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Abstract

Halide perovskites (HaPs) have emerged as a promising optoelectronic material distin-
guished by their remarkable properties. Unlike conventional inorganic semiconductors,
HaPs exhibit unique anharmonic fluctuations with a soft lattice, closely connected to
their favorable optoelectronic properties. However, a comprehensive understanding of
their structural dynamics and the profound implications remains elusive. This thesis is
dedicated to unraveling the fundamental physical mechanisms and their broader conse-
quences on material functionality.

Employing state-of-the-art computational methods, we probe the anharmonic dynamics
and their impact on the electronic properties of CsPbBr3, chosen as a prototypical HaPs.
Molecular dynamics (MD) based on density functional theory (DFT) are used to investi-
gate the full anharmonic dynamics. Compared to the results from stochastic Monte Carlo
(MC) calculations, the effect of anharmonicity on optoelectronic properties is quantified.
To go beyond the inadequate harmonic picture, we developed augmented Monte Carlo
methods with imaginary soft phonons taken into account.

Our investigation first characterizes the anharmonic dynamics by analyzing local fluc-
tuations. Specifically, we find that motions of neighboring Cs-Br atoms interlock within a
nominal cubic unit cell. This manifests in the most likely Cs-Br distance being shorter than
what is inferred from an ideal cubic structure. Furthermore, we quantify the effective po-
tential associated with certain atomic motions at two temperatures. Building on this foun-
dational understanding, we explore the dynamical influence on the material’s band gap.
Through comparing different levels of theory with experiments, we find that anharmonic
fluctuations are a key effect in the electronic structure of these materials. In particular,
we demonstrate that mildly changing band gaps across phase transitions cannot be ex-
plained by harmonic phonons thermally perturbing an average crystal structure. Further
examination leads us to identify overdamped phonon modes, which are highlighted be-
hind the connection of microscopic structural information and the macroscopic functional
properties. We show that the separation of dynamic fluctuations into two time scales is
intrinsic to the overdamped dynamics and originates from strong phonon-phonon interac-
tions in CsPbBr3. Since the phonon picture breaks down, an independent-phonon-based
method cannot capture the band gap behavior of this material.

In conclusion, our findings offer a comprehensive perspective on the optoelectronic prop-
erties of halide perovskites, underscoring the critical role of anharmonic dynamics. The
elucidation of overdamped behaviors provides a deeper understanding of the material’s
intrinsic properties, challenging conventional models. This work not only contributes to the
theoretical framework of anharmonic systems but also has the potential to inform future
developments of photovoltaic materials.
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1 Introduction

Energy consumption is critical for modern civilization. The global energy requirement may
increase 50% by 2050 [1] due to population growth and industrial development. This in-
creasing demand for energy leads to more and more concern of the depletion of fossil
fuels and climate change. Today, the global average surface temperature is already ap-
proaching 1.2 ◦C above pre-industrial levels, which leads to potential climate risks [2]. In
this context, developing renewable energy sources has thus become urgently needed.
Among them, solar energy is considered a leading candidate for an alternative energy
source, which has grown rapidly in recent years. According to the International Energy
Agency’s (IEA) report in 2023 [3], the world could have manufacturing photovoltaics (PV)
capacity for more than 1200 GW per year by 2030, a huge increase from 385 MW in 2000.
To reach the roadmap of "Net Zero by 2050" [4], solar PV should generate over 23 000
TWh by 2050, equivalent to about 90% of all electricity produced in the world in 2020.

The large demand for accessible solar energy calls for advancements in high-efficiency
and low-cost solar cell materials. Silicon-based solar cells have been the predominant
PV technology occupying the largest share of the market for decades [5]. Mainly made
from crystalline silicon, the efficiencies of these cells have been gradually improved, with
efficiencies now averaging around 15-20% for commercial products and 26.8 % in the
lab [6]. However, several limitations make it difficult to further scale up for commercial
production. On one hand, silicon solar cells are approaching the efficiency limits. On the
other hand, the complex vacuum-based manufacturing processes at high temperatures
make it hard to produce and generate a large amount of waste [7].

Thus, new types of PV materials have been explored for solar cell production in recent
years. Halide perovskites (HaPs) have demonstrated the potential to be used in next-
generation solar cells due to their inexpensive fabrication and optimal photoelectric prop-
erties. These materials are characterized by the general formula ABX3, where ’A’ is a
monovalent cation (organic or inorganic), ’B’ a divalent metal, and ’X’ a monovalent halo-
gen. Perovskite solar cells offer industry advantages such as lower production costs,
lightweight design, and a simple fabrication process with low-temperature solution pro-
cessing. [8]. Moreover, perovskite solar cells have shown remarkable progress in effi-
ciency [9]. Within one decade, the energy conversion efficiency increased from 4% in
2009 [10] to more than 20% [11]. Now, the best perovskite solar cells have reached 26%
[11] in the lab, approaching the performance levels attained by single-crystalline silicon
solar cells.

Additionally, perovskites entail broad tunable bandgaps by compositional engineering,
which makes them suitable for applications in multi-junction (tandem) solar cells (TSCs)
[12], a technology where layers of different materials are used to absorb different parts of
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the solar spectrum. Thereby, the solar cell can achieve higher efficiencies even breaking
the Shockley–Queisser (S–Q) efficiency limit (33%) [13] of single-junction cells. These
rapid advancements highlight the potential of perovskite to lead a paradigm shift in solar
cell technology for the next generation. The significant progress in HaP solar cells stems
from several key optoelectronic features: sharp absorption edge and high light absorp-
tion that allows for thin films, exceptional defect tolerance that enables low-temperature
synthesis, and high charge carrier mobility with fewer recombination losses [14, 15].

The functional properties of materials are deeply rooted in their structure. These prop-
erties are usually calculated based on the averaged atomic structures determined by
traditional crystallography, which represent the periodic symmetry in solid materials. For
example, the X-ray diffraction (XRD) spectra measure time- and space-averaged struc-
tures, capturing the average atomic positions over the volume sampled and the duration
of the exposure [16]. However, unlike the more rigid lattice structures seen in conven-
tional inorganic semiconductors, HaPs exhibit a softer lattice, allowing for more significant
atomic movements and even deviation from the averaged structure at finite temperatures
[17]. This flexibility in structure leads to a series of distinctive behaviors in properties: the
local disorder potentials give rise to sharp optical absorption edges [18], the octahedral
rotation influences the band gap [17], the dynamic disorder significantly affects charge
carrier dynamics [19].

Such observations in the literature demonstrate that the structural attributes of HaPs are
closely linked to their optoelectronic performance. Therefore, it is crucial to consider the
effect of structural dynamics at finite temperatures. Typically, solid materials are analyzed
using the harmonic approximation, which expands the potential energy up to second-
order terms (see section 2.4.1) and employs the perturbative method (see section 2.5.1)
to deal with electron-phonon coupling. On the contrary, halide perovskites are character-
ized by significant anharmonic vibrational fluctuations, where the atomic motions deviate
from simple harmonic behavior. Understanding the impact of these special dynamics is
therefore important for improving their performance for advanced solar cell applications.

However, a gap still remains between the understanding of the physical model for an-
harmonic dynamics and the optoelectronic properties within these materials. Three chal-
lenges emerge in the study of the relevant topics:

The first challenge is to understand and quantify the dynamic effects, specifically the
anharmonic vibrational fluctuations within HaPs. Accurately modeling these dynamics is
crucial but presents a significant challenge due to their complicated nature. Variety of
concepts are used to describe the dynamics effects, such as "dynamic disorder" [19],
"local distortion" [20], "octahedral tilting" [21], "anharmonicity" [22], and "overdamped"
[23]. Without clarifying the relationship of different languages, a unified perspective to
understand the dynamics in this system is still missing.

The second challenge lies in computing the impact of these dynamic effects on the elec-
tronic properties of HaPs. Both of the high-order terms in electron-phonon interactions
[24] and phonon-phonon interactions (or anharmonicity) [22] are likely critical for electronic
structures in finite temperature. As a result, the well-established perturbative method
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based on second-order electron-phonon coupling or harmonic approximation of phonon
usually does not work well in these systems.

The third challenge, on top of the other two, is to develop a robust conceptual framework
that bridges the intricate dynamics effects with the related electronic properties. This
involves not only a deep understanding of both the dynamic and electronic aspects but
also the ability to synthesize these understandings into a coherent, comprehensive model.
Such a framework is essential for predicting material behavior and guiding the design of
next-generation optoelectronic devices.

These challenges form the cornerstone of this thesis, which aims to contribute to the un-
derstanding of the structure–property relationship of HaPs in the field of optoelectronics.
Focusing on a prototypical HaP, CsPbBr3, this work seeks to unravel the complex inter-
play between structural dynamics and optoelectronic functionality, shedding new light on
a material that stands at the forefront of modern material science.

In addressing the outlined challenges, this thesis employs a combination of advanced
computational methods to study the anharmonic dynamics and their influence on the op-
toelectronic properties of CsPbBr3. The primary method used is molecular dynamics
(MD) simulations based on density functional theory (DFT). The advantage of this ap-
proach is that it includes the full order of anharmonicity intrinsically, which evaluates the
instantaneous forces and energy using DFT. It enables the investigation of local structural
fluctuations and anharmonic dynamics in real time. By simulating the atomic movements
and the time correlations within the system, MD provides insight into the dynamic disor-
der and local structures that characterize these materials. Combining the MD structures
with DFT band gap calculation, we can study the finite temperature electronic properties
considering anharmonicity.

While MD is a powerful tool to provide us with a large amount of information about the
anharmonic system, it is difficult to interpret. The stochastic Monte Carlo (MC) method
is another framework to study the band gap and electron-phonon interactions. Since it
is based on the phonon model, it allows us to disentangle the contribution of each term.
However, the application of standard MC is limited to harmonic systems because of the
harmonic approximation employed during phonon calculations. In this work, we discuss
the possible ways to augment MC with anharmonic effects. A new method to treat the
imaginary phonon modes in harmonic approximation is proposed.

The thesis is organized as follows: Chapter 1 provides an overview of the demand for so-
lar cells to fulfill the renewable energy requirement, the favorable properties of perovskites
in optoelectronics, and the challenges in understanding their anharmonic vibrational dy-
namics and optoelectronic properties. Chapter 2 introduces the theory and computational
methods used in the thesis, including DFT, MD, lattice dynamics, and electron-phonon
interaction. Chapter 3.1 presents an in-depth analysis of the anharmonic vibrational dy-
namics observed in CsPbBr3, exploring the implications of local distortions and octahedral
tilting. Chapter 3.2 examines the impact of anharmonic dynamics on the band gap be-
havior of CsPbBr3 at different temperatures and phases. Chapter 3.3 further explores
the findings from the previous chapters from the viewpoint of overdamped dynamics to
develop a comprehensive understanding of how anharmonic dynamics influence the op-
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toelectronic properties of HaPs. Chapter 4 summarizes the key findings of the thesis and
discusses the implications for future research.

In summary, the thesis offers a multi-faceted perspective on the complex interplay be-
tween structural dynamics and electronic structures, especially the band gaps, in HaPs,
constructing a coherent conceptual framework to understand the microscopic structural
behavior as well as the macroscopic experimental observables.
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2 Theory

2.1 Born-Oppenheimer approximation

One of the most foundational equations in solid-state physics is the many-body Schrödinger
equation, which includes the dynamics of both electrons and nuclei within a material, of-
fering insights into its fundamental properties

ĤΨs({r}, {R}) = EsΨs({r}, {R}), (2.1)

where the many-body wave function Ψs({r}, {R}) depends on electronic {r} and nuclear
{R} coordinates.

A complete Hamiltonian contains the kinetic energy operator of the electrons (nuclei) T̂e

(T̂N ), potential operators of the electron (nuclei) V̂ee (V̂NN ), and interaction between elec-
tron and nuclei V̂eN [25],

Ĥ = T̂e + V̂eN + V̂ee + T̂N + V̂NN

= − ℏ2

2me

∑
i

∇2
i −

∑
i,I

ZIe
2

|ri − RI |
+ 1

2
∑
i ̸=j

e2

|ri − rj|

−
∑
I

ℏ2

2MI
∇2

I + 1
2
∑
I ̸=J

ZIZJe
2

|RI − RJ |
,

(2.2)

where MI (me) and ZI denote the nuclei (electron) mass and charge.

Although this Hamiltonian contains all the information for the system at equilibrium, it be-
comes too complicated to be solved as the number of particles increases. Born–Oppenheimer
(BO) approximation [26] is widely used to simplify the problem. This approximation is
based on the fact that nuclei are much heavier than electrons, leading to much slower
nuclear motion compared to electronic motion. Thus, the nuclear kinetic part T̂N can be
ignored, and the nuclei coordinates are fixed. The nuclear potential term is now a constant
ENN and can be ignored as well. As a result, we are able to separate the electronic part
of Hamiltonian and assume we know the exact solution of the corresponding Schor̈dinger
equation,

Ĥeψi = (T̂e + V̂eN + V̂ee)ψi = Ei({R})ψi({r}; {R}), (2.3)

where ψi({r}; {R}) defines the complete set of electron wave functions at each nuclear
coordinate {R}. The full solution of the nuclei and electrons system Ψs({r}, {R}) can be
written as an expansion of the electronic complete set {ψi}[25, 27]

Ψs({r}, {R}) =
∑

i

χsi({R})ψi({r}; {R}), (2.4)



2 Theory

6

and the nuclear wave functions χsi({R}) can be viewed as expansion coefficients.

Then we can insert Eq. (2.4) into Eq. (2.1), multiply on the left by ψ∗
j , and integrate over

electronic coordinates {r}. Considering the chain rule, one is able to obtain an equation
for χsi({R}),

−
∑
I

ℏ2

2MI
∇2

I + Ej({R})
χsj +

∑
i

Cjiχsi = Esχsj, (2.5)

where

Cji = −
∑
I

ℏ2

2MI

∫
dr
(
ψ∗

j ∇2
Iψi + 2ψ∗

j ∇Iψi∇I

)
. (2.6)

The Born-Oppenheimer approximation allows us to ignore the off-diagonal Cji terms (j ̸=
i), which means electrons stay in the same state as nuclei move. As to the diagonal case,
the second term in Eq. (2.6) is zero as well, given the requirement for normalization. As
a result, only one diagonal term is left

Cjj = −
∑
I

ℏ2

2MI

∫
drψ∗

j ∇2
Iψj. (2.7)

Now the nuclear wave function χsj for each electronic state j is fully decoupled and de-
scribed by the following equation

−
∑
I

ℏ2

2MI
∇2

I + Ej({R}) +
∑

i

Cjj

χsj = Esχsj. (2.8)

This nuclear schor̈dinger equation is still complicated. However, since the nuclei are much
heavier compared to electrons, they can be viewed as a point particle and described by
classical Hamiltonian

Ĥclass =
∑
I

P2

2MI
+ U(R1, ...RM), (2.9)

where the function U(R1, ...RM) is called potential energy surface, specifically, a hyper-
surface of all nuclear coordinates R1, ...RM . Notice it includes the energy of both elec-
trons and nuclei. Thus, the dynamics of atoms would be described with a Newton equa-
tion.

MI
d2RI

dt2
= − ∂U

∂RI
= FI , (2.10)

which indicates that the equilibrium structure (F = 0) has the lowest total energy.

The Born-Oppenheimer approximation has proven incredibly successful in explaining and
predicting a wide range of material properties. However, it’s worth noting that ignoring
off-diagonal terms in Eq. (2.6) is only justified when the energy gap between the ground
and excited electronic states is larger than the energy scale of the nuclear motion [28].
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2.2 Density functional theory (DFT)

After employing the Born-Oppenheimer approximation to decouple electronic and nuclear
motions, the next step is to solve Eq. (2.3) to study the electronic properties. Density
functional theory (DFT) is one of the most successful methods for studying materials from
first principles by providing a way to systematically map the many-body problem onto a
single electron problem [29]. It offers a practical approach to solving the Schrödinger
equation for electrons in the static potential of nuclei.

2.2.1 Formalism and Mathematical Foundations

Hohenberg-Kohn Theorems

DFT is grounded in the Hohenberg-Kohn theorems, which establish the formalism of using
electron density rather than wavefunction to describe the system. In 1964, Hohenberg and
Kohn proved that the ground state of a many-electron system is uniquely determined by
its electron density n(r⃗) [30] so that any property of a system of many interacting particles
can be viewed as a functional of the ground state density.

Before we introduce the Hohenberg-Kohn theorem (H-K), we define the density as follows:

n(r) =
∫
dr1dr2 . . . drNψ

∗(r1, r2, . . . , rN)
N∑

i=1
δ(r − ri)ψ(r1, r2, . . . , rN)

= ⟨ψ|
N∑

i=1
δ(r − ri)|ψ⟩,

(2.11)

where ψ(r; R) represents the electronic wavefunction, which, for a given set of nuclear
coordinates R, uniquely determines the electron density n(r). For a specific set of nu-
clear positions {R} and corresponding external potential V̂eN , the wave function ψ({r})
is uniquely determined. Consequently, it follows that V̂eN uniquely determines n(r):
V̂eN → ψ → n(r). While this chain of reasoning may seem straightforward, the H-K
theorem asserts that the inverse is also true, specifically in the ground state

• Theorem 1: The external potential V̂eN is a unique functional of the ground state
electron density n0(r).

As long as V̂eN is determined, the whole Hamiltonian is determined. Therefore, all prop-
erties of the system can be fully described by the ground state density n0(r), offering a
groundbreaking perspective on the relationship between electron density and the external
potential in quantum systems.

Furthermore, the H-K theorem introduces a variational principle for the electron density.

• Theorem 2: The functional that delivers the ground-state energy of the system gives
the lowest energy if and only if the input density is the true ground-state density.



2 Theory

8

It means the functional E[n] alone is sufficient to determine the exact ground state energy
and density and provides a practical method to calculate the ground state properties by
minimizing the energy with respect to the electron density.

Expanding on this formulation, if we denote the kinetic energy by T̂ and the electron-
electron Coulomb interaction energy by V̂ ee as in Eq (2.3), the total energy can be written
as:

E = ⟨ψ|T̂ + V̂eN + V̂ee|ψ⟩. (2.12)

Using Eq (2.11), the energy functional can be expressed in terms of electron density

E[n] =
∫
drn(r)Vext(r) + ⟨ψ[n]|T̂ + V̂ee|ψ[n]⟩ (2.13)

where Vext(r) = −∑
I ZI/|r − RI | represents the external potential. H-K theorem 2 can

be written as E[n0] ≤ E[n], indicating that the energy functional attains its minimum value
for the true ground-state electron density n0(r).

Kohn–Sham equations

The H-K theorem puts the ground state electron density n0(r) as a central object, al-
lowing us to replace the complex many-body wavefunction with a functional relationship.
However, the theorem itself does not provide a specific methodology for constructing this
functional. The expression in Eq (2.13) shows that while the first term explicitly depends
on the electron density, the exact forms of the kinetic and Coulomb energy functionals
remain unknown, presenting challenges for solving the many-body problem in practice.

To address this challenge, Kohn and Sham proposed a solution in 1965 [31], transfroming
the original many-body problem into an independent-particle problem. They assumed the
existence of an independent particle system sharing the same ground state density as the
original interacting system. This simplification allows for solving the independent system
with numerical methods, thereby enabling the determination of the ground state density
and energy of the original system efficiently.

The key idea of the Kohn-Sham (K-S) approach is to construct a set of Schrödinger-like
equations (named as Kohn-Sham equations) for these non-interacting electrons. These
equations describe the movement of electrons in an effective potential as following:

(
− ℏ2

2m∇2 + Veff (r)
)
ϕi(r) = ϵiϕi(r), (2.14)

where Veff (r) is the effective potential experienced by an electron, ϕi(r) represents the
ith Kohn-Sham orbital, and ϵi denotes the energy of that orbital.

The electron density is then derived from the sum of the squares of these orbitals:

n(r) =
N∑

i=1
|ϕi(r)|2. (2.15)
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This transformation enables the explicit calculation of the total energy of the system as

EKS[n] =
∫
drn(r)Vext(r) − ℏ2

2m
N∑

i=1

∫
drϕ∗

i (r)∇2ϕi(r) + 1
2

∫∫
drdr′n(r)n(r′)

|r − r′|
+ EXC [n]

=
∫
drn(r)Vext(r) + Ts[n] + EH [n] + EXC [n],

(2.16)
where the first term is due to the external potential, which we have seen in Eq (2.13).
The second and third terms represent the kinetic energy of K-S orbitals and the Hartree
potential, which can be seen as the self-interaction energy of the density n(r) treated
as a classical charge density. The explicit formulations of these three components are
known. The last term is called exchange–correlation energy, which in principle, encapsu-
lates all the difficult many-body effects. The main challenge is to accurately describe the
exchange-correlation energy EXC [n],
According to H-K theorems, the ground state density function n0 minimizes the total en-
ergy, leading to the condition

δEXC [n]
δn

∣∣∣∣∣
n0

= 0, (2.17)

Using the Lagrange multiplier method, this variational equation leads to a single-particle
Schor̈dinger-like equation mentioned in Eq. (2.14),(

− ℏ2

2m∇2 + Vext(r) +
∫
dr′ n(r′)

|r − r′|
+ VXC(r)

)
ϕi(r) = ϵiϕi(r), (2.18)

where the exchange-correlation potential is defined as Vxc(r) = δExc[n]
δn

∣∣∣
n(r). If the exact

form of EXC were known, the ground state energy and density for the many-body electron
problem could be precisely solved. However, the exact form of the exchange-correlation
energy functional EXC [n] remains unknown, prompting the development of various ap-
proximations such as the Local Density Approximation (LDA) [32], Generalized Gradient
Approximation (GGA) [33], and hybrid functionals [34, 35, 36]. These approximations
attempt to capture the essence of many-body interactions within a manageable computa-
tional scheme, marking a continuous area of research within the field of density functional
theory.

2.2.2 Computational schemes

Self-consistent field calculations

The next question will be how to solve the K-S equation in practice. In Eq (2.14), we see
that in order to solve for ϕ(r), Veff is required. However, the Veff depends on density n,
which is a function of ϕi following Eq. (2.15).

To solve this circular dependency problem, an iterative approach called self-consistent
field (SCF) is employed. The procedure is the following: we start by constructing a guess
of the electron density, for example, adding up the densities of completely isolated atoms.
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Initial guess n(r)

Calculate effective potential Veff (r)

Solve K-S equation (Eq. (2.18))

Update electron density n(r)

Self-consistent?

Output quantities: Energy, force, stress,...

Yes

No

Figure 2.1 Schematic representation of self-consistent loop for the solution of the Kohn–Sham
equations.[25]

From this density, we obtain initial estimates of the effective potentials. Then we can solve
the K-S equation with that potential and obtain a new density. Unless we input the final
ground-state density from the beginning, we will never obtain the same density. Therefore,
the new density will be the input for the next iteration, and the process will be repeated
until the new density matches the old density within a desired tolerance. A flow chart
illustrates the whole process (Fig. 2.1).

It is worth noting that the SCF method is a general method that can extend beyond DFT,
for example, the Hartree-Fock (HF) theory [37, 38] or other methods involving variational
problems [39].

Hellmann–Feynman theorem

As discussed in section 2.1, both the equilibrium structure and the lattice dynamics re-
quire the calculation of forces on atoms. In the context of DFT, it is common to employ
Hellmann-Feynman theorem [40, 41] to compute the forces. Introduced independently by
Hellmann in 1933 and Feynman in 1939, this theorem relates the forces acting on atoms
to the electronic structure of the system.
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The essence of the Hellmann–Feynman theorem is captured by the following equation

dEλ

dλ =
〈
ψλ

∣∣∣∣∣∣dĤλ

dλ

∣∣∣∣∣∣ψλ

〉
, (2.19)

which asserts that the derivative of the energy Eλ with respect to a parameter λ (here the
position of an atom) can be determined by the expectation value of the derivative of the
Hamiltonian with respect to that parameter.

