
Received: 4 October 2022 | Revised: 5 September 2023 | Accepted: 2 October 2023

DOI: 10.1002/rob.22259

R E S E A R CH AR T I C L E

Robot self‐calibration using actuated 3D sensors

Arne Peters1,2 | Alois C. Knoll1

1Chair of Robotics, Artificial Intelligence and

Real‐time Systems, TUM School of

Computation, Information and Technology,

Technical University of Munich (TUM),

Garching bei München, Germany

2Infinisense Technologies GmbH, Munich,

Germany

Correspondence

Arne Peters, Infinisense Technologies GmbH,

Einsteinstr. 174, Munich 81677, Germany.

Email: arne.peters@tum.de and peters@

infinisense.de

Funding information

European Union's Horizon 2020 Research and

Innovation Programme,

Grant/Award Number: 870133

Abstract

Both robot and hand‐eye calibration have been object of research for decades. While

current approaches manage to precisely and robustly identify the parameters of a robot's

kinematic model, they still rely on external devices such as calibration objects, markers

and/or external sensors. Instead of trying to fit recorded measurements to a model of a

known object, this paper treats robot calibration as an offline SLAM problem, where

scanning poses are linked to a fixed point in space via a moving kinematic chain. As such,

we enable robot calibration by using nothing but an arbitrary eye‐in‐hand depth sensor.

To the authors' best knowledge the presented framework is the first solution to three‐

dimensional (3D) sensor‐based robot calibration that does not require external sensors

nor reference objects. Our novel approach utilizes a modified version of the Iterative

Corresponding Point algorithm to run bundle adjustment on multiple 3D recordings

estimating the optimal parameters of the kinematic model. A detailed evaluation of the

system is shown on a real robot with various attached 3D sensors. The presented results

show that the system reaches precision comparable to a dedicated external tracking

system at a fraction of its cost.

K E YWORD S

3D reconstruction, calibration and identification, range sensing, SLAM

1 | INTRODUCTION

In 2018 the American Automobile Association published a report

about the repair cost of modern cars with Advanced Driver Assistance

Systems (ADAS), indicating that repairs are two to three times more

expensive than for traditional cars (American Automobile Association,

Inc, 2018). These additional costs are the result of both having to

replace modern integrated sensors, as well as the need for their

calibration, requiring not only dedicated equipment but also specially

trained personnel. In a similar manner Richardson et al. (2013)

performed a survey on camera calibration, comparing the achieved

precision reached by laymen and experts. Their findings confirm the

necessity for qualified personnel as the calibration quality heavily

depends on capturing sufficient and evenly distributed footage of the

used calibration object over the entire image area. While there are no

similar studies available for robot calibration, it is reasonable to

assume that the effects with respect to cost and required know‐how

are similar.

The biggest drawback of current calibration techniques is,

however, that they rely on specialized equipment. While many

J Field Robotics. 2024;41:327–346. wileyonlinelibrary.com/journal/rob | 327

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,

provided the original work is properly cited.

© 2023 The Authors. Journal of Field Robotics published by Wiley Periodicals LLC.

Abbreviations: 3D, three‐dimensional; ADAS, advanced driver assistance systems; CAD, computer‐aided design; CMM, contact measuring machine; CPC model, complete and parametrically

continuous model; DH, Denavit‐Hartenberg; EE, end‐effector; ICP algorithm, Iterative Corresponding Point algorithm; LiDAR, light detection and ranging; MCPC model, modified complete and

parametrically continuous model; NFOV, narrow field of view; PSO‐GP, particle swarm optimization‐Gaussian process; SL, structured light; SLAM, simultaneous localization and mapping;

ToF, time‐of‐flight; TUM, Technical University of Munich; URDF, unified robot description format; WFOV, wide field of view.

Note that affiliation 2 has no involvement with this publication at all. The entire paper was written and submitted while author was still employed at TUM.

https://orcid.org/0000-0002-0620-3154
https://orcid.org/0000-0003-4840-076X
mailto:arne.peters@tum.de
mailto:peters@infinisense.de
mailto:peters@infinisense.de
https://wileyonlinelibrary.com/journal/rob
http://creativecommons.org/licenses/by/4.0/

approaches from literature are presented as “autonomous” or

“automated,” they can only be used in conjunction with additional,

manually placed calibration objects, markers, and/or sensors, that is,

dot (Zhang et al., 2017) or checkerboard patterns (Pradeep

et al., 2014; Strobl & Hirzinger, 2006; Tsai & Lenz, 1989b), spheres

(Bi et al., 2017; Chen et al., 2018; Knoll, n.d; Li et al., 2008; Wang

et al., 2020; Yin et al., 2014; Yu & Xi, 2018) or other specifically

designed calibration targets (Andersen et al., 2014; Antone &

Friedman, 2007). Thus, already deployed systems in unpredictable

environments (e.g., city traffic, households, emergency scenarios,

etc.) are rendered impossible to recalibrate on‐site. Though calibra-

tion often wrongly treated as a once‐in‐a‐lifetime action, system

parameters are changing over a system's usage period, due to

inevitable environmental factors such as wear‐and‐tear, maintenance

and repairs, changes in temperature or mechanical stress, that is,

caused by shipping or collisions. The consequences of wrong

parameters may range from small imprecisions, over task failure, up

to a potential loss of an entire robotic system, when deployed to a

hazardous environment of which it cannot escape by itself anymore.

To overcome the aforementioned issues, this paper presents a

framework allowing true on‐site self‐calibration of a robot system

equipped with an arbitrary eye‐in‐hand 3D sensor. Our method

enables a robot to recalibrate itself in any unknown, static

environment. For example, an end‐user could leave his bent service

alone in the bedroom for an hour after a minor incident and it

becomes fully operational again, or an exploration robot may use a

few scans of a random rock to restore its full functionality, after

taking a hit or landing a foreign body.

Instead of using external utilities it is based on point cloud

registration techniques to fuse multiple scans of a given scene as shown

in Figure 1. We extend the Iterative Corresponding Point (ICP) algorithm‐

based formulations for extrinsic senor calibration (six parameters)

presented in Peters et al. (2020) to find the optimal parameters of an

entire kinematic chain. This includes all calibratable parameters of a robot

manipulator as well as the hand‐to‐eye transformation—a total of r p4 + 2

parameters, where r is the number of revolute and p the number of

prismatic joints (4 × 7 = 28 for the shown KUKA LBR iiwa robot arm). In

summary, the key‐contributions of this article are:

1. To the best of the authors' knowledge, this is the first approach

solving the calibration of an entire robot system by relying only on

depth data instead of external tools and objects.

2. By introducing bundle‐adjustment on more than just one pair of

scans, it becomes possible to calibrate more than just six

parameters while reducing the risk of local minima and improving

the overall calibration precision.

3. The presented framework allows calibration of any kinematic

chain and depth sensor combination, for example, single beam

LiDARs, line scanners, and depth cameras.

4. A detailed evaluation is presented, comparing multiple real‐world

hardware configurations to a calibration performed using tradi-

tional methods with a dedicated three‐dimensional (3D) tracking

system.

2 | STRUCTURE

Our article is structured as follows: Section 3 starts by giving an

overview on the mathematical modeling of kinematic chains and

introduces the modified complete and parametrically continuous (M‐

CPC) model (Zhuang et al., 1992). From there we turn toward more

recent, related work, covering the states‐of‐art in 3D scan registra-

tion as well as robot calibration. In Section 5, we then introduce our

own framework for target‐less calibration. The section basically

follows our processing pipeline, starting from the data pre‐processing

and finishing with the final error metric to be optimized. A detailed

evaluation of our approach is given in Section 6. We show a

convergence analysis of our algorithm on synthetic data and measure

its precision by comparing it to a reference calibration obtained by a

professional 3D tracking system. Finally, a summary is given in

Section 7.

3 | FUNDAMENTALS

Today, various technologies for measuring 3D information can be

found in the market. The most common ways to contactless estimate

the distance between a sensor and a surface, are stereo vision

(Cyganek & Siebert, 2011; Ma et al., 2012; Sturm & Ramalingam, 2011),

F IGURE 1 Visualization of the proposed calibration pipeline: (1) A
robot with an attached 3D sensor captures multiple recordings of an
arbitrary scene by moving the eye‐in‐hand sensor. (2) The 3D scans
transformed to the coordinate frame of the robot's base by using its
kinematic model. We apply Iterative Corresponding Point‐based
bundle adjustment to align and undistort the point clouds through
optimization the model's parameters. Note how the crispness
improves on the bunny's ear and crib. (3) The obtained calibration
parameters are applied to the robot manipulator.

328 | PETERS and KNOLL

structured light (SL) (Zhang, 2018) and the time‐of‐flight (ToF) principle

(Hansard et al., 2012), with some technologies allowing for multiple

simultaneous measurements. According to the used sensor model, the

range or depth measurements captured at moment t can be projected

to a set of points

p p pP = { , , …, }t n1 2 (1)

with

p x y z= (, ,) .i i i i
T (2)

Each pi is a 3D point relative to the sensor's origin. As the sensor

is assumed to be mounted in an eye‐in‐hand configuration, its origin

also forms the end effector (EE) frame of the robot's kinematic

chain. In the following work, coordinate frames of points will be

denoted in superscript, calligraphic letters, such as in pi .

When actuating the robot, the relative pose of to the robot's

base changes. Thus, point clouds taken from different robot

configurations do not align anymore. One possible strategy for fusing

multiple point clouds P P, …, n0 is to transform them to the static

coordinate frame . The required transformation

T

R t

0
=

1t
→

T
(3)

can be computed from the kinematic parameters k of the robot and

its joint states jt at the scan recording time t:

T k j= tr (,),t t
→ (4)

so that

∀ ∈

p
k j

p
p P

1
= tr (,)

1
.i

t
i

i t (5)

While jt is simply the sequence of joint positions along the robot

from base to EE as

j j j j= (, , …,) ,t t t n t
T

1, 2, , (6)

the definition of k is not as straightforward: A kinematic model suitable

for calibration should be continuous and represent a complete set of

degrees of freedom (DoF) while staying nonredundant. Despite its age,

the probably most common manner of representing robot manipulator

kinematics is still the Denavit–Hartenberg (DH) convention (Denavit &

Hartenberg, 1955). As modeling a kinematic chain with six‐DoF per

transformation includes several redundancies (e.g., one could place a

revolute joint anywhere along its rotation axis and still obtain the same

EE pose) the DH convention defines joints to move along or around

their local z‐axis, while using only four parameters ϕ d a, ,n n n, and αn per

segment n, whereϕn is the rotation around z d,n n−1 the translation along

z a,n n−1 the translation along xn and αn the rotation around xn. zn−1 is the

z‐axis of the prior joint in the kinematics chain.

