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Abstract

Microplastic fragments in the aquatic environment constitute a major threat for the

health and fitness of organisms. However, our quantitative understanding in the

microplastic load in typical natural river systems is severely limited due to the large

uncertainties associated with the sources and the pathways of the microplastic

contamination. To address this knowledge gap, we performed direct numerical

simulations of the dynamics and distribution of microplastic particles in turbulent

open channel flow at moderate Reynolds numbers. The particle dynamics is

characterised by four nondimensional parameters, namely: Reynolds number of the

open channel flow (Reb), nondimensional particle diameter (dp
+) and Galileo (Ga)

and Stokes (St) numbers of the particles of which the latter two include the particle‐

fluid density ratio (β). To limit our scope to the most relevant configuration, we

focused on the distribution of weakly buoyant microplastic particles at β = 0.95,

whereas the remaining parameters were adjusted to cover the orders of magnitude

that can be found in a typical laboratory facility, as well as a natural river. Our

simulation results show that the steady‐state microplastic distribution in the

turbulent flow is influenced by the Stokes and the Galileo numbers significantly,

which ranges from the complete accumulation on the free surface to the

homogeneous distribution, and somewhere in between. Moreover, the Galileo

number, alongside the flow Reynolds number, were also shown to influence the

temporal scaling of the transient behaviour of the gradual accumulation of the

microplastics towards the free surface. Both of our findings highlight the complex

nature of the particle–turbulence interactions, and motivate further investigations in

this approach.
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INTRODUCTION

Microplastic fragments in the aquatic environment constitute a major

threat to aquatic organisms. There are various definitions of

microplastics but historically plastic particles and fragments are

denoted as microplastics when their size was below 5mm [1]. The

transport by surface waters constitutes one of the main sources of

microplastic contamination in the ocean [2]. To identify sources and

contamination pathways it necessary to estimate quantitatively the

microplastic particle load effectuated by a river.

To evaluate quantitatively the net load by a river, several

different sampling methods have been proposed [3–5]. Several

sources of uncertainty, however, make it difficult to estimate the net

load a river carries. Uncertainties in measurement method have been

identified and discussed by, for example, Hildebrandt et al. [6].

Bannick et al. [7] have described uncertainties due to statistical

scatter in a load of a river and proposed criteria for statistically

representative sampling strategies in dependence of the particle load.

Sample campaigns found large heterogeneity of microplastic concen-

trations among different sampling sites and across the river which

might be caused by proximity of local sources, hydraulic conditions,

mixing, and hydrological conditions [8].

The influence of local hydraulic conditions, mixing, and turbu-

lence at the sampling site is one of the factors that introduce

uncertainty into particle load. Taking local hydraulic conditions

aside and assuming a flow in a straight river, we can assume an

analogy between the natural river's flow and the turbulent flow in

a laboratory flume. The dynamics of particles in a laboratory flume

are functions of the particle density, diameter, carrier fluid's

density, and viscosity, flow type/roughness, and Reynolds number.

If the particles' size is smaller than the Kolmogorov length‐scale,

which is the theoretical smallest limit of the turbulent eddy size for

a given condition, then a so‐called point‐particle approach can be

used to approximate the dynamics of the particles (e.g., [9]).

In such an approach, the particles' velocity can be predicted at a

good accuracy by the so‐called Maxey–Riley equation in which

spherical particle shapes are assumed [10]. This geometric simplifi-

cation is well justifiable, especially in combination with the point

particle approach in which the particle is assumed to be smaller

than the smallest flow scales. Due to such scale differences,

microscopic details of the particle shapes do not influence the

hydrodynamic forces acting on the particles. In fact, spherical

particles have been found to make a substantial share in

microplastic particles found in rivers as reported, for example, by

Mani et al. [8]. The Maxey–Riley equation takes into account

several different effects. In many studies, only the Stokes drag

between the carrier fluid and the particle has been considered,

given that they consider the particles that are significantly heavier

or lighter than the surrounding fluid (e.g., [11]). In the case of

microplastic particles, with the small density difference between

particle and carrier fluid, this assumption may lead to inaccurate

results as small particles with a density close to the carrier fluid

might follow the fluid nearly perfectly.

On the other hand, it is not possible to assume a homogeneous

concentration of microplastic particles over the water column despite the

small density difference. Some materials will have smaller and some will

have larger densities than water and consequently, one can expect that

lighter particles (smaller density) will float to the water surface in the long

term whilst heavier particles (larger density) will eventually sink to the

river or seabed. Observation in sediment transport have, however, shown

that heavy sediment particles can have an equilibrium, or intermediate,

distribution over the water column in the long‐term sense—although they

would sink down in a quiescent tank. The long‐term distributions of

sediment particles approximately follow the so‐called Rouse profile which

expresses the equilibrium between the turbulent mixing of particles over

the vertical direction and the gravity acceleration towards the riverbed

[12]. In this sense, the properties of the turbulent flow interact, or

compete, with the particles' tendency to sink down to the bed or float up

to the water surface. The vertical distribution of microplastic particles in a

surface water is therefore not only dependent on the particle properties,

but also the flow conditions of the carrier fluid (water).

However, most of the previous studies mentioned so far focused

on the particles that are slightly or significantly heavier than the carrying

fluid, since their primary objectives are often to study sediment

dynamics. Due to this trend, the interaction between particles and the

free surface with the underlying turbulence has not been studied in

detailed. It is therefore important to establish our understanding of the

particle–turbulence interactions with lighter particles in the environment

where the free surface also interacts with turbulent flow.

