excluded dis-
turbances by management and focused the analysis on disturbances 
caused by natural agents. Additionally, it allowed us to exclude other 
human interventions before, during, and after a disturbance event, 
such as disturbance risk management measures, salvage logging, or 
replanting. In total, 1.76 × 106 disturbance patches were identified 
in the European Alps, of which 3103 patches were located within 
non-intervention zones of protected areas. Disturbance time series 
in the protected areas under study were on average 27.1 years long 
(7 years minimum and 35 years maximum), with the start of the ob-
servation period determined either by data availability (i.e. consist-
ent records available from 1986 onwards) or by protection status 
(establishment after 1986). Based on the information collected from 
local experts via a questionnaire wind, bark beetles and avalanches 
were the most important disturbance agents, being among the three 
most important disturbance agents in at least half of the protected 
areas. Other agents reported by local experts, but with more local 
relevance were breakage from snow and ice, wildfires, landslides and 
drought (cf. Table S1).

To derive maximum annual patch sizes for our extreme value 
analyses, we determined extremes according to the block maxima 
approach, a standard method to determine extreme events from 
time series data, frequently applied in other fields (e.g. rainfall in-
tensities, Poschlod, 2021). Maxima are derived for a certain block 
length, for example, a season or year (Coles, 2001; Katz et al., 2005). 
Here, we derived the maximum disturbance patch size per protected 
area and year, resulting in a dataset of 214 annual extremes across 
all protected areas.

2.3  |  Analyses

2.3.1  |  Patch size distributions

To determine which distribution function best describes disturbance 
patches and their extremes across the Alps, we considered a set of 
eight candidate distribution functions based on theory and previous 
work: the exponential, two-parameter Fréchet, gamma, generalized 

F I G U R E  1  A network of 12 strictly protected landscapes in the European Alps for the analysis of forest disturbance regimes. (a) The 
location of the Alps in Europe. (b) The location of the landscapes within the perimeter of the European Alps (Permanent Secretariat of the 
Alpine Convention, 2020), and (c) Their location in climate space. The area covered by forest is indicated in green (b, c). See Table S1 for more 
detailed information on the individual landscapes. The climatic envelope of the forests of the European Alps in (c) is based on 100 m × 100 m 
grid cells for temperature and 1000 m × 1000 m grid cells for precipitation. The shades of green indicate densities of forest area distribution. 
The climatic conditions of the forests in protected areas are shown by points and whiskers, indicating the mean and range of conditions for 
each protected area. The protected areas are: Berchtesgaden National Park (1), Dolomiti Bellunesi National Park (2), Dürrenstein Wilderness 
Area (3), Ecrins National Park (4), Garsälli/Zegerberg Forest Reserve (5), Gesäuse National Park (6), Hohe Tauern National Park (7), Kalkalpen 
National Park (8), Mercantour National Park (9), Swiss National Park (10), Triglav National Park (11) and Mont Ventoux Integral Reserve (12). 
Map projection: EPSG:3035, ETRS89-extended/LAEA Europe.
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extreme value (GEV), log-normal, negative binomial, Poison and 
two-parameter Weibull distributions (Table S2). We used a Bayesian 
framework to fit distributions to observed patch sizes. We sampled 
joint posteriors for all distribution parameters based on the likeli-
hood derived from the observations and prior assumptions about 
the approximate location of the distribution parameters. Instead of 
using uniform “flat” priors, we regularized the priors using normal 
or Student's t distributions, as regularization of priors helps to avoid 
overfitting in small sample sizes (McElreath, 2020). Joint posteri-
ors were sampled using Stan (Stan Development Team, 2021) via 
the R packages ‘brms’ version 2.15.0 (Bürkner, 2017) in R 4.0.2 (R 
Core Team, 2020). We used four chains with 4500 iterations each, 
of which the first 2500 iterations were discarded as warm-up. The 
joint posteriors were subsequently explored and visualized using the 
‘bayesplot’ package 1.8.1 (Gabry et al., 2019).

