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Battery cell production is a key contributor to achieving a
net-zero future. A comprehensive understanding of the various
process steps and their interdependencies is essential for
speeding up the commercialization of newly developed materi-
als and optimizing production processes. While several ap-
proaches have been employed to analyze and understand the
complexity of the process chain and its interdependencies –
ranging from expert- and simulation-based to data-driven – the
latter holds significant potential for real-time application. This is
particularly relevant for inline process control and optimization.
To streamline the development and implementation of
data-driven models, a holistic framework that encompasses all
necessary steps – from identification of relevant parameters and

generation of data to development of models – is imperative.
This article aims to address this objective by presenting a
comprehensive and systematic methodology, demonstrated for
efficient cross-process analysis in electrode manufacturing.
Through the combined utilization of design of experiments
methods, data-driven models, and explainable machine learn-
ing methods, the interdependencies between production
parameters and the physical, mechanical, and electrochemical
characteristics of the electrodes were uncovered. These action-
able insights are essential for enabling informed
decision-making, facilitating the selection of appropriate proc-
ess parameters, and ultimately optimizing the production
process.

Introduction

Over the last decade, substantial progress has been made
within the lithium-ion battery field. These advancements have
been focused on both materials and production, with the
overarching goal of improving quality and reducing cost.[1]

However, there are still certain challenges that need to be
addressed to ensure the widespread adoption of electric
vehicles in the market and achieve the vision of a sustainable
society.

From the production perspective, one of the key challenges
lies in the complexity of the process chain, resulting from
multiple interrelated variables.[2] Given the intricate nature of
the process chain and its numerous interdependencies, the
causality between manufacturing parameters and the resulting
performance of both the electrode and the final cell remains
largely unknown. A comprehensive understanding of process
steps, the parameters, their interactions, and aggregated effects
on the intermediate and final product quality provides the
foundation for event-driven decisions and pursuing holistic

optimization strategies.[3] Within battery cell production, elec-
trode manufacturing is of particular importance, as the majority
of cell properties are established in this phase.[4]

With the rise of digitalization and the contemporary
industrial revolution, data-driven approaches have become the
driving force for a paradigm shift in tackling the complexity of
the process chain and gaining an in-depth process
understanding.[5,6] While several studies have showcased the
potential of data-driven approaches in battery cell production
over the last five years,[7–11] there are still certain aspects that
need to be addressed to accelerate the development and
adoption of these methods, ultimately paving the way toward
the realization of a smart battery cell manufacturing vision. In a
previous publication, a comprehensive mapping study was
conducted, outlining the process steps and interdependencies
analyzed using data-driven models in battery cell production.[6]

The study highlights both the domain-specific and overarching
aspects that have received limited attention from the battery
production research community. The results indicate that
certain process steps, such as drying in electrode manufactur-
ing, have not been sufficiently investigated, specifically at the
pilot scale level. Moreover, most studies focused on individual
process steps, with only a limited number of articles exploring
cross-process effects.[6] In the case of the latter, the effects have
not been restricted to immediate consecutive process steps; for
instance, some studies analyzed the interdependencies be-
tween the coating and calendering processes, under the
premise that the effect of the intervening process, in this case,
the drying step, can be effectively isolated or disregarded.
Overlooking the impacts of an intervening process when
evaluating cross-process effects can induce a certain degree of

[a] S. Haghi, J. Keilhofer, N. Schwarz, P. He, Prof. Dr. R. Daub
Institute for Machine Tools and Industrial Management
Technical University of Munich
Boltzmannstr. 15, Garching 85748 (Germany)
E-mail: sajedeh.haghi@iwb.tum.de

Supporting information for this article is available on the WWW under
https://doi.org/10.1002/batt.202300457

© 2023 The Authors. Batteries & Supercaps published by Wiley-VCH GmbH.
This is an open access article under the terms of the Creative Commons
Attribution License, which permits use, distribution and reproduction in any
medium, provided the original work is properly cited.

Wiley VCH Donnerstag, 01.02.2024

2402 / 331562 [S. 146/163] 1

Batteries & Supercaps 2024, 7, e202300457 (1 of 18) © 2023 The Authors. Batteries & Supercaps published by Wiley-VCH GmbH

Batteries & Supercaps

www.batteries-supercaps.org

Research Article
doi.org/10.1002/batt.202300457

http://orcid.org/0000-0002-9841-9963
https://doi.org/10.1002/batt.202300457


uncertainty in the developed models. This is especially the case
in electrode manufacturing, where significant interdependen-
cies of subsequent processes are apparent. From the material
system perspective, the majority of the studies have focused on
cathodes.[6]

Lombardo et al.[5] reviewed the application of machine
learning (ML) methods in battery research, covering material
characterization, manufacturing, and diagnosis. The authors
have highlighted the importance of the first step toward the
development of data-driven models, specifically the selection of
parameters to be analyzed, suitable acquisition methods, data
quality, and veracity.[5] In a preceding publication, Haghi

et al.[12] introduced a two-step approach, based on a literature
review and expert insights, to evaluate parameters concerning
their relevance in electrode manufacturing. The results were
based on the assessment of two dimensions: the importance of
the parameter, evaluated using the number of interdependen-
cies and their impact on the intermediate or final product
quality, and the degree of complexity associated with the
digitalization of the parameter. In a subsequent work,[13] an
overview of possible acquisition methods for the character-
ization of intermediate products in electrode manufacturing
was presented. The intermediate products serve as quality
indicators for both the set process parameters and the final
product quality. Building upon the insights provided in the
previous publications,[6,12,13] this article aims to proceed with the
steps toward data generation and the development of data-
driven models.

Design of Experiments (DoE) can be considered as a
complementary methodology for a comprehensive process
analysis using data-driven models.[14] The DoE methods facilitate
efficient analysis by generating an informative, statistically
reliable dataset while minimizing the experimental efforts.[5,14] In
a comprehensive review, Román-Ramírez & Marco[15] provided
an overview of DoE methods, their objectives, and their
application in lithium-ion battery research. For optimization
studies and predictive models, the response surface method-
ology (RSM) is suggested.[15,16] Among various RSM methods,
the I-optimal design stands out, particularly for prediction
purposes, as it provides a comprehensive understanding of the

input variables’ impacts on the responses, both quantitatively
and qualitatively. Additionally, the method can pinpoint the
optimum regions and settings, while minimizing the average
prediction variance across the experimental space.[15,17,18] De-
spite these distinct benefits, this method has not been widely
adopted in battery cell production research, particularly in
combination with data-driven models.

This article seeks to address the existing research gaps by
demonstrating the application of RSM methods for efficient
data generation, development of data-driven models and
revealing the interdependencies between various process steps.
The remainder of this article is structured as follows. The next
section provides an overview of the systematic approach
adopted for DoE. This is followed by a detailed description of
the experimental procedures involved in the production and
characterization of the electrodes. The focus then shifts to data
preprocessing and analysis, while the results derived from the
developed data-driven models are presented in the consequent
section. Finally, concluding remarks and an outlook on further
research activities are provided.