Consequently, the objective of the current contribution is to

simulate and study the dynamics of the microplastic particles that are

transported in turbulent stream through a natural river or an

experimental flume. In this study, we exclusively consider the

microplastic particles that are slightly lighter than water that tend

to float on the free surface. Our main focus is on the long‐term

particle concentration profile depending on the particle parameters,

which are tailored to a range of values that is typical to microplastic

particles, as well as the flow condition. Those parameters represent a

balance between the turbulence mixing in the vertical direction and

the gravitational acceleration trying to accumulate the microplastic

particles on the free surface. Moreover, we study the temporal

evolution of the particle concentration, which answers our question

of how long it takes for the steady‐state concentration profiles to

emerge, and which of the flow and the particle parameters influence

the evolution time. Overall we aim to address the uncertainties that

are inherent in the microplastic samplings, either in natural rivers or

laboratory setups. We simulate the fluid flow by means of direct

numerical simulation, whilst the particle dynamics are represented by

the point‐particle approach by solving the Maxey–Riley equation.

NUMERICAL METHODS

Our numerical simulation approach consists of two coupled modules:

the flow simulation and the particle simulation. The flow simulation is

performed based on a conventional finite‐volume method on a

2 of 13 | APPLIED RESEARCH



stationary grid, whereas the dynamics of the particles are repre-

sented by a Lagrangian method. Therefore, the overall procedure is

an Euler–Lagrange method for the simulation of particles in a

turbulent flow. Such methods are often used for particle‐laden flows

with small volume fractions, to predict the precise dynamics of

the particles.

Flow solver

We employ the direct numerical simulation (DNS) technique which

solves the governing equations of fluid motions, namely

incompressible Navier–Stokes equations with spatiotemporal resolu-

tions which are high enough to resolve all the relevant scales. Hence

no uncertainties from empirical turbulence models are involved. In

this project, our in‐house flow solver called MGLET [13, 14] was

employed.

MGLET is capable of performing DNS and large‐Eddy simulations

(LES) of turbulent flows in arbitrary‐shaped domains, which can be

optionally coupled with transport of multiple scalar quantities as well

as point particles. The code employs a finite‐volume method to solve

the following incompressible Navier–Stokes equations for the

primitive variables (i.e., velocity and pressure).

  u→ = 0, (1)

   
u
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u u

ρ
p ν u
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where u
→ is fluid velocity vector, p is pressure and ρf and ν are

kinematic viscosity and density of the fluid, respectively.

Those variables are stored in a Cartesian grid with staggered

arrangement and discretised in space by a second‐order central

scheme. The time integration is done by an explicit third‐order low‐

storage Runge–Kutta scheme [15]. The pressure computation is

decoupled from the velocity computation by Chorin's projection

method [16], which means a Poisson equation is to be solved for the

pressure for each Runge–Kutta substep. Arbitrarily curved and

geometrically complex surfaces are handled by a mass‐conserving

immersed boundary method [14, 17, 18]. A conventional domain

decomposition is adopted for parallelisation, which is combined with

a local grid refinement strategy. The local refinement is achieved by

adding grid boxes with finer resolutions in an octree‐like, hierarchical

and overlapping manner, where the degree of grid refinement is

determined by the grid levels [13].

The code is written in Fortran, and the communication between

different processes is implemented via message passing interface

(MPI), whereas an efficient parallel I/O strategy is implemented based

on HDF5. The code exhibits a satisfactory strong scaling up to a

problem size of ≈17 billion discrete cells distributed over approxi-

mately 32,000 parallel processes (cf. [19]), whilst a sufficient weak

scaling was demonstrated up to 135,000 parallel processes.

Particle solver

We employ so‐called “one‐way” coupled point particle simulation

of spherical microplastic particles in a turbulent flow. The term

“one‐way” implies that the particles are transported by the flow

but do not have any feedback effect on the flow. These

simplifications are possible if the particle diameters dp are small

compared to the smallest length‐scale of the flow field and the

volume fraction of the particles (ϕp) remains small so that the flow

is not influenced by the particles. The commonly accepted upper

limit of ϕp for the one‐way coupling approach is (10 )−6 [20].

Similarly, the term “point” particles means that the spatial extent of

the particles with respect to the numerical grid is so small that they

can be treated as a point. Consequently, the particles and their

flow around them are not spatially resolved. Instead, the global

momentum balance for a particle is modelled from several force

components, which are formulated in the so‐called Maxey–Riley

equation. Those forces are used to solve Newton's equation of

motion for discrete point particles and thus simulate their motion

in the fluid phase.

The Maxey–Riley equation describes the acceleration of

a particle suspended in a fluid (left‐hand side) based on the

balance of the forces that the particle is subjected to (right‐

hand side)
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where u ip, is ith component of particle velocity vector, ρp is

particle density, gi is gravitational acceleration that is nonzero

only in the wall‐normal direction, and u j@p, is the fluid velocity at

the particle location. Finally, τ =
βd

νp 18

p
2

is the particle time‐scale.

The first term is the so‐called buoyancy force term and as the name

suggests, the force due to buoyancy generated by the density

differences of particle and fluid. The second term—the fluid accelera-

tion term—models the force on the particle that would occur if the

particle were replaced by a fluid control volume.

