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Abstract. The optimization of open-loop shallow geother-
mal systems, which includes both design and operational
aspects, is an important research area aimed at improving
their efficiency and sustainability and the effective manage-
ment of groundwater as a shallow geothermal resource. This
paper investigates various approaches to address optimiza-
tion problems arising from these research and implementa-
tion questions about GWHP systems. The identified opti-
mization approaches are thoroughly analyzed based on cri-
teria such as computational cost and applicability. Moreover,
a novel classification scheme is introduced that categorizes
the approaches according to the types of groundwater sim-
ulation model and the optimization algorithm used. Simula-
tion models are divided into two types: numerical and sim-
plified (analytical or data-driven) models, while optimization
algorithms are divided into gradient-based and derivative-
free algorithms. Finally, a comprehensive review of exist-
ing approaches in the literature is provided, highlighting their
strengths and limitations and offering recommendations for
both the use of existing approaches and the development of
new, improved ones in this field.

1 Introduction

Open-loop shallow geothermal systems, also known as
groundwater heat pumps (GWHPs), have emerged as a
promising solution for decarbonizing the residential heat-
ing and cooling sector (Russo et al., 2012). The perfor-
mance of GWHPs is primarily influenced by groundwa-
ter temperature (Kim and Nam, 2016), which remains rel-
atively stable throughout the year and is elevated in urban

areas due to the subsurface urban heat island effect (Men-
berg et al., 2013; Epting and Huggenberger, 2013; Böttcher
and Zosseder, 2021). These systems harness the thermal en-
ergy of the aquifer by extracting groundwater from one or
more extraction wells and returning it to the same aquifer via
injection wells after heat exchange in a heat pump (Florides
and Kalogirou, 2007; Stauffer et al., 2014; García Gil et al.,
2022). Since the temperature of the re-injected water is dif-
ferent from that of the extracted (lower in the heating and
higher in the cooling case), this results in thermal plumes in
the aquifer that propagate downstream along the groundwa-
ter flow direction. If these plumes reach the extraction wells
of neighboring downstream GWHPs, this can result in ei-
ther negative or positive thermal interference (Perego et al.,
2022). Figure 1 provides an overview of potential thermal in-
terferences that can occur between neighboring systems, de-
picting scenarios where the operation of downstream systems
can be either degraded (negative interference) or enhanced
(positive interference).

It is also important to recognize that GWHPs have a ther-
mal impact on groundwater, which serves as a vital source
of drinking water in many places (e.g. Blum et al., 2021).
To mitigate the aforementioned negative interactions and im-
prove the efficiency and sustainability of thermal ground-
water use, resource management strategies need to be im-
plemented (Epting et al., 2020). This includes optimizing
the design, particularly well placement, and operation of
GWHP systems, since the propagation of thermal plumes is
affected by injection well locations, system operation (pump-
ing rates), and aquifer characteristics. For example, optimal
well placement can minimize negative thermal interference
between neighboring GWHPs (Halilovic et al., 2022a) or
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Figure 1. Possible thermal interference (interactions) between neighboring GWHP systems.

even maximize their positive interference (García-Gil et al.,
2020). Hence, optimization of multiple neighboring systems
plays an important role in urban planning strategies aimed at
enhancing sustainability. In addition, optimization of GWHP
systems is crucial for managing groundwater resources and
maintaining the current state of groundwater, i.e. prevent-
ing adverse changes in its physical, chemical, and biologi-
cal properties. Furthermore, it is essential to ensure adequate
spacing between wells within the same GWHP to prevent
hydraulic and thermal breakthroughs (Böttcher et al., 2019).
Thus, optimization of individual systems is also important
to maximize their efficiency and sustainability. Optimization
of individual GWHP systems and concurrent optimization
of multiple neighboring systems are challenging due to the
complexity of the resulting optimization problems and the
necessity for novel and efficient optimization approaches to
solve them.

This paper presents a comprehensive overview of opti-
mization approaches for the design and operation of GWHP
systems. The approaches are critically evaluated and com-
pared based on several criteria, and a novel classification
scheme is introduced to effectively categorize these ap-
proaches. Furthermore, the current status of the approaches
found in the literature is presented and possible future re-
search directions are discussed.