Systematic Design of Experiments

Considering the existing literature investigating the formulation
aspect,[6] this study narrows its focus to a single formulation and
slurry, analyzing the effects of the coating, drying, and
calendering processes. The results from the previous
publication[12] were adopted to select the quality-relevant
parameters to be considered in the DoE. Given the technology
available at the pilot production line of the Institute for Machine
Tools and Industrial Management at the Technical University of
Munich – specifically, a roll-to-roll doctor blade coating machine
– the list of parameters was adjusted. Table 1 provides an
overview of all intermediate product parameters evaluated as
highly important, in both the literature-based approach and the
expert interviews,[12] and their complexity regarding digital-
ization.

While the topic of defects in both the coating process –
primarily caused by slot-die coating or inhomogeneous slurry –

Table 1. Overview of quality-relevant product parameters and their complexity concerning digitalization based on the findings of Ref. [12].

Process Product parameter Importance Complexity

Coating Wet film thickness High Low

Quality of wet film High High

Drying Adhesion High High

Electrode thickness High Low

Mass loading High Low

Porosity High High

Quality of electrode (defects) High High

Calendering Electrode thickness High Low

Porosity High High

Adhesion High High

Quality of electrode (defects) High High
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and the calendering process is noteworthy, these parameters
were not considered for the analysis in the DoE. This decision
was driven by various factors, including the need to limit the
number of experiments to underscore the benefits of DoE for
cross-process analysis, the available coating technology using a
doctor blade, along comprehensive reviews available in the
literature concerning defects.[19,20] To ensure an exhaustive
cross-process analysis with independent input variables, the
electrode porosity after calendering and the mass loading were
chosen as input variables, eliminating the third dependent
variable, the thickness. Due to the complexity involved in the
digitalization of adhesion, with only offline characterization
methods available,[13] and the difficulty in defining appropriate
levels for the DoE, the temperature of the second dryer was
chosen as an influential factor impacting adhesion.[21,22] Given
the linear correlation between the wet film thickness and the
mass loading, only the latter was considered a relevant product
parameter representing the coating and drying process. Table 2
summarizes the considered factors and their respective ranges
for the I-optimal DoE. The selected ranges for mass loading and
porosity align with those commonly explored in the literature,
while the range for the drying temperature was chosen based
on the domain know-how.

The experimental plan was generated with the help of the
Design-Expert® software. Figure 1 shows the experimental space
consisting of 17 different configurations. The Variance Inflation
Factor (VIF) was used to confirm the independency of the
analyzed parameters and ensure that no substantial multi-
collinearity exists.[23] It should be noted that for a conventional
full factorial design, based on the specified factors and levels, a
total of 64 experimental runs would be needed. By leveraging
the DoE optimized methods, this requirement can be drastically
reduced to 17 runs. This approach not only streamlines a
holistic analysis but also significantly reduces the cost and
experimental efforts.

Experimental Section
Following the generated experimental plan, 17 electrode config-
urations were produced and characterized. Though the primary
focus of this study was on the anode manufacturing, it was
essential to replicate genuine anode behavior at the cell level. To
ensure this, corresponding cathodes were manufactured with an
N :P ratio of 1.2 and a porosity of 30%. The cathodes were
subsequently used to assemble full CR2032 coin cells, conduct the
electrochemical characterization and evaluate the overall cell

performance. All the models developed were based on the
calendered electrodes. However, for a comprehensive understand-
ing, the uncalendared electrodes, consisting of 13 distinct mass
loadings and drying temperatures, were additionally characterized
using the adhesion strength test and electrochemical impedance
spectroscopy. The results are presented in the data preprocessing
and analysis section.

Electrode Manufacturing

Slurry Mixing

To prepare the anode slurry, a dry mixture consisting of graphite
(SMGA5, Showa Denko, Japan) and carbon black (Super C-65,
Imerys, Switzerland) was first blended at 1400 rpm for 1 min using
a centrifugal mixer (Speedmixer DAC 1100.2 VAC-P, Hauschild,
Germany). Separately, distilled water and sodium carboxymethyl
cellulose (CMC, MW � 250; 000 g mol, Merck, Germany) were pre-
mixed at 2000 rpm for 40 min using a disperser (FM, 10-SIP, VMA-
Getzmann, Germany). Subsequently, the dry mixture was added to
the water and CMC blend in five equal portions, with dispersion
continued for an additional 45 min at 2000 rpm. Lastly,
styrene� butadiene rubber (SBR, Zeon, Japan) was added and mixed
in for 20 minutes at 500 rpm.

For cathode slurry, lithium� nickel� cobalt� manganese-oxide (HED™
NCM-622 DT011, BASF, Germany), carbon black (Super C-65, Imerys,
Switzerland), and conductive graphite (C-Nergy SFG6L, Imerys,
Switzerland) were initially blended using the centrifugal mixer at
1400 rpm for 1 min. Concurrently, N-Methyl-2-pyrrolidone (NMP
328634, Merck, Germany) and polyvinylidene difluoride (PVDF Solef
5130, Solvay, Belgium) were blended using the disperser for 40 min
at 2000 rpm. Following this, the pre-blended NCM with carbon
black and conductive graphite was added in five equal portions to
the NMP and PVDF mixture and dispersed for an additional 45 min
at 2000 rpm. Both slurries were then degassed in the centrifugal
mixer at an absolute pressure of 250 mbar, running at 600 rpm for
5 min. The rheological characteristics of the produced slurries were
determined using a rheometer (Kinexus pro, Malvern Panalytical,
Germany) with a cone-plate configuration, measuring the viscosity

Table 2. Overview of considered parameters as factors and their range for
the I-optimal DoE.

Process Factor Range

Coating Mass loading* [mg/cm2] 8.2–11.2

Drying Temperature of the second dryer [°C] 50–65

Calendering Porosity [%] 25–40

* Range reported for Active Material (AM)

Figure 1. The experimental space designed using the I-optimal method,
consisting of 17 different electrode configurations with variations in porosity,
active mass loading and drying temperature.

Wiley VCH Donnerstag, 01.02.2024

2402 / 331562 [S. 148/163] 1

Batteries & Supercaps 2024, 7, e202300457 (3 of 18) © 2023 The Authors. Batteries & Supercaps published by Wiley-VCH GmbH

Batteries & Supercaps
Research Article
doi.org/10.1002/batt.202300457



versus the shear rate. At 25 °C and a shear rate of 100 s� 1, the anode
slurry exhibited a viscosity of 2.6 Pa·s, while the viscosity of the
cathode slurry was 3.6 Pa·s. Table 3 summarizes the formulations
and relevant information for both anode and cathode slurries.