The third term is called Stokes drag force term and describes the

drag force experienced by the particle when it moves at a different

velocity than the surrounding fluid. It contains the so‐called Faxén

correction, which takes into account the finite‐size effect of the

particle in the limit of low particle Reynolds number (Rep). The finite

particle Reynolds number effect can be incorporated by replacing

the above Stokes drag term by:
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where the drag coefficient CD depends on Rep. This Reynolds number

dependency stems from the flow separation and recirculation, and

the vortex shedding behind the particle.

Based on an extensive literature review, Clift et al. [21]

recommended a piecewise function CD. Accordingly, our implemen-

tation follows:
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Note that in the limit of very small Rep, the original Stokes drag

formulation in Equation (3) is restored.

The fourth term in Equation (3) describes the inertial forces of

the surrounding fluid when the particle is accelerated and is called

the added‐mass term. It results in a delayed relaxation of the particle

in the direction of the velocity of the surrounding fluid.

The last (fifth) term describes the temporal development of the

boundary layer surrounding the particle (e.g., thickening) and

therefore results in a memory term. This so‐called Basset history

term is often ignored in the studies considering heavy particles,

however, there is an increasing number of recent studies demon-

strating that it has a significant influence when the particle is close to

neutrally buoyant [22–27]. Incorporating this history term is very

costly not only in terms of computation but also the memory

requirement due to the very slowly decaying kernel, therefore we

opted for the efficient second‐order method of van Hinsberg et al.

[26]. This method integrates the convolution function over a finite

widow, whilst approximating the rest by exponential functions. In the

current study, we set the width of the integration window N to be at

32, whereas the number of the exponential functions m is at 10.

All of the above forces are expected to play nonnegligible roles in

the dynamics of (nearly) neutrally buoyant particles being suspended

in turbulent flow [9], therefore our simulations include them all.

The Maxey–Riley equation describes the particle acceleration as

a function of the fluid velocity at the particle position u
→

@p and the

particle velocity u
→

p. Since the particles are usually not located at

the points that define the numerical grid, the fluid velocity must be

interpolated to the respective particle positions. Among many other

alternative approaches, in MGLET a conservative second‐order

method has been implemented [28]. For each individual particle,

the time integration of the Maxey–Riley equation gives the

instantaneous velocity. To circumvent the stiffness of this equation,

a so‐called Rosenbrock–Wanner method is adopted, which treats the

linear and nonlinear terms separately via implicit and explicit fourth‐

order Runge‐Kutta integration schemes. Finally, the particle positions

are determined with the help of an explicit integration of the

velocities.

CONFIGURATIONS AND PARAMETERS

Governing parameters

We simulate a fully developed turbulent flow through an open

channel with a perfectly smooth no‐slip bottom wall and no side walls

(see Figure 1). The streamwise extent and the width of the channel

are infinite, which are realised by the periodic boundary condition

being applied in the streamwise and the spanwise directions. The

flow is characterised by a dimensionless number called the Reynolds

number, which consists of the flow depth h (m), the fluid kinematic

viscosity ν (m ∕s2 ), as well as a representative velocity scale. In the

literature, two variants of the Reynolds number are frequently used,

namely the friction Reynolds number:

Re
u h

ν
= ,τ

τ (6)

and the bulk Reynolds number:

Re
u h

ν
= ,b

b (7)

where uτ and ub are the friction and the depth‐averaged (or bulk)

velocities respectively. The friction velocity is defined as

u τ ρ= ( ∕ )wτ f
0.5, where τw is the average wall shear stress and ρf is

the fluid density as before. Note that both Reynolds numbers are

related through the skin‐friction coefficient cf, therefore setting one

determines the other.

Another governing dimensionless number which is relevant in

the context of the natural river flow is the Froude number (Fr ), which

is the ratio of the inertia to the gravitational forces. In the current

F IGURE 1 Schematic of the simulation domain.
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study, we assume this dimensional number is so small that the free

surface can be simply represented by an impermeable free‐slip

boundary. Note that this simplification approach has been adopted in

a majority of the previous open channel simulation studies (e.g.,

[29–36]). Physically, this zero Froude number limit means any

disturbance in the free surface is immediately flattened by gravity.

These simplifications imply that in the idealised situation, the natural

river flow can be characterised by the Reynolds number alone. This

governing dimensionless parameter is though usually much higher in

the natural river flow than what any DNS simulation code can

achieve as of today.

On the other hand, the dynamics of small particles in turbulent

flow can be characterised by the following parameters: the particle

diameter dp (m), the particle‐fluid density ratio β ρ ρ= ∕p f, and the

gravitational acceleration g (m∕s2) that contributes to up‐ or

downward particle motions due to buoyancy. Consequently, three

particle‐related dimensionless numbers can be defined describing the

dynamics of particles, namely a dimensionless particle diameter:

d
d u

ν
= ,p

+ p τ (8)

the Stokes number:
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and the Galileo number:

 
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β gd
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u d

ν
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1 −
= ,

p
3

g p (10)

where  u β gd= 1 −g p . In this set of dimensionless parameters, β

does not explicitly appear but is implicitly contained in St and Ga.

The dimensionless particle diameter quantifies the ratio of the

particle diameter to a representative size of turbulent vortices. The

Stokes number is often interpreted as the ratio of time‐scales

between particle and fluid. When St is large, the inertia of the

particles cannot be neglected, and lead to ballistic motion—implying

that the trajectories are barely influenced by underlying fluid velocity

variations. The Galileo number describes the ratio of the gravitational

to the viscous forces experienced by particles. This nondimensional

number can also be interpreted as a particle Reynolds number based

on the gravitational velocity‐scale ug.