As a first step, we compared fully pooled patch size models, 
without any information on protected area and year of disturbance, 
across all eight candidate distributions. Second, for the two best per-
forming distribution functions, we compared a fully pooled model 
without any information on protected area and year of disturbance 
to a partially pooled model with crossed random effects on the in-
tercept for protected area and year of disturbance. This allowed us 
to test whether there is variation in the average disturbance size 
(i.e. the location parameter of the distribution) between protected 
areas and years, or whether a pooled disturbance size distribution 
is sufficient for explaining disturbance patch sizes across all land-
scapes. We further tested if a partially pooled dispersion param-
eter improved model fit. A partially pooled dispersion parameter 
allows the dispersion of patch sizes to vary by protected area and/
or year, assuming that some landscapes will have higher variation in 
disturbance sizes than others. Model fits were compared among all 
model specifications by graphical posterior predictive checks (Gabry 
et al., 2019); and by calculating the theoretical log pointwise pre-
dictive density (ELPD; a measure of relative model performance) via 
leave-one-out cross-validation (Vehtari et al., 2017). While ELPD is 
well suited for quantifying the overall predictive performance of a 
model, we additionally checked whether the models were able to 
capture the quartiles, mean, minimum and maximum values of the 
observed patch size distribution using posterior predictive checks 
(Gabry et al., 2019).

To test whether patch sizes and their extremes are stochastic or 
can be explained by environmental drivers, we selected a set of vari-
ables based on mechanistic understanding of disturbance dynamics. 
Variables were considered for which a mechanistic effect on distur-
bance size could be hypothesized (Table 1) and for which consistent, 
spatially explicit data were available throughout the European Alps. 
After initial screening, we selected variables for the categories to-
pography, climate and land cover as predictors. Within each category 
we omitted variables that were highly correlated by calculating pair-
wise Pearson's correlation coefficients. In case of high collinearity 
(p > 0.8), we decided to use the simpler parameter. We calculated av-
erages of each variable for the forest extent within the non-interven-
tion zone of each protected area, allowing for analyses between the 
protected areas and across the Alps (Table S1). The climatic variables 
temperature amplitude (i.e. the temperature difference between the 
warmest and coldest months) and mean annual precipitation were 
derived from the ClimateEU historical climate dataset for Europe 
(Marchi et al., 2020), using a reference period from 1986 to 2017. 
We used a 25 m resolution Digital Elevation Model (DEM) (European 
Environment Agency, 2016) to downscale climate variables (ini-
tial resolution 2.5 arcminutes) to 100 m (temperature) and 1000 m 
(precipitation) spatial resolution. Downscaling was conducted with 
the ClimateEU software tool 4.63 (Marchi et al., 2020). We chose a 
coarser resolution for precipitation following recommendations by 
Marchi et al. (2020), suggesting that orographic precipitation and 
rain shadows of mountain ranges are driving local climatology at the 
scale of a few kilometres, while temperature is strongly driven by 
elevational gradients and thus more accurately represented at finer 
spatial resolution. We used the same DEM to derive two topographic 
attributes: average elevation (treated as confounding variable, see 
explanation below) and the coefficient of variation in elevation. A 
dominant leaf type map (European Environment Agency, 2020) pro-
vided information on forest cover and share of evergreen and decid-
uous tree species. All attributes were calculated in R 4.0.2 (R Core 
Team, 2020) using packages ‘sf’ 1.0-2 (Pebesma, 2018), ‘raster’ 3.4-
13 (Hijmans, 2021), ‘terra’ 1.5-21 (Hijmans, 2022) and ‘exactextractr’ 
0.6.1 (Baston, 2021). Variables were standardized and centred using 
a z-transformation to make model estimates comparable and im-
prove sampling efficiency. Models were compared to intercept only 
models using leave-one-out cross-validated log pointwise predictive 

TA B L E  1  Environmental variables and their expected effect on patch sizes of natural disturbances in the Alps.

Variable
Variable 
group

Expected effect on 
patch size Mechanism

Coefficient of variation of elevation Topography Negative correlation More rugged topography, more break points for the spread of 
wildfires or bark beetles (Senf & Seidl, 2018)

Mean annual precipitation Climate Negative correlation Higher water availability reduces disturbances due to drought, 
wildfire or bark beetles (Grünig et al., 2022; Netherer & 
Nopp-Mayr, 2005)

Temperature amplitude Climate Positive correlation Larger temperature amplitudes indicate more climatic 
extremes (Neumann et al., 2017)