Coating and Drying

The anode slurry was continuously coated on a copper current
collector foil with a thickness of 10 μm (SE� Cu58, Schlenk,
Germany) using a roll-to-roll coating machine equipped with a
doctor blade coating technology and three infrared dryers (BC50,
Coatema, Germany). The temperature of the second dryer was
varied, as described in the DoE section. The temperatures for the
first and third dryers were consistently set at 50 °C and 65 °C,
respectively with a coating speed of 0.6 m/min. The wet film mass
loading, immediately after coating, and the dry film mass loading
were measured inline using ultrasound systems (CFS400-USMX200
and OF400-USMX200, MeSys, Germany). The electrodes were
produced based on the target mass loading with a tolerance of 5%.
In addition to the inline mass loading measurements, the thickness
of the produced electrodes was measured based on samples using
a digital micrometer (40 EWRi, Mahr, Germany).

The cathode slurry was coated on an aluminum current collector
foil with a thickness of 15 μm (AA1100/H19, Speira, Germany). The
drying temperatures of the three dryers were set to 60 °C, 80 °C and
100 °C, respectively. In correspondence with the defined mass
loading based on the active material for the anodes, as detailed in
the DoE section, four different cathodes with active mass loadings
of 14.27, 16.01, 17.75, and 19.49 mg/cm2 were produced. The first
two configurations, with relatively lower mass loadings, were dried
at a faster speed of 0.7 m/min speed, while the last two
configurations were dried at 0.5 m/min. The rationale for choosing
different drying speeds for these cathode configurations stems
from the aim of fine-tuning the drying process and ensuring a
consistent electrode quality across varying mass loadings.

Calendering

The produced electrodes were subsequently trimmed to A4-sized
sheets before calendering and characterized based on the mass
and thickness. The mass was measured using an analytical balance
(AX26 Comparator, Mettler Toledo, Switzerland). The porosity e was
calculated based on the bulk density of the electrode and its
component following the equation below:

e ¼ 1 �
1bulk
1theor:

¼ 1 �
mcoating

Acoating : dcoating : 1theor:
(1)

In Equation (1), the term 1bulk denotes the electrode’s bulk density,
which is derived from its mass mcoating and volume, calculated using
the electrode’s area Acoating and thickness dcoating. 1theor: represents
the theoretical density of the electrode’s components (see Table 3).
Based on Equation (1) and the target porosities defined in the
experimental plan, the target electrode thicknesses for different
configurations were calculated. In the case of the cathodes, the
target porosity was set to 30%. To achieve the specified
thicknesses, the electrodes were processed using a calender with a
roll diameter of 400 mm (EA102, Coatema, Germany). The calender-
ing gap was primarily used to achieve the target electrode
thickness, while the roll pressure was adjusted as needed for
fine-tuning the process. A constant web speed of 1 m/min was
chosen for the calendering. The anodes were calendered at room
temperature, whereas for the cathodes the rolls were heated to
100 °C.

Coin Cell Assembly

Symmetric and full coin cells were used for electrochemical
characterization of the produced electrodes. The electrodes,
separator, and cell components were dried at 120 °C for at least
12 hours in a vacuum dryer (Goldbrunn 1450, Goldbrunn, Germany)
to remove residual moisture. The coin cells were assembled in a dry
room with a minimum dew point of � 40 °C. For the full coin cells, a
15 mm diameter anode was separated from a 14 mm diameter
cathode using a 16 mm diameter glass fiber separator (Type 691,
VWR, USA). The electrodes were assembled with metal spacers,
with a total thickness of 1.1 mm. For the symmetric cells, the total
thickness of the spacers was 1.5 mm. For the full coin cells, 100 μL
electrolyte (LP572, BASF, Germany) was used. This electrolyte is a
blend of ethylene carbonate (EC) and ethyl methyl carbonate (EMC)
at a mixing ratio of 3 : 7, supplemented with 1 M lithium hexafluor-
ophosphate (LiPF6) conductive salt and 2 wt% vinylene carbonate
(VC). For symmetric cells, 100 μL of a non-intercalating electrolyte
was used to ensure blocking conditions. This electrolyte comprises
0.01 M tetrabutylammonium perchlorate dissolved in an EC:EMC
mixture at a volume fraction of 3 :7.[24] An electrolyte conductivity
of 350 μS/cm was measured using a laboratory conductivity sensor
(InLab, Mettler Toledo, Switzerland). To ensure that the measure-
ment is representative of the symmetric cell condition, both the
sensor and the non-intercalating electrolyte were pre-conditioned
in a heating chamber at 25 °C for 3 hours prior to the measure-
ment.

Mechanical Characterization

The electrode’s mass loading and thickness were measured as
metrics representing the electrode’s physical characteristics. Addi-
tionally, the produced anodes were characterized mechanically
through adhesion strength using a pull-off test performed on a
material testing machine (Z050, ZwickRoell, Germany). The test was
largely based on the procedure presented by Haselrieder et al.,[25]

with certain adjustment described in the following. A double-sided
adhesive tape (5696 extra strong, Tesa SE, Germany) was used for
the procedure. To achieve a uniform areal force distribution, a
round specimen was chosen over a rectangular one. The size of the
specimen and the compression stress were adjusted to ensure a
high degree of removal (see Table 4).

Electrochemical Characterization

The symmetric cells were used to investigate the ionic resistance
and tortuosity of the anodes with the help of electrochemical

Table 3. Summary of formulations and relevant information for the
produced electrodes.

Anode Cathode

Active material Graphite
94 wt%

NCM622
95.5 wt%

Conductive additive C65
1 wt%

C65 & SFG6L
2.25 wt% & 0.75 wt%

Binder additive CMC & SBR
2 wt% & 3 wt%

PVDF
1.5 wt%

Theoretical density 2.158 g/cm3 4.447 g/cm3

Solid content 52 wt% 78 wt%

Specific capacity 355 mAh/g 170 mAh/g
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impedance spectroscopy (EIS).[26,27] The full coin cells went through
formation and discharge rate capability test.

Potentiostatic Electrochemical Impedance Spectroscopy

The EIS measurements were conducted at a temperature of 25 °C
using a potentiostat (VSP-3e, BioLogic, France). Across a frequency
range of 10 kHz to 100 mHz, ten logarithmically spaced measure-
ment points per decade were recorded. During the tests, an
alternating excitation voltage with an amplitude of 20 mV around
the open circuit voltage (OCV) was applied.