If we apply this to the K-S Hamiltonian in Eq. (2.18), the force on the atom I can be
calculated as [29]

FI =
∫
drn(r)ZI

r − RI

|r − RI |3
−
∑
J ̸=I

ZIZJ
RJ − RI

|RJ − RI |3
. (2.20)

This equation provides a formalism to directly calculate force using electronic density
n(r), which could be easily obtained in DFT framework. In practice, this formalism set the
foundation in DFT for optimizing the geometry, searching for the lowest energy structure,
and understanding the dynamics in the system.

2.3 Molecular dynamics

2.3.1 Foundations

Molecular dynamics (MD) is a method to simulate the movements of atoms and molecules
over time, which allows direct observation of dynamic processes at the atomic scale.
Within the Born-Oppenheimer approximation, MD is simplified to a two-step process:
First, the forces on atoms are computed by solving a static problem with fixed nuclear
positions. The computation of these forces can employ a variety of approaches ranging
from empirical potentials to ab initio method or even a machine learning force field [42].
Second, we solve the Newton equation, as seen in Eq. (2.10), using the forces calculated
in the first step. Then we move the nuclei according to the principles of classical mechan-
ics. This process is often called Born-Oppenheimer molecular dynamics. This work will
focus on this approach and use DFT to calculate forces.

Verlet algorithm

In practice, the numerical integration of Newton’s equation with discrete time steps is a
fundamental step. Among the various algorithms developed for this purpose, the Verlet
algorithm [43] stands out for its simplicity, stability, efficiency, and preservation of time-
reversal symmetry.

The Verlet algorithm computes the positions of particles at a subsequent time step without
directly calculating the velocities. This is achieved through a straightforward formula:

RI(t+ ∆t) = 2RI(t) − RI(t− ∆t) + (∆t)2

MI
FI(t), (2.21)



2 Theory

12

where the nuclear positions RI at time t + ∆t is calculated from the position at t and
t− ∆t. FI(t) and MI are the mass and force acting on the particle I at time t.

The Verlet algorithm takes advantage of time reversal symmetry to reduce the error from
a discrete time step. The position vector can be Taylor expanded in two time directions,

x(t+ ∆t) = x(t) + ẋ(t)t+ 1
2 ẍt2 + 1

6
...x t3 + O

(
∆t4

)
,

x(t− ∆t) = x(t) − ẋ(t)t+ 1
2 ẍt2 − 1

6
...x t3 + O

(
∆t4

)
.

(2.22)

Adding these expansions cancels out the first and third-order derivative terms, leading to:

x(t+ ∆t) = 2x(t) − x(t− ∆t) + ẍt2 + O
(
∆t4

)
. (2.23)

Thus, we obtain the accuracy of O
(
∆t4

)
with a calculation up to second order.

A more commonly used approach is the velocity Verlet algorithm, where we explicitly
calculate velocity. This method keeps track of one position vector RI(t) and one velocity
vector vI(t), rather than two position vectors at two subsequent time steps

RI(t+ ∆t) = RI(t) + vI(t)∆t+ FI(t)
2MI

(∆t)2, (2.24)

vI(t+ ∆t) = vI(t) + FI(t) + FI(t+ ∆t)
2MI

∆t. (2.25)

In this way, the velocity Verlet algorithm provides additional information about the system’s
kinetic properties.

Nose-Hoover Thermostat

The conservation of energy inherent in the Verlet algorithm makes it ideally suited for mi-
crocanonical (NVE) ensemble simulations, where the number of particles N , the volume
V , and the energy E are kept constant. However, many physical processes occur under
conditions with constant temperature where we have to deal with the canonical (NVT )
ensemble, with constant particle number N , volume V , and temperature T . The Nose-
Hoover thermostat [44, 45] is a method that allows us to simulate canonical ensemble
deterministically by introducing a virtual degree of freedom s for heat bath.

For a system with N atoms, the Nose Lagrangian could be written as [46]

LNose =
N∑

i=1

mi

2 s2Ṙ2
i − U({R}) + Q

2 ṡ
2 − gkBT ln s. (2.26)

mi denotes the mass of the i-th atom, U({R}) represents the potential energy, g is the
total degree of freedom, and Q is the "thermal inertia" controlling the heat exchange rate
between the system and the heat bath. In practice, the parameter Q has to be carefully
chosen so that it is not too small for decoupling in ionic movement or too large for long
simulation time.



2.3 Molecular dynamics

13

The momenta conjugate to Ri and s are determined from the Lagrangian as

Pi ≡ ∂L
∂Ṙi

= mis
2Ṙi

ps ≡ ∂L
∂ṡ

= Qṡ.
(2.27)

It leads to the Nose Hamiltonian as

HNose =
N∑

i=1

P2
i

2mis2 + U({R}) + p2
s

2Q + gkBT ln s. (2.28)

This Hamiltonian would generate a canonical distribution of the variables R′
i and P′

i,
which are defined as R′

i = Ri and P′
i = Pi/s, respectively. We can interpret the

variables with prime as the physical, observable variables and variables without prime as
the virtual variables. It can be demonstrated by considering the microcanonical ensemble
partition function for the entire system

ZNose = 1
N !

∫
dpsdsdPdRδ (E − HNose )

= 1
gkBTN !

∫
dpsdP′dR′ exp

(
−3N + 1
gkBT

[
H (P′,R′) + p2

s/2Q− E
])

= exp(E/kBT )
(3N + 1)kBTN !

∫
dps exp

(
− p2

s

2QkBT

) ∫
dP′dR′ exp

(
−H (P′,R′)

kT

)
,

(2.29)

where we consider the number of degrees of freedom, g = 3N + 1, and H(P′,R′) repre-
sents the Hamiltonian for the physical variables

H(P′,R′) =
∑

i

P′2
i

2mi
+ U({R′}). (2.30)

Now we demonstrate that ZNose can be written in the form of a canonical ensemble par-
tition function for H (P′,R′) with a scaling constant C, illustrating the equivalence of the
Nose-Hoover ensemble to the canonical ensemble

ZNose = C

N !

∫
dP′dR′ exp

(
−H (P′,R′)

kT

)
. (2.31)

However, upon closer examination of the real variables P′ and R′, we will notice that
the time t is also scaled as t′ = t/s. This scaling introduces variable time intervals,
which complicates the use of these variables for practical simulations, so it is preferable
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to work with the equation of motion in virtual variables. They can be derived from the
Nose Hamiltonian HNose as follows

dR′
i

dt′ = P′
i/mi

dP′
i

dt′ = −∂U ({R′})
∂R′

i

− (s′p′
s/Q) P′

i

ds′

dt′ = s′2p′
s/Q

d (s′p′
s/Q)

dt′ =
∑

i

P′2
i /mi − gkBT

 /Q.

(2.32)

where the virtual variable s′ = s.

Hoover used a modified equation to simplify the procedure

HNose-Hoover =
∑

i

P2
i

2 mi
+ U ({R}) + ξ2Q

2 + LkBT ln s (2.33)

where the thermodynamic friction coefficient is defined as ξ = s′p′
s/Q and L = 3N

denotes the total degree of freedom. The corresponding equation of motion is

Ṙi = Pi/mi

Ṗi = −∂U ({R})
∂Ri

− ξPi

ξ̇ =
∑

i
P2

i /mi − LkBT

 /Q
ṡ/s = d ln s

dt = ξ.

(2.34)

Other than the deterministic method like the Nose-Hoover thermostat, there are stochastic
methods like the Anderson thermostat [47] and Langevin thermostat, where the coupling
to a thermal bath is considered by adding stochastic collisions on atoms. We will employ
the Nose-Hoover thermostat in the rest of this thesis.

2.3.2 Data analysis in Molecular Dynamics Simulations

MD is a powerful technique that offers all the atomic positions and velocities at every time
step throughout the simulated trajectory. On the one hand, it provides a large amount
of data that enables deep insights into the dynamic behavior of the material. On the
other hand, it is challenging to decipher relevant information from the extensive datasets
generated. To address this challenge, we explore two primary data analysis methods:
statistical analysis and correlation function analysis.

Statistical methods offer a straightforward way to interpret vast amounts of data by pro-
viding statistics such as averages or distributions, which can reveal underlying behaviors
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in the system. These methods are particularly useful for identifying equilibrium properties
and deviations from expected behaviors.

Correlation function methods focus on the temporal or spatial relationships between par-
ticles. By examining the correlation of a quantity over time or distance, these methods
can uncover transport, diffusion, and spectral functions related to experimental measure-
ments.

Together, these approaches provide a toolkit for extracting meaningful insights from MD
simulations, enabling the translation of raw data into a coherent understanding of material
dynamics and properties.

Pair distribution function (PDF)

Pair distribution function (PDF) or radial distribution function (RDF) g(r) is a quantity that
measures the probability of finding another particle at a distance r from a given reference
particle, as illustrated in Fig. 2.2. Since each particle has a unique local environment, the
PDF is calculated in a statistical way by considering a large number of reference particles.
It offers insight into local order with the distribution of interatomic distances and detects
specific structural motifs like defects or disorder [48]. The PDF is particularly useful for
characterizing materials without long-range order, such as amorphous solids, glasses,
and liquids.

Figure 2.2 Schematic illustration of the radial distribution function. The blue circle in the center
represents the reference particle, while the red circles are the particles considered at a distance
r.

In theoretical studies [49], PDF is often viewed as a two-point correlation function, de-
rived from the n-particle density function ρ(n)(r1, . . . , rn). For a system with N parti-
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cles in a canonical ensemble (N ,V ,T ) and subjected to the interaction between particles
U(r1, . . . , rN), the corresponding partition function is expressed as

ZNV T =
∫
drN exp(−βU(r1, ..., rN)). (2.35)

The probability of the configuration {r1, . . . , rN} is defined as

P (N) (r1, . . . , rN) dr1 · · · drN = e−βUN

ZNV T
dr1 · · · drN . (2.36)

Thus, the n-particle density function can be written as

ρ(n)(r1, . . . , rn) = 1
(N − n)!

 N∏
i=n+1

∫
d3ri

 ∑
π∈SN

P (N)
(
rπ(1), . . . , rπ(N)

)
, (2.37)

where we sum over the N -particles permutation SN and integrate out the remained coor-
dinates rn+1, . . . , rN .

To obtain a dimensionless function, the n-point correlation function g(n) is defined by fac-
toring out the non-interacting contribution ρn [49]

ρ(n)(r1, . . . , rn) = ρng(n)(r1, . . . , rn) (2.38)

As a result, the pair distribution function g(r1, r2) with n = 2 is

g (r1, r2) = N(N − 1)
ρ2ZNV T

∫
dr3dr4 . . . drN exp (−βU (r1, . . . rN)) . (2.39)

In the case of a solid with fully harmonic potential, where U includes only up to second-
order terms, the PDF peaks are expected to exhibit a Gaussian distribution as discussed
in the next part.

An equivalent expression that is commonly used when analyzing computer simulation is
[46]

g(r) = ρ−2⟨
∑

i

∑
j ̸=i

δ(ri)δ(rj − r)⟩ = V

N2 ⟨
∑

i

∑
j ̸=i

δ(r − rij)⟩. (2.40)

In the context of MD, g(r) is determined by computing the histogram of distances between
atoms pairs across simulation trajectories. Furthermore, it is possible to examine PDF of
two specific atom species in simulation, which provides a great way to analyze how atomic
motions couple with each other.

Besides computational methods, the PDF can also be determined from experiments such
as X-ray or neutron diffraction[50]. The relationship between the structure factor S(q) and
the PDF g(r) is given by

S(q) = 1 + 4πρ
q

∫
dr sin(qr)[g(r) − 1], (2.41)

which enables a comparison between theoretical models and experimental observations.
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Analysis of atomic distribution

Atomic distribution analysis is an intuitive method to visualize the dynamics of atoms
within MD simulations. In this work, we calculate atomic distributions by collecting atom
positions from MD snapshots, subtracting the positions in the ideal crystal structure at 0 K,
and presenting this data in histogram form. Also, the translational and space group sym-
metries are applied to make full use of available data in the MD trajectory. This method
provides a straightforward description of the atomic motion around the ideal position,
which is especially useful for materials with soft lattices.

The movement of an atom within an isotropic harmonic potential can be described by the
potential energy function U(r) = Ar2. According to the principles of statistical mechanics,
the probability of the atom being found at a position defined by coordinates (x, y, z) follows
a Boltzmann distribution, which is given by

p(x, y, z) = 1
Z

exp
(

−U(r)
kBT

)
= 1
Z

exp
(

−A(x2 + y2 + z2)
kBT

)
, (2.42)

where Z is the normalization constant, also known as the partition function, defined as
Z = ∑

r exp
(
−U(r)

kBT

)
. The probability distribution p(x, y, z) indicates the likelihood of find-

ing the atom at a specific position while the ideal structure is set at r = 0. It shows that a
harmonic potential will lead to a Gaussian-shape probability function, reflecting the impact
of the central limit theorem on thermal fluctuations. Therefore, by fitting the atomic distri-
bution obtained from MD simulations to the Gaussian-shaped probability function, one can
assess the validity of the harmonic approximation for describing the atomic movements.
If the material of interest exhibits anharmonic behavior, characterized by potential energy
terms of higher order than quadratic, the fitting to a Gaussian distribution might show
deviations, suggesting that a simple harmonic model cannot fully capture the material’s
atomic dynamics.

When analyzing the distribution of atomic movements, it is essential to consider the di-
mensionality of the data representation. While atoms inherently move in a three-dimensional
(3D) space, simplifying this complexity into lower-dimensional distributions, such as one-
dimensional (1D) plots, requires careful interpretation. One common approach is plotting
the 1D distribution of atomic displacements as a function of the displacement distance
r. This method involves transforming the 3D Cartesian coordinates (x, y, z) of atomic
displacements into a radial distance r in spherical coordinates.

The transformation to spherical coordinates can be written as

x = r sinθ cosϕ
y = r sinθ sinϕ
z = r cosθ.

(2.43)

The probability in spherical coordinates is

ps(r, θ, ϕ) = 1
Z

exp
(

−Ar2

kBT

)
. (2.44)
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The 1D radial probably can be derived by integrating out the angular part in ps(r, θ, ϕ)

ps(r) =
∫
dϕ dθ r2 sinθ ps(r, θ, ϕ) = 4π

Z
r2 exp

(
−Ar2

kBT

)
. (2.45)

Notice that the probability of a 3D isotropic harmonic potential now has r2 factor in addi-
tion to the Gaussian function. Similarly, for a 2D analysis, the probability density would
incorporate a linear r factor to reflect the area element in polar coordinates.

In many cases, atoms occupy sites without full rotational symmetry, often due to specific
bonding directions. Consider a situation where one direction aligns along a bond axis
and the other two directions lie perpendicular to this bond, as depicted in a schematic
diagram in Figure 2.3. In this scenario, the harmonic potential is described by U = Ax2 +
B(y2 + z2), characterized by two distinct parameters A and B, with isotropy confined to
the y-z plane perpendicular to the bond direction. To analyze the probability distribution
in this case, one can separately fit the atomic distribution along the bonding direction x
and within the perpendicular plane y-z.

As mentioned, the presence of anharmonic dynamics often leads to a deviation from
Gaussian behavior in the atomic distributions of anharmonic materials. However, in cases
where the potential minima do not align with the positions of the ideal structure, the distri-
bution may still be approximated by a Gaussian function with a nonzero mean (µ ̸= 0). If
we assume that the potential minimum is at (0,0,µ), the probability in Cartesian coordinate
can be represented as

p(x, y, z) = 1
Z

exp
(

−A(x2 + y2 + (z − µ)2)
kBT

)
, (2.46)

and in the spherical coordinate

ps(r, θ, ϕ) = 1
Z

exp
(

−A(r2 + µ2 − 2µr cosθ)
kBT

)
. (2.47)

Again, the 1D radial probability in this case is obtained by integrating out two angular
coordinates θ and ϕ

ps(r) = 2πkBT

Aµ
r

[
exp

(
−A(r − µ)2

2kBT

)
− exp

(
−A(r + µ)2

2kBT

)]
(2.48)

This adjusted model provides a useful foundation for interpreting the atoms without isotropic
symmetry, producing more complex spatial atomic distributions.

Boltzmann inversion method

The last section showed that a harmonic potential will lead to a Gaussian atomic distri-
bution. In fact, many anharmonic systems could experience a more complex potential
energy landscape. The Boltzmann inversion method is a technique to calculate the ef-
fective potential energy using the statistical distribution of atomic displacements, which is
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Figure 2.3 Schematic illustration of an atom (blue) bonding with the two nearby atoms (red). The
three axes are not asymmetric with bonding direction along the x-axis.

particularly useful in anharmonic materials [17]. This method is based on the principle
that the spatial distribution of one particle follows Boltzmann statistics.

If we take the logarithm on both sides of Eq. (2.42), we can derive the expression for a
potential from the probability distribution p,

UT (r) = −kBT ln p(r) + U0, (2.49)

where UT is the potential energy at a specific temperature T , while U0 is a reference
energy level that can be set arbitrarily for convenience. As a result, we obtain an effective
potential energy for one specific atom in the system. It should be noticed that from the
perspective of the equilibrium property in a canonical ensemble, this energy should be
understood as free energy.

In this work, we are interested in anharmonic materials characterized by imaginary phonon
modes. It indicates that the potential energy deviates significantly from simple parabolic
wells, which often exhibit potential minima away from the equilibrium positions. By apply-
ing the Boltzmann inversion to these materials along directions associated with imaginary
phonon modes, one can extract the dynamic potential or effective energy landscape incor-
porating these anharmonic effects. Therefore, this technique is a powerful tool for probing
the complex dynamics of anharmonic materials. Moreover, implementing the Boltzmann
inversion method across various temperatures allows for the analysis of the effective en-
ergy landscape across phases. It provides insight into the stability, phase transitions, and
the role of anharmonic vibrations of the material.
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Velocity autocorrelation function

Experimentally-measured observables are often related to correlation functions [51]. With
MD simulations, we can generate the time-dependent physical quantities, offering the
convenience of studying correlation functions. Therefore, correlation functions are often
employed to connect macroscopic physical properties with microscopic variables when
analyzing the MD simulations. This connection is particularly valuable in the study of
anharmonic materials, since the atomic vibration in MD is not constrained to harmonic
approximation. In this context, the velocity autocorrelation function (VACF) emerges as
an important tool for studying the microscopic dynamics of materials. Notably, by per-
forming a mass-weighted Fourier transform of the VACF, one can obtain the vibrational
density of states (VDOS), a critical measure for characterizing vibrational modes across
the frequency spectrum. This analytical pathway offers a deeper comprehension of the
vibrational mechanisms beyond the harmonic approximation.

The velocity autocorrelation function (VACF), C(∆t), quantifies how an atom’s velocity at
one moment correlates with its velocity at a later time and is defined as [51, 52]

C(∆t) = ⟨v(t)v(t+ ∆t)⟩
⟨|v(t)|2⟩ , (2.50)

where the brackets ⟨. . .⟩ denote an average over all possible initial time t. Thus we can
rewrite Eq. (2.50) in the explicit form

C(t) = lim
T →∞

∫ T
0 v(t′)v(t+ t′)dt′∫ T

0 v2(t′)dt′
. (2.51)

Considering the movement of an atom j within the l-th unit cell, its displacement, ujl(t),
can be written in normal mode coordinates of wave vector k and mode ν

ujl(t) = 1
(Nmj)1/2

∑
k,ν

Qkν(t)ej
kν exp(ik · r0

jl), (2.52)

where mj is the mass of atom j, N is the total number of unit cells and r0
jl denotes

the equilibrium position. Here, the normal mode coordinates Qkν include the effect of
both the normal mode amplitude and the time dependence. The displacement vector
ekν denotes the direction in which each atom moves, representing the eigenvector of
the phonon mode. Each component of this 3N-dimension vector is associated with one
Cartesian coordinate of an atom. It is also normalized according to the following condition∑

j

|ej
kν |2 = 1. (2.53)

The detailed derivation will be discussed in the next section.

Thus the velocity of atoms can be derived from the time derivative of their displacements

vjl(t) = u̇jl(t) = −i
(Nmj)1/2

∑
k,ν

ωkνQkν(t)ej
kν exp(ik · r0

jl), (2.54)
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where ωkν denotes the angular frequency of the phonon mode.

Now we focus on the key quantity in VACF in terms of atomic velocities, ⟨|u̇jl(t) · u̇jl(0)|⟩.
By multiplying withmj and summing over all atoms j, we arrive at the following expression

∑
j

mj⟨|u̇jl(t) · u̇jl(0)|⟩ = 1
N

∑
k,ν

ω2
kν⟨Qkν(t)Q−kν(0)⟩, (2.55)

where in classical limit the correlation function of Q on right hand side is given by

⟨Qkν(t)Q−kν(0)⟩ = kBT

ω2
kν

cos(ωkνt), (2.56)

Consequently, the sum over all atomic velocities becomes

∑
j

mj⟨|u̇jl(t) · u̇jl(0)|⟩ = kkBT

N

∑
k,ν

cos(ωkνt) = kkBT

N

∫
dωg(ω)cos(ωkνt), (2.57)

where the VDOS g(ω) is defined as

g(ω) =
∑
k,ν

δ(ω − ωkν) (2.58)

Thus, we demonstrate that the Fourier transformation of mass-weighted VACF is equal to
VDOS.

In practice, it is not necessary to calculate the Fourier transformation after calculating
the VACF. Using the so-called Wiener-Khintchine theorem [51], it can be derived from
Fourier transformation off velocity directly. Wiener-Khintchine theorem states that the
power spectrum of the autocorrelation function Z(ω) can be expressed as the square of
the magnitude of the Fourier transform of the initial time-dependent function

Z(ω) = |a(ω)|2, (2.59)

where a(ω) is the Fourier transformation of initial time-dependent quantity x(t):

a(ω) =
∫
x(t) exp(−iωt)dt (2.60)

Moreover, the mean-squared displacement (MSD)

msd(∆t) = ⟨(r(t+ ∆t) − r(t))2⟩ (2.61)

could also be expressed in terms of VACF[52] as

msd(∆t) =
〈(∫ ∆t

t
dt′v(t′)

)2〉
= 2

∫ ∆t

t
dt′

∫ t′

t
dt′′⟨v(t′) · v(t′′)⟩, (2.62)

which indicates that the analysis of the velocity correlation function provides also insights
into the diffusion of the material.
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2.4 Lattice dynamics

As mentioned in Section 2.1, the Born-Oppenheimer approximation allows for the decou-
pling of electronic and nuclear movements, simplifying the study of materials by focusing
on the electronic behavior in a static lattice framework. In this approach, the electronic
properties of materials are calculated on the averaged structure as in traditional crystallog-
raphy [51]. However, temperature-induced displacements from equilibrium positions may
have profound impacts on a material’s properties, affecting thermal behaviors [53, 54, 55],
carrier transport phenomena [56, 57], and even superconductivity [58, 59]. Incorporating
lattice dynamics into the study of materials is crucial for understanding these temperature-
dependent effects.

2.4.1 Harmonic approximation

We start with the Hamiltonian of ions in Eq. (2.9). The atomic displacements of atom j in
l-th unit cell can be defined as

Rjl = r0
jl + ujl = Rl + τ j + ujl, (2.63)

where r0
jl is the equilibrium position, Rl is a lattice vector and τ j is the atom position in

the unit cell.

To explore the potential energy U via Newton’s equation (Eq. (2.10)), we perform a Taylor
expansion around the equilibrium positions with their displacement u

U({u}) = U0 +
∑

i

∑
l

∑
α

Φα
i,lu

α
il + 1

2!
∑
ij

∑
lm

∑
αβ

Φαβ
ij,lmu

α
ilu

β
jm

+ 1
3!
∑
ijk

∑
lmn

∑
αβγ

Φαβγ
ijk,lmnu

α
ilu

β
jmu

γ
kn + . . . ,

(2.64)

where α, β and γ are indices of Cartesian coordinates and U0 is the lattice potential at
equilibrium positions. The tensor Φ are derivatives of the potential energy with respect
to displacements called force constants. The nth force constant corresponds to n-body
interactions:

Φα
i,l = ∂U

∂uα
il

∣∣∣∣∣
u=0

= 0,

Φαβ
ij,lm = ∂2U

∂uα
il∂u

β
jm

∣∣∣∣∣∣
u=0

,

Φαβγ
ijk,lmn = ∂3U

∂uα
il∂u

β
jm∂u

γ
kn

∣∣∣∣∣∣
u=0

.

