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1
Introduction

Exchanging information, in spoken or written form, in a singularly nuanced way can
be seen as an essential key feature that enabled humanity to progress to the high
technological level it currently is at. To facilitate the fast exchange of information over
long distances, humanity started to invent means of telecommunication very early in
history, reducing the need for the exchange of information by travel. The first construct
that probably could be called an optical long-distance communication system was
used by the Greek army to signal the capture of Troy in 1180BC over a distance
of more than 600km [1]. Fueled by the advances in optics for telescopes in the late
18th century, Claude Chappe invented a system for optical communication, utilizing
an elaborate apparatus consisting of movable wooden beams on top of buildings in
elevated positions. He developed a system with an elaborate transmission alphabet of
98 different symbols. After testing the first transmission line from Lille to Paris, this
led to a countrywide optical telegraphy network consisting of 556 telegraph stations,
spanning a total distance of approximately 4800 km and linking 29 of France’s largest
cities with Paris [2]. During this endeavor, the term telegraphy was coined for the first
time.

Compared to these early efforts, data transmission over fiber-optic links is a very
recent development that gained momentum with the invention of the laser, the low-
loss single mode fiber (SMF), and the erbium doped fiber amplifier (EDFA) between
the years 1960 and 1990 [3]. Even though coherent receivers were extensively studied
in the period between 1980 and 1992, they first gained commercial recognition around
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1. Introduction

2005 [4]. Coherent receivers are the key technology enabling higher-order modulation
schemes that utilize phase information in addition to the already used magnitude of
the signal. With the low-loss SMF, increasing the reach of fiber-optic systems, and
the EDFA, enabling fully optical transparent signal regeneration, system reach as well
as data rates increased significantly over a very short period of time.

By 2003, a global network of transatlantic and transpacific fiber-optic transmission
lines was built, encompassing a total of over 600 000km of fiber, connecting the con-
tinents [5]. In 1998, the volume of data traffic exceeded the volume of voice traffic
for the first time. Since then, the transmission of data has been a key driver for the
increase in maximum data rates in fiber-optic systems.

1.1. Capacity Crunch in Fiber-Optic Systems

Even though, data-rates for fiber-optic systems initially increased strongly, due to the
utilization of EDFAs in conjunction with low-loss fibers and coherent detection, the
achievable rates began to saturate in recent years. In contrast, the traffic growth is
projected to be 30-60% per year [6]. Currently achievable spectral efficiencys (SEs)
vary depending on the system for which they are measured. An overview of recent
results in this field for dual-polarization and space division multiplexing (SDM) sys-
tems can be found in [7], [8] and [9] respectively. They show that e.g. a SE of ≈ 9
bit/s/Hz/polarization is achievable for a system with a reach of L = 1000km assuming
ideal Raman amplification. Using lumped amplification with a span length of 60km for
a total transmission distance of L = 1000km and L = 4000km yields a maximum SE
of ≈ 7 and ≈ 5.5 bit/s/Hz/polarization respectively [7]. Still, with the growth rates
predicted in [6], [10] it is clear to see, that there is a mismatch between the growth of
the required and available data rates. This phenomenon is commonly known as the
fiber-optic networks capacity crunch.

One widely studied approach to combat this phenomenon is extending the utilized
frequency band. While this does generally not increase the SE of a system, the data-
rates can be scaled by using more of the available frequency spectrum for transmission.
Instead of only using the C-band, including the neighboring S- and L-band and poten-
tially even adding the O- and E-band using dry-fibers is considered [4], [11]. Another
widely studied idea is scaling the data-rates by using multiple spatial paths. Apart
from simply using more fiber links in parallel, this also includes the study of multi-
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mode and multi-core fibers. Those two approaches can also be used simultaneously, to
achieve even better scaling of data-rates in fiber-optic transmission systems [4], [12].
Both of these approaches require exchanging or extending parts of the already existing
fiber-optic network.

Another approach, is the use of the nonlinear Fourier transform (NFT), to modulate
decoupled linear modes of transmission in the nonlinear Fourier domain (NFD), instead
of utilizing the linear frequency domain, in which channels interact during propagation,
due to fiber nonlinearity. In many cases, this approach does not require significant
physical changes to the deployed network structure. The NFT-based modulation and
detection schemes can be added by primarily making alterations to the digital signal
processing (DSP) sections of a transmitter/receiver pair.

While SE gains from modulation in the NFD, are limited by the upper bound derived
in [13], the margin for improvement due to the use of the NFT is rather high. This
is especially true for communication in the highly-nonlinear power regime of systems,
for which the achievable information rates tend to drop off for state-of-the-art wave
division multiplexing (WDM) systems due to nonlinear signal-noise interactions even if
advanced DSP is used at the receiver. Further, the concept of NFT-aided transmission
can generally be combined with approaches like SDM and thus does not have any
immediate drawbacks in terms of compatibility with other approaches mentioned in
this section.

1.2. Solitons, Inverse Scattering Theory and
NFDM-Transmission

In 1834, a phenomenon linked to the NFT was documented for the first time, when
John Scott Russell observed a water wave, that propagated along a canal in a steady
pace without significantly changing its shape for several kilometers [14]. He later also
observed, that upon other remarkable properties, two such waves seemed to propagate
through each other without significantly changing their shape after collision. This
particle-like behavior lead to Russell calling them solitary waves. This solitons, as
they were later called, are also observable in optical fibers and were predicted by
inverse scattering theory, which can be applied to many different problems in physics
and mathematics. In 1971, Zakharov and Shabat successfully applied this theory to
the nonlinear Schrödinger equation (NLSE), which governs the propagation of light
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through optical SMF [15]. Two years later, the first simulations showing the stability
of solitons were presented by [16], [17] and with the publication of Lax [18], the theory
of inverse scattering and soliton transmission was solidified mathematically. The name
NFT was later introduced as a nod to the parallels between the linear Fourier transform
in the context of linear channels and the NFT in the context of channels that exhibit
a certain nonlinear behavior, such as the NLSE.

Since then, a plethora of publications have been written, studying the NFT in
regards to fiber-optic communication. This includes papers that deal exclusively with
soliton transmission and thus the discrete nonlinear Fourier spectrum [19]–[22], the
continuous or radiative nonlinear Fourier spectrum [23], [24], experimental evaluations
[25], [26] and advanced algorithms, as well as reviews of known numerical techniques
[27]–[31].

1.3. Challenges of NFDM System-Design and Focus of
this Thesis

The underlying idea of signal-modulation in a domain in which, in theory, the dif-
ferent nonlinear carrier-frequencies do not interact which each other, even though
being rather elegant mathematically, also generates some new problems diminishing
the anticipated performance of such systems [32], [33]. This includes the mitigation
of effects, neglected in the underlying theory, such as fiber-loss, distributed or lumped
noise, polarization mode dispersion (PMD), and hardware impairments in transmitter
and receiver parts. Another challenge, is making NFT-aided transmission schemes
compatible with technologies that potentially will be widely deployed in the future,
such as e.g. SDM.

This thesis is structured as follows: After this introduction, a short review of some
necessary preliminaries is given in chapter 2. This includes an overview of the used
definitions and metrics as well as some conventions regarding notation. Further, some
aspects from the fields of information, operator and perturbation theory, that are
utilized in later sections, are reviewed shortly. In the next chapter, an overview of
common building blocks of fiber-optic transmission systems is given and WDM sys-
tems in the point-to-point and network scenario are discussed. Chapter 3 also includes
some results on the achievable information rates of such systems. In chapter 4, the
nonlinear Fourier transform for the single-polarization lossless Schrödinger equation is
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studied. This includes a review of the mathematical basis of the forward and backward
transformations, the discussion of several provable properties of the nonlinear Fourier
transformation, some results for special pulse-shapes and a large section on algorithms
for forward and inverse transformations. After that, some more in-depth topics regard-
ing the single-polarization case are discussed. This includes e.g. a treatment of fiber
parameter estimation algorithms utilizing the nonlinear Fourier transform, as well as
some approaches on improving the transmission quality of NFT-aided systems by using
labeling and clustering algorithms at the receiver. In chapter 5, many of the obtained
results from chapter 4 are extended to the strong coupling multi-mode case. This
includes the derivation of the necessary mathematical basis for the transformations
linked to this specific channel model, as well as basic properties and results for special
pulse-sets. Also several algorithms, which are well known for the single-polarization
case, are extended to the strong coupling multi-mode case. A short recapitulation of
the studied topics and a short outlook on possible future topics in chapter 6 conclude
the thesis. In the appendix, a lot of additional useful information is given. In appendix
A, proofs fo many relations from chapters 4 and 5 are developed in detail. Additional
algorithms and tables are given in appendix B and C respectively. Many simulation
results that were obtained during the studies for this thesis were cut from the main
chapters for the sake of brevity. Some of these additional simulation results are given
and discussed in appendix D.
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2
Preliminaries

Before reviewing some elementary aspects of fiber-optic communication, definitions
for some basic quantities, as well as some generalities regarding notation will be given.
Additionally, useful results from the fields of information theory, operator theory and
perturbation theory will be reviewed. Concluding this preliminary chapter, several
evaluation metrics used in later sections of this thesis are discussed briefly.

2.1. Definitions and Notation
Due to the broad field of topics covered, adhering to the same notation style through-
out the whole thesis is not always possible. Nonetheless, the thesis is conforming to
the notation style declared in this section as strictly as possible and deviations are
explicitly stated in the respective sections. Notation that is specific to a certain topic,
is defined when the concepts are introduced over the course of the thesis.

2.1.1. Special Sets and Subsets

Frequently used sets are the integer numbers Z, the real numbers R and the complex
numbers C. Each complex number has the form z = <{z} + j={z}, where j =

√
−1

is the imaginary unit and <{·} ∈ R and ={·} ∈ R are the real and imaginary part
respectively. Further for z = a+ jb with a, b ∈ R the complex conjugate (·)∗ is defined
as z∗ = a− jb.
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2. Preliminaries

Common subsets of the presented sets are indicated by using sub- and superscripts.
For integer numbers the set Z+ contains all non-negative numbers, excluding zero, and
Z− is the set of all negative integers, also not including zero. To include zero, the sets
are written as Z+

0 and Z−
0 respectively. For the complex set C, commonly used subsets

are the positive complex half-plane C+, which is the set of all complex values z with
imaginary part ={z} > 0, and the negative complex half-plane C−, which is the set of
all complex values z with imaginary part ={z} < 0. Since the remaining real-line of
the complex plane is already denoted by R, no additional notation for this remaining
subset is needed.

2.1.2. Vectors, Matrices and Operators

Vectors are denoted by lower-case italic bold letters, e.g. x and are assumed to
be column vectors if not mentioned otherwise. Column vectors are defined as x =
(x1, · · · , xN)T, where xn with n ∈ [1, N ] are the scalar entries of the vector at position
n and (·)T denotes vector transposition.

Matrices are denoted by uppercase italic bold letters e.g. X. The scalar entries
of matrix X are represented by xi,j with row-number i ∈ [1,M ] and column-number
j ∈ [1, N ], where M is the number of rows and N is the number of columns of
the matrix. The transposed matrix X̂ = XT has entries x̂i,j = xj,i. Further, the
Hermetian (·)H of a matrix is defined as X̂ = XH = (X∗)T and thus its entries
x̂i,j = x∗

j,i are the complex conjugate entries of its transpose. Matrix dimensions are
only given explicitly if instructive, using the notation XM×N , to denote a matrix with
M rows and N columns. This notation can be adopted for vectors, e.g. xT

1×N = xN×1

if necessary. This notation is also used to describe sets of matrices, e.g. CM×N , which
is the set of all matrices of dimensions M ×N with complex entries.

Operators are denoted using uppercase non-italic letters e.g. X. If an operator has
a matrix-structure, this is denoted by using uppercase bold non-italic letters e.g. X.

2.1.3. Subscripts and Superscripts

Generally, non-italic sub- and superscripts are used descriptively, e.g. to distinguish
the value at transmitter (TX) side xTX from the value at receiver (RX) side xRX.
If italic letters are used for subscripts, they generally have an indexing function. In
special cases, italic subscripts can also be a shorthand notation for the derivative
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according to the subscript, e.g. xyy = d2x(y)/dy2. To avoid confusion, use of this
shorthand notation will be explicitly stated, if not obvious from context. Superscripts
in italic are mostly used for standard power notation. One common exception is
bracketed superscript notation, e.g. x(i), which denotes the value of parameter x at
iteration i of some iterative process. If necessary subscript types are used jointly, e.g.
xTX,i, while clarity when handling variables with multiple superscript types will often
be maintained by use of brackets, e.g. (x(i))2.

2.1.4. Functions and Transformations

Frequently used functions are given a (symbolic) shorthand. Commonly used functions
are the absolute value | · |, the argument of a complex number ∠(·). The commonly
used Fourier transform F{·} is defined as [34]

G(f) = F{g(τ)} =
∞∫

−∞

g(τ)e−j2πfτdτ, (2.1)

where e is Euler’s number, f is the frequency parameter, τ is the time parameter and
g(τ) is some time-domain signal. Its inverse F−1{·} is defined as [34]

g(τ) = F−1{G(f)} =
∞∫

−∞

G(f)ej2πfτdf. (2.2)

Due to the focus on the NFT in this thesis, the transformations given in Eqs. (2.1)
and (2.2) will be called the ’linear’ or ’standard’ Fourier transform where needed for
the sake of clarity. Parseval’s theorem relates the energy E in time domain to the
energy of the Fourier transform by [34]

E =
∞∫

−∞

|g(τ)|2dτ =
∞∫

−∞

|G(f)|2df. (2.3)

Similarly, the average signal power P is defined as

P = lim
T→∞

1
2T

T∫
−T

|g(τ)|2dτ. (2.4)
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For all the above relations it is assumed that g(τ) is absolutely and square integrable,
respectively.

The Hilbert transformation H{·} is defined as [35]

H{f(x)}(y) = 1
π

∞∫
−∞

f(x)
y − x

dx, (2.5)

with its inverse being H−1{·} = −H{·}. The Hilbert transform is applied in a wide
variety of problems in mathematics and physics. In this thesis, its main use is to
establish a relation between magnitude and phase of an analytic complex function
[23].

2.1.5. Random Variables

If not stated otherwise, the following is taken from [36], [37]. A random variable (RV)
X with finite sample space X has realizations a ∈ X , which occur with a certain
probability PX(a) = Pr[X = a]. The joint probability distribution for the two random
variables X, Y is denoted by PXY (a, b) where b ∈ Y , which is the sample space of Y .
Conditional probability is denoted by PY |X(b|a). The mean of a random variable is

µ = E[X] =
∑
a∈X

aPX(a), (2.6)

where E[·] is the expected value. Variance σ2 or Var[·] is defined as

σ2 = Var[X] = E[(X − E[X])2] = E[X2] − E[X]2. (2.7)

Similarly for two parameters the covariance Cov[·, ·] is given by

Cov[X,Y ] = E[(X − E[X])(Y − E[Y ])] = E[XY ] − E[X]E[Y ] (2.8)

2.2. Aspects of Information Theory

In his seminal paper ”The Mathematical Theory of Communication” [38] Claude E.
Shannon introduced some fundamental ideas that form the foundation for the field of
information theory. In the following, some necessary information theoretical quantities
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are presented shortly. A more in-depth treatment of information theory can be found
in [39].

2.2.1. Basic Metrics

For a RV X, the amount of uncertainty about its realization is given by its entropy.
Entropy H(·) is computed by [38]

H(X) =
∑

a∈supp(PX)
−PX(a)log2 (PX(a)) = E [−log2 (PX(a))] , (2.9)

where supp(·) are all values for which PX(a) > 0. Entropy is non-negative and H(X) ≤
log2(|X |) with |X | being the cardinality of X .

The conditional entropy H(·|·) is obtained by

H(Y |X) =
∑

a∈supp(PX)
PX(a)H(Y |X = a) = E

[
− log2(PY |X(Y |X))

]
, (2.10)

where
H(Y |X = a) =

∑
b∈supp(PY |X(·|a))

−PY |X(b|a) log2[PY |X(b|a)]. (2.11)

The conditional entropy is bound by 0 ≤ H(Y |X) ≤ H(Y ). If Y is fully determined
by X, the conditional entropy is zero. On the other hand, if knowledge about outcome
a is not reducing uncertainty of outcome b, the conditional entropy is identical to the
entropy of RV Y .

From these quantities, the mutual information (MI) I(·; ·) can be derived. Mutual
information is defined as

I(X;Y ) =
∑

(a,b)∈supp(PXY )
PXY (a, b) log2

(
PXY (a, b)
PX(a)PY (b)

)
(2.12)

= H(X) − H(X|Y ) (2.13)
= H(Y ) − H(Y |X) (2.14)

From Eqs. (2.13) and (2.14), it can be seen that MI is symmetric I(X;Y ) = I(Y ;X).
A common interpretation is that MI gives the reduction of uncertainty of one RV if
one observes the other. MI is strictly nonnegative I(X;Y ) ≥ 0 where I(X;Y ) = 0 if
the two random variables are statistically independent.
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2.2.2. Upper Bounds on Mutual Information

The maximum number of bits per symbol that can be transmitted reliably over some
given channel is called the channel capacity and is the maximum achievable MI over
all possible input distributions [40]

C = max
X

I(X;Y ). (2.15)

It can be shown, that for transmitting complex symbols over the additive white
Gaussian noise (AWGN)-channel, the capacity is given by [41], [39, Ch.9]

CAWGN = log2

(
1 + PS

σ2
N

)
= log2 (1 + SNR) , (2.16)

where PS is the signal power, PN = σ2
N is the noise power and the ratio between these

powers is the signal to noise ratio (SNR).
In [13], [40], [42] it is shown that, while the exact capacity for fiber optic channels

is still an open problem, an upper bound can be derived for certain scenarios. The
capacity per modulated complex quantity in a multi-span point-to-point transmission
case is upper-bound by [13]

CNLSE ≤ log2

(
1 + PS,RX

PN,RX

)
= log2 (1 + SNR) (2.17)

where PS,RX is the average signal power at the receiver and the noise-power PN,RX is
the accumulated noise power at the receiver, due to e.g. amplification processes. The
bound in Eq. (2.17) will be referred to as the Shannon-bound (SB) over the course of
this thesis.

2.3. Aspects of Operator Theory

For the derivation of the NFT some results and definitions from the field of linear
operator theory are needed and will be introduced in the following. When transitioning
from finite-dimensional to infinite-dimensional spaces not all results carry over and
some important new phenomena in regards to the spectrum of such an operator appear
[43]. We restrict the following treatment to operators on Hilbert-spaces, since this will
be the primary case over the course of this thesis. Note, that in this section ()∗ does
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denote the adjoint instead of the complex conjugate.

2.3.1. The Adjoint and Inverse Operator

Let domain and range of linear operator A : H1 → H2 be two Hilbert-spaces H1,
H2 with inner product 〈·, ·〉 and corresponding norm || · || =

√
〈·, ·〉 [44]. Operator

A∗ : H2 → H1 is the adjoint if [45]

〈A∗ψ, φ〉 = 〈ψ,Aφ〉, ∀φ ∈ H1 (2.18)

with ψ ∈ H2. If A = A∗, the operator is called self-adjoint.
Each bounded self-adjoint operator A is unitarily equivalent to Λ = U−1AU, where

U is some unitary operator and Λ is a multiplication operator. A bounded operator is
an operator which always maps bounded inputs to bounded outputs. As an analogy
to matrix calculus Λ often is also called the diagonal operator.

An operator A has an inverse operator A−1 if the domain of each operator is the
range of the other and AA−1 = A−1A = I, where I is the identity operator. Assuming
the domain and range of operator A is the whole Hilbert space A : H → H it is
invertible if it is bijective (one-to-one and onto), and has a bounded inverse [46].

2.3.2. The Spectrum of an Operator

The spectrum σ(·) of an operator is given by [43], [44]

σ(A) = {λ ∈ C|A − λI is not invertible}. (2.19)

Over the course of this thesis this spectrum will be partitioned into two different
regions, depending on the cause of (A − λI) being not invertible. If the range of
operator (A − λI) is a subset of H it is not onto and thus it is not invertible. The set
of λ for which this is the case will be called the continuous spectrum, which does not
exist for finite dimensional operators [43]. The second part of the spectrum, for which
A − λI is not one-to-one and thus not invertible, is called the discrete spectrum, the
respective set of λ values is called discrete eigenvalues and the corresponding non-zero
solutions v of Av = λv are called eigenvectors.
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2.4. Aspects of Perturbation Theory

The channel models for which the NFT is derived, are idealized versions of some more
commonly considered channel models. Especially the influence of noise and fiber-loss
on the NFT is currently not fully understood. Perturbation theory is a mathematical
framework, which can be used to study the influence of small perturbations on the
spectrum of linear operators [46].

Expanding some operator A as

A =
∞∑
i=0

εiÃi, (2.20)

where Ã0 is the unperturbed operator and εiÃi are the perturbations of i-th order.
Assuming the perturbations are sufficiently small, the right-hand side eigenvectors and
eigenvalues of such an operator can be expanded as well to be

λ =
∞∑
i=0

εiλ̃(i), (2.21)

v =
∞∑
i=0

εiṽ(i). (2.22)

Once again, λ̃(0) and ṽ(0) are the unperturbed solutions and the other terms are the
perturbations of i-th order respectively.

Inserting Eqs. (2.20), (2.21) and (2.22)in Av = λv and separating the result by
powers of ε yields

ε0 :Ã0ṽ0 = λ̃0ṽ0, (2.23)
ε1 :(Ã0 − λ̃0)ṽ1 + (Ã1 − λ̃1)ṽ0 = 0, (2.24)
ε2 :(Ã0 − λ̃0)ṽ2 + (Ã1 − λ̃1)ṽ1 + (Ã2 − λ̃2)ṽ0 = 0. (2.25)

...

It can be seen, that Eq. (2.23) recovers the unperturbed eigenvalue equation. Equa-
tions obtained for higher powers of ε can be used to obtain expressions for the perturbed
quantities. A wide variety of expressions can be derived from the above framework.

As an example, Eq. (2.24) can be modified by applying the inner product with some
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vector u0 to both sides, obtaining
〈
u0, (Ã0 − λ̃0)ṽ1

〉
= −

〈
u0, (Ã1 − λ̃1)ṽ0

〉
. (2.26)

Using Eq. (2.18) on the left side of Eq. 2.26, the expression
〈
(Ã∗

0 − λ̃∗
0)u0, ṽ1

〉
is

obtained. Now it can be seen, that if u0 is the eigenvector of Ã∗
0 for λ̃∗

0, the expression
vanishes and thus the left side of Eq. 2.26 becomes zero. If u0 is chosen accordingly,
the definition from [45, Def. 5.1] can be used to obtain

λ̃1 =

〈
u0, Ã1ṽ0

〉
〈u0, ṽ0〉

(2.27)

from the right hand side of Eq. (2.26). Similar expressions can be derived for higher
order perturbations.

2.5. Performance Metrics

Depending on the studied scenario, certain metrics can be more insightful or just more
easily obtainable than others. The set of metrics used for evaluation of algorithms and
system setups are given in the following

2.5.1. Mean Squared Error

The mean squared error (MSE) is the expected absolute squared difference between
some expected value x and its (perturbed) measurement x̃. It is defined as

MSE = Ex̃[|x̃− x|2]. (2.28)

The MSE always has to be interpreted in light of the scale of the expected values x. The
normalized mean squared error (NMSE) as a normalized version makes comparisons
between e.g. modulation alphabets with different amplitudes more straightforward.
The NMSE is defined as [47]

NMSE = Ex̃[|x̃− x|2]
Ex[|x|2] . (2.29)
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2.5.2. Bit Error-Rate

While the MSE and NMSE are useful to e.g. gauge the accuracy of NFT algorithms,
these metrics are not well suited for a complete transmission system evaluation. Since
it is always assumed that digitized data is transmitted, a measurement of the trans-
mission quality in terms of the (raw) bit error-rate (BER) is more reasonable and
also widely adopted in the fiber-optic community. If a system is used to transmit
bit-vector bTX of length Nb and the recovered bits at the receiver are bRX, the BER
can be computed by

BER = Nb,error

Nb
, (2.30)

where Nb,error is the measured number of bit-errors.

Coding is not considered over the course of this thesis and thus, the BERs measured
are always the ’raw’ BERs. In literature it is often assumed, that if a certain BER
can be achieved, there is a forward error correction (FEC) code to reduce the number
of bit-errors to some small prescribed value. In literature, this FEC-threshold is often
assumed to be around BER= 10−3.

There are three points to consider regarding the use of BERs measurements for
NFT-aided systems and in general. The first point is, that the FEC-threshold does
not account for inhomogeneously distributed error-types like e.g. burst errors. This
can somewhat be mitigated by using scrambling and descrambling algorithms at the
transmitter and receiver respectively. The second point is that for many NFT-based
transmission systems, the influence of e.g. time-domain noise in the NFD is not fully
quantified. Thus it is unclear how an optimum bit-labeling scheme for these systems
would look like. In Section 4.11 the influence of different labeling schemes on an NFT-
aided transmission system is studied numerically. The third point is more practical
in nature. If the BER for a certain system is measured, the number of bits that is
needed for stable result, depends on the BER that is to be measured. For low BERs,
the number of transmitted symbols/bits can be rather high and thus impractical,
depending on the simulations complexity. Note, that while the points made above
should be kept in mind, the BER and minimizing bit errors is still a concern because
e.g. most state-of-the-art FEC codes work on a bit-wise basis, making low BERs still
a valid optimization goal.
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2.5.3. Mismatched Mutual Information

While, in theory, the MI between transmitted and received symbols can be computed
according to Eq. (2.12), if transition probabilities are computed numerically, the
evaluation can be time-consuming. Additionally, to facilitate the computation, binning
of the received values is necessary. This results in the measured value being a lower
bound to the MI.

Another more easily obtainable lower-bound is mismatched mutual information
(MMI) [48], which can be computed by

MMI = I(X;Y ) = E

log2
qY |X(b|a)∑

a′∈X
PX(a′)qY |X(b|a′)

 . (2.31)

Here X and Y are random-variables describing the channel-input and channel-output
respectively. PX(x′) is the probability mass function (PMF) of X and X is the used
constellation. Function qY |X(b|a) is the conditional probability determined by the
chosen mismatched channel model. It can be shown, that the obtained MMI always is a
lower-bound on MI [49]. The mismatched channel model was chosen to be conditionally
Gaussian as described in [48] over the whole course of this thesis. As a result, using
≈ 20 · |X | symbols is often enough to stabilize the measured result.

2.5.4. Achievable Information Rate and Spectral Efficiency

Metrics MI and MMI give the information (in bits/symbol) that can be transmitted
over some given channel without errors. To be able to better compare different sys-
tem setups it is often useful to compute several more generalized metrics. First the
achievable information rate (AIR) is defined as

AIR = MMI ·RBaud = MMI/TS, (2.32)

where RBaud is the systems Baud-rate and TS is the symbol duration. This results in
a metric stating the transmittable information in bits/second.

If the bandwidth used for transmission BS is factored in as well, the SE is obtained
as a measure of information that can be transmitted in bits/second/Hertz. It is defined
as

SE = MMI
TBP , (2.33)
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where the time-bandwidth product (TBP) is defined as

TBP = TSBS. (2.34)

For a multi-user scenario, such as the WDM system described in section 3.5, the
TBP can also be defined for one super-symbol consisting of Ns symbols in time as well
as Nu channels in linear frequency. The SE then can be computed equivalently using

SE = MMI ·NuNs

TBP = MMI
ρME

, (2.35)

where ρME is called the modulation efficiency.
Note that, in order to ensure a fair comparison between systems, the bandwidth BS

and time-duration TS should be chosen such that the signal is confined on the tem-
poral and linear frequency support at any time. In a WDM system for example, the
bandwidth used to compute the TBP should include potential spectral broadening. It
is thus often purposeful to use the bandwidth of the receiver-filter as BS. Additionally
it has to be ensured, that if e.g. a signal broadens and subsequently shrinks in time,
either the maximum attained duration is considered to be TS or the potential interfer-
ence from neighboring symbols is modeled correctly. Note that in the above relations,
MI and MMI can be exchanged for each other.
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Fiber-Optic Communication Systems

Over the course of this thesis, the term optical communication system always implies
that the TX and RX are connected by some type of optical fiber channel. For un-
amplified systems, the TX and RX are just connected by a fiber, made from silica or
plastic. For long-reach systems, amplified silica fiber channels are assumed. Details
on the channel models used in this thesis, are given in sections 3.1 and 3.2 for single-
and multi-mode channels respectively.

Optical amplification, during transmission is realized by two different scenarios. The
first amplification schemes mitigates fiber-loss at discrete points during propagation
and thus will be called lumped amplification in the following. The details on the models
for this scheme used are given in section 3.3.1. The second amplification scheme used
is presented in section 3.3.2. This distributed scheme, continuously amplifies the signal
during propagation, by pumping the fiber with light at a different frequency utilizing
the effects of stimulated Raman-scattering (SRS) constructively [50, Ch.6].

Depending on the purpose of the transmission system, TX/RX schemes exist, reach-
ing from relatively ’simple’ to more elaborate. A naive approach could be to transmit
data by switching a light source on and off to transmit a logical 0 or 1 respectively.
While this approach might be easy to understand, it does not harness the full poten-
tial of the fiber-optic channel. Using more elaborate schemes, such as WDM, enabling
multiplexing in the frequency domain and coherent detection, enabling the additional
retrieval of the signals phase, which then in turn can be modulated, help to utilize the
channel more strongly [50]. A brief review of a state-of-the-art WDM system is given
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in section 3.5.
Closing this chapter on the basics of optical communication, aspects of system lay-

outs will shortly be reviewed. Over the course of this thesis, two different scenarios are
frequently assumed. The first scenario assumes that the TX and RX are connected
in a point-to-point setup. This implies, that all spectral components propagate from
the same source to the same destination. Secondly, one can also assume a generic
network-scenario, in which many different TX and RX pairs might use the same chan-
nel. Due to the routing of the different data-streams, the common assumption is made
that the RX has no knowledge about data-streams that have (partially) co-propagated
with the channel of interest (COI) in the system. While the point-to-point scenario
is easily understood by studying the channel and the used TX/RX structures, the
network scenario and its restrictions are briefly defined in section 3.5.3.

3.1. The Single-Mode Fiber Channel
The first type of fiber channel that will be presented is the single-mode fiber channel
or scalar fiber channel. It consists of spans of SMF, which are constructed such that
only one fundamental mode is guided. Depending on the exact model, some ampli-
fication scheme might be deployed at the end of each fiber span. While the SMF
guides two orthogonal polarizations, the mathematical model of this channel considers
only one polarization, which is assumed to be orthogonal to the other polarization
during transmission [14, Ch. 5]. Thus only one signal, defined by a scalar function is
considered.

This channel model can be derived from the Maxwell equations. Since the derivation
is rather lengthy and can be found in most of the well known books on nonlinear optics,
the derivation is skipped for the sake of brevity. The channel model is given by the
NLSE and can be written as [51]

∂Q(τ, `)
∂`

= −α

2Q(τ, `) + jβ2

2
∂2Q(τ, `)
∂τ 2 − jγ |Q(τ, `)|2 Q(τ, `). (3.1)

The parameter Q(τ, `) is the slowly varying signal envelope propagating in the fiber,
τ is retarded time and 0 ≤ ` ≤ L is the distance the signal propagated, assuming the
transmitter to be at ` = 0 and the receiver to be at ` = L. The fiber parameters
α, β2 and γ are governing the effects of fiber-loss, dispersion and Kerr-nonlinearity,
respectively.
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The different terms on the right-hand side of Eq. (3.1) can be understood by their
influence on the signal during propagation. These effects will be discussed in detail in
the following sections. Note, that the model used here neglects several effects, such as
higher order dispersion terms and stimulated scattering effects. For a more in-depth
treatment of the channel model and a thorough derivation, we refer the interested
reader to one of the following sources [14], [50], [51].

3.1.1. Fiber-Loss

The first right-hand side term in Eq. (3.1) is modeling the attenuation the signal expe-
riences during propagation along the SMF. Neglecting the dispersion and nonlinearity
term, Eq. (3.1) can be solved to obtain

Q(τ, `) = Q(τ, 0) · e−α
2 `, (3.2)

assuming that α is independent of `. Attenuation coefficient α in general is not inde-
pendent of frequency, thus different frequency components are attenuated differently.
However, in this thesis the common assumption is made that, for transmission in the
C-band (1530nm to 1565nm), the attenuation coefficient is constant [51, Ch.1.2.2].

While, as mentioned in section 1, modern optical fiber is a medium with comparably
low loss, the remaining attenuation, stemming from material absorption and Rayleigh
scattering, still poses certain limits on optical transmission systems. While for state-
of-the-art systems utilizing e.g. WDM, the attenuation is mainly determining the
amplifier spacing of the channel, attenuation strongly limits the applicability of NFT-
aided systems, as will be discussed in the respective chapters of this thesis.

Using the definition of signal power from Eq. (2.4) and Eq. (3.2) the attenuation
in terms of power can be given as

Pout = Pin · e−αL, (3.3)

where Pin and Pout are the power of the signal at the beginning and end of a channel
of length L respectively.

While α has linear units [1/km] in the above equations, the attenuation is often
given in [dB/km]. Conversion between the two representations can be done using [51,
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Ch.1.2.2]
αdB/km = −10

L
log10

(
Pout

Pin

)
= 10

log(10)α1/km. (3.4)

3.1.2. Dispersion

The second right-hand side term in Eq. (3.1) is modeling group-velocity dispersion
(GVD). More generally, dispersion is caused by the frequency dependence of the effec-
tive refractive index n(ω) of the silica fiber. Thus, even if loss and nonlinearities are
neglected, the signal is modified during propagation according to [52]

Q̂(ω, `) = Q̂(ω, 0) · e−jβ(ω)`, (3.5)

where the signal is now given as its Fourier transform Q̂(ω, `) = F{Q(τ, `)} and ω is the
angular frequency. It can be seen, that each frequency component experiences a phase-
shift due to propagation in ` according to frequency dependent mode-propagation
constant β(ω) [51, Ch. 1.2.3].

Parameter β(ω) can be expanded in a Taylor-series around the frequency of the
optical carrier ωc, assuming that the propagating signals bandwidth is much smaller
than the carrier frequency. This expansion has the form [53]

β(ω) = n(ω)ω
c

=
∞∑
k=0

1
k!βk(ω − ωc)k, (3.6)

where c is the speed of light in vacuum. The coefficients βk are defined as [53]

βk = dkβ(ω)
dωk

∣∣∣∣∣
ω=ωc

. (3.7)

The parameter β0 represents the carriers phase-delay, which is commonly omitted
since, apart from questions of e.g. TX/RX synchronization it has no significance.

Parameters β1 and β2 can be given explicitly as

β1 = 1
vg

= ng

c
= 1
c

(
n(ωc) + ωc

dn(ω)
dω

∣∣∣∣∣
ω=ωc

)
, (3.8)

β2 =1
c

(
2 dn(ω)

dω

∣∣∣∣∣
ω=ωc

+ ωc
d2n(ω)

dω

∣∣∣∣∣
ω=ωc

)
, (3.9)

by inserting the relation between mode-propagation constant and refractive index from
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Eq. (3.6) into (3.7). It can be seen that β1 is directly linked to the group-velocity vg

and group refractive index ng. Thus, it can be removed from the propagation equation
by defining a reference frame for the time moving at group velocity (τ = τ ′ − β1`).
This is also the reason why β1 is not present in Eq. (3.1). Parameter β2 is the GVD
parameter and is often given in form of the dispersion parameter defined as

D = dβ1

dλ = 2πc
λ2 β2 = λ

c

d2n(ω)
dλ , (3.10)

where λ is the wavelength. It is often assumed, that the dispersion parameter is
frequency independent unless transmission pulses are very short [14]. Similarly, higher
order coefficients (k ≥ 3) in Eq. (3.6) can be neglected as long as the pulses transmitted
are not too short and transmission in not done in close proximity to the zero-dispersion
wavelength, for which β2 ≈ 0 and D ≈ 0. This assumptions will be made over the
course of the thesis, which leads to the linear part of the channel model given by Eq.
(3.1).

In general, GVD will cause phase-distortions (see Eq.(3.5)), that result in temporal
pulse broadening. We would like to note that, while the term chromatic dispersion
(CD) is often used to describe the same effect, we use CD as a name for a broader
group of effects, including all dispersive effects due to frequency dependent propagation
speeds. This is done to distinguish these effects from dispersive effects caused by other
physical mechanisms e.g. polarization mode dispersion as discussed in section 3.1.4.

3.1.3. Kerr-Nonlinearity

The origin of the Kerr-nonlinearity is the real part of the cubic material polarization
χ(3). The Kerr-nonlinear effect can be divided into subgroups of perturbations, de-
pending on the involved components in the frequency spectrum. In time domain, these
effects are represented by a single term, which includes the instantaneous signal power
|Q(τ, `)|2 and the nonlinear parameter γ (compare Eq. (3.1)). In this thesis, nonlin-
earity is treated as a monolithic effect, that potentially leads to perturbations. Thus,
details on the distinguishable phenomena in the frequency domain, namely self-phase
modulation (SPM), cross-phase modulation (XPM) and four wave mixing (FWM) are
skipped. The interested reader is referred to [14], [50]–[52] for further details. Over
the course of this thesis, it is assumed that the nonlinear response of the fiber material
is instantaneous, which in general is not true, but is a reasonable assumption, as long

31



3. Fiber-Optic Communication Systems

as the transmission pulses are not too short [51].
Similar to the treatment in section 3.1.2, Eq. (3.1) can be studied, isolating the

nonlinear effects. The resulting channel model is given by

∂Q(τ, `)
∂`

= −jγ |Q(τ, `)|2 Q(τ, `), (3.11)

This model has the analytic solution

Q(τ, `) = Q(τ, 0) · e
−jγ
∫̀
0

|Q(τ,`′)|2d`′

. (3.12)

Assuming that fiber loss is reincorporated into Eq. (3.11) and no (re-)amplification
is present, Eq. (3.12) can be simplified further, using Eq. (3.3). The obtained solution
is

Q(τ,L) = Q(τ, 0) · e−jγ|Q(τ,0)|2Leff , (3.13)

where Leff = (1 − e−αL)/α. The effective length Leff is the length of a hypothetical
lossless fiber inducing the same amount of nonlinear distortions as its non-zero loss
counterpart [51]. It is a measure for the length over which most of the nonlinear
impairments in a lossy fiber are generated and will be used in section 4.9, to mitigate
the degradation of NFT-generated signals in lossy channels. Curves for the relation
between span-length, attenuation coefficient and effective length are given in Fig. 3.1.
It can be seen, that, due to fiber loss, the main portion of nonlinear perturbations
occur over the first few kilometers of the fiber span, while the contribution of the later
section of the fiber is negligible, especially for higher values of α.
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Figure 3.1.: Effective length of a passive fiber span for varying α
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Also note, that the results above still hold for certain channel models which incor-
porate amplification. This will become more obvious in the review of amplification
schemes in section 3.3.