Unfortunately, the DH model suffers from multiple drawbacks: It

is neither complete nor parametrically continuous. To overcome these

issues Stone (1987) suggested to use two additional parameters bn and

γn per segment in his S‐model, making the model complete, but not

parametrically continuous at the cost of introducing redundancies.

Zhuang et al. presented an alternative approach, the Complete

and Parametrically Continuous (CPC) model (Zhuang et al., 1992), later

refined to the more intuitive Modified‐CPC (MCPC) model (Zhuang

et al., 1993). Similar to the DH convention the MCPC model expects

all joints move along or around their local z‐axes. It is constructed for

each segment of the robot's kinematic chain, connecting two joints i

and i+1, by rotating the frame i around its x and y axes to align its

xy‐plane with the one of i+1 and then shift it along the new x and y

axes to position the new origin on the z‐axis of i+1.

The MCPC model defines k jtr (,)t as a product of transformations,

alternating between static segment and variable joint transforms:

⋅ ⋅ ⋅ ⋯ ⋅ ⋅() () ()k j s s sj j j jtr (,) = st () st () stt t t n n0
T

1 1
T T (7)

with

()k s s s s= , , , …, ,n0
T

1
T

2
T T

T
(8)

where si are the static parameters of the ith joint. The MCPC model

uses a total of four parameters per revolute joint, two per prismatic

joint and six‐DoF for the transformation between the last joint and

the robot's EE. For revolute joints, each segment is defined by

s α β x y= (, , ,)T so that:

⋅ ⋅s u uα β x yst() = rot(,) rot(,) trans(, , 0),y
T

x (9)

where a αrot(,) is a rotation of α around axis a and x y ztrans(, ,) a

translation along x y z(, ,)T. ux denotes the unit vector of a coordinate

frames local x‐axis; uy and uz for the y and z axes accordingly. For

prismatic joints the parameters xi and yi are treated as zero.

One special case is the transformation between the last joint and the

EE, which includes two additional degrees of freedom γ and z, so that

⋅ ⋅ ⋅()s u u uα β γ x y zst = rot(,) rot(,) rot(,) trans(, ,).n x n y n z n n
T (10)

4 | RELATED WORK

The presented approach combines techniques from two different

fields of research: (1) Point cloud registration, which is commonly

used in computer vision, for example, for 3D reconstruction and/or

simultaneous localization and mapping (SLAM) as well as (2) solving the

hand‐eye and/or robot calibration problems, where especially the

second one is common the field of control engineering. As such the

state of the art in both fields will be presented separately.

PETERS and KNOLL | 329

4.1 | Point cloud registration

Regardless of its 30th anniversary, the widest‐known approach for

aligning two point clouds is still the ICP algorithm, developed

independently by Besl and McKay (1992) as well as Chen and

Medioni (1992) in the same year. It aims to find the rigid

transformation required to align one point cloud (“data”) with a

second one (“model”), by iteratively searching pairs of closest points

between both clouds and optimizing the initially guessed transforma-

tion by minimizing the distance of all pairs. While the general idea of

both ICP versions is the same, Besl and McKay used the squared

Cartesian distance of matching points as an error measure, while

Chen and Medioni optimized the point‐to‐plane distance, which was

later shown to reach a faster convergence (Rusinkiewicz &

Levoy, 2001).

Over the last decades numerous variants of the ICP algorithm

have been developed, employing various strategies for point

matching, introducing an additional validation step for point matches,

and/or varying metrics as well as optimization techniques. Detailed

overviews of shape matching are given in the survey papers (Diez

et al., 2015; Pomerleau et al., 2015). An older survey of Rusinkiewicz

and Levoy (2001) even performed a benchmark of different ICP

variants. He also suggests that ICP might be a better fit for the ICP

acronym, since many other matching criteria (e.g., features or

backprojection) other than pure geometrical distance have been

shown.

Two interesting and more recent extensions of the ICP algorithm

come from Segal et al. (2009), which formulated a plane‐to‐plane

distance function, as well as from Rusinkiewicz (2019) introducing a

symmetric objective cost metric. Other recent works try to extend

the ICP algorithm to support non‐rigid shape matching (Amberg

et al., 2007; Brown & Rusinkiewicz, 2007; Cheng et al., 2017) or get

rid of the required initial guess (Attia & Slama, 2017; Cop et al., 2018).

Furthermore, researchers have applied deep learning to one or

multiple steps of the algorithm (Wang & Solomon, 2019a), as well as

to solve the problem of point cloud registration solely by machine

learning (Wang & Solomon, 2019b; Yu et al., 2021).

4.2 | Calibration

Calibrating a robot system with a hand and an eye can be broken

down to three separate problems: (1) Intrinsic calibration of the

optical sensor, (2) finding the transformation between the actuator

and the eye, and (3) calibration of the actuator itself. This partitioning

was coined by Tsai and Lenz, who presented a series of papers

solving each step separately (Tsai & Lenz, 1989a).

4.2.1 | Sensor calibration

The issue of sensor calibration is naturally depending on the sensor

and commonly treated as a standalone problem. Even works

combining approaches for solving entire system calibration at once

usually treat sensor calibration as an independent step in the overall

calibration pipeline (such as Birbach et al., 2015; Fuchs &

Hirzinger, 2008; Miseikis et al., 2016).

Naturally, a suitable sensor calibration must be selected for the

specific device used. Camera calibration in particular has become a

standalone research field. An early approach to classic camera

calibration was the Eight‐point algorithm (Longuet‐Higgins, 1981),

which only became stable after introducing an additional normaliza-

tion procedure (Hartley, 1997). Another widely used calibration

approach is the method of Zhang (2000). Later works introduced

more extensive sensor models, that is, by including additional

parameters for modeling radial distortion (Kannala & Brandt, 2006;

Wang et al., 2008).

Also, in the context of 3D perception more complex sensor

models are required. For stereo vision systems, the camera

parameters of both sensors as well as the calibration between them,

needs to be known, while in SL and ToF systems one must consider

the projector instead of a second camera. In Fuchs and Hirzinger

(2008), the latency of a ToF sensor's projector is calibrated and

Yamazoe et al. (2012) demonstrate that the projector of a Kinect v1

sensor can be modeled and calibrated in a similar fashion as a camera.

Finally, Muhammad and Lacroix (2010) and Atanacio‐Jiménez et al.

(2011) investigate the calibration of rotation multibeam LiDAR

sensors.

4.2.2 | Eye‐to‐hand calibration

In contrast to sensor calibration, the problems of robot calibration

and eye‐to‐hand calibration are strongly coupled. While there are

many works assuming an already calibrated actuator, consequently

focusing only on finding the transformation between sensor and

robot (e.g., Andersen et al., 2014, 1999; Antone & Friedman, 2007; Bi

et al., 2017; Chen et al., 2018; Heller et al., 2015; Li et al., 2008; Tsai

& Lenz, 1989b; Wagner et al., 2015; Yin et al., 2014; Zhang

et al., 2017), calibration approaches for an entire robot often include

the eye‐to‐hand transformation as just another robot segment. All

aforementioned calibration methods for eye‐to‐hand calibration

further rely on dedicated calibration objects, such as dot (Zhang

et al., 2017) or checkerboard patterns (Tsai & Lenz, 1989b), spheres

(Bi et al., 2017; Chen et al., 2018; Li et al., 2008; Yin et al., 2014), a

pin (Wagner et al., 2015), as well as specifically deigned calibration

targets such as a pyramid (Antone & Friedman, 2007) or a board with

a cut‐out triangle (Andersen et al., 2014).

More recent works tried to remove the requirement for special

targets: Carlson et al. (2015) calibrated the eye‐to‐hand transforma-

tion by measuring generic planes, while Xu et al. (2022) used straight

edges of random objects. Heide et al. (2018) estimated the pose of

external LiDAR scanners by detecting a CAD‐based 3D model of an

excavators arm in the recorded point clouds. Sheehan et al. (2014)

managed to intrinsically self‐calibrate a multi‐LiDAR scanning device

without prior knowledge of the environment or other requirements

330 | PETERS and KNOLL

toward it. They defined a crispness error metric based on squared

Renyi entropy, optimizing multiple overlying scans for crisp edges. In

Alismail et al. (2012) and Alismail and Browning (2015), Alismail et al.

solved the intrinsic calibration (four‐DoF) of a self‐built 3D LiDAR

made from a rotation 2D scanner, by applying ICP on data from the

first and second half of a single rotation. We recently showed that

extrinsic calibration of an eye‐in‐hand LiDAR is possible via fusing

two 3D scans taken at random manipulator configurations by rotating

the wrist joint (Peters et al., 2020), which finally led to the question of

whether ICP would also be suitable for calibration of an entire robot.

Another idea for target‐less eye‐to‐hand calibration was later

presented by Li et al., where the particle swarm optimization‐

Gaussian process (PSO‐GP) was used to fuse data of a close‐range

eye‐in‐hand line scanner, as ICP “is difficult to directly apply to the

calibration of line laser sensors because the line laser sensors do not

have enough scanning range” (Li, Du, et al., 2021, p. 2)—Quite in

contrary to the findings of this paper: The experimental observations

presented in Section 6 actually indicate, that the calibration precision

is even higher when using ICP on smaller and less complex scenes.

4.2.3 | Robot calibration

While target‐less eye‐to‐hand calibration of depth sensors has been

demonstrated, there are no standalone solutions for entire robot

calibration yet. General overviews to the problem of robot calibration

are given in Abderrahim et al. (2004) and Chen‐Gang et al. (2014).

Examples for pure robot calibration are rather rare: Bennett and

Hollerbach (1991) create a loop closure in a kinematic chain, by

connecting two robots of the same type at their EEs, while Lightcap

et al. (2008) and Mustafa et al. (2008) use a Contact Measuring

Machine (CMM) and a precisely manufactured reference fixture to

measure the position of the EE.

Another series of approaches is using external, optical measuring

systems. These works usually treat the transformation between the

EE and the sensor and/or markers as yet another segment of the

unknown kinematic chain and include it in the calibration problem, for

example, by using a theodolite and a reflector mounted to the robot's

EE (Judd & Knasinski, 1990) or camera/marker based 3D tracking

systems (Jang et al., 2001; Özgüner et al., 2020). Birbach et al. (2015)

calibrate the manipulator of a humanoid‐like robot by watching a

marker on its wrist. Maye et al. (2016) demonstrated a first makerless

solution by using deep learning to guess both a manipulator's

kinematic model and configuration from watching it with an external

camera.