(2.65)

The first order force constant is zero for expansion around the equilibrium position. In
harmonic approximation, we neglect higher-order terms beyond the second, focusing on
pairwise interactions through second-order force constants.
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Thus, the harmonic potential energy can be written in the matrix form

Uharm = 1
2
∑

ij,lm

uT
il · Φij,lm · ujm, (2.66)

where Φij,lm is a 3 × 3 matrix encapsulating the second-order force constants

The equation of motion for an atom i in the l-th unit cell under harmonic potential can be
written as

miüil(t) = Fil = −∂Uharm

∂uil
= −

∑
jm

Φij,lm · ujm(t). (2.67)

This equation can be solved with the plane wave ansatz

uil(t) =
∑
k,ν

Ai,kν exp
[
i(k · r0

il − ωkνt)
]
, (2.68)

where Ai,kν is the amplitude vector, indicating both magnitude and direction of atomic
displacement.

By substituting the ansatz into Eq. (2.67), we obtain

miω
2
kνAi,kν =

∑
jm

Φij,0m · Aj,kν exp
[
ik · (r0

jm − r0
i0)
]
, (2.69)

where the reference atom is in the unit cell with l = 0
We introduce the polarisation vector ekν as seen in Eq. (2.52) and define the dynamical
matrix D(k). Equation (2.69) can be transformed into an eigenvalue problem

ω2
kνekν = D(k) · ekν . (2.70)

Considering there are n atoms and 3 Cartesian coordinates, the index ν runs from 1 · · · 3N .
One can express the equation in vector form, where ekν is a 3N column vector weighted
by the square root of mass

ekν =



√
m1A

x
1,kν√

m1A
y
1,kν√

m1A
z
1,kν√

m2A
x
2,kν

...√
mnA

z
n,kν


︸ ︷︷ ︸

3N×1

. (2.71)

These eigenvectors are not only normalized, as mentioned in Eq.(2.53), but also orthog-
onal, i.e.,

eT
kνe∗

kν = eT
kνe−kν = 1. (2.72)

Thus, the 3N eigenvectors construct a complete set of N atoms moving in a 3D space.
These independent eigenmodes are named as normal modes. In other words, we are
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able to transform the system of 3N coupled atoms in Cartesian coordinates to a system of
3n non-coupled atoms in normal mode coordinates as seen in Eq. (2.52). This transfor-
mation is not just a mathematical convenience but shows the quantized nature of lattice
vibrations.

The dynamical matrix D(k) in this derivation has 3N × 3N dimension. It is possible to
decompose D(k) to n × n blocks of 3 × 3 matrices with the index of three Cartesian
coordinates. The elements of this matrix are defined as

Dαβ(ij, k) = 1
√
mimj

∑
m

Φαβ
ij,0m exp

[
ik ·

(
r0

jm − r0
i0
)]
. (2.73)

Again, l = 0 is taken for reference unit cell. Notice that the dynamical matrix includes
information on all the interatomic force constants and the phase factors for atomic move-
ments. Since the dynamical matrix D(k) is Hermitian, the eigenvalues ω2

kν are real.
Therefore, the 3N eigenvalues can be viewed as square of the angular frequencies of the
3N independent normal modes.

Now we can write the Hamiltonian of the harmonic system in both Cartesian coordinates
and normal mode coordinates. For Cartesian coordinates,

H = 1
2
∑
il

mi|u̇il|2 + 1
2
∑
ij

∑
lm

uT
il · Φij,lm · ulm. (2.74)

By substituting u and u̇ into this equation, one obtains Hamitonian in normal mode coor-
dinate

H = 1
2
∑
kν

Q̇kνQ̇−kν + 1
2
∑
kν

ω2
kνQkνQ−kν . (2.75)

In practice, the frequency ωkν can be computed with the density functional perturbation
theorem (DFPT) or the frozen phonon approach. In this work, we adopt the latter, where
we make small displacements in the supercell and calculate the forces with the Hellmann-
Feynman theorem, as shown in section 2.2.2. The force constants can be approximated
as

Φαβ
ij,lm ≈

F β
jm(∆rα

il) − F β
jm(0)

∆rα
il

. (2.76)

2.4.2 Phonons

In the harmonic approximation, we have derived the normal modes as independent collec-
tive excitations of the lattice within classical mechanics. In fact, the normal modes can be
conceptualized as a quasi-particle called phonon, which can be further understood in the
context of quantum mechanics, where phonon represents the quantized lattice vibration.

The harmonic Hamiltonian previously discussed in Eq. (2.75) can be translated into quan-
tum mechanical operator form as [51]

Ĥ = 1
2
∑
kν

(
P̂kνP̂

†
kν + ω2

kνQ̂kνQ̂
†
kν

)
, (2.77)
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where Q̂kν is the normal mode coordinates operator and P̂kν is the corresponding mo-
mentum operator.

The creation and annihilation operators allow us to quantize these vibrational modes,
which are defined as

âkν = 1√
2ℏωkν

(
ωkνQ̂kν + iP̂kν

)
,

â†
kν = 1√

2ℏωkν

(
ωkνQ̂

†
kν − iP̂ †

kν

)
.

(2.78)

The normal mode coordinates and the corresponding momenta can then be expressed
as combinations of these operators,

Q̂kν =
√√√√ ℏ

2ωkν
(âkν + â†

−kν),

P̂kν = −i
√
ℏωkν

2 (âkν − â†
−kν).

(2.79)

Furthermore, the quantum-mechanical description of atomic positions and momenta can
be obtained by substituting them into Eq. (2.52)

ûil =
√
mp

Nmi

∑
kν

[
lkνei

kν exp(ik · r0
il)(âkν + â†

−kν)
]
,

p̂il =

√√√√mpω2
kν

Nmi

∑
kν

[
lkνei

kν exp(ik · r0
il)(âkν − â†

−kν)
]
,

(2.80)

where mp represents the proton mass and lkν has the dimension of length, which repre-
sents the characteristic length of a phonon mode [60]

lkν =
√√√√ ℏ

2mpωkν
. (2.81)

By substituting Eq. (2.79) into Eq. (2.77) and use the commutation relations, one can ex-
press the Hamiltonian in terms of creation and annihilation operator [âkν , â

†
k′ν′] = δkk′δνν′

Ĥ =
∑
kν

ℏωkν(â†
kν âkν + 1

2). (2.82)

Consider a wave function |ψ⟩ as the eigenvector of Hamiltonian Ĥ,

Ĥ|ψ⟩ = E|ψ⟩. (2.83)

One can see that â†
kν |ψ⟩ and âkν |ψ⟩ are eigenvectors of Ĥ with energies E + ℏωkν and

E − ℏωkν respectively. Thus, one can view â†
kν and âkν as creating or annihilating one

phonon, the quantum of lattice vibrations.
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One can construct the wave function |nk⟩ on state k = (k, ν) containing nk phonons

|nk⟩ = (â†
k)nk

√
nk!

|0⟩, (2.84)

where |0⟩ represents the ground state. The corresponding eigenvalues are

Ĥ|nk⟩ = ℏωk(â†
kâk + 1

2)|nk⟩ = ℏωk(nk + 1
2)|nk⟩, (2.85)

where â†
kâk is defined as number operator since â†

kâk|nk⟩ = nk|nk⟩. Specifically, the
ground state of this system still possesses energy

∑
k

1
2ℏωk due to zero-point fluctuations,

a fundamental quantum mechanical effect. The number of phonons in the system nk is a
function of temperature T and follows Bose-Einstein distribution, crucial for understanding
the thermal behavior of materials

nk = 1
exp(ℏωk/kBT ) − 1 . (2.86)

To study the harmonic vibrational energy at a specific temperature T provides insights
into the vibrational behavior of materials. Note that the kinetic and potential energies in a
harmonic oscillator are equally partitioned.

⟨K⟩ = ⟨V ⟩ = 1
2
∑
k

ω2
k⟨|Q̂k|2⟩, (2.87)

leading to the expression of the total vibrational energy as:

⟨E⟩ = ⟨K⟩ + ⟨V ⟩ =
∑
k

ω2
k⟨|Q̂k|2⟩. (2.88)

By substituting Eq. (2.79) into the total energy, one can obtain a temperature-dependent
MSD in normal mode coordinates

⟨|Q̂k|2⟩ = ⟨nk|Q̂kQ̂
†
k|nk⟩ = ℏ

ωk

(
n(ωk, T ) + 1

2

)
= ℏ

2ωk
coth

(
ℏωk

2kBT

)
. (2.89)

At high temperature, where we take kBT ≫ ℏω in Eq. (2.86), the normal mode amplitude
will transit to a classical behavior

⟨|Q̂k|2⟩ = kBT

ω2
k

. (2.90)

Compared to Eq. (2.87), the vibrational energy for each mode aligns with the equipartition
theorem, allocating an energy of 1

2kBT to each degree of freedom.
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2.4.3 Anharmonic effects

Up to this point, our discussion has adhered to the harmonic approximation where poten-
tial energy is expanded around equilibrium positions up to second-order terms. Examining
the Taylor expansion in Eq. (2.64), we can find that the high-order terms become signifi-
cant with sufficiently large atomic displacements u. The cubic and higher-order behavior
beyond harmonic approximation in this expansion is called the anharmonic effect. It plays
an important role in plenty of phenomena, including structural phase transitions, tempera-
ture dependence of band gaps, thermal expansion, and ultralow thermal conductivity [54].
However, it is important to realize that in computation we have to use different methods to
treat different kinds of anharmonicity. Figure 2.4 illustrates schematically the three distinct
scenarios in which anharmonic effects come into play.

While purely harmonic materials are theoretical idealizations, anharmonic effects can
be considered negligible for many systems. Figure 2.4a shows this general case. As
shown in Figure 2.4a, a harmonic potential effectively represents the main behavior near
the equilibrium position, despite the higher-order terms leading to a deviation from the
quadratic potential at larger displacements. However, this approximation becomes less
reliable for systems with significant atomic displacements, such as materials at high tem-
peratures or those undergoing phase transitions, as well as materials with soft lattices.

Additionally, the presence of soft modes can make the equilibrium position unstable result-
ing in a double well potential profile, as illustrated in Figure 2.4b. The emergence of soft
modes can destabilize the equilibrium positions, resulting in a double-well potential. In
this case, the second-order coefficient in Taylor expansion of potential energy is negative.
The harmonic approximation fails to capture the double-well behavior at all. However, a
quadratic potential fit might still offer a rough approximation, which works better at higher
temperatures where the potential well depth becomes relatively small compared to the
kinetic energy.

Particular attention is required for a special scenario where soft modes interact strongly,
as shown in Figure 2.4c, potentially leading to overdamped dynamics. This phenomenon
challenges the conventional phonon framework, calling for a more sophisticated approach
to accurately model such behaviors.

Phonon-phonon interaction

In the framework of phonon theory, anharmonicity is modeled as phonon interactions.
This concept can be illustrated by analyzing the cubic term of the Hamiltonian expressed
through phonon creation and annihilation operators, where k = (k, ν) serves as a com-
pact notation for phonon states:

H(3) = 1
3!

∑
k1k2k3

Φk1k2k3Q̂k1Q̂k2Q̂k3

= (ℏ2)3/2 ∑
k1k2k3

V
(3)

k1k2k3√
ωk1ωk2ωk3

(âk1 + â†
−k1

)(âk2 + â†
−k2

)(âk3 + â†
−k3

).
(2.91)
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Figure 2.4 Sketches of potentials: (a) Anharmonic potential (solid blue line) can be well captured
with harmonic potential around the equilibrium (dashed red line). (b) Anharmonic potential with
double well behavior. The potential obtained with harmonic approximation is unstable and leads
to imaginary phonon modes. (c) The black curves represent large interactions between phonon
modes. This may lead to overdamped dynamics.

Here, Φk1k2k3 denotes the interaction strength among three phonon modes, and V
(3)

k1k2k3
represents the third-order coupling strength.

This equation results in terms with three creation and annihilation operators and corre-
sponds to the three phonon scattering shown in Fig. 2.5. During the scattering process,
the energy and wave vector keep conservation, which can be expressed as

ω1 + ω2 = ω3, (2.92)

k1 + k2 = k3 + G. (2.93)

where ωi and ki denote the frequencies and wave vectors of the phonons, respectively,
and G represents a reciprocal lattice vector. The inclusion of G accounts for the lattice’s
periodicity, indicating that the total crystal momentum may not be conserved in interac-
tions involving a non-zero reciprocal lattice vector when G ̸= 0. This process plays an
important role in heat resistance, known as Umklapp scattering, leading to lower thermal
conductivity.
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Figure 2.5 Schematic representations of three phonon annihilation (left) and creation (right) pro-
cesses corresponding to cubic anharmonic interactions.

Furthermore, the phonon-phonon interactions also result in the renormalization of phonon
properties. Specifically, it leads to changes in phonon frequency and dampens the phonon
modes. Instead of infinite phonon lifetimes as in the harmonic approximation, the an-
harmonic effect results in finite lifetimes and the broadening of phonon spectral lines.
It’s worth noting that this renormalization of the phonon properties is also temperature-
dependent.

This can be understood with the concept of phonon self-energy and perturbation theory
[61]

Σ(ω) = ∆(ω) + iΓ(ω), (2.94)

where the real part ∆(ω) is associated with the frequency shift and imaginary part Γ(ω)
leads to phonon damping.

According to Cowley [62], the shift in frequency ∆k(ω) calculated with second order cubic
anharmonicity (Fig. 2.6a) is

∆(3)
k (ω) = − 1

2ℏ2 P
∑
k1k2

|Φk1k2k|2
(
n1 + n2 + 1
ω1 + ω2 + ω

+ n1 + n2 + 1
ω1 + ω2 − ω

+ n2 − n1

ω1 − ω2 + ω
+ n2 − n1

ω1 − ω2 − ω

)
,

(2.95)

where P represents the principle part and nk is the occupation number of state k. The
first order quartic anharmonicity (Fig. 2.6b) is

∆(4)
k (ω) = 1

2ℏ2
∑
k1

Φk,−k,k1,−k1(2n1 + 1). (2.96)

Since the quartic anharmonicity term only contributes to the frequency shift, the damping
part solely has an effect form cubic anharmonicity (Fig. 2.6a). The phonon damping part
is expressed with the inverse life time Γk(ω)

Γk(ω) = π

ℏ2
∑
k1k2

|Φk1k2k|2[(n1 + n2 + 1)(δ(ω1 + ω2 − ω) − δ(ω1 + ω2 + ω))

+ (n2 − n1)(δ (ω1 − ω2 − ω) − δ(ω1 − ω2 + ω))].
(2.97)
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The delta functions correspond to the conservation laws in Eq. (2.92) and 2.93. The
renormalized frequency that can be used for fitting to neutron inelastic scattering results
can be written as [63]

ω̃2
k = ω2

k + 2ωk∆k(ω̃k) (2.98)

It should be noted that the above analysis only considers part of the renormalization due to
the anharmonic effect. In fact, the effects of thermal expansion would contribute as well,
which usually leads to a decrease in frequency as temperature increases. The reason
is that the increase in the average distance between atoms will weaken the interatomic
interactions.

Figure 2.6 Diagrams of the self-energies. (a) The second-order diagram is associated with the
cubic term. (b) The first-order diagram is associated with the quartic term.

Overdamped fluctuations

The perturbation theory is widely used for thermal conductivity and heat capacity in an-
harmonic systems. However, it is not valid for systems with stronger anharmonicity where
phonon damping is as large as the frequency. In this case, the phonon-phonon inter-
action is so large that the phonon picture breaks down, and one can no longer use the
quasi-particle based method to calculate thermal or electronic properties. This behavior
is called overdamped, which relates to the damped harmonic oscillator (DHO) model. The
HaPs were found to exhibit overdamped behavior from both experiments [23] and theory
[64].

Here we discuss the overdamped fluctuations starting from the DHO model [65]. The DHO
model enables us to describe the motion of a harmonic oscillator subjected to an addi-
tional damping force. Since phonons are quanta of vibrational modes, the DHO model can
be applied by considering the anharmonic effect (phonon-phonon interaction) as damp-
ing. The damping leads to the decay of the oscillator over time, which corresponds to the
decrease of phonon life time.

Assuming the phonon mode Qk oscillates as a damped harmonic oscillator, it follows

d2Qk(t)
dt2

+ Γk
dQk(t)
dt

+ ω2
kQk(t) = 0, (2.99)

where Γk is the damping coefficient and ωk is the frequency of undamped harmonic os-
cillator of mode k = (k, ν).
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As defined in Eq. (2.50), the autocorrelation function of Qk can be solved with the initial
condition dQk

dt |t=0 = 0 and Qk(0) = A.

In the underdamped case, where ωk > Γk/2, it follows that

CQ(t) = Ae−Γkt/2
(

cosωkt+ Γk

2Ω sinωkt

)
, (2.100)

where Ω can be seen as the renormalized frequency

Ω =

√√√√ω2
k − Γ2

k

4 , (2.101)

and relaxation time is τ = 2/Γk.

In the overdamped case, where ωk < Γk/2, it follows that

CQ(t) = Ae−Γkt/2
(

coshωkt+ Γk

2Ω sinhωkt

)

= A

τL − τS

(
τLe

−t/τL − τSe
−t/τS

)
,

(2.102)

where
τS = τ

1 +
√

1 − (ωkτ)2
,

τL = τ

1 −
√

1 − (ωkτ)2
.

(2.103)

This shows that in the overdamped case, the lattice fluctuations separate into two time
scales, where τs and τL correspond to the fast (short time-scale) and slow (long time-
scale) fluctuation, respectively.

Similarly, one can obtain the velocity autocorrelation function by taking the derivative of
CQ(t) [64],

C(t) = A′

τL − τS
( 1
τS
e−t/τS − 1

τL
e−t/τL). (2.104)

Consider the case ωk → 0, we expect τL >> τS. Thus, the contribution of slow fluctua-
tions (second term) to velocity autocorrelation is minimal. Since the Fourier transformation
of the velocity correlation function is related to VDOS, we can conclude that the contribu-
tion of fast fluctuations dominates the VDOS.

2.4.4 Computing methods for phonon renormalization

As mentioned in previous sections, methods such as DFPT or frozen phonon allow us to
calculate the phonon frequency ωkν and phonon dispersion relations within the harmonic
approximation. For materials with strong anharmonic effects, various computing methods
are established to estimate the phonon frequency shift.
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The most straightforward way is to calculate anharmonic terms as self-energy within the
many-body perturbation theory of Eq. (2.94). However, perturbation theory is only valid
for sufficiently small anharmonic effects and the calculation of higher-order derivatives of
the electronic orbitals is challenging. Some methods based on self-consistent phonon
(SCPH) theory were developed to include anharmonic effects beyond perturbation theory
[66, 67, 68]. Additionally, MD is another nonperturbative approach in investigating phonon
anharmonicity, which includes anharmonicity in full order in the simulated trajectories. We
will introduce two approaches based on MD used in this thesis.

DynaPhoPy

DynaPhoPy [69] is a method based on normal mode decomposition and projecting veloc-
ities onto phonon eigenvectors[70].

Specifically, as discussed in Section 2.3.2, the VACF including anharmonic dynamics
can be calculated from MD simulations. Subsequently, the power spectrum of the mass-
weighted VACF can be fit to quasiparticle spectral function forms, which enables us to
obtain renormalized phonon frequencies and linewidths even for anharmonic materials.

The atomic velocity in Eq. (2.54) can be projected onto a wave vector k

vjk =
√
mj

N

∑
l

e−ik·r0
jlvjl(t). (2.105)

And vjk can be further projected to the phonon mode eigenvector ekν to obtain the velocity
of phonon quasiparticles

vkν(t) =
∑
j

vjk · e∗
kν . (2.106)

In the end, one can compute the phonon mode power spectrum of vks(t) with the auto-
correlation function

Gkν(ω) = 2
∫ ∞

−∞
⟨v∗

kν(0)vkν(τ)⟩eiωτdτ. (2.107)

According to many-body perturbation theory, the retarded one phonon Green’s function
of mode k = (k, ν) is in the form of

Gkν(ω) = 1
ω2 − ω2

kν − 2ωkνΣkν(ω) , (2.108)

where Σkν(ω) is the phonon self energy defined in Eq. (2.94). The Green’s function
is connected to the velocity autocorrelation function in Eq. (2.107), since the classical
expression of one-phonon Green’s function can be written as

G(k, t) = − 1
kBT

⟨v∗
k(0)vk(t)⟩θ(t), (2.109)

so in the frequency domain we have

G(k, ω) = 1
iωkBT

⟨v∗
kvk⟩, (2.110)
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which can be compared to Eq. (2.107). This allows us to approximate phonon quasiparti-
cle spectra from one-phonon Green’s functions with MD simulations that does not rely on
perturbation theory.

When the renormalization effect is small enough, the phonon mode power spectrum can
be fit to a Lorentzian function form [71],

Gkν(ω) = ⟨|vkν(t)|⟩2

1
2γkνπ

(
1 + ω−ω̃kν

1
2 γkν

) , (2.111)

where ω̃kν is the renormalized phonon and γkν is the phonon linewidth.

Temperature Dependent Effective Potentials (TDEP)

TDEP [72, 73, 74] is a method to extract the effective interatomic force constants that best
describe a model Hamiltonian by least squares fitting of sampled forces. Since the sam-
pled structure can be obtained by MD simulation (or with stochastic sampling discussed
in Section 2.5.3) of a specific temperature, the effective phonon properties are naturally
temperature dependent. In practice, the fitting process is largely simplified by considering
the symmetry of the force constants.

Consider a supercell with Na atoms, in harmonic approximation the 2nd-order force con-
stant Φ follows (as Eq. (2.67))

f⃗ = −Φu⃗, (2.112)

where the forces f⃗ and atomic displacements u⃗ are 3Na × 1 vectors. The force constant
is a 3Na × 3Na tensor, but it can be reshaped into a (3Na)2 × 1 vector Φ⃗v allowing us to
express the equation as

f⃗ = −(I⃗ ⊗ u⃗T )Φ⃗v, (2.113)

where ⊗ is the Kronecker product.

We calculate Ns sampled supercells and obtain 3NsNa atomic displacements and forces.
Then, we can obtain the following overdetermined equation for the effective force constant


f⃗1
...
f⃗Nc


︸ ︷︷ ︸
3NaNc×1

= −


I⃗ ⊗ u⃗T

1
...

I⃗ ⊗ u⃗T
Ns


︸ ︷︷ ︸
3NaNs×(3Ns)2

Φ⃗v︸︷︷︸
(3Na)2×1

(2.114)

To simplify the problem with symmetry, one can express the force constants via irreducible
components

Φ⃗v︸︷︷︸
(3Na)2×1

= C⃗︸︷︷︸
(3Na)2×Nx

x⃗︸︷︷︸
Nx×1

(2.115)
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This process reduces the number of values to be determined from (3Na)2 to Nx. Eq.
(2.114) can be written as

f⃗ = −(I⃗ ⊗ u⃗T )C⃗x⃗
= − A⃗︸︷︷︸

3NaNs×Nx

x⃗︸︷︷︸
Nx×1

(2.116)

where x⃗ contains Nx irreducible components while the coefficient matrix A⃗ is a function
of all the displacements in the supercell.

The x⃗ is solved as a least squares problem, in which we minimize the difference in forces
between DFT forces f⃗MD and model Hamiltonian forces f⃗H

min
x⃗

∆f⃗ =
∣∣∣f⃗MD − f⃗H

∣∣∣2 . (2.117)

In this way, we obtain the best possible second-order Hamiltonian that can fit the Born-
Oppenheimer potential energy surface at finite temperatures.

The higher-order force constants are determined in succession and become smaller and
smaller.

A⃗(3)x⃗(3) = f⃗ − A⃗(2)x⃗(2), (2.118)

A⃗(4)x⃗(4) = f⃗ − A⃗(2)x⃗(2) − A⃗(3)x⃗(3). (2.119)

The renormalized phonon properties will be solved as discussed in previous sections but
from the model Hamiltonian.