Formation and Discharge Rate Capability Test

The formation and cell rate capability test were conducted at 25 °C
in a battery test system (CTS, BaSyTec, Germany). Cell capacities
were determined based on the last discharge cycle during the
formation process. The formation began with two charge and
discharge cycles at a constant current (CC) of 0.2, ranging between
2.9 V and 4.2 V. The third cycle used a CC charge at 0.2 C,
transitioning to a constant voltage (CV) charge at 4.2 V until the
current fell below 0.02 C. The final discharge cycle was carried out
at a CC of 0.2 C. For the discharge rate capability test, cells were
discharged at varying CC-rates, from 0.1 C up to 5 C, until the
voltage decreased to 2.9 V. The detailed protocols are available in
the supplementary section.

Data Preprocessing and Analysis

During the coating and drying process, process and intermedi-
ate product parameters, such as coating gap, wet and dry mass
loading, were collected inline. Additionally, the electrode thick-
ness was measured offline and documented based on samples.
Given the process’s nature, with varied sensors located at
specific positions over a span of approximately 6 meters, data
points had to be systematically mapped. For this purpose, a
script was developed to automatically map the coating gap to
its corresponding wet mass loading, dry mass loading, and
thickness, considering the distance between the sensors and
the coating speed. It should be noted that all 13 different
configurations were coated on a single coil. The results addi-
tionally included segments of the coated coil that were dried at
specific temperatures according to the experimental plan.

Multiple samples for each configuration, including the non-
calendered electrodes, were used for the adhesion measure-
ment. The recorded data was cleaned, and outliers, i. e. values
falling outside of �1.5 standard deviations from the mean

value, were excluded. The final dataset included 51 measure-
ments for the calendered electrodes and 39 for the uncalen-
dered ones. Figure 2 presents a contour plot, generated using
Origin software, visualizing the adhesion response in relation to
both mass loading and drying temperature for the uncalen-
dered electrodes. At the lowest mass loading of 8.2 mg/cm2, a
low temperature correlates with high adhesion strength. For
this mass loading, changes in temperature above 55 °C did not
significantly affect the adhesion strength. This might be
attributed to the pore emptying phase[22] occurring in the first
dryer for thinner electrodes in the conducted study. For
intermediate mass loadings, the data suggests a local optimum
for drying temperature, falling between 55 to 60 °C. Notably,
the combination of the highest mass loading and the highest
temperature leads to poor adhesion, which is consistent with
the findings from the literature.[21]

The data collected from the EIS measurements were
analyzed and fitted to a Transmission Line Model (TLM) under
blocking conditions using the impedance.py package,[28] as
reported by Landesfeind et al.[27,29] In the first step, the Nyquist
plots of the impedance spectra were visually inspected to
identify measurements that did not align with the TLM model.
Subsequently, outliers were identified based on the values of
ionic resistance, using the same approach described for the
adhesion data. The symmetric cells were produced for both
calendered and uncalendered electrodes. Following data clean-
ing, 86 data points were retained for the calendered electrodes
and 51 data points for the 13 different configurations of
uncalendered electrodes, resulting in a total of 137 data points.
Based on the literature, it was expected that calendaring has a
significant influence on the contact resistance. A pre-analysis of
the Nyquist plots revealed an increased contact resistance
appearing in the high-frequency range for uncalendared
electrodes.[30] Hence, the frequency range for the analysis of the
uncalendered electrodes was limited to 1 kHz–100 mHz. Within
this range, the imaginary contribution of the contact resistance
vanishes, allowing a more accurate estimation of the ionic
resistance. Figure 3 provides an overview of the ionic resistance

Table 4. Relevant parameters for adhesion strength measurements.

Parameter Value

Data acquisition rate [Hz] 2000

Compression stress [kPa] 1500

Specimen size [mm2] 50.26

Dwell time [s] 30

Compression velocity [mm/min] 0.75

Pull-off velocity [mm/min] 100

Figure 2. Contour plot: Adhesion response to mass loading and drying
temperature for uncalendered electrodes.
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of the produced anodes. The data indicates that a higher mass
loading leads to an increased ionic resistance. Moreover, a low
porosity results in greater ionic resistance. When considering
configurations with identical mass loadings and porosities but
varying drying temperatures, ionic resistance decreases as the
temperature rises. This effect is particularly noticeable for
anodes with higher mass loading, evident in both calendered
and uncalendered electrodes. While the effects of mass loading
and porosity in combination with the ionic resistance are
relatively well-known in the literature, the impact of drying
temperature has received limited attention. Morasch et al.[31]

explored binder gradients resulting from extreme drying
temperatures, ranging from room temperature to 125 °C, on a
laboratory scale for NMP-based graphite anodes. Utilizing EIS,
their study demonstrated that electrodes with significant binder
migration exhibited an increased ionic resistivity toward the
separator side. This observation is in contrast with the findings
from the experimental investigations outlined in this study.
Based on the adhesion analysis, as presented in the data
preprocessing and analysis section, it should be noted that
extreme binder migrations were not identified. However,
elevated temperatures in combination with mass loading can
impact the microstructure of the electrodes,[32] potentially
leading to variations in pore structure. As a result, reduced ionic
resistance was observed for electrodes dried at higher temper-
atures, a trend consistent across both calendered and uncalen-
dared variants. Based on the ionic resistance data, the tortuosity
t can be calculated using the following equation, as proposed
by Landesfeind et al.:[27]

t ¼
RionAke

2d (2)

In this equation, the ionic resistance Rion is halved to
account for the impedance introduced by the two identical
electrodes in the symmetric cells. The term A represents the

cross-sectional area of the electrodes, while d and e denote the
average values for the thickness and porosity of the identical
electrodes, respectively. The term k represents the electrolyte
conductivity.

For the electrochemical characterization conducted using
full cells, a total of 51 data points was considered. The discharge
capacities from the second cycle at various C-rates were
selected for the model development. Additionally, the gravi-
metric capacity was determined based on the active mass of
the electrode.

Prediction of Product Properties Using
Data-Driven Models

In this section, the results of the developed data-driven models
based on the target variables are presented. Given the size of
the dataset, Random Forest (RF) and Support Vector Machine
(SVM), as the most commonly used algorithms in battery cell
production,[6] were chosen. Considering the potential overfitting
issues associated with RF, the eXtreme Gradient Boosting
(XGBoost) modeling technique was adopted in certain cases. In
addition to these advanced algorithms, the potentials of multi-
ple linear regression (MLR) and polynomial regression were also
investigated. A detailed explanation of the working principles of
various ML algorithms and methods is beyond the scope of this
article. For comprehensive descriptions, numerous publications
and handbooks such as Refs. [5, 33–36] are suggested.

To provide insights into the complex models and uncover
the multiple interdependencies, eXplainable Machine Learning
(XML) techniques[37] were adopted. XML methods provide
several compelling advantages. Primarily, they can foster
increased trust in complex models, often referred to as black
box models due to their opaque nature. By deploying XML
methods, these black box models are converted into glass box

Figure 3. Ionic resistance based on impedance spectroscopy data: a) calendered electrodes, b) uncalendered electrodes.
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models, clarifying the rationale behind their decision-making
processes. Moreover, the XML methods offer actionable in-
sights, providing guidelines on how adjustments can be made
based on the significance of specific parameters.[38,39] In a recent
publication, Faraji-Niri et al.[40] reviewed the application of
XML in the battery value chain. While the topic of ML has
received increased attention over the last five years, the novel
XML methods remain relatively unexplored, particularly in
battery production.