Finally, a number of works solve robot calibration by using eye‐

in‐hand devices. These methods tend to follow a similar approach as

for eye‐to‐hand calibration. A calibration target is recorded from a

number of manipulator poses. Using the constraints that neither the

target, nor the robot's base have moved it is possible to to calculate

the optimal parameters for the kinematic model. Even the used

targets are often the same as those used for eye‐in‐hand calibration:

Strobl and Hirzinger (2006) as well as Pradeep et al. (2014) use a

checkerboard while Knoll (n.d); Yu and Xi (2018) as well as Wang

et al. (2020) use one or multiple spheres. Kang et al. (2007) calibrated

a robot with an attached line scanner by following a spanned string

and in Rüther et al. (2010) the robot system detects markers at its

joints by watching itself in a mirror. A wider overview of recent,

traditional calibration approaches can be found in Li, Li, et al. (2021).

Just like for eye‐to‐hand calibration, there is a recent trend

toward getting rid of calibration objects. While not being “calibration”

in its traditional form, Klingensmith et al. (2016) presented a system

to track the pose of an eye‐in‐hand depth sensor and feed the offset

back into the manipulators control loop to compensate it. However,

this method generates considerable, continuous computing payload

and only works in environments providing sufficient surfaces for

dense depth tracking. To address the later issue, Klingensmith (2016)

proposed to add an landmarks‐based localization using BRISK

features from RGB‐D data. The problem of markerless calibration

on RGB‐D was in fact solved by Li et al. (2019). However, their

approach is based on AKAZE image features and thus only works for

sensors providing 2D image data, whereas our approach only requires

depth or range data and further supports other measurement

geometries such as line scanners or single beam LiDARs.

5 | APPROACH

The aim of this work is to find the optimal parameters kopt describing

the kinematic model of a robot. In a first step multiple scans of the

robot's environment are recorded by moving a depth sensor attached

to the robot's EE. By exploiting the knowledge about the robot's

design and configuration at the time of scanning, one can transform

all acquired point cloud data to . In a static environment, all

overlapping points from the performed scans must match to the same

surfaces. Thus any errors in the fused reconstructions must originate

from errors in the projection of measurements along the kinematic

chain. By formulating a cost function to express the quality of

matching points, one can use the ICP algorithm to minimize the

projection error and thus estimate kopt.

5.1 | Data structure and notation

Let's consider a robot with an actuated depth sensor in an eye‐in‐

hand configuration. As the used measuring technique and lens model

may differ, for the scope of this work, the sensor is assumed to be

intrinsically calibrated and capable of producing a set of points P.

While it is negligible how the data was measured, it is essential to

know when each depth value was obtained. Depending on the sensor

type one obtains a different amount of data at time t. In detail, a

single beam LiDAR only measures a single range value, a

triangulation‐based line scanner captures a vector of points, and a

depth camera even returns an entire matrix of measurements. Thus,

depending on the used sensor type the elements of P can be

rearranged to form a matrix P:

PETERS and KNOLL | 331

P p= ,LiDAR (11)

P p p p= (, , …,) ,n
LineScanner

1 2
T (12)

and

⋯

⋯

⋮ ⋮ ⋱ ⋮
⋯

P

p p p

p p p

p p p

= .

m

m

n n n m

DepthCamera

1,1 1,2 1,

2,1 2,2 2,

,1 ,2 ,

(13)

Recording multiple scans while moving the robot finally

combines multiple P to a dataset tensor D:

⋮

D

P

P

P

=

m

LineScanner

1
Line Scanner

2
Line Scanner

Line Scanner

TT

T

T

(14)

and

⋮

D

P

P

P

= .

m

DepthCamrea

1
Depth Camrea

2
Depth Camrea

Depth Camrea

(15)

Rotating LiDARs provide one special case, as they also measure a

line but sequentially. To maintain the spatial order of points in a

LiDAR scan, all l points from a single rotation are arranged column‐

wise, so that

⋯

⋯

⋮ ⋮ ⋱ ⋮

⋯

D

P P P

P P P

P P P

= .

m

m

l l l m

LiDAR

1,1
LiDAR

1,2
LiDAR

1,
LiDAR

2,1
LiDAR

2,2
LiDAR

2,
LiDAR

,1
LiDAR

,2
LiDAR

,
LiDAR

(16)

For each measurement Pt there is a matching vector with the

robot's joint states jt. The issue of different measuring frequencies

can be overcome via interpolation of the joint positions to find an

approximation of the exact state for t. As a result there is a matching

a matrix

J j j j= (, , …,)i m1 2 (17)

matching each Di, or a tensor

⋯

⋯

⋮ ⋮ ⋱ ⋮

⋯

J

j j j

j j j

j j j

= .i

m

m

l l l m

LiDAR

1,1 1,2 1,

2,1 2,2 2,

,1 ,2 ,

(18)

for each Di
LiDAR, respectively.

For the following formulations, the recorded data will be denoted

asD, regardless of the used sensor type. While the tensorDDepthCamrea

has a rank of three (four if one counts each point's x y z, , coordinates),

I use the two‐index notation pi j, as an equivalent to

∀p p k=i j i j k, , , (19)

for simplification. In the same way, we use ji j, to address the joint

states matching a point pi j, , even though J may have a different rank

than D.

5.2 | Parameter modeling

We use the MCPC model to express the spatial relationships of the

robots kinematic chain. An initial guess kinit of kopt can be obtained via

manual measurements or from the robot's datasheet. Though the

model MCPC itself is free of redundancies a few parameters remain

which cannot be calibrated. As the transformation between and

the first joint of robot 1 behaves as a static offset to all recorded

point clouds and there is no information to deduce its parameters.

Also, as frame 1 is lacking a fixed position in space, two further

redundancies arise in the parameters of T →2 1. As such, y0 and β0

also have to be excluded from the optimization. We thus use a

bitmask vector m of the same size as k with

∈ ∀m m m m m i= (, , …,) {0, 1}n i1 2 (20)

to define which parameters shall be taken into account in the

optimization process. m is also used to reduce the number of DoFs

for prismatic joints.

5.3 | Normalization

The influence of orientation errors on the cost metric heavily

depends on the distance of the scanned surface to the sensor. To

balance the weight of angular and translation parameters, k should be

normalized before optimization. Since all data is captured by the

robot scanning its environment, one can assume the data to be more

or less equally distributed around the robot's base. Thus only

approximating the scaling factor s from a subset of all datasets is

usually sufficient. We project all points of the first recorded dataset

D1 to to obtain a tensor of points D1 with

∀ ∈ ∈p k j p p D p D= tr(,) , ,i j i j i j i j i j, init , , , 1 , 1 (21)

allowing to compute s by

∈∑ p p Ds
n

=
1

.
i

n

i i
=1

1 (22)

We denote components normalized by s with a hat symbol (as in

p̂). The normalization of a dataset D is straightforward:

D D
s

ˆ =
1

. (23)

332 | PETERS and KNOLL

Note that one also needs to normalize the translation parameters

of k

k α β

x

s

y

s
α β

x

s

y

s
α β γ

x

s

y

s

z

s
ˆ = , , , , , , , , …, , , , , ,n n

n n
0 0

0 0
1 1

1 1
T

(24)

as well as the joint positions of prismatic joints.

Even though the parameters of k change with every ICP

iteration, it is safe to keep s constant over the whole optimization

process. As the accumulated error of kinit is usually in the range of a

few centimeters, the numerical effects on s are negligible.

In case the initial assumption of an equal distribution of points

around the robot's base does not hold, it might be necessary to (a)

compute s by averaging points from all datasets, as well as (b) to add

an additional translation T → shifting the points to their average

centerpoint, which would need to be incorporated as an additional

transformation in k jtr(,) and masked in m.

5.4 | ICP

The implemented ICP algorithm can be summarized in four steps (see

below for a detailed explanation): (1) Initial projection and validation of

points, (2) search for point matches, (3) verification of point matches, and

(4) computation of the error function and optimization of k̂ . All four steps

are repeated iteratively until convergence is reached. A detailed overview

of the used operations is given in Algorithm 1.

Algorithm 1 ICP for calibration

Require: Datasets { }D D Dˆ , ˆ , …, ˆ n1 2

Require: Joint positions { }J J Jˆ , ˆ , …, ˆn1 2

Require: Initial guess kinit and parameter mask m

Require: Stop threshold ϵ

k kˆ ← normalizeTranslation()opt init

repeat

Compute D D Dˆ , ˆ , …, ˆ n1 2 : ∀p k j p tˆ = tr(ˆ , ˆ) ˆt t topt

∀()O D iˆ ← detectNoiseAndEdges ˆ
i i

⧹ ∀Q D O iˆ ← ˆ ˆ
i i i

M ← {}

for each Q Q i jˆ , ˆ <i j do

∪ ()Q QM findMatches ˆ , ˆi j

end for

M M← filter()

Solve ∈ ∈ k Mmin e(ˆ ,)k k mk m mˆ ˆ ˆ =1 opti i iopt

k k← denormalizeTranslation(ˆ)opt opt

until ∥ ∥k ϵΔ ≤opt

return kopt

Note that the projection of D̂ to D̂ is the result of a

transformation along a kinematic chain, parameterized by joint states

that change over the duration of the recording. In other words: Even

though the individual transformations based on k̂ are themselves

rigid, errors in the kinematic parameters will lead to nonlinear

distortions as shown in Figure 2. This effect makes it hard to apply

common tools often used in point cloud registration, as features,

tree‐structures for point matching and normals cannot be precom-

puted. This is a particularly limiting factor for the cost function, as

numeric optimization of k̂ leads to an ongoing deformation of the

resulting point cloud. We thus use the cross product for normal

computation

()
() ()
() ()

n p
p p p p

p p p p
= n =

m , + m ,

m , + m ,
i j i j

i j i j i j i j

i j i j i j i j

, ,

−1, , −1 +1, , +1

−1, , −1 +1, , +1

(25)

with

∥ ∥
p q

p q

p q
m(,) =

×

×
(26)

and the point‐to‐plane error metric as a compromise between

runtime and precision. Since ni j, is normalized, it is the same whether

it is computed via pn()i j, or pn(ˆ)i j, .