2.4.5 Structural phase transitions

A structural phase transition refers to changes in the crystal structure of a material due
to external conditions such as temperature, pressure, or an external field. For instance,
at high temperatures, atoms could have enough kinetic energy to overcome barriers and
move to new equilibrium positions. Pressure or external fields, on the other hand, can
force atoms closer together or further apart, leading to a structural changes as well. A
typical structural phase transition observed in many perovskites is the transition from or-
thogonal phase to tetragonal phase, then to cubic phase as temperature increases (Fig.
3.1).

Types of structural phase transitions

Based on the dynamic behavior of the high-temperature phase, the structural phase tran-
sitions can be classified into two types: order-disorder phase transition and displacive
phase transition [75, 51].

The order-disorder phase transition is characterized by atoms hopping between sites that
deviates from the high symmetry sites. On the other hand, displacive transitions are char-
acterized by atoms continuously moving from their initial positions towards new positions,
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a process often considered as second-order phase transitions. These transitions are the-
oretically described by Landau theory, associated with a unique phonon mode termed
as the soft mode. It’s important to recognize that usually the phase transition of real-
world materials cannot be distinctly classified as either order-disorder or displacive phase
transition. Typically, it exhibits the characteristics of both order-disorder and displacive
mechanisms.

Dove proposed a simple double-well model [51] to display order-disorder and displacive
transition in two limit cases. Consider a 1D chain of atoms described by the Hamiltonian

H = m

2
∑
j

x2
j + J

4
∑
j,j′

(xj − xj′)2 +
∑
j

V (xj), (2.120)

where the first term is kinetic energy, and the second term represents the harmonic inter-
action of nearby atoms with the coupling strength of J . The last term V (xj) represents
the onsite potential for each atom, given by a double-well potential:

V (xj) = −1
2ax

2
j + 1

4bx
4
j . (2.121)

The behavior of phase transitions is influenced by the interplay between the strength of
two parameters: The depth of the double-well is V0 = a2/4b, and the coupling strength J
which determines the transition temperature. There are two extreme cases for the model:

• For V0 ≫ J , the atoms tend to stay near the potential well minima at ±(a/b)1/2

regardless of temperature. The transition in this scenario is the order-disorder type,
where the thermal effects allows atoms to hop between equivalent lattice sites.

• For V0 ≪ J , the depth of the potential well becomes relatively insignificant compared
with the large thermal vibrations. As a result, the transition would be a displacive
transition.

Since we assume a double-well potential in the beginning, it naturally indicates that
both cases are rooted in anharmonic interactions. Additionally, an intermediate scenario
emerges when the height of potential barrier is comparable to the thermal energy (kBT ).
This situation may lead to overdamped dynamics (Section 2.4.3), where the phonon pic-
ture breaks down.

Based on the wavevector of the phonon modes involved in the transition, one can classify
the structural phase transition into zone center (ferroelectric) phase transitions and zone
boundary (antiferroelectric) phase transition [51].

The zone center phase transitions involve phonon modes at the center of the Brillouin
zone (q = 0), so the size of unit cell does not change. In general, the atomic displace-
ments associated with these modes can break the center of symmetry in unit cell and
generate net dipole moment, so it is also called ferroelectric phase transition. One typical
example is the perovskite material BaTiO3.
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On contrary, the zone boundary phase transitions involve phonon modes at the edge of
the Brillouin zone. As a result, the atomic displacements will double the unit cell of low
temperature phase. The phase transition from tetragonal to cubic phase seen in Fig. 3.1
belongs to this type. We will focus on this type of phase transition in this article.

Soft-mode theory

Soft-mode theory is a useful tool to understand the nature of displacive phase transitions.
Typically, phonon modes are associated with positive frequencies, indicating stable atomic
vibrations within the lattice structure. The soft mode is a particular phonon mode whose
characteristic frequency ωs reduces to zero as approaching the transition temperature
T → Tc, as if the mode is getting "sofften", indicating a decrease in the restoring force for
that particular vibrational mode. At this temperature, the crystal is unstable against the
corresponding distortion and undergoes a structural phase transition to a low symmetry
phase. In essence, the soft mode (at high temperature phase) acts as an indicator to the
phase transition, manifesting as a "frozen" distortion that bridges the high-temperature
phase with the emerging low-symmetry phase.

The study of soft modes is crucial for understanding the properties of materials since
it includes critical dynamical information. In particular, the study of coupling between
the soft mode and various physical properties, such as electronic, magnetic or even other
vibrational characteristics, offers the microscopic information for changes in those physical
properties at finite temperatures [51, 76]. In fact, the soft mode theory of phase transitions
was originally developed to explain the origins and mechanisms of ferroelectric phase
transitions [77] and soon confirmed by several experimental works [78]. In ferroelectric
materials, the soft mode is related to the polarization of the material, and its behavior near
the critical temperature can lead to significant changes in the dielectric properties.

As discussed in the last section, the soft mode phase transition is driven by anharmonic
interactions. However, the occurrence of soft modes does not require the presence of
strong anharmonic interaction. Rather, the emergence of a soft mode is contingent upon
the presence of an imaginary harmonic frequency, corresponding to the structural insta-
bility of the material in its high-temperature phase.

The soft mode behavior can be derived through Green’s function and perturbation theory
[79], but it is beyond the scope of this thesis. Here, we use a simplified model to obtain
a qualitative understanding of soft modes [51, 80]. We add a mean-field fourth-order
anharmonic term to the harmonic crystal Hamiltonian in Eq. (2.75) and obtain an effective
quadratic potential in the form,

Heff = 1
2
∑
kν

Q̇kνQ̇−kν + 1
2
∑
kν

ω2
kνQkνQ−kν

+ 1
4
∑
kν

∑
pµ
V

(4)
kν,−kν,pµ,−pµQkνQ−kν⟨QpµQ−pµ⟩,

(2.122)

where the usual fourth-order term has been replaced by its thermal averages:

QpµQ−pµ → ⟨QpµQ−pµ⟩. (2.123)
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One can substitute the thermal amplitude in Eq. (2.90) and obtain the effective Hamilto-
nian

Heff = 1
2
∑
kν

Q̇kνQ̇−kν + 1
2
∑
kν

ω2
kνQkνQ−kν

+ kBT

4
∑
kν

∑
pµ
V

(4)
kν,−kν,pµ,−pµQkνQ−kν/ω

2
pµ

= 1
2
∑
kν

Q̇kνQ̇−kν + 1
2
∑
kν

ω̃2
kνQkνQ−kν ,

(2.124)

where the renormalized frequencies ω̃ are defined as

ω̃2
kν = ω2

kν + kBT

4
∑
kν

∑
pµ
V

(4)
kν,−kν,pµ,−pµ/ω

2
pµ. (2.125)

As a result, for the phonon mode at wave vector k, branch ν, the renormalized frequency
with fourth-order anharmonic interaction can be written in the following form

ω̃2 = ω2
0 + αT. (2.126)

Consider an imaginary mode with frequency ω0, the structure is unstable against the
specific phonon mode at 0 K (dashed line in Fig. 2.7). On contrary, in the case of high
temperature, the second term in Eq. (2.126) will be large enough to stabilize the system
(solid line in Fig. 2.7). At the point ω̃ = 0, the system goes through a phase transition with
a transition temperature

Tc = −ω2
0/α. (2.127)

Figure 2.7 Schematic representation of the temperature dependence of the square of the fre-
quency of a soft mode [51]. The dashed line shows that the frequency becomes imaginary below
Tc

Notice that soft modes still exist below the transition temperature, where their frequency
increases as the temperature further decreases. They could split into two or more modes
due to the lifting of degeneracy associated with the break of symmetry in low temperature
phases.
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2.5 Electron-phonon interactions

Electron-phonon interactions (EPIs) are a fundamental phenomenon in condensed mat-
ter physics and materials science. They are relevant for various phenomena, including
conventional superconductivity, the carrier mobility, thermalization of hot carriers and the
temperature dependence of optical spectra [60, 81].

In this article, we are interested in the band structures of anharmonic materials at finite
temperatures. The starting point of most methods introduced here is the so-called semi-
classical Franck-Condon approximation, which can be derived from the Franck-Condon
theory [82]. Within the adiabatic approximation, one can write the quantum mechanical
expectation value of electronic excitation energies at temperature T [81, 83]:

ε(T ) = 1
Z

∑
k

⟨χk(R)|ε(R)|χk(R)⟩e−Ek/kBT (2.128)

where ε(T ) denotes the temperature-dependent electronic excitation energy, offering in-
sight into how electronic properties evolve with temperature. |χk(R)⟩ is the nuclear wave-
function corresponding to the state k, and R represents the nuclear coordinates. Ek is the
energy of the kth quantum state, contributing to the partition function Z = ∑

k e
−Ek/kBT ,

which normalizes the contribution of each state by accounting for their Boltzmann weight
at temperature T .

One way to categorize the first-principles methods is by how they expand the potential in
terms of displacements. There are two main types of approaches:

The first kind of approach considers an expansion of displacements as shown in Eq.
(2.129) [81]. The second-order coupling coefficient a(2)

qν;qν is either obtained from many-
body perturbation theory with electron-phonon matrix elements given in a formalism of
DFPT method [60, 84] or directly evaluated for the observable with finite difference method
[81].

εnk(T ) = εnk(0) + 1
Nq

∑
qν

∂a(2)
qν;qν

ωqν

(
nqν(T ) + 1

2

)
, (2.129)

where nqν is the Bose-Einstein factors as in Eq. (2.86).

The second method considers higher-order terms in the expansion. The band structure is
obtained by ensemble averaging the samplings of the distorted structures in phase space.
The sampling can be obtained in different ways, for example, from phonon modes using
stochastic Monte Carlo (MC) sampling, from trajectory simulation using MD sampling [22]
or so-called "Zacharias-Giustino (ZG) displacements" using special displacement method
[85].

εnk(T ) = 1
M

M∑
i=1

εnk({ui}). (2.130)
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2.5.1 Perturbative method and electron-phonon matrix

We consider the following perturbative Hamiltonian describing a coupled electron-phonon
system [60]

Ĥ =
∑
nk
εnkĉ

†
nkĉnk +

∑
qν

ℏωqν

(
â†

qν âqν + 1
2

)

+ 1
Np

∑
k,q

∑
mnν

gSE
mnν(k,q)ĉ†

mk+qĉnk
(
âqν + â†

−qν

)

+ 1
Np

∑
k,q,q′

∑
mnνν′

gDW
mnνν′(k,q,q′)ĉ†

mk+q+q′ ĉnk
(
âqν + â†

−qν

) (
âq′ν′ + â†

−q′ν′

)
.

(2.131)

Here, εnk is the single-particle eigenvalue of an electron with crystal momentum k in
the band n, ωqν is the frequency of a lattice vibration with crystal momentum q in the
branch ν. ĉ†

nk/ĉnk(â†
qν/âqν) represents the electron (phonon) creation/annihilation opera-

tors. The first line describes independent electrons and phonons in second quantization
formalism. The second line describes the EPIs to first order of atomic displacement while
the third line is EPIs to second order. The electron-phonon matrix elements gSE

mnν(k,q)
(self-energy (SE) term or Fan term) and gDW

mnνν′(k,q,q′) (Debye- Waller (DW) term) mea-
sure the strength of the coupling between the electron and the phonon subsystem, which
are difficult to evaluate.

In the context of DFT, one can express the basic electron-phonon matrix element with
Kohm-Sham eigenfunction ψnk and Kohn-Sham potential VKS

gSE
mnν(k,q) =

〈
ψmk+q

∣∣∣∣∣∂VKS

∂uqν

∣∣∣∣∣ψnk

〉
, (2.132)

and

gDW
mnνν′(k,q,q′) = 1

2

〈
ψmk+q+q′

∣∣∣∣∣ ∂2VKS

∂uqν∂uq′ν′

∣∣∣∣∣ψnk

〉
. (2.133)

It is possible to evaluate the derivatives of Kohn-Sham potentials using the finite displace-
ment method with a supercell [81]

∂VKS

∂uqν
= VKS(δuqν) − V (0)

δuqν
, (2.134)

where the displacement ∂uqν refers to a small change in the position of atoms along
the phonon mode direction, facilitating the calculation of the potential’s sensitivity to such
changes. VKS(δuqν) and V (0) are the Kohn-Sham potentials with and without the dis-
placement, respectively. Alternatively, DFPT method allows for the computation of these
derivatives without a supercell and reduce computational effort for large systems with
complex symmetry.

By treating the SE part of Hamiltonian in Eq. (2.131) with second order perturbation
theory and DW part within first order perturbation theory, one can write the second-order
coupling coefficient a(2)

qν;qν as [86]

a(2)
qν;qν = 1

2
(
Fqνu

∗
qνuqν + Dqνu

∗
qνuqν

)
, (2.135)
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where corresponds to F (D) Fan (DW) contributions. At this point, the only approximations
we have used are the adiabatic and the harmonic approximations.

However, the DW term that involves second-order variations of Kohn-Sham potential is
difficult to calculate in practice. Allen and Heine [87, 88] introduced rigid-ion approximation
to calculate the DW matrix elements with first-order variations.

Also, the DFPT calculation involves an integral over the Brillouin zone. It is difficult to con-
verge and needs a very fine grid, sometimes as much as 106 wavevectors [60, 84]. This
prohibitive task is usually overcome by Wannier interpolation in practice, which calculates
EPI matrix in Wannier representation [60].

Given that this formalism is restricted to the harmonic approximation and overlooks the
contributions of higher-order terms in electron-phonon coupling, it fails to account for the
temperature-dependent phenomena observed in perovskites [24].

2.5.2 Finite difference method

One can obtain the electronic eigenenergies in the form of Eq. (2.129) without considering
perturbation theory as well. We start from expanding the electronic eigenenergies ε(Q)
in nuclear positions in normal mode coordinates (phonon amplitude) {Qqν} up to the
quadratic term [81]

εnk(Q) = εnk(0) +
∑
qν

∂εnk

∂Qqν
Qqν + 1

2
∑
qν

∑
qν

∂2εnk

∂QqνQq′ν′
QqνQq′ν′ + . . . (2.136)

For a harmonic phonon mode, the vibrational expectation value of the Qqν will vanish

⟨Qqν⟩ = 0, (2.137)

and since the phonon vibrational modes are independent, only terms with q = q′ and
ν = ν ′ are left. They have been calculated in Eq. (2.89)

⟨QqνQqν⟩ = ℏ
ω

(
n(ωqν , T ) + 1

2

)
. (2.138)

Thus, one can express the electronic eigenenergies in the form like Eq. (2.129)

εnk(T ) = εnk(0) +
∑
qν

ℏ
2ωqν

∂2εnk

∂Q2
qν

(
nqν(T ) + 1

2

)
, (2.139)

where the second-order derivative can be evaluated with a finite difference method

∂2εnk

∂Q2
qν

≈ ε(δQqν) + ε(−δQqν) − 2ε(0)
δQ2

qν

. (2.140)

The summation in Eq. (2.139) runs over the phonon branch ν and wavevector q, so
each term we summed corresponds to a phonon mode with frequency ωqν . To further
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Figure 2.8 Gap spectral functions g2F (ω) of cubic phase CsPbBr3 calculated using harmonic
phonon (blue) and renormalized phonon (orange).

investigate the contribution of each phonon mode, one can plot them as a function of
frequency and obtain the so-called gap spectral function g2F (ω) [89].

This method is based on harmonic approximation and cannot deal with phonons with
imaginary frequency. However, one can use phonon renormalization to generalize it to
anharmonic cases. Fig. 2.8 shows the relevant gap spectral functions of cubic phase
CsPbBr3.

Even if one includes part of the anharmonic effect for phonon, this method does not
consider full electron-phonon coupling, which has shown to be essential for correct tem-
perature effects [24].

2.5.3 Stochastic Monte Carlo methods

Standard Monte Carlo method

Unlike the previous two methods, the Monte Carlo (MC) method can go beyond the
quadratic terms in electron-phonon interactions.

Within the harmonic approximation, the nuclear wave function |χk(R)⟩ in Eq. (2.128) can
be expressed as a product of independent quantum harmonic oscillators in normal mode
coordinates χn = ∏

ν ϕnqν (Qqν), with [83]

ϕn(xi) =
(ωqν

π

)1/4 1√
2nn!

exp
−

ωqνQ
2
qν

2

Hn

(√
ωqνQqν

)
, (2.141)
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where the quantum number n represents the occupations of each vibrational quantum
state following Bose-Einstein distribution and Hn is the Hermite polynomial of order n.

Using Mehler’s formula, one can derive the following expression for the probability distri-
bution that we then substituted in Eq. (2.128):

P (Qqν) = 1
Z

∞∑
n=0

e
− En

kBT |ϕn(Qqν)|2 = 1√
2π⟨Q2

qν⟩T

exp
−

Q2
qν

2⟨Q2
qν⟩T

 , (2.142)

where ⟨Q2
qν⟩T is the mean square displacement of normal mode, as given in Eq. (2.89).

It reflects the average amplitude of atomic displacements due to thermal vibrations at
temperature T .

As a result, Eq. (2.128) can be written as a high dimensional integral over all phonon
modes

εnk(T ) =
∫ ∏

qν
dQqν

1√
2π⟨Q2

qν⟩T

exp
−

Q2
qν

2⟨Q2
qν⟩T

 εnk(Q). (2.143)

Although the approach is based on the harmonic approximation, it does not presuppose
any specific relationship between electronic observables and nuclear configurations.

Now, we will evaluate the integral with a Monte Carlo importance sampling method. We
generate sampling structures with phonon eigenmodes following the probability distribu-
tion P (Qqν) in Eq. (2.142) and take an average of the electronic energies from the sam-
pling. Thus, the computation of εnk(T ) is in the form similar to Eq. (2.130),

εnk(T ) = 1
M

M∑
i=1

εnk({Q}i) where {Q}i ∼ P (Qqν). (2.144)

Since the distribution is a Gaussian function, one can use the standard Box-Muller trans-
form to map it on uniform distributions in practice. We substitute Eq. (2.89) and (2.90)
respectively, so that the displacements of atom i will be generated quantum mechanically
with

ui =
∑
ν

√√√√ℏ(2nν + 1)
2miων

ei
ν

√
−2 lnU1 cos(2πU2), (2.145)

or for classical limit

ui =
∑
ν

√√√√ kBT

miω2
ν

ei
ν

√
−2 lnU1 cos(2πU2), (2.146)

where U1 and U2 are random numbers with uniform distributed between [0, 1] and ei
ν is the

displacement vector defined in Eq. (2.71). Here, we only consider the q = 0 wavevector
with a large enough supercell.

The whole process from Eq. (2.141) to Eq. (2.144) is based on quantum mechanics
employing the harmonic approximation and semiclassical Franck-Condon approximation
(even do not have to be adiabatic). However, for the sake of intuitive understanding,
we can directly view the Eq. (2.144) through the lens of classical statistical mechanics.
Specifically, it can be seen as a process of sampling through the canonical ensemble of
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all phonon normal modes. Each mode is sampled as a normal distribution around zero
with a variance of ⟨Q2⟩T ∼ kBT , which is precisely a Boltzmann distribution.

So far, the Monte Carlo method is based on harmonic approximation. It is technically
infeasible for the current formalism to deal with phonon mode with imaginary frequency,
which could lead to imaginary displacements in Eq. (2.145) and (2.146). As mentioned
in the finite difference method (section 2.5.2), we can use the renormalized phonon as a
starting point to avoid this problem.

This way, we account for the anharmonic effect due to phonon-phonon interaction with
an effective harmonic phonon. It could capture essential thermal effects for systems like
SrTiO3 [90]. However, this method still cannot deal with strong anharmonicity, for instance,
overdamped dynamics in halide perovskites, which breaks down the phonon picture. A
technique is needed to treat the higher-order terms in potential energy (Eq. (2.64)).

Augmenting Monte Carlo method

To go beyond limitations of the harmonic potential framework described in the last section,
we developed a new way of treating the imaginary frequency, which is the consequence of
the soft phonon mode with the double-well feature. The basic idea is to sample the normal
mode using a non-Gaussian probability, calculated by solving the Schrödinger equation
with a frozen phonon potential.

Similar to the procedure in the previous work of Skelton et al. [91], we first use the frozen-
phonon method to calculate the potential well for the imaginary mode. Specifically, we
distort the atoms in supercell along the phonon eigenmodes in Eq. (2.70). We calculate
each distorted structure using DFT and obtain the potential energy U(Q).
Then, this static potential energy can be fit to a polynomial function up to the 14th order as
the thick black line shown in Fig. 3.30a. We solve the time-independent 1D Schrödinger
equation in normal mode coordinates Q numerically

− ℏ2

2mp

d2ψi(Q)
dQ2 + U(Q)ψi(Q) = Eiψi(Q), (2.147)

where mp is the proton mass, and ψi is the wavefunction of the i-th quantum state with
energy level Ei (horizontal lines in Fig. 3.30a).

The probability distribution of the specific phonon mode can be evaluated similarly to Eq.
(2.142),

P img
i (Q) = 1

Z

∞∑
i=0

e
− Ei

kBT |ψi(Q)|2. (2.148)

With this probability distribution, one can generate displacements on the top of the stan-
dard Monte-Carlo method described above. In other words, we can include the atomic
displacements from all the phonon modes with augmenting the Monte-Carlo method. The
imaginary phonon modes will be treated by the process above (Eq. (2.148)) while the real
phonon modes with the standard Monte Carlo (Eq. (2.142)). Thus, the electronic energies
can be calculated with Eq. (2.144) again.



2 Theory

44

Although we include the higher-order terms in potential energy, we still assume that the
interaction between phonon modes is small. It can be understood by expanding the poten-
tial energy in terms of the normal mode coordinates. Since we always calculate potential
well separately and solve Schor̈dinger equation in 1D, it means that we have ignored the
cross anharmonic terms,

V (Q) =
∑

i

a
(2)
i Q2

i (harmonic terms)

+
∑

i

a
(3)
i Q3

i + a
(4)
i Q4

i + . . . (higher-order anharmonic terms)

+
∑
ij

b
(4)
ij Q

2
iQ

2
j + . . . (cross anharmonic terms)

(2.149)

where a(n)
i and b(n)

ij are the parameter of n-th order terms.

To include the cross terms, it is possible to calculate the potential energy as a function
of more coordinates and solve the Schor̈dinger equation in higher dimensions for the
corresponding probability distribution.

2.5.4 Molecular dynamics methods

We have shown that the stochastic Monte Carlo methods can be viewed as a sampling
of the canonical ensemble of independent phonon mode, and it can be augmented by
generalizing the form of the potential well from quadratic to higher-order terms. However,
the interaction between phonon modes could substantially impact the dynamics and the
electronic properties, especially for overdamped systems.

Including full anharmonicity for phonons and full higher-order terms for electron-phonon
interaction is a challenge. One way to include all those terms is to leave the many-body
approach and phonon picture. By introducing the Born-Oppenheimer approximation, we
treat ionic motion classically through MD (Section 2.3). Then, it is possible to employ the
ergodic hypothesis and evaluate the ensemble average with the time average of a long
enough simulated trajectory

⟨εnk⟩ensembe = ⟨εnk⟩time (2.150)

As a result, Eq. (2.130) can be written as

εnk(T ) = 1
M

M∑
i=1

εnk(ti) (2.151)

In this article, since we use the first-principle MD that treats nuclear motion classically, it
only delivers the classical Boltzmann statistics. The zero-point motion effect is missing,
so it is only valid in high temperatures. However, the Debye temperature of HaPs (102K
for CsPbBr3 [92]) is usually much lower than the temperature range we are interested in
this thesis. One can use computationally demanding path integral molecular dynamics
(PIMD) to include nuclear quantum effects and deliver Bose-Einstein statistics.
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Different from the methods based on phonons, the evaluation of electronic energy directly
by molecular dynamics is difficult to interpret. However, by comparing different levels of
theories, we can quantify the contribution of each term in potential energy Eq. (2.149). For
example, the anharmonic effect can be evaluated by comparing the MD that includes the
anharmonic effect and the standard MC based on harmonic approximation, as illustrated
in Fig. 2.9.