3.1.4. Polarization Dependent Effects

As stated in the beginning of section 3.1, single-mode fibers actually guide two po-
larization modes. While this was neglected in the discussion of Eq. (3.1), it has
to be considered in the study of PMD, which originates from the two polarizations
propagating under different conditions.

If it is assumed, that the electric fields Ex, Ey of the respective polarizations prop-
agate linearly through an idealized standard single mode fiber (SSMF), this can be
written as [54]

E(`, τ) =
 Ex(` = 0)
Ey(` = 0)

 e−α(ω)
2 `e−jβ(ω)`ejωτ . (3.14)

For an ideal fiber the propagation coefficients βx, βy for the x-, y-polarization mode are
identical (βx(ω) = βy(ω) = β(ω)). In this case the two modes are called degenerate.

The polarization state of a lightwave usually is evaluated for a fixed distance ` and
is given by the curve of the vector

<{E(`, τ)}

=<


 |Ex(` = 0)|ejδx(`=0)

|Ey(` = 0)|ejδy(`=0)

 ej(ωτ−β(ω)`)e−α(ω)
2 `

 (3.15)

=
 |Ex(` = 0)| cos(ωτ − β(ω)`+ δx(` = 0))

|Ey(` = 0)| cos(ωτ − β(ω)`+ δy(` = 0))

 e−α(ω)
2 `

draws for varying τ [54]. Here δx(` = 0), δy(` = 0) are the initial phases of the complex
electric fields.

Real fibers are always subject to small external perturbations such as slight core-
ellipticity, torsion, bending, external pressure or external electrical/magnetic fields.
As a result, the aforementioned x- and y-polarizations in a SSMF now experience bire-
fringence and mode-coupling, leading to PMD [54]. In the following, the interactions
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between the two polarizations are assumed to be fully described by [54]

d
d`

 Ex(`)
Ey(`)

 =
 N11 N12

N21 N22

 Ex(`)
Ey(`)

 , (3.16)

where perturbation parameters N11, N22 are representing birefringence and N12, N21

represent mode-coupling. If those parameters are assumed to be constant, e.g. for a
short piece of fiber, Eq. (3.16) can be solved analytically. From this, a solution of the
form  Eψ(`)

Eχ(`)

 =
 Eψ(` = 0) · e−jβψ`

Eχ(` = 0) · e−jβχ`

 , (3.17)

can be stated using the eigenpolarization-coordinate system, where Eψ, Eχ are the
electric fields and βψ, βχ are the propagation coefficients in eigenpolarization ψ and
χ respectively. Further information on how to change between the two coordinate
systems is given in [54], [55].

To quantify the effect of PMD the differential group-delay (DGD) between the eigen-
polarizations is used. The DGD is given by

dτ̄g(ωc) = d(βψ(ω) − βχ(ω))
dω

∣∣∣∣∣
ωc

= τ̄g,ψ(ωc) − τ̄g,χ(ωc), (3.18)

where τ̄g,ψ, τ̄g,χ are the average group delays in the eigenpolarizations ψ and χ respec-
tively. If it is assumed that the perturbation parameters remain constant over the
distance Lshort, the DGD is given by

DGD|short fiber = dτ̄g(ωc)Lshort. (3.19)

If the transmission distance Llong is so long, that the perturbation parameters can no
longer be assumed to be constant. In this case, the DGD between the principal states
of the optical fiber link is given by [51, Ch. 1.2.4]

DGD|long fiber = DPMD

√
Llong, (3.20)

where DPMD [ps/
√

km] is the fiber-type dependent PMD parameter. Note, that PMD
can be mitigated at the receiver by e.g. digital equalization schemes [56]. For most
evaluations, done for the NLSE channel in this thesis, PMD is neglected and thus Eq.
(3.1) is used as a channel model primarily.
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3.1. The Single-Mode Fiber Channel

3.1.5. Numerical Solution by Split-Step Analysis

Except for limit-cases, such as the ones described in sections 3.1.2 and 3.1.3, it is, in
general, hard to solve Eq. (3.1) analytically. Thus, in most cases, the propagation
equation is solved numerically. Several schemes for solving Eq. (3.1) exist [51], [57],
[58], with one of the most widely used being the split-step Fourier method (SSFM).
This method is used for most of the simulations of fiber-optic channels in this thesis.

Asymmetric Method

The asymmetric method is derived by first collecting the linear and non-linear terms
in Eq. (3.1) respectively, by writing

∂Q(τ, `)
∂`

=(D̂ + N̂)Q(τ, `), (3.21)

D̂ = − α

2 + jβ2

2
∂2

∂τ 2 , (3.22)

N̂ = − jγ |Q(τ, `)|2 , (3.23)

where D̂ represents the linear and N̂ represents the nonlinear part. Linear and non-
linear effects act jointly on the signal during propagation and thus, in general can
not be viewed separately. By assuming, that for a very short distance ∆`, linear and
nonlinear effects can be viewed as acting independently, their influence on the signal
can be evaluated in sequence. Thus, for this short distance ∆`, the signal propagated
according to Eq. (3.1) can be approximated by

Q(τ, `+ ∆`) ≈ e∆`D̂ · e∆`N̂ ·Q(τ, `). (3.24)

The linear part can be evaluated in frequency domain, using F{D̂} = −(α/2) −
(jω2β2/2), while the nonlinear step can be evaluated in time-domain.

Thus, for each step of length ∆` one forward and one inverse Fourier transform
has to be computed. Commonly this is done numerically, by using the fast Fourier
transform (FFT)[59] algorithm. If it is assumed, that the cost of other operations is
much lower than the cost of the two FFTs, the overall complexity is governed by the
complexity of the FFT. Assuming an implementation according to Cooley-Tukey [59],
the complexity in terms of ”operations”, meaning one complex multiplication followed
by one complex addition, is given by O(N log(N)) [59]. For the SSFM, this leads to an
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overall complexity of O(2KN log(N)), with K being the number of steps and N being
the number of samples of the transmitted signal. The asymmetrical segmentation used
in this algorithm is also depicted in Fig. 3.2, assuming that the algorithm starts with
the computations for the linear step. It can be shown, utilizing the Baker-Hausdorff-

` = 0

∆`

D̂
N̂

D̂
N̂

· · ·

· · ·

` = ∆` ` = 2∆` ` = L − ∆` ` = L

D̂
N̂

Q(τ, 0) Q(τ,L)

Figure 3.2.: Segmentation for the asymmetric SSFM

formula [60], that the error in each step is of second order in stepsize ∆` [51, ch. 2.4.1].
Since the number of steps is inversely proportional to the average stepsize, the global
error of the method is O(∆`) [57].

Symmetric Method

The symmetric SSFM improves on the previously shown method, by splitting the
linear computation for each step and executing the nonlinear part between the two
linear sections. The signal after one step of length ∆` is now approximated by

Q(τ, `+ ∆`) ≈ e∆` D̂2 · e∆`N̂ · e∆` D̂2 ·Q(τ, `). (3.25)

The step-wise symmetric segmentation of the transmission distance is depicted in Fig.
3.3. It can be seen that, if D̂ is constant in `, the second linear half-step of an iteration
can be executed jointly with the first linear half-step of the subsequent segment. Thus
the symmetric SSFM has negligible overhead compared to the asymmetric case. The
accuracy improves, such that the error is O(∆`3) for the local step and O(∆`2) globally
[57].
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Figure 3.3.: Segmentation for the symmetric SSFM [51, ch. 2.4.1]

Step-Size Metrics

So far it was assumed, that for the numerical evaluation of Eq. (3.1) the step-size
∆` is known and independent of the propagated distance `. By inspecting Eq. (3.1),
it can be seen that varying the step-size per iteration can decrease complexity, while
still achieving some target accuracy. For example, even if the initial value for ∆` is
chosen well, the fiber-loss reduces the generated nonlinear perturbations in subsequent
steps. Assuming nonlinearity is the dominant effect, the step-size could be increased
to speed up the simulations without reducing the accuracy per step. In the following,
three methods to set the step-size, are reviewed shortly.

Walk-Off Method The walk-off method is a suitable way to determine step-sizes for
the SSFM if dispersion is the dominant effect during propagation [57]. This might be
the case for e.g. multi-channel systems which occupy a larger bandwidth in frequency
domain. The stepsize is calculated using

∆` = C

|Dmaxλmax −Dminλmin|
, (3.26)

where C is some constant to set the accuracy. Dmin/max and λmin/max are the mini-
mum/maximum dispersion coefficients and wavelengths respectively. The denomina-
tor of Eq. (3.26) gives the difference between the slowest and fastest occurring group
velocity.

Nonlinear Phase-Rotation Method If nonlinearity is the most prominent effect dur-
ing propagation, the step-size can be determined using the nonlinear phase-rotation
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method [57]. This method aims to limit the nonlinear phase-shift, that occurs due to
the nonlinear part N̂ . The step-size is computed by

∆` ≤ φmaxNL
γmax

τ
(|Q(τ, `)|2) , (3.27)

with φmaxNL being the upper limit for the induced phase-shift in each step. It can be
seen, that in comparison to the walk-off method, now the signal power is a determining
factor for the step-size. This causes the step-size to increase for steps towards the far
end of the fiber, if e.g. a passive fiber span with uncompensated fiber-loss is modeled.
This can reduce the number of steps in the algorithm and speed up the numerical
evaluation quite drastically.

Local Error Method The local error method is another adaptive method, that was
first presented in [57]. For each step a ’coarse’ solution Qc(τ, ` + 2∆`) and a ’fine’
solution Qf(τ, ` + 2∆`) are computed. The coarse solution is computed by a single
step of size 2∆`, while the fine solution is computed by two steps of length ∆`.

Since the exact solution is unknown, the difference between coarse and fine solution
is used as a substitute measure for the local error, assuming that Qf(τ, ` + 2∆`) is
close to the real solution. This measure is called relative local error and is given by

δrle = ||Qf(τ, `+ 2∆`)|| − ||Qc(τ, `+ 2∆`)||
||Qf(τ, `+ 2∆`)|| . (3.28)

Upper bounding the relative local error by δB, the algorithm distinguishes several
cases and potentially updates the step-size:

• δrle > 2δB: Discard result, ∆` → ∆`
2

• δB ≤ δrle ≤ 2δB: Step valid, ∆` → ∆`
21/3

• δB
2 ≤ δrle ≤ δB: Step valid, ∆` → ∆`

• δrle <
δB
2 : Step valid, ∆` → ∆` · 21/3

If an executed step is valid, the result Q(τ, `+ 2∆`) is computed by

Q(τ, `+ 2∆`) = 4
3Qf(τ, `+ 2∆`) − 1

3Qc(τ, `+ 2∆`). (3.29)
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Details on why computing this result is more optimal than just using the fine solution
Qf are given in [57].

Contrary to other methods, no initial assumptions about the strength of dispersive
and nonlinear effects have to be made. Also this method does not include a way
to meaningfully set the initial value for step-size ∆`. The initial choice of ∆` does
not significantly influence the accuracy of the local error method, since steps with a
bad relative local accuracy are repeated, but a poorly chosen initial value can cause
some computational overhead for the first few steps. Due to the computation of two
solutions in every step, there also is a general computational overhead compared to
the other methods presented in this section. In return the method exhibits a reduced
global error of O(∆`3).

3.2. The Strong Coupling Multi-Mode Fiber Channel

As noted in section 3.1, the scalar NLSE is a channel model often utilized to describe
the most important effects in a SSMF. As implied by its name, the SSMF is only
guiding a single mode. By changing the fiber geometry, fibers which guide more than
one mode can be realized. Even though, the propagation in such a multi-mode fiber
(MMF) is generally involved, some assumptions and restrictions can be applied to
arrive at a case, for which the NFT framework can be utilized. The assumption, made
over the course of this thesis is that the excited modes are strongly coupling with each
other during propagation and thus the channel model is the strong-coupling Manakov
equation (SCME) and transmission is taking place in the strong-coupling regime [61].
The resulting multi-mode channel model is given by [61], [62]

∂Q(τ, `)
∂`

= −α

2Q(τ, `) + j β̄2

2
∂2Q(τ, `)
∂τ 2 − jγκ

M∑
m=1

|Qm(τ, `)|2Q(τ, `). (3.30)

The vector Q(τ, `) holds the signals Qm(τ, `), propagating in modes m ∈ 1, · · ·M ,
where M is the number of stimulated modes. It can be seen, that, similar to the
dual-polarization NLSE [51, Ch. 6.6.3], the co-propagating modes influence each other
during propagation, by nonlinear coupling. The nonlinear coupling coefficient κ gives
the factor, by which γ is altered, due to this interactions. The exact value for κ depends
on the specific fiber-type used. The parameter β̄2 is the average GVD across all
stimulated modes, which is also assumed to be the GVD parameter for each of the co-
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propagating modes. While some strong assumptions are made to arrive at the SCME
channel model, these assumptions are also commonly made in other literature [63]–
[65]. With some of the neglected perturbations being reintroduced in later simulations,
the lossless version of Eq. (3.30) will be the central channel model, for which the NFT
and NFT-aided transmission schemes are studied.

The choice of the nonlinear coupling coefficient κ is rather involved and a detailed
treatment of its computation is deemed out of scope for this thesis. The interested
reader is referred to [61], [66] for further details. The exact value of κ, in most cases,
is not relevant for the topics studied in this thesis. Thus, the approximation κ = 8

9
2
M

[66] is used if not stated otherwise. Note that, while in [66] and other publications the
notion of spatial modes is adopted, the term mode will refer to one polarization in a
spatial mode over the course of this thesis, making e.g. the dual-polarization NLSE a
two mode system.

3.3. Amplification Schemes
Compared to other transmission media, the loss in modern optical fiber is relatively
low. Nonetheless, depending on the transmission distance and transmission scheme
used, it still has a significant influence on the transmission quality and thus has to be
mitigated. In this thesis, two main types of amplification are utilized. The first type
is lumped amplification, meaning amplification that is conducted at discrete points
in the transmission link. The prime example for such schemes is amplification by
EDFAs, which will be reviewed shortly in section 3.3.1. The second type is distributed
amplification, which means that even though amplification units are placed at discrete
points in the system, amplification of the signal potentially takes place along the whole
transmission distance. Details on distributed Raman amplification (DRA) [67], as the
prime example for distributed amplification schemes, is discussed in section 3.3.2.

Note that the different amplification schemes will be reviewed for the scalar NLSE
case only. For the multi-mode channel described in section 3.2, it will be assumed that
the amplification process per mode is identical to the scalar NLSE case.

3.3.1. Lumped Amplification by Erbium Doped Fiber Amplifiers

For lumped amplification, the fiber-channel itself is considered to be passive, meaning
that the signal power is decreasing during propagation, according to Eq. (3.3). Then,
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after a certain distance Lspan, the attenuated signal is amplified. The signal does not
necessarily always have to be re-amplified to its initial power, but over the course of
this thesis it will be assumed that the signal power is fully recovered at the end of
each passive fiber segment. Those passive fiber segments will from now on be called
(fiber-)spans. Due to the previously made assumption, the EDFA after each span has
to have the amplifier gain

GEDFA = eαLspan . (3.31)

Note that, in general, a concatenation of EDFA amplified fiber spans does not nec-
essarily have to consist of spans of equal length. Nonetheless, in this thesis, it is
assumed that amplification is done periodically and a transmission channel consist of
Nspan spans of the same length Lspan.

Each EDFA instance is inevitably generating additive amplified spontaneous emis-
sion (ASE) noise. The noise variances for one span (σ2

ASE,span), as well as for the whole
fiber link (σ2

ASE), are given by [68], [40], [50, Ch.7]

σ2
ASE,span = (GEDFA − 1)hPfcnspBrec, (3.32)
σ2

ASE = Nspanσ
2
ASE,span, (3.33)

where hP is the Planck constant, fc is the frequency of the optical carrier, nsp is the
spontaneous emission factor and Brec is the receiver bandwidth. Note that for this
whole section the single-polarization NLSE is the assumed channel model and thus
the expressions given in Eqs. (3.33) and (3.32) holds for the single polarization case.
The noise figure can be computed according to

Fn = 2nsp(1 − 1
GEDFA

) + 1
GEDFA

(3.34)

In the following it will be assumed, that the generated ASE noise is white in the
frequency range of interest and that the approximation for the noise figure Fn ≈ 2nsp

[51, Ch. 6.1.3] holds. Note, that the spontaneous emission factor is nsp = 1 for an ideal
amplifier according to [50, Ch. 7.2.3] and thus still would result in Fn = 3dB. Over
the course of this thesis, the more realistic value Fn = 5dB, which is commonly found
in related literature, will be used. Note, that Eq. (3.33) could be easily modified,
resulting in a sum of per-span variances with differing Lspan and GEDFA to allow for a
wider variety of setups.
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3.3.2. Distributed Amplification by Raman Amplifiers

For distributed amplification, the fiber channel is used as an active part of the ampli-
fier structure. The underlying effect used in the DRA amplification scheme is SRS,
amplifying the signal due to a strong pump-beam propagating with the signal. The
signal- and pump-power with respect to ` are described by the coupled equations [50]

dPS

d` = −αSPS + gR

aP
PPPS, (3.35)

dPP

d` = −αPPP − ωP

ωS

gR

aP
PSPP, (3.36)

where Px, ωx, αx with x ∈ {S,P} are the power, frequency and fiber attenuation for the
signal and pump respectively. gR is the Raman gain and aP is the area of the pump-
beams cross-section in the fiber. Note that the fraction gR/aP is often considered
to be one parameter called the Raman-gain efficiency. For details on modeling and
computation of the Raman-gain efficiency the interested reader is referred to [69].

The pump laser can be injected into the fiber, such that it either co- or counter-
propagates in relation to the signal. This results in a variation of the signals power-
profile during propagation depending on the exact setup. Three different configura-
tions for DRA will be discussed in the following.

Subsequently, a fourth DRA setup with idealized characteristics will be presented.
This fourth scheme neglects residual fluctuations of the signal power and thus can be
seen as ideal distributed amplification with added noise.

Co-Propagating Pump

For the first configuration, the pump-beam is injected into the fiber at the same
end as the signal. Thus the signal and pump co-propagate. Assuming small-signal
amplification the second term in Eq. (3.36), which models pump-depletion can be
neglected. The pump power at distance ` ∈ [0,Lspan] then is given by [70]

PP(`) = PP(0)e−αP`. (3.37)

Inserting Eq. (3.37) into (3.35) the signal power at distance ` can be expressed by

PS(`) = PS(0) · e
gR
aP
PP(0) 1−e−αP`

αP
−αS`. (3.38)
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Often it is desirable to fully compensate the attenuation due to fiber loss after
each span. To achieve this the initial pump power PP(0) has to be chosen such that,
according to Eq. (3.38), PS(Lspan) = PS(0). As a result the initial pump power for a
specific span length is given by

PP(0) = αSLspanaP

LeffgR
, (3.39)

where Leff = 1−e−αPLspan

αp
is the effective fiber length.

Counter-Propagating Pump

If the pump-beam is injected into the receiver-side end of the fiber, the pump and
signal are said to be counter-propagating. The pump-power is now increasing with
increasing `, and thus Eq. (3.36) has to be modified to be

−dPP

d` = −αPPP, (3.40)

Note that in Eq. (3.40) pump depletion is again neglected.
The pump power at distance ` ∈ [0,Lspan] can be given as [70]

PP(`) = PP(Lspan)e−αP(Lspan−`), (3.41)

where PP(Lspan) is the initial power of the pump-beam injected at the receiver end of
the fiber span. The signal power with respect to ` then is

PS(`) = PS(0)e
gR
aP
PP(Lspan) e−αP(Lspan−`)−e−αPLspan

αP
−αS`. (3.42)

Again, the pump power to perfectly compensate loss at the end of the fiber-span can
be calculated, using Eq. (3.42) and PS(Lspan) = PS(0). The injected pump power is
then given by

PP(Lspan) = αSLspanaP

LeffgR
. (3.43)

Due to symmetries, the effective fiber length Leff is computed identically for the co- and
counter-propagating pump case. Also note, that the choice between co- and counter-
propagating pump only influences the gain distribution along the fiber span, but does
not influence the overall gain after one span. Thus, as it can be seen in Eqs. (3.39)
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and (3.43), the injected pump-power has to be identical in both cases.

Even Power Bidirectional Pump

For the third configuration, it is assumed that two pump-lasers are injected into the
fiber, one co- and one counter-propagating [71]. Generally, these pumps can have
different wavelengths and input powers. In the case described in this section, it is
assumed that both pump lasers have the same wavelength and are injected into the
fiber with identical input power PP(0) = PP(Lspan). Propagation of the signal and
pump lasers is described by Eqs. (3.35), (3.36) and (3.40).

The total pump power at distance ` is given by

PP(`) = PP(0)e−αP` + PP(0)e−αP(Lspan−`) (3.44)

and the signal power at distance ` is given by

PS(`) = PS(0)e
gR
aP
PP(0) 1−e−αP`+e−αP(Lspan−`)−e−αPLspan

αP
−αS`. (3.45)

The pump power for each pump-beam, needed to fully compensate the fiber loss in
the span, is thus given by

PP(0) = αSLspanaP

2LeffgR
. (3.46)

The variation of the signal power during propagation depends on the span-length
Lspan. In Fig. 3.4 the signal power over several spans of fiber is shown for different
amplification types and span-lengths. It can be seen, that, especially for the case of
DRA with short spans, the power fluctuations can be kept fairly flat. The DRA results
in Fig. 3.4 are for co- and counterpropagating pumps.
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Figure 3.4.: Signal power (PS) for (a) EDFA and (b) Raman amplification over L =
150km for different span lengths Lspan
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Idealized Raman Amplification

For idealized distributed Raman amplification (IDRA), it is assumed that fiber loss is
ideally compensated at each position ` ∈ [0,L]. This effectively removes the loss term
from Eq. (3.1) in exchange for distributed ASE noise. The channel model can thus be
given by

∂Q(τ, `)
∂`

= jβ2

2
∂2Q(τ, `)
∂τ 2 − jγQ(τ, `)|Q(τ, `)|2 +N(τ, `), (3.47)

where N(τ, `) is the ASE noise term. In view of Fig. 3.4 it can be seen, that this
idealized channel model also is the limit case of the three configurations described
above for Lspan → 0. For all four amplification schemes described in this section,
the signal power over one fiber span is shown in Fig. 3.5 for some commonly used
parameters.
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Figure 3.5.: Power profiles for EDFA and DRA amplifiers (Lspan = 80km, αS =
0.2dB/km, αP = 0.25dB/km, PS(0) = 0dBm).

Noise in Raman Amplified Fibers

The IDRA channel model, is approximated by Nspan → ∞ cascaded EDFA amplified
spans with vanishing span-length Lspan. Using Eqs. (3.31), (3.32), the relation Nspan =
L/Lspan and computing the limit of Eq. (3.33) for Lspan → 0, the noise variance for
the IDRA channel model ASE noise is found to be [40]

σ2
IDRA = αSLspanNspanhPfcKTBrec = αSLhPfcKTBrec, (3.48)
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where L = LspanNspan is the total transmission length. Note, that here the spontaneous
emission factor was replaced using the shifted phonon occupancy factor KT = 1 + ηP,
where ηP is the phonon occupancy factor [71], matching the notation used in [40].
Parameter KT is equivalent to the spontaneous emission factor for Raman amplified
fiber nsp, which now is defined as [50, Ch. 7.3.3]

nsp = 1
1 − exp(−hPΩR

kBTfib
)
. (3.49)

Here, ΩR is the Raman shift, which is the frequency shift between the signal and pump
frequency. Further, kB is the well-known Boltzmann constant. The phonon occupancy
factor thus is given by

ηP = 1
exp( hPΩR

kBTfib
) − 1

. (3.50)

For ΩR ≈ 13THz, which is a value for which the Raman gain peak is reached [72],
the phonon occupancy factor is ηP ≈ 0.14 at Tfib ≈ 298K (≈ 25◦ Celsius) [71]. Thus
nsp ≈ 1.14, which matches the values given in [40].

For the three remaining schemes the computation of the noise variance can be fa-
cilitated by expressing the total noise power via the effective noise figure. If the noise
power is given by [54, Ch.7],[68, Ch.2]

σ2
DRA = 1

2FeffhPfcGon−off (3.51)

Here the parameter Gon−off is the gain that would be necessary in an EDFA amplifier
at the end of the fiber span to achieve the same amplification as the DRA ampli-
fier used. In the case of complete reamplification at the end of the fiber span, this
value is given by Eq. (3.31). This surrogate system then can be used to compute the
noise power generated by the DRA according to the above equation. The effective
noise figure Feff is capturing the fact that noise, that is generated due to DRA am-
plification, somewhere in the fiber will be attenuated by fiber-loss and amplified by
the DRA process or the remaining transmission length. It can be seen, that e.g. for
backwards pumped DRA, most of the amplification takes place close to the receiver
and for forward pumped DRA the main portion of amplification takes place close to
the transmitter (see Fig. 3.5). Thus, in the forward pumped DRA case, the noise
is attenuated for a longer propagation distance and thus is reduced in comparison to
backwards pumped systems. This behavior is captured by the effective noise figure
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Feff . More details on the computation of Feff for specific cases can be found in [71],
[73]. Other ways to describe the noise accumulation in DRA amplified spans can be
found in [72], [74], [50, Ch.7] and a treatment of the simulation of DRA amplifier noise
is given in [75]. While the noise in DRA is often approximated as white Gaussian, this
does only hold if the used bandwidth is small compared to the DRA bandwidth [72],
[75]. Also if the Raman gain gR is modeled as frequency dependent according to e.g.
[69] this assumption does no longer hold. Over the course of this thesis, it is assumed
that the signal-bandwidth is always much smaller than the DRA-bandwidth and thus
the noise in DRA schemes is assumed to be white Gaussian.

3.4. Modulation Formats and Bit-Labeling
The exact physical quantity modulated in a system varies depending on the system
itself. However, for most transmission schemes, a wide variety of usable modulation
formats exists [35], [40], [76]. These can be treated independent of the physical real-
ization of the exact system they are used in. In the following, two modulation formats,
namely quadrature amplitude modulation (QAM) [35] and multi-ring phase-shift key-
ing (MPSK) [40], will be shortly reviewed.

Even though bit-labeling of constellation data is not a major concern in this thesis,
the impact of several labeling methods will be studied in detail in sections 4.11. Thus,
some basics regarding bit-labeling are shortly reviewed in this section as well.

3.4.1. QAM Constellation

QAM is a widely used constellation in state-of-the-art communication systems. Stem-
ming from the multiplexing of two pulse amplitude modulation (PAM) signals on
orthogonal carriers, it represents data by complex constellation points ai, for which
the real part is often called the in-phase (I) component and the imaginary part is
often called the quadrature (Q) component. Fig 3.6 depicts some commonly used
constellations from the M -QAM family where M is the constellations cardinality.

It can be seen, that in order to obtain quadratic constellations with an integer
number of labeling bits per point, the constellation size has to be M = 22i for i ∈ N+.
While there are many practical examples for QAM schemes that do not adhere to this
restrictions [40], we restrict ourselves to these cases over the course of this thesis for
the sake of simplicity. The MI for several M -QAM constellations transmitted over an
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Figure 3.6.: M -QAM Constellations

AWGN channel are depicted in Fig. 3.7, together with the SB given by Eq. (2.16).

−10 −5 0 5 10 15 20 25 30 35 400

5

10

SNR [dB]

M
I[

bi
ts

/s
ym

bo
l] M = 22

M = 24

M = 26

M = 28

M = 210

SB

Figure 3.7.: MI for M -QAM constellation in an AWGN channel

3.4.2. MPSK Constellation

The other modulation format that will be used over the course of this thesis is MPSK,
which places its constellation points ai on rings in the complex plane. The constella-
tions cardinality M = NrNp is defined by the number of rings Nr used and the number
of points per ring Np. The MPSK constellation is constructed as an approximation of
a Gaussian distribution [65]. Examples for such constellations, assuming equidistant
points on equidistant rings, are given in Fig. 3.8.

The MI for several MPSK constellations transmitted over an AWGN channel, are
given in Fig. 3.9.
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Figure 3.8.: MPSK Constellations
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Figure 3.9.: MI for NrxNp MPSK constellation in an AWGN channel.

3.4.3. Bit-Labeling Schemes

Bit labeling defines the mapping of (complex) constellation points ai onto sets of bits
bi. Commonly either dual- or Gray-coding is used for this mapping. If it can be
assumed, that the constellation points are only perturbed by circularly symmetric
AWGN, then gray-coding is shown to be optimal. However, for some of the systems
presented in this thesis, the noise statistics in the modulation domain are not fully
known and thus some other labeling schemes might improve the BER performance.
In the following, the used labeling schemes are shortly reviewed.
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Gray Labeling

Gray-labeling, also called Gray-coding, is a widely applied scheme, used to minimize
the BER in a system in relation to some given symbol error rate (SER), assuming the
constellation symbols are perturbed by AWGN. Gray-labeling ensures that adjacent
constellation symbols are labeled such, that their bit label only differs in one position
[35, Ch.4]. Assuming that the symbols are perturbed by circularly symmetric AWGN,
the most likely error occurs between adjacent symbols. Thus it makes sense to ensure
that in this most likely error-cases, one symbol-error only leads to one bit-error. Note
that, while not always strictly necessary, adjacent here is meant in the euclidian sense.
In Fig. 3.10 two small examples for Gray-labeled constellations are shown.

<{ai}

={ai}

••

• •

11 01

10 00

(a) 4-QAM

<{ai}

={ai}

••• •
1101 1000

(b) 4-PAM

Figure 3.10.: Two Gray-labeled Constellations

Exhaustive Search Labeling

If no assumptions on the nature of the occurring perturbation can be made, Gray-
labeling, using the euclidian distance, might no longer be optimal. Exhaustive search
labeling is not based on any assumptions regarding the noise, other than it being
stationary at least for the time the generated bit-labeling is used. However, it relies
on pilot-data to generate the mapping. Exhaustive search labeling uses all possible
mappings on the set of pilot-data and chooses the labeling that results in the lowest
BER. Note, that this results in the optimum bit-labeling for the pilot-data, but not
necessarily for the payload. The performance thus relies on the amount of pilot-data
available. Additionally, the complexity of exhaustive search labeling grows rapidly
with M and thus the scheme can realistically only be used for constellations with
rather low cardinality. In this thesis, this method is mostly used to get some heuristic
lower bounds to compare other schemes against.
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Greedy Search Labeling

Another heuristic scheme is greedy search labeling. It again uses pilot-data to estimate
the transition probabilities between constellation points. Then pairs of constellation
points are labeled, such that the labels only differ in one position, starting with the
pairs that have the highest transition probability. It can be seen, that this scheme
might lead to some suboptimal decisions, especially in the last few iterations, since
only two constellation points at a time are factored into each decision step. An example
of steps that cause such a sub-optimal case is depicted in Fig. 3.11.
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(a) Step 1 and 2
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• •
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(b) Step 3

Figure 3.11.: Sub-optimal steps in greedy labeling (Probabilities: P1 > P2 > P3)

There are many ways to improve the performance of this rather simple greedy-
algorithm, e.g. by using branching paths to find a better mapping. However, since
mapping schemes are not a main focus of this thesis, the greedy algorithm was not
further augmented to improve its performance.

3.5. Wave-Division Multiplexing Transmission Systems
WDM systems are considered to be the current state-of-the-art for fiber-optic long-haul
transmission [77], [78] and will be used as a baseline for comparison with transmission
schemes presented in sections 4 and 5. The fundamental idea behind WDM is to
multiplex signals in the frequency domain, enabling utilization of the full available
bandwidth, as well as serving several users over the same fiber channel. Bandwidth
itself is commonly assumed to be limited by the bandwidth of amplifiers or electro-
optical converters [40], [79]. While recently there was an increased foray into ultra-
wideband transmission systems, we assume that all described systems are operating
in C-band.
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3.5.1. Transmission and Detection

In the systems TX, constellation symbols ank are modulated onto the transmission
pulse gTX(τ), which again is modulated such, that its spectrum is shifted into some
prescribed frequency channel. This can be formulated as

s(τ) =
Ns−1∑
n=0

Nu∑
k=1

ank · gTX(τ − nTS) · ej2πfkτ , (3.52)

where s(τ) is the transmit signal, Ns is the number of symbols transmitted per user,
Nu is the number of users, ank is the n-th constellation symbol transmitted by the k-th
user, gTX(τ) is the base-band transmission pulse, TS is the symbol duration, and fk is
the center-frequency of the k-th users channel. While the word ’user’ implies that Nu

data-streams for separate TX/RX pairs co-propagate, all Nu channels can be utilized
by a single TX/RX pair as well. The exact network topology does not influence the
modulation/demodulation in the TX/RX. It just might impose some constraints on
the mitigation steps in the RX, as will be seen in section 3.5.3.

The transmission pulse gTX(τ) can be chosen freely, with some being more favorable
than others. In this thesis, the utilized pulse-shape for WDM is the root raised cosine
(RRC). It is often described by its relation to the raised cosine [35, Ch. 9.2.1]. However,
the RRC in time-domain can also be stated explicitly as [80]

gRRC(τ) =


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cos
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[
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(

4βRO
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, (3.53)

where βRO ∈ (0, 1] is the roll-off factor. The exceptions for τ = 0 and τ = ± TS
4βRO

can be shown using L’Hôpital’s rule. Further if βRO → 0 the equation is simplified to
the sinc-pulse. In this case, the second line in the equation has to be ignored since
τ = ± TS

4βRO
is undefined for βRO = 0. Another way to view the limit case βRO → 0 is

that in this case τ = ± TS
4βRO

→ ±∞ and the expression in the second line evaluates to
zero, thus correctly stating the limit-case for τ = ±∞. Parameter βRO has an influence
on the pulses bandwidth which is given by

BRRC = 1
TS

(βRO + 1) . (3.54)
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A small TBP is beneficial in regards to the systems SE, while a larger βRO reduces
inter symbol interference (ISI) e.g. in case of timing-jitter [35, Ch. 9.2.1]. For βRO

Eq. (3.53) is reduced to a sinc-pulse with bandwidth Brrc(βRO = 0) = 1/TS while for
βRO = 1 the occupied bandwidth is doubled. The additional bandwidth for βRO > 0
is called excess bandwidth. Two trains of normalized RRC-pulses for different values
of βRO are depicted in Fig. 3.12.
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Figure 3.12.: RRC pulse-trains for two different roll-off factors βRO.

For the RRC pulse with βRO 6= 0 the pulse is not longer zero at sampling times of
neighboring pulses, resulting in deterministic ISI. However, if a matched-filter is used
at the receiver, the Nyquist-criterion is fulfilled again, for all values βRO > 0.

The frequency spacing, given by fk in Eq. (3.52), has to be chosen such that
channels of width BRRC do not overlap in frequency domain. Assuming, the same
bandwidth is allocated for each user, a depiction of the frequency domain WDM
signal is shown in Fig. 3.13. The additional bandwidth BG is the guard-band and
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Co-propagating channelsCo-propagating channels

BG

Po
we
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f

Figure 3.13.: WDM signal in frequency domain

is used to reduce nonlinear interference between channels during propagation [81] and
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relax the requirements for e.g. receiver filters [82, Ch. 2.3]. The channel bandwidth
BCH = BRRC+BG is the total bandwidth one channel occupies. While in a real system,
each channel in frequency domain is transmitting data, in simulations it is common
to only measure the performance of the COI. The co-propagating channels are often
just used to introduce nonlinear interference.

At the receiver, the transmitted data has to be retrieved from signal r(τ), which
is the signal s(τ) after propagation over some channel. Detection is facilitated by
matched-filtering, such that the received constellation symbol is obtained by [83]

a′
nk =

∫ ∞

−∞
r(τ) · g∗

TX(τ − nTS) · e−j2πfkτdτ, (3.55)

where a′
nk is an estimate of the transmitted symbol ank. It can be seen from Eq. (3.52),

that in order for Eq. (3.55) to be valid, the energy of gTX(τ) has to be normalized
to EgTX = 1. Matched filtering optimized the output SNR at the receiver and thus is
used for detection in WDM systems over the course of this thesis.

3.5.2. Digital Signal Processing

If the transmitted signal s(τ) is propagating e.g. according to the channel governed
by the NLSE, the signal is distorted due to linear and nonlinear effects. Even with-
out considering ASE noise, the deterministic perturbations can severely restrict data-
transmission by e.g. limiting the achievable transmission distance. Mitigation of linear
effects in the physical domain can be done by e.g. introducing dispersion-managed
links [51, Ch. 3.4.3] and there are also ways to combat nonlinear effects [84, Ch. 7.3].
However, DSP is enabling the mitigation of many linear and nonlinear effects at the
receiver, while providing more flexibility since DSP components can be more easily
replaced or reconfigured. In the following, two commonly used mitigation schemes
will be reviewed.

Chromatic Dispersion Compensation

The chromatic dispersion compensation (CDC) algorithm is used to mitigate the effects
of accumulated dispersion at the RX [50, Ch. 8.7.1]. CDC is treating the received
signal as if it would have propagated through the linear channel described by Eq.
(3.5), which is only valid if PS → 0. Thus, the distortions, due to nonlinear effects can
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not be compensated by this method. The received signal is modified according to

ŝ′(ω) = r̂(ω) · ejω2β2L, (3.56)

where x̂(ω) is the Fourier transform of x(τ) and ŝ′(ω) is the received signal after
CDC, which should be similar to the transmitted signal ŝ(ω) for low signal powers and
moderate additional ASE noise.

Digital Back-Propagation

Another commonly used DSP algorithm is digital back-propagation (DBP) [85]. This
algorithm can mitigate dispersive and nonlinear effects jointly, by essentially perform-
ing a SSFM simulation of the inverse fiber channel. The linear and nonlinear param-
eters for the algorithm are given by

D̂dbp =α2 − jβ2

2
∂2

∂τ 2 , (3.57)

N̂dbp =jγ |r(τ, `)|2 . (3.58)

They can be used with each of the SSFM algorithms described in section 3.1.5. Note
that, in the absence of noise and in the limit of ∆` → 0, this method can ideally
compensate the distortions inflicted by the NLSE-channel, assuming a point-to-point
scenario as described in section 3.5.3. In reality, often a rather low number of SSFM
steps per span (Ndbp) suffice to significantly improve the transmission quality for mod-
erate signal powers. Depending on the number of steps used, the complexity of DBP
is rather high compared to other algorithms and might pose a bottleneck to data-
rates or be cost-prohibitive for certain systems [86]. In recent years, there have been
several publications, presenting reduced complexity algorithms for DBP incorporating
e.g. recent advances in the field of deep neural networks [86], [87].