Share of evergreen tree species Land cover Positive correlation Conifers are more susceptible to windthrow, wildfires and bark 
beetles (Oliveira et al., 2012)
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densities (Vehtari et al., 2017), testing whether the predictors better 
explain disturbance patch size distributions than a model without 
predictors. To identify potential casual biases in our analysis, we 
used a directed acyclic graph to identify potential confounding vari-
ables (McElreath, 2020). As our landscapes are distributed along an 
elevational gradient, we assumed average elevation to be an import-
ant confounder (pipe type; McElreath, 2020) on all variables, as pre-
cipitation, temperature, the share of evergreens and the variation in 
elevation change along elevation. Likewise, we included forest area 
as a confounding variable, because landscapes with more forest area 
could potentially include larger disturbances. To be able to estimate 
the true effect of our variables, we included both elevation and for-
est area as confounders in the model. However, as we use them as 
confounders we do not report and interpret them in the results and 
discussion. To test whether the inclusion of the confounders and all 
other predictors would bias our estimates, we calculated a set of 
models omitting one parameter at a time and checked the robust-
ness of the size and direction of effects. We compared the effect 
of predictors to our expectations by calculating the joint posterior 
probability for the predictor having a positive or negative effect on 
patch size (cf. Table 1). We did this based on the 8000 joint posterior 
draws from the posterior predictive distribution of the models using 
the R package ‘brms’ 2.15.0 (Bürkner, 2017).

2.3.2  |  Return periods of extreme events

Extreme disturbance events are of particular relevance for forest 
ecosystem functioning (i.e. regeneration, microclimate) and society 
(i.e. protection function). To improve our quantitative understanding 
of disturbance extremes, we here focused on two relevant dimen-
sions: return levels and return periods of extreme disturbance patch 
sizes. Estimating return levels of events with a given return period 
is a common method in fields such as civil engineering, applied me-
teorology, hydrology or natural hazard science (Coles, 2001; Katz 
et al., 2005; Poschlod, 2021). In our case, the return level is the patch 
size for a given return period R (timespan in years), which is expected 
to be exceeded only once in R years (Coles, 2001). We calculated 
the return period R for extreme events by relating their return lev-
els (patch size) to the cumulative probability p of not exceeding 
the extreme event in 1 year according to Equation (1) (Coles, 2001; 
Makkonen, 2006).

By drawing patch sizes 8000 times from the posterior predic-
tive distribution of the best model on annual extremes we derived a 
cumulative density function for annual extreme patch sizes. We ob-
tained return levels across all study areas and report patch sizes that 
are expected to occur at return periods of three, 10 and 30 years. 
Ten years represents a typical planning cycle in forestry in Central 
Europe, and thus gives an indication of the extremes that need to be 
expected within one planning period, while 30 years approximates 

the work-life of a forest manager (and thus corresponds to the per-
sonal experience of extremes by practitioners).

3  |  RESULTS

3.1  |  Patch size distributions

Within our network of protected forest landscapes 3103 distur-
bance patches were detected between 1986 and 2020. Patch sizes 
varied widely, ranging from 0.18 to 15.30 ha with a median patch size 
of 0.36 ha (mean: 0.58 ha). Consistently across all protected areas, 
patch size distributions are positively skewed with a heavy tail. The 
patch sizes of the annual extremes varied more strongly on a year-
by-year basis and had a median patch size of 0.72 ha (mean: 1.64 ha). 
While the empirical probability density functions of all observations 
across protected areas had similar shapes, the empirical distributions 
of the annual extremes showed more variation (Figure 2; Table S3).

Our first objective was to test different distribution functions 
with regard to their ability to capture the size distributions of ob-
served disturbance patches. We found that the GEV, Fréchet and 
log-normal distributions performed best in approximating patch size 
distributions of all observations as well as of annual extreme values. 
All other distribution functions showed substantially lower capacity 
to describe the observed data (Table 2).

Performing graphical posterior predictive checks both the 
Fréchet and GEV distributions showed a good fit to the data. The 
density plots drawn from both the Fréchet and GEV models matched 
the empirical density functions, capturing their positive skew and 
heavy tails well. All other distribution functions deviated to various 
degrees from the empirical density distributions (Figures S1 and 
S2). Predicting patch sizes from model draws, the Fréchet model 
captured the observed maximum of 15.3 ha well (within the 95% 
credible interval of the model), while the GEV model overestimated 
the maximum patch size by several orders of magnitude (Figure S3). 
Overall, we found that the Fréchet distribution (which is a special 
case of the GEV distribution) was able to describe the data best, and 
we used this distribution function for all further analyses.