Another relevant velocity scale is the terminal particle rising/

sinking velocity due to buoyancy in a quiescent viscous fluid,

 u β gd ν= 1 − ∕t p
2 . Correspondingly, we can express Ga in terms of

ut as:

Ga
u d

ν
= .

t p (11)

Orders of magnitude of the parameters in natural flow

In the previous section, we showed that the dynamics of micro-

plastics in turbulent open channel flow can be described in terms of

the following dimensionless numbers, namely Reτ, dp
+, St and Ga. In

the following, we estimate the orders of magnitude for those

governing parameters in a real‐world flow.

The Reynolds number of natural rivers based on bulk velocity can

vary greatly, however, Re = (10 )b
6 can be taken as a reasonable

order of magnitude. This estimation is based on the water depth of

h = 1 (m), the bulk velocity of u = 1b (ms−1) and the kinematic

viscosity of water ν = 10−6 (m ∕s2 ). On the other hand, a typical

experimental flume can be operated at Re ~ (10 )b
5 with depth

h = 0.5–1 (m), and the bulk velocity u = 0.1b (ms−1). These Reb can be

converted to the corresponding Reτ by an empirical relation, such as

von Prandtl–Colebrook formula, which gives us the estimated order

of magnitudes of Re ~ (10 )τ
4 for the natural river flow, and

Re ~ (10 )τ
3 for the laboratory flume. Note that whilst the Reynolds

number range for the natural river is beyond the reach of the DNS

approach even using the world‐fastest supercomputers, the labora-

tory flume range is somewhat achievable with a great expense of

modern computing power, albeit it is beyond the scope of the current

study. Nevertheless, these numbers will be used to determine the

subsequent parameters for microplastic particles.

From the fluid dynamics viewpoint, the key challenge in

our study is to cope with the broad range of density and

size distributions of microplastics. Typically the size of micro-

plastics decreases with time through mechanical, biological or

chemical degradation processes, but it can also increase by

biofilm growing on their surface. Furthermore, this growth of

biofilm, which mainly consists of water, transforms microplastics

to more neutrally buoyant properties. If some fouling organisms

are attached to microplastics, however, their density can even be

heavier than water leading to sinking [37, 38]. Seasonal variation

of water temperature in rivers and oceans throws an additional

complexity to the problem, since the density of the surrounding

fluid will react to the temperature change whilst the solid density

usually does not. Therefore a microplastic particle shows very

different dynamical characteristics throughout its life, depending

on the conditions of the surrounding flow and at which stage

of the ageing process it is. This necessitates a wide area of

parameter space to be explored to understand the dynamics of

the microplastics in nature.

In this study, we consider d10 100p  (µm) as the represent-

ative diameter range of the microplastic particles in a natural river.

Alternatively, the same particles represent d100 1000p  (µm) in

the flow condition in an experimental flume. When we nondimen-

sionalise these dp values using Re = 32,000τ (natural river), then dp
+

ranges between 0.32 and 3.2. Conversely, if we assume Re = 4200τ

(exp. flume), then the corresponding dp
+ ranges between 0.8 and 8.4.

Furthermore, we consider a value of β, namely at 0.95 (slightly lighter

than water), which approximately corresponds to polyethylene (PE)

and polystyrene (PS). They are two of the most commonly identified

plastic types in the marine environment [39].

Consequently, the upper limits of the number of microplastics

per 1 (m3) of water are respectively: (10 )9 for d = 10p (μm) and

(10 )6 for d = 100p (μm), to fulfil the requirement for the one‐way

APPLIED RESEARCH | 5 of 13



coupling approach (ϕ < 10p
−6). The actual number of microplastic

particles found in the natural water is well below these thresh-

olds [40].

Simulation parameters

In all simulations performed for this study, we first run the flow

simulation until a developed statistically steady‐state has been

achieved before the microplastic particles were released. In this

project, we simulated relatively low Reynolds numbers at Re = 180τ

and 400. In both cases, the simulation domain covers

L h L h L h[ ∕ , ∕ , ∕ ] = [12, 6, 1]x y z , where the subscripts x , y , z correspond

to the streamwise, the spanwise and the flow‐depth direction,

respectively, whilst h is the channel full height as before. The grid

resolutions were determined based on the reference in the literature

and own experiences with the same code and flow [41, 42], and are

summarised in Table 1.

In all cases, a constant timestep size tΔ was adopted, and the

sufficiency of the temporal resolution was ensured by keeping the

maximum CFL number below 0.5. This also implies uniform

window sizes for the Basset history term computation, which are

at ν u5.45 ∕ τ
2 and ν u7.35 × 10 ∕−1

τ
2 for Re = 180τ and 400, respec-

tively. The averaging time to achieve the statistically steady‐state

( TΔ ) of the turbulent velocity statistics can also be found in

Table 1.

As mentioned, the density ratio β was fixed at 0.95. The particle

diameters and g were selected based on the ranges of the Stokes

number and the Galileo number that were identified in the natural

rivers and the laboratory flumes, namely St5 × 10 5 × 10−2 0 
and Ga0.3 7.1  ( Ga10 5 × 10−1 2 1  ). We distributed in total

nine simulation configurations to cover the St Ga– parameter space,

which are summarised inTables 2 and 3, and Figure 2. Notice that the

corresponding values ofGa2 are also listed in the tables, which will be

relevant in the discussions on the possible scaling later.