In this article, the Feature Importance based on the Mean
Decrease Impurity (MDI) as one of the common XML methods
for tree-based models was adopted.[41–43] This method calculates
the significance of each feature by evaluating the total
reduction in the model‘s uncertainty or node impurity. This
value is then weighted by the frequency with which data
samples arrive at the respective decision point.[44] Additionally,
the SHapley Additive exPlanations (SHAP) values were used to
provide instance-level explanations.[45] Originating from cooper-
ative game theory, SHAP is a method used to explain ML
models by assigning an importance value, known as SHAP
value, to each feature in the model. This method is known as a
powerful tool for interpreting complex models, ensuring
accuracy, robustness, and consistency in the explanations.[46]

While the Feature Importance method using the MDI quantifies
the overall relevance of the features, SHAP values not only
indicate the relevance but also the direction in which a feature
impacts the target variable.

For model development, all input features were normalized
to ensure balanced variance and efficient training. In case of the
SVM, given the working principle of the algorithm, the target
variable was also normalized.[47] This is particularly relevant
when the target variable encompasses a broad range, for
example in case of the ionic resistance. The SVM aims to
identify a hyperplane passing through as many data points as
possible within a certain minimized distance. Without normal-
ization, variations in data scales can distort this distance and
potentially impact the model’s accuracy. Further details regard-
ing the selected hyperparameters for the developed models
can be found in the supplementary information. The dataset
was divided into an 80–20 split for training and testing,
respectively, with the test data points randomly selected. When
comparing different models aimed at predicting a specific
target feature, the same test dataset was consistently employed
to ensure the comparability. All data preprocessing, model
development, and evaluation tasks were conducted using
Python 3.8, a powerful programming language widely adopted
in the fields of ML and data science. Specifically, the following
libraries and packages were utilized: pandas, numpy, matplotlib,
seaborn, Scikit-learn, xgboost, and shap.

For the evaluation of the developed models, three metrics
were adopted. The r-squared (R2), also known as the coefficient
of determination, quantifies how well the model explains the
variance in the input variables.[48] With a range between 0 and
1, a value closer to 1 indicates a more accurate representation
of the data by the model. To ensure the generalization of the
model, the R2 was reported for both training and test dataset.
The Root Mean Squared Error (RMSE) is another widely used

performance metric in statistics.[48] It measures the average
magnitude of the errors between predicted and actual values,
providing insight into the model‘s overall accuracy. A lower
RMSE indicates a closer fit of the predicted values to the actual
ones, while a higher RMSE suggests larger discrepancies
between the predictions and true values. Additionally, it is
important to examine the relationship between the Mean
Squared Error (MSE) for both the training and test datasets.
Ideally, these values should be of a similar magnitude.[36] A
significantly larger MSE for the test dataset compared to the
training dataset suggests overfitting, implying that while the
model performs well on the training data, it may not generalize
effectively to new, unseen data. The squared term places
emphasis on larger errors, amplifying their impact.

In addition to the evaluation metrics, the parity plot was
utilized as a visualization tool to showcase the performance of
the developed models. The x-axis depicts the actual values or
ground truth, and the y-axis displays the model’s predicted
values. In an ideal scenario with a perfect prediction, all data
points would align with the 45° diagonal line.

The model development primarily revolved around three
scenarios. In the first scenario, the input variables consisted of
the sample-specific product parameters from the DoE and the
drying temperature. The second one employed the correspond-
ing process parameters, specifically coating gap, compaction
rate, and drying temperature, as input variables. For more
complex target values, such as adhesion, a third scenario was
defined, incorporating both process parameters and intermedi-
ate product parameters collected during the processes. In the
field of ML, particularly XML, it is crucial to ensure that input
variables are independent. This requirement allows the model
to differentiate between the distinct effects and evaluate the
significance of each feature and its impact on the target
variable. While the first two scenarios fulfill this aspect, due to
the applied DoE, the third one does not. It is evident that in the
last scenario the intermediate product parameters, such as wet
mass loading, correlate with the corresponding process param-
eters, in this case, the coating gap. Hence, for this scenario, the
XML methods were not adopted. It should be noted that the
compaction rate was selected as a substitute for the calender-
ing gap as a process parameter. The choice was made due to
the fact that the calendering gap directly correlates with the
mass loading and, subsequently, the coating gap. Based on the
electrode thickness after drying duncal: and after calendering dcal:,
the compaction rate P is calculated as follows:[49]

P ¼ 1 �
dcal:
duncal:

(3)

Figure 4 showcases the correlation matrices, which include
the coefficients for the input variables considered in the first
two scenarios. Given that all correlation coefficients are below
0.3, the input variables exhibit weak correlations,[50] suggesting
that they are suitable for the model development, application
of XML methods and analysis of the interdependencies.
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Electrode Thickness and Mass Loading

Through continuous collection of data during the coating and
drying processes, a dataset consisting of 34 data points derived
from average values was obtained. This dataset was used to
investigate the possibility of predicting electrode’s physical
properties, specifically thickness and mass loading after drying.

In case of the electrode thickness, based on the input
variable of coating gap, wet mass loading and drying temper-
ature, all four developed models showed strong efficacy, with
high R2 values for both training and test dataset. The results are
visualized in Figure 5(a). In case of RF, a slight overfitting can be

recognized, considering the difference between training and
test performance. The correlations observed in the coating and
drying processes using the doctor blade technology appears to
be of a linear nature. Consequently, simpler models like MLR
can effectively model the process and predict the target values.

The same input variables were used to predict the mass
loading. Generally, the models showed a slightly better
performance, compared to electrode thickness. This can be
attributed to the impact of drying temperature on the electro-
de‘s microstructure and, subsequently, its thickness, while the
mass loading remains largely unaffected. It is important to note
that, when excluding the wet mass loading as input variable,
the models demonstrated marginally weaker performance, with
an R2 value of approximately 0.9 for the MLR. This variation can
be attributed to the different measuring principles and data
granularity provided by different sensors, highlighting the
importance of inline measuring instruments and continuous
data stream. While the coating gap is determined through two
sensors located on the sides of the doctor blade, the ultrasound
system utilizes a traversing setup to measure the wet mass
loading area-wide. This approach contributes to greater data
accuracy and granularity. The inline sensors support the
characterization of the intermediate products, serving as addi-
tional quality indicators and enhancing the precision of
prediction in the pursuit of achieving the predictive quality
vision.

Figure 4. Exemplary correlation matrices for the considered input variables
a) sample-specific product parameters and the drying temperature b)
corresponding process parameters.