2 Simulation models

GWHP systems affect the groundwater body both hydrauli-
cally and thermally (García Gil et al., 2022), which can

also affect its chemical and biological conditions to a mi-
nor degree (Blum et al., 2021). The hydraulic head increases
around injection wells and decreases around extraction wells,
which also changes the hydraulic gradient and groundwater
flow patterns. Thermal impacts are present due to the previ-
ously described thermal plumes. To analyze these impacts
of GWHP systems on groundwater conditions, simulation
models are commonly used. For a particular system design
and operation, a simulation model can quantify its impacts
on groundwater and, based on that, analyze the performance
of the system. Therefore, simulation models play a crucial
role for the computation of the resulting groundwater tem-
perature field and serve as an integral component within the
optimization procedures.

These simulation models generally fall into three cat-
egories: numerical, analytical, and data-driven. Numerical
models use partial differential equations (PDEs) to describe
the underlying physical phenomena, i.e. groundwater flow
and heat transport in aquifers. The resulting system of PDEs
can be solved with general PDE solving software or com-
putational fluid dynamics (CFD) software, but there are also
several software packages that include specialized domains
of numerical simulation for shallow geothermal resources,
such as: FEFLOW (Diersch, 2014) – based on the finite ele-
ment method (FEM) or PFLOTRAN (Hammond et al., 2012)
– based on the finite volume method (FVM). Numerical mod-
els can incorporate various complex subsurface conditions,
including spatially heterogeneous groundwater parameters
(e.g. hydraulic conductivity) and conditions (e.g. velocity,
temperature, hydraulic head), complex boundary conditions,
coupled physical processes, multiple subsurface layers, etc.,
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while simultaneously simulating thermal and hydraulic ef-
fects of GWHP systems on the groundwater body. Therefore,
they are closest to reality given sufficient quality of input
data, but are generally computationally expensive.

The second category of models uses analytical formulas
to approximate numerical solutions and is commonly ap-
plied to estimate thermal plumes associated with smaller
GWHPs, whose energy consumption is less than 45 000 kWh
per year (Ohmer et al., 2022). Due to their analytical na-
ture, these models offer significant computational advan-
tages over numerical models. In Pophillat et al. (2020) three
prominent analytical models for estimating GWHP ther-
mal plumes were analyzed and compared. These models in-
clude the radial heat transport model (RHM) (Guimerà et al.,
2007), the linear advective heat transport model (LAHM)
(Kinzelbach, 1992), and the planar advective heat transport
model (PAHM) (Hähnlein et al., 2010). The authors con-
cluded that although analytical solutions are less accurate
compared to numerical models, they still have value for eval-
uating the thermal impact of GWHPs. Analytical solutions
are particularly useful for performing initial assessments of
potential negative interference between neighboring GWHPs
(Pophillat et al., 2020).

Finally, data-driven models are gaining popularity in this
area of research, primarily due to the emergence of ma-
chine learning. A common example is the use of neural net-
works (NNs) to predict thermal plumes (Russo et al., 2014;
Leiteritz et al., 2022; Davis et al., 2023). Data-driven mod-
els, such as NNs, offer the advantage of fast evaluation, but
rely on extensive training data and require additional time
for the training process. Acquiring this training data is of-
ten challenging due to the limited measurement and moni-
toring of hydrogeological data. One possible solution is the
use of physics-informed neural networks (PINNs) that inte-
grate physical laws driven by PDEs, mitigating the need for
extensive training data (Raissi et al., 2017).

3 Optimization of GWHPs

This section provides a comprehensive analysis of two key
aspects related to the optimization of GWHP systems. First,
in Sect. 3.1, the underlying optimization problems are dis-
cussed. Second, in Sect. 3.2, a detailed overview of the ap-
proaches for solving these optimization problems is pro-
vided. In the following section, we present a generalized
problem related to the optimization of GWHP systems,
which prepares the way for further analysis in subsequent
sections.

