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Abstract

In this guided research report, I present the results of investigating the new time-dependent variational

principle method with controlled bond expansion to time-evolve open quantum systems, specifically the

spin-boson model. The model was first formulated in the hierarchy of matrix product states before time-

evolving it. The results are compared with the two-site version results because it has a higher accuracy

than the one-site version, from which the controlled bond expansion version is based. The results prove

that the controlled bond expansion version can expand and grow its bond dimensions while still having the

running time of the one-site version in an open quantum system setting. Although the accuracy changes

depending on the complexity of the model, the method can still get the two-site results by tweaking its

hyperparameters and enabling an additional orthogonalization process. The method holds much promise

and it should be tested in more complex scenarios.



1. Introduction

Studying open quantum systems is an interesting topic because it describes a lot of the phenomena that

we have seen in nature like the photosynthesis process and also in emerging technology like quantum

computers [1, 2]. However, it is not an easy task as the coupling between the system in observation and

the noise from the environment makes it hard to analyze and compute. The tensor networks method has

been a blessing to the research field as it gives researchers the ability to model the relationship between

the quantum states in a simple and easily understandable manner while unlocking a lot of existing and

powerful methods from linear algebra [3]. One type of widely used tensor network is the matrix product

state (MPS) also called a tensor train (TT).

The way the system transmits information in an MPS is through the bonds between the tensors, specifically

the size of the bond dimension indicates how much information is being transmitted. As such, it is crucial

to have a method to time-evolve a quantum system that gives an accurate increase or decrease of the

dimension in an efficient manner. One way to do it is called the time-dependent variational principle

(TDVP) [4]. It is a general method given an MPS with its corresponding Hamiltonian. So, as long as we

can formulate an open quantum system as an MPS, we can time-evolve it with TDVP.

When an open quantum system is presented in the non-Markovian quantum state diffusion (NMQSD)

equation, like in simulating absorption spectra of molecular aggregates, the current standard to simulate

it is the hierarchy of pure states (HOPS) method [5, 6]. HOPS is powerful because it is a formally exact

method to efficiently solve NMQSD equations. There have been some developments to integrate HOPS

and MPS, resulting in a method called the hierarchy of matrix product states (HOMPS) [7].

In this guided research, I implemented a new method called the controlled bond expansion (CBE) TDVP

by Li et al. [8] for open quantum systems. [8] claims the method to have the efficiency of the one-site

TDVP (TDVP1) with the accuracy of the two-site TDVP (TDVP2). I then compared the performance and

results from CBE-TDVP with the ones from TDVP2 in the model case of the transverse-field Ising model

and the spin-boson model, some of the trademark cases of quantum systems.

In Section 2, I will discuss the TDVP method briefly and continue with the discussion of the toy model in

Section 3. The actual implementations are discussed in Section 4 and the results are shown in Section 5.

Finally, I close this report with a conclusion and suggestions for further research in Section 6.
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2. Time-dependent variational principle (TDVP)

The main goal of TDVP is to time-evolve the MPS while constraining it to the manifold generated by the

MPS given the initial bond dimension. The manifold can be seen as the solution space of the MPS. To

do this, we project the right-hand side of the Schrödinger equation onto the tangent space. The time-

dependent Schrödinger equation becomes

∂ |Ψ⟩
∂t

= −iP̂T |Ψ⟩Ĥ |Ψ⟩ (1)

where P̂T |Ψ⟩ is the projector to the tangent space of the MPS.

The most common variants of TDVP are TDVP1 and TDVP2 [9]. The main difference of interest between

these methods is that TDVP1 can only have fixed bond dimensions during the evolution while TDVP2 can

increase or decrease the dimensions accordingly. The flexibility of the bond dimensions is crucial because

this enables TDVP2 to simulate the system more accurately. However, as with other great methods, TDVP2

needs significantly more compute time than TDVP1.

In 2022, [8] implemented a method which allows TDVP1 to grow its bond dimensions at a certain rate.