Figure 5. Parity plots for the developed models predicting a) electrode thickness, b) mass loading.
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Adhesion

The adhesion is a crucial mechanical property of the electrode
that can impact the cycle performance and cell’s durability.[51,52]

Additionally, it plays an important roll concerning the process-
ability of the electrode throughout the production chain. From
an operational perspective, various factors such as
formulation,[53] mass loading,[54] drying conditions[21] and
porosity[55] can impact the adhesion. According to the current
state of the art,[13] adhesion can be only measured offline, hence
it is also evaluated as highly complex concerning the digital-
ization (see Table 1). This limitation emphasizes the need for
predictive solutions. The ML methods can present a promising
avenue to monitor this multifaceted phenomenon without

resorting to frequent offline measurements. To explore this
potential, the three scenarios, as outlined earlier, were
evaluated. Among the considered modeling techniques,
XGBoost, SVM, and to a certain degree, the polynomial
regression demonstrated good performance. As mentioned at
the beginning of this section, XGBoost was selected as an
alternative to RF, to prevent overfitting and to ensure that the
complex target variables can be modeled effectively. The results
are presented in Figure 6.

The first scenario is based on the drying temperature and
sample-specific data consisting of mass loading and porosity as
input variables. In this case, XGBoost and SVM demonstrated
high performance, while the polynomial regression, despite
having acceptable R2 values, showed considerable scatter of the

Figure 6. Parity plots for the considered scenarios to predict the adhesion strength; the first scenario is based on drying temperature and sample-specific
mass loading and porosity as input variables, the second scenario incorporates drying temperature, coating gap and compaction rate, and the third scenario
uses a combination of process parameters and intermediate products.
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data points in the parity plot. This suggests that adhesion as
target variable can be modeled better using more complex
models rather than simple ones. This aspect is more evident in
the second scenario, in which the average values for the
corresponding process parameters are adopted as input
variables. The final scenario is based on a combination of
process parameters and intermediate product parameters,
specifically coating gap, wet mass loading, dry mass loading,
compaction rate and calendering gap. Given the inherent
linearity among the input variables, the polynomial regression
is able to capture the variance effectively and model the
adhesion, offering a performance comparable to the more
complex models. It should be noted that the first scenario can
be particularly of relevance, for instance, when introducing a
new generation of material, for which with the help of DoE, a
concise dataset can be efficiently generated. In this case, the
model enhances process understanding and pinpoints the
suitable parameters to be set, ensuring that the efforts invested
in collecting and utilizing sample-specific data remain manage-
able. The third scenario envisions a continuous sensor-assisted
data-driven production. Upon the development and deploy-
ment of the model, a transition in the quality management
approach – particularly concerning extensive and frequent
offline quality control measures – is to be expected.

Figure 7 showcases the results derived from the XML
methods in the first scenario, providing insights into the
analyzed interdependencies. In Figure 7(b) the findings using
the SHAP method are presented, with the x-axis, displaying the
SHAP values, which indicate the magnitude and direction of the
feature’s impact on the target variable. A higher absolute SHAP
value suggests a stronger effect on the prediction. The y-axis
lists the features, with the most significant one at the top. The
colors serve to distinguish between different feature values.
Based on the generated data, porosity is identified as the
predominant parameter influencing the adhesion strength, with
the low porosity leading to improvement of adhesion. This is
followed by the mass loading, exhibiting a similar trend. The

results show that a high drying temperature adversely impacts
adhesion strength. The findings align with the literature, which
mostly relies on isolated, full factorial, or one-factor-at-a-time
analyses. Through comprehensive cross-process analysis in
combination with data-driven models and XML methods, differ-
ent aspects of electrode manufacturing can be pinpointed.
While the feature importance plot (Figure 7a) provides an
overview of the relevance of the parameters, the bee swarm
plot (Figure 7b), using the SHAP values, offers both a global and
granular instance-specific insight into the model’s
decision-making process.

Ionic Resistance and Tortuosity

For model development based on the EIS data and following
the DoE guidelines, only the data points from calendered
electrodes were used. This dataset, consisting of 86 data points,
was employed to predict the ionic resistance and tortuosity.
Among the models developed for ionic resistance under the
three defined scenarios, the MLR demonstrated the least
effective performance, with an R2 value of approximately 0.7.
This algorithm performed slightly weaker in predicting the
tortuosity. The more complex models, XGBoost and SVM,
demonstrated high performance for both target variables. The
performance of the second-degree polynomial regression was
found to be comparable to that of the more complex models.
Figure 8 presents the results of the developed models for both
ionic resistance and tortuosity in the first scenario, using the
mass loading, porosity and drying temperature as input
variables. In the interest of conciseness, only the models
developed for the first scenario are presented in this section.
The comprehensive results are available in the supplementary
data.

To reveal the complex interdependencies analyzed in
correlation with ionic resistance and tortuosity, the XML
methods were adopted. In case of MLR models, the magnitude
of the coefficients was used as an indicator representing the
impact of the individual predictors on the target variable. The
coefficients were normalized using Euclidean norm.[36] Figure 9
visualizes the results. Despite variations in the methods applied,
the structure of the algorithms, and their accuracy, the results
are mostly aligned. The only inconsistency in feature ranking
was observed in the ionic resistance for the MLR model. While
the XGBoost model ranked the input variables with porosity as
the primary parameter influencing ionic resistance, followed by
mass loading and drying temperature (cf. 9 (a)), the MLR
identified mass loading as the least influential parameter (cf. 9
(c)). This discrepancy in the ranking could be attributed to the
poor performance of the developed MLR model.

The feature importance (Figure 9a, b) offers insights into the
significance of the input variables, while the normalized
coefficient plots (Figure 9c, d) and SHAP values (Figure 9e, f)
reveal the magnitude and direction of the impact of each input
variable on the target value. Figure 9(c) indicates that with
increased mass loading, a rise in ionic resistance is expected,
which is in line with the results from the literature.

Figure 7. Results of the XML methods revealing features’ relevance and their
impact on adhesion strength using a) MDI and b) SHAP values.
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Contrary to expectations, the results suggested that
tortuosity is impacted by mass loading. Specifically, as depicted
in Figure 9(d and f), high mass loading adversely affected the
tortuosity. This can potentially be attributed to the cumulative
effects of high mass loading and temperature on electrode
thickness, and consequently the tortuosity, as outlined in
Equation (2).