3.1 Optimization problems

The high-level optimization problem concerning GWHP sys-
tems can be formulated as follows:

min
xd,xo

fobj (xd,xo)= α1 · fcost (xd,xo)+α2 · fenv (xd,xo) (1a)

subject to Fsim (xd,xo)= 0 (1b)
g (xd,xo)≤ 0 (1c)
h(xd,xo)= 0 (1d)

where xd is the vector of optimization variables related to
the design of GWHP system(s), xo is the vector of optimiza-
tion variables related to the operation of GWHP system(s),
fobj is the objective function to be minimized, fcost is the
function describing technical costs, fenv is the function de-
scribing negative environmental impacts, α1 and α2 are the
weighting factors, Fsim is the simulation model in a resid-
ual form, g are the inequality constraints, h are the equality
constraints.

In this generalized problem, we differentiate between two
types of optimization variables: design variables xd and op-
erational variables xo. An example of design variables are
the number and spatial layout of GWHP wells, while an ex-
ample of operational variables are the pumping rates of each
well. The design variables are constant in time, whereas the
operational variables are usually time-dependent.

The objective function fobj contains two parts: fcost, ac-
counting for the technical costs of GWHP systems, and
fenv, accounting for the negative environmental impacts. The
term fcost can represent various costs associated with the in-
stallation and operation of GWHPs, which can be reduced
through different means, such as proper sizing of systems (re-
duced investment costs) or optimal operation of systems (in-
creased efficiency and lifetime). On the other hand, the term
fenv covers different environmental categories, such as neg-
ative impacts on groundwater or CO2 emissions indirectly
caused by the operation of GWHP systems. It should be
noted that environmental considerations are usually incorpo-
rated into the problem through constraints and not directly
within the objective function.

The simulation model Fsim (see Sect. 2) that describes the
subsurface phenomena is incorporated into the optimization
as a single or multiple equality constraints. This model can
be of any type discussed previously: numerical, analytical,
or data-driven, and it can also have an explicit form, such
as PDEs or algebraic equations, or an implicit ”black-box”
form, such as numerical simulation tools or NNs.

In addition to the simulation model, other inequality g or
equality h constraints may be present in the optimization
problem. These can be technical constraints, such as upper
and lower limits on pumping rates, regulatory constraints,
such as the maximum allowed change in groundwater tem-
peratures, or any other additional constraints.

Depending on how certain elements are specified in the
generalized problem (Eq. 1), the resulting optimization prob-
lems can be classified according to different criteria:

– Optimization variables: if the only optimization vari-
ables are the design parameters xd and the operation
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of the system(s) is predefined, i.e. xo is fixed, the prob-
lem (Eq. 1) becomes a design optimization problem. On
the other hand, the problem becomes an optimal control
problem when the system design is specified and the
operating parameters xo are the optimization variables.
Finally, simultaneous optimization of the design and op-
eration of GWHP systems is possible, i.e. considering
both xd and xo as optimization variables. This gener-
ally leads to improved optimal solutions since there are
more degrees of freedom to be optimized, but the result-
ing problems are usually more difficult to solve due to
increased problem complexity (e.g. from linear to non-
linear).

– Objective function: in problem (Eq. 1), the objective
function fobj is a weighted sum of technical costs fcost
and quantified negative environmental impacts fenv.
Setting one of the weights α to 0, the problem becomes
either a purely economic or an ecological optimization
problem, i.e. a single-objective optimization problem.
If both weighting factors are kept positive, then both
the cost and the environmental impact are minimized si-
multaneously and the problem becomes a type of multi-
objective optimization. This means that by changing the
values of α1 and α2, different Pareto-optimal solutions
are obtained (Marler and Arora, 2010).

– Application: the application types can be divided into
two main groups: optimization of a single stand-
alone system and optimization of multiple neighboring
GWHP systems. The application type directly changes
the format of the optimization variables and the ob-
jective function. In addition, different applications may
involve different optimization constraints, such as the
threshold for negative interference between neighboring
systems in the case of optimizing multiple systems.