This method is what we call the CBE-TDVP method. The method is an extension of an idea the group has

implemented to the density matrix renormalization group (DMRG) algorithm [10].

Given an MPS in Figure 1, during the right-to-left sweep in updating tensor Al, we want to expand the bond

dimensions of Al−1 to Al−1⊕ Ãtr
l−1 where Ãtr

l−1 is obtained from a truncated Al−1. This expansion is done

using an algorithm called the shrewd selection. There are two truncation processes: the first one is called

the preselection and it produces the tensor Âpr
l−1 from Al−1; the second one is called the final selection

and it produces the tensor Ãtr
l−1 from Âpr

l−1. The algorithm is available in the Supplemental Material of [10].

Figure 1: MPS model

The shrewd selection process has a health check which checks the orthogonality of the candidate Âpr
l−1

that we define as Û with the original tensor Al−1, i.e. A†
l−1Û

!
= 0. There is an optional step to ensure this

condition by adding an additional orthogonalization where we do an SVD on Û − AlA
†
l Û to get the Ûnew.

We then use Ûnew as Âpr
l−1.
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3. Toy model

I used two toy models for different experiments. The first model is the transverse-field Ising (TFI) model

just for its simplicity and to check the speed between different methods. One of the other reasons is that

the current implementation of TDVP1 couldn’t be used for other complicated models. The Hamiltonian of

the TFI model is as follows

Ĥ = −J
L∑
i

σ̂x
i σ̂

x
i+1 − g

N∑
i

σ̂z
i (2)

where J and g are the coupling parameters and σ̂x
i and σ̂z

i are the Pauli X and Z matrices of site i.

For the second model, I used the spin-boson (SB) model. The model describes a simple two-level quantum

system interacting with its environment. The system is described as a spin-1/2 particle like a qubit and

the environment is modelled as the collection of harmonic oscillators called the bosonic bath. The total

Hamiltonian can be written in the typical Hamiltonian for an open system

Ĥ = ĤS + ĤB + Ĥint (3)

where ĤS , ĤB , Ĥint are the system, bath, and interaction Hamiltonians respectively. The system Hamil-

tonian is

ĤS = −1

2
∆σ̂x +

1

2
ϵσ̂z (4)

with σ̂x and σ̂z are Pauli X and Z matrices respectively while ∆ and ϵ are coefficients. The bath Hamiltonian

is

ĤB =

K∑
k=1

νkâ
†
kâk (5)

where â†k and âk are the creation and annihilation operators respectively of the k-th bath mode with νk is

the corresponding coefficient. Lastly, the interaction Hamiltonian is

Ĥint =

K∑
k=1

γ∗k(L̂⊗ â†k + h.c.) (6)

where L̂ operator describes the coupling between the system with the bath modes with γ∗k describing the

strength of the coupling and h.c. refers to the Hermitian complement of L̂⊗ â†k.

In the next section, I will discuss the implementations of these equations.
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4. Implementation

The TFI model is simulated with the parameters in Table 1. All TDVP methods share the same parameters

except Dmax and D̃ which are specifically for CBE-TDVP. This is also applicable to the SB model.

Table 1: Parameters of the TFI model

Parameter Value

Number of sites L 14

Coupling strength J 1

Coupling strength g 1.5

SVD’s truncation threshold ϵ 10−10

Maximum bond dimension Dmax 20

Truncated complement dimension D̃ 2

Health check threshold 10−10

For the SB model, it is first converted to the NMQSD equation as follows

∂ |Ψt⟩
∂t

= −iĤS |Ψt⟩+ L̂z∗t |Ψt⟩ − L̂†
∫ t

0
dsα(t− s)

δ |Ψt⟩
δz∗s

(7)

where α is called the bath correlation function which characterizes the influence of the environment on the

system and z∗s is the noise. HOPS is then used to solve the NMQSD equation and more specifically the

non-linear HOPS method

∂ |Ψ(n)
t ⟩

∂t
= (−iĤS − n · ω + L̂z∗t ) |Ψ

(n)
t ⟩+ L̂

K∑
k=1

nkgk |Ψ
(n−ek)
t ⟩ − (L̂† − ⟨L̂†⟩)

K∑
k=1

|Ψ(n+ek)
t ⟩ (8)

where z∗t can be 0 to result in a noise-free HOPS [5].