To obtain a representative sample, 104 particles were released in

the turbulent open channel flow. Note that this number of particles is

set arbitrarily and simply to capture the qualitative distributions,

rather than to predict the realistic concentration values. Conse-

quently, the particle volume fraction resulting from the above specific

number of particles is far higher than the actual value of the

microplastic in nature and, therefore, irrelevant. Each simulation was

started from a random distribution, which is then evolved and

converged to statistically steady distributions. Upon distributing

particles, we constrained their locations in a way that they cannot be

placed within d2 p from the nearest no‐slip/free‐slip boundaries to

avoid overlapping.

At Re = 180τ , the instantaneous locations and the velocities

were sampled every 50 flow timesteps, whereas 750 flow timesteps

interval was chosen for Re = 400τ due to much finer temporal

resolution for the higher Reynolds number case. Subsequently, the

extent of the transient periods was determined in terms of the

particle concentrations in the near‐wall “buffer layer” (z < 30+ ),

the “free surface” (z h∕ > 0.85) and the rest of the channel namely

the “bulk” regions. In each region, the transient period is considered

to be over when the deviation of the instantaneous concentration

from the final moving‐average value, based on the 51 sampling points

at the end, goes under 1% after normalisation with the average itself.

TABLE 1 Flow simulation parameters.

Re  x  y  zmin  zmax  N N Nx y z  
Tu ∕ Tu h∕b

180 8.44 4.22 0.9 3.3 256 × 256 × 96 15310 1329

400 4.8 2.4 0.34 2.72 990 × 990 × 256 12600 549

TABLE 2 Particle simulation parameters for the open channel
flow at Re = 180τ .

Case St Ga ( Ga ) dp dp real (µm)  
T u ∕p T u h∕p b

A 0.05 0.316 (0.1) 0.97 11.3 3962 346

B 1.0 (1.0) 9755 851

C 3.16 (10.0) 3962 346

D 0.5 0.316 (0.1) 3.08 36 3962 346

E 1.0 (1.0) 3962 346

F 3.16 (10.0) 3399 296

G 5.0 0.316 (0.1) 9.73 113 3962 346

H 1.0 (1.0) 3962 346

I 3.16 (10.0) 3962 346

Note: The dp,real values refer to a natural river.

F IGURE 2 Parameters of the simulated dimensionless particle
properties. The dashed lines correspond to particles with β = 0.95

and different diameters in one laboratory flume (Re = 10b
5) and a

natural flow (Re = 10b
6).
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Once the above criterion was met, the steady‐state concentration

profiles were sampled over the period TΔ p, which can be found in

Table 2.

SINGLE‐PHASE FLOW VALIDATION

Before proceeding to the particulate flow results, we validate the

flow solver in terms of single‐phase turbulent statistics of the open

channel flow at Re = 180τ and 400. Our reference DNS data is from

the closed channel flow of the same Reynolds numbers, which was

published in Moser et al. [43].

Due to the statistical symmetry of this closed channel configura-

tion, we compare the results from the bottom no‐slip wall to the

channel semiheight, to the entire depth of the corresponding open

channel results. Correspondingly, the reference length‐scale for

nomalisation h in the closed channel is the channel semiheight. We

expect that the turbulent statistics near the bottom no‐slip walls are

practically identical, whereas they should differ significantly near the

free surface. This is because the free‐slip boundary condition in the

open channel configuration imposes impermeability not only statisti-

cally but also instantaneously, whereas the statistical symmetry in the

closed channel flow does not—therefore, fluid elements are free to

travel across the closed channel semi height instantaneously.

Figure 3 shows the mean streamwise velocity normalised in wall

units. Note that the operator   implies that the ensemble average in

time and in space in the two homogeneous directions was applied.

Our simulation results and the reference data are almost

indistinguishable in both Reynolds number cases.

Figure 4 depicts the root‐mean‐square of turbulent velocity

fluctuations around the mean, that is,

 u u u′ = − .i i i (12)

As expected, the profiles of the turbulent fluctuations match very

well with the reference data near the no‐slip wall, whereas there exist

noticeable deviations near free surface/channel semiheight. In the

case of open channel flow where the impermeable free‐slip boundary

is placed, the turbulent fluctuations in the plane‐normal direction

(u w′ = ′3 ) are dampened progressively towards the free surface, and

the corresponding kinetic energy is re‐distributed into the orthogonal

directions. Moreover, through the energy redistribution the spanwise

component receives more energy than the streamwise counterpart,

which is well‐known phenomenon in open channel turbulence (see

e.g., [30, 31, 33]).

RESULTS

In this section, we document the results of microplastics in turbulent

open channel flow simulations with different Galileo and Stokes

numbers. We consider two different Reynolds numbers, namely

Re = 180τ and 400. Such flow configurations can be interpreted as

idealised configurations of a natural river or a laboratory channel.

Whilst all the particle simulation cases (A–I) were performed at

Re = 180τ , only cases A, C, F and G were simulated at Re = 400τ due

to the significantly more expensive computational cost. Moreover,

for the same reason, the averaging period of case F is rather short as

it will be discussed later.

In the following, we will consider the steady‐state concentration

distributions first, which is followed by the observations and the

discussions on the emerging time scale depending on the governing

dimensional parameters, as well as a possible scaling property.