DFT+ +

Monte-Carlo (MC) Molecular Dynamics (MD)
Canonical sampling Trajectory

Anharmonic effect

no anharmonicity anharm
onicit

y

Figure 2.9 Schematic illustration of comparing two methods to quantify anharmonic effect
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3 Results and Discussion

3.1 Anharmonic Dynamics in Halide Perovskites

3.1.1 Introduction to structural properties of halide perovskites

Perovskites are a class of compounds with the general chemical formula ABX3, similar in
structure to the mineral CaTiO3. This category of compounds is named after the miner-
alogist Lev Perovski. HaPs are perovskites where the atom ’X’ is a halogen ion (I−, Cl−,
Br−). One can view the structure as a cubic array with the monovalent cation A located in
the center of corner-sharing BX6 octahedra. Considering the compatibility of ionic sizes,
the stability of perovskite structures is often predicted with Goldschmidt’s tolerance factor
[93]

t = RA +RX√
2(RB +RX)

, (3.1)

where Ri is the atomic radius of element i. The tolerance factor assesses how well the
cation A can fit into the cavity of BX6 framework [94]. Typically, a tolerance factor in
the range of 0.8 to 1.0 is considered to form stable perovskite structures, while t > 0.9
indicates a cubic perovskite structure and t < 0.9 may lead to BX6 octahedral tilting.
With the help of the tolerance factor, various halide perovskite compositions have been
investigated in the literature. The A-site can be either organic molecular ions as CH3NH+

3
(MA), HC(NH2)+

2 (FA), or inorganic atomic ion Cs+, while the B-site is a divalent metal
that can be Pb2+, Sn2+, or Ge2+.

Beyond the classical three-dimensional (3D) HaPs with ABX3 perovskite structures, a
fascinating variety of perovskite-related structures has been discovered. F or example,
double perovskites with two different metal cations [95], 2D perovskites characterized by
their layered structure with organic cations separating inorganic perovskite layers [96], and
mixed-halide perovskites with further control of composition [97, 98]. These investigations
into the broader perovskite family open up new possibilities for enhanced stability and
tunability.

As discussed in the introduction section, halide perovskites exhibit unusual lattice vibra-
tional characteristics compared to canonical inorganic semiconductors (e.g., Si or GaAs),
which motivates a variety of interesting scientific questions for the research community.
The dynamic symmetry breaking [99, 100, 17] observed in halide perovskites (HaPs) at
high-temperature phases is a critical aspect of their structural behavior [15]. Many HaPs
display a high-symmetry average structure at or above room temperature [101, 102, 103].
However, several studies have revealed that the actual, instantaneous atomic geometry
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often significantly deviates from this idealized, averaged structure [104, 105, 106]. These
local and dynamic structural variations are closely related to octahedral tilting instabilities
originated from the structural phase transition. Various structural fluctuations phenom-
ena involving different atom species were studied in the literature: octahedral distortions
associated with notable Cs movements [107], two-dimensional overdamped fluctuations
of halides [23], octahedral tilting instability enhanced by metal lone-pairs [108], dynamic
coupling between A-site and X-site [109, 110], as well as substantial transversal displace-
ments of the halides [111]. This characteristic of a finite-temperature atomic structure
that is locally and dynamically disordered yet maintains long-range order, emerges as a
fundamental feature across a broad range of HaP materials.

The complicated structural behavior of HaPs sets the stage for understanding their an-
harmonic vibrational characteristics. The deviation of actual atomic geometries from av-
eraged structures indicates the complex potential surface and interplay of forces within
the lattice. This dynamic disorder, manifesting in phenomena like octahedral distortions
and overdamped fluctuations, is intrinsically linked to anharmonicity. To figure out the con-
nection between the observed structural instabilities and anharmonic vibrations is crucial
for understanding the finite temperatures behaviours in the system.

In this work, we use the CsPbBr3 as a prototypical model system for the broader class
of halide perovskite semiconductors. On one hand, it is well-studied in experiments and
shares critical properties as other hybrid halide perovskites [112, 100, 113, 23, 114]. On
the other hand, it allows a more efficient simulation with fewer atoms. As shown in Fig. 3.1,
CsPbBr3 has two phase transitions at 361 K and 403 K, from orthorhombic to tetragonal
then to cubic phase [115, 112, 22].

Figure 3.1 Structural phase transition upon heating from orthorhombic, tetragonal, and to cubic
phase for CsPbBr3.

3.1.2 Dynamic Instantaneous Structure

As discussed in the previous work of the author [17], it is a challenge for both experimental
and theoretical approaches to gain a detailed understanding of the mechanisms driving
the physical properties of halide perovskites. Experimentally, the difficulty lies in detect-
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ing the process of dynamic symmetry breaking, which means to observe instantaneous
rather than average structural properties. This requires techniques sensitive to both tem-
poral and spatial fluctuations. Theoretically, it is is challenging to develop an insight into
the finite-temperature dynamics of HaPs, including modeling the temperature-dependent
vibrational coupling behavior. This complexity is partly due to the limitations of the har-
monic phonon model, which treats the potential up to quadratic terms as discussed in
2.4.2.

To overcome these challenges, we applied MD based on DFT using the Vienna Ab-initio
Simulation Package (VASP) [116], using a 4 × 4 × 4 cubic supercell with 320 atoms. The
MD simulation was conducted in an NVT ensemble, using the Nosé-Hoover thermostat
and applying a time step of 6 femtoseconds to regulate the temperature. At each time
step, the DFT calculations were conducted using the projector-augmented wave (PAW)
potential [117]. The exchange-correlation functional was addressed using the Perdew-
Burke-Ernzerhof (PBE) variant of the generalized-gradient approximation [33], augmented
by dispersive interaction modifications based on the Tkatchenko-Scheffler method [118].
This approach is particularly crucial to accurately describe the structural and dynamical
characteristics of HaPs [119]. Our computational framework included a plane-wave kinetic
energy cutoff set at 300 eV with a single k-point, and an energy convergence criterion
of 10−6 eV. For the MD simulations, an initial equilibration time more than 2.5 ps was
implemented, followed by long production run of nearly 40 ps at a temperature of 425 K
and 525 K.

The MD simulation provide detailed insights into the spatial and temporal evolution of
local atomic structure as it occurs in cubic phase CsPbBr3. First of all, the displace-
ments of Br and Cs atoms are examined separately. Using the ideal cubic structure as
a reference, occurrences of these atomic displacements are captured in 2D histograms
across the planes illustrated in the top panels of Figure 3.2 a–c. As explained in Section
2.3.2, we assume that atomic movements in the system are constrained within a effective
potential well that average over all the interactions around. Then one would expect the
displacement distribution functions to resemble Gaussian distribution peaked at a zero
displacement (the ideal lattice position) in harmonic approximation. However, the actual
displacement histograms in Figure 3.2 reveal deviations from this harmonic model, sug-
gesting the presence of anharmonic effects or local structural disorder within the CsPbBr3
lattice.

The displacement distribution for Cs atoms, depicted in Figure 3.2a, is centered around
zero displacement but deviates from a Gaussian distribution, showing six side peaks.
These side peaks indicate the Cs movements towards the face centers of the cubic cell.
Note that two peaks along the x-axis are overlapped with the central peak in the figure,
so they are not shown. To further investigate the distribution, we plot it as a function
of displacement distance r =

√
x2 + y2 + z2 in 1D radial coordinate and assume both

the central and side distribution can be approximated by Gaussian distributions. The
Gaussian distribution in this coordinate has been discussed in Eq. (2.45) and (2.48). As
illustrated in Figure 3.3, using two Gaussian distributions can model the histogram of the
central and six side peaks (which appear as one due to cubic symmetry) very well. By
the comparison of these two Gaussian distributions, we can see that Cs atoms spend
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Figure 3.2 The top panels show the schematic representations of atomic displacements studied:
(a) Cs displacements on yz-plane, (b) Br displacements on xz-plane, (c) Br displacements on the
yz-plane. The bottom panels show the 2D histograms of the corresponding atomic displacements
calculated from MD simulation at T = 425 K, where the ideal cubic lattice is used as the reference.
Reprinted with permission from Ref. [17]. Copyright © 2022, American Chemical Society.

approximately 30% of their time in non-zero positions. In fact, the Cs displacements at
side peaks form local structures similar to the orthorhombic phase.

Moreover, the correlation of the nearby Cs atoms is studied in Figure 3.4. By plotting
the displacements of two nearest-neighbor Cs in a 2D histogram, one can see that when
the first Cs moves (Cs on the left) along the y direction, the second Cs (Cs on the right)
tends to move in the opposite direction. These side peaks align with previously discussed
head-to-head Cs motions by Yaffe et. al. [100].

The distribution of Br displacements in CsPbBr3 is shown in Figure 3.2b-c. The Br dy-
namic behavior along (axis y in Figure 3.2) is much smaller than perpendicular (axis x,
z in Figure 3.2) to Pb-Br-Pb bonding axis. They are named longitudinal and transversal
axes, respectively. In fact, the distribution of longitudinal displacement is found to fit the
Gaussian function well, as examined in Figure 3.5. This suggests a more harmonic nature
in the longitudinal vibrational modes, contrasting with the anharmonic behavior observed
in other displacement directions.

In Figure 3.2b, the distribution of Br transversal displacements, which lie in the plane
perpendicular to the Pb-Br-Pb bonding axis, are depicted. This distribution peaks at
a nonzero displacement and noticeably deviates from a Gaussian form, a point that
is elaborated upon in Figure 3.6. In this figure, Br transversal displacements are plot-
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Figure 3.3 Histogram of Cs displacements and the fitting with Gaussian distribution in 1D radial
coordinate r =

√
x2 + y2 + z2. The histogram of Cs displacements calculated from MD simulation

at 425 K is shown in blue line. Two peak features are fitted with the Gaussian distribution centered
around µ1 = 0 (Eq. 2.45) and µ2 ̸= 0 (Eq. 2.48), which are plotted in green and red lines
respectively. They correspond to the central and side peaks in Fig. 3.2. Reprinted with permission
from Ref. [17]. Copyright © 2022, American Chemical Society.

ted in a one-dimensional radial coordinate, with the Gaussian distribution in the form of
y(r) = C · r · exp

(
(r−µ)2

2σ2

)
, where C is a constant, µ is the mean value and σ is the stan-

dard deviation. As expected, the distribution cannot be fit by a Gaussian distribution with
µ = 0. Although a Gaussian function with µ ̸= 0 result in better fitting, it is still not perfect.
This deviation is significant as it is linked to the soft mode (octahedral tilting mode) in the
system, underscoring the complexity of the anharmonicity associated with this mode. The
implications of these results for the system’s anharmonicity will be explored further below.

After investigating the dynamics of individual atoms, we are interested in the correlation
between them. The fact that Cs displacements peak at zero while Br displacements peak
significantly away from zero suggests that the most probable nearest-neighbor distance
differs from the ideal cubic structure. To examine this, the pair distribution function (PDF)
for Cs-Br nearest neighbors is computed. This PDF indicates the likelihood of finding a
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Figure 3.4 The left panel schematically illustrates two nearest-neighbor Cs atoms (Cs1 and Cs2)
in the y-direction. The right panel shows the correlation between their displacements with 2D
histogram. The red circle highlighted a notable feature, where Cs1 and Cs2 tend to move in
opposite directions as reported in the literature by Yaffe et al. Phys. Rev. Lett. 2017, 118, 136001.
Reprinted with permission from Ref. [17]. Copyright © 2022, American Chemical Society.

Br atom at a certain distance dCs-Br from a Cs atom and vice versa, accounting for twelve
nominal nearest neighbors Br around each Cs atom (see Eq. (2.40)).

In Figure 3.7, we plot the PDF of nearest-neighbor Cs and Br atoms at two temperatures.
Both PDFs reveal significant deviations from the ideal structure’s nearest-neighbor dis-
tance, with a peak at approximately 3.8 Åcompared to the expected 4.1 Å in the ideal
cubic cell relaxed in a static DFT calculation. Additionally, the PDFs exhibit extended
tails up to about 6.5 Å, indicating a broad range of Cs-Br distances and highlighting the
disorder within the system.

These findings illustrate that the actual Br–Cs distances significantly vary from those pre-
dicted by an ideal cubic structure. It shows that the ideal structure, representing an av-
erage geometry, does not fully capture the details of Cs-Br interactions. In fact, similar
Cs-Br distances are observed in the low-temperature phases, suggesting that these PDF
results reflect the local and instantaneous low-symmetry structures present within the cu-
bic phase. An intriguing coupling mechanism in the Cs-Br joint dynamics enhances the
formation of the local structures.

3.1.3 Dynamic Cs-Br Coupling in CsPbBr3

To investigate the coupled motion of Cs and Br atoms, we calculate 2D conditional his-
tograms that map the distribution of Br displacements across specific planes, given a pre-
defined condition of a nearest-neighbor Cs atom. As depicted in Figure 3.8, this method
offers examination of simultaneous Cs and Br motions within the lattice and their mu-
tual interactions. For instance, if the movements of Cs and Br atoms were independent,
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Figure 3.5 Histogram of the longitudinal Br displacement and a fitting with a Gaussian function.
The blue line shows the 1D histogram calculated from MD simulation at 425 K and the orange line
shows the fitting to a Gaussian function, A exp

(
− r2

σ

)
. Reprinted with permission from Ref. [17].

Copyright © 2022, American Chemical Society.

the distribution of Br displacements should remain consistently similar, regardless of the
specific Cs displacement condition applied.

In light of our findings (see Figure 3.2a), we set conditions for Cs displacements based
on two observed patterns: oscillations around the center of a nominal cubic cell and
large displacements along the ±x, ±y, ±z directions. From these, we derive four distinct
scenarios of Cs displacement considering symmetry to use as conditions for analyzing Br
displacements. The four scenarios are illustrated in the top panels of Figure 3.9.

• Case I (Figure 3.9a): Cs oscillates around a cubic center with −0.12Å ≤ x, y, z ≤
0.12Å.

• Case II (Figure 3.9b): Cs undergoes a large displacement parallel to the Pb-Br-Pb
bonding axis (the (+x, −x) direction in the figure) with 1.27Å ≤ |x| ≤ 1.51Å and
−0.12Å ≤ y, z ≤ 0.12Å.

• Case III (Figure 3.9c): Cs exhibits a large displacement on the plane perpendicular
to the Pb–Br–Pb bonding axis toward one nominal nearest-neighbor Br position of
the ideal cubic cell (the (−y, −z) direction in the figure) with −1.51Å ≤ y ≤ 1.27Å
and −0.12Å ≤ x, z ≤ 0.12Å.
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Figure 3.6 Histogram analysis of the transverse Br displacements shows fitting to Gaussian dis-
tributions centered at µ = 0 and µ ̸= 0. The blue line represents data calculated from MD sim-
ulations at 425 K. The Gaussian distribution centered at µ = 0 (green line) fails to align with the
MD-generated histogram. However, the Gaussian distribution centered at µ = 0.46 (orange line)
achieves a better fitting. Reprinted with permission from Ref. [17]. Copyright © 2022, American
Chemical Society.

• Case IV (Figure 3.9d): the same as III, but the difference is that Cs moves away
from the Br position in the ideal cubic lattice (the (+y, +z) direction in the figure) with
1.27Å ≤ y ≤ 1.51Å and −0.12Å ≤ x, z ≤ 0.12Å.

We note that scenarios II–IV involve a large displacement of Cs according to the side
peaks of Figure 1a.

In scenario I, when Cs oscillates around the center of a nominally cubic cell (see Figure
3.9a), the Br histogram shows a broad distribution with two peaks that indicate two pre-
ferred Br positions, which is shown to correspond mainly to an octahedral rotation around
one axis in Figure 3.10. In scenario II and III (see Figure 3.9b,c), in contrast to case I,
the Br histogram displays only a single peak. The peak signifies a Br displacement over
the yz-plane, which corresponds to octahedral rotation around both the y- and the z-axes.
In scenario IV (refer to Figure 3.9d), where Cs moves away from a Br lattice position,
the resulting Br displacement histogram reveals notably larger displacements and a wider
distribution but lacks a distinct peak. We note that the features of the preferred Br motion
in this particular scenario possibly suggest that Br interactions are not confined to the Cs
within one unit cell. Instead, these patterns imply that Br may be engaging with Cs atoms
in adjacent unit cells, indicating a more complex, inter-unit cell dynamic.
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Figure 3.7 Pair-distribution function (PDF) of nearest-neighbor Cs and Br atoms, calculated from
MD at T = 425 K (blue) and 525 K (red) as a function of the Cs-Br distance. The dashed vertical line
indicates the distance predicted from the ideal cubic unit cell structure of CsPbBr3. The main peaks
of both temperatures are deviated from the distance in ideal lattice. Reprinted with permission from
Ref. [17]. Copyright © 2022, American Chemical Society.

Collectively, our findings reveal an interlocking of Cs and Br displacements, challenging
the common assumption that A-site cations in HaPs do not interact with the rest of the lat-
tice. Contrary to this belief, we showed that both the shape and peaks of Br displacement
distribution are significantly influenced by the behavior of neighboring Cs displacements,
indicating a more interactive and connected behavior within the HaP lattice than previ-
ously thought. Moreover, the observed interlocking of Cs and Br displacements suggests
the formation of local structures reminiscent of the low-temperature phases within the ma-
terial. The intricate nature of these local structures adds complexity to the landscape of
the potential energy surface (PES) in this system. This complexity is in line with strong
anharmonic vibrations in HaPs.

Building upon these findings, we further explore the coupled Cs-Br motion beyond the
scenarios of six Cs preferred positions within the nominal unit cell of CsPbBr3 in Figure
3.11. Here, we consider the Cs displacements along all three directions toward face
centers and calculate the conditional histogram of Br displacement under these varied Cs
conditions. This approach reveals the most probable Br displacements associated with
specific Cs movements. The left panel of Figure 3.11 shows the corresponding Br-Cs
distances, offering a higher resolution of their coupled motions with an increased number
of observational points for Cs positions within the 3D lattice.
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Figure 3.8 Schematic illustration of the Cs-Br conditional distribution. The top panel shows that
we collect all the unit cells with Cs moving around the center of the cell in the MD trajectory. The
bottom panel shows that we generate a histogram of the position of the Br atom in the plane
perpendicular to the bonding axis and plot the distribution.

Notably, these distances can be compared to the PDF (cf. Figure 3.7) and explain the two
features discussed above. First, the preferred Cs–Br distance is similar (around 3.8 Å)
for most of the considered cases, aligning with the peak observed in the PDF. This obser-
vation reinforces the finding that the most frequent Cs–Br distance in the actual structure
is shorter than the Cs–Br distance inferred from the ideal cubic lattice. Second, in a few
cases along y and z directions, we observed a large preferred Cs–Br distance ranging
around 5 Å to 6 Å. This variation is attributed to the large positive Cs displacements on
the yz-plane, which prompt Br atoms to prefer the coupling with Cs in the adjacent unit
cell, which leads to the long tail observed in PDF.

A symmetry consideration reveals that 8 out of 12 nearest-neighbor Br atoms to a Cs
atom generally reside closer, correlating with the shorter Cs-Br distance (depicted as the
blue area in the right panel of Figure 3.11). The remaining 4 Br atoms are situated further
away, accounting for the longer distance (orange area in the right panel of Figure 3.11).
Thus, we separately calculate the Cs-Br PDFs for these two groups of Br atoms. This
separation confirms our conditional histogram-based analysis, effectively explaining the
observed distribution characteristics in the Cs-Br PDF.

3.1.4 Local Dynamic Disorder and Energy Landscape

Having identified the local coupling in Cs-Br dynamics within CsPbBr3, we now turn our
attention to the broader implications on other material properties. We begin by examining
the potential energy of Br movements, given their crucial role in the octahedral dynamics
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Figure 3.9 2D conditional histograms showing Br atom displacements given that a nearest-
neighbor Cs atom displaces in a certain manner during MD simulations at 425 K as explained
in Fig. 3.8. The top panels provide schematic representations of Cs atom displacements in violet
color, alongside the corresponding preferred Br atom displacements shown in brown. The bottom
panels present histograms of Br atom displacements that occur concurrently with the specific Cs
movement in the top panels, with green markers indicating the areas where nearest-neighbor Br
displacements occur most frequently. Reprinted with permission from Ref. [17]. Copyright © 2022,
American Chemical Society.

Figure 3.10 The relation of Br displacement and octahedral rotations. Left panel shows the
schematic illustration of octahedral rotation, which is quantified by averaging the lateral movements
of the four Br atoms in the plane perpendicular to the rotation axis. Right panel demonstrates a
significant correlation between the transversal Br displacements and the octahedral rotation. It
suggests that Br movements perpendicular to the Pb-Br-Pb bond axis play a major role in driving
the octahedral rotation rather than contributing to octahedral distortion. Reprinted with permission
from Ref. [17]. Copyright © 2022, American Chemical Society.
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Figure 3.11 Left panel shows the Br-Cs distance with highest occurrence in one unit cell identified
in 425K MD for specific Cs displacements. The blue line shows the Cs displacements along
x-direction, parallel to the Pb-Br-Pb bonding axis, which corresponds to the motion as Figure
3.9b. The orange and green lines show the Cs displacements along y and z direction, which
corresponds to the motion as Figure 3.9c (negative Cs displacement) and Figure 3.9d (positive Cs
displacement). The dashed line is the Br-Cs distance of ideal lattice. Right panel shows two parts
contributed to PDF at 425K. The blue area is calculated from the Cs and 8 closest neighboring Br
atoms in the nominal unit cell while the orange area is calculated from the Cs and 4 remained Br
atoms. By comparing these two panels, we confirm the importance of the coupled Br-Cs motion
in explaining the PDF. Reprinted with permission from Ref. [17]. Copyright © 2022, American
Chemical Society.

at finite temperatures and their involvement in forming the electronic states near the band
edges. To this end, we consider the Br atoms to move in an ensemble-averaged potential
that is due to the interactions with the other atoms in the system. Hence, we perform a
Boltzmann inversion (introduced in Section 2.3.2) of Br displacements obtained from MD
at T = 425 K and T = 525 K to compute effective potential wells for Br displacements
(see Figure 3.12). The comparison of potential wells at these temperatures is particularly
enlightening, given that 425 K is relatively close to the tetragonal-cubic phase transition
temperature around 400 K of CsPbBr3. For clarity, we focus on Br displacements in a
specific direction to obtain a 1D potential, where we take an average of the y- and z-
directions, i.e., the two directions perpendicular to the Pb–Br–Pb bonding axis (cf. Figure
3.2, top panel). This effective potential well is termed as “dynamic potential well”. It
corresponds to displacements of a single Br atom embedded in the ensemble-averaged
potential that is generated by all vibrational excitations present in the system, captured
through MD simulation at specific temperatures (425K and 525K). This is contrasted with
the “static potential well” from a frozen-phonon approach (orange line in Figure 3.12),
which calculates energy changes from specific phonon mode displacements but does not
consider dynamic effects of all possible vibrational modes. Specifically, the dynamic effect
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Figure 3.12 Potential energies calculated from two methods. The orange line shows the static
potential obtained from frozen-phonon methods. The blue and green lines shows the effective
potential using Boltzmann inversion method at 425 K and 525 K. Reprinted with permission from
Ref. [17]. Copyright © 2022, American Chemical Society.

lead to an important difference between the potentials calculated from two approaches.
The dynamic potential wells at both temperatures are found to be shallower compared
to the static potential well. It shows that even small energy changes of 150 meV (about
5kBT ) could lead to relatively large Br displacements of 2 Å. This lowering of total energy
comes from the dynamic effect, which not only includes the anharmonic terms of the
octahedral tilting phonon mode but also the interactions between other phonon modes,
especially those related to Cs displacements.

In addition, we can compare the two dynamic potentials at two temperatures. At T = 425
K, the dynamic potential well is reminiscent of a double-well potential, which is qualita-
tively similar to the static potential well, although the dynamic well is much shallower (see
inset in Figure 3.12). At T = 525 K, the double-well feature disappears. In other words,
the behavior of the system is closer to “harmonic" since the temperature effect is more
pronounced. One must notice that even the potential well at 525K can not be fitted to a
quadratic potential, so it is not a real harmonic. As a result, the depth of the double well
is much smaller than the kinetic energy. We have seen that Br motions occurring along
the direction perpendicular to the Pb–Br–Pb axis are related to the soft phonon modes
driving the PbBr6 octahedral tilting. The emergence and disappearance of the reminiscent
double well feature close to the phase transition temperature show the complexity of soft
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modes in this material, which is a mix of order-disorder and displacive structural phase
transition.