Note that for scans other than depth images, the normal

orientation depends on the scanning trajectory and the resulting

order of scan lines (e.g., whether the lines were recorded from left to

right or from right to left). It may thus be necessary to verify the

normal orientation by comparing it to the direction of the sensor's

view ray:

⋅

()
() ()
()

v p
p p o

p
= vn =

n n ≤ 0

−n else
i j i j

i j i j t

i j

, ,

, ,

,

(27)

where the origin of the sensor ot at a time t is simply the

translational part of T t
→ .

5.4.1 | Projection and validation

Before searching for point matches, all datasets D̂i have to be

projected to :

∀ ∈ ∈ ∀p k j p p D p D iˆ = tr(ˆ , ˆ) ˆ ˆ ˆ , ˆ ˆ .t t t t i t iinit
(28)

It is natural for sensor data to contain noise and outliers, as well

as, in the context of depth sensors, gaps. Moreover, the chosen

approach for normal estimation is prone to making incorrect

assumptions along corners and edges, an effect becoming especially

prominent when the density between separate scan lines and points

within a single scan line heavily differs (see Figure 3). To improve the

PETERS and KNOLL | 333

quality of the calibration result it is recommended to remove such

measurements from the recorded data.

While the detection of invalid points (usually indicated by NaN

values) is straightforward, the classification of outliers and edges

requires an additional filtering routine. Unfortunately, many pre-

processing filters, such as the one we initially used in Peters et al.

(2020) do not generalize well over different sensor types as they

make implicit or explicit assumptions regarding the sampling density.

We thus apply a window of n m× radius each projected point p̂i j, to

compute overlap of neighboring normals

∥ ⋅ ∥
() ∑ ∑p

v v

n m
o ˆ =

(2 + 1)(2 + 1)i j
a n

n

b m

m
i j i a j b

,
=− =−

, + , +
(29)

and exclude all points with a value po(ˆ)i j, below a threshold gmin. By

choosing different values for n and m it is possible to compensate for

varying densities of points and scan lines. As the indices of points are

the same in D̂ and D̂ , one can also remove the respective

measurements from the raw data. The filtered point clouds are

denoted Q̂ and Q̂ , respectively.

5.4.2 | Point matching

For each pair of filtered datasets Q Qˆ , ˆi j a k‐d tree (Bentley, 1975)

is constructed over Q̂ j . It is used to find the closest neighbor

∈p Qˆ ˆ
v j for every point ∈p Qˆ ˆ

u i . Based on the indices u and v a pair

 p pˆ , ˆi j is obtained and added to a set M.

Since—aside from the original ICP—bundle adjustment is used to

align more than two scans at once, the process is repeated for all

possible combinations of datasets (without respect to the order).

5.4.3 | Match validation

Unfortunately, pure nearest neighbor matching is prone to finding

incorrect pairs, for example, when a point ∈q Qˆ ˆ
i lies on a

surface not captured in Q̂ j . Thus all matches with a point‐to‐point

distance

()q q q qd ˆ , ˆ = ˆ − ˆi j i j (30)

above a maximum distance d̂max and a normal overlap

⋅() () ()q q q qf ˆ , ˆ = vn ˆ vn ˆi j i j (31)

below a threshold fmin are excluded from M (similar to Newcombe

et al., 2011).

5.4.4 | Cost function

The basic idea behind the point‐to‐plane distance is to measure the

distances only perpendicular between a point and the target surface.

This is commonly done by taking the dot product between the

Cartesian distance vector and the surface's normal vector (Chen &

Medioni, 1992). In our case the point‐to‐plane distance of a match

∈ q q Mˆ , ˆi j is defined by

⋅

() ()q q k k j p k j p qc ˆ , , ˆ = tr(ˆ, ˆ) ˆ − tr(ˆ, ˆ) ˆ n ˆi j i i j j i (32)

resulting in a total error

F IGURE 2 Distortion of point clouds obtained by projecting depth measurements of a pyramid along an imprecise kinematic model with
randomized scanning trajectories. From left to right: One single point per joint configuration (single‐beam LiDAR), one line per configuration (line
scanner) and a matrix of points obtained from a single configuration (depth camera).

F IGURE 3 Scan lines of a cubic room, colorized by the direction
of the points' normal vectors. For points along corners some of the
neighboring points lie on other surfaces, causing the normals to bend
toward edges. The effect becomes visible as a color gradient on the
scan lines. Areas with uniform normals are rendered in lighter colors.

334 | PETERS and KNOLL

∈

()∑k q q kMe(ˆ,) = c ˆ , ˆ , ˆ .

q q M

i j

ˆ , ˆ

2

i j

(33)

Since the normals are only used as part of a squared dot product,

one can safely ignore their sign in the computation of the error. The

Levenberg‐Marquard method (Levenberg, 1944; Marquardt, 1963) is

used to find the optimal, unmasked parameters of k̂opt minimizing

∈ ∈
k Mmin e(ˆ ,)

k k mk m mˆ ˆ ˆ =1
opt

i i iopt
(34)

The final calibration parameters kopt can then be obtained by

removing the scaling factor s from k̂opt:

k α β sx sy α β sx sy α β γ sx sy sz= (, , ˆ , ˆ , , , ˆ , ˆ , …, , , , ˆ , ˆ , ˆ) .n n n n0 0 0 0 1 1 1 1
T

(35)

All four steps of the ICP algorithm described above are iteratively

repeated until kΔ opt between two iterations reaches below a

threshold ϵ.

6 | EVALUATION

The aforementioned formulations yield in a generic framework,

theoretically enabling the calibration of any kinematic chain with an

attached 3D sensor, as long as it is possible to obtain precise readings

of the included joint positions at scan time. To demonstrate the

capabilities of the proposed system, it is tested on a seven‐DoF robot

arm in combination with varying 3D sensors.

6.1 | Experimental setup

We used a KUKA LBR iiwa R840 manipulator (see Figure 4) and a

total of four sensors with different characteristics: A Hokuyo UTM‐

30LX rotating single‐beam LiDAR, a Wenglor MLSL236 triangulation

based line scanner, a Microsoft Kinect Azure consumer grade depth

camera and a PhotoNeo MotionCam 3D high end industrial grade

depth camera (see Figure 5).

The LiDAR has by far the widest view range of all tested sensors,

but is only meant for far range scanning. Moreover, the studies

shown in Pomerleau et al. (2012) suggest that the sensor error in its

measurement precision is similar to absolute Gaussian noise with a

standard deviation of 1.8 cm.

In contrast the Wenglor MLSL236 is extremely precise, but its

view range is limited to close range scenes. Unfortunately there are

no studies about its sensor model available. However, the vendor's

datasheet specifies the maximum depth error to stay below 600 µm

(Wenglor Sensoric GmbH, 2020). Given the three‐sigma‐rule one

thus may assume a Gaussian noise model with σ = 0.2abs mm.

Microsoft's Kinect Azure is the only consumer grade 3D sensor in

the test field and with a recommended retail price of around 400 EUR

by far the cheapest one. It is also the only sensor suitable for both

close and far range scenes. The Kinect offers a narrow field of view

(NFOV) as well as a wide field of view (WFOV) scanning mode, both

which can be combined with an additional 2 × 2 binning, increasing

the z‐precision at a cost of the xy‐resolution. All datasets of the

Kinect Azure were captured in NFOV 2 × 2 binned mode. According

to the findings of Tölgyessy et al. (2021) the sensor's noise model for

this mode is similar to linear Gaussian noise modeled by

σ σ z σ= + ,rel abs (36)

with σ σ= 0.21%, = 2.53rel abs mm and z to be the distance of a single

measurement.

Finally, the PhotoNeo MotionCam 3D is a high end industrial

grade depth camera for scenes between 50 cm and 1m distance. It

can be seen as a successor to PhotoNeo's PhoXi 3D Scanner, adding

support for dynamic scanning at up to 20 Hz. As the used sensor

technology is very similar to the PhoXi 3D Scanner, one may take the

observations presented in Cop and Peters (2021) as a point of

reference for modeling the sensor noise: Averaged over four

different materials σabs has a value of 0.18mm.

An outline of the tested sensors' characteristics, as well as the

used parameters is given in Table 1.

The evaluation is performed on two close range scenes of basic

objects—a 3D printed Stanford Bunny (originally scanned and made

public by Turk and Levoy using their back then new scanning

F IGURE 4 Physical joint frames of the KUKA LBR iiwa R840
robot. All joints rotate around their local z‐axes. The base frame of
the kinematic chain is equivalent to the frame of the first joint 1.
When applying the MCPC modeling convention, joints ,7 5, and 3

are shifted along their z‐axes to the positions of their predecessors.
Setting the non‐calibratable parameters y and β of T →1 2 to zero
also shifts 1 (and thus also) up, thus positioning 2 in its xy‐plane.

PETERS and KNOLL | 335

algorithm (Turk & Levoy, 1994)) and a Utah teapot (also known as

Newell Teapot) (Crow, 1987; Newell, 1975) which is still in

production by its original manufacturer—as well as two large scale

scenes, featuring an office and a laboratory at TUM (see Figure 6). As

the large scale scenes are the most challenging ones (see Section 6.3)

we further use a virtual, cubic room of 10 m side lenght—similar to

the use used by Oberländer et al. (2015) and Peters et al. (2020)—to

test the convergence of our approach.

The Hokuyo LiDAR has an extensive reach and a view angle of

270° making its orientation inconsequential, as it is almost always

capable of seeing a surface somewhere within most indoor scenes.

Thus, recordings were performed by moving the robot to seven

randomly generated configurations and moving one of it's axes by

180°, each at a time. The process was repeated five times, resulting

in four batches with a total of 28 scans, along with one validation

set with seven scans. The joint velocities were adjusted to obtain a

similar density between scan lines and points within a single line.

For the other sensors the devices' fields of view must be taken

into account when selecting the scanning poses to ensure

sufficient overlap in the projected point clouds of the datasets.

In these recordings, the scanning poses were chosen via manual

selection of suitable sensor placements and the use of an inverse

kinematics solver to find appropriate robot configurations. In the

case of the Wenglor MLSL236, the trajectories were defined by a

fixed start and end configuration in joint space. The robot was

moved between those with a constant velocity to allow linear

interpolation of the joints' positions. For the two depth cameras

the robot was moved to fixed positions from which only single

images were taken. Figure 7 provides an detailed overview of the

selected trajectories. The same motions were also used for the

generation of synthetic data. All used datasets are also available

online at (Peters & Knoll, 2023).

Our runtime measurements were performed on a PC equipped

with an AMD Ryzen 9 5950X CPU (2020 model with 16 physical

cores) and 128 GB RAM, running a multithreaded C++ implementa-

tion of the described framework under Ubuntu 18.04 LTS. The

maximum number of iterations imax per test run was limited to 50.