– Simulation model: in the mathematical sense, the choice
of simulation model Fsim fundamentally changes the
type of the optimization problem. These optimization
problem types belong to different branches of optimiza-
tion and therefore require corresponding optimization
approaches to be solved efficiently. For this reason, the
entire following section is dedicated to the optimization
approaches for the problem (Eq. 1).

3.2 Optimization approaches

In this study, the term “optimization approach” is consid-
ered to encompass not only the specific methodology used
to solve a given optimization problem, such as the choice of
an algorithm, but also the way in which the problem is for-
mulated, which includes the selection of a groundwater sim-
ulation model. The classification of optimization approaches
is shown in Fig. 2, where four different classes are identi-
fied. The categorization is based on the simulation model

Figure 2. Proposed classification of the optimization approaches.

used, whether it is a PDE model or a simplified model, and
the optimization algorithm employed, either gradient-based
or derivative-free algorithms. In the following, each of these
four classes is explained and references to relevant literature
sources are provided.

Class I comprises optimization approaches where the
simulation model is a numerical PDE model, and the op-
timization is performed using gradient-based algorithms.
These approaches are referred to as PDE-constrained opti-
mization (PDECO) problems, which are recognized as the
most mathematically complex problems of the four classes
considered. The complexity arises due to the multidisci-
plinary nature of these problems, necessitating expertise in
several areas, including computational optimization, func-
tional analysis, and numerical analysis. For example, state-
of-the-art groundwater simulation tools usually lack the au-
tomatic provision of gradient information, requiring users
to estimate gradients manually. There are two main meth-
ods to solve this problem: automatic differentiation of ex-
isting simulation tools (Naumann, 2011) or the develop-
ment of custom numerical simulators within frameworks
such as Firedrake (Rathgeber et al., 2017) and FEniCS
(Logg et al., 2012), which can automatically provide the re-
quired gradients. Therefore, a comprehensive understanding
of PDE solving is essential in the initial stages of develop-
ing a Class I approach. Various strategies exist for solving
PDECO problems, including full-space and reduced-space
methods, as well as discretize-then-optimize and optimize-
then-discretize approaches (Hinze et al., 2008). For more in-
formation on PDECO, the reader is referred to the books by
Hinze et al. (2008) and Tröltzsch (2010).

Class II includes approaches that utilize simplified mod-
els for groundwater simulation and employ gradient-based
optimization algorithms to solve the underlying optimiza-
tion problems. In this context, the simplified models primar-
ily take the form of analytical models (see Sect. 2). These
models are expressed through analytical formulas, allow-
ing for direct integration into the optimization problem. The
conceptualization of the overall optimization problem deter-
mines the resulting problems, which typically correspond to
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well-established types of mathematical programming (op-
timization) problems, such as linear programming (LP),
mixed-integer linear programming (MILP), quadratic pro-
gramming (QP), and similar types. These problems are ex-
tensively studied in the optimization community, and con-
sequently, efficient algorithms and solvers (software imple-
mentations of the algorithms) are readily available. Compre-
hensive information on these types of optimization problems
can be found in numerous literature sources, including the
books by Nocedal and Wright (1999), Schrijver (1998) and
Bonnans et al. (2006).

Class III encompasses approaches that combine PDE sim-
ulation models with derivative-free optimization (DFO) algo-
rithms. This form of optimization is commonly referred to as
simulation-based optimization, where the simulation model
is treated as a black-box, meaning that only the inputs and
outputs of the simulator are observed and used by the op-
timization algorithm to guide the optimization process. As
a result, the term black-box optimization (BBO) can also
be used, which refers to optimization problems where ei-
ther the objective function or some constraints are treated as
black-boxes. However, it is important to note that the black-
box in BBO is not limited to numerical simulation mod-
els. For instance, Class IV also falls under the umbrella of
BBO. Furthermore, the terms BBO and DFO are closely in-
terconnected and can be used interchangeably in certain con-
texts. These distinct terminologies have emerged over time,
highlighting different aspects: the conceptual characteristics
of BBO, and the algorithmic features of DFO. DFO algo-
rithms, as the name suggests, do not rely on derivative infor-
mation during optimization iterations to determine optimal
solutions; instead, they use only the values of the objective
function and constraints. These algorithms include: heuristic
methods, e.g. genetic algorithms, particle swarm optimiza-
tion, simulated annealing, etc. (Bozorg-Haddad et al., 2017);
direct search methods, e.g. MADS algorithm (Le Digabel,
2011); and model-based methods, e.g. model-based trust-
region (Conn et al., 2000). For more detailed information on
DFO and BBO, interested readers are referred to Audet and
Hare (2017) and Conn et al. (2009).