To further investigate the dynamics at 425K and 525K, we calculate the pair distribu-
tion function of the nearest-neighbor (NN) Br-Br atoms as illustrated in Figure 3.13. The
pair distribution function for the second NN pair, which is not along the bonding direction
(Green line in Figure 3.13), is particularly interesting since it relates to the octahedral ro-
tations. The results are plotted in Figure 3.14. Figure 3.14a and Figure 3.14c shows the
PDF of 425 K and 525 K respectively. The slight differences in the overall PDF mainly
comes from the second NN not aligned along the bond direction (in green). Figure (b)(d)
shows the PDF of this part in detail. There are two peaks centered around 4.2 Å and
7.4 Å, which corresponds to the correlated rotations of two nearby octahedra. As the
temperature increases, the thermal disorder dominates over the correlated octahedral ro-
tation and leads to a more Gaussian-like PDF. This observation is concurrent to the result
in the dynamic potential well and further confirms our finding.

Figure 3.13 Schematic illustration of first and second nearest-neighbor Br-Br pairs. Notice that
there are two types of second second nearest-neighbor Br-Br pairs. The orange one is along the
Pb-Br-Pb bond direction, while the green one is not. The further analysis of PDF is discussed in
Figure. 3.14. Reprinted with permission from Ref. [17]. Copyright © 2022, American Chemical
Society.

3.1.5 In-Phase Octahedral Tilting Dynamics

We have found above that the octahedral tilting plays an important role in the anharmonic
dynamics. In this section, we further investigate the in-phase and out-of-phase octahedral
tilting modes at 425 K separately. Specifically, the quantity R(t) · u is calculated to obtain
the projection of the Br displacement vector R(t) obtained from MD snapshots at time t,
onto the in-phase and out-of-phase octahedral tilting mode u, which are shown in Figure
3.15. The x-direction was set to be the rotation axis, and R(t) contains the displacement
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Figure 3.14 PDF of second nearest-neighbor Br-Br pairs. On the left, panels a, c show the first and
second nearest-neighbor separately for 425 K and 525 K MD simulation. The Br-Br pairs studied
here are illustrated in Fig. 3.13. On the right, panels b, d show the PDF of the second nearest-
neighbor Br-Br pair that is not along the bonding direction. They are fitted by three Gaussian
functions. Reprinted with permission from Ref. [17]. Copyright © 2022, American Chemical
Society.

of all Br atoms in the supercell at time t. In Figure 3.16a, we find that in-phase tiltings
dominate the cubic phase of CsPbBr3, while out-of-phase tiltings only oscillate around
zero. It is related to the structural phase transition from cubic phase to P4/mbm tetragonal
phase, which can be seen as freezing in-phase octahedral tiltings, as discussed in the
literature for related systems [120, 99, 121, 122].

To probe whether the correlation between Cs and Br atoms plays a role in the contrast-
ing behavior of the in-phase and out-of-phase octahedral tilting mode, we also calculated
the cross-correlation of Br displacements involved in octahedral tilting and Cs displace-
ments. The normalized cross-correlation is calculated between the absolute value of
in-phase/out-of-phase projections, |R(t) · u| = A(t), and the average of the absolute Cs
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Figure 3.15 Schematic illustration of the in-phase (left) and out-of-phase (right) octahedral rotation
modes corresponding to the imaginary frequency at M and R point in reciprocal space. Reprinted
with permission from Ref. [17]. Copyright © 2022, American Chemical Society.

displacement along y- and z-directions, B(t). The normalized cross-correlation is then
written as

C(∆t) = 1
Nt

Nt∑
t=1

(A(t+ ∆t) − Ā)(B(t) − B̄)
σ(A)σ(B) (3.2)

where Nt is the total number of time steps. The projected displacements are shown in
Figure 3.16b. These findings demonstrate the important role of Cs–Br coupling in the
octahedral tilting dynamics of CsPbBr3, which locally and instantaneously distort the HaP
geometry significantly away from its average structure.

We have found above that at T = 525 K, the dynamic potential well for the Br displace-
ments loses the double-well features and phonon hardening occurs. To investigate this
change through the perspective of octahedral tilting, Figure 3.17 shows the projection
of in-phase/ out-of-phase tilting in all three Cartesian coordinates at 525K. Although the
out-of-phase tilting has a similar behavior as 425K shown in Figure 3.16, the in-phase
tilting modes display a new behavior that they do not always oscillate around a finite am-
plitude. Instead, the projection amplitudes exhibit low-frequency oscillations between two
octahedral tilting directions (positive/negative for the projection). This implies that thermal
disorder becomes increasingly more important than correlated tilting motions at higher
temperatures. As a result, the results suggest that at higher temperatures, transitions be-
tween local minima on the potential energy surface become more frequent, reducing the
‘characteristic time’ of octahedral tilting to less than the duration of our simulation, which
is approximately 40 ps.

3.1.6 Conclusions

In summary, our study focused on the finite-temperature vibrational dynamics of the HaP
material CsPbBr3 and assessed local atomic structures. Through first-principles molecu-
lar dynamics calculations, we reveal that the actual motions of Cs and Br atoms deviate
significantly from an ideal cubic structure. The dynamic coupling of the two species was
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Figure 3.16 (a) Time-dependent projection of Br displacements on the two octahedral tilting modes
(see Figure 3.15) around the x-axis during MD simulations at T = 425 K. (b) Cross-correlation of
the octahedral tilting modes and the absolute displacement of Cs in the plane perpendicular to
the Pb–Br–Pb bond. It is noted that the in-phase tilting exhibits a stronger correlation with the Cs
displacements. Reprinted with permission from Ref. [17]. Copyright © 2022, American Chemical
Society.
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Figure 3.17 Time-dependent projection of Br displacements on octahedral tilting modes around
three axes at 525 K MD simulation. The projection of out-of-phase tilting remains around zero,
while the in-phase tilting can oscillate around finite quantities (similar to the orthorhombic phase).
Reprinted with permission from Ref. [17]. Copyright © 2022, American Chemical Society.

demonstrated by the most likely Cs–Br distance being significantly shorter than that in-
ferred from an ideal cubic structure. This coupling is associated with very shallow potential
wells for Br motions, occurring in an energy landscape that is both locally and dynamically
disordered. By projecting the Br motion to the octahedral tilting modes, we showed that
Cs–Br coupling plays an important role in the octahedral tilting dynamics of CsPbBr3. We
also compared the dynamic behavior of 425K and 525K to show the special structural
phase transition in this system. Since the Br atomic orbitals are known to significantly
contribute to the electronic states close to the band edges, this is relevant for the opto-
electronic properties of HaPs, which will be investigated in the next section.
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3.2 Impact of Anharmonic Dynamics on Band Gap in
Halide Perovskites

Note that the results of Chapter 4 are based on the published paper [22], which was done
in close collaboration with group member Stefan Seidl (“equal contribution").

3.2.1 Introduction to optoelectronic properties of halide perovskites

The unique structural properties of HaPs can lead to favorable optoelectronic properties
that are useful in many applications. HaPs are not only promising candidates for high-
efficiency and solution-processable solar cells, but also have potential applications for
other optoelectronic applications as well [123], such as light-emitting diodes (LEDs) [124,
125], photodetectors [126], and lasers [127].

The rapid developments in HaPs optoelectronic devices arise from their remarkable prop-
erties. First of all, HaPs possess suitable band gaps for sunlight absorption. The band
gaps of typical HaPs are around 1.5 eV, which aligns well with the solar spectrum’s maxi-
mum intensity, allowing for optimal absorption of visible light. In contrast to Si, HaPs also
have a direct or close-to-direct band gap that makes the absorption more efficient. Be-
sides their ideal band gap for solar cells, HaPs exhibit exceptional tunability of band gap
from 1.5 to 3.2 eV by adjusting halide anions and the A-site cations mixing ratio [128, 129].

Another notable property is their high absorption coefficients with sharp optical absorption
edges. The Urbach energy can reach 15 meV for CH3NH3PbI3 perovskites [130]. The
high absorption coefficients imply that they are available for thin film devices, which have
lower costs and more flexibility in application. The sharp absorption edge not only ensures
the efficient absorption of light in solar cells but also contributes to the high color purity of
LEDs [131].

Furthermore, the long carrier diffusion length is another desirable feature that is partic-
ularly important for solar cell technology. The diffusion length measures how far charge
carriers travel before they recombine. Long diffusion length ensures that the charge carri-
ers can reach the electrodes and contribute to the electric current. In HaPs, the diffusion
length could reach micrometer [132]. The diffusion length is a combination of two other
electronic properties: carrier mobility and lifetime. HaPs have relatively good carrier mo-
bility that can reach hundreds of cm2/ Vs at room temperature [133, 134] and charge
carrier lifetime exceeding 15 µs [135]. In addition, the exciton binding energies are rela-
tively small compared to room-temperature thermal energy [136], which leads to efficient
separation of charge carriers in solar cells. Specifically, the free charge carriers will be
generated without too much energy loss at room temperature.

While these optoelectronic properties enhance their efficiency in photovoltaic (PV) ap-
plications, the relationship between these properties and dynamics are still extensively
studied [137, 15, 138]. Several models have been proposed to demonstrate this coupling
between structure and function. For example, the octahedral rotation corresponding to
the low-frequency imaginary phonon modes could influence the band gap [21, 23]. The
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dynamic shortening of disorder potential was shown to lead to a small Urbach energy
[18, 111]. The special temperature dependence of carrier mobility µ ∝ T−1.5 can be ex-
plained by the dynamic disorder effect [19]. Lattice fluctuations cause charge carriers to
become self-trapped in large polaronic states that can influence the charge recombination
[139]. The inorganic lattice and electronic interband polarizations are major contributors
to exciton screening [137].

Among these optoelectronic properties, the fundamental band gap is a key quantity for
light-matter interactions in semiconductor optoelectronics [140, 13]. In the single-particle
perspective, it is defined as the energy gap between the valence band maximum and the
conduction band minimum. Since real-world devices are operated at room temperature, it
is essential to understand the influence of thermal effects on the band gap and other prop-
erties. However, there is an ongoing debate on the leading thermal effects that determine
band gaps of HaPs, which centers on factors like higher-order electron-phonon interac-
tions [24, 141], thermal lattice expansion [142, 143, 144], and vibrations [89, 23, 21].
Specifically, the anharmonic vibrations, including pronounced octahedral tilting dynamics
and large-amplitude atomic displacements, play an important role in their dynamics as
shown in Chapter 3.1.1. Therefore, we will investigate the impact of anharmonic vibra-
tions on the fundamental band gap of HaPs in this section, to deepen the understanding
of both experimental measurements and theoretical predictions.

3.2.2 Failure of static structure picture

We start with the experimental measurements of the temperature dependence of CsPbBr3
band gap in three phases. Figure 3.18a shows the reflectance spectra between 300 K
and 560 K of a CsPbBr3 single-crystal 1. The peaks around 2.4 eV are associated with
optical absorption energy, which is approximately equal to the band gap energy because
the exciton binding energy of CsPbBr3 (on the order of a few tens of meV [145]) is small
compared to the fundamental band gap. As a result, we can view it as a proxy for the
temperature development of the band gap.

Notably, it is shown that the band gap change in the measured temperature range is mild.
Despite the measurement going across the orthorhombic-tetragonal and tetragonal-cubic
phase transitions at 361 K and 403 K respectively, the thermal effects on the spectra are
relatively subtle. These observations align with prior experimental studies [146], yet they
significantly differ from the predictions of static theoretical calculations.

The static structures of cubic and orthorhombic phases are shown in Figure 3.18b, which
were relaxed in DFT. Our calculation reveals a notable reduction in the band-gap value, by
as much as 0.7 eV, when transitioning from the orthorhombic to the cubic structure, which
aligns with results from prior research [147, 148]. The band gaps were calculated with
PBE functional [33], augmented by dispersive corrections of Tkatchenko-Scheffler (TS)
scheme with iterative Hirshfeld partitioning of the charge density [118, 149], including the
effect of spin-orbit coupling (SOC) implemented in VASP. A plane-wave energy cutoff of

1Measured by Guy Reuveni and Sigalit Aharon in the group of Omer Yaffe at Weizmann Institute of Science
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Figure 3.18 Panel (a): Reflectance measurements of CsPbBr3 single crystals of varying temper-
atures across three phases. The spectrum is measured with the interval of 20 K temperature
increments, which is shown by the color bar on the right. The white horizontal lines in the color bar
mark the temperatures of phase transitions reported in the literature [115]. Panel (b): Schematic
diagrams of CsPbBr3 structure in cubic and orthorhombic phase. ∆Estatic

g is the changes in band
gaps, which are determined through static DFT calculations for both the orthorhombic and cubic
structures. Reprinted with permission from [22]. Copyright © 2023 by the American Physical So-
ciety.

400 eV, energy convergence threshold of 10−6 eV, and an 8 × 8 × 8 Γ-centered k-grid (6
× 4 × 6) were used for the cubic (orthorhombic) phase.

The discrepancy between experimental observations and theoretical predictions under-
scores the importance of including dynamic effects for the finite-temperature behavior of
HaPs. This motivates us to include thermal effects for a set of temperatures to examine
the thermally-induced band gap renormalization.

3.2.3 Temperature-dependent band gap study with two approaches

Two methods are employed to investigate the thermal effect on band gaps: the Monte
Carlo (MC) method (see Section 2.5.3) and the molecular dynamics (MD) method (see
Section 2.3).

We begin with the MC method, which includes the full-order electron-phonon coupling
effect but treats the atomic vibrations within the harmonic approximation. It provides an
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ensemble average of band gaps with stochastic samples of atomic displacements accord-
ing to pre-calculated phonon modes. Specifically, the phonon modes were calculated at
Γ point with finite difference method implemented in VASP with 160 atom supercell. Note
that we ignored the phonon modes with imaginary frequency in the procedure. We ap-
plied it to both cubic (4 × 4 × 2) and orthorhombic phase (2 × 2 × 2), while excluding the
intermediate tetragonal structure, which only exists in a very narrow temperature range.
The kinetic-energy cutoff and energy convergence threshold are set to 400 eV and 10−8

eV. The integration in reciprocal space was carried out over a 3 × 2 × 3 k-grid for the
orthorhombic and a 2 × 2 × 4 grid for the cubic phase. Since the phonon frequency
and eigenmodes are obtained with harmonic approximation, the MC method does not in-
clude the anharmonic effect intrinsically. Then, 100 distorted structures were generated
for six temperatures. The fundamental band gap was calculated at different temperatures
as a statistical average of them, where we employed a kinetic-energy cutoff of 300 eV,
an energy convergence threshold of 10−4 eV, and a Γ centered k-grid of 2 × 2 × 2 for
orthorhombic, and 2 × 2 × 4 for cubic CsPbBr3. We included the effect of SOC in these
self-consistent DFT calculations as well.

The results are represented by the blue dashed line in Figure 3.19. Notably, it under-
estimates the band gaps in the cubic phase and leads to a jump of 0.4 eV between the
orthorhombic at 325 K and cubic phases at 425 K. However, the difference is smaller
compared to the difference between static structures and experimental measurements in
Figure 3.18b. Although we yield an improvement by considering thermal effects, the re-
sults are still far from the experimental observation showing a mild shift (Figure 3.18a).
In conclusion, the major discrepancy we had in Figure 3.18 is not fully solved within the
framework of harmonic approximation.

To explain the experiment trend of the temperature-dependent band gap, we next go be-
yond the harmonic approximation with the MD method. We conducted DFT-based MD
calculations employing the canonical (NVT) ensemble with an energy cutoff of 300 eV.
For the cubic phase, we utilized a 1 × 1 × 2 k-grid, and for the orthorhombic phase, a
single k-point was used. The systems were equilibrated for 8 ps followed by extensive pro-
duction runs of 42 ps to sample 100 configurations at specified temperatures. The band
gaps were then calculated by averaging these sampled configurations using the idea of
ergodicity, once again using the PBE DFT-functional with SOC using the same set of pa-
rameters in VASP. As MD simulations do not rely on harmonic approximation and provide
an exact framework for atomic motions within the Born-Oppenheimer approximation, this
approach accounts for vibrational anharmonicity to all orders at finite temperatures.

The results are shown by the red solid line in Figure 3.19. It is worth noting that the MD
data capture various key characteristics of the thermal electronic structure in CsPbBr3
we have seen in the experiment (Figure 3.18a): First, in the temperature range between
275 K and 525 K, we find mild changes in the band gap value, which differs by less than
0.1 eV. Second, the band gap around phase transition temperature has a difference that
amounts to only 0.1 eV between the cubic phase at 425K and the orthorhombic case
at 325 K. They show that it is important to include the anharmonic effect to capture the
correct feature of experiments.
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Figure 3.19 Temperature-dependent fundamental band-gap of CsPbBr3. The blue-dashed lines
are computed by the MC method (see Section 2.5.3), while the DFT-based MD calculations com-
pute the red lines (see Section 2.5.4). The vertical lines indicate reported phase-transition temper-
atures [115]. The discrepancies of band gaps from the experimentally measured peak in Figure
3.18 (≈ 2.4) can be attributed to the known limitations of the PBE exchange-correlation functional.
Specifically, the band gap values in our calculations are consistently underestimated, a common
issue stemming from the inherent band-gap problem associated with semilocal DFT methods.
Reprinted with permission from [22]. Copyright © 2023 by the American Physical Society.

Furthermore, we are able to extract the precise amount of the anharmonic effect on the
band gap by comparing these two methods. As a consistency check, we show the differ-
ence is negligible for bulk Si that generally is expected to be fairly harmonic in Figure 3.20.
The band gaps are calculated at temperatures of 100 K, 300 K, and 700 K using a Si su-
percell of 128 atoms. At 700 K, the difference between MC (blue dashed line) and MD (red
solid line) is very small (around 0.01 eV). At a temperature range lower than the Debye
temperature of 640 K, the differences mainly come from the quantum effects since MC
and MD follow Bose-Einstein and Maxwell-Boltzmann statistics respectively. The com-
parison between the two methods for Si can be contrasted with the large difference seen
for CsPbBr3 in Figure 3.19, highlighting the importance of the anharmonic effect in this
material.

At 425 K, both the MC and MD methods indicate an increase in the band gap compared to
the static calculation for the cubic phase. The MC method, accounting for dynamic fluctua-
tions of harmonic motions, enlarges the band gap by approximately 0.3 eV. In contrast, the
MD method, which additionally considers anharmonic motion, leads to a more substantial
increase of about 0.7 eV in the band gap at this temperature in the cubic phase. Con-
sequently, anharmonic effects contribute nearly 0.5 eV to the band gap renormalization
at 425 K. This anharmonic contribution to the gap exceeds the pure-phonon contribution
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Figure 3.20 Temperature-dependent band gap of bulk Si. The blue-dashed lines are computed
by the MC method (see Section 2.5.3), while the DFT-based MD calculations compute the red
lines (see Section 2.5.4). The difference between the two methods is small since Si is a system
with weak anharmonicity. Reprinted with permission from [22]. Copyright © 2023 by the American
Physical Society.

and largely resolves the discrepancies of Figure 3.18. The dominance of the anharmonic
effect on the band gap can be further established through a comparison of its magnitude
(≈ 0.5 eV) to significant effects of SOC (≈ 0.8 eV) and approximate exchange-correlation
treatments (≈ 0.9 eV) that are commonly known for CsPbBr3 and other HaP variants.

Additionally, within the temperature range corresponding to the orthorhombic phase, the
discrepancies between the band gaps determined by MC and MD methods are noticeably
smaller, suggesting a more harmonic character in the orthorhombic phase. Furthermore,
it is observed that the MC and MD band gap values converge with increasing temperature,
implying that the anharmonic effects are most pronounced around the phase transition
temperature. This characteristic can be attributed to the temperature-dependent nature
of overdamped dynamics, a topic that will be elaborated upon in the following chapter.

3.2.4 Free energy and estimation of anharmonic effect of one
phonon mode

To better understand the microscopic mechanism driving the temperature-dependent evo-
lution of the band gap, we examine the free energy changes linked to transversal Br dis-
placements (refer to Fig. 3.21a). This analysis applied Boltzmann inversion (see Section
2.3.2) on sets of structures generated by several approaches, including MD trajectories in
the orthorhombic phase at 325 K, MD trajectories in the cubic phase at 425 K, and MC-
generated structures of the cubic phase at 425 K. The obtained effective potential can be
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Figure 3.21 (a) Changes in effective potential energy related to the transversal movement (per-
pendicular to the Pb-Br-Pb bond axis) of a Br atom in CsPbBr3. The red dots are derived from
Boltzmann inversion of MD trajectories for the orthorhombic phase at 325K (represented by red
disks) and for the cubic phase at 425 K (represented by red circles). The blue crosses are de-
rived from Boltzmann inversion of MC data at 425 K. The colored lines indicate fits: quadratic
functions for the orthorhombic MD and cubic MC data, and a function of the form ax4 + bx2 for
the cubic MD data. The zero point on the x-axis aligns with the time-averaged position of a Br
atom. (b) Changes in the band gap, ∆Eg as a function of transversal displacement of Br. The
set of displaced structures is generated from the phonon eigenvector that is associated with the
octahedral-tilting phonon mode at the M-point in reciprocal space (see Figure 3.22). Reprinted
with permission from [22]. Copyright © 2023 by the American Physical Society.

directly compared to the quadratic potential with harmonic approximation and character-
ize atomic vibrations of different methods and temperatures. We focus on the transversal
motions of Br displacements, as highlighted in the previous chapter, where we discussed
the significant impact of octahedral tilting dynamics on the electronic structure of HaPs.
Notice that the Br atom in the orthorhombic phase has lower symmetry and here only Br
on the a− b plane is used.

In the orthorhombic phase, the free energy has a harmonic profile, with thermal atomic
displacements being relatively small. Conversely, in the cubic phase, the behavior is
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anharmonic, characterized by a shallow and broad potential that deviates from a quadratic
form. This suggests a multitude of possible configurations within the multi-well potentials.
It’s important to note that the free-energy changes observed in the MC approach are
intrinsically harmonic, as they are derived from harmonic phonon modes. Interestingly,
free-energy changes associated with Br motion show marked differences between the
orthorhombic and cubic phases of CsPbBr3, even though the average band gap remains
relatively similar in both phases. It is important to note that the x-axis in this analysis
corresponds to the time-averaged position of the Br atom. If we consider the orthorhombic
phase as a transformation from the cubic structure through octahedral rotation around
multiple axes, then the quadratic-like potential well in the orthorhombic phase would be
positioned at a non-zero point on the cubic axis. This observation suggests that the
system adopts lower symmetry structures in the cubic phase, which will be discussed in
the next section.

Having identified the transient octahedral tiltings in the cubic phase of CsPbBr3, we next
focus on how vibrational anharmonicity influences the band gap renormalizations associ-
ated with these tiltings. Establishing a connection between the dynamic band gap varia-
tions observed in the MD simulations and specific phonon modes is challenging, primarily
because purely harmonic phonon modes do not account for anharmonic effects. For
instance, when calculating the band gap changes associated with a particular phonon
mode, not only are the higher-order terms in the potential energy typically overlooked, but
the interaction of that mode with other concurrent vibrations in the system is also often
disregarded.

The following simplified model is constructed to provide qualitative insight into the an-
harmonic effect. First, we extract the phonon eigenvector of an octahedral tilting mode
in cubic CsPbBr3 using harmonic phonon calculations and the phonopy package [150].
This particular mode at the M point in the Brillouin zone of the cubic phase is imaginary
and is not included in the standard MC approach. It is marked as the red point in Figure
3.22. Within the harmonic approximation, it has an imaginary frequency and represents
a phonon mode involved in the in-phase octahedral tilting around one axis, as shown in
Figure 3.15, that lowers the symmetry of the material. This provides us with a set of struc-
tures with atomic displacements corresponding to this phonon mode. Next, we compute
the change of the band gap, ∆Eg(x), as a function of transversal Br displacement, x, for
this particular phonon mode using DFT (see Figure 3.21b). An ensemble integration of
these band gap changes can now be performed classically, using either the MC or MD
free-energy profile (see Figure 3.21a). Therefore, the total change in the band gap is
determined by the equation:

∆E tot
g = Z−1

∫
dx∆Eg(x) exp

(
−Vi(x)
kBT

)
, (3.3)

where Z = ∫
dx exp(−Vi(x)/kBT ) serves as the normalization constant (partition func-

tion). The index i denotes the use of either the MC or MD free-energy profile of Figure
3.21a for the integration, with T set to 425 K.