As an additional verification step for the adopted method-
ology and the developed data-driven models, the obtained
results were compared with tortuosity estimations based on the
Bruggeman relationship.[56] According to Bruggeman, for spher-
ical particles, there is an interdependency between porosity and
tortuosity, following the equation below, with a ¼ 0:5:[27,57]

t ¼ e� a (4)

However, this simple assumption does not adequately
capture the complexities of electrode manufacturing and the
diverse materials used with different particle sizes and
shapes.[52,57] Mayilvahanan et al.[58] introduced a modification
to the Bruggeman relation based on a pseudo-two-dimensional
(P2D) model, applied to NCM electrodes. The adjusted Brugge-
man relation was reported as:

t ¼ 2:3 e� 0:31 (5)

Building upon these findings, six configurations from the
existing dataset were identified and grouped into three
categories. Each category featured configurations with similar
mass loading and drying temperature but two different

porosities. Based on the variations in the porosity, it was
possible to fit the adjusted Bruggeman relation for each
category, following Equation (5). Figure 10 illustrates the data
points, the corresponding fits according to the Bruggeman
relation and the curve generated using the developed poly-
nomial model. There is a strong agreement between the data
points, the fitted Bruggeman curve, and predicted tortuosity
values, particularly for two of the three mass loadings. To
understand the acceptable, yet consistent discrepancy observed
for active mass loading of 11.2 mg/cm2, the Fraction of Design
Space (FDS) plot was adopted.[59] The FDS plot offers a
comprehensive overview of the range of values and distribution
of prediction variance throughout the entire analyzed exper-
imental space.[60] Figure 11 visualizes the smoothed FDS plot
exemplary for the two developed polynomial and SVM models,
predicting the tortuosity. The plot reveals that both models
exhibit a relatively low variance across the majority of the
design space, an advantage of the I-optimal design over other
DoE methods.[18] However, approximately 10% of the design
space displays a variance higher than 1, with the polynomial
model exhibiting a larger deviation than the SVM model.

The FDS can be used to pinpoint the areas within the
design space that may necessitate refinement or additional
data points to enhance the model’s performance. Ultimately, by
considering the results from comparing the modified Brugge-
man curve with the polynomial model, along with the model’s
performance, the portion of the design space, and the
significance of the variance, the robustness and efficacy of the
adopted methodology and the developed models can be
confirmed.

Figure 8. Parity plots predicting a) ionic resistance, b) tortuosity based on electrode’s mass loading, drying temperature and porosity.
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Discharge Capacities at Different C-Rates

To assess the impact of the electrode manufacturing parame-
ters on the cell performance, the discharge capacities at four

Figure 9. Results of the XML methods and MLR coefficients revealing features’ relevance and their impact on the prediction of ionic resistance (left) and
tortuosity (right).

Figure 10. Tortuosity versus porosity plot for six configurations, categorized
by mass loading and drying temperature. The data points are represented
by dots, the fitted curves using the modified Bruggemann relation are
shown in dashed lines, and the predictions using the developed polynomial
models are illustrated with solid lines.

Figure 11. Exemplary FDS plot for two of the developed models predicting
the tortuosity.
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distinct C-rates, representing a range of applications, were
investigated.

This section presents the results for the discharge capacity
at 0.1 C (hereafter referred to as low C-rate) and 5 C, termed the
high C-rate. Since the findings for 1 C and 3 C were comparable
to the ones included here, the associated results are provided
only in the supplementary data. Among the considered
algorithms, RF, SVM, and polynomial regression demonstrated
high performance. The MLR was able to predict the discharge
capacity at low C-rates but struggled to maintain satisfactory
performance at higher rates. This indicates that the cell
behavior at higher C-rates is influenced by more intricate
factors that cannot be captured using a simple linear regression
or a limited number of data points. Concerning the three
scenarios defined, the results aligned with those discussed for
the adhesion. The cell-specific input variables were found to
improve the prediction accuracy of the models, while the
combination of process and intermediate parameters demon-
strated comparable results. The details can be found in the
supplementary data. Figure 12 illustrates the results for the first
scenario. All models exhibit high performance at low C-rate.
Given the underlying principles of the lithium-ion battery, it is
evident that the cell capacity at a low C-rate is dominated by
the mass loading and hence the models were able to capture
this linear relation effectively. At higher C-rates, the cell

performance is impacted by an interplay of factors including
mass loading,[61] porosity,[62] and drying temperature.[63] None-
theless, the models exhibited commendable performance.

Figure 13 reveals the significance of the features and their
impact on the discharge cell capacity at different C-rates. Both
adopted methods, Feature Importance using MDI and SHAP
value, confirmed that the discharge capacity at a low C-rate was
consistently influenced by the mass loading (Figure 12a and c).
At a high C-rate, within the analyzed range, porosity was
identified as the dominant factor, with low porosity resulting in
a lower discharge capacity. This was followed by mass loading,
showing an inverse effect. A similar trend was observed with
the drying temperature. Additionally, the gravimetric cell
capacity was analyzed as a target variable, given its significance
in electrode design for high-energy batteries.[64] At a low C-rate
the models demonstrated a moderate performance (see
Table 5). At a high C-rate a comparable performance to the
results of the discharge capacities was observed. Figure 14
highlights the relevance of the analyzed parameters in relation
to the gravimetric discharge capacity at low and high C-rates.
As expected, at low C-rate, the mass loading does not have a
pronounced influence. With the porosity marked as the most
relevant parameter. In contrast, at high C-rate, the impact of
mass loading became more evident, followed by the porosity
and drying temperature.

Figure 12. Parity plots of the developed models predicting the discharge capacity at a) 0.1 C, b) 5 C based on the drying temperature and cell-specific mass
loading and porosity.
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The models developed in this study, including the input
and target variables and the evaluation metrics, are summarized
in Table 5. Additionally, the supplementary data includes the
results for the models developed using only process parame-
ters, as well as those developed using a combination of both
product and process parameters.

Conclusions

This article presented a systematic efficient analysis of the
interdependencies in electrode manufacturing. Through the
integration of DoE and data-driven models, in combination
with the findings from the previous study,[12] a comprehen-
sive cross-process analysis was conducted. The study cen-
tered on three quality-relevant parameters from coating,
drying and calendering processes, assessing their impact on
both the mechanical and electrochemical characteristics of
the electrodes. Several research gaps[6] were addressed: (I)
the drying process, recognized as an energy-intensive and
multifaceted step, was analyzed in combination with its
closely interrelated processes and the relevant parameters;
(II) the framework was demonstrated on the graphite anode,
which has received limited attention in the data-driven
literature; (III) less explored target variables, such as adhesion
and tortuosity, were investigated; (IV) aiming for a holistic
framework, the study offered a detailed level of information,
covering various aspects from identification of relevant
parameters and data generation to data preprocessing and
modeling. The showcased framework can be used as a
blueprint for efficient generation of a dataset, particularly
when introducing new materials or for undertaking specific
optimization studies. The former can be considered as a
valuable contribution to the material acceleration
platforms.[65] Data-driven models, in combination with the
XML methods, can help to unravel the complex interdepen-
dencies in electrode manufacturing. The findings facilitate
the process understanding and aid in the identification of
suitable process parameters.