3.5.3. Lower Bounds on Achievable Information Rates

Using the schemes and algorithms presented above, systems for different transmis-
sion scenarios can be studied. In the following, two scenarios, namely point-to-point
transmission and the network case will be studied in terms of their AIRs.
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Point-to-Point Transmission

First, it is assumed that some fiber optic channel, modeled by the NLSE, is used
exclusively by one TX/RX pair. In this case, the signals in each of the respective
channels in the frequency domain, co-propagate for the whole transmission distance.
In Fig. 3.14 the layout of such a system, assuming lumped amplification by EDFAs,
is given. Since all WDM channels are generated by the same TX and co-propagate

TX RX· · ·B B B
Span 1 Span 2 · · · Span Nspans

EDFA EDFA EDFA

Figure 3.14.: Point-to-point optical communication scheme with lumped amplification

over the whole transmission distance, there is information about all WDM channels
available at the RX. Thus, the complete received spectrum can be used by the DBP
algorithm to mitigate nonlinear interactions between WDM channels. As previously
noted, the complexity of this algorithm, which additionally scales with the number of
WDM channels, poses a challenge for real-time implementations [88].

In Figure 3.15 the MI over SNR is given for a system with 16x16 MPSK modulation
and a transmission distance of 20x100km. The noise power considered in the com-
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Figure 3.15.: 16x16 MPSK transmission over 20x100km (Point-to-point).

putation of the SNR is only including the ASE noise added by the amplifiers. More
details on the specific system parameters can be found in Tab. C.1 in the appendix.
It can be seen that, the peak of the curves shift towards higher values if the number
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of steps for the DBP algorithm is increased. This effect saturates for high values, as
can be seen for Ndbp = 30 and Ndbp = 50. The peak itself illustrates the fact that,
in fiber optical communication systems using WDM, there is a nonlinear limit that
results in an optimum launch-power for signals. This effect is not present in e.g. linear
systems with additive noise. Note, that this nonlinear limit can not be overcome by
algorithms such as DBP even if Ndbp → ∞. While this would ideally mitigate linear
and nonlinear perturbations in the noiseless case, the signal noise interaction can not
be fully overcome even in this limit case. Thus, at least for the presented system, the
described decrease in MI for high powers due to fiber nonlinearities poses a funda-
mental limit. Further, the peak shifts towards higher powers for more steps per span
in the DBP algorithm. The optimum launch-power is also affected by other system
parameters, e.g. by span length Nspan. More results for other sets of parameters, can
be found in the appendix in section D.1.

The Network Case

The network case differs from point-to-point transmission in the assumption, that
the receiver has no information about the channels co-propagating with the COI. A
depiction of such a network case scenario is given in Fig. 3.16. Here, several TX/RX

TX

RX

TX

RX

TX

RX

ROADM

Figure 3.16.: Network scenario optical communication system

pairs share a network of fiber optic channels linked by reconfigurable optical add-drop
multiplexers (ROADMs). The COI might thus co-propagate with other signals for a
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certain distance, to then be redirected and co-propagate with another set of signals.
As a result, the RX for the COI is assumed to have no information about other WDM-
channels and can only utilize the COI for nonlinearity mitigation by e.g. DBP. The
DBP algorithm can no longer mitigate the nonlinear interactions between the COI and
potential co-propagating signals. In Fig. 3.17 the MI over SNR is given for a system
identical to the point-to-point results shown in Fig. 3.15, using only the COI in the
DBP algorithm. While the shown curves exhibit a similar behavior to the point-to-
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Figure 3.17.: 16x16 MPSK transmission over 20x100km (Network case).

point case, the achievable peak-values are lower in comparison. This is due to the fact,
that nonlinearity is compensated less effectively, because the information about the
co-propagating channels is not available. It can also be seen, that the gain achieved
by using the DBP algorithm saturates for a lower number of steps per span. Similar
to the point-to-point case, more results for the network case scenario with altered
parameters, can be found in the appendix in section D.1.
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4
The Nonlinear Fourier Transform for
Single-Mode Fiber Channels

The main focus of this thesis is the implementation and study of NFT-aided communi-
cation systems. In reference to WDM systems, this type of transmission is also called
nonlinear frequency division multiplexing (NFDM), indicating that data-streams can
be multiplexed in the NFD accessed via the NFT and its inverse. The NFT originated
as a tool to solve certain integrable partial differential equations [43]. The transform
itself is channel-dependent and thus has to be explicitly developed for a fixed chan-
nel model. In this section, the NFT will be studied for the scalar, deterministic and
lossless NLSE channel. Some results and insights are subsequently expanded for a
multi-mode channel model in Chapter 5.

The transformations enable the treatment of signals in the NFD, in which the signals
nonlinear frequency components do not interact with each other during propagation.
Equalization of the intricate interplay between dispersion and nonlinearity in time
domain is thus effectively dealt with, by inverting some multiplicative channel transfer
function in the NFD. Thus, the relationship between the nonlinear channel and its
NFT is analog to the relationship between the standard Fourier transform (FT) and
linear convolutional channels. The concept of the NFT was called inverse scattering
transform (IST) when it first was extensively studied in the 80s [89], [90]. While some
authors still use the term IST up to this day [91], [92], the term NFT will be used
over the course of this thesis, since it currently is widely adopted in literature and also
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highlights the previously mentioned relation to the classic FT.

In the following, the mathematical basics for the NFT and its inverse will be in-
troduced. Subsequently, some useful properties and closed form solutions for special
signals will be given. A big portion of this section will then deal with the different al-
gorithms that can be used to numerically implement the transformations. The chapter
is concluded with several sections on special topics regarding the NFT and adjacent
concepts and systems.

4.1. Basic Concept and Transformations

The scalar, deterministic and lossless NLSE channel is given by Eq. (3.1), neglecting
the loss term on the right side of the equation. To simplify all further steps, Eq. (3.1)
is normalized, such that it can be stated as [43]

jqz(t, z) = qtt(t, z) + 2|q(t, z)|2q(t, z), (4.1)

where q(t, z), t, z are the normalized versions of Q(τ, `), τ , ` from Eq. (3.1). The z
and t suffixes symbolize partial derivatives, such that e.g. qtt(t, z) = ∂2q(t, z)/∂t2. For
the sake of brevity, this shorthand notation will be used in the following derivations.
The normalization step above is done using

T0 =
√

|β2|L0

2 , (4.2)

P0 =
√

2
γL0

, (4.3)

with
q(t, z) = Q(τ, `)

P0
, t = τ

T0
, z = `

L0
. (4.4)

It can be seen, that one of the normalization parameters T0, P0 and L0 can be chosen
freely. Note, that in Eq. (4.1) it is assumed, that the channel is in the focusing regime
(sgn(β2) = −1). This will be the prevalent assumption over the course of this thesis,
since it allows for the generation of solitonic signals, which are discussed in detail in
section 4.3.
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4.1.1. Lax Pairs for Nonlinear Evolution Equations

The existence of a Lax pair [18] for the chosen channel model is a necessary basis for
the development of the NFT. We start by stating [90, Ch. 1.2]

L(z)v(λ, t, z) =λv(λ, t, z), (4.5)
vz(λ, t, z) =M(z)v(λ, t, z). (4.6)

L(z) is some operator parameterized by z for which Eq. (4.5) is the spectral problem,
λ are components of spectrum σ(L(z)) and v(λ, t, z) are the corresponding eigenfunc-
tions. Operator M(z), also parameterized by z, governs the spatial evolution of the
eigenfunctions of L(z) as stated in Eq. (4.6). Further, operator L(z) is similar to a
multiplication operator Λ, satisfying the similarity transform [45, Ch. 2.7]

L(z) = G(z)ΛG(z)−1, (4.7)

for some operator G(z)

Taking the z-derivative of Eq. (4.7) and using Eq. (4.6) the Lax equation [18]

Lz(z) = M(z)L(z) − L(z)M(z) = [M(z),L(z)]. (4.8)

can be obtained. The operation [·, ·] is called the commutator brackets. According to
[43, Lemma 1], σ(L(z)) is independent of z if L(z) fulfills Eq. (4.8). Operator L(z)
is thus isospectral. A pair of operators {L(z), M(z)} is called a Lax pair, if it fulfills
Eq. (4.8). A more detailed derivation of Eq. (4.8) can be found in appendix A.1, also
yielding the relation M(z) = Gz(z)G−1(z).

If operators {L(z), M(z)} are now chosen in a suitable manner, Eq. (4.8) contains
a nonlinear evolution equation of the form

qz(t, z) = K(q(t, z)). (4.9)

Function K(·) can generate terms, which are dependent on q(t, z) and its temporal
derivatives. The challenge is to find a pair of suitable operators for the evolution
equation of interest. The Lax pairs for the nonlinear evolution equations studied in
this thesis are given explicitly in sections 4.1.3 and 5.1 respectively. Note, that in some
publications, including the initial paper by Lax [18], the role of temporal and spacial
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parameters are switched. Nonetheless the definition shown above is adopted, since it
is more prevalent in literature on optical communications.

4.1.2. The Zero-Curvature Condition

Using the Lax equation is one way to retrieve nonlinear evolution equations from a
chosen Lax pair. Another relation that can be used is the zero-curvature condition.
Starting from the temporal propagation equation for eigenfunctions of L(z)

vt(λ, t, z) = P(z)v(λ, t, z) (4.10)

with some operator P(z) and Eq. (4.6), the zero curvature condition can be obtained
by equating the spatial derivative of Eq. (4.10) with the temporal derivative of Eq.
(4.6) [90, Ch. 1.2]. The zero curvature condition is

Pz − Mt + [P,M] = 0. (4.11)

In the following, the z-dependencies of operators are sometimes omitted for the sake
of brevity. If the operators P, M are chosen correctly, the zero-curvature condition
once again contains a nonlinear evolution equation e.g. the NLSE [93, Ch. 1.2]. More
importantly, Eq. (4.10) is a linear propagation equation for the eigenfunctions, that
is important in the development of the NFT in later sections.

As will be seen in the next section, the operators L(z) and P(z) for the NLSE from
Eqs. (4.14) and (4.15) can be related by straightforward algebraic manipulation of Eq.
(4.5). There also is the more general relation [43]

P = Σ(L − λI) + DI, (4.12)

where Σ is some invertible operator and D = d
dt . It can be obtained, by rearranging

and equating Eqs. (4.5) and (4.10). More details on the derivations of Eqs. (4.11)
and (4.12) can be found in section A.2 in the appendix.
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4.1.3. The Zakharov-Shabat System

For many equations that have practical significance the operator L(z) takes on the
form of [15], [43], [89]

L(z) = j
 D −r(t, z)
s(t, z) −D

 (4.13)

For the NLSE r(t) = −q(t) and s(t) = −q(t)∗ yields operator [43]

L(z) = j
 D −q(t, z)

−q∗(t, z) −D

 . (4.14)

For this particular case, the operator P(z) can be found by rearranging Eq. (4.5),
after setting the operator to Eq. (4.14). It has the form

P(z) =
 −jλ q(t, z)

−q∗(t, z) jλ

 . (4.15)

If the definitions above are used in Eq. (4.11) and the result is compared to Eq. (4.1),
the spatial propagation operator for the eigenvectors is found to be

M(z) =
 2jλ2 − j|q(t, z)|2 −2λq(t, z) − jqt(t, z)

2λq∗(t, z) − jq∗
t (t, z) −2jλ2 + j|q(t, z)|2

 . (4.16)

Utilizing Eq. (4.10) and (4.15) the Zakharov-Shabat (ZS) system is given by [15]

vt(λ, t, z) = P(z)v(λ, t, z) =
 −jλ q(t, z)

−q∗(t, z) jλ

 v1(λ, t, z)
v2(λ, t, z)

 , (4.17)

where vi(λ, t, z) are the entries of v(λ, t, z). Eq. (4.17) is the basis for the development
of the NFT for the scalar NLSE channel.

4.1.4. Boundary Conditions and the Wronskian

The NFT transformation is always done for some specific spatial value z. Thus, the
z-dependence of quantities is omitted in the following. To find a set of boundary
conditions for the ZS system, some assumptions on q(t) have to be made. Function
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q(t) here plays the role of the signal pulse transmitted over the fiber optic channel.
Thus, restricting the pulses energy to finite values and requiring the pulse to decay
sufficiently fast for t → ∞ is reasonable. The imposed restrictions are [43], [90]

∞∫
−∞

|q(t)|2 < ∞ (4.18)

q(t) → 0 for |t| → ∞. (4.19)

Note, that it is also possible to derive a NFT for periodic boundary conditions as
detailed in [94], [95]. However, over the course of this thesis the conditions from Eqs.
(4.18) and (4.19) apply. This results in Eq. (4.17) having form

lim
|t|→∞

vt(λ, t) =
 −jλ 0

0 jλ

v(λ, t), (4.20)

for |t| → ∞ and thus its closed form solution at this limit is

lim
|t|→∞

v(λ, t) =
 c1 · e−jλt

c2 · ejλt

 . (4.21)

The components λ of spectrum σ(L) can attain any value in the complex plane and
thus have the form λ = ξ + jη with ξ, η ∈ R. For now it is assumed that λ ∈ R is on
the real line and thus, the boundary conditions can be defined as

φ(λ, t) →

 1
0

 e−jλt for t → −∞, (4.22)

φ̄(λ, t) →

 0
−1

 ejλt for t → −∞, (4.23)

ψ(λ, t) →

 0
1

 ejλt for t → ∞, (4.24)

ψ̄(λ, t) →

 1
0

 e−jλt for t → ∞, (4.25)

where {φ(λ, t), φ̄(λ, t),ψ(λ, t), ψ̄(λ, t)} are called the Jost solutions of the ZS system.
Note that in this step different boundary conditions can be used. This would result
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in slight differences in the transformations, but would not impede the functionality of
the transformation itself. Since the review of the basics of the NFT is presented along
the lines of [90], the boundary conditions from the respective source are adopted.

The Wronskian W(·, ·) of two functions v(λ, t) = [v1(λ, t), v2(λ, t)]T and w(λ, t) =
[w1(λ, t), w2(λ, t)]T is defined as

W(v(λ, t),w(λ, t)) = v1(λ, t)w2(λ, t) − v2(λ, t)w1(λ, t) (4.26)

It can be shown that, if v(λ, t) and w(λ, t) are solutions of (4.17), the Wronskian is
independent of time and thus [90]

d
dtW(v(λ, t),w(λ, t)) = 0. (4.27)

This can be shown, by first showing dW(v(λ, t),w(λ, t))/dt = W(vt(λ, t),w(λ, t)) +
W(v(λ, t),wt(λ, t)) and then using Eq. (4.17) with this result. A detailed proof is given
in [43, Lemma 2]. Looking at Eq. (4.26), one can also see that W(v(λ, t),w(λ, t)) 6= 0
is a criterion for linear independence of the two solutions.

4.1.5. Nonlinear Fourier Coefficients in the Complex Plane

It can be seen from Eqs. (4.22) to (4.25) that, W(φ(λ, t), φ̄(λ, t)) = −1 as well as
W(ψ(λ, t), ψ̄(λ, t)) = −1. Thus {φ(λ, t), φ̄(λ, t)} and {ψ(λ, t), ψ̄(λ, t)} form linearly
independent sets and can be used in the projection equations

φ(λ, t) =a(λ)ψ̄(λ, t) + b(λ)ψ(λ, t) (4.28)
φ̄(λ, t) = − ā(λ)ψ(λ, t) + b̄(λ)ψ̄(λ, t) (4.29)

to define the scattering coefficients {a(λ), b(λ), ā(λ), b̄(λ)}. From the property given
in Eq. (4.27) and

W(φ(λ, t),ψ(λ, t)) =a(λ) (4.30)
W(φ̄(λ, t), ψ̄(λ, t)) =ā(λ) (4.31)
W(φ(λ, t), ψ̄(λ, t)) = − b(λ) (4.32)
W(φ̄(λ, t),ψ(λ, t)) =b̄(λ) (4.33)
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one can see that the scattering coefficients are time independent. Thus, the time
instance to compute the scattering coefficients can be chosen freely, as long as all Jost
solutions are available for the respective value of t. It is convenient to choose t → ∞,
since ψ(λ, t) and ψ̄(λ, t) are given by Eqs. (4.24) and (4.25). In most cases, it is
sufficient to only obtain {a(λ), b(λ)}, using Eq. (4.28). Thus, the boundary condition
in Eq. (4.22) has to be propagated to t → ∞. Coefficients {a(λ), b(λ)} are called the
nonlinear Fourier coefficients.

Eqs. (4.28) and (4.29) are well defined as long as λ ∈ R. If this assumption is
relaxed, assuming that now λ = ξ + jη with η > 0 can be any point in the positive
complex halfplane C+, it can be shown that ejλtφ(λ, t) and e−jλtψ(λ, t) are analytic
functions of λ ∈ C+ [89, Ch. IV.A]. Thus, a(λ) is analytic in C+ as well (see Eq.
(4.30)). It can be shown, that ā(λ) is analytic in C−. It is not necessary for b(λ) and
b̄(λ) to be analytic anywhere, but it can be shown that if function q(t) decays faster
than C1e−2C2|t| for some constants C1 and C2, then b(λ) and b̄(λ) are analytic for values
λ = ξ+jη satisfying C2 > η > −C2 [90, Ch. 1.3]. The treatment of the given functions
analyticity is rather involved and many subtleties do not come up in the practical use
of the derived transformations. Thus, further necessary results regarding the nonlinear
Fourier coefficients in C will be given in the following, without stating details on their
derivations. The interested reader is referred to the in-depth treatments presented in
respective literature cited below.

Since a(λ) is analytic in C+, any value λk with 1 ≤ k ≤ K for which a(λk) = 0 must
be an isolated point [96, Theorem 8.14] and K is in general finite [89, Ch. IV.A]. For
a pulse q(t) with sufficient energy there thus exist finitely many discrete eigenvalues
λk for which Eq. (4.28) is bounded and simplified to

φ(λk, t) =b(λk)ψ(λk, t). (4.34)

A similar observation can be made for ā(λ) and Eq. (4.29) in the negative complex
half-plane C−. Further, for the ZS system, for any discrete eigenvalue λk ∈ C+ there
exists a discrete eigenvalue λk∗ ∈ C− [43, Lemma 2]. Thus, it is sufficient to consider
the real line λ ∈ R and the discrete eigenvalues in the positive complex half-plane
λk ∈ C+. Over the course of the thesis, it will also be assumed that all zeros of a(λ)
in the positive complex half-plane are simple. This can be justified, since the signals
used in later transmission scenarios are constructed, such that they always fulfill this
assumption. For more information on zeros of higher multiplicity, the interested reader
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is referred to [90], [97].

4.1.6. The Nonlinear Fourier Spectra

Looking at Eqs. (4.28) and (4.29), it can be seen that, if e.g. the equations are
evaluated for t → ∞, the boundary conditions for t → −∞ have to be propagated
towards infinity. This makes them interact with the pulse q(t) at finite values, which
alters the resulting nonlinear Fourier coefficients {a(λ), b(λ)}. While not apparent
immediately, it can be shown that the nonlinear Fourier coefficients contain ”complete”
information about the pulse q(t) and knowledge of {a(λ), b(λ)} is sufficient to recover
pulse q(t) [43, Sec. VII]. Further, to fully reconstruct q(t) it even suffices to just have
knowledge about the following two quantities. The first quantity is the continuous
nonlinear spectrum

qc(λ) = b(λ)
a(λ) . (4.35)

which is defined on the whole real line λ ∈ R.
The second part consists of the discrete eigenvalues λk in the positive complex half-

plane C+. The corresponding discrete spectral amplitudes are defined as

qd(λk) = b(λk)
aλ(λk)

, (4.36)

for a set of discrete eigenvalues λk for 1 ≤ k ≤ K < ∞, where aλ(λk) = da(λ)
dλ

∣∣∣
λ=λk

.
Since only simple zeros of a(λ) are considered and it is assumed that the pulse q(t)
decays sufficiently fast, such that b(λ) is analytic for all λk with 1 ≤ k ≤ K, the
equation for the discrete spectral amplitudes in Eq. (4.36) can directly be derived
from Eq. (4.35) and the relation for the residue Res

λ=λk
(b(λ)/a(λ)) = b(λ)/aλ(λ) [96,

Proposition 9.14].
Note, that even though λ is part of the spectrum of L, the quantities qc(λ) associated

with λ are called the continuous nonlinear spectrum. Similarly, the discrete nonlin-
ear spectrum, consists of the discrete eigenvalues λk and either the discrete spectral
amplitudes qd(λk) or the values b(λk), depending on the exact definition used. While
not immediately intuitive, this nomenclature is widely used in publications in the field
and thus adopted in this thesis.

The continuous nonlinear spectrum represents the radiative part of the function q(t),
which does not show solitonic behavior during propagation. The discrete nonlinear
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spectrum corresponds to the solitonic part of the pulse q(t). This solitonic component,
while it may periodically change shape during propagation, will not become infinitely
broad even if the signal is transmitted for an infinite distance. Rather, the pulses
energy will remain temporally confined on a finite temporal support. A more in-depth
look at this behavior is taken in section 4.3.

4.1.7. The Lax Convolution Channel

Similarly to how, for linear systems, the influence of the channel on the signal at the
receiver (z = L) can be described by a convolution of the signal at the transmitter
(z = 0) with the channels impulse response h(t), the Lax convolution channel [43, Sec.
III] can be used to describe communication over an integrable [98] channel, such as
the fiber-optic communication channel, modeled by equation (4.1). Using a similar
notation, the received signal can be described by Lax convolution

q(t, z = L) = q(t, z = 0) ∗ (L(z),M(z); L) (4.37)

where (L(z),M(z); L) denotes the integrable system by its respective Lax pair and
propagation distance. Another way to signify this is given in Fig. 4.1. An elaborate

Lz(z) = [M(z),L(z)]
q(t, z = 0) q(t, z = L)

Figure 4.1.: Integrable system defined by a Lax convolution

discussion on what constitutes an integrable communication channel can be found in
[99]. Over the course of this thesis, we will assume that as long as the noise introduced
into the deterministic NLSE channel is small enough, we can still assume integrability
of the optical fiber channel [43].

4.1.8. The Nonlinear Fourier Transform

The NFT is a transformation from the time domain to the nonlinear frequency do-
main, yielding the nonlinear Fourier spectrum, which is often separated into two
disjoint parts, namely the continuous (qc(λ)) and the discrete nonlinear spectrum
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({qd(λk), λk}). The transformation is defined as

NFT(q(t)) = {qc(λ), qd(λk), λk} for λ ∈ R, λk ∈ C+, 1 ≤ k ≤ K. (4.38)

Similarly, the inverse nonlinear Fourier transform (INFT) from the nonlinear frequency
domain to the time domain is defined as

INFT({qc(λ), qd(λk), λk}) = q(t). (4.39)

For certain pulses, only certain parts of the nonlinear spectrum are present. If a pulse
does not have any non-zero components in the continuous spectrum (qc(λ) = 0 ∀λ ∈ R)
but has at least one discrete eigenvalue, the resulting time-domain pulse is called
discrete spectrum pulse and will always be a solitonic solution of Eq. (4.1). On the
other hand, if a pulse does not have a discrete spectrum, i.e. there are no λk ∈ C+

for which a(λk) = 0, but at least some values of qc(λ) on the real line are non-zero,
the pulse is called continuous spectrum pulse, being a purely radiative solution of the
NLSE. In the most general case, where discrete eigenvalues exist in the upper-half
complex plane and qc(λ) has non-zero components, the pulse consists of radiative and
solitonic components. If no discrete eigenvalues exist and the continuous spectrum
is zero everywhere on the real line, the pulse will be the zero pulse (q(t) = 0 ∀ t).
This last relation will also become obvious from the energy considerations presented
in section 4.2.3. While the composition of a pulses nonlinear spectrum will influence
the choice of algorithms to use, the notation (NFT(·), INFT({·, ·, ·})) above is used
for all described cases.

4.2. Properties of the Nonlinear Spectra
Some fundamental properties of the NFT for the NLSE were already given in section
4.1. In the following, some other useful properties are discussed and presented. A big
portion of the shown material is directly taken from [43] and [90]. The reader is thus
referred to this sources for most of the proofs and a more in-depth treatment.

4.2.1. Phase, Time and Frequency Shifts

Similar to the standard FT, relations for the influence of phase, time and frequency
shifts on the nonlinear Fourier spectrum can be obtained.
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Constant Phase Change

This property relates the effect of a constant phase change in time domain to the
nonlinear spectra. For some constant phase ϕ and continuous and discrete nonlinear
spectra {qc(λ), qd(λk), λk} related to q(t), it can be shown that [43, Sec. 4.D, App. B]

NFT
(
e−jϕq(t)

)
=
{
ejϕqc(λ), ejϕqd(λk), λk

}
. (4.40)

Note that the nonlinear spectral amplitudes {qc(λ), qd(λk)} are affected by an inverse
phase shift and the discrete eigenvalues λk are not altered by the phase change.

Time Shift

If q(t) is shifted in time by some fixed value t0, the corresponding nonlinear spectra
are modified according to [43, Sec. 4.D, App. B]

NFT (q(t− t0)) =
{
e−2jλt0qc(λ), e−2jλkt0qd(λk), λk

}
. (4.41)

Frequency Shift

Similarly, if the time domain signal q(t) is shifted by some fixed value ω0 in the linear
frequency domain, the corresponding nonlinear spectra are changing according to [43,
Sec. 4.D, App. B]

NFT
(
q(t)e−2jω0t

)
= {qc(λ− ω0), qd(λk − ω0), λk − ω0} . (4.42)

4.2.2. The Layer-Peeling Property

The layer-peeling property can be used to compute joint nonlinear Fourier coefficients
for temporally non-overlapping functions. It is most prominently utilized in the layer-
peeling algorithm presented in section 4.4.1. If two time domain signals q1(t), q2(t) can
be represented by the nonlinear Fourier coefficients {a1(λ), b1(λ)} and {a2(λ), b2(λ)}
and have disjoint supports [t1, t2], [t2, t3] respectively, the joint signal q(t) = q1(t)+q2(t)
is represented by nonlinear Fourier coefficients {a(λ), b(λ)}, which can be computed
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according to [27]

{a(λ), b(λ)} ={a1(λ), b1(λ)} ◦ {a2(λ), b2(λ)}
={a1(λ)a2(λ) − b1(λ)b∗

2(λ∗), a1(λ)b2(λ) + b1(λ)a∗
2(λ∗)}. (4.43)

4.2.3. The Trace Formula

The trace formula [43, App. B] gives conserved quantities for the time-domain signal
q(t). The first three conserved quantities are the energy, momentum and Hamiltonian
and are given by [27, Sec. 4.A]

C(1) =
∞∫

−∞

|q(t)|2 dt, (4.44)

C(2) = 1
2j

∞∫
−∞

q(t)dq∗(t)
dt dt, (4.45)

C(3) =
∞∫

−∞

−1
4

|q(t)|4 −
∣∣∣∣∣dq(t)dt

∣∣∣∣∣
2
 dt. (4.46)

These quantities can be related to the following quantities, derived for the continuous
and discrete nonlinear spectrum, according to C(i) = C

(i)
cont +C

(i)
disc using [100], [90, Ch.

1.6]

C
(i)
cont = 1

π

∞∫
−∞

λi−1 log(1 + |qc(λ)|2)dλ, (4.47)

C
(i)
disc =4

i

K∑
k=1

={λik}. (4.48)

In many cases, the energy relation is the most useful and can be explicitly stated as

∞∫
−∞

|q(t)|2 dt = 1
π

∞∫
−∞

λi−1 log(1 + |qc(λ)|2)dλ
︸ ︷︷ ︸

Cont. Spectrum

+ 4
i

K∑
k=1

={λik}︸ ︷︷ ︸
Disc. Spectrum

, (4.49)

where Eqs. (4.47) and (4.48) were used with i = 1. The above equation is frequently
used to check if the energy of the nonlinear spectrum, generated by some NFT algo-
rithm, approximately matches the energy of the time-domain pulse. This could e.g.
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indicate the success or failure of a numerical transformation and is especially useful
for the computation of discrete eigenvalues, as will be discussed in section 4.4.2. A
more in-depth treatment of conserved quantities of the time-domain signal and the
respective nonlinear spectra is given in [90, Ch. 1.6].

4.2.4. Propagation of Nonlinear Spectra in the NLSE Channel

Time domain signal q(t), propagating in the NLSE channel is subject to an intricate
interplay between dispersion and nonlinearity. One of the primary advantages, of
treating the propagating signal through its nonlinear spectrum, is that the influence
of the NLSE channel on q(t), can be captured by the simple relations

qc(λ, z) =e−4jλ2zqc(λ, 0), (4.50)
qd(λk, z) =e−4jλ2

kzqd(λk, 0), (4.51)
b(λk, z) =e−4jλ2

kzb(λk, 0). (4.52)

The relation between time domain and NFD is depicted in Fig. 4.2. It can be seen,

NLSEq(t, z = 0) q(t, z = L)

e−j4λ2L
qc(λ, z = 0)
qd(λk, z = 0)

qc(λ, z = L)
qd(λk, z = L)

NFT INFT

Figure 4.2.: NLSE channel in time and nonlinear frequency domain.

that the nonlinear spectral components for each nonlinear frequency λ propagate in-
dependently, while the nonlinear frequencies, including the discrete eigenvalues λk, are
constant in z, as already discussed in section 4.1.1. This enables the joint equalization
of nonlinearity and dispersion, by inverting the multiplicative channel response in the
NFD. This compensation scheme exhibits very low complexity, as long as it is assumed
that the nonlinear spectra are readily available, due to e.g. effective transformation
algorithms. While this thesis does not have an explicit focus on the comparison be-
tween e.g. WDM and NFDM schemes in terms of their complexity, it is still important
to note, that in order to outperform traditional WDM the SE of an NFDM system
has to surpass WDM, while the whole transmission scheme, including the transforma-
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tions, exhibits comparable or smaller complexity than the respective WDM system.
In recent years, some low complexity algorithms for the NFT and their inverse were
published [30], [31], [101], [102].

4.3. Special Solutions

In most cases, it is not feasible to compute the NFT or its inverse analytically. For
these general cases, several numerical algorithms exist, that will be discussed in detail
in section 4.4. However, there are analytic expressions for the nonlinear spectrum of
some specific signals. In the following, some well known examples will be presented,
as the results are useful either to find numerically favorable algorithms for the trans-
formations, or to serve as a way to evaluate the accuracy of existing transformations
in later sections.

4.3.1. The Rectangular Pulse

For the NFT of the rectangular pulse

qrec(t) =
 A, t ∈ [t1, t2]

0, else
, (4.53)

where Trec = t2 − t1 is the pulse-width and A is the pulses amplitude, some closed-
form expressions can be found. For some fixed distance z, the operator P(z) = P is
constant on interval [t1, t2]. Thus, the vector φ(λ, t) can be computed in closed form
using Eq. (4.17). This results in

φ(t, λ) =e(t−t1)Pφ(t1, λ), t ∈ [t1, t2], (4.54)

where the boundary condition for t1 is φ(t1, λ) = [1, 0]Te−jλt1 . Outside of interval
[t1, t2], the pulse is zero and thusψ(λ, t2) = [0, 1]Tejλt2 . Vector φ(t2, λ) = eTrecPφ(t1, λ),
where constant P is a 2x2 matrix and thus the matrix exponential is given by a power-
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series. The matrix-exponential can be computed in closed form, yielding [43, Sec. 4.C]

eTrecP =exp
 −jλ A

−A∗ jλ

Trec


=
 cos(∆Trec) − j λ∆ sin(∆Trec) A

∆ sin(∆Trec)
−A∗

∆ sin(∆Trec) cos(∆Trec) + j λ∆ sin(∆Trec)

 , (4.55)

with ∆ =
√
λ2 + |A|2. Using the results above and Eq. (4.28), the nonlinear Fourier

coefficients are given by

a(λ) =
(

cos(∆Trec) − j λ∆ sin(∆Trec)
)

ejλTrec , (4.56)

b(λ) = −A∗

∆ sin(∆Trec)e−jλT ′
rec , (4.57)

with T ′
rec = t2 + t1.

Using Eq. (4.35), the continuous spectrum of the rectangular pulse is

qc(λ) = A∗e−2jλt2 (jλ− ∆ cot(∆Trec))−1 . (4.58)

The discrete eigenvalues can be found by setting Eq. (4.56) to zero and evaluating
relation

j tan
(
Trec

√
|A|2 + λ2

k

)
=
√

1 + |A|2
λk

2 , (4.59)

which has to be satisfied by all discrete eigenvalues of the rectangular pulse. Since
there is some intricacy linked to the details of square roots of complex values, note
that, in the definition of ∆ as well as in Eq. (4.59) the square root of a complex
number is the principal square root defined according to

√
z =

√
r · ejϕ2 , where r is the

amplitude and ϕ is the phase of complex number z. The discrete spectral amplitudes
can be computed, using Eq. (4.36) and the λ-derivative of Eq. (4.56)

aλ(λk) = jTrec (cos(∆Trec)Π + si(∆Trec)Π) ejλkTrec , (4.60)

where Π = 1 − λk
2/∆2 and si(x) is

si(x) =
 1 for x = 0

sin(x)
x

for x 6= 0
. (4.61)
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In Fig. 4.3 the time domain pulse and its corresponding nonlinear spectrum is
plotted for three different amplitudes. For the smallest amplitude A = 1 there are no
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Figure 4.3.: Rectangular pulse and corresponding spectra for different values of A.

discrete eigenvalues. For higher values more and more discrete eigenvalues appear in
the upper half complex plane.

4.3.2. The Fundamental Soliton

Another widely known pulse-shape, for which the nonlinear spectrum is known ana-
lytically, is the fundamental soliton. Its temporal description is [90], [103]

qfs(t, z) = −je−jϕ1e−j4(ζ2
1 −η2

1)ze−j2ζ1t2η1 · sech
(

2η1t+ 8ζ1η1z − ln
(

|qd(λ1)|
2η1

))
, (4.62)

where the only discrete eigenvalue is λ1 = ζ1 +jη1. The corresponding discrete spectral
amplitude is qd(λ1) = |qd(λ1)|e−jϕ1 . The above equation for the fundamental soliton
can be retrieved, by evaluating the first iteration of the Darboux method, described
in section 4.4.6. The center of this pulse is given by t0 = ( 1

2η1
) ln

(
|qd(λ1)|

2η1

)
− 4ζ1z

and thus for a purely imaginary eigenvalue λ1 = jη1, the pulse is centered at zero if
|qd(λ1)| = 2η1.

In Fig. 4.4 the fundamental soliton is shown for several sets of parameters. Fig.
4.4a shows an ideally centered soliton with varying purely imaginary eigenvalues. Fig.
4.4b shows fundamental solitons with eigenvalues with a non-zero real part (ζ1 = 1)
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for different values of z and Fig. 4.4c shows pulses with λ1 = j2 and varying values
|qd(λ1)|. It can be seen from Eq. (4.62) and Fig. 4.4, that fundamental solitons
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Figure 4.4.: Fundamental Solitons

in general retain their shape during propagation. Fundamental solitons with purely
imaginary eigenvalues (λ1 = jη1) also have the additional property, that they do not
drift in t during propagation (compare e.g. Fig. 4.4a and 4.4b). This property makes
these pulses especially convenient to work with in simplified transmission scenarios
and measurement algorithms as will be seen in e.g. section 4.10. Note, that the
effects visible in Figs. 4.4b occur even though the denormalized temporal coefficient τ
signifies retarded time, such that the usual co-propagating time-window representation
is obtained in Eq. (3.1). This however only results in pulses that do not drift out of
the allotted time window if the discrete eigenvalues used are purely imaginary. Thus,
for e.g. the pulses in Fig. 4.4b, the soliton does drift from its initial position for z 6= 0
because of the non-zero real part. On the other hand, the pulses in Fig. 4.4c do not
drift for z 6= 0. Instead, they retain their position in the time-slot, with their position
being modulated using |qd(λ1)|. This could e.g. be used to facilitate a pulse-position
modulation (PPM) scheme with modulation in the nonlinear Fourier domain.

In general, it is not straightforward to develop analytic statements about the tempo-
ral and linear spectral width of pulses generated using the NFT. For the fundamental
soliton however, it is feasible and the results are given in the following.
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4.3. Special Solutions

Temporal Width

The fundamental soliton has infinite temporal width, so an auxiliary width measure-
ment is defined according to the percentage of energy p that is retained inside width
Tp. The width can be determined using Eq. (4.49) and (4.62) in

Efsp = 4η1p =
Tp/2+t0∫

−Tp/2+t0

|qfs(t, z)|2dt, (4.63)

where t0 is the pulse-center and Efs is the total pulse energy as given by Eq. (4.48).
Solving this equation for temporal width Tp yields

Tp = arctanh(p)
η1

. (4.64)

A detailed derivation of this and the following properties is given in appendix A.3

Bandwidth

The bandwidth with respect to the standard Fourier transform can be obtained by
similar means. Using Parsevals theorem [34] to state

Efsp = 4η1p =
Bp/2+f0∫

−Bp/2+f0

|F{qfs(t, z)}|2df, (4.65)

where f0 is the pulses linear center-frequency and solving for Bp, the relation

Bp = 4η1

π2 arctanh(p), (4.66)

can be obtained.

Time-Bandwidth Product

With Eqs. (4.64) and (4.66), the TBP can be computed by

TBP(p) = Tp ·Bp = 4
π2 arctanh2(p). (4.67)
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While temporal width and bandwidth are dependent on η1, the TBP is independent
of the imaginary part of the solitons discrete eigenvalue. Note, that for fundamental
solitons a finite TBP can only exist for pulses truncated in time and linear frequency
domain according to factor p. This differs from the definition used for linear modu-
lation schemes using e.g. RRC pulses with matched filters, where the bandwidth is
finite and the temporal width is defined such that the pulses, when sampled correctly
do not interfere with each other under the assumption of an ideal channel. The defini-
tion for the linear modulation scheme can be used to answer questions regarding e.g.
transceiver design more directly compared to the results obtained for fundamental soli-
tons in Eqs. 4.64, 4.66 and 4.67. Nonetheless, the results are a useful starting point for
the design of soliton transmission systems. A more detailed discussion of the practical
use of the obtained parameters can be found in section 4.5, where a more practical
metric for time support and bandwidth requirements for specific system setups is de-
veloped as well. Fig. 4.5 depicts the TBP of a fundamental soliton over the retained
energy percentage p. A time-bandwidth product of TBP = 1 is reached for p ≈ 0.9172.
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Figure 4.5.: Time-Bandwidth Product of Fundamental Soliton

For soliton based transmission systems, this is considered a rather low value, leading
to considerable distortions of the corresponding nonlinear spectrum. Note, that the
TBP shown in Fig. 4.5 is identical to the commonly used TBP for linear systems in
the sense that it does not have to be denormalized, since the normalization coefficient
(see Eq. (4.2)) is canceled out in Eq. (4.67). If it is assumed that multiple pulses are
transmitted in neighboring time-slots, ISI is to be expected, due to the radiative com-
ponents generated by truncation. Even a value of TBP = 4 results in 1 − p ≈ 3 · 10−3,
which is still higher that values often assumed for p in literature. Since the SE of a
system is directly proportional to the TBP, it can already be seen, that soliton based
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transmission systems are unlikely to be able to compete with current state-of-the-art
transmission systems with much lower TBPs.