We further tested if including a partially pooled mean param-
eter (scale) and dispersion parameter (shape) improved model fit. 
The Fréchet model with partial pooling on both the scale and shape 
parameters among protected areas and years performed best for 
all observations (Table S4). For the annual extremes, however, par-
tial pooling of the dispersion parameter did not improve the model 
fit. Here, the Fréchet model with variable scale parameters among 
protected areas and years performed best (Table S4). Hence, we se-
lected those two models for further analysis.

3.2  |  What drives patch size distributions?

Our second objective was to investigate if patch size distributions 
and their extremes are significantly influenced by environmental 

(1)R =

1

1 − p
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drivers. Including environmental predictors in our models did not 
increase predictive performance for all observations, but improved 
models for annual extreme events (Table S5). This suggests that the 
occurrence of large disturbance patches is more strongly influenced 
by environmental drivers, while all disturbance patches—including 
many very small canopy openings—are better described by a purely 
stochastic distribution.

The environmental effects on disturbance patch size were sim-
ilar for all observations and annual extremes, yet effect sizes were 
more pronounced for annual extremes (Figure 3). This pattern mir-
rors the better predictive performance of the environmental drivers 
for annual extreme patch sizes than for all patch sizes (see para-
graph above). The majority of drivers did influence patch size as hy-
pothesized (Table 1). An exception was the coefficient of variation 
of elevation, where we found increasing disturbance patch sizes 
with increasing topographic complexity (low confidence, Figure 3). 

Temperature amplitude had the largest effect on patch sizes. There 
was a 98% probability that temperature amplitude affects average 
patch sizes positively, as hypothesized (95% for annual extremes). 
With a one standard deviation increase in temperature amplitude, 
average patch size increased by 0.15 ha (−0.06 to 0.45; 95% cred-
ible interval), and annual extreme patch sizes increased by 0.98 ha 
(−0.47 to 5.72). The second most important variable was the share 
of evergreen tree species, which had a 93% probability of affecting 
extreme patches positively (93% for all patches). A one standard 
deviation increase in evergreen share increased the average patch 
size by 0.07 ha (−0.09 to 0.28) and the annual extreme patch size 
by 0.63 ha (−0.49 to 3.81). Higher annual precipitation influenced 
patch sizes negatively (97% and 83% probability for all patches 
and extremes, respectively), with average patch size decreasing by 
−0.09 ha (−0.20 to 0.07) and extreme patch sizes by −0.25 ha (−0.75 
to 1.28) with an increase of one standard deviation.

F I G U R E  2  Density plots of all 
observed disturbance patch sizes (grey) 
and of annual extreme disturbance patch 
sizes (yellow) in protected areas across the 
Alps. The protected areas are arranged 
in the order of decreasing median patch 
size (indicated by the vertical lines) from 
top to bottom. Mont Ventoux Integral 
Reserve was omitted due to too few 
disturbance patches being recorded. Note 
the logarithmic scale of the x-axis.

Distribution function

(a) All observed patches (b) Annual extremes

ELPD ELPD difference ELPD ELPD difference

Generalised extreme value −7431.2 0.0 −752.1 −16.3

Fréchet −7530.2 −98.9 −735.8 0.0

Log-normal −7974.1 −542.9 −744.1 −8.4

Gamma −8595.4 −1164.1 −759.9 −24.1

Exponential −8802.7 −1371.4 −778.1 −42.4

Negative binomial −8830.2 −1398.9 −769.3 −33.6

Poisson −14526.3 −7095.1 −1558.5 −822.7

Weibull −14529.6 −7098.3 −1557.2 −821.4

Note: Theoretical log pointwise predictive density (ELPD) was calculated via leave-one-out cross-
validation. ELPD difference is calculated as the difference to the highest ELPD. Less negative ELPD 
difference values (in bold) indicate better model performance.