This non-linear HOPS equation is then time-evolved with the TDVP methods by first adapting the quantum

states to MPS form, giving us the HOMPS version. I will not be discussing the whole derivations and

explanations of the equations in this report as it has been done in the Bachelor’s Thesis of B. Sappler [11].

Table 2 shows the parameters used for the SB simulations.

The important hyperparameters to note for CBE-TDVP are Dmax and D̃. The first parameter acts as a

limit that when the dimensions have reached Dmax, shrewd selection is disabled. The second parameter

essentially represents the additional dimension to add during the sweep.
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Table 2: Parameters of the SB model. The values inside the square brackets, e.g. [x/y/z], are options used

in the simulations. The first values are the default options if not stated otherwise.

Parameter Value

Number of sites L 1 system site and 4 bath sites

Coupling strength w 0.5 + i2

Coupling strength g [0.01/0.1/1/10/100]

SVD’s truncation threshold ϵ [10−10/10−5/10−13/10−14/10−15]

Maximum bond dimension Dmax 20

Truncated complement dimension D̃ 1

Health check threshold 10−10

Noise z∗t [True / False]

Additional orthogonalization [False / True]

As for the health checks threshold, it is to trigger the additional orthogonalization if the step is enabled.

Before moving on to the results and analysis, I need to make one remark about the simulations. Because

I didn’t have the analytical solutions for these models and problems, I used TDVP2 as the benchmark. So

it is assumed that TDVP2 results are the correct solutions and the other methods are assessed by the

TDVP2 results. Now, we will discuss the results in the next section.
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5. Results

First, I am going to discuss the results of the TFI model. Figure 2 and Table 3 show the simulation

results with TDVP1, TDVP2, and CBE-TDVP using the parameters from Table 1. It is good news that the

calculated magnetizations are almost identical. This simple simulation proves that the CBE-TDVP works

as it can produce the same result as TDVP1 and TDVP2 while growing its bond dimensions. Additionally,

it also proves that in this specific case, the running time of CBE-TDVP is practically the same as TDVP1,

saving 69% of the TDVP2 running time.

Figure 2: Results from Table 1 for the TFI model using different TDVP methods

Table 3: Running time for the TDVP methods for the TFI model

Method Running time (s) Average bond

dimensions at

steady-state

CBE-TDVP 67.25 12.3

TDVP1 67.12 12.3

TDVP2 213.56 12.3

We can see further interesting behaviour of CBE-TDVP in the SB model simulations. Table 4 shows the

results from the model with g ∈ {0.01, 0.1, 1, 10, 100}.
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The first obvious observation is that CBE-TDVP is still faster than TDVP2. Interestingly, the difference

between these two methods is more apparent when the computations are more demanding. When TDVP2

fails due to the hardware, i.e. memory, limit, CBE-TDVP fails due to diverging SVD during the shrewd

selection process. This is still an advantage given we have an efficient algorithm to fix this problem.

Table 4: Running time for the TDVP methods for the SB model

g Method
Without noise With noise

Time (s) Average Bond Dim Time (s) Average Bond Dim

0.01
CBE-TDVP 107.85 11.5 113.97 11.5

TDVP2 258.16 5.5 278.43 6

0.1
CBE-TDVP 110.30 11.5 137.89 11.5

TDVP2 619.46 7 961.32 8.5

1
CBE-TDVP 180.85 11.5 234.41 11.5

TDVP2 1521.80 10.75 Hardware limit

10
CBE-TDVP 279.37 11.25 SVD diverged

TDVP2 2152.38 11.5 Hardware limit

100
CBE-TDVP SVD diverged SVD diverged

TDVP2 Hardware limit Hardware limit

The second observation is that TDVP2 has a mechanism to reduce its bond dimensions as seen more

vividly in Figure 3 and 4 while CBE-TDVP doesn’t have an explicit way to reduce them. At each itera-

tion, TDVP2 truncates the singular values of the tensors. This enables it to change the bond dimensions

according to the singular values. Because CBE-TDVP can only expand the dimensions to a certain maxi-

mum, this introduces hyperparameters to be tuned, i.e. finding the most optimal growth and maximum of

the dimensions.