4.3.3. The Satsuma-Yajima Pulse

The shape of a Satsuma-Yajima (SY) pulse in time-domain is given by [19], [104]

qsy(t) = A · sech(t). (4.68)

While Eq. 4.68 at first glance might look like a special case of Eq. 4.62, it makes more
sense to think of them as separate pulse-types, which only coincide if A = 2η = 1,
ϕ1 = −π/2 and |qd(λ1)| = 2η. More generally, the SY pulse has discrete eigenvalues

λk = j
(
A− k + 1

2

)
for ={λk} > 0. (4.69)

and continuous nonlinear spectrum [27]

qc(λ) =
Γ(−jλ+ 1

2 + A)Γ(−jλ+ 1
2 − A)

Γ2(−jλ+ 1
2)

sin(πA)
cosh(πλ) , (4.70)

where Γ(·) is the complex gamma function [105]. Since solitonic pulses can not be
linearly scaled, while fully maintaining their solitonic properties, for most choices of
A the SY pulse also has a non-zero continuous nonlinear spectrum. According to Eq.
(4.70) the spectrum of the SY pulse is purely discrete if A ∈ N. In Fig. 4.6 two
SY pulses and their corresponding continuous spectrum and discrete eigenvalues are
depicted.
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Figure 4.6.: SY pulses and their spectral components for varying amplitudes A.
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4.4. Algorithms

For most pulse shapes, the NFT and its inverse can not computed analytically and
thus numerical methods have to be developed, to enable NFDM transmission. A
’good’ numerical algorithm for these transforms should exhibit low complexity, good
numerical stability and high accuracy. The amount of existing algorithms is vast and
has grown steadily for the recent years [27], [29], [106]. In the following, some examples
from different classes of algorithms are presented. Some of the presented algorithms
are only suitable for special cases or do only provide a subset of the nonlinear spectrum.

For the methods in the following sections, signal q(t) is truncated to interval [t1, t2]
and discretized according to q[n] = q(t1 + nh), with index n ∈ (0, Ns − 1), h being the
sample duration and Ns being the number of samples. The nonlinear Fourier coeffi-
cients will always be computed for the t → +∞ case, which for pulses on truncated
temporal supports results in t = t2.

4.4.1. Forward NFT for the Continuous Spectrum

In many cases, the continuous and discrete nonlinear spectrum are computed in inde-
pendent steps. In this section, several algorithms to compute the continuous nonlinear
spectrum are presented. They also, in many cases, form the basis for the computation
of the discrete nonlinear spectrum, which will be treated in section 4.4.2. These two
classes of algorithms, can be used jointly to obtain the complete NFT of an arbitrary
pulse.

Forward Discretization Method

The forward discretization (FD) algorithm is based on the Euler scheme [107], which
is a straightforward approach to numerical integration, for which the global error
eFD = O(h) is proportional to the algorithms stepsize h. Using Eq. (4.17) under the
assumption that, for each step, matrix P [n] and vector v[n] are constant, the iterative
algorithm to compute the vector for time instances t > t1 is [27]

v[n+ 1] = Afd[n]v[n], v[0] =
 1

0

 e−jλt1 , (4.71)
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where Afd[n] = I2 + hP [n], I2 is the 2x2 identity matrix and

P [n] =
 −jλ q[n]

−q∗[n] jλ

 . (4.72)

The initial value for the discretized vector v[0] is determined by the boundary condition
at t1, given by Eq. (4.22). The Fourier coefficients, and by extension the continuous
spectrum qc(λ) = b(λ)/a(λ), are obtained using Eq. (4.28). Thus, the nonlinear
Fourier coefficients are approximated by

a(λ) ≈ v1[Ns − 1]ejλt2 , (4.73)
b(λ) ≈ v2[Ns − 1]e−jλt2 , (4.74)

where v1[n], v2[n] are the first and second entry of vector v[n] respectively.

Central Discretization

Improving on Eq. (4.71), the central discretization method (CDM) utilizes the central
difference integration scheme, such that vector v[n] is computed by [27]

v[n+ 1] = v[n− 1] + 2hP [n]v[n]. (4.75)

Note that, in the first step the value for v[n] has to be computed by some other method
e.g. FD. The continuous nonlinear spectrum can again be obtained from v[Ns − 1],
according to Eqs. (4.73) and (4.74).

Fourth-Order Runge-Kutta Method

The Runge-Kutta (RK) method uses a higher order integration scheme. The iterative
update relation is [108]

v[n+ 1] = v[n] + h

6 (r1 + 2r2 + 2r3 + r4), (4.76)
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with

r1 = P [n]v[n], (4.77)

r2 = P
[
n+ 1

2

]
(v[n] + h

2r1), (4.78)

r3 = P
[
n+ 1

2

]
(v[n] + h

2r2), (4.79)

r4 = P [n+ 1](v[n] + hr3). (4.80)

The matrix P [n+ 1
2 ] can be computed using the arithmetic middle between q[n] and

q[n+ 1]

P
[
n+ 1

2

]
=
 −jλ 1

2(q[n] + q[n+ 1])
−(1

2(q[n] + q[n+ 1]))∗ jλ

 . (4.81)

Note that there are other ways to obtain these intermediate values. However, since
the algorithm already shows good accuracy using the above definition, other options
are not investigated in this thesis.

Crank-Nicolson Method

In using the Crank-Nicolson (CN) method, the derivative in Eq. (4.17) is approxi-
mated by a finite difference scheme, which can be used with several different types of
discretization. Here, CN refers to the approximation by FD, resulting in the relation
[27]

v[n+ 1] − v[n]
h

= 1
2(P [n+ 1]v[n+ 1] + P [n]v[n]). (4.82)

To facilitate numerical computation, the above equation can be made explicit

v[n+ 1] =
(
I2 − h

2P [n+ 1]
)−1 (

I2 + h

2P [n]
)
v[n] = Acn[n]v[n]. (4.83)

Ablowitz-Ladik Discretization

Using an integrable discrete version of the NLSE, introduced in [109], this scheme can
be used to augment a variety of algorithms. Here, Ablowitz-Ladik (AL) will refer to
the FD scheme that is augmented according to [109].
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The iterative step is [27]

v[n+ 1] =
 z Q[n]

−Q∗[n] z−1

v[n] = Aal[n]v[n], (4.84)

with z = e−jλh and Q[n] = q[n]h. Since the continuous nonlinear spectrum is given by
the ratio of the nonlinear Fourier coefficients, the above equation can be normalized
to mitigate numerical errors. The normalized system is given by [110]

v[n+ 1] = 1√
1 + |Q[n]|2

 z Q[n]
−Q∗[n] z−1

v[n]. (4.85)

Since it was found that, for the examples in this thesis, the difference between both
methods is negligible, Ablowitz-Ladik method will refer to the first version, given in
(4.84).

Trapezoidal Discretization

The last example for integration based methods is the trapezoidal discretization (TD)
scheme. In a first step, Eq. (4.17) is modified, resulting in the new linear temporal
propagation equation [106]

ut(t, λ) =
 0 q(t)ej2λt

−q∗(t)e−j2λt 0

u(t, λ) = F (t, λ)u(t, λ), (4.86)

for vectors u(t, λ) with boundary condition u(t1, λ) = [1, 0]T and a(λ) = u1(t2, λ),
b(λ) = u2(t2, λ), where u1(t, λ) and u2(t, λ) are the entries of u(t, λ). This step can be
facilitated by using v1(t, λ) = u1(t, λ) · e−jλt and v2(t, λ) = u2(t, λ) · ejλt in Eq. (4.17).
This simplifies the computation of the matrix exponential in the following and also
results in the nonlinear Fourier coefficients being directly available at the last step of
the algorithm (see Eq. (4.89)). After discretization, the calculation of the nonlinear
Fourier coefficients can be done by

w[n+ 1] = eF [n]hw[n] = G[n]w[n], (4.87)

where w[0] = eF [0]h2 [1, 0]T = G
1
2 [0][1, 0]T. Here, in an intermediate step, the initial

solution for u(t1, λ) is shifted by a halfstep. This is reversed in the step in Eq. (4.89)
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to obtain the nonlinear Fourier coefficients. It can be seen, that this shift is what
makes this integration scheme trapezoidal. The matrix exponential can be computed
in closed form resulting in

G[n] =
 cos(|q[n]|h) sin(|q[n]|h)ejϕ[n]+j2λt[n]

− sin(|q[n]|h)e−jϕ[n]−j2λt[n] cos(|q[n]|h)

 , (4.88)

with ejϕ[n] = q[n]
|q[n]| and t[n] = t + nh. The nonlinear Fourier coefficients then can be

obtained by using  a[Ns − 1]
b[Ns − 1]

 = G− 1
2 [Ns − 1]w[Ns − 1]. (4.89)

The matrices G± 1
2 [n] needed in the first and last step of the iteration are obtained by

exchanging all stepsizes h in Eq. (4.88) by ±h/2.

Layer-Peeling Method

The layer-peeling (LP) scheme is not based on numerically solving the ZS-system from
Eq. (4.17). Instead, this scheme approximates the signal q(t) by rectangular segments
of width h, as exemplified in Fig. 4.7 and then uses the analytic expressions for the
nonlinear Fourier coefficients from section 4.3.1 and the layer-peeling property given
in section 4.2.2 to approximate the nonlinear Fourier coefficients of the pulse. The
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Figure 4.7.: Approximation of pulse by rectangular segments (h = 0.5)

iterative algorithm to obtain the nonlinear Fourier coefficients of the full pulse q(t) is
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[27]

a[n+ 1] = a[n]x[n] − b[n]ȳ[n], (4.90)
b[n+ 1] = a[n]y[n] + b[n]x̄[n], , (4.91)

where the nonlinear Fourier coefficients x[n], y[n],x̄[n], ȳ[n] of the rectangular pulse at
timestep n are given by

x[n] =
(

cos(Dh) − j λ
D

sin(Dh)
)

ejλh (4.92)

y[n] = −q∗[n]
D

sin(Dh)ejλ(t[n]+t[n−1]) (4.93)

x̄[n] = x∗[n](λ∗) (4.94)
ȳ[n] = y∗[n](λ∗), (4.95)

with D =
√
λ2 + |q[n]|2. The initial values for the nonlinear Fourier coefficients are

a[0] = 1, b[0] = 0. This can be seen, if q(t) = 0 ∀ R is assumed in Eq. (4.17).
The nonlinear Fourier coefficients of the whole pulse q(t) are then approximated by
a(λ) ≈ a[Ns − 1], b(λ) ≈ b[Ns − 1].

Accuracy Test for Rectangular Pulse

While the overall accuracy of a method is determined by the pulse-shape for which the
transformation is to be executed, the closed form solutions from section 4.3 can be used
to numerically evaluate the algorithms presented in this section for specific cases. The
NMSEs (see Eq. (2.29)) between the analytic and numerical solutions for the above
algorithms for a rectangular pulse with A = 6 and duration T = 1 are given in Fig.
4.8. It can be seen, that the continuous spectra qc(λ) recovered by FD, CDM and AL
exhibit a higher NMSE than the other methods. RK has superior accuracy but also
is a higher order method and thus exhibits higher computational complexity. TD has
similar complexity to the LP and FD methods, while being almost as accurate as RK.
Note, that since there are no stochastic perturbations present in this measurement, the
occurring error, while dependent on the used parameters and pulses, is not stochastic
in nature. Thus, a single measurement of the NMSE for each data point in Fig 4.8 is
sufficient. Similar measurements were done for three other pulses and can be found
in appendix D.2. As previously noted these results do only apply to the specific cases
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Figure 4.8.: Accuracy of continuous spectrum estimation for the rectangular pulse
(A = 6, T = 1).

for which they were generated. Nonetheless, they give some insight into the numerical
behavior of implementations of the presented algorithms.

4.4.2. Forward NFT for the Discrete Spectrum

Computing the discrete nonlinear spectrum, information about two different quantities
has to be obtained, namely the discrete eigenvalues λk and the corresponding discrete
spectral amplitudes qd(λk). Alternatively, the nonlinear Fourier coefficient b(λk) can
be used directly, instead of qd(λk). In general it is assumed, that the exact locations
of the discrete eigenvalues are unknown and that there are either some reasonable
guesses, or the area in which they are contained is known. Depending on the exact
assumptions made, some of the presented algorithms are more suitable than others for
specific cases. Computing the missing parameter qd(λk) or b(λk) for a determined λk

value can be facilitated by extending the algorithms presented in 4.4.1. It has been
shown, that in many cases it is advantageous to use the nonlinear Fourier coefficients
b(λk) instead of qd(λk). However, all the algorithms presented in the following can also
be used to obtain the discrete spectral amplitudes if needed.
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Assuming, that some guesses λ(0)
k exist, which are close enough to the true values

λk, these initial guesses can be used in a search-algorithm, to obtain estimates on
the discrete eigenvalues of the respective pulse. In many transmission scenarios the
assumption of having a set of guesses for the discrete eigenvalues is reasonable, since
their locations might be part of the chosen modulation format. In such a case, the
Newton-Raphson search can be used to find the zeros of a(λ) in the upper-half complex
plane. The search method updates the initial guess by [27, Sec. IV.A]

λ(i+1) = λ(i) − αNR
a(λ(i))
aλ(λ(i)) , (4.96)

where λ(i) is the guess in the i-th iteration and step modifier αNR is a scaling factor,
that can be used to stabilize the search, by dampening the change in each step, if
necessary. If not mentioned otherwise, the step modifier is set to αNR = 1. The search
is terminated if the change αNRa(λ(i))/aλ(λ(i)) becomes smaller than some threshold
value δNR. It can be seen, that the values a(λ(i)), aλ(λ(i)) are needed in each step.
The first parameter can be obtained, using any method presented in section 4.4.1.
The second parameter can be computed by extending the methods presented for the
continuous spectrum. In the following, some of these extensions are reviewed shortly.

Forward Discretization Method

The FD method can be extended by calculating the λ-derivative of Eq. (4.71)

v′[n+ 1] = A′
fd[n]v[n] +Afd[n]v′[n], A′

fd[n] =
 −j 0

0 j

 , v′[0] =
 −jt1

0

 e−jλt1 ,

(4.97)
and the derivative of Eq.(4.73)

aλ(λk) ≈ (v′
1[Ns − 1] + jλv1[Ns − 1])ejλt2 . (4.98)

After the search algorithm converged, an approximation of b(λk) can be obtained,
using Eq. (4.74) and an approximation of qd(λk) can be obtained, by additionally
using Eqs. (4.98) and (4.36).
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Central Discretization

For the discrete spectrum CDM, Eq. (4.75) yields

v′[n+ 1] = v′[n− 1] + 2h(P ′[n]v[n] + P [n]v′[n]) (4.99)

where P ′[n] is identical toA′
fd[n] in Eq. (4.97). The value for v′[n] in the first iteration,

can again be computed by any other method e.g. by using Eq. (4.97).

Fourth-Order Runge-Kutta Method

For the RK algorithm the iteration step is given by

v′[n+ 1] = v′[n] + h

6 (r′
1 + 2r′

2 + 2r′
3 + r′

4), (4.100)

with

r′
1 = P ′v[n] + P [n]v′[n], (4.101)

r′
2 = P ′(v[n] + h

2r1) + P
[
n+ 1

2

]
(v′[n] + h

2r
′
1), (4.102)

r′
3 = P ′(v[n] + h

2r2) + P
[
n+ 1

2

]
(v′[n] + h

2r
′
2), (4.103)

r′
4 = P ′(v[n] + hr3) + P [n+ 1](v′[n] + hr′

3). (4.104)

Note that P ′ = A′
fd[n] given in (4.97) is independent of n and thus the index is

dropped in the equations above.

Crank-Nicolson Method

For the CN method the necessary additional parameter is given by [27]

v′[n+ 1] = A′
cn[n]v[n] +Acn[n]v′[n] (4.105)

A′
cn[n] = h

2

(
I2 − h

2P [n+ 1]
)−1

 −j 0
0 j

 (I2 +Acn[n]). (4.106)
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Ablowitz-Ladik Discretization

Using the AL discretization, the iteration step can be derived from Eq. (4.84) and is
given by

v′[n+ 1] = A′
al[n]v[n] +Aal[n]v′[n], with A′

al[n] = h

 −jz 0
0 jz−1

 , (4.107)

with z = e−jλh. The normalized version can be obtained by multiplying the right side
of (4.107) by the normalization factor given in (4.85).

Trapezoidal Discretization

Similarly, for the derivatives aλ(λ), bλ(λ) the following set of equations can be derived
[106]

w′[n+ 1] = G[n+ 1]w′[n] +G′[n+ 1]w[n] (4.108)

w′[0] = (G 1
2 )′[0]

 1
0

 (4.109)
 a′[Ns − 1]
b′[Ns − 1]

 = G− 1
2 [Ns − 1]w′[Ns − 1] + (G− 1

2 )′[Ns − 1]w[Ns − 1], (4.110)

where

G′[n] = j2t[n] sin(|q[n]|h)
 0 ejϕ[n]+j2λt[n]

e−jϕ[n]−j2λt[n] 0

 (4.111)

Again, the matrix (G± 1
2 )′[n] can be obtained by replacing h with ±h

2 in the above
equation. The derivatives of the nonlinear Fourier coefficients are approximated by
aλ(λ) ≈ a′[Ns − 1] and bλ(λ) ≈ b′[Ns − 1].

Layer-Peeling Method

For the LP method the needed derivatives follow directly from (4.90-4.95) as

a′[n+ 1] = a′[n]x[n] + a[n]x′[n] − (b′[n]ȳ[n] + b[n]ȳ′[n]) (4.112)
a′[n+ 1] = a′[n]y[n] + a[n]y′[n] + b′[n]x̄[n] + b[n]x̄′[n] (4.113)
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with

x′[n] = jh
(

1 − λ2

D2

)(
cos(Dh) − sin(Dh)

Dh

)
ejλh (4.114)

y′[n] = −q∗[n]
{
λh

D2 cos(Dh) −
(
λ

D3 + jt[n] + t[n− 1]
D

)
sin(Dh)

}
e−jλ(t[n]+t[n−1])

(4.115)

x̄′[n] = (x′)∗[n](λ∗) (4.116)
ȳ′[n] = (y′)∗[n](λ∗). (4.117)

The initial values for the nonlinear Fourier coefficients derivatives a′[0] = b′[0] = 0
follow directly from the initial values given in section 4.4.1 and the derivative of the
nonlinear Fourier coefficient is once more approximated by aλ(λ) ≈ a′[Ns − 1].

Accuracy Test for Satsuma-Yajima Pulse

A rough accuracy assessment for the methods described above can be done using
the SY-pulse q(t) = A sech(t), described in section 4.3.3. For sufficiently high values
A /∈ Z+, the SY-pulse has both, continuous and discrete spectra. For integer values
of A the continuous part vanishes and the spectrum is purely discrete. For A = 2.7,
three discrete eigenvalues λ1 = j0.2, λ2 = j1.2, λ3 = j2.2 are present in the upper
complex plane. Figure 4.9 shows the accuracy of the methods described above for the
two largest eigenvalues, depending on the number of used samples.
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Figure 4.9.: Accuracy of discrete spectrum NFT for SY-pulse (A = 2.7).
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The used number of samples Ns range from 64 to 4096. Note, that similar to the
measurements done for Fig 4.8, the occurring error is not stochastic in nature and just
depends on the parameters and pulses used. Thus each data point in Figs. 4.9a and
4.9b was obtained by a single NMSE measurement. It can be seen, that in dependence
on the magnitude of the imaginary part of the eigenvalue the resulting error for the
used algorithms varies. Nonetheless, the LP algorithm produces the smallest error for
all tested cases. As already stated in section 4.4.1, where the continuous spectrum NFT
was studied, the error behavior is depending on the pulse-shape and other parameters,
such as search-threshold δNR and thus, the values presented in Fig. 4.9 should only be
taken as a rough estimate of the capabilities of the presented NFT algorithms.

Forward Backward Method

The methods described above, in many cases, generate a good estimate for the discrete
eigenvalues λk, but tend to give dissatisfactory results for the associated nonlinear
Fourier coefficients b(λk) if Ns is small. Their performance can be improved, utilizing
the forward-backward (FB) method proposed in [106]. In general, this method can be
used with any NFT algorithm, for which the propagation matrices in t are unitary.
In the following, the FB method will be discussed in light of the TD and LP schemes
from section 4.4.1.

For the TD method, the spectral coefficients obtained from the iteration stated in
Eq. (4.87) are given by [106]
 a(λ)
b(λ)

 ≈G− 1
2 [Ns − 1] ·G[Ns − 1] · · · · ·G[m+ 1]︸ ︷︷ ︸

R

·G[m] · · · ·G[1]G 1
2 [0]︸ ︷︷ ︸

L

 1
0

 ,
(4.118)

=
 R11 R12

R21 R22

 L11 L12

L21 L22

 1
0

 . (4.119)

It can be seen, that the nonlinear Fourier coefficients can now be approximated by

a[Ns − 1] = R11L11 +R12L21, (4.120)
b[Ns − 1] = R21L11 +R22L21. (4.121)

Additionally, it can be seen from Eq. (4.88) that G[n] and thus R and L are unitary
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and thus the determinant

R11R22 −R12R21 = 1. (4.122)

Using Eqs. (4.122) and (4.120), the estimate of nonlinear Fourier coefficient b(λk), for
some discrete eigenvalue λk can be given as

b[Ns − 1] = a[Ns − 1]R21

R11︸ ︷︷ ︸
0

+L21

R11
= L21

R11
. (4.123)

Here the fact that a[Ns − 1] should be zero if λk is a discrete eigenvalue was used
to simplify the relation. It can be shown, that this increases the accuracy of the
trapezoidal method, since matrix-entry R21 can become very large and thus amplify
the potentially small numerical error in the estimation of a(λk) [106].

Similarly, the FB method can be used for LP if the iteration from Eqs. (4.90) and
(4.91) is rearranged to be

 a[n+ 1]
b[n+ 1]

 =
 x[n] −ȳ[n]
y[n] x̄[n]


︸ ︷︷ ︸

M [n]

 a[n]
b[n]

 . (4.124)

The nonlinear Fourier coefficients are then defined by a(λ)
b(λ)

 ≈M [Ns − 1] · · · · ·M [m+ 1]︸ ︷︷ ︸
R

·M [m] · · · · ·M [0]︸ ︷︷ ︸
L

 a[0]
b[0]

 , (4.125)

where a[0] = 1 and b[0] = 0. It can also be shown, that the matrices M [n] are unitary
and thus Eq. (4.123) can be directly applied to augment the LP-NFT using the FB
method. Note that index m, at which the matrices are split up into R and L, can be
optimized [106]. Since this is beyond the scope of this thesis, the method will be used
with m = N/2 over the course of the whole thesis.

In Fig. 4.10 the FB augmented TD method is compared with the standard TD
scheme. It can be seen, that the NMSE for the b-values is improved by up to a factor
of δNMSE ≈ 0.60 for a low number of samples per pulse Ns, while for higher values of
Ns the FB method does not significantly improve the accuracy in this particular case.
For the evaluation, a fundamental soliton with λ1 = j2 and b(λ1) = −j was generated,
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Figure 4.10.: Accuracy comparison for TD with and without FB method.

using the closed form formula. The pulse was evaluated using the respective NFT
algorithm. Similar tests were done for the presented LP based FB method NFT,
finding that the effect of the FB augmentation was almost negligible for all tested
cases. While the factor R21/R11 was comparable for both TD and LP based method,
the deviation of a[Ns − 1] from zero was found to be smaller for all tested cases. It
can thus be conjectured, that the step in Eq. (4.123) does change the accuracy less
significantly for the LP based method. Note, that the evaluations in this section, were
made without the addition of further perturbations such as ASE noise, so no statement
on the change in robustness against perturbations can be made.

Central Difference Eigenproblem

In contrast to the previously described methods, the central difference eigenproblem
(CDEP) method is only concerned with finding the discrete eigenvalues of a given
pulse. To facilitate this, the discretized version of the signal is used to state a matrix
eigenvalue problem, that can be solved, using any suitable numerical algorithm. The
matrix eigenvalue problem is [27, Sec. IV.B]

j
 D diag(q)

−diag(q∗) −D

v = LCDv = λv, (4.126)
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with q being the vector containing the samples of q(t), diag(·) being the diagonal
matrix operator and

D = 1
2h



0 1 0 · · · 0 −1
−1 0 1 · · · 0 0

· · ·
0 0 −1 · · · 0 1
1 0 0 · · · −1 0


, (4.127)

being the central finite difference matrix [27]. The discrete eigenvalues are then ob-
tained by using some matrix eigenvalue method on 2Nsx2Ns matrix LCD. While the
exact performance of the method depends on the algorithm used to calculate the eigen-
values of the matrix, it can be seen that in any case the complexity increases with the
number of samples per pulse. Additionally, some algorithms will find all 2Ns eigen-
values of the matrix. The additional eigenvalues found close to the real axis are often
called spurious eigenvalues and have to be filtered by some additional step.

In Fig. 4.11 the unfiltered eigenvalues of the above described matrix are depicted for
a Satsuma-Yajima pulse with A = 2. It can be seen, that many spurious eigenvalues
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Figure 4.11.: Matrix eigenvalues for the Satsuma-Yajima pulse (A = 2).

are generated along the real axis and, due to the symmetry of discrete eigenvalues
mentioned in section 4.1.5, the expected discrete eigenvalues at λ1 = j0.5 and λ2 = j1.5
are accompanied by their complex conjugates. Apart from the described method, there
are other matrix base methods to compute the discrete eigenvalues. Some of them can
be found in [27, Sec. IV.B].
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Phase Jump Tracking

As mentioned at the beginning of section 4.4.2, the presented algorithms have varying
applicability, depending on the assumptions made on the system. If e.g. it is assumed,
that, due to the chosen modulation format, the ideal positions of the discrete eigenval-
ues are known, the Newton-Raphson search based algorithms are often quite efficient.
On the other hand, if there is no information on the amount of discrete eigenvalues
and their approximate location, the CDEP method can be used, to reliably find the
discrete eigenvalues in exchange for a rather high complexity.

The phase jump tracking (PJT) method presented below is best applied if the loca-
tion and number of discrete eigenvalues is unknown, but the region in which all λk lie
is known. PJT is based on the argument principle [111]

K − P = 1
2πj

∫
∂G

df
f = 1

2π∆∂Garg(f). (4.128)

Here K and P are the number of zeros and poles in domain G, f is some function,
∂G is some closed non-self-intersecting contour around domain G and ∆∂Garg(·) is the
change in the argument of function f along contour ∂G. Using a(λ) as the function in
(4.128) results in

∆∂Garg(a(λ)) = 2πK, (4.129)

since a(λ) is analytic in C+, as long as the contour ∂G lies in C+ as well. Further,
there have to be K jumps in the argument of a(λ) along ∂G. These jumps extend
into the domain along trajectories ending at the discrete eigenvalues [111]. Finding
the jumps along ∂G and following the trajectories is the core concept of PJT.

The contour ∂G has an upper border, that can be set by U∂G = Cu · 0.25(Et −Ec),
where Et and Ec are the energy in time domain and nonlinear continuous spectrum
respectively. The parameter Cu > 1 is some constant, that can be used to extend
domain G upwards to account for the movement of discrete eigenvalues away from the
real axis, due to e.g. the addition of noise in time domain during propagation. If U∂G
is chosen too small, some discrete eigenvalues might lie outside of G and thus can not
be found. On the other hand, if U∂G is too high, either accuracy or computation time
will be negatively affected, due to the increased length of U∂G. In the following, the
parameter will be fixed to Cu = 1.1. The left and right boundaries L∂G and R∂G can
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be set according to [111]

|Q̂(ωL/R)|2

Q̂max
= CLR (4.130)

with Q̂(ω) being the linear Fourier transform of the signal and Q̂max = max
ω

|Q̂(ω)|2.
The boundary values are then given by the minimum frequency L∂G = ωL and max-
imum frequency R∂G = ωR, for which the above equation is satisfied. Note that
presumably this is based on the observation that linear and nonlinear bandwidth are
linked, assuming that this approximation still works if CLR is small enough. Following
[111], the constant is set to CL/R = 10−4 in the following. The contour ∂G is then
given by G = [L∂G, R∂G] × [ε, U∂G], where the lower boundary ε is chosen to be a small
positive value to prevent the detection of spurious discrete eigenvalues close to the real
line.

The contour is then discretized by I equidistant points zi with i ∈ [1, I] on the
contour. If a phase-jump in nonlinear Fourier coefficient a(zi) between two adjacent
points occurs, these positions are stored for evaluation in the next step. The pseudo-
code for this step is given in Algorithm 1.
Algorithm 1: Phase jump detection on ∂G (adapted from [111])
Input: {zi} ∈ ∂G - ordered points on the boundary
Output: {gj} - list of phase jump positions
for j = 2, · · · , I do

if ãrg(a(zi)) · ãrg(a(zi−1)) < 0 and |ãrg(a(zi)) − ãrg(a(zi−1))| > (cpj ·π) then
add zi+zi−1

2 to {gj}
end

end

Here, function ãrg(·) = arg(·)−π is the well known arg(·) function shifted by π, such
that the new range of the function is ãrg(·) ∈ [−π, π). Note, that the value cpj = 1.3
and is a design parameter and was set heuristically according to [111]. The algorithm
adds phase jump positions to set {gj} if two adjacent points zi and zi−1 generate
different signs and differ by an absolute value of more than cpj · π if evaluated by
ãrg(·). Changes of sign occur at phase-jumps and around ãrg(a(zi)) = 0. Checking for
a certain minimum phase difference, ensures that not every change of sign is registered
as a phase-jump. For small enough steps, this value does not play a significant role.
For a very coarse set of {zi} the chosen value cpj can result in phase-jumps not being
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found reliably. In the conducted tests, using the heuristic value cpj = 1.3 was never
an issue for a reasonably high number of values in {zi}. The positions of the discrete
eigenvalues can then be found by following the phase jump from its point on the
boundary ∂G to some point at which it vanishes. In this point a(λ) = 0 and thus
a discrete eigenvalue is found. There are a lot of subtleties to determining the step
size for this process, optimizing for a good ratio between accuracy and complexity,
which are detailed in [111]. The phase jump trajectories can be traversed by choosing
a suitable algorithm. In the following, the marching-squares algorithm [112] is used
and the pseudo-code for an implementation is given in appendix B.3. Depending
on the chosen resolution for the marching-squares algorithm, the results have to be
further refined by e.g. an additional search step, which is assumed to converge quickly
and thus cause little additional overhead. A depiction of the points traversed by the
algorithm for a SY-pulse is given in Fig. 4.12.
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Figure 4.12.: Execution of the PJT algorithm for a SY-pulse (A = 7). Not all eigen-
values shown. Plane is colored according to the phase ãrg(a(λ)) (Yellow
→ −π, Blue → +π).

The algorithm first determines the points gk on ∂G using Algorithm 1 and then uses
a marching-squares algorithm to follow the phase-jump of a(λ) to the estimates λ̂k. At
the crossing points of the phase-jump trajectories on the imaginary axis, the marching
squares algorithm has to follow one of the lines. In general, the rule to choose one of
the branching paths can be chosen arbitrarily. Here it is assumed, that the algorithm
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will always follow the next path in clockwise direction. If a further refinement step is
used, the accuracy of this method is primarily determined by the refinement method.
An in-depth analysis of the capabilities of this method can be found in [111].

4.4.3. The Eigenvalue Removal NFT

Assuming the NFT is to be used on some signal that contains continuous nonlinear
spectral components, as well as a non-empty discrete spectrum, the algorithms pre-
viously described in this thesis can be used independent of each other to recover the
respective parts of the nonlinear spectrum. The eigenvalue removal (ER) method adds
one more step to iteratively remove computed discrete spectrum components of q(t),
before computing the remaining quantities. This method was first described in [113]
and subsequently evaluated for full nonlinear spectrum pulses in [114], [115].

For the ER-method, the discrete spectrum method has to be chosen such that a
single discrete eigenvalue can be estimated effectively. In the following, a search-based
method with a single initial guess will be used. The ER-augmented search iteration
then includes the standard search method, now followed by a subsequent removal of
the estimated eigenvalue λ̂k from q(i)(t). Additionally the pulse is then truncated if
possible. A diagram for the ’search, remove, truncate’ step is presented in Fig. 4.13.
The received pulse is q(1)(t) and in each iteration pulse q(i)(t) is first used in a search

EV Search EV Removal Truncation
q(i)(t)

λ̂i

q(i)(t) q̂(i)(t)
Tc

q(i+1)(t)

Figure 4.13.: Block diagram for one ’search, remove, truncate’ step.

step to obtain estimate λ̂i, which is subsequently used to remove the corresponding
time domain components from the used pulse. The resulting pulse q̂(i)(t) no longer
has λ̂i as a discrete eigenvalue. In the final step of the iteration, this new pulse is
truncated to temporal length T (i)

p according to some energy percentage constraint p.
This truncated pulse q(i+1)(t) is then used in the search-method of the next iteration
i + 1. The estimated eigenvalue λ̂i is removed from the temporal pulse, by using the
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relation [113]

q̂(i)(t) = q(i)(t) + 2j(λ̂∗
i − λ̂i)v∗

2(t, λ̂i)v1(t, λ̂i)
|v1(t, λ̂i)|2 + |v2(t, λ̂i)|2

. (4.131)

Multi-solitons are not constructed by linear superposition of fundamental solitons.
However, the observations made in [116], [117] still justify the removal of discrete
eigenvalues in order of increasing imaginary parts. Note that for each removal step
the vectors v1(t, λ̂i) and v2(t, λ̂i) have to be computed. Also the removal step might fail
if the estimate λ̂i deviates strongly from the real value λi. In this case, a new discrete
eigenvalue λ̂i is added to q̂(i)(t). This error can be monitored, by determining the pulse
energy before and after the removal step, which should be reduced by ≈ 4=(λ̂i) if the
removal was successful.

If the signal component corresponding to the continuous nonlinear spectrum is tem-
porally more confined than the discrete spectrum part, the temporal support of the
modified pulse q̂(i)(t) can often be reduced significantly, while still fulfilling some in-
window energy criterion (e.g. 99.99% energy inside truncated support [t(i)1 , t(i)2 ]). This
reduces the amount of processed samples in future steps and thus reduces the al-
gorithms overall complexity. Assuming that all the removal steps are successful, the
remaining time-domain signal q̂seed(t) only contains continuous nonlinear spectral com-
ponents and can be transformed by any of the continuous spectrum NFTs given in
section 4.4.1. Note that parameter Tc, introduced in Fig. 4.13, is a lower bound on
truncation. If the energy in the continuous spectrum is much smaller compared to
the energy in the discrete spectrum, the truncation according to some in-window en-
ergy criterion might affect the continuous spectrum more strongly. To mitigate the
potential degradation of the continuous spectrum, parameter Tc can be introduced as
a minimum value for the signals support. This of course also restricts the potential
reduction of complexity and thus Tc has to be set carefully. The choice of Tc has
to be made heuristically. A good reference for the choice of Tc is the average tem-
poral width of the pulse q̂seed(t), containing only the continuous nonlinear spectrum.
This value can be measured at the transmitter for a fixed pulse alphabet and has
to be known at the receiver during detection. A ”blind” approach could be to use
the eigenvalue removal algorithm without truncation for a training set of a certain
size. Since there are methods to check for the successful removal of discrete spectrum
parts, the remaining continuous spectrum only pulse can be obtained with a fairly
high certainty. Since the pulses are not truncated yet, a value Tc can be computed
from the average temporal support of pulses q̂seed(t) according to some factor p. For
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a successful removal of an eigenvalue, the continuous spectrum is altered according to
equation (4.163), which has to be taken into account after the transformation. The

q(t)
q̂seed(t)

q̂c(λ)

{λ̂k, b̂(λ̂k)}
K ER Steps
(Figure 4.13)

Cont. NFT

Figure 4.14.: Block diagram of the ER NFT.

full eigenvalue removal NFT algorithm is also depicted in Fig. 4.14, where q̂c(λ) is
the continuous spectrum estimate and b̂(λ̂k) is the estimate of the discrete spectrum
nonlinear Fourier coefficient. Once more, an estimate of qd(λk) could have been used
as well.

An example of this deconstruction, for a pulse with two discrete eigenvalues and a
non-zero continuous spectrum, is given in Fig. 4.15. Note that the truncation step is
skipped for the sake of clarity. The nonlinear spectrum of the initial pulse in Fig. 4.15a
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Figure 4.15.: Pulses in eigenvalue removal NFT iterations.

consists of the continuous spectrum qc(λ), the discrete eigenvalues {λ1 = j0.25, λ2 = j}
and corresponding {b(λ1) = 1, b(λ2) = j}. In Fig. 4.15b, the discrete eigenvalue with
the smallest imaginary part λ1 has been removed. The continuous spectrum is still
present in the pulse, but is now distorted according to the relation in Eq. (4.163).
The discrete spectrum includes only the remaining λ2 = j. In Fig. 4.15c, λ2 has been
removed as well. The resulting continuous spectrum pulse does not have any discrete
eigenvalues.
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Complexity

The complexity of the discussed NFT algorithms depends on several factors. In ad-
dition to the number of samples N used to discretize the time domain pulse q(t), the
specific algorithm for each calculation of the nonlinear Fourier coefficients a(λ), b(λ)
factors into the overall complexity. To obtain the nonlinear Fourier coefficients for a
nonlinear frequency λ, O(N) multiplications and additions have to be executed [27].
Thus, the complexity of the continuous spectrum NFT is given by O(N2), assuming
the continuous spectrum is calculated on a N -point grid as well.