Figure 13. Results of the XML methods highlighting the relevance of the features with respect to the cell discharge capacity at low (left) and high (right) C-
rates.

Figure 14. SHAP values revealing the impact of parameters on the
gravimetric discharge capacity at a) 0.1 C, b) 5 C.
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Table 5. Summary of the developed models, including the input and target variables and the evaluation metrics.

Target variable Input variables Model Evaluation metrics

R2training R2test RMSEtraining RMSEtest MSEtraining/MSE test

Mass loading
Coating gap
Wet mass loading
Drying temperature

MLR 0.99 0.99 0.2 0.1 2.8

RF 0.99 0.97 0.1 0.2 0.3

Polynomial 0.99 0.97 0.2 0.1 0.3

SVM 0.99 0.97 0.1 0.2 0.1

Electrode thickness
Coating gap
Wet mass loading
Drying temperature

MLR 0.98 0.98 2 1 2.1

RF 0.98 0.87 1 3 0.2

Polynomial 0.98 0.95 2 2 0.9

SVM 0.98 0.97 2 2 1.4

Mass loading Coating gap
Drying temperature

MLR 0.88 0.91 0.5 0.3 2.5

RF 0.99 0.80 0.1 0.4 0.1

Polynomial 0.89 0.97 0.4 0.2 6.4

SVM 0.98 0.80 0.2 0.4 0.2

Electrode thickness Coating gap
Drying temperature

MLR 0.83 0.87 5 3 3.0

RF 0.97 0.74 2 4 0.3

Polynomial 0.84 0.89 5 3 3.3

SVM 0.96 0.56 3 6 0.2

Adhesion strength
Mass loading
Drying temperature
Porosity

XGBoost 0.97 0.95 14 22 0.4

Polynomial 0.75 0.91 40 28 1.9

SVM 0.99 0.97 8 18 0.2

Adhesion strength
Coating gap
Drying temperature
Compaction rate

XGBoost 0.93 0.91 20 28 0.5

Polynomial 0.60 0.69 50 53 0.9

SVM 0.97 0.97 13 16 0.6

Adhesion strength

Coating gap
Wet mass loading
Drying temperature
Dry mass loading
Compaction rate
Calendering gap

XGBoost 0.97 0.95 14 21 0.4

Polynomial 0.98 0.96 11 19 0.4

SVM 0.97 0.97 13 16 0.7

Ionic resistance
Mass loading
Drying temperature
Porosity

XGBoost 0.96 0.93 35 55 0.4

MLR 0.84 0.87 68 71 0.9

Polynomial 0.95 0.93 39 52 0.6

SVM 0.95 0.90 39 63 0.4

Tortuosity
Mass loading
Drying temperature
Porosity

XGBoost 0.93 0.89 0.5 0.5 0.8

MLR 0.79 0.77 0.8 0.8 1.2

Polynomial 0.92 0.81 0.5 0.7 0.5

SVM 0.97 0.91 0.3 0.5 0.5

Discharge capacity at 0.1 C
Mass loading
Drying temperature
Porosity

RF 0.99 0.99 0.0277 0.0494 0.3

Polynomial 0.99 0.99 0.0549 0.0575 0.9

SVM 0.99 0.99 0.0605 0.0582 1.1

Discharge capacity at 5 C
Mass loading
Drying temperature
Porosity

RF 0.98 0.96 0.0331 0.0374 0.8

Polynomial 0.94 0.91 0.0509 0.0532 0.9

SVM 0.98 0.97 0.0275 0.0320 0.7

Gravimetric discharge capacity at 0.1 C
Mass loading
Drying temperature
Porosity

RF 0.84 0.77 0.0020 0.0032 0.4

Polynomial 0.56 0.77 0.0034 0.0032 1.1

SVM 0.78 0.65 0.0024 0.0040 0.4
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The dataset for the mechanical and electrochemical charac-
teristics using full coin cells consisted of 51 data points for the
17 different electrode configurations produced using I-optimal
DoE method. For the EIS, data was collected from 86 symmetric
cells. To the best of the authors’ knowledge, this dataset is the
most comprehensive collection of impedance spectroscopy
data available to date, reflecting various aspects of electrode
manufacturing from electrodes produced on a pilot line. The
comprehensive data can be found in the supplementary
section.

From the modeling perspective, the study covered a
range of techniques, from more complex models such as RF,
XGBoost, and SVM to simpler methods such as MLR and
polynomial regression. The capability of different models in
predicting various target variables was demonstrated. For
some applications, such as mass loading and electrode
thickness, a simple algorithm proved to be sufficient.
However, when addressing intricate and multifaceted tar-
gets, such as adhesion, the need for more sophisticated
models became evident. Given the structure of the study,
which was based on a train-test split, XGBoost was chosen
over RF for certain targets, specifically adhesion, ionic
resistance, and tortuosity. This decision was driven by a
couple of considerations. The XGBoost offers built-in regula-
rization, which inherently combats overfitting, ensuring that
the model does not become too closely tailored to the
training data. Additionally, it is able to capture and
represent the complex interdependencies existing in the
analyzed system. To address the need for explainability of
complex models and assist with the process understanding,
XML methods were integrated. These methods not only
provide clarity on the decision-making mechanism of the
models but also offer valuable insights into the complex
interdependencies and influential factors. Through XML
methods, a more transparent and informed decision-making
process can be achieved, fostering greater trust of domain
experts in ML and accelerating its practical applications in
real-world scenarios.

The significance of inline sensor data for the character-
ization of intermediate parameters was demonstrated
through the consideration of three scenarios for the
development of models. It was observed that the models
built exclusively on the process parameters yielded the least
effective results. In contrast, when combining process
parameters with intermediate products, the models’ per-
formance was almost equivalent to those utilizing sample-
specific product parameters.

It should be noted that the derived insights should be
contextualized within the boundaries of the examined ranges.
For instance, exploring a larger range for mass loading might
lead to a different ranking when it comes to adhesion strength.
With respect to adhesion, as detailed in the data preprocessing
and analysis section, in the case of the low mass loading, except
for a local optimum at the low temperature, no significant
impact of higher drying temperatures was observed. To gain a
deeper understanding of the drying process, further analysis of
the drying temperatures, for instance in the first dryer, coupled
with the drying speed, would be beneficial. Hence, future work
will focus on expanding the dataset and broadening the scope
of the parameters analyzed.

Supporting Information

Supporting information is available online.
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AM Active Material
DoE Design of Experiments
EIS Electrochemical Impedance Spectroscopy
FDS Fraction of Design Space
MDI Mean Decrease Impurity
ML Machine Learning
MLR Multiple Linear Regression
MSE Mean Squared Error
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P2D Pseudo-Two-Dimensional
RF Random Forest
RMSE Root Mean Squared Error
RSM Response Surface Methodology
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