TA B L E  2  Model comparison across 
all investigated distribution functions 
(intercept only models) for (a) all 
observations and (b) annual extreme patch 
sizes.
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3.3  |  Return periods of extreme events

Our third objective was to calculate return levels of extreme events, 
that is, the patch size that is exceeded only with a certain periodicity 
(here: 3, 10, and 30 years). For a return period of 3 years, the ex-
pected extreme patch size was 1.1 ha (0.8–2.6, 95% credible interval, 
Figure 4). This means that, on average, a patch of 1.1 ha (i.e. roughly 
three times the median patch size) will occur in one out of 3 years. 
We note, however, that this value is derived by a large number of 
draws from the underlying distribution, and that in any given 3-year 
period (i.e. a single realization), a 3-year event may occur once, twice, 
three times, or not at all. For a 10-year return period, the patch size 
was 2.6 ha (1.2–7.0, 95% credible interval), and 5.5 ha (2.6–17.5) for a 
30-year return period (Figure 4). Consequently, a disturbance patch 
that is roughly 15 times larger than the median patch size will, on 
average, only occur once in 30 years. Also, the largest disturbance 
patch observed across all 12 protected areas since 1986 (an ava-
lanche disturbing 15.3 ha of forest in Gesäuse National Park, Austria 
in 2005) was statistically a 1 in 106 years event.

4  |  DISCUSSION

Here, we present the first empirical characterization of distur-
bance patch size distributions in unmanaged systems across the 
European Alps. Our data and analyses fill an important knowledge 
gap on the disturbance regimes of mountain forests. We show that 
patches caused by disturbances from naturally occurring agents 

are comparatively small in the European Alps, even when consider-
ing extreme values. This is in line with findings for other European 
mountain ranges like the Carpathians and Scandes (Kulakowski 

F I G U R E  3  Estimated effect sizes (hectare change in patch size per change in one standard deviation in the predictor) for environmental 
drivers of patch size for (a) all observations and (b) annual extreme events. The results are based on 8000 draws from the joint posterior predictive 
distribution of the final models. The intercepts of the models are indicated by dashed lines. Note the different scales for the two x-axes.

F I G U R E  4  Return periods of patch sizes caused by natural 
disturbances in the European Alps. The results are based on 8000 
draws from the posterior predictive distribution of the model for 
annual extreme patch sizes without conditioning on group-level 
parameters. Note the logarithmic scale of the x-axis.
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et al., 2017). In general, many temperate forests are dominated by 
small-scale disturbance events, caused by wind and bark beetles 
as primary disturbance agents, while landscapes prone to wildfires 
are often associated with larger disturbance sizes (Sommerfeld 
et al., 2018). In the Alps, disturbances are largely driven by wind and 
subsequent bark beetles (Kulakowski et al., 2017; Sebald et al., 2021) 
and the dominance of those two agents likely explains the rela-
tively small patch sizes found in our study. In temperate mountain 
forest ecosystems strongly driven by fire, for example, the Rocky 
Mountains in western North America, average patch size can be 
in the hundreds or even thousands of hectares (Seidl et al., 2020; 
Sommerfeld et al., 2018). Furthermore, patch size has been found 
to decrease with topographic complexity (Senf & Seidl, 2018). This 
could account for the fact that protected areas in other European 
mountain ranges had higher average patch sizes compared to what 
we report here (mean 0.58 ha), for example, in the Bavarian Forest/
Šumava National Parks in Germany/Czechia (10.43 ha), the Tatra 
National Park in Slovakia (2.91 ha) or the Harz National Park in 
Germany (1.70 ha) (Senf & Seidl, 2018). Future changes in the preva-
lence of disturbance agents, such as an increase in fire activity in 
temperate Europe (Grünig et al., 2022), could thus have profound 
consequences for forest disturbance regimes, particularly since re-
generation processes in the Alps are naturally adapted to small-scale 
canopy openings (Kulakowski et al., 2017).