Note that this model is predicated on the assumption that the Br displacements are solely
attributed to the phonon mode under consideration. Utilizing this simplified approach, we
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Figure 3.22 Phonon dispersion relation of CsPbBr3 in the cubic phase. The calculation is imple-
mented with the package Phonopy [150]. The imaginary mode considered in the model calcula-
tions presented in Figure 3.21, is marked in red. Note that this particular mode corresponds to
in-phase octahedral tilting and is not included in the MC method. Reprinted with permission from
[22]. Copyright © 2023 by the American Physical Society.

calculate a total band gap change of 0.17 eV for the MC and 0.28 eV for the MD sce-
nario. The harmonic nature of the MC free-energy profile, contrasted with the anharmonic
profile derived from MD, suggests that anharmonic fluctuations lead to more pronounced
dynamic changes in the band gap. Our model can be viewed as accounting for the low-
frequency peak around 1.5 THz observed in the gap spectral function alone, as shown in
Figure 2.8. A more accurate estimation could be achieved by considering the electron-
phonon coupling strength for each phonon mode in the full range of gap spectral function.
While the structural details of the anharmonic effect are specific to HaPs, we hypothe-
size that anharmonic effects play a significant role in the broader class of anharmonic
semiconductors.

3.2.5 Microscopic explanation

We have characterized the anharmonic dynamics with local disorders in the last chapter
and seen that they have a significant effect on the temperature dependence of band gaps
above. Now, we want to build the connection between the strong anharmonic effect on
the band gap and the atomic motion from the microscopic perspective. Specifically, the
system transiently exhibits octahedral tilting patterns that are similar to the average struc-
ture of the orthorhombic phase. To illustrate this, we employed a moving average method
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for analyzing the low-frequency behavior, which plays a critical role in the band gap of
cubic phase CsPbBr3. This is demonstrated in Figure 3.23, where we present the Fourier
transformation of the time-dependent band gap. Notably, the primary contributors to the
dynamic changes in the band gap are low-frequency components below 2.5 THz, indicat-
ing that the predominant time scale of these fluctuations lies within the range of hundreds
of femtoseconds (fs) to 1 picosecond (ps). It is also important to note that the frequency
range of the band gap is approximately twice that of the phonon frequency (around 5 Hz),
which comes from the fact that electron-phonon coupling is proportional to the absolute
value of displacement.

Figure 3.23 Spectrum of dynamic band-gap changes in CsPbBr3, determined by performing a
Fourier transformation on the time series of the band gap in MD simulation at 425 K, i.e. FEg(t).
The blue line is the original spectrum and the red line shows the smoothed spectrum after Gaus-

sian smearing with a parameter σ = 0.2: fsmoothed(x) =
∫
f(x′) 1√

2πσ
e− (x−x′)2

2σ2 dx′. Reprinted with
permission from [22]. Copyright © 2023 by the American Physical Society.

We refined our analysis by applying a moving average to the MD trajectory at 425K,
with a time window of 1 ps, averaging all snapshots within this window to filter out the
high-frequency components. The results are schematically shown in Figure 3.24, where
we demonstrate this process with four representative samples of two octahedra from the
supercell, spaced at 10 ps intervals. In Figure 3.24a, the orthorhombic phase at 325 K
is shown, where the four averaged structures are very similar to the static structure. It
indicates that octahedral tilting can be viewed as a static disorder from the cubic structure
with atoms oscillating harmonically at the potential energy surface minima. Conversely,
as depicted in Figure 3.24b, the cubic phase at 425 K presents four distinct averaged
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structures, indicating dynamic disorder with atoms transitioning between different minima
(octahedral tilting configurations) on a picosecond timescale.

This picture offers an explanation for the similar band gaps observed in the cubic and
orthorhombic phases. The so-called ideal cubic structure is in reality a temporal average.
At finite temperatures, atomic motions become significant, resulting in local and transient
low-symmetry distortions in both space and time. Therefore, the cubic phase can be
conceptualized as a ’dynamic’ orthorhombic phase, which rationalizes the similarity in
band gaps.

Figure 3.24 Left panel: Schematic diagram of structures time-averaged over a 1 ps window from
specific segments of the MD trajectory in the cubic phase of CsPbBr3 at temperatures of: (a) 425 K
and (b) 325 K. Right panel: Schematic diagram that shows the overlap of the structures displayed
in the left panel. Reprinted with permission from [22]. Copyright © 2023 by the American Physical
Society.

To quantitatively examine the presence of low-symmetry local structures, we analyzed the
radial distribution function g(r) and the Pb-Br-Pb bond angles in the XZ-plane for both the
original MD structures in two phases [(a) and (c)] and the moving averaged structures of
the cubic phase MD [(b) and (d)], as shown in Figure 3.25.

Specifically, Figure 3.25a reveals the difference in the radial distribution function (RDF)
of the two phases. A noticeable distinction occurs around 4 Å, the expected range for
Br-Br and Cs-Br pairs. At 325 K in the orthorhombic phase, two distinct peaks are evi-
dent at the position corresponding to the static structure. Conversely, for the ideal cubic
structure at 425 K, Br-Br and Cs-Br pairs should exhibit identical distances; however, the
MD dynamics suggest the emergence of two peaks. This finding aligns with the PDFs
for Cs-Br seen in Figure 3.7 and for Br-Br in Figure 3.14a, which were discussed in the
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previous chapter and also show two-peak characteristics. In Figure 3.7, the Cs-Br peak is
found to be shorter than the distance in the ideal lattice, while in Figure 3.14a, the nearest
neighbor Br-Br peak appears further than the ideal distance, indicating the presence of
two peaks at 425 K.

This phenomenon was previously attributed to local disorders in Section 3.1.3, but now we
show that this local disorder resembles the orthorhombic phase with the moving average
structures of 425 K MD at Figure 3.25b. With the moving average applied to the 425 K
MD structures, Figure 3.25b exhibits a resemblance to the orthorhombic phase, with two
well-defined peaks in the RDF.

The distribution of bond angles in Figure 3.25c and 3.25d further supports these observa-
tions. Again, we see different behaviors of 325 K and 425 K distribution at first glance. In
the orthorhombic phase, the static structure displays octahedral tilting with bond angles
around 150◦ and 210◦. The MD histogram reflects these tiltings with two corresponding
peaks centered around these values, which are indicative of harmonic atomic oscilla-
tions. In the cubic phase, the ideal structure should exhibit a bond angle of 180◦ due to
the absence of octahedral tilting. However, the 425 K histogram presents a broad peak
stretching from 160◦ to 200◦ with almost the same amount of occurrence, suggesting the
existence of local structures akin to the orthorhombic phase.

Aligned with the RDF obtained from the moving averaged structures of MD at 425 K shown
in Figure 3.25(b), we present the histogram of band angle from the same set of moving
averaged structures in Figure 3.25(d). By filtering out the high-frequency components,
we observed a two-peak pattern resembling the orthorhombic phase. This serves as
evidence for the emergence of orthorhombic-like low-symmetry disorder within the cubic
phase.

3.2.6 Conclusion

In this chapter, we have explored the influence of thermal lattice vibrations on the band
gap of CsPbBr3. By employing a combination of DFT-based MC and MD calculations,
we quantified the significant impact of dynamic fluctuations, extending beyond harmonic
motions, on the electronic structure. Particularly in the cubic phase at 425 K, these fluc-
tuations were found to contribute substantially, widening the band gap by approximately
450 meV. We developed a simplified model to further elucidate this observation, providing
qualitative insights into the anharmonic effects at play. To understand the microscopic
underpinnings of this observation, we investigate the relationship between the band gap
and local structural dynamics. Using a moving average analysis of the MD trajectories,
we demonstrated that low-symmetry structures, reminiscent of the orthorhombic phase,
transiently emerge within the cubic phase, contributing to the dynamic variability of the
band gap. Our approach highlights that the cubic phase maintains a dynamic balance of
these transient low-symmetry structures, significantly influencing its electronic properties.
This phenomenon offers a compelling explanation for the observed minimal changes in
the band gap across various temperatures and during phase transitions, as identified in
our experimental data. Consequently, our findings underscore that pronounced anhar-
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Figure 3.25 (a) Radial distribution function g(r) of CsPbBr3 computed from the orthorhombic and
cubic phase MD simulation. The blue line corresponds to the 325 K orthorhombic phase MD
simulation, while the orange line is at the 425 K cubic phase. (b) Radial distribution function
g(r) computed from a moving average structure of 425 K MD, as shown in Figure 3.24. We find
signatures of peak splitting at around 4 Å that are reminiscent of the result for the orthorhombic
phase as in panel (a). (c) Histogram of Pb-Br-Pb bond angles in CsPbBr3 in the orthorhombic
(325 K) and cubic (425 K) phase, computed from MD. (d) Histogram of Pb-Br-Pb bond angles
computed from a moving average structure of 425 K MD. Applying a 1 ps moving average analysis
to the bond angles again highlights features consistent with those of the orthorhombic phase,
as the histogram demonstrated in blue color in panel (c). Reprinted with permission from [22].
Copyright © 2023 by the American Physical Society.

monic fluctuations and the transient emergence of low-symmetry structures, as revealed
by our simplified model, are key in determining the electronic structure of CsPbBr3.

Given the prevalence of large-amplitude anharmonic motions of halide ions in HaPs, these
effects likely influence other variants as well. MAPbBr3, a typical 3D hybrid organic-
inorganic HaP, exhibits phase transitions at ≈150 K and ≈240 K [151]. Experimental
studies have observed a 10 meV reduction in the optical transition energy at the lower-
temperature transition and an almost continuous higher-temperature transition [146, 152,
153, 154], contrasting the larger band gap decrease predicted by static DFT [155]. Our
findings that anharmonic fluctuations lead to only mild band gap changes might explain
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this discrepancy: less pronounced fluctuations at lower temperatures lead to more no-
ticeable band gap shifts at the orthorhombic-to-tetragonal transition due to the change of
average structure and symmetry of crystal i.e., similar to the templating effect discussed
in the literature [156, 157]. However, at higher temperatures, during the tetragonal-to-
cubic transition, the anharmonic effect dominates, resulting in a continuous band gap
[158, 159]. In 2D HaPs, more profound spectral changes have been observed during
phase transitions at 270 K for BA2PbI4 [160, 161, 162]. Both DFT and optical measure-
ments agree on band gap lowering due to structural and symmetry changes [161], but
theoretical predictions of the shift are larger than experimental findings, which indictates
that anharmonic fluctuations can also occur in 2D HaPs [163]. This analysis reveals that
anharmonic fluctuations are a key factor in the behavior of electronic structure in HaPs,
influencing the behavior of band gap change across different phases and temperature
ranges. It highlights the potential of further optimizing the optoelectronic properties in
HaPs through the engineering of chemical compositions.
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3.3 Role of Overdamped Dynamics in Halide Perovskites

3.3.1 Overdamped dynamics in halide perovskites

The so-called overdamped phenomenon is defined for the behavior of soft mode ap-
proaching the phase transition temperature, which is often measured by vibrational spec-
troscopy. These measurements can not only provide the temperature dependence of
the soft mode frequency but are also able to provide information on the behavior of the
linewidth of the soft mode [25]. It was often found that the soft mode becomes heav-
ily damped or even overdamped on approaching the transition temperature, where the
linewidth is even larger than the soft mode frequency. The overdamped effect is observed
in several oxide perovskites (BaTiO3[164, 165, 166], KNbO3[167, 168]), or bcc phase of
Zr [169] and Ti [170]. The overdamped behavior has been reported in HaPs by neutron
scattering experiments dating back to the 1970s [171]. In recent years, further studies on
the overdamped behavior for both inorganic and hybrid HaPs were conducted by neutron
and X-ray scattering measurements [172, 173, 174, 175, 176, 23].

Previous studies have shown that CsPbBr3 is not only an anharmonic material but also
displays overdamped fluctuations. Lanigan-Atkins et al. [23] showed that the overdamped
mode span along the edges of the cubic Brillouin zone measured by momentum-resolved
neutron and X-ray scattering. Fransson et al. [64] predicted that the overdamped mode
remains over a wide temperature range (almost 200K) above the tetragonal-to-cubic tran-
sition temperature.

In the context of this thesis, anharmonicity means that the higher-order terms of potential
energy beyond harmonic approximation are important. Among these anharmonic sys-
tems, we are especially interested in a group of materials with the double-well potential
along specific normal mode coordinates. In other words, the second-order term of Taylor
expansion of potential energy has negative coefficients. Notice that it does not necessar-
ily mean this term is large. Thus, the phonon frequency of this normal mode calculated
within harmonic approximation is imaginary. This is the case for many perovskites in the
high-temperature phase, whose static structures are not at the minimum of ground state
energy surface, and the structures are stabilized by thermal effect as discussed in Section
2.4.3.

If the anharmonicity is relatively small, one can stay in the quasi-particle picture based
on perturbation theory, where phonons are dampened with a shifted frequency and finite
lifetime. However, in some cases, the damping is comparable to phonon frequency. Thus,
the phonon lifetime is shorter than one oscillation period, and the phonon picture may
break down. This overdamped behavior causes challenges in both theoretical models
and computational algorithms. In this work, we aim to evaluate the methodology and
investigate the impact of overdamped behavior on band gaps of HaPs.
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3.3.2 Separate MD dynamics on two time scales

In the previous chapter, we explored how anharmonic structural fluctuations significantly
influence the electronic structure of cubic phase HaPs, resulting in band gaps that are
comparable to those in the orthorhombic phase. We established that this band gap be-
havior is closely linked to the presence of transient low-symmetry structures, which be-
come apparent upon filtering out high-frequency dynamics. In other words, the dynamics
appear two-time scales, which might be a phenomenon also discussed in recent studies
[177, 64], play a crucial role in substantial band gap renormalization.

To deepen our understanding of how dynamics across various time scales affect the band
gap, we propose an extension of the moving average concept to encompass all time steps
in MD simulations. Specifically, we calculate the moving average atomic displacements
uslow(t) to isolate the low-frequency component of atomic fluctuations, which is termed as
"slow fluctuation" here because they have a characteristic time scale of ps. Note that the
moving average is only applied to Cs atoms and Br displacements perpendicular to their
bonding direction (as illustrated in the inset of Figure 3.26b) since these are the elements
for which we found strongly anharmonic features. We define uslow(t) using the following
equation:

uslow(t) = 1
∆t

∫ t+∆t

t
dt′u(t′)w(t′), (3.4)

where ∆t represents the chosen averaging window, set at 4 ps, u(t) represents the fluc-
tuation of MD simulation, and w(t) is a Blackman window function to reduce the spectral
leakage after Fourier transformation. By subtracting the slow fluctuation part ūslow(t) from
the full fluctuation u(t) in MD simulation, we derive the high-frequency component, named
as "fast fluctuation":

ufast(t) = u(t) − uslow(t). (3.5)

To visually demonstrate these fluctuations, Figure 3.26 displays the displacement of a
single Br atom along one axis perpendicular to the bond in the MD simulation, illustrating
the three types of fluctuations described above. The separation of the full MD fluctuation
can be comprehended through the perspective of muti-well PES. In this framework, slow
fluctuations (Figure 3.26b) are associated with the motion of atoms among the multiple
minima of the PES, each representing different octahedral tilting configurations. These
slow fluctuations, characterized by their longer time scales, reflect the system’s ability
to explore various structural configurations across different potential wells in the cubic
phase. On the other hand, fast fluctuations (Figure 3.26c) correspond to the more rapid
oscillations of atoms around these minima within a single well. In our definition, after
the removal of the inter-well motion attributed to the slow fluctuations, these minima are
adjusted to the ideal cubic structure. As a result, fast fluctuations are understood to
represent atomic oscillations within a ’pseudo’ potential well, which is centered around
the ideal structure.

Additionally, we have calculated the corresponding band gap (using PBE functional with-
out SOC) for each type of fluctuation by averaging the band gaps of sampled structures
across all three fluctuation categories. In Table 3.1, we list the band gaps obtained with
different methods for cubic phase at 425 K. Remarkably, the slow fluctuations alone yield
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Figure 3.26 (a) Total fluctuation of a typical Br displacement. (b) Slow fluctuation from moving-
averaged of full displacement. The time window is 4 ps. (c) Fast fluctuation moves around the
moving-averaged displacement which is obtained by subtracting the moving average from the full
fluctuation.
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static MC MD MD fast MD slow
Band gap (eV) 1.43 1.78 2.15 1.51 2.17

Table 3.1 Band gap at 425K with different methods

a band gap (2.17 eV) that is similar to that obtained from the full MD simulation (2.15 eV).
In contrast, the band gap resulting from fast fluctuations (1.51 eV) is significantly smaller
than that of the slow fluctuations. Thus, we can conclude that the large renormalization of
the band gap by anharmonic fluctuations is primarily driven by the slow fluctuation com-
ponent, which corresponds to the low-symmetry structures at potential minima. Moreover,
we can also find the band gap of fast fluctuation is comparable to the gap from MC ap-
proach, which is based on the harmonic approximation. In other words, if we ignore the
possibility of hoping through the energy barrier and only consider the dynamics within the
local minima of the potential well, the high-frequency components in MD simulation can
be approximated to atomic motion in an effective harmonic potential.

3.3.3 Damped harmonic oscillator (DHO) model

As discussed in Section 2.4.3, a DHO model can be used to understand the overdamped
modes [64]. Instead of using independent harmonic oscillators to describe the phonon
modes as done in harmonic approximation, we use damped harmonic oscillators to in-
clude the interaction between modes via a damping coefficient:

d2Qk(t)
dt2

+ Γk
dQk(t)
dt

+ ω2
kQk(t) = 0 (3.6)

where Γk is the damping coefficient and ωk is the frequency of undamped harmonic os-
cillator of mode k = (k, ν).
In the overdamped case, where ωk < Γk/2, the velocity autocorrelation function can be
derived as shown in Eq. (3.7) [64]:

C(t) = A′

τL − τS

( 1
τS
e−t/τS − 1

τL
e−t/τL

)
, (3.7)

where τS and τL correspond to fast (short time-scale) and slow (long time-scale) fluctu-
ations, respectively, as defined in Eq. (2.103). This equation demonstrates that over-
damped phonon modes lead to dynamics with two distinct time scales.

To further validate this in the context of CsPbBr3, we calculated the VDOS for both the
full MD simulation and the fast MD fluctuation, as illustrated in Figure 3.26. The results,
presented in Figure 3.27, show that the VDOS of the full fluctuation and fast fluctuation
are strikingly similar, except for the low-frequency range. This observation is consistent
with expectations for a strongly overdamped scenario, characterized by τL ≫ τS. In
such cases, the second term (with time scale τL) in the expression of the velocity au-
tocorrelation function (Eq. (3.7)) is much smaller compared to the first term (with time
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scale τS). Since the VDOS is related to the Fourier transformation of the velocity auto-
correlation function, the long time term only contributes little to the low-frequency range
in VDOS. This shows that our MD simulation aligns with the theoretical understanding of
overdamped dynamics with the DHO model.

Figure 3.27 VDOS of full fluctuation (blue) and fast fluctuation (gold) at 425K. The inset is a zoom-
in at the low-frequency range.

3.3.4 Augmented MC with renormalized phonons

In Chapter 3.2.3, we evaluated the contributions of anharmonic effects on temperature-
dependent band gaps by comparing MC and MD methods. However, we encountered
a limitation of the MC method, particularly in handling imaginary phonon modes. This
limitation arises because the displacements generated in our approach are proportional
to 1/ω, as discussed in Eq. (2.145). Thus, it is not applicable to phonon modes with
imaginary frequency.

A frequently adopted approach for addressing anharmonic phonon modes is phonon
renormalization, as discussed in Section 2.4.4. This approach utilizes renormalized phonon
modes to calculate various properties, including thermal characteristics [54], electronic
structure renormalization [90], and carrier transport [178]. However, applying this method
for band gap calculations in HaPs is questionable, especially due to the presence of over-
damped phonon modes, which can lead to the breakdown of phonon pictures.

To elucidate the impact of overdamped dynamics, we examine two examples: SrTiO3 at
1000 K and CsPbBr3 at 425 K. They are chosen since both of these materials share per-
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ovskite structures and exhibit strong anharmonicity. We focus on the temperature range
of cubic phases, where they both display soft phonon modes with imaginary frequencies
in the harmonic approximation. In SrTiO3, these soft modes are found at the Brillouin
zone center and boundary, corresponding to ferroelectric modes of polarized displace-
ments and antiferrodistortive modes of octahedral rotations, respectively. In CsPbBr3, the
soft modes are associated with in-phase and out-of-phase octahedral rotations, which are
exclusively located at the Brillouin zone boundary.

Figure 3.28 Phonon dispersion of cubic SrTiO3 calculated with the PBEsol functional. The black
line corresponds to the phonon modes with harmonic approximation and the blue line corresponds
to the phonon modes after phonon renormalization at 1000 K.

Figure 3.28 presents the phonon dispersion of SrTiO3. The harmonic approximation is
depicted with a black line, while the phonon dispersion after renormalization at 1000 K
is shown in a blue line. Here we use the Temperature-Dependent Effective Potential
(TDEP) method [74, 55] for renormalizing the phonon modes. After the renormalization,
the imaginary-frequency modes are stabilized and we see an increase of frequency of
phonon modes in general.

Building on our analysis of phonon dispersion in SrTiO3, we now turn our attention to
band gap calculations. Using the two sets of phonon modes, we evaluated the band gap
at 1000 K using the MC method and compared it with the band gaps derived from MD,
as indicated in Table 3.2. In the table, the MC calculation based on harmonic phonon
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Material Static MC (Harmonic) MC (Renormalized) MD
SrTiO3 @ 1000 K 1.81 eV 1.97 eV 1.46 eV 1.53 eV
CsPbBr3 @ 425 K 1.43 eV 1.78 eV 1.64 eV 2.15 eV

Table 3.2 Comparison of band gaps of SrTiO3 at 1000 K and CsPbBr3 at 425 K calculated using
different methods

modes is labeled as ’MC (Harmonic)’. For this, we disregard the imaginary frequency
modes at the Γ and R points, as well as the very low-frequency mode at the M point in the
Brillouin zone. The MC calculation using renormalized phonon modes is denoted as ’MC
(Renormalized)’, where all phonon modes are considered with no imaginary frequency
after renormalization.

Compared against the static band gap of SrTiO3, the band gap derived from the MC
method using harmonic phonon modes shows an increase with temperature, which is
a feature discussed by Wu et al. [90]. Noteworthy, the MC method with renormalized
phonons results in a decrease of the band gap, as measured in previous experiments
[179]. Moreover, the band gap values obtained from the MC method with renormalized
phonons align well with the MD results, which consider anharmonicity to full order. It sug-
gests that the MC with renormalized phonon approach (see Section 2.5.3) effectively cap-
tures the gap renormalization associated with anharmonic effects in cubic phase SrTiO3.
On the other hand, the regular MC fails to capture the correct trend with respect to tem-
peratures.

Similar to SrTiO3, the cubic phase of CsPbBr3 also exhibits instability at 0 K, as shown
in the phonon dispersion in Figure 3.29. The harmonic phonon modes, represented by
black lines, display imaginary frequencies at the M and R points within the Brillouin zone,
while the renormalized phonon modes are displayed in blue lines using DynaPhoPy [69]
with the help of MD simulation. Also, the renormalized phonon modes are calculated
with full MD simulation, exclusively considering the fast fluctuations to investigate the
anharmonic effects. Furthermore, phonon renormalization that only considers fast fluctu-
ations (see Section 3.3.2) is also calculated as a comparison, which is illustrated in Figure
3.29 with golden lines. In this case, we use a pseudo-trajectory that only considers the
high-frequency fluctuations around the ideal lattice as an input to DynaPhoPy for phonon
renormalization.