Class IV comprises optimization approaches that involve
the coupling of simplified groundwater simulation models,
such as analytical models or NNs, with DFO algorithms.
Similar to Class III, Class IV falls into the DFO and BBO
branches of optimization. Consequently, the same or similar
optimization algorithms can be applied to both classes. The
main difference between the two classes lies in the fidelity of
the simulation models used. Class III uses high-fidelity mod-
els, while Class IV relies on low-fidelity models. Thus, the
computational cost associated with evaluating potential solu-
tion candidates during optimization iterations is significantly
lower in Class IV. It is important to note that Class IV has
similarities to situations where model-based DFO algorithms
are applied in Class III. The difference is that the approx-
imate models in Class III are constructed dynamically dur-

ing the optimization iterations, based on evaluations of the
PDE model. In contrast, in Class IV, the simplified models
are predefined and remain constant throughout the optimiza-
tion process.

Finally, it should be mentioned that the four introduced
classes do not encompass all conceivable approaches, since
combined approaches also exist. For example, the solution
obtained from Class II can serve as an initialization for the
optimization process in Class I. However, within the context
of this study, the division into four distinct classes seems both
logical and practical, since there are substantial differences
between these classes. The following section reviews previ-
ous research studies on the optimization of GWHP systems.

3.2.1 Current status of the approaches used for GWHP
systems

Despite the increasing importance of GWHP optimization as
a research area, the number of existing studies on this topic
remains limited. Park et al. (2020) propose a simulation-
based optimization approach to optimize pumping rates for
a single GWHP system. The approach couples a numerical
groundwater simulation model with a genetic optimization
algorithm. Furthermore, the same approach was extended in
Park et al. (2021) to optimize both well locations and pump-
ing rates within a single system. Since the approach in these
two studies uses a PDE simulation model along with a DFO
algorithm, it falls under Class III of the proposed classifica-
tion.

To date, only one research study has been identified that
applies the approach of Class I, i.e. the PDECO framework.
This study (Halilovic et al., 2022a) introduces a novel ap-
proach for concurrently optimizing the well locations of mul-
tiple neighboring systems. The approach was illustrated us-
ing a case study with ten systems, where the optimization ob-
jective is to minimize negative interactions between systems
and maximize the overall efficiency of all systems. The pro-
posed approach uses the adjoint method to efficiently com-
pute gradients from the numerical simulation model, which
are required by the optimization algorithm.

There is also only one research study that implements the
approach belonging to Class II. In Halilovic et al. (2023), the
authors introduce an approach that integrates an analytical
groundwater simulation model directly into the optimization
problem. Specifically, the analytical model used to calculate
thermal plumes is the LAHM model (Kinzelbach, 1992) and
the resulting optimization problem is formulated as an MILP
problem. The study applies this approach to optimize the lo-
cations of systems and their associated wells within an ur-
ban area comprising 56 potential systems. The objective is
to satisfy relevant regulations while maximizing heat extrac-
tion from the aquifer. An open-source implementation of the
proposed approach can be accessed at Halilovic and Böttcher
(2022).
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Figure 3. Qualitative comparison of the optimization approaches.

No research studies have been identified that apply the ap-
proach of Class IV, which involves the combination of sim-
plified models with DFO algorithms. It should be noted that
other studies on GWHP optimization exist, focusing on as-
pects such as optimizing the components of a heat pump or
determining optimal control strategies. However, these stud-
ies do not consider underground processes and are therefore
outside the scope of this work. Furthermore, there are other
research studies (e.g. Zhou and Zhou, 2009; Lo Russo and
Civita, 2009; Gao et al., 2013) that address the optimal de-
sign or operation of GWHPs using methods such as scenario
comparison or sensitivity analysis. However, these methods
are not optimization methods, and as such, they are not fur-
ther discussed in the present study. In the subsequent sec-
tion, a comparative analysis is conducted between optimiza-
tion approaches, i.e. the identified four classes.