The complexity of one search iteration of the discrete search-based method, is O(N).
The overall complexity also depends on the number of discrete eigenvalues K and the
average number of search iterations for each discrete eigenvalue, which depends on
the transmission channel, the transmitted pulse shape, the step modifier αNR and the
initial guesses. For the ER algorithm, the complexity for one search iteration can
be expressed by O(Ct(λk)N), where Ct(λk) ≤ 1 with k ∈ [1, K] is used to include
the reduction of signal samples after successful truncation. The overall complexity of
the discrete spectrum part depends on the number of discrete eigenvalues K and the
number of search iterations for each discrete eigenvalue. For a complexity comparison
of the search-based and the ER-NFT, the number of search steps are assumed to
be approximately equal, since the same received pulse q(t) is used. Truncation is
limited by Tc and thus Ct(λk) ∈ [Tc/TS, 1]. It can be seen, that if Ct(λk) = 1 ∀ k ∈
[1, K] the complexity of all search steps is O(N) and thus the complexity for the
discrete spectrum NFT is identical to the search-based method discrete spectrum
NFTs complexity. The complexity of the continuous spectrum NFT is reduced if
the truncated pulse q̂seed(t) is used as shown in Fig. 4.14. Its complexity is then
given by O(Ct(λK)N2). Additionally, we would like to note that, since the continuous
NFT can be implemented using any algorithm, fast NFT approaches are applicable,
potentially reducing the complexity to O(Ct(λK)N log2(Ct(λK)N)) [31]. Since the
values for Ct(λk) depend on the specific shape of the received pulse and the width of
the pulse in time domain, which cannot be linked to the nonlinear Fourier spectrum
analytically for K > 1, the complexity of the search- and ER-based algorithms can
only be compared in more detail by computing the values Ct(λk) numerically for some
specific cases.
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Numerical Evaluation

Tests of the INFT/NFT configuration in a back-to-back setup were conducted for
pulses with N = 210 samples. The continuous nonlinear spectrum was modulated, us-
ing one nonlinear RRC shaped channel centered around λ = 0 with nonlinear spectral
width Wλ = 14.2857 and amplitude A. The continuous nonlinear frequency support
was set according to [23, eq. 22 f]. This channel was used to transmit phase-shift
keying (PSK) symbols ai with i.i.d. uniform random phase ϕi ∈ [0, 2π). Note, that it
is not yet well established how the nonlinear and linear spectral width of a pulse are
related. While there are some results for limit cases [43], they are only strictly valid if
the power of a pulse is going to zero. Thus, the width of the receiver filter has to be
set heuristically. The discrete spectrum was either modulated using K = 2 or K = 3
discrete eigenvalues {λk = jkCEV}. The corresponding b(λk)-values were again mod-
ulated with an PSK constellation with i.i.d. uniform random phases. Time domain
transmission pulses were generated, using the INFT algorithm presented in section
4.4.7. The nonlinear spectrum of the generated pulses was obtained by either separate
continuous or discrete NFTs or by the joint ER-based NFT described above. For com-
parison of the two NFT algorithms, the NMSEs between the modulated values {ai,
λ = [λ1, · · · , λK ], b = [b(λ1), · · · , b(λK)]} and recovered values {âi, λ̂ = [λ̂1, · · · , λ̂K ],
b̂ = [b̃(λ̂1), · · · , b̃(λ̂K)]} were computed. Here the i-index signifies that ai belongs to
the i-th transmitted pulse and a, â are the vectors containing the symbols ai and âi

respectively. The NMSEs are denoted as ex(a, â) with x ∈ {NR,ER} for the NMSE
calculated for continuous spectrum symbols, with the subscript NR indicating that
the search-based NFT was used and similarly, ER indicating that the ER-NFT was
used. The NMSE for the discrete eigenvalues is denoted as ex(λ, λ̂) and the NMSE for
the b(λk)-values is denoted as ex(b, b̂). The minimum and maximum values obtained
in the simulations are given in Table 4.1.

Cont. Spectrum Disc. Eigenvalues b-Values
min max min max min max

eNR (K = 2) 5.3 · 10−5 1 · 10−2 5 · 10−7 4 · 10−4 6.2 · 10−7 7.9 · 10−5

eER (K = 2) 5.3 · 10−5 1 · 10−2 3.8 · 10−7 2 · 10−4 5.2 · 10−7 7.6 · 10−5

eNR (K = 3) 5.3 · 10−5 1 · 10−2 3.5 · 10−6 2.9 · 10−3 5.2 · 10−6 1 · 10−3

eER (K = 3) 5.3 · 10−5 1 · 10−2 3 · 10−6 2.7 · 10−3 4.2 · 10−6 1 · 10−3

Table 4.1.: Minimum and maximum NMSEs of three spectral parameters for two tested
NFT types.

102



4.4. Algorithms

The accuracy for the continuous spectral components does not differ significantly
between methods. This could be interpreted as a sign that the truncation threshold Tc

was chosen big enough as to not influence the continuous part. The discrete eigenvalue
estimation is improved by ≈ 50% for the worst NMSE if K = 2 and maybe more
interestingly is improved by ≈ 25% for the best achievable NMSE if K = 2. Accuracy
gains for K = 3 are still present, but are reduced in comparison to K = 2. Similarly,
the improvement for the modulated b(λk)-values is ≈ 20% at best, which, while less
pronounced than in the discrete eigenvalue case, is still significant.

To better visualize the potential improvement of the ER-NFT over the search-based
NFT, the ratio between the NMSEs for both methods is computed according to δx =
eER(·)/eNR(·) with x ∈ {c, ev, b}. Suffixes c, ev and b denote the ratio for the
continuous spectrum, discrete eigenvalues and b(λk)-values, respectively. Additionally,
the average execution time was measured and is given as the ratio δt = tER/tNR,
where tER and tNR are the average execution times for ER-NFT and search-based NFT
respectively. The execution time of an algorithm can vary due to many factors and does
not always accurately represent the methods complexity. However, the measurements
were conducted on the same hardware under similar conditions and thus at least can
be used to compare performances for the specific cases tested.

Results for K = 2 and varying parameters A and CEV are given in Fig. 4.16.
It can be seen in Fig 4.16a, that in the tested case the detection accuracy for the
continuous nonlinear Fourier spectrum did not improve and in some extreme cases
the ER-NFT even produced worse results. For the detection of discrete eigenvalues
and their corresponding b(λk)-values, the ER-NFT always improved the detection
accuracy as depicted in Figs. 4.16b and 4.16c. The algorithm also improved in terms
of execution time for almost all tested cases as depicted in Fig. 4.16d. The same
evaluation was done for K = 3 and the results are given in appendix D.3.

Additionally, data transmission over Raman-amplified fiber was simulated, compar-
ing detection with the search-based NFT and the ER-NFT. The fiber was assumed
to be a SSMF with α = 0.2 dB/km, β2 = −21.683 ps2/km and γ = 1.3 W−1 km−1.
Raman-amplification was implemented with the co- and counterpropagating pump
scheme, described in detail in [118]. The total transmission distance was chosen to
be 480 km with a span-length of Lspan = 80 km. The continuous spectrum was mod-
ulated, using 4-PSK constellation points. For the discrete spectrum the b(λk)-values
of the discrete eigenvalues were also 4-PSK modulated. The discrete eigenvalues were
chosen identically to the back-to-back simulations with CEV = 1. The pulses were
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Figure 4.16.: Comparison of detection algorithms for K = 2 eigenvalues.

generated with a normalized temporal support of Tp = 12 with 1024 samples per pulse
and p = 1 − 10−3 and were transmitted with the symbol rates given in Fig. 4.17a and
4.17b. Pulses were transmitted independently, assuming enough guard time between
pulses to ensure decoupled propagation. Each constellation point was transmitted
100 times for each continuous channel and each discrete eigenvalue. To evaluate the
performance of the NFTs, the MMI according to [48] was computed after each fiber
span. The values presented in Fig. 4.17 are the mean of the MMIs that were computed
separately for the continuous spectrum and each discrete eigenvalue. Note, that the
unsteady behavior of the presented curves could be attributed to the breathing motion
of the discrete spectrum part of the pulse, which depending on the propagated dis-
tance can result in an unfavorable temporal distribution of the discrete spectrum parts
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Figure 4.17.: MI for transmission systems with different NFT algorithms and Raman
amplified fiber.

energy. From the results presented in this section, it can be seen that the benefit of
utilizing the ER-NFT strongly depends on the parameter range used for modulation.
Starting with the discussion of the effect on the accuracy of the continuous spectrum
NFT, it can be seen from Fig. 4.16a, that for almost the whole range of value pairs
tested, the ER-NFT is not beneficial compared to the search-based approach. For
large CEV and low A, there even is a decrease in accuracy from using the ER-NFT.
The results imply, that in this case the originally received pulse q(t) should prefer-
ably be used for the continuous NFT (compare Figure 4.14). This would increase the
computational complexity of the continuous NFT from O(Ct(λK)N2) to O(N2), since
the received pulse is not truncated prior to the continuous NFT step. On the other
hand, this decouples the continuous NFT from the ER step, enabling parallelization,
which might again improve computation times on parallel computation architectures.
For the discrete eigenvalues and corresponding b(λk)-values, the ER-NFT improves
the precision for all tested parameter pairs (see Figs. 4.16b, 4.16c, D.8b, D.8c). For
K = 2, the error for high CEV and small A values can be reduced by up to ≈ 50%,
while for small CEV and big A values there is still an improvement of ≈ 14%. For
the b(λk)-values, there seems to be an optimum value for CEV in the tested region,
while the improvement increases for small A. Further, since Tc limits the reduction
of numerical complexity, the current implementations complexity will be close to the
complexity of the search-based method if Tc is approximately the temporal width of
the received pulse.

Regarding the reduction of computation time, it can be seen that as long as CEV
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is large enough, so that the algorithm can sufficiently truncate the pulse in each step,
the ER-NFT is able to reduce the computation time. It can also be seen, that the
parameter A does not influence the computation time in the tested region. For K = 2,
a maximum reduction by over 60% can be achieved (see Fig. 4.16d), while for K = 3,
still a maximum reduction of ≈ 50% is visible (see Fig. D.8d). We also note, that
the code for the implementation of the ER-NFT was less optimized than the code of
the search-based approach. This could mean that the running time could be improved
further by code optimization. In Fig. 4.17 it can be seen, that the achievable rates are
improving, if the ER-NFT is used instead of the search-based NFT. Since the ER-NFT
does not significantly improve the continuous spectrum detection, the gain stems from
the improved detection of constellation points transmitted in the discrete spectrum.

Several other parameters influence the accuracy and computation time of the pre-
sented algorithms. In the presented simulations, purely imaginary eigenvalues were
chosen. This results in corresponding parts of the pulses, which do not move in their
allocated time slot during propagation. This changes if the discrete eigenvalues have
some nonzero real component. Parts of the pulse corresponding to these eigenvalues
might move towards the edges of the time window and thus might restrict the possible
amount of truncation. Another important factor is the spreading of the signal part
corresponding to the continuous spectrum. If, due to higher transmission distances,
this part of the pulse is spreading, the truncation threshold Tc has to be adapted,
which might also restrict the amount of truncation possible. The temporal width of
the signal part representing the continuous spectrum is depending on the exact way the
continuous spectrum is modulated and thus certain parameter sets might also increase
the threshold parameter Tc, reducing the amount of truncation that can be achieved.
Note, that contrary to e.g. WDM transmission a separate compensation of linear ef-
fects at the receiver to reduce the temporal spreading, or the use of technologies like
dispersion compensating fiber (DCF) is not purposeful. Such measures would lead
to a removal of effects that are included in the channel model for which the NFT is
derived and thus would lead to distortions in the nonlinear Fourier domain. Addition-
ally, compared to the widely used search-based approach, the algorithmic structure
of the ER-NFT is less suited for implementation on parallel computing architectures
and thus might have drawbacks compared to search-based methods if such architec-
tures are available in the respective system. All these effects have to be considered,
regarding the utilization of the presented algorithm in a certain system.
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4.4.4. Coefficient Recovery from Nonlinear Spectra

In order to reconstruct a time domain signal from nonlinear spectrum data, some algo-
rithms require the nonlinear Fourier coefficients a(λ), b(λ) as direct input parameters.
This is especially true for some purely continuous spectrum INFTs, as e.g. presented
in section 4.4.5. The process to recover the nonlinear Fourier coefficients is depending
on the dispersion domain of the fiber channel. The two processes will be detailed for
continuous spectrum pulses in the following.

For the defocusing fiber channel (sgn(β2) = 1 → D < 0) the nonlinear Fourier
coefficients are recovered by using the relation [24]

|a(λ)|2 − |b(λ)|2 = 1, λ ∈ R, (4.132)

to obtain the absolute value of the first coefficient

|a(λ)| = 1√
1 − |qc(λ)|2

. (4.133)

While this step can in general be done for both, the focusing and the defocusing case,
the phase ∠a(λ) and the magnitude |a(λ)| are only linked by

∠a(λ) = H{log(|a(λ)|)}, (4.134)

if β2 is in the defocusing regime.

For the focusing case (sgn(β2) = −1 → D > 0), the Riemann-Hilbert (RH) factor-
ization problem, given in [43] has to be solved. Since it was assumed that the generated
time-domain pulses have purely continuous spectrum, the RH problem given in [43] is
simplified to

V 1(t, λ) =
 0

1

+ 1
2πj

∞∫
−∞

q∗
c (ζ)e−2jζtṼ 1(t, ζ∗)
ζ − (λ+ jε) dζ, (4.135)

Ṽ 1(t, λ∗) =
 1

0

+ 1
2πj

∞∫
−∞

qc(ζ)e2jζtV 1(t, ζ)
ζ − (λ− jε) dζ, (4.136)
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where ε is some small positive value and vectors

V 1(t, λ) = ψ(t, λ)e−jλt, Ṽ 1(t, λ∗) = ψ̃(t, λ∗)ejλt, (4.137)
V 2(t, λ) = φ(t, λ)ejλt, Ṽ 2(t, λ∗) = φ̃(t, λ∗)e−jλt, (4.138)

result in boundary conditions

V 1(t, λ) →

 0
1

 for t → ∞, (4.139)

Ṽ 1(t, λ∗) →

 1
0

 for t → ∞, (4.140)

V 2(t, λ) →

 1
0

 for t → −∞, (4.141)

Ṽ 2(t, λ∗) →

 0
1

 for t → −∞. (4.142)

The projection equation (4.28) , by which the nonlinear Fourier coefficients are defined,
is now altered to be [43]

V 2(t, λ) =a(λ)Ṽ 1(t, λ∗) + b(λ)e2jλtV 1(t, λ). (4.143)

Since the nonlinear Fourier coefficients do not depend on time, parameter t can be
chosen freely. To simplify the computation, t → −∞ is chosen. As a result Eq.
(4.143) can be used to state

a(λ) = V 1
2 (−∞, λ)

Ṽ 1
1 (−∞, λ∗)V 1

2 (−∞, λ) − Ṽ 1
2 (−∞, λ∗)V 1

1 (−∞, λ)
, (4.144)

where V 1
1 (t, λ), V 1

2 (t, λ) and Ṽ 1
1 (t, λ∗), Ṽ 1

2 (t, λ∗) are the first and second entry of
V 1(t, λ) and Ṽ 1(t, λ∗) respectively. The second coefficient is obtained by using the
relation from Eq. 4.35.

The RH problem stated above can also be formulated for purely discrete spectrum
pulses by using the system of equations given in [43] and simplifying it accordingly.
The problem can also be solved without simplifications for the full nonlinear spectrum.
We restrict ourselves to the treatment above, since for all other cases, more effective
methods will be presented in sections 4.4.6 and 4.4.7. A numerical method to solve
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the RH problem and obtain vectors V 1(t, λ), Ṽ 1(t, λ∗) will be given in section 4.4.5.

4.4.5. Inverse NFT for the Continuous Spectrum

The INFT for purely continuous spectrum pulses aims to reconstruct the time domain
signal q(t) from, either the continuous spectrum function qc(λ), or the corresponding
nonlinear Fourier coefficients a(λ), b(λ). This can be achieved by several methods
such using a Gelfand-Levitan-Marchenko (GLM) [119], [120] or RH solver [28], or by
employing inverse methods directly derived from some well known forward transfor-
mation algorithms, such as the inverse AL-discrete layer peeling (DLP) method [23],
[121]. The RH-solver and the inverse AL-DLP method will be shortly reviewed in the
following.

Riemann-Hilbert Solver

The RH-solver for purely continuous spectrum pulses utilizes the discretized versions
of Eqs. (4.135) and (4.136), which can be rearranged as

 1
0


︸ ︷︷ ︸
B1

= Ṽ 1(t, λ[m]) − 1
2πj

N∑
n=1

qc[m]e2jλ[n]t∆λ
λ[n] − (λ[m] − jε)︸ ︷︷ ︸

Cmn

V 1(t, λ[n]), (4.145)

 0
1


︸ ︷︷ ︸
B2

= V 1(t, λ[m]) − 1
2πj

N∑
n=1

q∗
c [m]e−2jλ[n]t∆λ

λ[n] − (λ[m] + jε)︸ ︷︷ ︸
C∗
mn

Ṽ 1(t, λ[n]), (4.146)

where ∆λ = λ[n+ 1] −λ[n] is the sample-width. The discretized system can be solved
by setting up the matrix equation B = AV , where B contains vectors B1 and B2,
V = [V1, Ṽ1] = [V 1(t, λ[1]), · · · ,V 1(t, λ[N ]), Ṽ 1(t, λ[1]), · · · , Ṽ 1(t, λ[N ])] and matrix

A =
 IN − 1

2πjC
∗

− 1
2πjC IN

 , (4.147)

where C has entries Cmn. It can be seen that, in order to achieve a certain accuracy
the necessary matrix inversion of Ã = A−1 can become quite computationally intense.
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The time-domain pulse can then be recovered approximately by using [43]

q∗[m] ≈ 1
π

N∑
n=1

qc[n]e2jλ[n]t[m]V 1
2 (t[m], λ[n])∆λ. (4.148)

Note, that the derivation of this approximation is rather involved and can be found in
[43, Ch. VII B], [43, App. E] and [43, App F]. It can be seen, that for every recovered
time-domain sample, the matrix given in 4.147 has to be inverted. Thus, the complex-
ity of this method is quite high and other algorithms, such as the AL-DLP method
described below, reduce the complexity of the transformation, while maintaining or
even improving the accuracy. There also is another way to determine V , which is
described in appendix B.1.

Inverse Ablowitz-Ladik Discrete Layer Peeling

The inverse Ablowitz-Ladik discrete layer peeling (AL-DLP) algorithm is another way
to recover a time-domain signal that only has a continuous spectrum from its nonlinear
Fourier coefficients. Once more, the transformation is executed for some constant prop-
agation distance z and thus this parameter is omitted in the following. Additionally,
the parameter z(λ) = e−2jλh is defined and should not be confused with the propaga-
tion parameter. In the following, quantities a(t[n], λ[`]) = a[n, `], b(t[n], λ[`]) = b[n, `]
are quantities, that contain all the solutions of the iterative steps from Eq. 4.84 in
section 4.4.1, that are done to obtain the nonlinear Fourier coefficients a[Ns − 1, `],
b[Ns − 1, `] on the discretized real-line. The number of discretization steps Ns is equal
in time and continuous nonlinear spectrum. Indices are bound by 0 ≤ n ≤ Ns − 1 and
0 ≤ ` ≤ Ns − 1. Note, that this method requires Nsh∆λ = π to be fulfilled, where ∆λ
is the sample-width on the real-line λ [23].

In a first step, using the nonlinear Fourier coefficients on the real-line a[Ns − 1, `],
b[Ns − 1, `], the quantities

A[Ns − 1, `] =a[Ns − 1, `], (4.149)
B[Ns − 1, `] =z−(n0+Ns−1)+ 1

2 b[Ns − 1, `], (4.150)
(4.151)
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with n0 = t1
h

are computed. Using these coefficients, the vector

Â[n] =
(
A[n, e−j2λ[`=0]t[n]], · · · , A[n, e−j2λ[`=Ns−1]t[n]]

)
, (4.152)

can be computed and its analog B̂[n] can be computed similarly. Note that, while the
equation above is given for general values n, at first only the vectors for n = Ns − 1
can be obtained.

The iterative part of the algorithm is executed in a domain obtained by using the
discrete Fourier transform (DFT) on quantities Â and B̂. More exactly, the relation
given in [23] is

A[n] = 1
Ns
e ◦ DFT{Â[n]} (4.153)

where the relation for B[n] and B̂[n] is obtained by exchanging A[n] for B[n] and
Â[n] for B̂[n]. Operation ◦ is the element-wise multiplication of two vectors and
e = (e−j2l1h·0, e−j2l1h·1, · · · , e−j2l1h·(Ns−1)). Further λ ∈ [l1, l2] and thus l1 is the smallest
value of the nonlinear temporal support. Due to the way they are obtained, parameters
A[n] = (A0[n], · · · , ANs−1[n]) and B[n] = (B0[n], · · · , BNs−1[n]) are said to be in the
nonlinear time domain, even though this does not have any instantly recognizable
physical significance. In [23] an iterative scheme to obtain the missing quantities A,
B for n < Ns − 1 is developed. The relations for iterating from n = Ns − 1 towards
n = 0 are given by [23]

A[n] = cn · (A[n+ 1] −Q[n]B[n+ 1]) , (4.154)
B[n] = cn · shift (Q∗[n]A[n+ 1] +B[n+ 1]) . (4.155)

Here cn = 1√
1+|Q[n]|2

and the shift-operation is defined as shift(x) = (x2, x3, · · · , xN , 0),
where x = (x1, x2, · · · , xN). The time-domain signal is obtained by relation [23]

Q[n] = B0[n+ 1]
A0[n+ 1] , (4.156)

where the Q[n] = q[n]/h as first defined in section 4.4.1.

It can be seen, that when starting with A[Ns − 1] and B[Ns − 1], which can be
obtained from the nonlinear Fourier coefficients, the first sample of Q[n] can already
be computed. This value then can be used in the next iteration of Eqs. (4.154) and
(4.155), which in return enable the computation of the next sample of Q[n]. Thus, an
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iterative algorithm to obtain the discretized time-domain pulse q[n] from the nonlinear
Fourier coefficients a(λ), b(λ) is formed. This algorithm has proven to be numerically
advantageous over directly solving the discretized RH-system in many scenarios.

4.4.6. Inverse NFT for the Discrete Spectrum

The discrete spectrum inverse NFT can also be implemented by solving a RH-problem.
Assuming that, there are discrete eigenvalues in the upper complex halfplane and that
qc(λ) = 0 everywhere on the real line, the simplifications of the RH-system in [43] done
in Eqs. (4.135) and (4.136) have to be altered accordingly. The resulting equations
are

V 1(t, λm) =
 0

1

−
K∑
k=1

q∗
d(λ∗

k)e−2jλ∗
ktṼ 1(t, λ∗

k)
λm − λ∗

k

(4.157)

Ṽ 1(t, λ∗
m) =

 1
0

+
K∑
k=1

qd(λk)e2jλktV 1(t, λk)
λ∗
m − λk

(4.158)

Then the method outlined in section 4.4.5 can be used to compute the time-domain
pulse corresponding to the discrete spectrum data. It can be seen, that for a realistic
number of discrete eigenvalues, the complexity is not as big of an issue as it might
be for the continuous spectrum RH-solver. However, a more commonly used method,
namely the Darboux transform (DT) method, is very accurate and in many cases
exhibits a comparable or lower computational complexity than the RH-solver. The
inverse NFT via DT [28] is outlined in the following.

The main advantage of the DT over e.g. a discrete spectrum RH scheme is, that it
does not introduce numerical errors due to discretization and does not involve matrix
inversions that potentially can be ill-conditioned. The DT as presented here, can only
generate pulses from purely discrete nonlinear spectra. However, a modified version
of the DT, that can deal with the full nonlinear spectrum, will be presented in section
4.4.7.

The addition of a discrete eigenvalue λk to the nonlinear discrete spectrum of a
time-domain signal q(t) is facilitated by the auto-Bäcklund transformation [122]

q(k+1)(t) = q(k)(t) + 2j(λ∗
k − λk)

v1(t, λk)v∗
2(t, λ∗

k)
|v1(t, λk)|2 + |v2(t, λk)|2

, (4.159)
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where q(k+1)(t) is the time domain pulse, for which the discrete nonlinear spectrum
was augmented to include λk. The parameters v1(t, λk), v2(t, λk) are the entries of
vectors v(t, λk), which was obtained for q(k)(t). Note, that Eq. (4.159) is identical
to Eq. (4.131) in section 4.4.3 for the eigenvalue removal method [113]. For the first
update according to Eq. (4.159), it is assumed that the continuous spectrum of the
current pulse is zero everywhere and that there are no discrete eigenvalues present yet.
Thus, the corresponding time domain pulse has to be the all-zero pulse (q(1)(t) = 0).
For this pulse the vectors v(t, λk) can be computed analytically according to [106]

v1(t, λk) =e−jλkt (4.160)

v2(t, λk) = − qd(λk)
λk − λ∗

k

K∏
i=1,i 6=k

λk − λi
λk − λ∗

i

ejλkt. (4.161)

After the update step, the vectors v(t, λk) are no longer valid for the new pulse shape
q(k+1)(t) and thus they have to be updated according to [122, Theorem 1]

v(t, λk+1) = (λkI − Σ)v(t, λk) (4.162)

with Σ = SΓS−1, S = [v(t, λk), ṽ(t, , λ∗
k)] and Γ = diag(λk, λ∗

k).
It can be seen, that Eqs. (4.159) and (4.162) result in a method, that can be

used to add discrete eigenvalues to an initial trivial pulse. The iterative nature of
this process is depicted Fig. 4.18. It can be seen, that for some initial time domain

q(1)(t; {}) S

v(t, λ1; q(t; {}))

v(t, λ2; q(t; {}))

E

q(2)(t; {λ1})

v(t, λ2; q(t; {λ1}))

S q(3)(t; {λ1, λ2})

...

...

...

· · ·

Figure 4.18.: Diagram of Darboux-Transform iterations (adapted from [28])

signal q(t; {}), where {} is the empty discrete spectrum and corresponding eigenvectors
v(t, λi, q(t; {})), several discrete eigenvalues can be added to the discrete spectrum of
the pulse.

A depiction of the (intermediate) time domain pulses and their corresponding set
of discrete eigenvalues, during the generation of a K = 4 soliton, is given in Fig. 4.19,
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negelecting the trivial zero-pulse at the beginning. It can be seen, that after the first
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Figure 4.19.: Iterative soliton generation using the Darboux Method (K = 4)

step the distinctive hyperbolic secant shape of a fundamental soliton is obtained. A
faster implementation of the DT algorithm can be found in [106].

While no conclusive simulations were conducted, to compare the RH-solver method
with the DT, the difference in the results between both methods seems to be rather
small for small numbers of discrete eigenvalues. With an increase in K, the error
generated by the RH-solver method increases as well, up to the point where the results
get unstable. The onset of this instability is depicted for K = 8 in Fig. 4.20.

4.4.7. Full Nonlinear Spectrum INFT

Similar to the INFT for continuous and discrete spectrum, the time domain pulse for a
general nonlinear spectrum, consisting of non-zero continuous and discrete parts, can
be computed using the RH-solver approach. To do so the steps for the previous cases
have to be done without simplifications of the initial RH-system. This approach was
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Figure 4.20.: Unstable behaviour of RH-solver for K = 8, N = 256.

not implemented. Instead, the DT algorithm presented in section 4.4.6 was augmented,
to accept an initial time-domain solution other than the trivial zero-pulse qseed(t) =
0 ∀ t [123], [124].

In the following, this approach will be called the seeded Darboux transform. The
steps of this inverse transformation are layed out in Fig. 4.21.

qc(λ)
×∏K

j=1
λ−λk
λ−λ∗

k

q̂c(λ) Cont.
INFT

qseed(t)

{λk, b(λk)}

D
T

Compute {v(t, λk)}

q(t)1

2 3

Figure 4.21.: Block diagram of seeded DT (based on [124])

If, in the i-th iteration of the DT, a discrete eigenvalue λi is added to the nonlinear
discrete spectrum of a pulse, its continuous spectrum qc(λ) is altered according to [106]

qc(λ)(i+1) = λ− λ∗
i

λ− λi
qc(λ)(i). (4.163)

Thus, in part 1© of Fig. 4.21, the targeted nonlinear continuous spectrum qc(λ) is
predistorted before the continuous INFT is used to compute qseed(t). The continu-
ous INFT was implemented by the inverse AL-DLP scheme [23], but in general any
continuous INFT method can be used.
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4. The Nonlinear Fourier Transform for Single-Mode Fiber Channels

Since the initial pulse for the DT in part 3© is no longer qseed(t) = 0 ∀ t, the functions
{v(t, λk)} are no longer known analytically. To be able to add discrete eigenvalues λk
to the nonlinear discrete spectrum of qseed(t), the correct values for {v(t, λk)} have to
be computed, using the prescribed nonlinear discrete spectral components {λk, b(λk)}
and the initial pulse qseed(t). This computation, in part 2© of Fig. 4.21, can be done
by slightly modifying any of the algorithms presented in section 4.4.1 (except for the
LP-algorithm), to output the set of vectors {v(t, λk)} directly.

In Fig. 4.22, the method outlined above was used to construct a time-domain
rectangular pulse q(t) with two discrete eigenvalues and non-zero nonlinear continuous
spectrum. The resulting pulse q(t) should be similar to the analytical result qtrue(t).
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Figure 4.22.: Reconstruction of rectangular pulse via seeded DT (A = 6, T = 1)

It can be seen, that apart from some jitter at the edges of the rectangular pulse,
the result is quite accurate even for this rather problematic pulse-shape. Before we
conclude this section, we would like to point out that using a RH-solver or seeded DT
approach are not the only ways to implement an INFT for continuous and discrete
spectrum pulses. Some other methods can be found in [92], [125]–[127].

4.5. On the Time-Bandwidth Product of Solitons

The TBP for the fundamental soliton, is known analytically and depends on the
amount of in-window energy, as described in section 4.3.2. However, this perspec-
tive is only of limited practical use, when modulation is added to the picture. In the
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following, some closer observations for some specific systems are made, to gain further
insight regarding the requirements for soliton transmission. To make a clear distinc-
tion between the TBP of a single pulse and the bandwidth and time-slot requirements
of some modulated pulse-train, the expression time-bandwidth requirement (TBR) is
introduced for the latter. It is defined, as the product of the minimum time-slot per
pulse and bandwidth per channel, that has to be allocated, to ensure some amount of
in-window energy is supported. For the TBR, it is always assumed that the soliton-
train is propagating ideally in the channel and no guard-times or guard-bands are
introduced to deal with perturbations or residual ISI. Note, that in realistic system
setups, guard-times are beneficial to mitigate interference between neighboring signals.
This is even true for purely solitonic systems, since the truncation of solitonic pulses
according to some factor p leads to radiative signal components, which interfere with
adjacent pulses via dispersion. Guard-bands are necessary in realistic setups as well,
to e.g. relax the requirements on (RX)-filters. Also, the NFT framework is not suited
to deal with the effects of linear frequency multiplexing on the nonlinear spectrum
analytically, thus to approximate valid conditions for the NFT, the crosstalk between
linearly multiplexed channels has to be kept rather small. Of course the resources
spent on guard-times and guard-bands have to be incorporated into the evaluation of
a systems SE. However, since linearly multiplexed NFT modulated channels are not
studied in detail in this thesis, the aforementioned effects are not considered in the
development of the TBR studied in this section. Similarly, the additional guard-times
that might be needed to avoid interactions between temporally adjacent pulses is ne-
glected since there is no known way to analytically describe the temporal broadening
of the radiative parts of the signal generated by truncation. Nonetheless, the TBR is
a measure that is more geared towards the evaluation of certain transmission system
requirements, than the TBP relations derived e.g. in section 4.3.2.

4.5.1. TBR for Multi-Ring Modulated Trains of Fundamental
Solitons

If the solitonic pulses in the transmission-train are modulated, such that they are not
dislocated, depending on the modulation symbol, then some fixed offset of the pulse-
center from zero becomes meaningless and thus it can be assumed that all pulses in
the alphabet are zero-centered. As a result, |qd(λ1)| = 2η1 has to be fulfilled. This
restricts the modulation of qd(λ1) to a single-ring PSK constellation. Further, the
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pulse-position is assumed to be fixed for varying z. Thus, the discrete eigenvalue λ1 is
purely imaginary. If the above assumptions are true, the expressions for pulse duration
(Eq. (4.64)) and linear bandwidth (Eq. (4.66)) from section 4.3.2 are identical to the
time-slot and bandwidth requirements of the soliton transmission system. As a result
the TBP as given in Eq. (4.67) is identical to the TBR of the system. In the following
the requirement for this PSK modulated, zero-centered pulse transmission will be
denoted by TBRzc.

While still requiring λ1 to be purely imaginary, the treatment of the TBR can
now be extended to multi-ring PSK modulation. For MPSK, modulation symbols
|qd(λ1)| 6= 2η1 can occur, resulting in solitons that are no longer zero-centered. Thus,
while the expressions in section 4.3.2 are still valid on a symbol basis, the time-slot for
a transmitted pulse has to be increased. Note that, in addition to the phases located
on each ring, the different ring amplitudes result in PPM in time-domain and thus
the TBR depends on the exact modulation alphabet, more precisely the exact ring
amplitudes used. It is thus not straightforward to obtain expressions similar to the
ones given in section 4.3.2.

The necessary temporal support can be approximated by assuming the maximum/min-
imum time values marking the time-slot are shifted by ln(|qd(λ1)|/2η) (see Eq. (4.62)).
This results in the TBR for the MPSK case being well approximated by

TBRMPSK ≈TBRzc +Bp

(∣∣∣∣∣log
(

min(|qd(λ1)|)
2η

)∣∣∣∣∣+
∣∣∣∣∣log

(
max(|qd(λ1)|)

2η

)∣∣∣∣∣
)

(4.164)

=TBRzc(1 + fppm), (4.165)

assuming, the constellation point with the smallest absolute value fulfills min(|qd(λ1)|) ≤
2η and the constellation point with the highest absolute value fullfills max(|qd(λ1)|) ≥
2η. Note that, this choice of maximum and minimum absolute values for qd(λ1) is not
a real restriction since, a fixed temporal offset for all transmission pulses does have no
impact on the system and thus substitute systems that fulfill the above restrictions
can always be found. In Fig. 4.23, the approximated TBR for MPSK, according to
(4.164) is shown alongside a numerical computation of the TBR, which is assumed to
be quite exact.

The numerical computation of the TBR is done by generating fundamental solitons
for each ring in the MPSK constellation. Since the phase of qd(λ1) does not influ-
ence the pulses position in the allotted time window, any phase can be chosen. The
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Figure 4.23.: TBR of MPSK modulated fundamental soliton (|qd(λ1)| ∈
{0.0946, 0.7232, 5.5307, 42.2948}). Red: Numerical evaluation,
Blue: Closed form approximation

necessary time window and bandwidth for transmission is now measured according to
some factor p to obtain the numerical result in Fig. 4.23. Of course the factor p has
to be identical for both of the shown curves. It can be seen, that the theoretical ap-
proximation slightly overestimates the TBR, but overall fits the real TBR quite well.
Note that the results depicted in Fig. 4.23 are obtained for the specific values |qd(λ1)|
given in the caption, but the slight overestimation compared to the measurements did
occur for all tested scenarios. While no formal proof will be given, the result can
be explained as follows. Given a modulation alphabet, for which pulses are shifted
from the center by up to tshift,min and tshift,max, the time-slot has to be expanded to
still fulfill the in-window energy constraint. Eq. (4.164) increases the time-slot by the
value |tshift,min|+|tshift,max|. Since there is some additional in-window energy, due to the
pulses tail that is shifted further into the window, the extension of the time-slot could
be chosen slightly smaller. Due to the fast-decaying tails of fundamental solitons, this
deviation is rather small. Thus Eq. (4.164) approximates the TBR for the MPSK
modulated case rather well.

4.5.2. TBR for Multi-Ring Modulated Trains of Multi-Solitons

A general closed form expression for the TBP of solitons with more than one discrete
eigenvalue is currently unknown. While some approximations for specific cases exist
[116], the TBP has to be evaluated numerically for most cases.

In the following, the discussion is once more limited to cases where all discrete
eigenvalues are located on the imaginary axis (<{λk} = 0 for all k ∈ (1, K)). While
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discrete eigenvalues with non-zero real parts are in general usable in e.g. soliton trans-
mission systems [128], they result in the separation of the multi-soliton into several
fundamental solitons during propagation. As a result, the TBR additionally becomes
dependent on total transmission distance L. For a multi-soliton with purely imaginary
eigenvalues, the TBR is confined to some finite value even for L → ∞ and thus is more
suited for the following analysis.

Multi-solitons (K > 1) no longer retain their shape during propagation. Instead
their envelope changes periodically and while the period might become infinite in
some cases, some in-window energy of these pulses is supported on a finite temporal
support at any time. Due to the fact, that the temporal and linear spectral width of
this pulses changes in z, without dispersing for z → ∞, this type of pulses is often
called a breather-soliton.

If now the time-slot TN−SOL, dependent on some out-of window energy percentage
p for a fixed set of discrete eigenvalues {λk}, in a multi-soliton train setup is to be set,
it has to fulfill

TN−SOL = max
{φk}∈[0,2π)

T (q(t, {λk qd(λk)}), p) (4.166)

where T (·, ·) is a function giving the temporal width of a pulse, according to the
used in-window energy percentage p. The parameter φk is the phase of the nonlinear
spectral amplitude qd(λk). We note that, independent of the phases per ring modulated
at the transmitter, all phase combinations potentially occur due to the λk dependent
phase-shifts during propagation (see Eq. (4.51)). Thus, to limit ISI to the amount
prescribed by p, it is necessary to also evaluate phase values that are not in the
modulation alphabet. Note, that in practical systems, L has some finite value, so
especially for short distances the range of the values {φk} is potentially smaller in
these cases and thus, the time-slot TN−SOL might also be smaller than for the general
L → ∞ case. This implies, that the time-slot can be optimized for each distance
and modulation alphabet to increase the SE of the system. Further, according to Eq.
(4.51) the propagation of nonlinear spectral amplitudes is given by

qd(λk, z) = |qd(λk, z = 0)|e−j(φk(z=0)−4η2z). (4.167)

It can be seen, that the absolute values of the nonlinear spectral amplitudes are not
affected during propagation in z and thus are not used in the maximization in Eq.
(4.166). Note, that the time-domain shape still is dependent on the absolute values
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|λk| and thus time-slot TN−SOL is only optimized for this specific set of rings. However,
if L → ∞ is assumed and thus {φk} ∈ [0, 2π), the number of phases per ring and their
exact distribution on the rings in the modulation alphabet does not influence TN−SOL.

A similar observation can be made for the linear bandwidth, allocated for such
multi-soliton pulse-trains and thus an expression of the needed bandwidth can be
found by

BN−SOL = max
{φk}∈[0,2π)

B(q(t, {λk qd(λk)}), p) (4.168)

where B(·, ·) is a function returning the linear bandwidth of the pulse, according
to some in-band energy percentage p. Maximization (4.168) can again become pro-
hibitively large and thus is as well assumed to be approximated sufficiently well by
testing a randomly generated pulse-set of size Ni.

To numerically evaluate Eqs. (4.166) and (4.168), the rings of the constellation have
to be discretized in phase (φk = 2π n

Nd
with n = 0, · · · , Nd−1), where Nd is the number

of discretization steps. Thus an exhaustive maximization would involve the evaluation
of (NdNr)K pulses, which rapidly becomes prohibitively large. We thus restrict the
tested set to some random combinations, assuming that for some number of iterations
Ni the time-slot TN−SOL and bandwidth-demand BN−SOL is approximated sufficiently
well.