6.2 | Reference calibration

A reference calibration was obtained using an optical tracking system

based on five Vicon Vero v1.3 cameras. For this calibration a marker

was placed on the ground next to the robot's base while a second one

was mounted to the EE. The robot was then moved to 5000

randomly selected configurations while the poses of both markers as

well as the robot's joint positions were recorded. 90% of those points

were used to compute the optimal MCPC parameters connecting the

static marker next to the robot's base with the one attached to the

EE , by minimizing

F IGURE 5 Used sensors from left to right: (1) Hokuyo UTM‐30LX laser range finder, (2) Wenglor MLSL236 line scanner, (3) Microsoft Kinect
Azure, and (4) PhotoNeo MotionCam 3D.

TABLE 1 Sensor characteristics and used parameters.

Resolution View range Noise ratio Preprocessing Match validation Stop criteria
x y Closest Farthest σabs σrel n m gmin dmax fmin ϵ imax

Hokuyo UTM 30LX 1080 × 1a 10.0 cm 4000.0 cm 18.00 mm – 2 4 0.60 20 mm 0.75 10−4 50

Wenglor MLSL236 1280 × 1 30.0 cm 150.0 cm 0.20 mm – 3 2 0.80 20 mm 0.80 10−4 50

Microsoft Kinect Azure 320 × 288b 50.0 cmd 546.0 cm 2.53 mm 0.21% 2 2 0.75 20 mm 0.80 10−4 50

PhotoNeo MotionCam 3D 1120 × 800c 49.7 cm 93.9 cm 0.18 mm – 2 2 0.80 20 mm 0.80 10−4 50

aAll 1080 range values are recorded sequentially during rotation.
bNFOV 2 × 2 binned mode.
cDynamic mode.
dAccording to datasheet. However, experiments have shown that the used objects were already measurable at less than 20 cm distance.

336 | PETERS and KNOLL

∑ e m e mmin cartesianDistance(,) + angularDistance(,) ,
k i

i i i i
2 2

traditional

(37)

where mi is ith the measured EE pose, ei is the estimated one based

on k jtr(,)itradional in meters, and e mangularDistance(,)i i gives the

smallest angle between both orientations in radians (as by in

expressing the transformation in an angle‐axis format). Based on

the found model, outliers in the measurements with an offset of more

than 5 cm and/or 0.05 rad (2.86°) from the estimated EE pose were

excluded from the recorded data. We repeated the procedure for a

total of five times.

The remaining 500 poses are used as validation dataset for both

our approach as well as the reference calibration. Compared on this

data, the traditional calibration reaches a positional error of 1.77mm

and an orientation error of 0.547° when applying the same outlier

filtering on these measurements as well.

Note, that the kinematic chain calibrated through using the

optical tracking system, starts with a static marker placed next to

the robot's base and ends with another marker attached to its EE

Marker , whereas our approach estimates the chain between the first

joint 1 and the carried 3d sensor Sensor. To enable an evaluation on

the same 500 validation measurements, the parameters for the

transformation between the seventh joint 7 and in our solution

are replaced with the ones obtained from the reference calibration.

The same applies for the transformation from and 1 as well as to

the noncalibratable parameters between 1 and 2. As such, the

differences in the precision originate solely from the estimated

MCPC parameters of the robot itself. To ensure similar conditions,

the outlier filtering on the verification data is applied here as well.

The initial model for both calibration attempts was obtained from

CAD data of the used components whenever available. Parts for

which such data was not accessible were measured manually. A total

of four reference models were computed for comparison: (1) The

uncalibrated model (URDF), (2) an uncalibrated robot at a known

position, (3) an uncalibrated robot with a calibrated EE and (4) a fully

calibrated system. An overview of the calibrated parameters by the

different approaches is given in Table 2.

For tests of synthetic data, we sampled a total of 1500 poses

using the known parameters of k and compared the pose of the EE,

skipping the filtering of measurement outliers.

6.3 | Results

A distinct alignment of the obtained 3D data must be possible to

reach convergence. While the exact scene or object itself does not

matter, there should ideally be at least which normals span a space of

rank three visible in each scan to prevent drift. It may be possible that

F IGURE 6 Pictures of the scanned real‐world scenes. (1) Office, (2) TUM laboratory (the robot is positioned is in the workcell on the right),
(3) Standford Bunny and (4) Utah Teapot (1.4 l version).

PETERS and KNOLL | 337

for certain kinematic chains and sufficiently large datasets there may

even exist a global optima for simpler scenes. However, we did not

investigate special case, as we assume it to be a purely theoretical

scenario of limited practical use. The second requirement for our

approach to work, is for the initial guess to be “well enough” to

F IGURE 7 Scanning poses and trajectories used per sensor.
Colors are defined by batch, while the line style identifies a single
configuration. Areas outside of the joint axes motion ranges are
grayed out. The scans of the first batch were used for the test runs
with seven datasets. Datasets from the other batches were added
subsequently to increase the overall number of datasets.

T
A
B
L
E

2
O
ve

rv
ie
w

o
f
ca
lib

ra
te
d
p
ar
am

et
er
s.

to
1

1
to

2
2
to

3
3
to

4
4
to

5
5
to

6
6
to

7
7
to

α

β
γ

x
y

z
α

β
x

y
α

β
x

y
α

β
x

y
α

β
x

y
α

β
x

y
α

β
x

y
α

β
γ

x
y

z

C
al
ib
ra
ta
b
le

p
ar
am

et
er
s

‐
‐

‐
‐

‐
‐

•
‐

•
‐

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

M
o
d
el

fo
r
co

m
p
ar
is
o
n

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

U
R
D
F
m
o
d
el

◯
◯

◯
◯

◯
◯

◯
◯

◯
◯

◯
◯

◯
◯

◯
◯

◯
◯

◯
◯

◯
◯

◯
◯

◯
◯

◯
◯

◯
◯

◯
◯

◯
◯

◯
◯

U
R
D
F
+
C
al
ib
ra
te
d
o
ri
gi
n

◯
◯

◯
◯

◯
◯

◯
◯

◯
◯

◯
◯

◯
◯

◯
◯

◯
◯

◯
◯

◯
◯

◯
◯

◯
◯

◯
◯

U
R
D
F
+
C
al
ib
ra
te
d
o
ri
gi
n

&
E
E

◯
◯

◯
◯

◯
◯

◯
◯

◯
◯

◯
◯

◯
◯

◯
◯

◯
◯

◯
◯

◯
◯

F
ul
l
re
fe
re
nc

e
ca
lib

ra
ti
o
n

N
ot
e:

◯
P
ar
am

et
er
s
fr
o
m

C
A
D

m
o
d
el
/m

an
ua

l
m
ea

su
ri
ng

•
C
al
ib
ra
te
d
us
in
g
p
re
se
nt
ed

ap
p
ro
ac
h

C
al
ib
ra
te
d
us
in
g
o
p
ti
ca
l
tr
ac
ki
ng

sy
st
em

.

338 | PETERS and KNOLL

provide at least some overlap of the visible surfaces, so that the

numerical optimization is able to estimate a gradient for k Me(ˆ,).

Figure 8 shows the convergence of 100 calibrations in a virtual,

empty room. For the recordings we simulated a depth camera with the

same parameters and Gaussian noise ratio as a Microsoft Kinect Azure.

Whereas the room has a total of six corners, the cameras opening angle

only allows to see one of them at a time. We used the same dataset and

ground truth each scan, while the initial guess was randomized. In detail

we introduced a total rotation offset of up to ±0.05 radians around a

random axis and a translation of up ±5 cm in a random direction. This

resulting initial mean EE pose offset of 0.069 rad (3.95°) and 77.9mm is

around twice as high as what we observed on real data.

As one can see, both overall performance is highly dependent on

the amount of used depth recordings. Whereas the calibration did

not reach convergence at all when only using seven recordings, we

can already obtain reasonable calibration parameters from 14 scans.

98 of the 100 runs reached the desired ϵ in less than 60 ICP

iterations. Subsequent tests have shown that the other two runs are

F IGURE 8 Development of the kΔ , the number of total point matches as well as the orientation and position error over multiple iterations,
while running a calibration on different numbers of scans of a virtual, cubic room. Iteration zero shows the errors in the initial guess. Figure
derived from Peters (2023).

PETERS and KNOLL | 339

TABLE 3 Comparison of our results to traditional calibration on a verfifacation dataset obtained by using a 3D tracking system.

Dataset Scans

Orientation

error (°)

Position

error (mm) Outliers

Filtered orientation

error (°)

Filtered position

error (mm) Iterations

Valid point matches

per iteration

Computation

runtime (s)