3.2.2 Comparison of the optimization approaches

The primary factors for comparing optimization approaches,
i.e. their respective classes, are the computational cost and
applicability criteria. Figure 3 shows a qualitative compari-
son of these classes, considering two dimensions. The verti-
cal axis represents the computational cost required to solve
optimization problems with the approaches of the respective
class. The computational cost of an approach is of major im-
portance, since in practical planning procedures a relatively
fast solution is required. Moreover, the computational cost
increases proportionally with the number of optimization pa-
rameters (variables) and the size of the simulation domain.
Consequently, approaches with high computational costs are
limited to scenarios with a small number of optimization
parameters and small domains. As the number of optimiza-
tion parameters increases, inefficient approaches quickly be-
come computationally impractical, even when using high-
performance computers.

The horizontal axis represents the complexity (fidelity) of
the groundwater simulation model used in these approaches.
In the context of this study, the complexity of a simulation
model refers to the level of detail in representing physical
phenomena in the subsurface, such as the propagation of
thermal plumes, that are relevant to the optimization problem
under consideration. Assuming that the required input data,
such as groundwater parameters, are available in sufficient
quality, more complex simulation models are more accurate,
i.e. closer to reality. However, it is important to recognize
that data on groundwater parameters and conditions are of-
ten limited, which limits the use of complex models. Model
complexity is essentially limited by the available data, mak-
ing the use of highly complex models impractical in the ab-
sence of the necessary data. Nevertheless, simpler PDE simu-
lation models, such as a 2D model with uniform groundwater
conditions, are applicable even with restricted data availabil-
ity and generally offer higher accuracy than analytical mod-
els with identical input data. Since simulation models are an
integral component of optimization approaches, their com-
plexity directly affects the applicability of the obtained opti-
mization results. For instance, the results of an approach that
uses a complex groundwater simulation model provided with
high-quality data can be applied in practice with greater con-
fidence than the results of an approach based on less accurate
models.

In the context of computational costs, two key aspects de-
serve attention: the convergence rate and the computational
cost associated with the evaluation of each candidate solution
(a unique combination of optimization variables). The former
quantifies the number of optimization iterations required to
reach the optimal solution, while the latter describes the run-
time required for each model simulation used to evaluate the
current candidate solution within the optimization iterations.
In general, gradient-based algorithms significantly outper-
form derivative-free algorithms in terms of convergence rate
and therefore it is recommended to use gradient-based al-
gorithms when gradient information is readily available and
can be obtained at a reasonable cost (Audet and Hare, 2017;
Conn et al., 2009). As a result, Class II will almost always
outperform Class IV, and Class I will outperform Class III,
due to the use of gradient-based algorithms in the former
classes (I and II) and derivative-free algorithms in the lat-
ter classes (III and IV). Another disadvantage of Classes III
and IV is that derivative-free algorithms generally only find
near-optimal solutions and do not guarantee optimality (Au-
det and Hare, 2017). Furthermore, classes that use simplified
simulation models (II and IV) commonly have lower compu-
tational costs than classes that use PDE models (I and III).
This is a direct consequence of the computational costs as-
sociated with evaluating the simulation model during opti-
mization iterations. Considering all of the above, a hierarchy
of classes based on overall computational cost can be estab-
lished. Class II entails the least computational cost, while
Class III is the most computationally demanding. Classes I

Adv. Geosci., 62, 57–66, 2023 https://doi.org/10.5194/adgeo-62-57-2023



S. Halilovic et al.: Optimization of open-loop shallow geothermal systems 63

and IV fall somewhere in between, with Class IV usually
outperforming Class I, although the specific problem charac-
teristics (number of optimization variables, size of the simu-
lation domain, etc.) can also influence this comparative per-
formance. Despite the computationally demanding nature of
Class III, this class is frequently used in the simulation com-
munity owing to its user-friendly nature. By coupling stan-
dard standalone simulation software with an existing imple-
mentation of a DFO algorithm, typically an evolutionary al-
gorithm, users can develop and apply such approaches rela-
tively quickly.