Steady‐state concentration and influence of Reynolds
number

We start our evaluation with the steady‐state particle concentration

distribution with St = 5 (case G–I of Table 2), with the Reynolds

number at 180. In this largest Stokes number group, the mean

particle distributions are largely homogeneous (see Figure 5a, where

the particle concentration distributions across the water depth being

(a) (b)

F IGURE 3 Single‐phase validation against the direct numerical simulation data set of [43] denoted as MKM. Mean streamwise velocity
normalised by uτ as a function of z+. Dashed lines represent the logarithmic law of the wall  u z B= ln +

κ
+ 1 + , where (a) κ = 0.4 and B = 5.5;

(b) κ = 0.41 and B = 5.2. (a) Re = 180τ , (b) Re = 400τ .
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sampled in the 180 uniformly spaced bins are shown). From a particle

dynamics point of view, this large St implies the microplastic particles

are under significant influence of inertia that tend to move straight

paths (i.e., ballistic movements) independent of the surrounding fluid

velocity field, resulting larger particle‐fluid velocity difference. At the

largest Ga (case I), a slight accumulation of particles is visible at the

surface, and a minor but visible Galileo number effect was observed

near the bottom wall, where the thickness of the near‐wall

nonuniform concentration layer slightly increases with increasing

Ga (i.e., stronger buoyancy effect).

Also, in the near‐wall region, so‐called turbophoresis can be

observed for the smallest Ga (case G). Turbophoresis refers to the

migration and the preferential concentration of light inertial particles

towards the regions of lower turbulent diffusivity [44]. This

(a) (b)

F IGURE 4 Single‐phase validation against the DNS data set of [43] denoted as MKM. Root‐mean‐square of turbulent velocity fluctuations
u′i rms, normalised by uτ as a function of z h∕ (a) Re = 180τ , (b) Re = 400τ .

(a) (b)

(c)

F IGURE 5 Mean particle concentration distribution over the flow depth C z( )p , normalised by the bulk concentration Cp0. The line colour and
markers distinguish the different cases (a) St = 5.0, (b) St = 0.05, (c) St = 0.5.
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phenomenon has been studied mostly in the presence of no‐slip walls

(e.g., [45, 46]), however, it can also be observed near free surface

[47], or even without any boundaries [44].

If we reduce the Stokes number significantly, the buoyancy has a

much stronger influence on the mean concentration distribution.

Figure 5b shows how the concentration at St = 0.05 varies

depending on the Galileo number (cases A–C). Whilst particles with

Ga = 0.316 (case A) are almost evenly distributed over the water

column, they accumulate completely on the free surface at Ga = 3.16

(case C). At Ga = 1.0 (case B), a large majority of the particles (≈80%

of the total number within the top 10% of the water column) are in

the free surface region, whilst the rest of the particles are distributed

across the water column, manifesting as an intermediate state

between the total accumulation and the uniform distribution. Once

again, the thickness of “concentration boundary layer” at the bottom

wall grows with increasing Galileo number.

In Figure 5c, the mean concentration distributions at the

intermediate Stokes number St = 0.5 are shown. The particles are

almost uniformly distributed at Ga = 0.316 (case D), whilst at Ga = 1.0

(case E), a slight accumulation can be observed. On the other hand, a

vast majority (≈95% in the top 10% of the water depth) of the particles

are clustered near the free surface at Ga = 3.16 (case F).

These simulation results show that the Stokes and Galileo

numbers do indeed have a large influence on the particle distribution

in turbulent free‐surface flows. The particles could either completely

rise to the free surface (case C), evenly distributed in the water

column (case A, D, E, G, H, I), or somewhere in between (case B, F).

Which distribution state emerges depends on two competing

physical processes: The buoyancy which tries to bring the particle

towards the free surface and let them accumulate, and the turbulent

fluctuations which helps to redistribute the particles throughout the

water column. Our simulations show that the degree of the free‐

surface accumulation increases with increasing Galileo number if the

Stokes number is kept at a constant, which was to be expected. If the

Galileo number is kept constant instead, on the other hand, the

accumulation intensifies with decreasing Stokes number. At first

glance, this is counter‐intuitive as with a smaller Stokes number, the

particles can adjust more quickly to the fluid velocity, which could

result in better vertical mixing. On the other hand, an increase of the

Stokes number leads to a decrease of the particle's rising velocity ut

(see Equation 11), which competes with the turbulent velocity

fluctuations in the vertical direction to determine whether a particle

fraction can accumulate at the free surface.

Under a given gravity condition, the Galileo number is solely

determined by the particle characteristics, that is, by a specific d β−p

combination. Conversely, the Stokes number—the ratio of particle to flow

time scales—is influenced by the flow condition in addition to the particle

characteristics. Recall that the flow condition is controlled by the

Reynolds number. Consequently, an identical particle has a Stokes

number smaller by more than one order of magnitude in a laboratory

flume, for example, than in a large natural river (see Figure 2). Therefore

the concentration distributions that are determined in the laboratory

flume cannot be directly compared to the natural environment.

Next, we examine to what extent the particle distributions are

affected by the difference in the Reynolds number, with respect to

the Ga St− combinations that were used earlier. This part of the

investigation corresponds to, for example, performing experiments in

two different laboratory flumes (with different Reynolds numbers), in

which the diameter and density ratios of the particles are adjusted to

match the dimensionless numbers between the two experiments.