Hokuyo

UTM‐30LX

Lab 7 1.287 25.71 25 0.744 22.95 50 1,190,814.7 5573.0

14 1.178 10.45 23 0.636 7.39 16 5,411,943.3 8129.9

21 1.148 10.68 23 0.604 7.59 8 11,413,095.6 11,076.0

28 1.114 11.76 23 0.567 8.77 7 21,016,877.9 18,932.5

Office 7 1.217 18.80 24 0.675 15.87 50 1,970,957.2 9997.9

14 1.103 7.94 23 0.556 4.80 9 9,062,888.7 8835.3

21 1.112 7.65 23 0.565 4.48 14 19,224,321.9 25,507.3

28 1.115 7.25 23 0.569 4.06 7 35,045,811.3 27,312.3

Wenglor

MLSL236

Bunny 7 1.267 7.62 23 0.727 4.45 50 1,092,781.1 6627.7

14 1.102 5.08 23 0.555 1.80 17 5,979,392.7 9014.5

21 1.108 5.04 23 0.562 1.76 7 12,093,808.4 9182.5

28 1.108 5.15 23 0.561 1.87 7 21,902,965.6 16,269.6

Teapot 7 1.138 5.77 23 0.592 2.51 50 1,408,625.3 7617.3

14 1.100 5.47 23 0.553 2.19 7 7,820,361.6 5564.8

21 1.116 5.32 23 0.569 2.04 8 17,363,749.6 13,996.8

28 1.116 5.24 23 0.571 1.96 6 33,530,538.7 21414.3

Microsoft Kinect

Azure

Lab 7 1.299 12.73 24 0.757 9.84 12 140,739.9 97.8

14 1.111 6.74 23 0.564 3.55 12 239,020.8 186.1

21 1.104 7.27 23 0.556 4.07 12 382,920.5 333.1

28 1.101 6.79 23 0.552 3.57 16 724,856.7 819.4

Office 7 1.364 59.93 329 0.822 35.13 18 249,166.5 317.2

14 1.103 7.33 23 0.555 4.13 8 540,193.1 324.2

21 1.108 6.35 23 0.561 3.10 8 1,408,679.1 642.3

28 1.102 5.78 23 0.553 2.50 7 2,133,716.0 684.7

Bunny 7 1.566 27.33 24 1.037 14.42 16 576,383.5 444.4

14 1.172 10.48 23 0.626 7.43 10 2,452,292.9 1256.3

21 1.116 7.15 23 0.567 3.97 8 5,009,795.9 2135.6

28 1.114 6.50 23 0.566 3.28 9 8,736,878.1 4226.9

Teapot 7 1.311 10.17 24 0.770 7.03 8 590,497.3 257.4

14 1.142 7.72 23 0.594 4.57 8 2,465,504.3 1082.6

21 1.103 5.91 23 0.555 2.67 7 5,184,669.3 2065.8

28 1.103 5.34 23 0.556 2.07 6 9,190,931.3 3228.6

PhotoNeo

MotionCam

3D

Bunny 7 1.190 18.48 25 0.642 15.60 38 1,666,129.5 3639.1

14 1.109 5.48 23 0.562 2.21 18 6,206,851.7 6034.9

21 1.101 5.11 23 0.553 1.82 14 14,566,960.8 11,531.8

28 1.094 4.99 23 0.546 1.70 11 22,572,019.6 15,984.8

Teapot 7 1.166 11.31 23 0.622 8.27 47 1,511,654.7 3951.3

14 1.140 5.68 23 0.595 2.41 35 4,468,177.3 8495.6

21 1.108 5.25 23 0.561 1.97 18 10,240,472.9 10,479.5

28 1.096 5.10 23 0.548 1.82 15 14,713,290.9 12,979.9

Reference

calibration

URDF – 2.057 35.90 73 1.522 35.32

+ Origin 4500 2.016 24.46 27 1.484 21.91

+ EE 4500 1.103 6.24 23 0.556 3.00

Full 4500 1.095 5.05 23 0.547 1.77

Note: The plain errors are the means EE offsets computed against all poses in the verification dataset. In the filtered errors, measurement outliers of the
tracking system with more than 5 cm and/or 0.05 rad (2.86°) from the estimated EE poses were discarded from the verification data.

340 | PETERS and KNOLL

F IGURE 9 Point clouds projected by uncalibrated (left) and calibrated systems (right) on 28 datasets. Each pictures shows seven validation
datasets that were not used for the calibration itself. From top to bottom: Stanford Bunny recorded with (1) Wenglor MLSL236, (2) Kinect Azure,
and (3) Photoneo MotionCam, followed by Utah Teapot recorded with (4) Wenglor MLSL236, (5) Kinect Azure, and (6) Photoneo MotionCam.
Note that the wooden warmer below theTeapot is not visible to the UV laser of theWenglor scanner. Differences in the alignment of the point
clouds of the Kinect Azure are best noticeable on the partly visible background structures.

PETERS and KNOLL | 341

about to converge after 88 and 96 iterations, respectively. Again,

increasing the number of datasets to 21 or 28 leads to both faster

convergence and even more precise results.

We can further observe spikes in kΔ in many runs, shortly before

actual convergence is reached. This effect is most likely caused by the

used match validation strategy: If the overall orientation error is too

big, the distance between points lying in the same plane can become

quite big and there are only very few valid matches in areas where

the surfaces intersect. However, once the error becomes small

enough for the point match distances to reach below dmax, the overall

number of point matches drastically increases, causing the projected

point clouds to “snap” together.

Given the simplicity of the test scene, we conclude that the

calibration precision is mostly determined by the coverage of the

robot's joint space, rather than the scanned room or object. The same

observations can also be made in the calibration results on real‐world

data listed in Table 3.

As one can see, using only seven scans is usually insufficient to

reach a suitable calibration result. Either the precision is far worse

than what can be produced via the use of a larger number of scans, or

the ICP did not converge at all. As expected, there is also a clear trend

towards reaching a higher precision when using more data.

Also, the findings show a direct relation between the calibration

result and the precision of the used sensor. For high‐precision

sensors such as the Wenglor MLSL236 or the PhotoNeo MotionCam

3D the results are similar to the ones obtained by the tracking

system. In the case of the MotionCam 3D on the Stanford Bunny

scene, the proposed framework even found a solution which is

slightly better than the reference. However, even with a Kinect Azure

one may obtain results almost as good a as the reference, regardless

of its cost being less than one‐50th of the tracking system's one.

Figures 9 and 10 further show the projected points clouds of the

validation datasets to allow a subjective impression of the achieved

calibration quality.

F IGURE 10 Point clouds projected by uncalibrated (left) and calibrated systems (right) on 28 datasets. Each pictures shows seven validation
datasets that were not used for the calibration itself. From top to bottom: TUM laboratory recorded with (1) Kinect Azure, and (2) Hokuyo UTM‐
30LX (viewed from top), followed by an office recorded with (3) Kinect Azure, and (4) Hokuyo UTM‐30LX.

342 | PETERS and KNOLL

The observations further suggest that less complex, small‐scale

scenes are better suited for calibration. Not only is the expected

measurement error smaller for close distances, but especially in

combination of large scenes captured by far range sensors even

smallest orientation errors have a strong effect on the overall error

metric. On the example of the lab scan taken with the Hokuyo LiDAR

one can observe that the orientation error is continuously reduced

with an increasing number of used datasets, even at the expense of

the position error.

Evidently, the runtime is directly dependent on the number of used

iterations and found point matches—which is again related to the number

of scans. Fortunately, one can see that the number of required ICP

iterations goes down when the overall number of datasets increases.

Finally, when recording the used datasets, we did not notice any

impact of the Cartesian sensor poses on the calibration result. As

such, we conclude, that the spatial position of the sensor is—with the

exception of ensuring sufficient overlap in the scan data—negligible.

It is, however, desirable to reach a complete and uniform sampling of

the manipulator's joint space. Especially extrapolations in joint ranges

not covered by the calibration data will result in errors. When closely

studying Figure 7 one can see a direct relation between the coverage

of the joint space and the calibration precision.

7 | SUMMARY

By extending the ICP algorithm to allow optimization of complex

kinematic models instead of estimating a single, rigid transformation,

a new framework for fully autonomous calibration of robot

manipulators has been presented. The shown implementation has

been evaluated on multiple real world scenes along with various

hardware configurations. Comparing the results to a dedicated

tracking system has clearly demonstrated the functionality of the

framework. More than that: The achieved precision is comparable to

the far more expensive reference system. Given the right scene, even

a Microsoft Kinect Azure consumer grade depth camera can achieve

a precision that is only few tens of millimeters off.

Having shown that self‐calibration of robotic system is possible,

multiple possible extensions to the formulated approach remain to be

investigated: As the system is already capable of undistorting scans

obtained from projections along a badly parameterized kinematic

chain, it should also be possible to include a sensor's intrinsic

parameters in the optimization. Additionally, finding formulations to

deal with less precise actuator readings, such as odometry, would

allow for further expansion of possible use cases. Finally, many

strategies for optimizing the runtime of the ICP algorithm have been

demonstrated. It is not unlikely that some of those are applicable in

the context of this calibration problem as well.

ACKNOWLEDGMENTS

This article is part of a project that has received funding from the

European Union's Horizon 2020 Research and Innovation Pro-

gramme under grant agreement No 870133. Special thanks goes to

Daniel Hettegger and Bare Luka Žagar for their continuous assistance

in the lab and their remarks to the contents and structure of this

work. This also applies to Dinesh Paudel who was a great help in the

assembly of the used robot workcell and to Michael Zechmair for his

detailed feedback on the draft of this article. The presented C++

implementation would not have been possible without many

contributors of open source libraries, most importantly Eigen

(Guennebaud & Jacob, 2010) and Ceres Solver (Agarwal et al., 2023).

Also great thanks to Salvatore Virga for publishing his iiwa_stack

(Hennersperger et al., 2017). Open Access funding enabled and

organized by Projekt DEAL.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are openly available

in Zenodo at https://zenodo.org/record/8310089, reference number

https://doi.org/10.5281/zenodo.8310089.

ORCID

Arne Peters https://orcid.org/0000-0002-0620-3154

Alois C. Knoll https://orcid.org/0000-0003-4840-076X

REFERENCES

Abderrahim, M., Khamis, A., Garrido, S. & Moreno, L. (2004) Accuracy and
calibration issues of industrial manipulators. In: Huat, L. K. (Ed.)
Industrial robotics: programming, simulation and application. Rijeka:
IntechOpen, pp. 131–146.

Agarwal, S., Mierle, K. & The Ceres Solver Team. (2023) Ceres solver.

http://ceres-solver.org
Alismail, H., Baker, L.D. & Browning, B. (2012) Automatic calibration of a

range sensor and camera system. In: 2012 Second International

Conference on 3D Imaging, Modeling, Processing, Visualization &

Transmission. IEEE, pp. 286–292.
Alismail, H. & Browning, B. (2015) Automatic calibration of spinning

actuated lidar internal parameters. Journal of Field Robotics, 32,
723–747.

Amberg, B., Romdhani, S. & Vetter, T. (2007) Optimal step nonrigid ICP
algorithms for surface registration. In: 2007 IEEE Conference on

Computer Vision and Pattern Recognition. IEEE, pp. 1–8.
American Automobile Association, Inc. (2018) New vehicle technologies

double repair bills for minor collisions. Available from: https://
newsroom.aaa.com/2018/10/new-vehicle-technologies-double-
repair-bills-minor-collisions/

Andersen, T.T., Andersen, N.A. & Ravn, O. (2014) Calibration between a
laser range scanner and an industrial robot manipulator. In: 2014
IEEE Symposium on Computational Intelligence in Control and

Automation (CICA). IEEE, pp. 1–8.
Andreff, N., Horaud, R. & Espiau, B. (1999) On‐line hand‐eye calibration.

In: Second International Conference on 3‐D Digital Imaging and

Modeling (Cat. No. PR00062). IEEE, pp. 430–436.
Antone, M. & Friedman, Y. (2007) Fully automated laser range calibration.

In: BMVC 2007—Proceedings of the British Machine Vision Conference

2007.
Atanacio‐Jiménez, G., González‐Barbosa, J.‐J., Hurtado‐Ramos, J.B.,

Ornelas‐Rodríguez, F.J., Jiménez‐Hernández, H., García‐Ramirez, T.,
et al. (2011) Lidar velodyne hdl‐64e calibration using pattern planes.
International Journal of Advanced Robotic Systems, 8, 59.