In terms of the complexity/fidelity of the simulation model
used in optimization approaches, it is evident that the classes
employing PDE models (I and III) outperform those employ-
ing simplified models (II and IV). The complexity of the sim-
ulation model directly influences the validity of the optimiza-
tion results, thereby affecting the applicability of the corre-
sponding classes. Consequently, it is reasonable to use ap-
proaches from different classes for different application sce-
narios. For instance, the classes with more complex models (I
and III) are suitable for detailed planning of large GWHP
systems, while the other two classes (II and IV) can be ap-
plied for initial assessments of potential negative interactions
between neighboring systems or estimations of geothermal
potential on a larger scale.

4 Discussion and outlook

While there are a limited number of research studies (see
Sect. 3.2.1) that address the optimization of GWHP systems,
the research area remains insufficiently explored, which pro-
vides an opportunity to pose new research questions and
develop novel optimization approaches. The existing ap-
proaches in this field have certain limitations and do not
cover all relevant applications. For example, the approach of
Class III presented in Park et al. (2020, 2021) is limited by
the number of optimization variables it can efficiently han-
dle, since the computational cost increases exponentially as
the number of variables increases. Similarly, the only study
(Halilovic et al., 2022a) using the approach of Class I does
not cover all relevant aspects of GWHP optimization, such as
optimizing the number of wells in a large GWHP system, op-
timizing pumping rates, or simultaneously optimizing pump-
ing rates and well locations.

Class I (PDECO) seems to be the most promising among
the four classes because it uses PDE simulation models and
has lower computational costs compared to Class III. Here,
the complexity level of the PDE model can be selected based
on data availability, as discussed in Sect. 3.2.2. However, this
class presents significant challenges due to its mathemati-
cal complexity and multidisciplinary nature. To overcome
the challenges associated with developing new approaches
within Class I and facilitate their further advancement, col-

laboration within multidisciplinary teams will be required in
the future.

The limitations of the classes that use simplified sim-
ulation models (Class II and IV) are directly related to
the limitations of the simulation models employed. Conse-
quently, improving the simplified simulation models directly
enhances the approaches within these classes. The main goal
is to maintain the simulation models as fast and simple to
evaluate while enhancing their closeness to reality. By fur-
ther improving the accuracy of these simplified models, their
scope can be extended to new applications, such as detailed
design of large GWHP systems comprising multiple extrac-
tion and injection wells. Moreover, the simplified models are
well-suited for integration into energy system optimization
models (ESOMs), where GWHP systems play an important
role (Halilovic et al., 2022c). This is because the coupling of
a numerical groundwater simulation with an ESOM is im-
practical and computationally demanding (Halilovic et al.,
2022b). By using simplified models, the computational cost
can be significantly reduced while still capturing the essential
aspects of GWHP systems in the broader context of energy
system optimization. This further enables the development of
automated urban planning tools, which will increase sustain-
ability.

Another important consideration in GWHP optimization
is the inherent uncertainty associated with subsurface pa-
rameters and conditions. The complex nature of aquifers
and the limited availability of measurement and monitor-
ing data contribute to the presence of uncertainties (Gelhar
et al., 1992). Incorporating these uncertainties into optimiza-
tion approaches leads to stochastic programming problems
(Birge and Louveaux, 2011), which constitute a separate field
of optimization. The inherent stochastic nature of these prob-
lems significantly increases the complexity and computa-
tional cost compared to deterministic problems. Stochastic
problems are often solved with modified deterministic op-
timization approaches or by using a deterministic equivalent
of the stochastic problem (Hannah, 2015; Li and Grossmann,
2021). By minimizing the computational cost of determinis-
tic optimization approaches, researchers can better address
the challenges of stochastic problems and develop efficient
approaches to such problems. Therefore, it is crucial for the
deterministic optimization approaches discussed in this study
to reduce their computational cost. Several strategies can be
employed to reduce the computational cost of the existing
approaches. For instance, the Class III approach (Park et al.,
2020) may improve its efficiency by using model-based algo-
rithms instead of a genetic algorithm. Similarly, the Class I
approach (Halilovic et al., 2022a) can improve its efficiency
by using suitable (re)meshing techniques or by fine-tuning
optimization algorithm parameters.