Surprisingly, considering only fast fluctuations leads to similar phonon dispersion as with
the full dynamics. This observation suggests that the fast fluctuations dominate the
phonon renormalization process, while the slow fluctuations contributions, which are im-
portant for accurately capturing the band gap changes, play a minor role. In fact, this fea-
ture aligns with the results of VDOS in Figure. 3.27, where it was found that the impact of
slow fluctuations is considerably less pronounced than that of fast fluctuations, reinforcing
the notion that the latter plays a dominant role in the phonon dispersion characteristics.

However, the discussion also highlights a limitation in our phonon renormalization method-
ology, particularly for overdamped systems like CsPbBr3 at 425 K. It fails to account for
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Figure 3.29 Phonon dispersion of cubic CsPbBr3 calculated with the PBE+TS functional. The
solid black line corresponds to the phonon modes with harmonic approximation, the solid blue line
corresponds to the phonon modes after phonon renormalization with full MD at 425 K, and the
dashed golden line represents the phonon renormalized by the fast fluctuation extracted from MD
as discussed in Figure 3.26c.

the impact of slow fluctuations on band gap renormalization. The renormalization process
of DynaPhoPy is based on so-called “normal mode decomposition", where one projects
VDOS on the phonon modes and fits the projection to a Lorentzian function to obtain
the renormalized phonon frequency (see Section 2.4.4). This method, while effective in
capturing the essence of phonon behavior influenced by fast fluctuations, may not fully
account for the broader spectrum of dynamic interactions facilitated by slow fluctuations.
Therefore, the resulting phonon dispersion cannot fully reflect the material’s anharmonic
landscape and its impact on the electronic structure.

The band gap results of CsPbBr3 at 425 K are shown in the second row of Table 3.2. In
contrast to SrTiO3, for CsPbBr3 the MC with renormalized phonon method leads to the
band gap renormalization very close to MC with harmonic phonon. However, it fails to
obtain a similar band gap as MD, which serves as a benchmark for fully capturing the
material’s anharmonicity.
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The observed discrepancies between SrTiO3 at 1000 K and CsPbBr3 at 425 K highlight
the presence of distinct anharmonic dynamics across different materials [180], which influ-
ences their electronic properties significantly. A critical difference is whether overdamped
phonon modes are present, which introduces two time scales into the dynamics, and leads
to breakdown of independent phonon framework. It has been shown in experiments that
the soft modes in SrTiO3 only exhibit overdamped behavior nearing the transition tem-
perature [181, 182, 183], and are underdamped at 1000 K. Conversely, CsPbBr3 demon-
strates overdamped behavior over a broader temperature range after phase transition,
extending nearly to 600 K [64], highlighting a more substantial influence of anharmonic
dynamics beyond mere transitional phenomena. In this case, the common used phonon
renormalization cannot capture both time scales and lead to a challenge in characterizing
and accounting for anharmonicity in theoretical and computational models.

3.3.5 Augmented MC with anharmonic effect

In order to correctly characterize the complex dynamics for overdamped phonon mode,
we augment the MC approach beyond the limitation of harmonic and Gaussian distri-
butions (see detailed discussion of theory in Section 2.5.3). This new method has the
advantage of better characterizing the dynamics based on a more complex potential well.
In the previously introduced MC method, our calculations are always based on the as-
sumption of a harmonic potential, either by directly calculating the phonon eigenvector
and frequency from the dynamical matrix (standard MC) or by fitting to a second-order
potential or Lorentzian distribution with phonon renormalization (MC with renormalized
phonon). Conversely, the new method involves sampling the soft modes through a non-
Gaussian distribution derived from a potential energy that includes higher-order terms,
which allows us to better model the atomic fluctuations in the system.

The method begins with the identification of the soft modes, which become unstable and
lead to overdamped dynamics at certain temperatures range. In CsPbBr3, there are three
phonon modes at M point and three at R point in the Brillouin zone that relate to octahedral
tiltings around three axes. The eigenvectors of these phonon modes can be calculated
with Phonopy [150]. One can displace the atoms along the eigenvector and calculate
the total energy of distorted structures with VASP [116] to obtain the potential energy in
normal mode coordinates. Since the phonon modes are unstable, the energy at the ideal
position is not minimal and cannot be fit to a quadratic function. That is why we use a
polynomial up to the 14th order to fit the potential energies as shown previously in Figure
3.30a.

Once the potential well U(Q) for a specific phonon mode is obtained, we can solve a 1D
Shördinger equation (Eq. (3.8)) with this potential in the normal mode coordinates Q

− ℏ2

2mp

d2ψi(Q)
dQ2 + U(Q)ψi(Q) = Eiψi(Q), (3.8)

where mp is the proton mass, and ψi is the wavefunction of the i-th quantum state with
energy level Ei (horizontal lines in Fig. 3.30a). Then, one can obtain the distribution over
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Figure 3.30 (a) Anharmonic double-well potential energy along the mode M as a function of normal
mode coordinates Q. The horizontal lines represent the eigenvalues by solving the Schor̈dinger
equation. (b) The corresponding probability density distribution as a function of Q.

the normal mode coordinatesQ at finite temperature by assuming the occupation for each
quantum state following Boltzmann distribution as discussed in Eq. (2.148).

Pi(Q) = 1
Z

∞∑
i=0

e
− Ei

kBT |ψi(Q)|2. (3.9)
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where the partition function Z = ∑∞
i=0 e

− Ei
kBT and |ψi(Q)|2 represents the probability of

Q of i-th quantum state. Figure 3.30b shows the probability distribution of soft mode at
M=(0.5,0.5,0).

After we established the appropriate distribution, the MC simulation proceeds by sampling
configurations according to this tailored distribution. In practice, we directly add displace-
ments generated from the above probability to the harmonic MC, which does not include
these imaginary phonon modes. This procedure allows for a more accurate representa-
tion of the system’s ensemble space, including especially those slow fluctuations (Figure
3.26b) related to the octahedral tilting modes.

Figure 3.31 Exampled (a) structure generated from standard MC without imaginary phonon mode
and (b) structure generated from augmented MC considering the soft phonon mode.

This can be seen by the comparison of sampled configurations obtained from two meth-
ods in Figure 3.31. Figure 3.31a shows the result from harmonic MC, where the imagi-
nary modes are ignored. Though there are distortions of octahedra, the tilting behavior
is not really captured. Conversely, after we add the effect of imaginary modes using our
augmented MC method in Figure 3.31b, the octahedral tilting is more obvious. This is
important to correctly reproduce the band gap of the system.

Notably, we are able to obtain the band gap of 1.92 eV at 425 K for CsPbBr3 with the aug-
mented MC method, which is much closer to the MD gap. Through the augmented MC,
we not only provide a method to better compute the electronic properties of anharmonic
materials with significant overdamped phonon modes but also improve our understanding
of how lattice dynamics contribute to them.
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3.3.6 Disentangle the phonon contribution to band gap

We have used three methods to calculate the band gaps of CsPbBr3 at 425 K in the last
sections. Given the overdamped dynamics of these material, the methods lead to different
results. The MD fully includes the anharmonic dynamics and can reproduce the mild
band-gap change across phase transition. However, it has several disadvantages. First,
the validity of this approach is based on the assumption that the ensemble average can be
approximated with time average, which requires a long enough simulation time, especially
for materials with complex potential energy surfaces. For example, configurations with
small probability but large effects on the electronic properties could be missed in the
simulation. It is possible to simulate several MD trajectories from different starting points
in parallel to obtain better statistics to alleviate the problem. Second, although the MD
method provides a large amount of information, it is hard to interpret from a theoretical
viewpoint. Concepts such as phonon or anharmonicity cannot be directly applied to the
atomic positions and atomic velocities. Analysis related correlation functions are required,
but again largely constrained by the size of simulation cells and the length of simulation
time.

On the contrary, the MC methods are easier to implement with stochastic sampling of
phase space. Also, the sampling of this method is based on phonons with normal mode
coordinates, so it is easier to disentangle the contribution through a perturbative per-
spective and provide further physical understanding. In addition, the sampling can be
fully quantum mechanical, which is important for studying materials at low temperatures.
However, we have seen that the MC method is not fully valid for materials with complex
dynamics including anharmonicity or overdamped phonons. Even after being augmented
with anharmonicity, there is still a difference from the gap obtained by MD method for
CsPbBr3.

To further understand the origin of the difference, we expand the potential energy V ({Qi})
in terms of normal mode coordinates Qi:

V ({Qi}) =
∑

i

a
(2)
i Q2

i (harmonic terms)

+
∑

i

a
(3)
i Q3

i + a
(4)
i Q4

i + . . . (higher-order anharmonic terms)

+
∑
ij

b
(4)
ij Q

2
iQ

2
j + . . . (cross anharmonic terms)

(3.10)

where a(n)
i and b(n)

ij are the n-th order coefficients of terms with one normal mode coordi-
nate and terms with more than one coordinate.

As briefly discussed in Section 2.5.3, although we have augmented MC method with high-
order anharmonic terms for each normal mode, the interactions between normal modes
(cross anharmonic terms in Eq. (3.10)) are ignored. These cross terms are expected
to be small since we start from harmonic approximation where there is no interaction
between phonon modes. Thus, only the first two lines of Eq. (3.10) are considered
in these methods. However, in our case, the overdamped behavior of CsPbBr3 at 425
K makes the system significantly deviate from the harmonic approximation so that the
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cross anharmonic terms cannot be ignored anymore. In conclusion, we can infer that the
remaining 0.2 eV discrepancy between MD and the augmented MC method for the band
gap comes from the effect of cross anharmonic terms on the electronic structures.

Figure 3.32 Sketch of band gaps of CsPbBr3 at 425 K obtained from different methods with PBE
functional. The blue line is MD result that includes all the anharmonic terms. The red line is the
augmented MC with anharmonicity. The green line represents the harmonic MC that does not
consider the imaginary phonons.

The analysis depicted in Figure 3.32 provides a schematic illustration of phonon contri-
butions to the band gap renormalization for CsPbBr3 at 425 K. By differentiating between
the impacts of harmonic, higher-order anharmonic, and cross-anharmonic terms within
the lattice dynamics in Eq. (3.10), we are able to conduct a detailed exploration of how
each component influences the electronic structure at finite temperature conditions. This
disentanglement is critical for a deeper understanding of the intricate interplay between
phonon dynamics and electronic properties in materials exhibiting strong anharmonic be-
havior. It is important to note that both methodologies incorporate electron-phonon cou-
pling via the formalism presented in Eq. (2.130), which inherently considers higher-order
terms in electron-phonon interaction. Consequently, the observed discrepancies in band
gap renormalization are attributed solely to the differing approaches to sampling lattice
dynamics at finite temperatures.

In Figure 3.32, the MD results, depicted by the blue line, serve as a benchmark by en-
compassing the full spectrum of anharmonic dynamics, including both higher-order an-
harmonic terms and cross-anharmonic interactions. Compared to the static structure, this
comprehensive dynamic approach yields an increased band gap of approximately 0.7 eV.
The red line illustrates the outcomes from the augmented MC method, which incorporates
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higher-order anharmonic contributions in addition to harmonic terms, resulting in a band
gap renormalization of 0.5 eV. The area shaded in grey between these two lines quan-
tifies the effect of phonon-phonon interactions not fully captured by the augmented MC
method. This partial consideration highlights the significant role that these higher-order
terms play in the overdamped material, offering insight into the mechanisms driving the
band gap changes. Finally, the green line represents the traditional MC method, which
considers only harmonic vibrations, leading to a band gap renormalization of 0.35 eV.

In summary, this comprehensive analysis not only sheds light on the individual contri-
butions of different phonon interactions to the band gap renormalization but also under-
scores the necessity of incorporating a full spectrum of phonon dynamics for accurate
materials modeling. It reveals that while the augmented MC method provides a significant
step forward in capturing the essence of anharmonic effects, there remains a gap in fully
replicating the complex phonon-phonon interactions observed in full MD simulations. This
gap points to the ongoing challenge and opportunity for further methodological advance-
ments to bridge our understanding of phonon contributions and their effects on material
properties at finite temperatures.

3.3.7 Conclusion

In this chapter, we have focused on probing the impact of overdamped phonon modes on
dynamic and electronic properties. Through an investigation with different methodologies,
including MD, MC methods with renormalized phonon, and MC methods with anharmonic
effect, we unravel the complex interplay between various phonon dynamics and their con-
tributions to the band gap renormalization in cubic phase perovskites. We highlight the
critical role of transient low-symmetry structures and the necessity to account for both fast
and slow fluctuations within these materials.

Applying the moving average concepts to MD simulations, we have categorized the dy-
namics of CsPbBr3 at 425 K as ’slow fluctuation’ and ’fast fluctuation’. By examining the
impact of two time scales on the band gap separately, we find that the large renormal-
ization of the band gap in this material mainly comes from the slow fluctuation. More-
over, this behavior is further understood through DHO model, offering novel insights into
the special anharmonic effects of CsPbBr3 with overdamped phonon modes. Given the
breakdown of the independent phonon model for overdamped materials, the computation
method based on phonons may not work. For example, this issue limits the usage of
the MC with the renormalized phonon method, which can well capture the anharmonic
fluctuations for underdamped anharmonic materials like SrTiO3. The introduction of the
augmented MC method improves the prediction of the electronic properties, which is
tailored to incorporate non-Gaussian distributions arising from complex potential energy
landscapes. This novel method can capture the anharmonic fluctuations more accurately
and advance our understanding of HaPs. Furthermore, we have calculated the influence
of harmonic, higher-order anharmonic, and cross-anharmonic terms for CsPbBr3 by dis-
entangling phonon contributions to the band gap. This disentanglement identifies the
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limitations of the augmented MC method in fully replicating the intricate phonon-phonon
interactions captured by full MD simulations.

In conclusion, this chapter has not only contributed to our theoretical knowledge of electron-
phonon coupling for overdamped phonon modes in HaPs but also established a classifi-
cation of anharmonic behaviors for applying methods practically. These insights pave the
way for future research on the unique anharmonic dynamics of HaPs, driving control and
prediction of material behaviors of halide perovskite optoelectronic devices.
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4 Conclusions and Outlook

Halide perovskites (HaPs) are promising candidates for next-generation photovoltaic ma-
terials with fast development of efficiency and low-cost production process. Distinct from
traditional inorganic semiconductors, HaPs are characterized by their unique anharmonic
vibrational fluctuations, intimately linked to their exceptional optoelectronic behaviors. De-
spite their promising attributes, a complete understanding of the anharmonic structural
dynamics and their extensive implications on material functionality has remained to be
investigated. Here, we probed the underlying physical mechanisms governing the micro-
scopic dynamics and illustrated the influence of these mechanisms on the macroscopic
functional properties through a combination of computational and theoretical perspec-
tives. Specifically, this work studied the anharmonic dynamics of CsPbBr3, a prototypical
halide perovskite, unveiling the significant impact of anharmonicity on its electronic prop-
erties and highlighting the crucial role of overdamped dynamics. Various computational
methods were used to explore the connection between dynamics and electronic proper-
ties at finite temperatures. Our analysis based on molecular dynamics not only challenges
the conventional harmonic approximation but also provides insight into local disorder that
leads to the mild band gap change across phases. We developed augmented Monte
Carlo methods by integrating the often-overlooked imaginary soft phonons, thereby en-
riching our understanding of the complex anharmonic landscape of HaPs. These results
set the stage for future innovations in photovoltaic material development.

To characterize the complex vibrational dynamics of halide perovskites at finite tempera-
tures, our investigation started with examining the atomic structures within CsPbBr3 from
first-principles molecular dynamics calculations. We uncovered that the real-time atomic
trajectories of Cs and Br atoms strongly deviate from the harmonic vibrations of an ideal
cubic lattice. This deviation not only probed the strong anharmonic effect on dynamics but
also illustrated the profound coupling between Cs and Br atoms. This coupling reduced
Cs–Br distances and indicated the presence of very shallow potential wells of transversal
Br motions within a dynamic potential energy landscape. Our analysis further revealed
the critical role of Cs–Br interactions in facilitating octahedral tilting dynamics, which is
closely associated with the soft modes of CsPbBr3. By drawing connections to PbBr6
octahedral tilting modes, we illustrated how these local interactions underpin the broader
lattice dynamics, contributing to the material’s unique anharmonic characteristics. The
comparative study of dynamic behavior across temperatures unveiled the material’s dis-
tinctive structural phase transition, offering new insights into the temperature-dependent
behavior of CsPbBr3.

The investigation of the anharmonic dynamics focusing on the coupling motion of Cs and
Br atoms improved our understanding of the dynamic properties of halide perovskites.
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The A-site of halide perovskites is often viewed as a space filler since it does not con-
tribute to the electronic states near the band edges. However, our findings underscore
the critical role of A-site cations in forming local disorders and indirectly influencing the
optoelectronic properties of HaPs. This revelation opens up new perspectives on the po-
tential applications for A-site engineering. Building on this understanding, the dynamic
interplay observed between halide ions and A-site cations in CsPbBr3 invites further ex-
ploration, especially in hybrid halide perovskites where organic molecules occupy the
A-site. Moreover, understanding the local disorders opens new avenues for tailoring their
optoelectronic behavior. By manipulating the local structures or phases through external
means, such as pressure application or elemental mixing, we can potentially engineer ma-
terials with optimized properties for specific applications. Besides, the investigation found
a correlation between the Cs movement and in-phase octahedral tilting, which could be a
possible origin of the specific structural phase transition from cubic to P4/mbm tetragonal
phase.

Next, we explored the impact of thermal lattice vibrations on the band gap of CsPbBr3
and showed that the static structures have large discrepancies from the experimental
band gaps, emphasizing the necessity to consider the anharmonic effect. We quanti-
fied the anharmonic effects by comparing MC and MD results and demonstrated their
large impact on band gaps of halide perovskites at high-temperature phases. Our anal-
ysis also revealed the transient emergence of low-symmetry structures within the cubic
phase, which can be viewed as reminiscent of the orthorhombic phase. These transient
low-symmetry structures showed the dynamic disorder nature of the cubic phase, pro-
foundly influencing its electronic properties. Such findings provide a robust framework for
interpreting the mild changes observed in the band gap across various temperatures and
during phase transitions, consistent with experimental data.

From an experimental standpoint, our research can extend into the realm of HaPs semi-
conductors beyond CsPbBr3, shedding light on the general behavior of electronic prop-
erties of HaPs under thermal fluctuations. The behavior of band gaps across the phase
transition provides invaluable information about the dynamic properties of these systems.
This understanding is not confined to 3D inorganic HaPs alone but extends to a broader
spectrum, including hybrid organic-inorganic HaPs and even 2D perovskite structures,
which have different behavior of gaps and various anharmonic fluctuations within the po-
tential energy surface. Consequently, our findings could help to tailor HaP materials for
enhanced optoelectronic applications by understanding the anharmonic effects. Theoret-
ically, HaPs are a great platform to study the electron-phonon interaction of systems with
anharmonic fluctuations. This research paves the way for a deeper comprehension of
other materials known for their strong anharmonic behaviors, such as oxide perovskites,
thermoelectric materials, and ion conductors, potentially unlocking new theoretical frame-
works that can better describe their functional properties.

In the last part, our research focused on the overdamped phonon modes and electronic
properties within the cubic phase of CsPbBr3, offering a novel perspective to understand
the impact of anharmonic behavior. We have studied the role of transient low-symmetry
structures in the high-temperature phase by separating the contribution of fast and slow
fluctuations on the band gap. It demonstrated the importance of considering slow fluctu-
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ations between the local configurations in this system. Using the damped harmonic oscil-
lator (DHO) model, we have associated these fluctuations with the overdamped phonon
modes measured in experiments. The breakdown of the quasi-particle phonon picture
showed the limitations of conventional phonon-based computational methods in accu-
rately capturing the complex dynamics of overdamped systems, prompting the develop-
ment of an augmented MC method. This novel approach, designed to embrace the non-
Gaussian distributions characteristic of complex potential energy landscapes, marked a
step forward in accurately modeling anharmonic fluctuations within halide perovskites.
Based on this understanding of anharmonicity, we can classify the anharmonic materials
and disentangle the phonon contribution to band gaps. It provided a general theoretical
framework for understanding the electron-phonon coupling in anharmonic materials.

Our research on the influence of overdamped phonon dynamics on electronic properties
shows that the anharmonic dynamics of halide perovskites are special with complex po-
tential energy surfaces. We introduce the augmented MC method that better describes the
dynamics by considering the potential energy beyond second-order, offering a promising
direction for enhancing the accuracy of electronic property predictions. Furthermore, our
method disentangles the phonon contributions into harmonic, higher-order anharmonic,
and cross-anharmonic terms. We highlight the role of each term in modeling materials
with overdamped modes. This approach provides a new perspective on electron-phonon
coupling in anharmonic systems. By understanding the dynamic contribution to the opto-
electronic behaviors of each term in the normal mode expansion, we are able to further
develop computational methods and optimize halide perovskite-based optoelectronic de-
vices.

In summary, this work unravels the connection between the structural dynamics and op-
toelectronic properties of halide perovskites, focusing on the role of anharmonicity and
overdamped phonon modes. As illustrated in Figure 4.1, we establish a framework that
connects microscopic structural phenomena, such as transient low-symmetry structures
and two time scales in fluctuations, with the optoelectronic performance of halide per-
ovskites, especially the band gap. It helps us to grasp the physical mechanism behind
the connection and enables us to optimize the design and application of these materials
in optoelectronics.

Building on the insights presented in this work, we now turn to outlooks for possible future
research. One area for future research lies in refining computational methodologies. The
augmented Monte Carlo (MC) method introduced here ignores the interaction between
normal modes and starts from a potential well of a single normal mode coordinates. It
is possible to use two or more normal mode coordinates to describe the potential energy
surface in higher dimensions, which would allow us to study the interaction between nor-
mal modes. Additionally, the development of the machine learning force field enables us
to study materials with a larger size and longer simulation time [184, 64, 42]. In this work,
we mainly use time correlation functions, like velocity autocorrelation functions, to analyze
the MD data. However, the application of spatial correlation functions is often restricted
by the limited size of the supercells. The machine learning approach enables us to study
the spatial correlation with a characteristic length much larger than the local disorder. Be-
sides accelerating MD, the machine learning model can provide deeper insights into the
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Figure 4.1 Schematic illustration of establishing a connection between the microscopic structural
dynamics of halide perovskites and their macroscopic functional properties through theoretical
concepts.

complex anharmonic effects and phonon dynamics within halide perovskites. Using un-
supervised learning, it is possible to uncover patterns that are not apparent in systems
with complicated dynamics such as halide perovskites and generate new perspectives on
the dynamical influence of functional properties [185, 186, 187].

Another area for future research lies in expanding our study on lattice dynamics to a
broader range of materials as well as functional properties. We have demonstrated
the coupling between A-site and X-site dynamics in inorganic perovskites. With an or-
ganic molecule occupying the A-site in hybrid perovskites, this interaction may have dif-
ferent behavior and be even more interesting in mixed perovskites to tailor the proper-
ties [110, 188]. With their unique quantum confinement and surface phenomena, the
anharmonic dynamics in 2D perovskites is another exciting frontier for future research
[163, 189]. In parallel, the impact of dynamics on other functional properties, such as
carrier mobility and thermal conductivity, requires further investigation. A deeper under-
standing of carrier mobility within these materials can illuminate pathways to enhance
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charge transport mechanisms, crucial for improving device efficiency and performance.
Recent research also stressed the importance of the anharmonic motion in molecular
crystals [190] and superionic battery materials [191, 192, 193, 194]. Similarly, investigat-
ing thermal conductivity is appealing for thermoelectric materials [54, 195, 196, 197].

Finally, the last part for future research is to precisely calculate observables that can be di-
rectly compared with experimental spectroscopy measurements. This trajectory involves
developing methodologies to calculate correlation functions that describe the dynamic be-
havior within these materials and provide theoretical spectra for spectroscopic techniques
such as infrared (IR) or Raman spectroscopy [198, 199, 200]. Another task is to de-
velop approaches to evaluate spectral functions that provide insights into the many-body
interactions within a material and compare them to techniques such as angle-resolved
photoemission spectroscopy (ARPES) [201, 60] or neutron scattering [202, 23]. There-
fore we can bridge the gap between theoretical predictions and experimental observations
to validate theoretical models and facilitate the engineering in experiments.
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