Attia, M. & Slama, Y. (2017) Efficient initial guess determination based on
3d point cloud projection for icp algorithms. In: 2017 International

Conference on High Performance Computing Simulation (HPCS), pp.
807–814.

PETERS and KNOLL | 343

https://zenodo.org/record/8310089
https://doi.org/10.5281/zenodo.8310089
https://orcid.org/0000-0002-0620-3154
https://orcid.org/0000-0003-4840-076X
http://ceres-solver.org
https://newsroom.aaa.com/2018/10/new-vehicle-technologies-double-repair-bills-minor-collisions/
https://newsroom.aaa.com/2018/10/new-vehicle-technologies-double-repair-bills-minor-collisions/
https://newsroom.aaa.com/2018/10/new-vehicle-technologies-double-repair-bills-minor-collisions/

Bennett, D. & Hollerbach, J. (1991) Autonomous calibration of single‐loop
closed kinematic chains formed by manipulators with passive
endpoint constraints. IEEE Transactions on Robotics and Automation,
7, 597–606.

Bentley, J.L. (1975) Multidimensional binary search trees used for
associative searching. Communications of the ACM, 18, 509–517.

Besl, P.J. & McKay, N.D. (1992) Method for registration of 3‐d shapes.
In: Sensor Fusion IV: Control Paradigms and Data Structures,
vol. 1611, International Society for Optics and Photonics,

pp. 586–606.
Bi, C., Fang, J., Li, K. & Guo, Z. (2017) Extrinsic calibration of a laser

displacement sensor in a non‐contact coordinate measuring
machine. Chinese Journal of Aeronautics, 30, 1528–1537. https://
www.sciencedirect.com/science/article/pii/S1000936117301255

Birbach, O., Frese, U. & Bäuml, B. (2015) Rapid calibration of a multi‐
sensorial humanoid's upper body: an automatic and self‐contained
approach. The International Journal of Robotics Research, 34,
420–436.

Brown, B.J. & Rusinkiewicz, S. (2007) Global non‐rigid alignment of 3‐d
scans. In: ACM SIGGRAPH 2007 papers, pp. 21–es.

Carlson, F.B., Johansson, R. & Robertsson, A. (2015) Six DoF eye‐to‐hand
calibration from 2d measurements using planar constraints. In: 2015
IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS). IEEE, pp. 3628–3632.
Chen, S., Liu, J., Wu, T., Huang, W., Liu, K., Yin, D., et al. (2018) Extrinsic

calibration of 2D laser rangefinders based on a mobile sphere.
Remote Sensing, 10, 1176.

Chen, Y. & Medioni, G. (1992) Object modelling by registration of multiple

range images. Image and Vision Computing, 10, 145–155.
Chen‐Gang, Li‐Tong, Chu‐Ming, Xuan, J.‐Q. & Xu, S.‐H. (2014) Review on

kinematics calibration technology of serial robots. International

Journal of Precision Engineering and Manufacturing, 15, 1759–1774.
Cheng, S., Marras, I., Zafeiriou, S. & Pantic, M. (2017) Statistical non‐rigid

icp algorithm and its application to 3d face alignment. Image and

Vision Computing, 58, 3–12.
Cop, K.P., Borges, P.V. & Dubé, R. (2018) Delight: an efficient descriptor

for global localisation using lidar intensities. In: 2018 IEEE

International Conference on Robotics and Automation (ICRA). IEEE,

pp. 3653–3660.
Cop, K.P., Peters, A., Zagar, B.L., Hettegger, D. & Knoll, A.C. (2021) New

metrics for industrial depth sensors evaluation for precise robotic
applications. In: 2021 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS) (ed. IEEE).
Crow, F. (1987) The origins of the teapot. IEEE Computer Graphics and

Applications, 7, 8–19.
Cyganek, B. & Siebert, J.P. (2011) An introduction to 3D computer vision

techniques and algorithms. Chichester: John Wiley & Sons.

Denavit, J. & Hartenberg, R.S. (1955) A kinematic notation for lower‐pair
mechanisms based on matrices. Journal of Applied Mechanics,
215–221.

Diez, Y., Roure, F., Lladó, X. & Salvi, J. (2015) A qualitative review on 3d
coarse registration methods. ACM Computing Surveys (CSUR), 47,

1–36.
Fuchs, S. & Hirzinger, G. (2008) Extrinsic and depth calibration of tof‐

cameras. In: 2008 IEEE Conference on Computer Vision and Pattern

Recognition. IEEE, pp. 1–6.
Guennebaud, G. & Jacob, B. (2010) Eigen v3. http://Eigen.tuxfamily.org

Hansard, M., Lee, S., Choi, O. & Horaud, R.P. (2012) Time‐of‐flight cameras:

principles, methods and applications. Springer Science & Business
Media.

Hartley, R.I. (1997) In defense of the eight‐point algorithm. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 19,
580–593.

Heide, N., Emter, T. & Petereit, J. (2018) Calibration of multiple 3d lidar
sensors to a common vehicle frame. In: ISR 2018; 50th International

Symposium on Robotics. VDE, pp. 1–8.
Heller, J., Havlena, M. & Pajdla, T. (2015) Globally optimal hand‐eye

calibration using branch‐and‐bound. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 38, 1027–1033.
Hennersperger, C., Fuerst, B., Virga, S., Zettinig, O., Frisch, B., Neff, T.,

et al. (2017) Towards mri‐based autonomous robotic us acquisitions:
a first feasibility study. IEEE Transactions on Medical Imaging, 36,

538–548.
Jang, J.H., Kim, S.H. & Kwak, Y.K. (2001) Calibration of geometric and

non‐geometric errors of an industrial robot. Robotica, 19, 311–321.
Judd, R. & Knasinski, A. (1990) A technique to calibrate industrial robots

with experimental verification. In: IEEE Transactions on Robotics and

Automation. vol. 6, pp. 20–30.
Kang, H.‐J., Jeong, J.‐W., Shin, S.‐W., Suh, Y.‐S. & Ro, Y.‐S. (2007)

Autonomous kinematic calibration of the robot manipulator with a
linear laser‐vision sensor. In: International Conference on Intelligent

Computing. Springer, pp. 1102–1109.
Kannala, J. & Brandt, S.S. (2006) A generic camera model and calibration

method for conventional, wide‐angle, and fish‐eye lenses. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 28,
1335–1340.

Klingensmith, M. (2016) Automatically tracking and calibrating robot arms

using SLAM techniques. Ph.D. thesis, Carnegie Mellon University,
Pittsburgh, PA.

Klingensmith, M., Sirinivasa, S.S. & Kaess, M. (2016) Articulated robot
motion for simultaneous localization and mapping (arm‐slam). IEEE

Robotics and Automation Letters, 1, 1156–1163.
Knoll, A.C. (n.d) Einrichtung und verfahren zum vermessen von mechanis-

men und ihrer stellung.
Levenberg, K. (1944) A method for the solution of certain non‐linear

problems in least squares. Quarterly of Applied Mathematics, 2,

164–168.
Li, J., Ito, A., Yaguchi, H. & Maeda, Y. (2019) Simultaneous kinematic

calibration, localization, and mapping (skclam) for industrial robot
manipulators. Advanced Robotics, 33, 1225–1234.

Li, J., Zhu, J., Guo, Y., Lin, X., Duan, K., Wang, Y., et al. (2008) Calibration of

a portable laser 3‐d scanner used by a robot and its use in
measurement. Optical Engineering, 47, 017202.

Li, M., Du, Z., Ma, X., Dong, W. & Gao, Y. (2021) A robot hand‐eye
calibration method of line laser sensor based on 3D reconstruction.

Robotics and Computer‐Integrated Manufacturing, 71, 102136.
Li, Z., Li, S. & Luo, X. (2021) An overview of calibration technology of

industrial robots. IEEE/CAA Journal of Automatica Sinica, 8, 23–36.
Lightcap, C., Hamner, S., Schmitz, T. & Banks, S. (2008) Improved

positioning accuracy of the pa10‐6ce robot with geometric and

flexibility calibration. IEEE Transactions on Robotics, 24, 452–456.
Longuet‐Higgins, H.C. (1981) A computer algorithm for reconstructing a

scene from two projections. Nature, 293, 133–135.
Ma, Y., Soatto, S., Kosecka, J. & Sastry, S.S. (2012) An invitation to 3‐d

vision: from images to geometric models, vol. 26. Springer Science &

Business Media.
Marquardt, D.W. (1963) An algorithm for least‐squares estimation of

nonlinear parameters. Journal of the Society for Industrial and Applied

Mathematics, 11, 431–441.
Maye, J., Sommer, H., Agamennoni, G., Siegwart, R. & Furgale, P. (2016)

Online self‐calibration for robotic systems. The International Journal

of Robotics Research, 35, 357–380.
Miseikis, J., Glette, K., Elle, O.J. & Torresen, J. (2016) Automatic calibration

of a robot manipulator and multi 3d camera system. In: 2016 IEEE/

SICE International Symposium on System Integration (SII). IEEE, pp.
735–741.

344 | PETERS and KNOLL

https://www.sciencedirect.com/science/article/pii/S1000936117301255
https://www.sciencedirect.com/science/article/pii/S1000936117301255
http://Eigen.tuxfamily.org

Muhammad, N. & Lacroix, S. (2010) Calibration of a rotating multi‐beam
lidar. In: 2010 IEEE/RSJ International Conference on Intelligent Robots

and Systems. IEEE, pp. 5648–5653.
Mustafa, S.K., Yang, G., Yeo, S.H. & Lin, W. (2008) Kinematic calibration of

a 7‐dof self‐calibrated modular cable‐driven robotic arm. In: 2008
IEEE International Conference on Robotics and Automation,
pp. 1288–1293.

Newcombe, R.A., Izadi, S., Hilliges, O., Molyneaux, D., Kim, D., Davison,
A.J., et al. (2011) Kinectfusion: real‐time dense surface mapping and

tracking. In: ISMAR, vol. 11, pp. 127–136.
Newell, M.E. (1975) The utilization of procedure models in digital image

synthesis. Technical report, Utah University Salt Lake City School of
Computing.