This investigation, therefore, approaches the question whether the

particle distributions are an exclusive function of the particle‐related

dimensionless numbers (i.e., Ga and St), or the flow Reynolds number

influences the distribution as well.

As mentioned at the beginning of this section, due to the

increased numerical effort required for the higher Reynolds number

simulations, we selected cases A (St = 0.05,Ga = 0.316), C (St = 0.05,

Ga = 3.16), F (St = 0.5, Ga = 3.16) and G (St = 5.0, Ga = 0.316) to be

computed until the steady state. Cases A and G exhibit uniform

distributions at Re = 180τ over the water column, whilst case F leads

to an accumulation of the particles on the free surface. Additionally,

we choose case G, since the distribution of this case is very sensitive

to the terms being considered in the Maxey–Riley equation. More

specifically, we observed that this case experiences an exaggerated

turbophoresis if fluid acceleration term is neglected. Note that this

observation was also true in case H and I (not shown).

Figure 6 compares the concentration distributions between the

two Reynolds numbers. Generally speaking, there is visible but

relatively minor Reynolds number dependence in the particle

distributions. The biggest effect appears in case F, in which the

accumulation at the free surface appears to be equally strong.

However, the stronger turbulent mixing, which is the consequence of

higher Reτ, leads to a more even particle distribution in the remaining

of water column. The transition layer at the bottom‐wall appears to

be somewhat thinner for the higher Reynolds number. This

comparison leads to the conclusion that, to the limit of the current

Reynolds number range, the Reynolds number has no visible

qualitative influence on the particle distribution and quantitatively

exerts little influence.

In the following, we attempt to explain the above relatively small

influence of Reτ to the vertical particle concentration distributions.

Recall that the type of particle concentration distribution is a

consequence of the competition between buoyancy, which forces

the particles to accumulate toward the free surface, and the turbulent

velocity fluctuations in the vertical direction which act to redistribute

the particles. This implies that the balance between the terminal rise

velocity ut and the vertical component of the turbulent normal stress

w′rms should play a critical role. Furthermore, in closed channel flow, it

is known that w′rms scales with uτ throughout the flow domain except

the close proximity of the walls [48], and the same trend can be

observed in our open channel data (see Figure 4). Therefore the

following relation should be valid except near the boundaries:

u

w

u

u′
~ .

rms

t
+

t

τ
(13)

Now, recall the definitions of ut, St and Ga, then:
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u

u

Ga

St
= .

β

t

τ

2
18 (14)

Therefore, the above scaling relation yields a consistent result to our

observation that change in Reτ does not qualitatively influence the

particle distribution type for given St and Ga, at least in the bulk flow

region.

Moreover, when the above velocity ratio is larger more likely it is

that the particles accumulate towards the free surface. It is consistent

with the observed trend for the Re = 180τ flow that increasing Ga and

decreasing St contribute favourably to the free‐surface particle

accumulation.

Temporal evolution

Next, we investigate the transient behaviour of microplastic

concentration distributions. As mentioned in Section 3, the particles

are initially randomly distributed in the computational domain. The

particles are then redistributed by the turbulent flow, and the

distribution eventually reaches a certain statistically steady profile

depending on the simulation parameters. In the following, we focus

on what happens in the transient phase and in particular, how long it

takes from the initial random distribution to the statistically steady

state. Note that this question is not only theoretically significant but

also needs to be answered from a practical point of view as follows.

Suppose the performance of different sampling strategies of

microplastic particles are to be evaluated experimentally in a

laboratory flume. For the measured performance to be relevant to

the real‐world condition, it is crucial that the particle distribution

reaches to the statistically steady profile in before the sampling. The

question here is whether the experimental setup is long enough to

achieve a statistically steady particle distribution. Answering the

aforementioned question, therefore, enables us estimate how far

downstream from the inlet (or the particle releasing location) the

footprint of the initial nonphysical concentration distribution is

expected to remain. Note that with our simulations, we can

determine the time until a statistically steady‐state is reached. This

time can then be converted into a distance travelled using the mean

flow velocity.

In the following, we first consider the qualitative behaviour,

which is followed by a discussion on the topic of possible scaling.

Finally, we conclude by discussing possible underlying physical

mechanisms. The last step should allow us to check the validity of

our results for flow conditions that are not in our parameter space.

Figure 7 illustrates the development from the initial random

particle distribution to the equilibrium state. As a measure, we

consider the concentration of particles in the top layer, which is

(a) (b)

(c) (d)

F IGURE 6 Mean particle concentration over the flow depth C z( )p , normalised by the bulk concentration Cp0. The line colour and markers
distinguish the different Reτ (a) Case A, (b) Case C, (c) Case F, (d) Case G.
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defined as the upper 15% of the water column, as a function of time

(C t( )p,top ). Recall that to avoid potential overlap between the particles

and the bottom wall and the free surface, the particles cannot be

spawned within the two particles diameter from the nearest

boundaries. This restriction results a slight discrepancy among the

cases at t = 0. Figure 7a,b show different Ga St– combinations at

Re = 180τ , whereas Figure 7c compares case F from Re = 180τ and

Re = 400τ . This case F was chosen due to its longest transient time

among the simulated Re = 400τ cases.

In Figure 7a, the time is expressed in viscous units, that is,

t tu ν= ∕+
τ

2 . Notice that the normalisation factor is the time constant

which is used to calculate the Stokes number. Conversely, in

Figure 7b,c, the normalised times are further multiplied by the

governing dimensionless numbers Ga, Reτ and dp
+.