We showed that patch sizes of high-severity disturbances in 
the protected areas of the Alps are best approximated by a Fréchet 
distribution. Several distribution functions have been used to suc-
cessfully describe disturbance patch sizes previously (De Lima 
et al., 2013; Hobi et al., 2015; Katz et al., 2005). The Fréchet dis-
tribution is an extreme value distribution; it thus works well in de-
scribing the annual maxima of the disturbance patch sizes. We here 
showed that, although it is rarely used to model disturbance patch 
sizes in general, the Fréchet distribution also worked well in charac-
terizing the frequency distribution of all disturbance patches. The 
positive skewness and heavy tails of the data are captured well by 
the Fréchet distribution. Allowing both distribution parameters—
mean (scale) and dispersion (shape)—to vary in space and time im-
proved our model for all observations. This suggests that not only 
the central tendency but also the spread of the distribution varies 
across the 12 study areas. That is, disturbance patches have been 
more variable over the past 35 years in some areas of the Alps (e.g. 
Gesäuse National Park or Kalkalpen National Park) than in others 
(e.g. Hohe Tauern National Park or Ecrins National Park). Our quanti-
fication of disturbance patch size distributions provides a foundation 
for the consideration of disturbances in simulation models, which is 
one of the current challenges for earth system modelling (McDowell 
et al., 2020). Specifically, our analyses show that modelling distur-
bance patches with a constant variance across space and time is not 
supported by data, suggesting that distribution parameters need to 
be chosen carefully in model applications.

We found that environmental drivers had only moderate predic-
tive power over patch size distributions, and that the effect of the en-
vironment on patch size was more pronounced for annual extremes 

compared to all disturbances. This finding allows two insights: First, 
stochasticity is high in disturbance patch sizes across the Alps, par-
ticularly for the many but very small disturbance patches (50% of 
patches <0.36 ha). Alternatively, other predictor variables—not con-
sidered here because of lack of understanding or data availability—
would be needed to explain the observed variation in disturbance 
patch sizes. Future work should further investigate potential drivers 
of patch sizes at the landscape scale, where better information (e.g. 
on forest composition and structure, soil conditions, etc.) are avail-
able. Second, the finding that extreme patches are more strongly 
determined by environmental drivers suggests that there is no de-
coupling between disturbance processes and the environment as a 
result of cross-scale amplification (e.g. as in large wildfires, that cre-
ate their own weather systems, Peters et al., 2004). In contrast, the 
dominant processes causing the largest disturbance patches in the 
Alps (i.e. avalanches and wind) are triggered by climatic extremes 
and their impact is modulated by topography (Doane et al., 2023; 
Schweizer et al., 2003; Teich et al., 2012). While effect sizes for indi-
vidual variables had wide confidence bands, temperature amplitude 
was found to be the most important factor influencing disturbance 
size distributions. In general, temperature amplitude increases from 
west to east and from high to low elevation in the Alps. Climate 
variability has been linked to tree mortality previously (Neumann 
et al., 2017), and a higher intra-annual amplitude indicates that for-
ests are more exposed to extreme conditions in both summer and 
winter. More specifically, areas that have high-temperature ampli-
tude might be more prone to being affected by multiple disturbances 
simultaneously, such as bark beetle outbreaks in summer and snow 
avalanches in winter (as is, e.g. the case in Dürrenstein Wilderness 
Area and Gesäuse National Park). The share of evergreen tree spe-
cies had the second largest effect, a result that is in line with several 
other studies finding conifers to be more susceptible to disturbances 
by wind (Dobor et al., 2020), wildfires (Oliveira et al., 2012) and bark 
beetles (Raffa et al., 2008; Sommerfeld et al., 2021). In contrast to 
our expectation (cf. Table 1), patch size increased with the coeffi-
cient of variation of elevation. One reason for this finding could be 
the important role of avalanches in the disturbance regimes of the 
Alps. Avalanches caused the largest patches observed within our 
data set, and 7 out of 12 protected areas listed avalanches or distur-
bance by snow and ice among the top three disturbance agents (cf. 
Table S1). Slope angle is an important driver of avalanche occurrence 
(Schweizer et al., 2003) and the higher share of avalanche-prone (i.e. 
steep) landforms in more rugged landscapes could be responsible 
for increasing disturbance patch size with increasing topographic 
complexity.