We introduce the normalized TBR for multi-soliton trains to be

TBRN−SOL,NORM = TBRN−SOL

K · TBRMPSK
, (4.169)

where TBRN−SOL is the value computed by multiplying the numerical approximations
of Eqs. (4.166) and (4.168), K is the number of discrete eigenvalues in the multi-
solitons and TBRMPSK is given by Eq. (4.164). This quantity is a measure of how many
resources one modulated quantity occupies compared to the case of a fundamental
soliton train. Under the assumption that both systems exhibit identical MI per channel
use, this would mean the overall SE would increase if TBRN−SOL,NORM < 1.

Simlarly, the normalized TBP for multi-solitons can be defined as

TBPN−SOL,NORM = TBPN−SOL

K · TBRMPSK
, (4.170)

where now the value TBPN−SOL is a quantity obtained directly from functions T (·, ·)
and B(·, ·) for each pulse individually. So the TBRN−SOL,NORM is the product of the
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maximum values obtained over all pulse-shapes that can possibly occur using some
prescribed constellation. This includes pulse-shapes that are not transmitted at the
transmitter, but are generated by propagation in the fiber channel for any distance
z ∈ [0,L]. In the example used here, the discrete eigenvalues are purely imaginary
and thus, the ring amplitudes do not change during propagation. The phases however
are changing during propagation according to Eq. 4.51. This is why the maximiza-
tion in Eqs. 4.166 and 4.168 is only done over all possible phases. The TBRN−SOL is
thus an indicator for the required temporal transmission window and bandwidth for a
certain transmitted constellation, assuming the transmission window size and receiver
filter-width are fixed for all pulses in the pulse alphabet. The TBPN−SOL,NORM, defined
in Eq. 4.170, is the normalized TBP of individual pulses that are generated from a
constellation. This values do not directly give an indication for temporal and band-
width requirements for the whole transmission system. However, obtaining enough
TBPN−SOL,NORM values for pulses that occur in the system lead to an approximation
of TBRN−SOL. To study the composition of pulses that occur in the system in terms
of their TBP, the TBPN−SOL,NORM is more useful. In Fig. 4.24 the probability, that a
multi-soliton (K = 2) has a certain TBPN−SOL,NORM, is shown. To obtain these results,
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Figure 4.24.: Probability of multi-solitons having a certain TBP. (η1 = 1, η2 = 2,
p = 10−4, Ns = 256 and Nrings = 4)

each rings phase [0, 2π) was discretized in 128 steps and the resulting constellation was
used in an exhaustive TBP evaluation. As noted previously an exhaustive analysis for
bigger problems quickly becomes impractical and thus an numerical evaluation of a
randomly picked subset would have to be evaluated to get an approximation.

It can be seen, that for many pulses in the alphabet, the TBPN−SOL reduces in com-
parison to fundamental solitons. Carefully pruning the pulse-set thus could decrease
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the pulse-sets TBR, potentially resulting in an increased SE. This process however
would get quite involved. While the numerical results in Fig. 4.24 consider a certain
set of possible phases and phase-combinations of the MPSK constellation, the gener-
ated pulses are not linked to a certain transmission distance. While generating a figure
similar to Fig. 4.24 with infinitely many phases per ring would give the TBR for the
respective system, it would give no indication on which pulses to use for a transmission
pulse alphabet of finite size to minimize the TBR of the specific system with e.g. a
fixed transmission distance L. To facilitate this, a certain set of pulses, with as small
as possible TBP for all z ∈ [0,L] has to be found. Additionally this pulse-set should
ideally result in a constellation, that, as closely as possible, resembles a constellation
with equidistant and equally distributed phases on each ring. It can be seen, that this
can quickly results in a highly complex optimization problem.

4.6. Improved Constellations for Timing-Jitter
Resistant Soliton Trains

In a communication system timing-jitter can occur due to many different effects. A
prime example is imperfect clock-recovery. If some algorithm is implemented for clock
recovery at the receiver, using some part of the noisy and potentially distorted received
signal, a drift from the optimal timing might occur. This effect might be modeled as
timing-jitter.

In the following, a strongly simplified model for timing-jitter will be used, assuming a
back-to-back (B2B) transceiver scenario (i.e. the transmission channel is ideal except
for the occurring timing-jitter). A received pulse qRX(t) exhibits a slight temporal
offset, compared to the transmitted pulse qTX(t), due to timing jitter. This is modeled
as

qRX(t) = qTX(t− t̂j) (4.171)

where t̂j ∼ N (0, σ2
j ) is a Gaussian random variable with zero mean and variance

σ2
j . Further it is assumed, that information is to be transmitted by MPSK-modulated

fundamental solitons, as described in section 4.5.1. From (4.62) it can be seen, that the
modulated phases qd(λ1) are not affected by the timing-jitter, as long as the solitons
discrete eigenvalue is purely imaginary and the amplitudes |qd(λ1)| are perturbed due
to the occurring temporal shift. This can be checked by setting t → t− t̂j and ζ1 = 0
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in Eq. (4.62) and then absorbing the temporal shift t̂j into the logarithm. Another
way to see this, is to evaluate the time-shift property given in Eq. (4.41) for purely
imaginary discrete eigenvalues. For the following observations, it is convenient to set
|qd(λ1)| = 2η1 · e2η1td , where td is the new modulated quantity. It can be seen, that
now, in accordance with the observations already made in section 4.5.1, modulating
the spectral amplitude by means of td, linearly shifts the fundamental soliton pulse
in the time-domain. The resulting scheme thus is effectively a PPM transmission
scheme, in which additional information is transmitted in the phase of the spectral
amplitude. Since phase and amplitude modulation are decoupled under (4.171) the
PPM transmission part can be studied separately.

The impairment due to timing-jitter now forms a one-dimensional AWGN channel
for td. The capacity for the channel thus is given by Eq. (2.16) and can be stated as

C = 1
2 log2

(
1 + E [|td|2]

σ2
j

)
. (4.172)

If it is now assumed, that the pulse positions are modulated symmetrically around the
center of the symbols time-slot the values td,i are given by

td,i = −Tppm

2 + iTppm

I − 1 , for i = 0, · · · , I − 1, (4.173)

where Tppm = TZCfppm is the temporal width over which the pulses position is mod-
ulated, fppm is defined in Eq. (4.164), TZC is the temporal width according to Eq.
(4.64), and I is the cardinality of the pulse-alphabet used. The expected value E [|td|2]
can be calculated analytically and the resulting capacity is

C = 1
2 log2

1 +
T 2

ppm
Nr+1

12(Nr−1)

σ2
j

 , (4.174)

with Nr > 1 being the number of rings in the modulation format i.e. the different
positions in time the pulse can be shifted to.

In Fig. 4.25 the capacity according to (4.174) is plotted, together with some nu-
merical results for fundamental soliton PPM over the channel described by (4.171), to
verify the derived bound.

Note, that for the numerical results in Fig. 4.25, the SNR was varied by changing
σ2

j for a fixed transmission setup. Also, for strong timing-jitter, other effects such as
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Figure 4.25.: Capacity-bound and numerical results for fundamental soliton PPM with
η = 1, p = 10−4, fppm = 0.1, Ns = 1024 and varying number of rings Nr.

ISI might further decrease the system performance. These additional effects are not
captured by the simulations in Fig. 4.25.

4.7. Eigenvalue Trajectories in Lossy Channels

The NFT is derived for an ideally lossless fiber model. Thus, if NFT-aided transmission
is done over a channel that exhibits additional perturbations such as e.g. fiber-loss, the
nonlinear quantities no longer ideally propagate according to Eqs. (4.50), (4.51) and
(4.52). Also operator L(z) is no longer isospectral and thus e.g. discrete eigenvalues
λk do not retain their original position.

While there are some results on the behavior of nonlinear Fourier quantities under
AWGN [129], [130], there are no meaningful analytic results on the impact of fiber-
loss yet. In the following, the trajectories of discrete eigenvalues in multi-solitons
are studied numerically for the lossy NLSE channel. Note, that some of the span
lengths used in this section are not practical and are merely used to ensure the discrete
eigenvalues of the studied pulses remain trackable by the used RK-NFT. Even though,
for longer span-lengths, the discrete eigenvalues generally are absorbed into the real-
axis after a certain distance, this does not impose a strict limit on the amplifier spacing,
since vanished eigenvalues reappear after proper re-amplification. But, beyond the
point at which all discrete eigenvalues vanished, the energy of the pulse is fully shifted
to the continuous spectrum and thus, the pulse exhibits dispersive behavior similar to
e.g. pulses in WDM-systems.
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4. The Nonlinear Fourier Transform for Single-Mode Fiber Channels

4.7.1. Trajectory Under Lumped Amplification

The influence of propagation in a lossy NLSE channel on the two discrete eigenvalues
of a multi-soliton is depicted in Fig. 4.26 for three different sets of spectral amplitudes.

0 2 4 6 80

1

2

3

4

z [km]

=
{λ

k
}

λ1 λ2

(a) qd(λ2, z = 0) = 1

0 2 4 6 80

1

2

3

4

z [km]

λ1 λ2

(b) qd(λ2, z = 0) = −1

0 2 4 6 8

1

2

3

4

z [km]

λ1 λ2

(c) qd(λ2, z = 0) ≈ ej0.756π

Figure 4.26.: Trajectories for λ1(z = 0) = 1j, λ2(z = 0) = 3j over two EDFA amplified
spans (Lspan = 4km) with qd(λ1, z = 0) = 1 and varying qd(λ2, z = 0).
Dashed grey lines indicate initial values for reference.

The signal is re-amplified at discrete points along the transmission link. This models
amplification by e.g. EDFAs, as discussed in section 3.3.1. The pulses, for which the
movement of the discrete eigenvalues is depicted in Fig. 4.26, are multi-solitons with
K = 2. The initial value of the discrete spectral amplitude corresponding to the
discrete eigenvalue with the smaller imaginary part is fixed to be qd(λ1, z = 0) = 1 for
Figs. 4.26a to 4.26c, while the initial value for the second discrete spectral amplitude is
varied. In Fig. 4.26a, the initial discrete spectral amplitudes are identical (qd(λ1, z =
0) = qd(λ2, z = 0)). It can be seen, that in this case the imaginary part of both
discrete eigenvalues decreases during propagation. Since the imaginary part of the
discrete eigenvalues is related to the energy in the discrete nonlinear spectrum (see
Eq. (4.49)), it could also be said that, energy from both parts of the temporal pulse,
corresponding to the discrete eigenvalues respectively, is transferred to the continuous
nonlinear spectrum or removed from the pulse completely, due to fiber-loss. For a
phase difference of π between the initial discrete spectral amplitudes (Fig. 4.26b),
an interesting effect can be observed. The imaginary part of discrete eigenvalue λ2

decreases faster than in the first case, but the imaginary part of λ1 is increasing during
propagation. This means, in addition to energy being removed form the transmission
pulse due to fiber-loss, energy is additionally shifted away form the part of the pulse
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4.7. Eigenvalue Trajectories in Lossy Channels

corresponding to λ2, towards the part of the pulse corresponding to λ1. For the results
shown in Fig. 4.26c, pulses with varying phase difference between the initial nonlinear
spectral amplitudes qd(λ1, z = 0), qd(λ2, z = 0) were tested until a value was found,
for which the loss of energy, due to attenuation during propagation, was compensated
by the shift of energy from the λ2 to the λ1 portion of the pulse. In all three cases,
re-amplification at z = 4km results in a movement of the discrete eigenvalues back into
the proximity of their original location. Thus, for moderate perturbations, if the signal
is properly re-amplified at regular instances, the location of the discrete eigenvalues
at the receiver should be similar to their location at the transmitter. The discrete
spectral amplitudes qd(λi, z) however propagate according to Eq. 4.51 and thus are
influenced by the exact shape of the movement exemplified in Fig. 4.26 and 4.27.

4.7.2. Trajectory Under Distributed Amplification

Similar simulations were conducted for a fiber-link with DRA amplification. In general,
similar effects to the EDFA-case studied in section 4.7.1 were observed. Due to the
fact, that fiber-loss is compensated in a distributed manner, the power-profile along
the spans is more flat and thus it is possible to follow the trajectories of the discrete
eigenvalues for longer span-lengths. In Fig. 4.27, results for three cases, similar to
4.26, are presented.
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Figure 4.27.: Trajectories for λ1(z = 0) = 1j, λ2(z = 0) = 3j over two Raman amplified
fiber spans (Lspan = 50km) with qd(λ1, z = 0) = 1 and varying qd(λ2, z =
0). Dashed grey lines represent initial values for reference.

While the results depicted in Fig. 4.27a, mirror the results from Fig. 4.26a, the
inverted behavior between the trajectories in Fig. 4.27b is less pronounced than in
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4. The Nonlinear Fourier Transform for Single-Mode Fiber Channels

the EDFA-case. This can be attributed to the longer span length (Lspan = 50km), for
which the phase relation between discrete spectral amplitudes is no longer as stable as
it was in the EDFA-case, where the span length was considerably lower (Lspan = 4km).
In Fig. 4.27c, the set of initial discrete eigenvalues was again chosen such that the
energy corresponding to λ1 is held as stable as possible. Note, that once more due to
the longer spans, this is no longer achieved as ideally as in Fig. 4.26c.

4.8. Collision and Absorption Phenomena
In the previous section, the span length always was chosen such, that the discrete
eigenvalues remained trackable and did not get too close to each other. In the following,
parameters are chosen such, that those two cases occur during propagation. Once
more, there is little analytical insight so far, thus the phenomena were studied by
means of numerical simulation.

In Fig. 4.28, the absorption of discrete eigenvalue λ1 into the real axis is shown.
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Figure 4.28.: Eigenvalue absorbtion (qd(λ1) = qd(λ2) = 1, Lspan = 19.2km, ∆` = 30m)

To capture the data shown in Fig. 4.28, the stepsize of the SSFM was chosen to be
rather small (∆` = 30m). The discrete eigenvalues λ1(z = 0) = 0.5j and λ2(z = 0) = 3j
were chosen to speed up the absorption process of λ1 into the real axis. Note, that
for this simulation only one fiber span of length Lspan = 19.2km was used without
amplification. While this is not specific to the absorption phenomenon studied here, it
can be seen in Fig. 4.28a, that transmission over lossy channels, also induces a change
in the real part of the discrete eigenvalues. This means, that the temporal components,
belonging to either λ1 or λ2, propagate at different velocities. In an extreme case, this
could lead to the separation of the multi-soliton into its fundamental solitonic parts.

128



4.9. Path-Loss Averaged Transmission

In Fig. 4.28b and 4.28c, the absorption of λ1 into the real axis is depicted. Due to
the limited capabilities of the numerical NFT-algorithms to detect discrete eigenvalues
that are very close to the real axis, it is unclear what exactly happens for ={λ1} → 0.
Thus, absorptions here means, the discrete eigenvalue is no longer trackable, due to
its proximity to either the real line or spurious eigenvalues (see e.g. Fig. 4.11).

The second case, studied in this section, occurs if two discrete eigenvalues move in
close proximity to each other. This ”collision”-case is depicted in Fig. 4.29.
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Figure 4.29.: Eigenvalue ‘collision‘ (qd(λ1) = 1, qd(λ2) = −1, Lspan = 0.5km, ∆` =
0.25m)

It can be seen, that the two discrete eigenvalues move towards each other during
propagation, due to the choice of discrete spectral amplitudes qd(λ1) = −qd(λ2). When
their imaginary parts become similar (see Fig. 4.29b), non-zero real-parts with oppos-
ing signs are generated, as depicted in Fig. 4.29a. This effect is visible in Fig. 4.29c
as well, where the ”repelling” effect can be seen even clearer. Beyond the ”collision”
point, the two discrete eigenvalues move towards the real axis, which once again is
in accordance with Eq. (4.49). Note, that the choice of discrete eigenvalues in Fig.
4.29 is rather impractical and was primarily made to force a ”collision” over a short
simulation distance. This is beneficial, since the step-size has to be chosen rather small
to make the processes in Fig. 4.29 visible.

4.9. Path-Loss Averaged Transmission
Since fiber-loss is not considered in the channel model, for which the NFT is derived,
it perturbs the continuous and discrete nonlinear spectra during propagation, as pre-
viously discussed in sections 4.7 and 4.8. To partially mitigate the negative impact
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4. The Nonlinear Fourier Transform for Single-Mode Fiber Channels

of fiber-loss on the nonlinear spectra, a NFT for the path-loss averaged (PLA) NLSE
model can be used [47], [131].

4.9.1. PLA-Enhanced Transmission over EDFA Channels

For lumped EDFA amplification, as described in section 3.3.1, the propagation over
one fiber-span is described by Eq. (3.1). By introducing the change of variables
Q(τ, `) = e−α

2 zA(τ, `) as described in [47] Eq. (3.1) can be rewritten as

jAz(τ, `) − β2

2 Att(τ, `) + γe−α`A(τ, `)|A(τ, `)|2 = 0. (4.175)

Under the assumption, that the envelope of A(τ, `) does not change too much over the
length of each fiber span, the influence of the nonlinear coefficient can be averaged for
the length of each span.

This average nonlinear coefficient in the lumped amplification case, can be found
analytically by

γavg = 1
Lspan

Lspan∫
0

γe−α`d` = γ
eαLspan − 1

eαLspanαLspan
= γ

G− 1
G ln(G) , (4.176)

with ln(x), being the natural logarithm and G being the total fiber loss G = eαLspan .
With the averaged nonlinear coefficient γavg available, Eq. 4.175 can be rewritten as

jAz(τ, `) − β2

2 Att(τ, `) + γavgA(τ, `)|A(τ, `)|2 = 0. (4.177)

If Eq. (4.177) is now normalized, as shown in section 4.1, the amplitude normalization
coefficient (compare Eq. (4.3)) is now given by

P0 =
√

2
γavgL0

. (4.178)

The time domain signal is thus rescaled, using γavg to mitigate the negative effects of
fiber-loss during propagation.

In Fig. 4.30, the BER for transmission of a MPSK-modulated multi-soliton (K =
2) over an EDFA amplified link is shown with and without using the PLA method
discussed above. It can be seen, that using the PLA method of rescaling transmission
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Figure 4.30.: BER with and without PLA approach (EDFA, RS = 0.8 GBaud, Lspan =
10 km).

signals, improves the BER performance quite significantly. Here the spans were chosen
to be quite short, but this improvement is present over a wide range of system settings.
The underlying mechanism that results in the shown improvement, is that the pulses
are linearly rescaled such that in the beginning their power is too high and thus they
are exposed to more nonlinear effects than predicted by the ideal channel model for
which the NFT is derived. During propagation the pulse in attenuated and thus
experiences less and less nonlinear effects. On average this more closely resembles the
underlying channel model, than transmitting pulses that are only optimally matched
to the channel for z = 0. Some more results can be found in appendix D.4. The
simulation parameters used to obtain the presented results are given in table C.2.

4.9.2. PLA-Enhanced Transmission over DRA Channels

The PLA approach can be used for transmission channels with DRA amplification as
well [131]. The channel for the DRA-case can be modeled as

jQz(τ, `) − β2

2 Qtt(τ, `) + γ|Q(τ, `)|2Q(τ, `) = j(−1
2α + 1

2gRPP︸ ︷︷ ︸
g(`)

)Q, (4.179)

neglecting noise. It can be seen, that if fiber-loss and DRA-amplification parameters
are expressed as function g(`), the channel equation is similar to Eq. (3.1) and thus a
change of variables can be done similarly to the PLA approach described for EDFAs
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in section 4.9.1. Using

Q(τ, `) = e
∫̀
0
g(y)dy

A(τ, `), (4.180)

Eq. (4.179) can be rewritten as

jAz(τ, `) − β2
Att(τ, `)

2 + γ e
2
∫̀
0
g(y)dy︸ ︷︷ ︸
G(`)

A(τ, `)|A(τ, `)|2 = 0. (4.181)

Again, it is assumed that the envelope of A(τ, `) does not change too much over
one fiber span, such that an average value γavg can be computed. Here the result
depends on the exact setup of the DRA fiber-span. In the following it is assumed,
that the fiber-span is pumped in co- and counter-propagating direction with equal
pump-powers, as described in section 3.3.2. If now the effects of pump-depletion are
negelected, the amplification parameter G(`) is given by

G(`) = exp
(

−αS`+ gRPP(` = 0)
(

1 − e−αP` − e−αPLspan + e−αP(Lspan−`)

αP

))
. (4.182)

The averaged nonlinearity coefficient

γavg = γ

Lspan

Lspan∫
0

G(`)d`, (4.183)

can be calculated numerically. This value then can be used in Eq. (4.178) to rescale
the transmission pulse in the de-normalization step.

In Fig. 4.31, the BER for transmission of the same signal as in Fig. 4.30 over
an DRA amplified link is shown with and without using the PLA method discussed
above. The DRA scheme here uses co- and counter- propagating pump-lasers. It can
be seen, that, in comparison to Fig. 4.30, the improvement using the PLA method is
significantly smaller. Since the power-profile of the signal is much more flat for the
DRA-case in comparison to the EDFA-case (see Fig. 3.5), it makes sense that the
averaging of the nonlinear operator results in a value closer to the channels initial γ.
If γavg and γ are similar, the re-scaling due to PLA will be less pronounced and thus
the effect on the BER is less visible in Fig. 4.31. Some further results for the DRA
channel can be found in appendix D.4. The simulation parameters used to obtain the
presented results are given in table C.2.
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Figure 4.31.: BER with and without PLA approach (DRA, RS = 1.2 GBaud, Lspan =
80 km).

4.10. Fiber Parameter Estimation using the NFT

The NFT has several applications beyond its treatment in the context of optical trans-
mission systems [89], [90]. An application that is of interest for the design of trans-
mission systems, is the estimation of fiber channel parameters utilizing the NFT. The
INFT generates time-domain signals for its nonlinear spectral components, dependent
on the given channel parameters. If there is a mismatch, between the channel assumed
by the NFT/INFT and the channel over which the signal is propagating, the signal is
distorted. While this distortions negatively impact the data transmission capabilities
of systems, they can be utilized for the estimation of one or more fiber-parameters as
discussed in the following.

4.10.1. Nonlinearity Estimation with Fundamental Solitons

In this first estimation scheme, the nonlinearity parameter γ is to be estimated using
fundamental solitons as probing pulses. The discrete eigenvalue λ1 of this pulses
is chosen to be purely imaginary. The discrete spectral amplitude is chosen to be
qd(λ1) = 2={λ1}e−jφ1 , where the magnitude |qd(λ1)| is chosen such that the soliton is
zero-centered and the phase can be chosen arbitrarily. We set it to φ1 = π

2 to further
simplify the expression for a fundamental soliton at z = 0 to

q(t, z = 0) = 2ηsech(2ηt), (4.184)
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where η = ={λ1} is the imaginary part of the discrete eigenvalue. The corresponding
pulse in natural units is given by Q(t, z = 0) = q(t, z = 0)

√
P0, with P0 either defined

by Eq. (4.3) or, if the PLA scheme is used by Eq. (4.178). Since the normalization
coefficient P0 is dependent on γ or γavg, a mismatch in the nonlinearity parameter
between channel and NFT/INFT leads to perturbations, since the generated pulse
is no longer matched to the channel. Thus, it can be presumed that, not only the
discrete eigenvalue λ1 is no longer in its assumed position, but also some of the energy
of the pulse will be dispersed during propagation. As a result, it is assumed, that the
discrete eigenvalue of the pulse at the receiver deviates more strongly from the assumed
position if the mismatch in the nonlinearity parameter is bigger. In the following, it
is assumed that the PLA scheme is used throughout this section and thus the channel
nonlinearity will simply be signified by γch. The nonlinear parameter of the fiber-
channel is assumed to be fixed and the nonlinear parameter used for the (re)scaling
will be given by γsc. The factor δγ = γsc

γch
is introduced as a measure of the mismatch

between these two variables.
In Fig. 4.32, the NMSE between the transmitted and detected discrete eigenvalues

for different values of δγ.
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Figure 4.32.: Estimation accuracy for the fiber nonlinearity parameter γ using funda-
mental soliton with λ1 = 0.5i. Noiseless Case. 20x100km

Note, that the signal power PS for trains of fundamental solitons is increasing with
the Baud-rate. It can be seen, that each of the obtained curves has a minimum
(signified by black circles). This minimum could be seen as an estimate of the nonlinear
parameter γch, since for this value δγ the pulses seem to be matching the channel the
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best. For a good portion of the tested Baud-rates, the minimum is quite close to δγ = 1,
but especially for higher Baud-rates the deviation from the assumed optimum point
gets higher. Further, the slopes for very low Baud-rate curves are very shallow. This
could be due to the fact, that, for very low signal powers, the amount of nonlinearity
that can be measured is very low and thus the change in γsc does not influence the
results significantly.

4.10.2. Joint Parameter Estimation with Multi-Solitons

Improving on the scheme described previously, the NFT-aided approach for parameter
estimation can be extended to estimate both, nonlinearity and dispersion parameters
of the probed fiber channel. While the exact procedure used in this thesis is slightly
different, the fundamental idea for this estimation technique was presented in [132]–
[134].

For easier reference, the quantities cq and cz are introduced. These quantities are
defined as part of the normalization coefficients first introduced in Eqs. (4.2) to (4.4).
They are given by

q(t, z) =T0

√
γ

|β2|︸ ︷︷ ︸
cq

Q(τ, `), (4.185)

z = 1
T0

2
|β2|
2︸︷︷︸
cz

`. (4.186)

The objective of the algorithm is to obtain cq, cz from which the fiber parameters are
easily obtained.

In a first step, parameter cq is estimated by searching for the value that results in the
minimum error in the received discrete eigenvalues. Even though the probing pulses
are multi-solitons, the procedure is similar to the procedure described in section 4.10.1
for γ. Note, that here it is assumed that some region in which the parameter cq lies
is known. If this is not assumed, there still is a way to define an initial search region,
outlined in [133].

After an estimate on cq is obtained, the second parameter cz can be computed. The

135



4. The Nonlinear Fourier Transform for Single-Mode Fiber Channels

normalized transmission length can be computed using Eq. (4.186). It is given by

Z = 1
T0

2
|β2|
2︸︷︷︸
cz

L. (4.187)

It can be seen that, since the nonlinear spectrum evolves during propagation, according
to Eqs. (4.50) to (4.52), the normalized distance can be obtained by comparing the
received to the transmitted values b(λk) (or the discrete spectral amplitudes). It is
assumed that the physical link-length is known and thus by using Eq. (4.187), the
parameter cz can be estimated.

While it is in general possible to obtain cz just by numerically matching the trans-
mitted and received sets, a more refined method, described in [132], will be shortly
reviewed in the following. Assuming the discrete eigenvalues λk have a non-zero real
part, the magnitudes of b(λk) change according to

|b(λk, z = Z)| = |b(λk, z = 0)|e<(4jλk2)Z . (4.188)

Rearranging Eq. (4.188) yields

Z = log(|b(λk, z = Z)|) − log(|b(λk, z = 0)|)
<(4jλk2)

. (4.189)

Note that, if perturbations during transmission occur the results from Eq. (4.189) for
some discrete eigenvalue λk will just be estimates, which will be signified by Ẑk. For
the simulation results in this section, the estimates Ẑk were averaged by a weighted
sum according to

Ẑ =

K∑
k=1

wkẐk

K∑
k=1

wk

, (4.190)

where the weights were set according to wk = ={λk}. This can be justified by the fact,
that discrete eigenvalues with a higher imaginary part, correspond to a larger portion
of the time-domain pulses energy [133]. Finally the fiber-parameters can be estimated,
using Eqs. (4.187), (4.185) and (4.186). A flow-chart for the presented algorithm is
shown in Fig. B.1 in appendix B.4.

Some simulations were conducted, to get some intuition on the accuracy of the
presented method. The two estimated coefficients, introduced in this section, are thus
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cq ≈ 2.38 ·1011 W− 1
2 s−1 and cz ≈ 1.058 ·10−26 s2m−1. The probing pulse was generated

by the DT-INFT with three discrete eigenvalues λ1 = −0.1+j0.3, λ2 = 0.1+j0.3, λ3 =
j0.15 and corresponding spectral amplitudes qd(λ1) = 1.0 + j1.0, qd(λ2) = 4.0 + j4.0,
qd(λ3) = j1.0. Note that the discrete eigenvalue with zero real part is only added to the
pulse to increase the signal power. This improves the measurement of the nonlinearity
parameter in the first step of the parameter estimation algorithm, but can not be used
to compute cz, since Eq. (4.189) is used for its estimation. Parameter T0 is set such,
that the pulse does not move out of its allotted time-slot during propagation.

First, the algorithm was tested under ideal conditions, setting α = 0 dB
km . This lead

to the results shown in Tab. 4.2. The estimation was done, using either the discrete

Table 4.2.: Estimation of fiber parameters β2 and γ (Ideal Case).
True value Estimation (using qd(λk)) Estimation (using b(λk))

β2 [ s2

m ] −2.1173 · 10−26 −2.117785 · 10−26 −2.117765 · 10−26

γ [ 1
W·km ] 0.0012 0.00120029 0.00120028

Error [%] 0.02477% 0.0238%

spectral amplitudes given above, or the corresponding b(λk)-values. It can be seen, that
the algorithm estimates the parameters very well, with slightly better performance if
b(λk)-values are used. The measured error for both fiber parameters is identical. This
is due to the fact, that the minimum error in the discrete eigenvalues is obtained at the
true value cq by the implemented grid-search. The error introduced by the estimated
value cz is thus affecting both parameters identically.

The algorithm was also tested for an EDFA-amplified fiber channel, using the PLA-
method outlined in section 4.9.1. The results are given in Tab. 4.3.

Table 4.3.: Estimation of Fiber parameters β2 and γavg (PLA Case).
True Value Estimation (using qd(λk)) Estimation (using b(λk))

β2 [ s2

m ] −2.1173 · 10−26 −2.2153 · 10−26 −2.1737 · 10−26

γavg [ 1
W·km ] 3.1754 · 10−4 3.299 · 10−4 3.2389 · 10−4

Error(β2) [%] 4.629% 2.664%
Error(γavg) [%] 3.892% 1.999%

It can be seen, that the parameter γavg is smaller than the value for γ, shown in
Tab. 4.2. This is due to the fact, that the channel is EDFA-amplified and thus, the
signal is mostly affected by nonlinearity for the first few kilometers. After that the
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signal-power has decreased significantly and nonlinear effects are almost negligible. It
can be seen, that now the error for each parameter is different. This is due to the
fact, that in this case cq is no longer ideally estimated, and thus the error in γavg now
is dependent on both estimated parameters cq and cz. The fiber parameter γ can be
recovered from γavg using Eq. (4.176). Simulation parameters are given in table C.3
and further results can be found in appendix D.5.

Note, that an equation similar to Eq. (4.189) can be found, to compare angles of
transmitted and received b(λk) values for purely imaginary discrete eigenvalues. This
would lead to a sequence of normalized length values and thus estimates for β2. How-
ever, often a rough estimate for β2 is known already and thus a plausible result could
be picked from the sequence. The benefit of this method would be, that multi-solitons
with purely imaginary discrete eigenvalues are easier to handle in a measurement setup,
since they do not have components that drift out of the transmission window during
propagation. It can be seen, that this parameter estimation scheme has several further
interesting applications in regards to NFT-aided systems. One could be to calibrate
and monitor NFDM systems. Another one could be optimizing the linear rescaling of
transmission pulses beyond the capabilities of the PLA-method, by e.g. utilizing the
high Baud-rate measurements in Fig 4.32 to rescale pulses. Doing so can grant a small
improvement on top of the improvement gained by using the PLA-method. Some first
results for this additional heuristical scaling are shown in Fig. 4.33. Since the trans-
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Figure 4.33.: L =20x100km, Multi-soliton (K = 2), 8-MPSK modulated b(λk).

mission system utilizes multi-solitons, the signal power is linked to the symbol rate
and thus higher values RBaud signify higher average signal power. It can be seen, that
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there is some slight improvement in the high power regime where δγ (compare Fig.
4.32) is deviating more strongly from its ideal value. The curves labeled NFT were
measured, using an NFT algorithm at the receiver, while the curves labeled with MF
are for receivers using matched-filters (MFs). The latter receiver type, which shows
improved stability against noise when compared to a NFT detection scheme, will be
discussed in more detail in section 4.13. While the region in which the improvement
takes place here is not particularly useful, it shows that, in general, there are additional
MI improvements possible using this heuristic scaling method.

4.11. Labeling Approaches for EV-OOK Systems
In eigenvalue on-off keying (EV-OOK), information is transmitted by the presence or
absence of discrete eigenvalues in a multi-soliton. The discrete eigenvalues are drawn
from a chosen set ΛEVOOK = {λ1, λ2, · · · , λK} of possible candidates with cardinality
|ΛEVOOK| = K. By viewing each discrete eigenvalue as a separate channel to transmit
a single bit by its presence or absence in the discrete spectrum, it can be seen, that
each pulse can transmit a bit-vector bTX = [b1, · · · , bK ] of length K. An example
of a small pulse-set is depicted in Fig. 4.34. In the following it is assumed, that all
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Figure 4.34.: Exemplary pulse alphabet of EV-OOK system.

discrete eigenvalues are purely imaginary and ordered such that ={λi−λi−1} > 0. The
assumption that <{λk} = 0 ∀ k ∈ [1, K] is necessary for the heuristic channel model
derived in the following and the condition on the imaginary part is done mostly for
convenience and brevity of notation.

In the following, an abstracted and simplified heuristic channel model is studied, for
the transmission of EV-OOK-modulated multi-solitons over the NLSE channel. The
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4. The Nonlinear Fourier Transform for Single-Mode Fiber Channels

model is mostly based on the observations in [135] and Eq. (4.49). The goal is to find
bit-labeling schemes, that improve the BER in the aforementioned systems.

The abstract channel model, generates the error types depicted in Fig. 4.35. An
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Figure 4.35.: Most probable errors in heuristic channel model (Red → can be detected.
White → can not be detected.)

error of type 1, as depicted in Fig. 4.35a, occurs if the discrete eigenvalue with the
smallest imaginary part vanishes into the real line. This effect was already studied
in section 4.8. The second error type, depicted in Fig 4.35b, occurs if a discrete
eigenvalue is detected as another one which was not originally sent. In abstract terms,
it could be described as a neighboring ’absent’ and ’present’ state switching places. The
intuition behind the model stems from the idea, that, for moderate power-fluctuation,
the discrete eigenvalues will most likely be detected falsely as some of their direct
neighbors (compare Figs. 4.26 and 4.28b) or the smallest one will vanish into the real
line (compare Fig. 4.28).

Note, that energy can also be transferred to the continuous spectrum without chang-
ing the overall energy of the time domain pulse. From previous observations in sections
4.7 and 4.8, it seems that this process does not occur over much smaller distances z,
than the exchange in the discrete spectrum and the general energy reduction due to
fiber-loss. Thus, the exchange of energy between continuous and discrete spectrum was
not included in the tested model. For conventional modulation schemes such as QAM
in a WDM-system, gray labeling [136] is used to minimize the number of occurring
bit errors per symbol error. Assuming that, for moderate perturbations, only errors
between nearest neighbors occur only one bit error per symbol error occurs if gray
labeling is used. Such a labeling method, minimizing the bit-errors per symbol-error,
is also desirable for EV-OOK modulation.

The naive approach to labeling, is to use the binary vectors bTX as a direct indicator
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4.11. Labeling Approaches for EV-OOK Systems

for the presence or absence of a discrete eigenvalue in the pulse. This means that bk = 1
if a(λk) = 0 and bk = 0 if a(λk) 6= 0. This scheme will be called binary labeling in the
following. It can be seen directly, that if an error of type 2 occurs and thus discrete
eigenvalue λk is detected as λk±1, two adjacent bit errors occur in positions k and
k ± 1.

4.11.1. ’Gray’ Labeling

The second labeling scheme will be called ’gray’-labeling in the following. While
it is not similar to the well known gray-labeling for e.g. QAM symbols from an
algorithmic standpoint, it achieves the same goal, which is to cause errors between
adjacent symbols to only generate one bit-error. Here adjacent means the one symbol
turns into another by either one error of type 1 or one error of type 2. The labels can
be assigned according to

uTX · Ggray = bTX, (4.191)

with
Ggray = [dK , dK−1, · · · , d1] , (4.192)

where

dk =
 [1,0K−1]T, for k = K

[0K−k−1, 1, 1,0k−1]T, otherwise
, (4.193)

and uTX is the gray bit-label. In the above equations 0k and 1k are zero and one
vectors of length k. The proof can be found in appendix A.4.

4.11.2. Greedy Labeling

Another labeling scheme, that was implemented and tested for EV-OOK-systems, is
a simple form of greedy labeling. This algorithm labels the symbols according to a
measured transition probability matrix and is thus relying on the use of pilot-data.
Symbol-pairs are labeled such, that the ones with the highest transition probability
have bit-labels that only differ in one bit. As already described in detail in section
3.4.3, this can lead to suboptimal labeling of symbol-pairs later in the process. The
exact algorithm used is given in pseudo-code in algorithm 2 in appendix B.2.
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4. The Nonlinear Fourier Transform for Single-Mode Fiber Channels

4.11.3. Simulation Results

The labeling schemes presented beforehand, were evaluated numerically for transmis-
sion over a DRA-amplified fiber-channel. The span-length was set to be Lspan = 100 km
and the total transmission distance was L = 6000 km. In Fig. 4.36, the bit-error per
symbol-error for two different scenarios is given. For the additional curve for K = 3
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(a) K = 3, RBaud = 1.2 GBaud
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Figure 4.36.: Bit-error per symbol-error for several bit-labeling schemes

labeled ’Exhaustive’, all possible label combinations were tested and the one with the
lowest bit-error per symbol-error was used. It gives a lower bound on the bit-error per
symbol-error achievable for this specific realization. The complexity of this method is
very high, thus it could no longer be used for K = 5.

For Fig. 4.36a it can be seen that, for the most part, the binary labeling scheme is
outperformed by the other algorithms. Greedy labeling also consistently outperforms
the ’gray’-labeling approach, although it should be mentioned that the drawback of the
greedy labeling method is, that pilot-data has to be used to compute the transition
probability matrix. The cause for the unexpected behavior of the binary and gray
curve around 1000 km − 1500 km is not fully understood. The effect could be caused
by some unfavorable breathing-motion of the pulses in this region of the fiber. However,
this effect is not visible in the greedy and exhaustive curves. Since they are adaptive
algorithms that do not rely on the assumptions made in the heuristic channel model
(Fig. 4.35) for the derivation of the gray labeling algorithm, they seem to not show
the same degradation of performance if the channel behavior deviates from this model.
Most interestingly, for low BER values which correspond to small values of z (compare
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results in appendix D.6), all algorithms exhibit a bit-error to symbol-error ratio of
BER
SER = 1, except for the binary labeling scheme, which exhibits a value of BER

SER = 2.
The reason for the binary scheme having this value for small perturbations was already
given above. For the gray algorithm, this indicates that the heuristic channel model
in Fig. 4.35 seems to capture the errors occurring in the transmission system well for
small perturbations. Thus, the gray labeling scheme seems to work as intended in this
region.