Oberländer, J., Pfotzer, L., Roennau, A. & Dillmann, R. (2015) Fast

calibration of rotating and swivelling 3‐d laser scanners exploiting
measurement redundancies. In: 2015 IEEE/RSJ International Confer-

ence on Intelligent Robots and Systems (IROS). IEEE, pp. 3038–3044.
Özgüner, O., Shkurti, T., Huang, S., Hao, R., Jackson, R.C., Newman, W.S.,

et al. (2020) Camera‐robot calibration for the da vinci robotic

surgery system. IEEE Transactions on Automation Science and

Engineering, 17, 2154–2161.
Peters, A. (2023) Autonomous robot calibration using actuated 3D sensors.

Ph.D. thesis, Technical University of Munich, Munich, Germany.

Under review.
Peters, A. & Knoll, A.C. (2023) Datasets for article “robot self‐calibration

using actuated 3d sensors”. Available from: https://zenodo.org/
record/8310089

Peters, A., Schmidt, A. & Knoll, A.C. (2020) Extrinsic calibration of an eye‐
in‐hand 2d lidar sensor in unstructured environments using ICP. IEEE
Robotics and Automation Letters, 5, 929–936.

Pomerleau, F., Breitenmoser, A., Liu, M., Colas, F. & Siegwart, R. (2012)
Noise characterization of depth sensors for surface inspections. In:
2012 2nd International Conference on Applied Robotics for the Power

Industry (CARPI). IEEE, pp. 16–21.
Pomerleau, F., Colas, F. & Siegwart, R. (2015) A review of point cloud

registration algorithms for mobile robotics. Foundations and Trends in

Robotics, 4, 1–104.
Pradeep, V., Konolige, K. & Berger, E. (2014) Calibrating a multi‐arm multi‐

sensor robot: a bundle adjustment approach. In: Experimental

Robotics. Springer, pp. 211–225.
Richardson, A., Strom, J. & Olson, E. (2013) AprilCal: assisted and

repeatable camera calibration. In: Proceedings of the IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS).
Rusinkiewicz, S. (2019) A symmetric objective function for icp. ACM

Transactions on Graphics (TOG), 38, 1–7.
Rusinkiewicz, S. & Levoy, M. (2001) Efficient variants of the ICP algorithm.

In: Proceedings third international conference on 3‐D digital imaging

and modeling. IEEE, pp. 145–152.
Rüther, M., Lenz, M. & Bischof, H. (2010) The narcissistic robot: robot

calibration using a mirror. In: 2010 11th International Conference on

Control Automation Robotics & Vision. IEEE, pp. 169–174.
Segal, A., Haehnel, D. & Thrun, S. (2009) Generalized‐ICP. In: Robotics:

science and systems, vol. 2, Seattle, WA, p. 435.
Sheehan, M., Harrison, A. & Newman, P. (2014) Automatic self‐calibration

of a full field‐of‐view 3d n‐laser scanner. In: Experimental Robotics.
Springer, pp. 165–178.

Stone, H.W. (1987) Kinematic modeling, identification, and control of robotic

manipulators, vol. 29. Springer Science & Business Media.
Strobl, K.H. & Hirzinger, G. (2006) Optimal hand‐eye calibration. In: 2006

IEEE/RSJ International Conference on Intelligent Robots and Systems.
IEEE, pp. 4647–4653.

Sturm, P. & Ramalingam, S. (2011) Camera models and fundamental

concepts used in geometric computer vision. Now Publishers Inc.

Tölgyessy, M., Dekan, M., Chovanec, L. & Hubinskỳ, P. (2021) Evaluation
of the azure kinect and its comparison to kinect v1 and kinect v2.
Sensors, 21, 413.

Tsai, R.Y. & Lenz, R.K. (1989a) Overview of a unified calibration trio for

robot eye, eye‐to‐hand, and hand calibration using 3D machine
vision. In: P.S. Schenker (Ed.) Sensor fusion: Spatial reasoning and

scene interpretation, vol. 1003, International Society for Optics and
Photonics, SPIE, pp. 202–213. https://doi.org/10.1117/12.948932

Tsai, R.Y. & Lenz, R.K. (1989b) A new technique for fully autonomous and

efficient 3d robotics hand/eye calibration. IEEE Transactions on

Robotics and Automation, 5, 345–358.
Turk, G. & Levoy, M. (1994) Zippered polygon meshes from range images.

In: Proceedings of the 21st Annual Conference on Computer Graphics

and Interactive Techniques, pp. 311–318.
Wagner, M., Heß, P., Reitelshöfer, S. & Franke, J. (2015) Self‐calibration

method for a robotic based 3d scanning system. In: IEEE International

Conference on Emerging Technologies and Factory Automation, ETFA,
vol. 2015, October.

Wang, J., Shi, F., Zhang, J. & Liu, Y. (2008) A new calibration model of

camera lens distortion. Pattern Recognition, 41, 607–615.
Wang, R., Wu, A., Chen, X. & Wang, J. (2020) A point and distance

constraint based 6r robot calibration method through machine
vision. Robotics and Computer‐Integrated Manufacturing, 65, 101959.

Wang, Y. & Solomon, J.M. (2019a) Deep closest point: learning
representations for point cloud registration. IEEE/CVF International

Conference on Computer Vision (ICCV). Los Alamitos, CA, USA: IEEE
Computer Society, pp. 3522–3531. https://doi.ieeecomputersoci
ety.org/10.1109/ICCV.2019.00362

Wang, Y. & Solomon, J.M. (2019b) PRNet: self‐supervised learning for partial‐
to‐partial registration. In: Wallach, H., Larochelle, H., Beygelzimer, A., d'
Alché‐Buc, F., Fox, E. & Garnett, R. (Eds.) Advances in Neural Information

Processing Systems. Curran Associates, Inc., vol. 32, pp. 8814–8826.
https://proceedings.neurips.cc/paper_files/paper/2019/file/

ebad33b3c9fa1d10327bb55f9e79e2f3-Paper.pdf
Wenglor Sensoric GmbH. (2020) 2D/3D profile sensor: MLSL236.
Xu, J., Hoo, J.L., Dritsas, S. & Fernandez, J.G. (2022) Hand‐eye calibration for

2d laser profile scanners using straight edges of common objects.
Robotics and Computer‐Integrated Manufacturing, 73, 102221. https://

www.sciencedirect.com/science/article/pii/S0736584521001046
Yamazoe, H., Habe, H., Mitsugami, I. & Yagi, Y. (2012) Easy depth sensor

calibration. In: Proceedings of the 21st International Conference on

Pattern Recognition (ICPR2012). IEEE, pp. 465–468.
Yin, S., Ren, Y., Guo, Y., Zhu, J., Yang, S. & Ye, S. (2014) Development and

calibration of an integrated 3d scanning system for high‐accuracy
large‐scale metrology. Measurement, 54, 65–76. https://www.
sciencedirect.com/science/article/pii/S0263224114001675

Yu, C. & Xi, J. (2018) Simultaneous and on‐line calibration of a robot‐
based inspecting system. Robotics and Computer‐Integrated
Manufacturing, 49, 349–360.

Yu, H., Li, F., Saleh, M., Busam, B. & Ilic, S. (2021) CoFiNet: reliable coarse‐to‐
fine correspondences for robust pointcloud registration. In: Ranzato, M.,
Beygelzimer, A., Dauphin, Y., Liang, P.S. & Wortman Vaughan, J. (Eds.)

Advances in Neural Information Processing Systems. Curran Associates,

Inc., vol. 34, pp. 23872–23884. https://proceedings.neurips.cc/paper_
files/paper/2021/file/c85b2ea9a678e74fdc8bafe5d0707c31-
Paper.pdf

Zhang, S. (2018) High‐speed 3d shape measurement with structured light

methods: a review. Optics and Lasers in Engineering, 106, 119–131.
Zhang, Z. (2000) A flexible new technique for camera calibration. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 22, 1330–1334.
Zhang, Z., Zhang, L. & Yang, G.‐Z. (2017) A computationally efficient

method for hand‐eye calibration. International Journal of Computer

Assisted Radiology and Surgery, 12, 1775–1787.

PETERS and KNOLL | 345

https://zenodo.org/record/8310089
https://zenodo.org/record/8310089
https://doi.org/10.1117/12.948932
https://doi.ieeecomputersociety.org/10.1109/ICCV.2019.00362
https://doi.ieeecomputersociety.org/10.1109/ICCV.2019.00362
https://proceedings.neurips.cc/paper_files/paper/2019/file/ebad33b3c9fa1d10327bb55f9e79e2f3-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/ebad33b3c9fa1d10327bb55f9e79e2f3-Paper.pdf
https://www.sciencedirect.com/science/article/pii/S0736584521001046
https://www.sciencedirect.com/science/article/pii/S0736584521001046
https://www.sciencedirect.com/science/article/pii/S0263224114001675
https://www.sciencedirect.com/science/article/pii/S0263224114001675
https://proceedings.neurips.cc/paper_files/paper/2021/file/c85b2ea9a678e74fdc8bafe5d0707c31-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/c85b2ea9a678e74fdc8bafe5d0707c31-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/c85b2ea9a678e74fdc8bafe5d0707c31-Paper.pdf

Zhuang, H., Roth, Z.S. & Hamano, F. (1992) A complete and parametrically
continuous kinematic model for robot manipulators. In: IEEE

Transactions on Robotics and Automation, vol. 8, IEEE, pp. 451–463.
Zhuang, H., Wang, L.K. & Roth, Z.S. (1993) Error‐model‐based robot

calibration using a modified CPC model. Robotics and Computer‐
integrated Manufacturing, 10, 287–299.

How to cite this article: Peters, A. & Knoll, A. C. (2024) Robot

self‐calibration using actuated 3D sensors. Journal of Field

Robotics, 41, 327–346. https://doi.org/10.1002/rob.22259

346 | PETERS and KNOLL

https://doi.org/10.1002/rob.22259

	Robot self-calibration using actuated 3D sensors
	1 INTRODUCTION
	2 STRUCTURE
	3 FUNDAMENTALS
	4 RELATED WORK
	4.1 Point cloud registration
	4.2 Calibration
	4.2.1 Sensor calibration
	4.2.2 Eye-to-hand calibration
	4.2.3 Robot calibration

	5 APPROACH
	5.1 Data structure and notation
	5.2 Parameter modeling
	5.3 Normalization
	5.4 ICP
	5.4.1 Projection and validation
	5.4.2 Point matching
	5.4.3 Match validation
	5.4.4 Cost function

	6 EVALUATION
	6.1 Experimental setup
	6.2 Reference calibration
	6.3 Results

	7 SUMMARY
	ACKNOWLEDGMENTS
	DATA AVAILABILITY STATEMENT
	ORCID
	REFERENCES