We note that we here focus on high-severity canopy distur-
bances (Senf & Seidl, 2021). Low- to mid-severity disturbances 
also play an important role in forest dynamics (Meigs et al., 2017; 
Nagel et al., 2017), yet they are not considered in our analysis. 
Furthermore, the dominance of small and very small disturbance 
patches in the Alps suggests that our minimum mapping unit of 
0.18 ha might be too large to capture the full patch size distribu-
tion of forest disturbances in the Alps. Future work could use active 
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remote sensing approaches such as Light Detection and Ranging 
(LiDAR) to obtain a finer grained picture of small-scale gap dynamics 
in mountain forests (Goodbody et al., 2020; Jucker, 2021). Further, 
we here modelled annual patch sizes, yet disturbance patches can 
grow over multiple years, resulting in realized patch sizes that are 
considerably larger than what we report here. In the context of eco-
system dynamics, realized patch sizes are often more important, 
because they determine, for example, the distance to the next seed 
source and thus forest recovery potential (Falk et al., 2019; Mantero 
et al., 2023). However, annual disturbance distributions are of par-
ticular relevance for the implementation of disturbances in simula-
tion models or the evaluation of their outcomes (Seidl, Fernandes, 
et al., 2011). They furthermore allow for a more direct link to the 
underlying environmental drivers.

Disturbances by agents such as wind, bark beetles, avalanches 
and wildfires are important risk factors in forestry, and quantitative 
information on risks is a prerequisite for successfully managing them 
(Seidl, 2014). One approach to address risks is to collectivize them, 
for example, via insurance. Estimating return intervals of extreme 
events is an important foundation for considerations of insurance 
(Embrechts et al., 1997). While forest insurance is more common 
in Fennoscandia there is currently a low prevalence of forest in-
surance in Central Europe (Brunette et al., 2015; Korená Hillayová 
et al., 2021). The return intervals of extreme events provided here 
could help in making insurance considerations more tangible also for 
the Alps. However, we note that our dataset only covers a period of 
35 years, which is comparatively short in the context of forest dis-
turbance dynamics. While it would be desirable to have longer time 
series for analyses of disturbance regime characteristics, extreme 
value statistics offer powerful tools for analysing datasets that might 
miss information on very rare events. Our model showed a high 
goodness of fit to the annual extremes and thus meets an important 
prerequisite for extrapolating return intervals (Coles, 2001).

Strictly protected areas offer a window into the effects of nat-
urally occurring disturbance agents, a factor that is of great value 
particularly in regions heavily influenced by human land-use (i.e. the 
European Alps). Here, we showed how protected areas can be used 
to quantify important properties of the disturbance regime, pro-
viding an important baseline for forest ecology and management. 
Management has ceased decades ago in the protected areas anal-
ysed here. However, most landscapes were subject to human land-
use in the past, as primeval forest in the European Alps are scarce 
(Sabatini et al., 2018). Consequently, legacies from former land use 
might still persist (Albrich et al., 2021). These legacies can influ-
ence current disturbance patterns (Mantero et al., 2020; Pausas & 
Fernández-Muñoz, 2012; Stritih, Senf, et al., 2021). Yet, our focus on 
protected areas can successfully control for the effects of recent risk 
management measures as well as for salvage and sanitation logging, 
that is, human interventions that modulate disturbance patch size in 
managed forests. With regard to spatial representation, we found 
that the 12 protected areas analysed cover the bio-climatic envelope 
of the forests of the Alps remarkably well. Gaps mainly exist for warm 
and dry forests, especially in the south-western Alps (Figure 1c). As 

fire is a major disturbance agent in these Mediterranean-influenced 
forests (Bebi et al., 2017; Valese et al., 2014), the role of fire might be 
underrepresented in our analysis.

Disturbances are strongly climate sensitive processes and are 
expected to increase under climate change (Lucash et al., 2018; 
Seidl et al., 2017). To detect and monitor change, we require a good 
quantitative understanding of the prevailing disturbance regime 
and its variation. Our results provide such a baseline, with high rel-
evance for management and conservation. Mimicking disturbance 
processes in silviculture has been proposed as an approach to pro-
vide multiple ecosystem services and maintain valuable habitats 
(Aszalós et al., 2022; Thom & Keeton, 2020). Patch size distributions 
can inform management on the size and variation of interventions 
needed in order to achieve a near natural landscape configuration 
and structure (Čada et al., 2020; Collins & Stephens, 2010). Our 
findings, for the first time, describe disturbance patch sizes in the 
absence of human intervention over a large spatial extent in Europe. 
They can subsequently be contrasted against the coupled human 
and natural disturbance regime that affects the Alps outside of pro-
tected areas, which can help to better characterize where managed 
forests are actually “close-to-nature” (Brang et al., 2014) and where 
disturbance regimes are outside of their natural range of variability.
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