In Figure 7a, the concentration in the top layer increases

significantly only in cases B, C and F, where there is a significant

accumulation of the floating particles. For the smallest particles

(St = 0.05), the statistically steady state is reached much faster when

the Galileo number is larger. Case C (St = 0.05, Ga = 3.16), for

example, reaches its statistically steady distribution after approxi-

mately 800 viscous units, whilst case B (St = 0.05, Ga = 1) needs

approximately 8000 viscous units. The ratio of the transient time τ

between cases C and B is thus about τ τ∕ = 1∕10C B . Notice that this

ratio coincides with the ratio of the two corresponding Galileo

numbers squared (Ga2, see Tables 2 and 3).

A possible explanation to this scaling behaviour of the transient

time with respect to Ga, and possible dependence to the flow

Reynolds number, can be obtained from the definition of the Galileo

number. Recall that Ga2 is defined as the particle Reynolds number

based on the particle rising velocity due to buoyancy ut (see Section

Governing parameters). Then the transient time (trise) can be seen as

the time required for a particle to find an equilibrium vertical position

in the channel. The average travelling distance of such particle before

finding the equilibrium position should be proportional to the channel

height h, whilst the particle position converges to the equilibrium at a

rate that is proportional to ut. Therefore the transient time can be

approximated as:

t
h

u
≈ .rise

t
(15)

If we normalise this estimated transient time by the viscous wall

unit of the flow, and using the fact that u Ga=
ν

dt
2

p
, then:















t

h

u

u

ν

hd

Ga ν

u

ν
d

Re

Ga
= = = .rise

+

t

τ
2

p

2

τ
2

p
+ τ

2
(16)

Alternatively:



 


t

d

h

Re

Ga
= .rise

+ p τ
2

(17)

(a) (b)

(c)

F IGURE 7 Evolution of concentration in the top 15% of channels. The plotting time interval in (b) is limited for better visibility (a) Re = 180τ ,
(b) Re = 180τ (rescaled), (c) Re = 180τ and 400 (case F, rescaled).
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Notice that both expressions predictGa−2‐scaling of the transient

time, which was observed in Figure 7a.

Consequently, the above transient time scaling was applied in

Figure 7b. Here we test the validity of the above scaling

hypothesis with respect to dp
+ and Ga, whilst Reτ remains

unchanged. Note that for the sake of visibility, the y‐axis of the

plot was also rescaled by the individual maximum concentration

levels. Notice that the curves corresponding to case B and F—the

two cases belonging to the intermediate concentration distribu-

tion group—collapse very well. Moreover, the curve from the

case C, which exhibits a complete particle accumulation on the

free surface, also follows a similar trajectory. Note that the curves

from all other cases are omitted since they do not experience any

major transformation of the particle concentration distributions

from their initial conditions, therefore, this scaling of time does

not apply.

Subsequently, Figure 7c compares the transient behaviour of the

particles with St = 0.5 and Ga = 3.16 (Case F) for the two Reynolds

numbers 180 and 400. The good agreement between the two curves

supports the validity of our scaling hypothesis with respect to Reτ.

To this end, it is important to mention that the actual particle

sinking/rising velocities within a turbulent flow are strongly

influenced by the interactions between the particles and the

highly fluctuating flow structures. Therefore the a priori estima-

tion of such velocities is not an obvious task. We have seen from

the final concentration profiles that not all nominally buoyant

particles actually accumulate at the free surface. The present

results indicate that, at least in the situations in which the

particles accumulate on the free surface, our simple estimation

clearly reflects the magnitude of the time it takes for the particles

to rise. However, more simulations should be carried out—also

with higher Reynolds numbers—to be able to make definitive

statements.

CONCLUSION

Our investigations have revealed the following results on the

distribution of weakly buoyant microplastic particles in turbulent

open channel flow as an idealisation of natural river. The dynamics of

spherical microplastic particles is determined by the following

four dimensionless numbers: the flow Reynolds number, the

dimensionless particle diameter, the Stokes number and the Galileo

number of the particles. A microplastic particle goes through a

diverse range in the parameter space, depending on aging, growth in

size by biofilm development on the surface, and change in the water

body characteristics (e.g., temperature) in which the particle is

located. It is therefore required for the investigation to cover a

sufficient range to grasp an overall picture of the microplastic

dynamics in nature. Consequently, we have selected nine different

configurations in terms of the Stokes–Galileo parameter plane,

whereas we simulated two different flow Reynolds numbers.

The simulation results show that the steady‐state distributions

are indeed functions of the Stokes and Galileo numbers. Generally,

for large Galileo numbers, the particles accumulate at the free

surface, whereas for small Galileo numbers, they remain homoge-

neously distributed over the water column. The critical Galileo

number limit where the distribution pattern changes qualitatively

depend on the Stokes number, which makes it very difficult to be

precisely determined.

The particle dynamics also depend on the flow Reynolds number.

Despite the fact that we could only achieve a relatively low Reynolds

number range, the corresponding dependency is noticeable.

When the particles float to the free surface, they do so, at least in

these considered cases, with a time constant resulting from the rate

of ascent in a quiescent fluid. Finally, a result that can be seen

surprising is that not all particles that are lighter than the surrounding

fluid float, as the turbulent flow can move the particles up and down

much faster than gravity.
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