For K = 5 (see Fig. 4.36b), the results give similar insight, lacking the irregular
behavior visible for K = 3. It can be seen, that the optimal value of BER

SER = 1 is
achieved by gray and greedy labeling for a distance of up to 3000 km. Note, that this
increase in reach for the improvement of bit-error to symbol-error ratio probably has
to be attributed to the lower Baud-rate used for this simulation. In addition to the
plots shown in this section, some more results can be found in appendix D.6.

4.12. Clustering Algorithm for Discrete Spectrum Data

Consider an NFT communication system that transmits Nsym symbols of information
on the values bk = b(λk) of a solitonic pulse with K eigenvalues. Assuming that each bk
is taken from a constellation of Nc points, there are M = NK

c possible transmit sym-
bols, or constellation points bm = (<{b1[m]}, · · · ,<{bK [m]},={b1[m]}, ...,={bK [m]})T

for m ∈ {1, · · · ,M}. At each time index n ∈ 1, ..., Nsym, one constellation point bm is
chosen, and the symbol

xn = bm = (<{x1[n]}, · · · ,<{xK [n]},={x1[n]}, ...,={xK [n]})T, (4.194)

is transmitted.
Let yn be the received symbol at time index n. It can be modeled as a RV y whose

probability density function (PDF) is a mixture of Gaussians (MOG)

py(y) =
M∑
m=1

Pm(m)N(y|µm,Σm) (4.195)

where Pm(m) is the probability that the m-th constellation point bm has been sent,
equal to 1

M
for uniformly distributed constellation points. The vector µm = E [y|x = bm]

is the expectation of the received symbol given that the constellation point bm was
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sent, and Σm is the corresponding covariance matrix. Further, N(y|µm,Σm) is the
multivariate Gaussian PDF with mean µm and covariance matrix Σm.

If a sufficient amount of received constellation points is available, the parameters of
the MOG model can be estimated by the expectation maximization (EM) algorithm.
EM [137], [138] is an iterative algorithm to find a set of parameters Ξopt = (µm,Σm)
(which contains all the µm and Σm for m = 1, · · · ,M) that maximizes the probability
of the received signal Y = (y1, ...,yNsym). Thus, the estimation problem is

Ξopt = argmax
Ξ

(p(Y |Ξ)) (4.196)

with Ξ being the set of parameters over which the maximization is done. The l-th
iteration of EM is comprised of an expectation step and a maximization step.

Expectation Step

For each received constellation point yn , the expectation step computes the a poste-
riori probabilities

γ(`)
nm = p(xn = bm|yn) (4.197)

=
P (l)
m (m)N

(
ym|µ(l−1)

m ,Σ(l−1)
m

)
M∑

m′=1
P

(l−1)
m (m′)N

(
yn|µ(l−1)

m′ ,Σ(l−1)
m′

) (4.198)

which are often called responsibilities [138]. Notation a(l) denotes the value of a at the
l-th iteration.

Maximization Step

In the subsequent maximization step, the parameters Ξ(l) are updated for all m ac-
cording to

N (l)
m =

N∑
n=1

γ(l)
nm (4.199)

P (l)
m (m) = N (l)

m

Nsym
(4.200)

µ(l)
m = 1

N
(l)
m

Nsym∑
n=1

γ(l)
nmyn (4.201)
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Σ(l)
m = 1

N
(l)
m

Nsym∑
n=1

γ(l)
nm(yn − µ(l)

m )(yn − µ(l)
m )T. (4.202)

The parameters computed in the maximization step are then fed back to the next
expectation step during iteration l + 1. Note that the algorithm also estimates the
input distribution Pm(m), and is therefore also useful for non-uniform input distribu-
tions. The algorithm terminates if either an appropriate difference measure between
subsequently computed parameter sets is smaller than some threshold value or after a
maximum number of iterations has been reached. The EM algorithm is guaranteed to
converge to a (local) maximum [138]. The EM algorithm classifies the received sym-
bols into M clusters, which correspond to the possible constellation points. The task
of assigning the clusters to the constellation points is an instance of the assignment
problem, which was solved using the optimal Hungarian method [139]. This method
finds an assignment f : {1, · · · ,M} → {1, · · · ,M} that minimizes the sum of Eu-
clidean distances between the cluster means µm and their corresponding constellation
point bf(m). A short example of the iterative steps of the EM algorithm is given in
appendix D.7.1.

The EM algorithm was tested, using received data from a multi-soliton transmission
system with K = 2 and a bi-directional pump Raman-amplified channel of length
L = 1800 km, which comprises Nspan = 60 spans of length Lspan = 25 km. The discrete
eigenvalues were chosen to be λ1 = 1.5j and λ2 = 1j. Information was transmitted by
MPSK-modulated bk = b(λk) values with Nr = 4 rings and Np = 4 uniformly spaced
phases per ring (0, π2 , π, 3π

2 ), using gray-mapping for bit-labeling. The ring amplitudes
were heuristically chosen to be the values |b1| ∈ {0.0163, 0.2534, 3.9462, 61.4517} and
|b2| ∈ {0.0642, 0.4004, 2.4972, 15.5724} similar to [140]. Further parameters are given
in Tab. C.4 in appendix C.4.

To account for the effects of ISI, the propagation was simulated in blocks of 64
modulated pulses. At the receiver, after band-pass filtering a FB TD-NFT was per-
formed to compute the received spectral amplitudes yk[n]. The yk[n] were mapped to
the constellation points using (a) minimum Euclidean distance (MD) or (b) the EM
algorithm. For the EM algorithm, different training set sizes Ntr between 6912 and
25600 symbols were used (note that the method is blind and the training set is used
to transmit data). After training, the EM parameters Ξ were kept fixed and further
tested on new symbols. The total number of symbols (training plus testing) was 90112
in all cases. The BER results are plotted in Fig. 4.37 as a function of link length L.
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As expected, the performance of EM depends on the size of the training set, Ntr. It

1,200 1,300 1,400 1,500 1,600 1,700 1,80010−6

10−5

10−4

10−3

10−2

10−1

L [km]

BE
R

Minimum distance EM (6912 symbols)
EM (11520 symbols) EM (16128 symbols)
EM (20736 symbols) EM (25600 symbols)

1,330 1,370 1,410
5 · 10−4

10−3

2 · 10−3

Figure 4.37.: Bit error rate for minimum distance (dashed) and EM (solid) detection
for different training set sizes.

can be observed, that different symbols become unreliable at different distances. This
often results in staircase-like BER curves, which could explain the seemingly saturat-
ing BER curves in Fig. 4.37. At BER = 10−3, with a training set size of Ntr = 16128
symbols, the reach of EM is 30 km larger than that of MD. At about Ntr = 20000
training symbols, the performance of EM saturates at 60 km larger reach than MD.

Fig. 4.38 shows the obtained clusters for two different transmission distances and
Ntr = 25600. The originally transmitted positions are shown by black crosses, the black
circles show the average values of each cluster and the circles are the respective 95%
confidence intervals. In Fig. 4.38a the received symbols for a transmission distance
of L = 1500 km are depicted, colored by cluster. It can be seen, that even though
the received values are perturbed strongly, the EM algorithm is able to form plausible
clusters. In Fig. 4.38b for L = 1650 km it can be seen, that the EM algorithm
generates one cluster (orange), that results in a lot of errors (red marks in Fig. 4.38c)
around the center of the plot.
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Figure 4.38.: EM-clusters of received symbols.

4.13. Soliton Receivers with Matched-Filters

In all previous scenarios, the transmission pulses in the respective NFDM-systems
were detected using some NFT algorithm at the receiver. If the set of possible re-
ceived pulse-shapes (without perturbations) is known at the receiver, the information
can be retrieved by using a bank of MFs as well. For this to be feasible, the trans-
mission distance L has to be known at the receiver, since pulses change shape during
propagation. Also the size of the pulse-alphabet at the receiver should not be too big
for this approach, to keep the detection schemes complexity manageable. To evaluate
the impact of MF-based detection on the transmission schemes, fundamental soliton
pulses were used. Data was transmitted by a combination of discrete eigenvalue mod-
ulation λ1 = jk for k = {1, · · · , K} and PSK-modulated spectral amplitudes.

First, the MI for transmission over an AWGN-channel was determined by numerical
simulation. The results are depicted in Fig. 4.39. It can be seen, that the MI curves
of the MF detector are approaching the theoretical bound for low SNR and the MI for
NFT detection drops faster when the SNR decreases. The MF curves approaching the
theoretical bound for small SNR is somewhat expected, since the system, except for
the pulse generation method, is analog to systems for which the given bound is derived.
The MF-curves deviate from the bound for higher SNR. This could be explained by
the choice of transmission pulses, which were generated according to some chosen
nonlinear spectral data (compare Fig. 3.9 and Eq. 4.62). Note, that for the NFT
approach no previous matched filtering can be done, which increases the influence of
noise on the signal and additionally the MI might be decreased by errors due to the
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Figure 4.39.: MI for fundamental soliton discrete eigenvalue modulation + PSK mod-
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numerical behavior of the NFT algorithm. Also it was shown that AWGN noise in the
linear domain does not lead to white noise in the NFD, which also impacts the MI.

Another simulation, modeling transmission over an EDFA channel where noise, loss
and non-linearity influence the signal during propagation, was conducted. The results
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Figure 4.40.: MI for fundamental soliton discrete eigenvalue modulation + PSK mod-
ulated spectral amplitudes and detection by MF or NFT.

given in Fig. 4.40 are in this case plotted over the symbol rate, since signal power is
directly linked to symbol rate for fundamental solitons. It can be seen, that in this
case the MF approach significantly improves upon the NFT method as well. Again
an upper bound is given. This bound was derived, for an AWGN channel (similar to
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bound in Fig. 4.39), with noise power identical to the accumulated EDFA noise in the
channel.
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5
The Nonlinear Fourier Transform for
Multi-Mode Fibers

The most prominently used channel model for the study of NFT-aided optical com-
munication systems is Eq. (3.1), but the NFT is generally applicable in the solution of
a wide variety of equations [90]. In regards to optical communication systems, several
recent publications were studying the applicability of the NFT to the dual-polarization
NLSE case [141]–[143]. In this chapter, this theory is expanded to the general strong
coupling multi-mode case described by the SCME (3.30).

Similar to the treatment in chapter 4, the channel model is normalized first. The
normalized SCME is obtained as

jqz(t, z) = qtt(t, z) + j2q(t, z)
M∑
m=1

|qm(t, z)|2, (5.1)

where qz is the vector holding z-derivatives for the signals in each mode, qtt is holding
second order derivatives in normalized time t, qm(t, z) is the m-th entry of q(t, z)
and M is the number of excited modes. The normalization is done using relations
q(t, z) = Q(τ, `)/P0, t = τ/T0 and z = `/L0, with normalization parameter relations
P0 =

√
2/(γκL0) and L0 = 2T0

2/|β̄2|. Q(τ, `) is the vector holding the signal in natural
units (compare Eq. (3.30)). It can be seen, that once more one of the normalization
parameters can be chosen freely.
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5.1. Basic Concept and Transformations

Starting with the eigenvalue equation of the Lax-operator L(z) according to Eq. (4.5)
and the propagation equation for eigenvectors in z (see Eq. (4.6)), the basis for the
NFT for the multi-mode case can be derived in close relation to the steps taken in
section 4.1.

In a first step, the Lax pair L(z), M(z) for Eq. (5.1) has to be found. Starting from
the Lax-operators given in [144], [90, Ch.2] for the dual-polarization case and using
the extensions in [145] the L(z)-operator is found to be

L(z) = j



D −q1(t, z) −q2(t, z) · · · −qM(t, z)
−q∗

1(t, z) −D 0 · · · 0
−q∗

2(t, z) 0 . . . . . . ...
... ... . . . . . . 0

−q∗
M(t, z) 0 · · · 0 −D


. (5.2)

Using the framework in [146, Sec. 4] the M(z)-operator becomes a (M + 1)x(M + 1)
square-matrix with entries

M11 =j2λ2 − j
M∑
m=1

|qm(t, z)|2 (5.3)

Mkk = − j2λ2 − j|qk−1(t, z)|2 for k = 2, · · · ,M + 1 (5.4)
M1k = − 2λqk−1(t, z) − jq∗

k−1,t(t, z) for k = 2, · · · ,M + 1 (5.5)
Mk1 =2λqk−1(t, z) − jqk−1,t(t, z) for k = 2, · · · ,M + 1 (5.6)
Mkl =jqk(t, z)q∗

l (t, z) for k, l = 2, · · · ,M + 1, k 6= l. (5.7)

While, a treatment of the NFT with periodic boundary conditions might exist for
the multi-mode case, the signals are once more, supposed to have limited energy and
vanish sufficiently fast for t → ±∞ over the course of this thesis. The eigenvalue
equation for operator L(z) can then be solved at ±∞ and boundary conditions can
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be set to

ψ
(0)
± (t, λ, z) →


1
0
...
0

 e−jλt, ψ
(m)
± (t, λ, z) →


0

δ1(m)
...

δM(m)

 ejλt, (5.8)

with

δl(m) =
 1 for m = l

0 for m 6= l
for l,m ∈ 1, · · · ,M. (5.9)

It can be seen, that Eq. (5.8) is the expansion of the conditions for the two-polarization
case given in [141]. They can be be used to define nonlinear Fourier coefficients via
the projection equation

ψ
(0)
− (t, λ, z) = a(λ)ψ(0)

+ (t, λ, z) +
M∑
m=1

bm(λ)ψ(m)
+ (t, λ, z). (5.10)

The nonlinear Fourier coefficients, for some fixed value z, then consist of parameter
a(λ) and M parameters bm(λ). Note that each parameter bm(λ) in general is related
to all time-domain signals qm(t, z), since they are coupled during propagation by fiber-
nonlinearity. Parameters a(λ), bm(λ) for m = 1, · · · ,M are again time independent.
This facilitates the computation of the nonlinear Fourier coefficients via numerical
integration of the linear propagation equation for eigenvectors in t.

The nonlinear Fourier transform for some fixed distance parameter z can be stated
as

NFT(q(t)) =
 q(m)

c (λ) = bm(λ)
a(λ) λ ∈ R

q
(m)
d (λk) = bm(λk)

aλ(λk) λk ∈ C+|a(λk) = 0
, (5.11)

where q(m)
c (λ), q(m)

d (λk) denote the continuous and discrete nonlinear spectral ampli-
tudes and λk for k = 1, · · · , K are the discrete eigenvalues in the upper half of the
complex plane. Entries q(m)

c (λ) and q(m)
d (λk) form the vector qc(λ), qd(λk) respectively.

Note that neither the operators L(z), M(z), nor the boundary conditions are defined
unambiguously. While some of the possible representations might be favorable over
others due to e.g. the numerical stability of the resulting algorithms, in general any
definition that is valid in itself is sufficient as long as all the used transformations use
the same set of assumptions.
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5.2. Properties of the Nonlinear Spectra

In the following, some of the basic properties from [43] are studied and (if possible)
extended to the multi-mode case. Distance parameter z is considered to be fixed
and thus omitted in all sections except for the treatment in section 5.2.5. Using
ym(t, λ) = vm+1(t,λ)

v1(t,λ) · e−2jλt, where vm(t, λ) are the entries of v(t, λ) = ψ
(0)
− (t, λ) the

continuous forward transformation can be restated as

dyj(t, λ)
dt + yj(t, λ)

M∑
m=1

qm(t)ym(t, λ)e2jλt + q∗
j (t)e−2jλt = 0 (5.12)

yj(t → −∞, λ) = 0. (5.13)

Similarly from lim
t→∞

f(t, λ) = a(λ) one can find the second order differential equation

d2f(t, λ)
dt2 −

(
2jλ+

M∑
m=1

q′
k(t)
qk(t)

)
df(t, λ)

dt + (5.14)

M∑
m=1

|qm(t)|2f(t, λ) +
M∑
m=1

M∑
j=1,j 6=m

q′
m(t)
qm(t)qj(t)uj(t, λ) = 0 (5.15)

where

duj(t, λ)
dt − jλ+ q∗

j (t)f(t, λ)e−λt = 0 (5.16)

uj(t → −∞, λ) = 0 (5.17)
f(t → −∞, λ) = 1 (5.18)

lim
t→−∞

df(t, λ)
dt = 0. (5.19)

The derivations for the differential representations above and all statements made in
the following subsections can be found in appendix A.5.

5.2.1. Constant Phase Change

The property of a constant phase change in time domain resulting in an inverse phase
change in the nonlinear Fourier domain still holds for the multi-mode case. It even
can be extended to the case, where the time domain signal in each mode is shifted by
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a different constant phase. This can be stated as

NFT(Φq(t)) →


â(λ) = a(λ)
b̂m(λ) = bm(λ)ejφm

q̂c(λ) = Φ−1qc(λ)
q̂d(λ) = Φ−1qd(λk)

, (5.20)

where Φ = diag(ejφ1 , ejφ2 , · · · , ejφM ) is the diagonal matrix containing the constant
phase terms, Φ−1 is its inverse, â(λ), b̂m(λ), q̂c(λ), q̂d(λ) are NFT parameters re-
lated to q̂(t) = Φq(t) and a(λ), bm(λ), qc(λ), qd(λ) are NFT parameters related to
q(t). Vectors q̂c(λ), q̂d(λ), qc(λ) and qd(λk) have entries q̂(m)

c (λ), q̂(m)
d (λ), q(m)

c (λ) and
q

(m)
d (λk) respectively.

5.2.2. Time Shift

From the LP property, or more specifically the propagator Ki in section 5.2.4, it can
be seen, that the nonlinear spectral components a(λ), bm(λ), q(m)

c (λ) of a pulse-set
q(t) are modified according to

â(λ) = a(λ)ejλt0 (5.21)
b̂m(λ) = bm(λ)e−jλt0 (5.22)
q̂(m)

c (λ) = q(m)
c (λ)e−2jλt0 , (5.23)

for a time shifted set q̂(t) = q(t − t0) and its NFT related parameters â(λ), b̂m(λ),
q̂(m)

c (λ).

5.2.3. Trace Formula

The trace formula known for the scalar case can be extended as well. The unimodular-
ity condition extends straight-forward from the scalar case as |a(λ)|2+

M∑
m=1

|bm(λ)|2 = 1
and will be used to extend the trace formula from the scalar case. Using the derivation
from the book of Ablowitz and Segur [90] the expressions for the energy confined in
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the nonlinear continuous and discrete spectrum are given by

Ec =E(qc(λ)) = 1
π

∞∫
−∞

log
(

1 +
M∑
m=1

|q(m)
c (λ)|2

)
dλ (5.24)

Ed =4
K∑
k=1

={λk}. (5.25)

5.2.4. Layer-Peeling Property

A formulation for the LP property still exists for the multi-mode case. In the following,
it is assumed that two non-overlapping signals q1(t), q2(t), which are zero outside of
intervals [t1, t2], [t2, t3] respectively, have nonlinear Fourier transforms NFT(q1(t)) →
{a(1)(λ), b(1)

m (λ)} and NFT(q2(t)) → {a(2)(λ), b(2)
m (λ)}. If the joint signal q(t) =

q1(t)+q2(t) has nonlinear Fourier transform NFT(q(t)) → {a(λ), bm(λ)}, the relation
between the nonlinear Fourier coefficients is given by

a(λ) =a(1)(λ)a(2)(λ) −
M∑
m=1

b(1)
m (λ)b(2),∗

m (λ) (5.26)

bm(λ) =b(2)
m (λ)a(1)(λ) + b(1)

m (λ)a(2),∗(λ). (5.27)

The above relations can be obtained by defining the propagation operator

Ki =



a(i)(λ) −b(i),∗
1 (λ) −b(i),∗

2 (λ) · · · −b(i),∗
M (λ)

b
(i)
1 (λ) a(i),∗(λ) 0 · · · 0
b

(i)
2 (λ) 0 . . . . . . ...

... ... . . . . . . 0
b

(i)
M (λ) 0 · · · 0 a(i),∗(λ)


(5.28)

and using

[a(λ)(1), b1(λ)(1), · · · , bM(λ)(1)]T = K1[1, 0, · · · , 0]T (5.29)
[a(λ)(2), b1(λ)(2), · · · , bM(λ)(2)]T = K2[1, 0, · · · , 0]T (5.30)

and the linearity of the propagation of eigenvectors in t. ComputingK = K2K1[1, 0, · · · , 0]T

then yields the expressions for the nonlinear Fourier coefficients of the joint signal q(t)
The LP property can be used to e.g. implement the LP-NFT, as presented in section
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5.4.1.

5.2.5. Propagation of Nonlinear Quantities

The limit lim
t→±∞

M(z) for the operator defined in Eqs. (5.3) to (5.7) is reduced to a
diagonal matrix with entries

Mkk =
 j2λ2 for k = 1

−j2λ2 else
. (5.31)

This is due to q(t) → 0 for t → ±∞. Using this limit and the boundary conditions
in Eq. (5.8), the derivation for the transfer functions for the nonlinear spectra is done
analogous to the scalar case [43] and results in

qc(λ, z) =qc(λ, 0)e−4jλ2z (5.32)
qd(λk, z) =qd(λk, 0)e−4jλ2

kz. (5.33)

The discrete eigenvalues remain unchanged during propagation in z.

5.3. Special Solutions

In general, the NFT of most pulseshapes has to be computed numerically. However,
for the NLSE-case, some well known pulseshapes have some closed form results for
their nonlinear Fourier spectra (see section 4.3). For the presented multi-mode NFT,
two sets of pulses are studied analytically and some closed form results on their non-
linear Fourier spectra and other properties are given. Those two pulse-sets are, the
rectangular pulse-set with identical support, and the vectorial fundamental soliton
(VFS).

5.3.1. The Rectangular Pulse-Set

For the rectangular pulse-set several NFT related quantities can be obtained analyt-
ically. It is assumed that, while the amplitudes Am of the pulses in the set can be
different for each mode, all pulses in the set have the same temporal support [t1, t2].
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5. The Nonlinear Fourier Transform for Multi-Mode Fibers

This set of rectangular pulses is given by

qm(t) =
 Am −T

2 < t < T
2

0 else
. (5.34)

Here it is assumed, that the pulse-set is zero-centered with t2 = −t1 = T
2 . The results

obtained in the following can be generalized using the relations in section 5.2.2.
Obtaining the nonlinear Fourier coefficients in closed form is done similarly to the

NLSE-case in section 4.3.1. Nonetheless, a brief overview of the proofs for the following
results is given in appendix A.6. The nonlinear Fourier coefficients for the continuous
spectrum are obtained by

a(λ) =
(

cos(∆T ) − j λ∆ sin(∆T )
)

ejλ(t2−t1) (5.35)

bm(λ) = −A∗
m

∆ sin(∆T )e−jλ(t1+t2) (5.36)

where ∆ =
√
λ2 +

M∑
m=1

|Am|2. Further, the discrete eigenvalues fulfill

j tan
T

√√√√ M∑
m=1

|Am|2 + λ2

 =

√√√√√
1 +

M∑
m=1

|Am|2

λ2 . (5.37)

The discrete nonlinear spectral amplitudes can be found by using the given closed
form expression for a(λ) and deriving a′(λ) from it. An example of the NFT of such a
set of rectangular pulses is given in Fig. 5.1. Note, that continuous spectral quantity
q(m)

c (λ) does not only correspond to the rectangular pulse with amplitude Am. Due
to nonlinear coupling in the fiber, every pulse in the pulse-set influences the shape of
every entry in qc(λ).

5.3.2. The Fundamental Soliton

Another pulse-set for which several quantities can be obtained analytically, which also
is considered a special solution of Eq. (5.1), is the VFS. It is the multi-mode analog
to the fundamental soliton, described in section 4.3.2 for the NLSE case. It can be
obtained, using the first iteration of the multi-mode DT, which will be presented in
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Figure 5.1.: NFT of a set of rectangular pulses

section 5.4.3. The VFS pulse-set is given by

qm(t, z) = −j4η · e−jφm · e−j4(ξ2−η2)z · e−j2ξt ·
e−8ξηze−2ηt |q(m)

d (λk)|
2η

1 + e−16ξηze−4ηt
M∑
s=1

(
|q(s)

d (λk)|
2η

)2 , (5.38)

where the discrete spectral amplitudes are q(m)
d (λk) = |q(m)

d (λk)|ejφm and λk = ξ + jη.
The continuous spectrum of this pulse is qc(λ) = 0 for all λ ∈ R. It can be seen,
that each single pulse qm(t, z) now no longer has the ideal sech(·) shape that the
NLSE solitons have. For the VFS pulse-set, there are further quantities that can be
computed analytically. In the following, closed-form expressions for temporal width,
linear bandwidth and time-bandwidth product are presented for the general M -mode
VFS pulse-set given by Eq. (5.38).

Temporal Width

For the VFS, the temporal width can be computed analytically. Similar to the treat-
ment in section 4.3.2, the energy of the pulse-set can be related to its width by

Evfs · p =
M∑
m=1

T/2+t0∫
−T/2+t0

|qm(t, z)|2dt, (5.39)

where t0 is the pulse-sets center and Evfs is the total energy of the VFS. There is a
certain intricacy linked to setting a meaningful value for t0, since pulse-position as well
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as the energy of the components qm(t, z) should be considered. In the following, it is
assumed that all pulses are centered at the same position t0 and thus the exact position
of the pulse-set can be neglected for the computation of the temporal width. This can
be done by choosing the right constellation for the modulated bm(λk) values. Note,
that the results using this simplification are less useful when the TBR of a system
is considered instead of the TBP of a single pulse-set. By inserting Eq. (5.38) into
(5.39), it can be seen that the temporal width is depending on the in-window energy
percentage p and is given by

T = arctanh(p)
η

. (5.40)

This result is identical to the result for the NLSE case given in section 4.3.2. A short
explanation of the steps taken to obtain Eq. (5.40) from Eq. (5.39) is given in appendix
A.7.1.

Bandwidth

Similarly the linear bandwith can be obtained by evaluating

Evfs · p =
M∑
m=1

B/2+f0∫
−B/2+f0

|F{qm(t, z)}|2df, (5.41)

using Eq. (5.38). The parameter f0 is once again chosen such, that the integrated
expression is centered on the frequency support during evaluation. Again, the intri-
cacies of choosing a suitable value f0 are not treated in detail, assuming that pulses
are generated such that each pulse in the set has the identical value for f0. The linear
bandwidth for some given in-window energy percentage p is then given by

B = 4η
π2 arctanh(p). (5.42)

This expression is once again identical to the NLSE case. The steps taken from Eq.
(5.41) to (5.42) are detailed in appendix A.7.2.
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Time-Bandwidth Product

The resulting TBP for the VFS

TBP(p) = 4
π2 arctanh2(p) (5.43)

is identical to the NLSE case from section 4.3.2 and thus also is independent of the
specific value of η. Note, that while the TBP as stated in Eq. (5.43) is not dependent
on parameters ξ and z, the pulse-centers in time and linear frequency domain in general
will shift due to changes in these two parameters. Also note, that according to Eqs.
(5.43) and (4.67) there is no additional time-bandwidth penalty for VFSs. They thus,
under the assumption that both NLSE and multi-mode channels are ideal, permit
higher SEs by a factor M . This however comes at the price of operating a multi-mode
fiber system for transmission and regarding ASE noise, also comes with the need for
higher total signal-power to maintain the same SNR.

5.4. Algorithms

From the mathematical foundations given in section 5.1, algorithms for the forward
and inverse NFTs can be obtained. Note, that the algorithms given here are mostly
extensions of algorithms from [23], [27]. Some of the extensions exhibit potential for
optimization in terms of (computational) complexity. This potential was not further
explored and, for now, their performance is only considered in regards to accuracy
of the performed transformation. This evaluation was done for specific signals with
nonlinear spectral components that are known in closed-form (see section 5.3).

Most of the following algorithms are implemented starting from the relation L(z)v(t, λ) =
λv(t, λ) rewritten as vt(t, λ) = P(z)v(t, λ) with

P(z) =



−jλ q1 q2 · · · qM

−q∗
1 jλ 0 · · · 0

−q∗
2 0 . . . . . . ...

... ... . . . . . . 0
−q∗

M 0 · · · 0 jλ


, (5.44)

which can be obtained by algebraic manipulation of the eigenvalue equation. Note that
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vt(t, λ) = ∂v(t,λ)
∂t

still denotes the derivative in t and distance parameter z assumed to
be fixed and thus omitted in the following.

For the forward transformation Eq. (5.44) is discretized and then either a variety
of numerical integration schemes or a matrix eigenvalue calculation can be performed.
Similar to the NLSE case, the forward NFT is computing nonlinear Fourier coefficients,
based on the pulse-set in time-domain. The transformation now incorporates the
signals in all stimulated modes of the multi-mode channel. The resulting nonlinear
Fourier coefficients are subsequently used to compute the nonlinear Fourier transform
according to Eq. (5.11).

5.4.1. Forward Transformations for the Continuous Spectrum

In a first step, algorithms to obtain the continuous nonlinear Fourier spectrum will
be treated. While there are many algorithms that can be modified to work in the
multi-mode case, the following section is only presenting two methods, either because
they are deemed especially instructive or because they yield high accuracy results.
The presented methods are, the FD scheme which is used as an instructive example
and the LP method, which is extended to the multi-mode case since it showed good
accuracy for moderate complexity in the NLSE case.

Forward Discretization Scheme

This scheme is known to have low accuracy and rather high complexity, but is simple in
structure and will thus serve as an introductory example. The signal will be discretized
on a temporal grid identical to the scalar case (see section 4.4). The matrix P in
vt(t, λ) = Pv(t, λ) is assumed to be constant for each step h and thus v[n + 1] =
(IM+1 + hP [n])v[n] with (compare forward Euler-scheme used in Eq. (4.71))

P [n] =



−jλ q1[n] q2[n] · · · qM [n]
−q∗

1[n] jλ 0 · · · 0
−q∗

2[n] 0 . . . . . . ...
... ... . . . . . . 0

−q∗
M [n] 0 · · · 0 jλ


. (5.45)
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The initial condition for v[0] as

v[0] = [1, 0, · · · , 0]Te−jλt1 . (5.46)

Here t1 = t[0] is the temporal position of samples qm[0], IM+1 is the (M + 1)x(M + 1)
identity matrix and the initial condition vector v[0] has M + 1 entries. With this, one
can iterate v[0] towards v[Ns − 1] and then obtain the nonlinear Fourier coefficients
from

v[Ns − 1] ≈


a(λ)e−jλt2

b1(λ)ejλt2

...
bM(λ)ejλt2

 (5.47)

where t2 = t[Ns − 1] is the last value of the discrete temporal support.

Layer Peeling Scheme

The LP method for the NLSE case did show good results and was thus conjectured to
also prove more stable for the multi-mode case than e.g. the extension of the rather
naive FD scheme. The complexity of the FD and LP method are comparable for the
multi-mode case as well.

For this method, the used parameters are initialized as a[0] = 1 and bm[0] = 0 ∀m =
1, · · · ,M . The update step can be written as

a[n+ 1] =a[n]x[n] −
M∑
m=1

bm[n]y∗
m[n] (5.48)

bm[n+ 1] =a[n]ym[n] + bm[n]x∗[n] (5.49)

with the update parameters x[n] and ym[n] given by the closed form expression of the
nonlinear Fourier parameters of a rectangular pulse of width hn = h[n] = t[n]−t[n−1]
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and amplitudes qm[n]. They are given by

∆ =

√√√√λ2 +
M∑
m=1

|qm[n]|2 (5.50)

x[n] = (cos(∆hn) − jλsi(∆hn)hn) ejλ(t[n]−t[n−1]) (5.51)
ym[n] = − qm[n]∗si(∆hn)hne−jλ(t[n]+t[n+1]). (5.52)

The nonlinear Fourier coefficients of the transformed pulse-set are then obtained as
a(λ) ≈ a[Ns − 1] and bm(λ) ≈ bm[Ns − 1]. A sketch of the derivation, which is similar
to the derivation for the NLSE case, is given in appendix A.8.

5.4.2. Forward Transformations for the Discrete Spectrum

Some methods to compute parameters of the discrete nonlinear Fourier spectrum,
presented in section 4.4.2, can be extended to the multi-mode case as well. In the
following, some algorithms will be presented, that either are instructive or exhibit
beneficial properties in regards to complexity and accuracy.

Forward Discretization Scheme

Analog to the NLSE case, many of the numerical integration based schemes can be
extended to deal with the discrete spectrum via e.g. the Newton-Raphson search
algorithm, described in section 4.4.2. The extension for the FD scheme given section
5.4.1 is obtained using the same steps as in the NLSE case.

The derivative of v[n+ 1] = (IM+1 + hP [n])v[n] in λ which is

v′[n+ 1] = (hP ′[n])v[n] + (hP [n])v′[n], (5.53)

with

P ′[n] =


−j 0 0 0
0 j 0 0
0 0 . . . ...
0 0 · · · j

 , (5.54)

can be used to update the derivatives of the eigenvectors. The initial values are given
by

v′[0] = [−jλ, 0, · · · , 0]Te−jλt1 (5.55)
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and the derivative a′(λ) can be obtained using

a′(λ) ≈ v′
1[Ns − 1]ejλt2 + v1[Ns − 1]jλejλt2 , (5.56)

where v1 is the first entry of v and v′
1 is its derivative in λ. With these equations,

the search algorithm from [27] can be used to obtain the discrete eigenvalues and the
corresponding spectral amplitudes qd(λk) or bm(λk)-values.

Layer-Peeling Scheme

The LP method is another integration based scheme, which already was extended
for the continuous spectrum in section 5.4.1. It can be extended for the detection
of discrete spectral components as well. To compute the additional parameter a′(λk)
(and b′

m(λk)), the set of equations

a′[n+ 1] =a′[n]x[n] + a[n]x′[n]

−
(

M∑
m=1

b′
m[n]y∗

m[n] +
M∑
m=1

bm[n]y∗′
m[n]

)
(5.57)

b′
m[n+ 1] =a′[n]ym[n] + a[n]y′

m[n] + b′
m[n]x∗[n] + bm[n]x∗′[n] (5.58)

can be used. These equations are the λ derivatives of Eqs. (5.48) and(5.49). The
update values x′[n], y′

m[n] are

x′[n] =jhn(1 − λ2

∆2 )(cos(∆hn) − sin(∆hn)
∆hn

)ejλhn (5.59)

y′
m[n] = − q∗

m[n]
[
λhn
∆2 cos(∆hn) (5.60)

−
(
λ

∆3 + jtn + tn−1

∆

)
sin(∆hn)

]
e−jλ(tn+tn−1)

Note that Eqs. (5.59) and (5.60) are identical to the NLSE case equations in [27],
except for the modified equation for ∆, which is given in Eq. (5.50). Some short notes
on the derivation of the relations above are given in appendix A.8. In Fig. 5.2 the
modulated bm(λk)-values of a vectorial multi-soliton pulse (M = 4) are shown for B2B
transmission and transmission over L = 100km of the ideal multi-mode channel for
generation and detection by FD and LP respectively. Compensation of the channel
perturbations was done using Eq. (5.33). The accuracy of both methods differ by
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Figure 5.2.: bm(λk)-values of a multi-soliton with K = 3 discrete eigenvalues

approximately one order of magnitude. While, depending on the constellation used,
FD might infer a non-negligible reduction in detection accuracy, for LP at least for
constellations with moderately high cardinality the error can be assumed to be neg-
ligible compared to impairments by either noise or nonlinear distortions in systems
with nonzero fiber loss. Note that this is only meant to be a small scale test of both
methods as L = 100km channel length is not in the region studied primarily in this
thesis.

Matrix Eigenvalue Methods

Finding discrete eigenvalues for the multi-mode case can also be facilitated by solving
a matrix-eigenvalue problem. There is a variety of algorithms, e.g. in [27], that can be
extended. For purposes of demonstrating the approach, the CDEP from section 4.4.2
is used. We can state the extended discretized eigenvalue problem as

L̂v̂ = λv̂ (5.61)
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where v̂ is the concatenation of all vectors vm = [vm[1], vm[2], · · · , vm[Ns]]T, such that
v̂ has length Ns · (M + 1). The matrix L̂ then has the form

L̂ =



D −Q1 −Q2 · · · −QM

−Q∗
1 -D 0Ns · · · 0Ns

−Q∗
2 0Ns

. . . . . . ...
... ... . . . . . . 0Ns

−Q∗
M 0Ns · · · 0Ns -D


(5.62)

where 0Ns is the all-zero matrix of sizeNsxNs, the matrixQm = diag([qm[1], qm[2]], · · · , qm[M ])
and D is the central finite difference matrix of size NsxNs

D = 1
2h



0 1 0 · · · 0 −1
−1 0 1 . . . 0
0 −1 . . . . . . . . . ...
... . . . . . . . . . 1 0
0 . . . −1 0 1
1 0 · · · 0 −1 0


(5.63)

The discrete eigenvalues are then obtained by finding the eigenvalues of L̂. Note that,
if a general purpose eigenvalue solver is used the complexity of this method is up to
O((Ns · (M + 1))3), depending on the solvers exact implementation. This method also
(at least for the central difference version) is not very accurate. Additionally, this
method only gives the discrete eigenvalues. Thus, another method has to be used
additionally to obtain the spectral coefficients. It can be seen, that in most cases
this matrix-based approach is not favorable for setups in which guesses for positions
of discrete eigenvalues exist. There are other types of matrix-methods described in
[27], that can be extended similarly, that might give a higher accuracy, however the
complexity can only be reduced by finding a more effective way of solving the matrix
eigenvalue problem itself.