It is important to note that the classification and compari-
son of optimization approaches presented in Sect. 3.2 is not
limited to the optimization of GWHP systems, but can be
applied to any optimization problem where the underlying
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physical phenomena are described by PDEs. Moreover, the
approaches developed for GWHP systems (see Sect. 3.2.1)
and their future advancements or new approaches in this
area can be extended to other applications. First, they can
be extended to applications that share the same underlying
physics, such as optimization of aquifer thermal energy stor-
age (ATES) systems, calibration of numerical hydro-thermal
groundwater simulation models, and optimization of obser-
vation well placement. Second, these approaches can be ex-
tended to other areas of shallow geothermal energy, including
optimization of vertical and horizontal closed-loop shallow
geothermal systems and optimization of borehole thermal en-
ergy storage (BTES) systems. Lastly, these approaches can
be further extended to areas involving different physical phe-
nomena, such as the optimization of wind farms or tidal
power plants. Nevertheless, it is important to note that ad-
vances in these other areas, particularly in the area of shal-
low geothermal energy, can reciprocally contribute to the
improvement of optimization approaches for GWHP sys-
tems. Namely, optimization approaches and principles used
in other areas have the potential to be adapted and applied to
GWHP systems.

5 Conclusions

This paper presents a comprehensive analysis and overview
of approaches for optimizing the design and operation of
GWHP systems. First, the optimization problems arising
from this research and practice question were investigated,
using a generalized problem as a basis. Then, optimization
approaches were identified and compared, and a novel clas-
sification of the approaches is proposed. The identified ap-
proaches were divided into four distinct classes based on
the type of groundwater simulation model used (PDE-based
or simplified models) and the optimization algorithm ap-
plied (gradient-based or derivative-free). Finally, the paper
includes a thorough review of the existing approaches in the
literature, highlighting their limitations and outlining oppor-
tunities for future improvements.

Based on the analysis performed, several conclusions can
be drawn:

– Optimization approaches that rely on gradient-based
optimization algorithms are preferable, as they consis-
tently outperform derivative-free algorithms.

– The choice of a simulation model used in an optimiza-
tion approach has a significant impact on its applica-
bility. For example, approaches using PDE models are
more suitable for detailed design of large-scale GWHPs,
while simplified models offer practical advantages for
assessing the geothermal potential of large areas. How-
ever, it is important to note that the degree of model
complexity is limited by the availability of hydrogeo-
logical data.

– The existing research on GWHP optimization is limited,
with only a few studies addressing this topic.

– Existing approaches have certain limitations and do not
cover all relevant applications and research questions
in GWHP optimization. One of the main limitations is
the high computational cost, which limits the number
of optimization parameters and the size of the simula-
tion domain that can be effectively considered. In addi-
tion, some approaches are limited in applicability due
to the use of simplified groundwater simulation mod-
els. Moreover, applications such as optimizing the num-
ber and placement of wells in large GWHP systems or
simultaneous optimization of pumping rates and well
placements remain unexplored. Consequently, there is
an ongoing need to develop new and improve existing
approaches to address these limitations and fill the re-
search gaps.

– The efficient optimization approaches developed for
GWHP systems have the potential to be extended
to other shallow geothermal applications as well as
to other optimization problems where the underlying
physical phenomena are described by PDEs. At the
same time, approaches from other areas can be adapted
and used for GWHP optimization in the future.

Finally, this study can provide a valuable foundation for
researchers and practitioners involved in the management
and optimization of shallow geothermal energy systems. In
particular, it provides valuable insights and recommenda-
tions for the application and development of optimization ap-
proaches for GWHP systems. Despite its challenging nature,
optimization of GWHP systems is of utmost importance to
improve thermal management of groundwater and to unlock
the full potential and attractiveness of GWHP technology.
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