After analyzing the speed and the bond dimensions, I tried to fix the cases when the SVD diverged.

However, because I couldn’t get the corresponding simulation with TDVP2 because of my hardware limit,

I decided to present the results using g = 0.01 so the results between the two methods can be compared.

On closer inspection, the diverging correlates to the health checks giving non-numerically zero values

and approaching 1. One way to bring the health checks closer to 0 is by increasing the SVD’s truncation

threshold ϵ thereby truncating more singular values. However, this should be avoided because the step

should only remove numerically zero singular values.
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Figure 3: Results using parameters from Table 2 with g = 0.01 and without noise

Figure 4: Results using parameters from Table 2 with g = 0.01 and noise
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As seen in Figure 5, the average bond dimensions stagnate at 7.5 when ϵ = 10−5, below the result from

Figure 3 with ϵ = 10−10 which has the average at 11.5. When using ϵ = 10−5 and ϵ = 10−10, the bond

dimensions are [2, 8, 12, 8] and [2, 16, 20, 8] respectively. This doesn’t impact the accuracy in this specific

experiment, because the bond dimensions achieved by TDVP2 are still lower than CBE-TDVP. Again, we

should limit the bond dimensions only by using D̃ and Dmax and not by using ϵ.

Figure 5: Results using parameters from Table 2 with g = 0.01, without noise and ϵ = 10−5

This problem should then be solved by enabling the additional orthogonalization every time the health

check gives a value > 10−10 and decreasing the truncation threshold from 10−10 to 10−14. Figure 6, 7, 8,

9 show the different results with varying truncation thresholds.

For the same threshold of ϵ = 10−10, the one without the additional orthogonalization generates more

similar results to TDVP2 results compared with the one with the additional step which can be seen from

Figure 4 and Figure 6 respectively. The latter seems to lose some information from the environment

resulting in inaccuracies in certain parts.

When the truncation threshold is decreased, the result moves closer to the TDVP2 result. The ideal value is

10−14, as when it gets decreased further, sometimes the new value of the health check after the additional

orthogonalization still results in a value in the order of 10−1 because we are not truncating the numerically

zero values. This method works well with the advantage that adding the step doesn’t practically prolong

the running time.
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Figure 6: Results from Table 2 with additional orthogonalization and ϵ = 10−10

Figure 7: Results from Table 2 with additional orthogonalization and ϵ = 10−13
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Figure 8: Results from Table 2 with additional orthogonalization and ϵ = 10−14

Figure 9: Results from Table 2 with additional orthogonalization and ϵ = 10−15
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6. Conclusions and further research

CBE-TDVP shows an important benefit compared to TDVP1 and TDVP2 methods. Especially in an open

quantum system where the bond dimensions play an important role in the relationship between the system

and the environment, CBE-TDVP can help speed up the simulations by almost a factor of 10 or more in

some experiments.

There are some precautions however when using CBE-TDVP. First, there are more hyperparameters to

tune compared to both TDVP1 and TDVP2 and those are the truncation threshold ϵ, the maximum bond

dimension Dmax, and the truncated complement dimension D̃. Finding the optimal parameters might lead

us to use more time than simulating with TDVP2.

The behaviour of the health checks and the orthogonalization still need to be researched further for more

complicated models. There might be some use cases where CBE-TDVP doesn’t work or the extra orthog-

onalization doesn’t give better results. We must test the limitations of this method and improve the method

accordingly.
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