5.4.3. Inverse NFT for the Discrete Spectrum

For purely discrete pulses the DT can be extended for the multi-mode case. In fact,
the method was already described in a suitable manner in [122] and extended to the
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two-polarization case in [143]. Nonetheless, the method is shortly reviewed in the
following, using the notation chosen for this thesis. In a first step, vectors

v(λk, t) = [C1(λk)e−jλkt, C2(λk)ejλkt, C3(λk)ejλkt, · · · , CM+1(λk)ejλkt], (5.64)

are defined. They are solutions of vt(λk, t) = Pv(λk, t) for the zero-pulse-set q(t) = 0,
with some parameters Cm(λk) for k = 1, · · · , K and m = 1, · · · ,M + 1. These vectors
can be used to update the trivial time domain solution q(t) = 0, by adding some
discrete eigenvalue λ0 to its discrete nonlinear Fourier spectrum. This is done by

q̂(i)
m (t) = q(i)

m (t) + 2j(λ∗
0 − λ0)

v1(λ0, t)vm+1(λ0, t)∗

|v1(λ0, t)|2 +
M∑
s=1

|vm+1(λ0, t)|
. (5.65)

This relation can be used in an iterative manner, to add multiple discrete eigenvalues to
the discrete spectrum of a pulse-set, but the eigenvectors have to be updated after each
addition of an discrete eigenvalue to the nonlinear spectrum. To facilitate this, [122]
provides an update method. The new eigenvector v̂t(λk, t) = P̂ v̂(λk, t) for P̂ , now
parametrized by q̂(t). The pulse-set q̂(t) has a discrete nonlinear Fourier spectrum,
which contains the discrete eigenvalue λ0. The updated vectors are obtained by

v̂(λk, t) = (λkI −G0)v(λk, t) (5.66)

with
G0 = ΨM0Ψ−1 whereM0 = diag(λ0, λ

∗
0, λ

∗
0, · · · , λ∗

0) (5.67)

and

Ψ =


v1(λ0, t) v∗

2(λ0, t) · · · v∗
M+1(λ0, t)

v2(λ0, t) −v∗
1(λ0, t) 0 0

... 0 . . . ...
vM+1(λ0, t) 0 · · · −v∗

1(λ0, t)

 . (5.68)

It can be seen, that this enables the generation of multi-soliton pulse-sets for M modes
by iterating over the steps outlined above. In Fig. 5.3, the stepwise generation of such
a vector-multisoliton is shown, together with its expected (black rings), as well as its
numerically recovered (red asterisks) discrete spectrum in a B2B setup. For estimation
of the discrete eigenvalues in Fig. 5.3, the FD algorithm, described in section 5.4.1
was used. While the single per-mode signals do no longer have the shape of soliton
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Figure 5.3.: Multi-soliton generation by the DT (λk = ξ + jη)

pulses and thus, if propagated in isolation, do not exhibit the behavior associated
with solitons, the jointly propagating pulse-set retains its solitonic behavior, due to
nonlinear coupling between all co-propagating stimulated modes.
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6
Conclusions

In this thesis, several aspects and use-cases of the NFT for fiber optic communica-
tion systems have been studied. In doing so, several techniques for single polarization
Schrödinger equation were tested, ranging from advanced transformation algorithms
and alternative receiver structures to measurement methods for channel parameters
utilizing the nonlinear Fourier spectrum. Building on the work on dual-polarization
NFTs published in recent years, many of the relations and algorithms obtained for the
single polarization channel, were extended to a channel model for the strong coupling
multi mode case. This chapter aims to give a compressed overview of the most impor-
tant treated topics and results, as well as some open questions that could be starting
points for future work in the field. In concluding this chapter, a short section with
acknowledgements is included.

6.1. Overview

In a first step, the theoretical fundamentals for the NFT and its inverse were studied
in great detail. This includes the study of the special properties of the quantities in
the nonlinear Fourier domain, e.g. in regards to temporal shifts or spatial propaga-
tion along the channel. One of the main contributions of the thesis in this field is
a theoretical treatment of the time-bandwidth product and its discussion in light of
transmission system design for data transmission via purely solitonic pulses.
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After presenting the basic underlying concepts for the NFT, a wide range of algo-
rithms for forward and backward transformations was presented alongside instructions
on how to implement them in numerical simulations. They were tested in terms of
their accuracy in detecting the different components of the nonlinear Fourier spec-
trum. In some cases, studies regarding the computational complexity were done as
well. They were carried out either analytically or by using measurements of execution
time. One of the main contributions in this field, was the extension of the eigenvalue
removal method for full spectrum pulses and its subsequent evaluation.

Since there is only scarce theoretical analysis of the influence of perturbations to the
channel model used for the derivation of the NFT, the effect of these perturbations,
in particular the influence of fiber-loss on nonlinear Fourier domain quantities, was
studied. The path-loss average technique to stabilize solitonic pulses during transmis-
sion in a lossy medium was studied and evaluated numerically for several transmission
scenarios. Also, the trajectories of discrete eigenvalues during propagation in a lossy
medium and the influence of modulation on these trajectories were studied numeri-
cally. Similarly, phenomena like ”absorption” of a discrete eigenvalue into the real axis
and ”collision” of two discrete eigenvalues in the complex plane were studied.

Another field in which several specific topics were studied, is the improvement of
NFT-aided transmission by additional (digital) signal processing. This includes the
developed and tested labeling schemes for on-off keying soliton transmission, which
lead to strongly decreased bit-error per symbol-error ratios for moderate transmission
distances. An optimum constellation for transmission under timing-jitter as the only
perturbation was derived. In another scheme, matched-filters were used for the detec-
tion of solitonic pulses. This scheme in particular improved significantly on the tested
detection algorithms and gave some deeper insights into problems regarding noise in
NFT-aided systems. To improve detection at the receiver in an additional digital sig-
nal processing step, some well known clustering algorithms were tested, showing some
potential to improve the bit-error rate of the tested systems.

Outside of the topics directly related to transmission schemes, parameter measure-
ment for optical fibers, using either fundamental solitons or multi-solitons was studied.
Apart from showing that these types of measurement schemes in general can be used
to obtain the nonlinearity and dispersion parameter of a tested fiber, the results also
indicated, that rescaling of NFT generated pulses, using the path-loss average model
studied earlier, was not optimal. It was shown, that by using the nonlinearity mea-
surements from the parameter estimation for rescaling the pulses prior to transmitting

172



6.2. Future Work

them, data transmission can generally be improved. This is due to the fact, that the
measurement algorithms tested are estimating the physical nonlinearity parameter of
the fiber by effectively finding the nonlinearity value for which the solitonic signals
propagate most optimally. For lossy channels those two quantities are not necessarily
the same.

While all of the prior studies in this thesis were conducted assuming the scalar
nonlinear Schrödinger equation as the underlying channel model, the NFT for the
strong coupling Manakov equation was used as an underlying channel model as well.
The mathematical basics necessary for the transformations were extended, if possible,
to enable the construction of a forward and backward transform for this new channel
model. Additionally, analogs to several properties for the scalar channel NFT were
derived and studied, as well as the derivation of several closed form solutions for
special pulse-sets. Algorithms for forward and inverse transformations of continuous
and discrete spectrum pulses were developed from their scalar counterparts as well.

6.2. Future Work

Even though, the interest in topics linked to NFT-aided transmission has declined in
recent years, there are still many interesting open topics that have the potential to
improve on the current status of NFT related theory and applications.

While there are several publications that treat the influence of white Gaussian time-
domain noise on the nonlinear Fourier domain by means of perturbation theory, its
influence is not fully quantified yet. Similarly, there is little knowledge on the influence
of fiber-loss on the nonlinear Fourier domain up to now. Since noise and fiber-loss are
perturbations that cause major problems when designing NFT-aided systems, a more
complete quantification of the influence of these two quantities should be pursued.

Further, there also is no analytic relation for the width in time and linear frequency
to the modulation of quantities in the nonlinear Fourier domain. This also complicates
the design of systems and is, in the eyes of the author, also an important topic for
future work.

As already noted in the section before, there are several avenues for improvement of
NFT-aided transmissions systems that are currently not fully explored. This includes
e.g. the use of the results from fiber-parameter estimation to rescale pulses for a more
optimal propagation in the optical fiber channel. Similarly, as seen in the section on

173



6. Conclusions

the time-bandwidth requirements of multi-soliton systems, there might be a way to
decrease the necessary bandwidth and time-slot in multi-soliton systems by choosing
a subset of transmission pulses from a larger alphabet, which has beneficial qualities
regarding its time-bandwidth requirements. The use of matched filter-banks for the
detection of solitonic pulses also was briefly studied in this thesis. It can be seen, that
even though complexity issues might arise quickly, the stability against noise can be
increased significantly using this method. While the improvement of such a detection
scheme is conjectured to be less pronounced for higher transmission powers, there still
might be some room for improvement for certain types of transmission systems.

With the currently growing interest in space division multiplexing to scale the
achievable throughput of currently used transmission schemes, further studies of NFTs
for new channel models could also be reasonably chosen as a field for future studies.
As could be seen in the section on the NFT for the strong-coupling Manakov equa-
tion, there are still several properties and algorithms known for the scalar case, that
are not readily available in the mulit-mode case. In particular, there is no inverse
transformation for the continuous spectrum presented in this thesis. An extension
of the inverse Ablowitz-Ladik discrete layer-peeling algorithm was studied, but there
seemed to be no viable possibility to extend it for the multi-mode case. There are
several other methods for the inverse continuous spectrum transformation known for
the scalar case that could be studied in terms of their applicability to this new channel.
Similarly, there currently is no known eigenvalue-removal method, forward-backwards
transformation or full spectrum inverse NFT.

Another topic for future work could be the study of the influence of perturbations
like e.g. noise and fiber-loss on the nonlinear spectra in the multi-mode case. Over the
course of the studies that lead to this thesis, an attempt was made to get some insight
into the noise characteristics in the nonlinear Fourier domain, assuming white noise in
time-domain. While a perturbation similar to the way it is done in literature for the
scalar case was attempted, it seems that the left-hand eigenvector of the Lax operator,
readily available in the scalar case, could not be obtained in a similar fashion. If this
quantity would be obtainable, we conjecture, that the remaining part of the pertur-
bation approach would lead to first-order noise statistics in a rather straightforward
manner.

The theoretical framework of the NFT restricts the construction of transformations
to channel models with certain characteristics. Still, an interesting avenue for further
studies in the field could be the derivation of NFT transformations for more general
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A
Additional Proofs

The following proofs were moved to the appendix from their respective sections to
improve the readability and structure of the thesis. They are referenced in the main
text and use equations given in the main chapters as starting points. Note that in
some of the following sections the notation is shortened by e.g. omitting unnecessary
indexing or function dependencies, to improve the readability. If not straightforward,
omissions and simplifications will be explicitly stated in the sections below. With
exception of the two fundamental proofs given in sections A.1 and A.2, the proofs
in this section are not taken directly from references in literature. They thus can be
considered to be results of this thesis.

A.1. The Lax Equation

Starting from Eq. (4.7) and omitting spatial and temporal dependencies in the nota-
tion, the derivative in z is given by

Lz = d
dz (GΛG−1)

= GzΛG−1 + GΛ(−G−1GzG−1).

Further Lz = dL/dz, Gz = dG/dz and well known relation dG−1/dz = −G−1GzG−1

were used. Now, using the relations M = GzG
−1 and commutator bracket notation
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[M,L] = ML− LM , it can be stated

Lz = GzΛG−1 + GΛ(−G−1GzG−1)
= M (GΛG−1)︸ ︷︷ ︸

L

− (GΛG−1)︸ ︷︷ ︸
L

GzG−1︸ ︷︷ ︸
M

= ML − LM = [M,L].

Similar derivations can be found in many related publications (e.g. in [18], [43]).

A.2. The Zero Curvature Condition

Starting from Eqs. (4.10) and (4.6) and again omitting temporal, spatial and λ de-
pendencies in the notation, a set of mixed derivatives of v can be obtained in the form
of

vt,z =Pzv + Pvz, (A.1)
vz,t =Mtv + Mvt. (A.2)

Replacing the derivatives of v on the right hand side, using Eqs. (4.10) and (4.6),
results in

vt,z =Pzv + PMv, (A.3)
vz,t =Mtv + MPv. (A.4)

Equating the mixed derivatives stated above then yields the zero curvature condition.
The operators L(z) and P(z) from Eqs. (4.5) and (4.10) can be related by reordering
both equations to form

(L − λI)v = 0, (A.5)
(DI − P)v = 0. (A.6)
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Equating the above expressions after multiplication by some invertible operators Σ1

and Σ2 yields the relations

Σ1(L − λI) = Σ2(DI − P),
−Σ−1

2 Σ1(L − λI) + DI = P,
P = Σ(L − λI) + DI, (A.7)

where Σ = −Σ−1
2 Σ1 and Eq. (A.7) is exactly Eq. (4.12).

A.3. Properties of the Fundamental Soliton

In section 4.3.2, several quantities that can be computed in closed form for the fun-
damental soliton are introduced. In the following, the derivations or those quantities
are given, using the notation from Eq. (4.62).

A.3.1. Temporal Width

Using Eq. (4.62) and (4.49), the relation (4.63) becomes

4η1p =
Tp/2+t0∫

−Tp/2+t0

∣∣∣∣∣−je−jφ1e−j4(ξ2
1−η2

1)ze−j2ξ1t2η1sech
(

2η1t+ 8ξ1η1z − ln
(
Q̂d

2η1

))∣∣∣∣∣
2

dt

=
Tp/2∫

−Tp/2

|2η1sech (2η1t
′)|2 dt′

=2η1 [tanh (2η1t
′)]Tp/2

−Tp/2 = 4η1 tanh (2η1T/2), (A.8)

where in the second line a substitution was introduced to remove the influence of t0.
This can also be justified by just setting t0 = 0, since a temporal shift of the pulse
does not change the temporal width of the pulse itself. The last line above results in
4.64.

A.3.2. Bandwidth

Similarly, for the relation giving the linear bandwidth of a fundamental soliton, starting
from Eq. (4.65) and the relation F{sech(ct+ T )} = π/c · sech(π2/c · f)e−2πjTf , it can
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be stated

4η1p =
Bp/2∫

−Bp/2

∣∣∣∣∣2η1
π

2η1
sech

(
π2

2η1
f

)
e−2πjTf

∣∣∣∣∣
2

df

=2η
[
tanh

(
π2

2η1
f

)]Bp/2

−Bp/2
= 4η1 tanh

(
π2

2η1

B

2

)
. (A.9)

From the last line the result given in Eq. (4.66) can be obtained.

A.4. ’Gray’ Labeling

In section 4.11.1 it is stated, that by using the presented ’Gray’-labeling scheme, the
bit-error per symbol-error can be reduced to one for the errors occuring with the
highest probability according to the channel model defined in the beginning of section
4.11. In the following, a proof for this behavior is given and it is shown that generator
matrix Ggray has the form presented in Eqs. (4.192) and (4.193).

First, to show that the transitions with highest error probabilities result in exactly
one bit-error, Eq. (4.191) is restated as

u = b · G−1
gray, (A.10)

using the inverse generator matrix

G−1
gray =


eN

eN−1
...

e1

 , (A.11)

where
ei = [0N−i1i] . (A.12)

Parameters 0i and 1i denote all-zero and all-one row vectors of length i respectively.
Rewriting Eq. (A.10) in the form

u = [uNuN−1 · · ·u2u1] = bNeN ⊕ bN−1eN−1 ⊕ · · · ⊕ b2e2 ⊕ b1e1, (A.13)
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with ⊕ being the entry-wise XOR-operator. Using this representation all error types
of the channel model with the highest probabilities can be shown to only result in one
bit-error:

1. b1 is flipped due to the discrete eigenvalue with the smallest imaginary part
either vanishing or appearing during transmission. As a result, all terms in Eq.
(A.13) remain unchanged except for the last one. Since e1 only has one non-zero
position, altering s1 only alters u1.

2. [bibi−1] = [10] → [b′
ib

′
i−1] = [01] for i ∈ {2, 3, . . . , N}, which represents the trans-

mitted discrete eigenvalue vanishing and the neighboring lower energy discrete
eigenvalue appearing. In this case term biei is replaced by bi−1ei−1. Vectors ei
and ei−1 only differ in position i and thus only ui is altered in this case.

3. [bi+1bi] = [01] → [b′
i+1b

′
i] = [10] for i ∈ {1, 2, . . . , N − 1}, which represents the

transmitted discrete eigenvalue vanishing and the neighboring higher energy dis-
crete eigenvalue appearing. Similar to the previous case, term bi+1ei+1 replaces
biei. Vectors ei+1 and ei only differ in position i+1 and thus only ui+1 is altered.

In the next step, it remains to be shown that Ggray is given by Eqs. (4.192) and
(4.193). Starting with

GgrayG−1
gray = IN , (A.14)

it can be seen that this results in the condition

eidj =
 1, for i = j

0, otherwise
, (A.15)

where dj are column vectors that will be shown to have the form given in Eq. (4.193).
First it is assumed that j = N . For this case, it can be written

ei · dj = [0N−i1i] ·

 1
0T
N−1

 =
 1, for i = j = N

0, otherwise
. (A.16)

It can be seen, that for the case i = j = N vector eN = 1N and thus eN · dN = 1. In
all other cases the leftmost entry of ei is zero and thus ei · dN = 0 for i 6= N .
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For the remaining cases j = 1, · · · , N − 1 Eq. (A.15) can be rewritten as

ei · dj = [0N−i1i] ·


0T
N−j−1

1
1

0T
j−1

 =
 1, for i = j

0, otherwise
. (A.17)

In dj, all entries are zero except for the entries in positions j and j + 1 being one.
For vector ei the i rightmost entries are one and the rest is zero. Thus, if i < j, both
non-zero entries in dj are multiplied with zeros and as a result ei · dj = 0. Similarly,
for i > j both non-zero values in dj are multiplied with ones. Thus ei · dj = 0 is still
true in these cases. For the remaining case of i = j, one of the non-zero entries in dj
is cancelled out by zeros in ei and thus ei · dj = 1. Since Eqs. (A.16) and (A.17) are
fulfilled for the respective vectors used, it has been shown that generator matrix Ggray

is given by Eqs. (4.192) and (4.193).

A.5. Properties of Nonlinear Spectra in the
Multi-Mode Case

Several useful properties for the scalar NFT exist (as shown in e.g. [43]). A similar set
of properties for the multi-mode case was presented in section 5.2. In the following, the
proofs for the respective properties are given, using the notation introduced in section
5.2. Note, that the notation used will be simplified by e.g. omitting unnecessary
indexing or dependencies for the sake of readability.

A.5.1. Differential Representation for Multi-Mode NFT

The differential representation for the continuous spectrum, analog to [43], can be
obtained by starting at vt = Pv with v being a M + 1 column vector with entries vi
(0 ≤ i ≤ M) and P defined according to 5.44. The evaluation of each row yields

vi,t =

 −jλvi +
M∑
m=1

qmvm for i = 0

−q∗
i v0 + jλvi for 1 ≤ i ≤ M

(A.18)
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Now the quantity
ym = vm

v0
e−2jλt, (A.19)

is defined. It can be seen that q(m)
c (λ) = lim

t→+∞
ym(t, λ). In the next step, the derivative

dym
dt = d

dt

(
vm
v0

e−2jλt
)

(A.20)

= (vm,te−2jλt + vm(−2jλ)e−2jλt)v0 − vme−2jλtv0,t

v2
0

, (A.21)

can be computed. Substituting the temporal derivatives of vi using Eq. (A.18) and
then expressing all vi parameters as ym using Eq. (A.19) yields the differential form

dym
dt + ym ·

M∑
i=1

qiyie2jλt + q∗
me−2jλt = 0. (A.22)

The boundary condition, given by Eq. (5.13), can be verified directly, by using Eq.
(5.8) in Eq. (A.22).

Similarly, a second order differential equation for the multi-mode case can be found,
yielding the parameter a(λ). This, again, is the analog to the second order differential
equation derived for the single-mode case in [43]. For the sake of brevity, the first
and second order temporal derivatives are notated by dx/dt = x′ and d2x/dt2 = x′′

respectively. Defining z = v0ejλt, the first and second order derivatives are

z′ =v′
0ejλt + v0jλejλt, (A.23)

z′′ =v′′
0ejλt + v′

02jλejλt + v0(jλ)2ejλt. (A.24)

The first order derivatives of vi are given in Eq. (A.18). The missing second order
derivative of the first entry of the eigenvector is computed to be

v′′
0 = −jλv′

0 +
M∑
m=1

q′
mvm +

M∑
m=1

qmv
′
m. (A.25)
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Inserting Eq. (A.25) into Eq. (A.24) yields

z′′ = (−jλv′
0 +

M∑
m=1

q′
mvm +

M∑
m=1

qmv
′
m)ejλt + v′

0jλejλt + v′
0jλejλt + v0(jλ)2ejλt︸ ︷︷ ︸

jλz′

= (
M∑
m=1

q′
mvm +

M∑
m=1

qmv
′
m)ejλt + jλz′. (A.26)

Further, inserting v′
0 from Eq. (A.18) results in

z′′ − jλz′ = (
M∑
m=1

q′
mvm +

M∑
m=1

qm(−q∗
mv0 + jλvm))ejλt

=
M∑
m=1

q′
mvmejλt −

M∑
m=1

|qm|2 v0ejλt︸ ︷︷ ︸
z

+
M∑
m=1

jλqmvmejλt

︸ ︷︷ ︸
jλz′

.

Using the definitions for z and z′ the equation above can be rearranged, stating

z′′ − 2jλz′ +
M∑
m=1

|qm|2z −
M∑
m=1

q′
mvmejλt = 0. (A.27)

This result is less compact than the result in [43] and not all parameters vi can be
absorbed in the defined parameters z. This fact potentially makes the multi-mode
version of the second order differential representation less useful. Nonetheless, the
result in Eq. (A.27) can be modified, such that it is more similar to the result in [43].
By expanding the last term in Eq. (A.27) as

M∑
m=1

q′
mvmejλt =

M∑
m=1

q′
m

qm

v′
0 + jλv0 −

M∑
n=1
n 6=m

qnvn

 ejλt

=
M∑
m=1

q′
m

qm
z′ −

M∑
m=1

M∑
n=1
n6=m

q′
m

qm
qnvnejλt,

Eq. (A.27) can be restated as

z′′ −
(

2jλ+
M∑
m=1

q′
m

qm

)
z′ +

M∑
m=1

|qm|2z +
M∑
m=1

M∑
n=1
n6=m

q′
m

qm
qnvnejλt = 0. (A.28)
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It can be seen, that in the case of M = 1 this is identical to the result from [43]. The
boundary conditions

z(t → −∞, λ) = 1, (A.29)
z′(t → −∞, λ) = 0, (A.30)

can be verified easily by looking at the definition of z, Eq. (A.23) and the boundary
condition v0(t → −∞, λ) = e−jλt.

A.5.2. Constant Phase Change

The constant phase change property, derived for the single-mode case in [43], can be
extended to the multi-mode case. This can be shown, by replacing qm(t) → qm(t)ejφm

in Eq. (A.22) and rearranging the equation until ym → ymejφ. This implies that
qm(t) → qm(t)ejφm leads to q(m)

c (λ) → q(m)
c (λ)e−jφm . Another way of showing that this

property holds in the multi-mode case, is to modify the temporal propagation equation
for eigenvectors. By doing so, a proof of a similar property for the discrete spectrum
parameters is obtained as well. Exchanging qm(t) → qm(t)ejφm in the P operator and
defining

u = diag(1, ejφ1 , ejφ2 , · · · , ejφM )v, (A.31)

it can be shown that u fulfills the temporal propagation equation for the modified
P operator. Since, u and v are related by Eq. (A.31), it follows that the nonlinear
Fourier coefficients are modified according to bm → bme−jφm .

A.5.3. Time Shift

The time shift property for the multi-mode case can be proven by representing the non-
linear Fourier coefficients by the propagator K and the initial values of the nonlinear
Fourier coefficients. It can be stated that
[
a · e−jλt2 b1 · ejλt2 b2 · ejλt2 · · · bM · ejλt2

]T
= K

[
e−jλt1 0 0 · · · 0

]T
,

(A.32)
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where

K =



a · e−jλ(t2−t1) −b∗
1 · e−jλ(t2+t1) −b∗

2 · e−jλ(t2+t1) · · · −b∗
M · e−jλ(t2+t1)

b1 · ejλ(t2+t1) a∗ejλ(t2−t1) 0 · · · 0
b2 · ejλ(t2+t1) 0 . . . . . . ...

... ... . . . . . . 0
bM · ejλ(t2+t1) 0 · · · 0 a∗ejλ(t2−t1)


.

(A.33)
If it is now assumed that the nonlinear Fourier coefficients in Eq. (A.32) and (A.33)
belong to pulse-set q(t) and pulse-set q̂(t) = q(t−t0) has nonlinear Fourier coefficients
â(λ), b̂m(λ). Further, the time variables, regarding the original and the shifted pulse-
set, are related by t̂1 = t1 + t0, t̂2 = t2 + t0. To arrive at a system similar to Eqs.
(A.32) and (A.33) for the shifted pulse, it can be seen that relations

â(λ) = a(λ)ejλt0 , (A.34)
b̂m(λ) = bm(λ)e−jλt0 , (A.35)

have to be fulfilled. Using Eq. (5.11) the validity of Eq. (5.23) can be shown as well.

A.5.4. Trace Formula

In the following, the trace formula is used to derive the energy relation between the
time-domain pulse-set q(t) and the continuous and discrete spectrum components
q(m)

c (λ), q(m)
d (λk) defined according to Eq. (5.11). The starting point is the general

trace formula given by [90, Ch. 1.6], evaluated for n = 0

Ec = E(qc(λ)) = − 1
π

∞∫
−∞

log(|a(λ)|2)dλ, (A.36)

Ed = E(qd(λk)) =
K∑
k=1

[(2jλ∗
k) − (2jλk)] . (A.37)

For Eq. (A.37) it can easily be seen, that it evaluates to the well known expression

Ed = 4
K∑
k=1

={λk}, (A.38)
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which is identical for the single and multi-mode NFT. The continuous spectrum energy
relation can be obtained by first using the unimodularity condition given in 5.2.3 to
state

1 +
M∑
m=1

|q(m)
c (λ)|2 = 1

|a(λ)|2 . (A.39)

Using the logarithm on the above equation, yields

log
(

1 +
M∑
m=1

|q(m)
c (λ)|2

)
= −log

(
|a(λ)|2

)
. (A.40)

It it easy to see, that using Eq. (A.40) in Eq. (A.36) results in the energy relation for
the continuous nonlinear spectrum

Ec = 1
π

∞∫
−∞

log
(

1 +
M∑
m=1

|q(m)
c (λ)|2

)
dλ. (A.41)

A.6. NFT of the Vectorial Rectangular Pulse

Starting from
vt(t, λ) = P(z)v(t, λ) (A.42)

with operator P(z) defined by Eq. (5.44), it can be seen that for a rectangular pulse-
set, the operator is constant over the pulse-set duration for constant z. Note, that
this only is true, if the rectangular pulses in the set have equal temporal support as
defined in section 5.3.1. As a result, the values of v(t, λ) for the temoral positions t1,
t2 can be linked by

v(λ, t2) = v(λ, t1) · ePT . (A.43)

The matrix exponential can be evaluated using the Taylor-series representation

ePT =
∞∑
i=0

T i

i! P
i, (A.44)

where x! is the faculty of x. It can be seen, that the powers of operator P are needed.
While tedious, these can be computed fairly straightforward. The entries for the first
few powers of P are given explicitely in the following, denoting the entries of P i by
(P i)kl. For the sake of ease of notation, the entries will be labeled starting with column
and row index zero, as will be clearly denoted in the following. For the power of two
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the entries are

(P 2)00 = − ∆Σ, (A.45)
(P 2)kk = − ∆k for k = 1, · · · ,M, (A.46)
(P 2)0k =0 for k = 1, · · · ,M, (A.47)
(P 2)k0 =0 for k = 1, · · · ,M, (A.48)
(P 2)kl = − A∗

kAl for k, l = 1, · · · ,M, k 6= l. (A.49)

For P 3 the entries are

(P 3)00 =jλ∆Σ, (A.50)
(P 3)kk = − jλ∆1 for k = 1, · · · ,M, (A.51)
(P 3)0k = − Ak∆Σ for k = 1, · · · ,M, (A.52)
(P 3)k0 =A∗

k∆Σ for k = 1, · · · ,M, (A.53)
(P 3)kl = − jλA∗

kAl for k, l = 1, · · · ,M, k 6= l. (A.54)

For P 4 the entries are

(P 4)00 =∆2
Σ, (A.55)

(P 4)kk =∆2
k + |Ak|2ΣM

m 6=k for k = 1, · · · ,M, (A.56)
(P 4)0k =0 for k = 1, · · · ,M, (A.57)
(P 4)k0 =0 for k = 1, · · · ,M, (A.58)
(P 4)kl =(2λ2 + Σ)A∗

kAl for k, l = 1, · · · ,M, k 6= l. (A.59)

The newly introduced parameters in the above equations are defined as

Σ =
M∑
m=1

|Am|2, (A.60)

∆m = λ2 + |Am|2, (A.61)
∆Σ = λ2 + Σ, (A.62)

ΣM
m6=i = −|Ai|2 +

M∑
m=1

|Am|2. (A.63)
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Using Eqs. (A.45) - (A.59) and noting that the Taylor-series expansions of sine and
cosine functions are

sin(x) =x− x3

3! + x5

5! − x7

7! + · · · , (A.64)

cos(x) =1 − x2

2! + x4

4! − x6

6! + · · · , (A.65)

the first column of the matrix-exponential can be computed. The first column specif-
ically is chosen, since it corresponds with the scaled nonlinear Fourier coefficients
a(λ)ejλ(t2−t1) and bm(λ)e−jλ(t2+t−1). Rearranging the obtained results, yields the closed
form equations for the nonlinear Fourier coefficients of the rectangular pulse-set

a(λ) =(cos(∆T ) − j λ∆ sin(∆T ))ejλ(t2−t1) (A.66)

bm(λ) = − A∗
m

∆ sin(∆T )e−jλ(t2+t1), (A.67)

where ∆ =
√
λ2 +

M∑
m=1

|Am|2. Further, Eq. (5.37), which can be used to find the zeros

a(λ) is obtained by setting Eq. (A.66) to zero.
Note, that it is also possible to give a closed form expression for aλ(λk), which is the

λ-derivative of Eq. (A.66) evaluated for discrete eigenvalue λk. This expression then
can be used with Eq. (A.67) to obtain the discrete spectral amplitudes q(m)

d (λk) =
bm(λk)/aλ(λk). Since these specific parameters are not of significant interest for this
thesis, any further treatment of them is omitted.

A.7. Properties of the Vectorial Fundamental Soliton

In the following, the derivations for the properties of the vectorial fundamental soliton
as treated in Section 5.3.2 are given, using the notation introduced in Eqs. (5.38) and
(5.39).

A.7.1. Temporal Width

Starting from Eq. (5.39) and inserting (5.38), the propagation distance z is set to
zero, since it does not influence the temporal width if the temporal width is defined
as the width necessary to support factor p of the pulses energy, assuming the pulse is
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centered on the temporal support. Obviously, this only is true for z-propagation in
the ideal channel. After dropping the phase term inside the absolute value operator
and defining ∆ =

M∑
s=1

|Q(s)
d /2η|2

Evfs · p =4η2
T/2+c∫

−T/2+c

M∑
m=1

∣∣∣∣∣ 2e−2ηt

1 + e−4ηt∆

∣∣∣∣∣
2
∣∣∣∣∣∣Q

(m)
d

2η

∣∣∣∣∣∣
2

dt, (A.68)

=4η2
T/2+c∫

−T/2+c

∣∣∣∣∣ 2e−2ηt
√

∆
1 + e−4ηt∆

∣∣∣∣∣
2

dt, (A.69)

=4η2
T/2+c∫

−T/2+c

∣∣∣∣sech(2ηt− 1
2ln (∆))

∣∣∣∣2 dt, (A.70)

can be obtained. It can be seen, that c = 0.5 · ln (∆) /2η is the pulse center and thus

Evfs · p =
[

tanh(2ηt)
2η

]T/2

−T/2
(A.71)

=4η · tanh(ηT ). (A.72)

With Evfs = Ed = 4η according to Eq. (5.25) and the fact that the fundamental
soliton set only has one discrete eigenvalue λ1 = jη, the temporal width according to
some in-window energy restriction p is given by

T = arctanh(p)
η

. (A.73)

A.7.2. Bandwidth

Inserting Eq. (5.38) into (5.41), setting z = 0 and dropping time-independent terms,
that are equal to one, due to the absolute value operation if pulled out of the Fourier
transform it can be stated that

Evfs · p =4η2
B/2+c∫

−B/2+c

M∑
m=1

∣∣∣∣∣F
{

e−j2ξt · 2e−2ηt∆m

1 + e−4ηt∆

}∣∣∣∣∣
2

df, (A.74)
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where ∆m = |Q(m)
d /2η|2 and ∆ is defined as in A.7.1. It can be seen, that the ξ-

dependent exponent is causing a frequency shift ξ/π in the Fourier transform. The
remaining term is transformed according to

F
{

2e−2ηt∆m

1 + e−4ηt∆

}
= ∆m√

∆
· F

{
2e−2ηt

√
∆

1 + e−4ηt+ln(∆)

}

= ∆m√
∆

· F
{

sech(2ηt− 1
2ln(∆))

}
(A.75)

= ∆m√
∆

·
(
π

2η · sech
(
π2

2ηf
))

· e−j2πln(∆)f

Inserting Eq. (A.75) in (A.74) and removing the phase term due to the |·| operation,
the energy bandwidth relation is computed according to

Evfs · p =4η2
B/2+c∫

−B/2+c

M∑
m=1

∣∣∣∣∣∆m

∆

(
π

2η sech
(
π2

2η

(
f + ξ

π

)))∣∣∣∣∣
2

df

=π2

M∑
m=1

|∆m|2

∆

B/2+c∫
−B/2+c

∣∣∣∣∣sech
(
π2

2η

(
f + ξ

π

))∣∣∣∣∣
2

df

=π2

tanh
(
π2

2η f
)

pi2

2η

B/2

−B/2

= 4ηtanh
(
π2

2η
B

2

)
.

Rearranging the last step in the equation above, once more using the energy relation
Evfs = Ed = 4η according to Eq. (5.25), finally yields

B = 4η
π2 · arctanh(p). (A.76)

A.8. Algorithms for the Multi-Mode Case

Over the course of this thesis, only a selected set of algorithms was extended to be
usable in the multi-mode case. Naming conventions, as well as notation was kept as
similar as possible to the single-mode case. The derivation of the FD-method is very
similar to the single-mode case, and so straightforward that we deem it unnecessary
to reiterate it explicitly in this appendix. In the following, the necessary equations
for the LP-method are derived. For the derivations, the notation from sections 5.4.1
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and 5.4.2 are used. The notation is further simplified, where necessary, for the sake
of better readability. If a temporal pulse-set q(t) → {a(λ), bm(λ)} is approximated
by N non-overlapping adjacent rectangular pulse-sets q(n)(t) → {x(n)(λ), y(n)

m (λ)} for
n = 1, · · · , N , the LP-property from Eqs. (5.26) and (5.27) and the initial values
for the nonlinear Fourier coefficients a(0)(λ) = 1, b(0)

m (λ) = 0 ∀m = 1, · · · ,M , can be
used to construct an iterative algorithm for the approximation of the nonlinear Fourier
coefficients of an arbitrary pulse-set q(t). The update Eqs. (5.26) and (5.27) can be
restated as

a(n) =a(n−1)x(n) −
M∑
m=1

b(n−1)
m y(n),∗

m , (A.77)

b(n)
m =a(n−1)y(n)

m + b(n−1)
m x(n),∗. (A.78)

The nonlinear Fourier coefficients are then approximated according to {a(λ), bm(λ)} ≈
{a(N)(λ), b(N)

m (λ)}. The update coefficients for the iteratively added rectangular pulses
can be obtained straightforward, using Eqs. (A.66) and (A.67). The resulting relations
are given in Eqs. (5.51) and (5.52). In a next step, the relations needed or the
discrete spectrum computation can be derived. This is achieved by the straightforward
computation of λ-derivatives of the update Eqs. (A.77), (A.78), (5.51) and (5.52),
resulting in Eqs. (5.57), (5.58), (5.59) and (5.60) respectively.
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B.1. Alternative Continuous Spectrum RH-Solver

In this section, an alternative version of the RH-solver from section 4.4.5 is presented.
The notation is adapted from the aforementioned section and simplified for the sake of
better readability. Note, that the benefits and drawbacks of either of the two versions
is not studied in this thesis. This is the main reason, this alternative version is just
briefly mentioned in the appendix. First, Eqs. (4.145) and (4.146) are used to define

J1 = [B1, B1 · · · , B1]︸ ︷︷ ︸
2xN

, (B.1)

J2 = [B2, B2 · · · , B2]︸ ︷︷ ︸
2xN

. (B.2)

Using Eq. (4.147), it can be stated that

V1 = J2 + Ṽ1
C∗, (B.3)

Ṽ1 = J1 + V1C. (B.4)

If now Eq. (B.4) is inserted into Eq. (B.3), the relation

V1 = (J2 + J1C
∗)(I −CC∗)−1, (B.5)
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can be obtained. This result the can be used to either recover the nonlinear Fourier
coefficients by using Eq. (4.144) or recover the time-domain signal via Eq. (4.148).

B.2. Greedy Labeling Algorithm

The greedy labeling algorithm used in this thesis, is finding the biggest transition
probability in transition probability matrix P and assigns some optimum bit labeling
to the corresponding symbols if possible. The algorithm used is given in algorithm 2
in pseudo-code. Parameters sP and rP are the transmitted and received pilot symbols
respectively and M is the cardinality of the symbol alphabet. Note, that functions
starting with the prefix ”pop” also remove the returned labels from g. Also, text after
”//” signs is a comment and does not belong to the functional part of the shown
pseudo-code.

Algorithm 2: Greedy labeling algorithm
Result: l // labeling vector
P = CalculateTransitionProbabilityMatrix(sP, rP);
g = GenerateAllPossibleBitLabels(M);
while not all symbols have been labeled do

[i, j] = FindIndicesOfMaximumEntry(P);
P(i, j) = 0 // mark as used for future iterations;
if symbols i and j unlabeled then

[l(i), l(j), g] =popRemainingLabelPairWithMinimumBitDifference(g);
else if symbol i already labeled, symbol j unlabeled then

[l(j), g] =popRemainingLabelWithMinimumBitDifference(l(i), g);
else if symbol j already labeled, symbol i unlabeled then

[l(i), g] =popRemainingLabelWithMinimumBitDifference(l(j), g);
else

// both symbols already labeled → do nothing
end
if all transition probabilities in P are zero then

[l] = assignRemainingLabelsToUnlabeledSymbolsArbitrarily(P, g);
end
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B.3. Marching Squares Algorithm

After the detection of phase jumps {gk} on ∂G, using algorithm 1 in the PJT scheme
presented in section 4.4.2, the phase jump trajectories have to be tracked back to their
origins. At these points of origin, the discrete eigenvalues λk of the discrete nonlinear
Fourier spectrum are located. Generally, there are several suitable algorithms to tra-
verse these trajectories. In this thesis, the relatively simple and well known marching
squares algorithm [112] is used. In algorithm 3 a straightforward implementation is
given, using the notation from section 4.4.2.

Algorithm 3: Phase Jump Traversal (adapted from [111])
Result: {λ̂k}
for k = 1, · · · , K do

l = gk − 0.5hλejϕk ; r = gk + 0.5hλejϕk ;
while true do

s = hλej(ϕk+π/2); r̃ = r + s;
if isJump(r, r̃) then

l = r̃; ϕk = ϕk − π/2;
else

l̃ = l + s;
if isJump(l̃, r̃) then

l = l̃; r = r̃;
else

if isJump(l, l̃) then
r = l̃; ϕk = ϕk + π/2;

else
λk = 0.25 · (l + r + l̃ + r̃); break;

end
end

end
end

end

In the algorithm above hλ is the step size, which is defined as

hλ = Chmin
k,j

(|gk − gj|). (B.6)
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Parameter Ch = 1/15 was chosen according to [111]. Note, that the step size could
also be determined by a more elaborate scheme, updating the step over the runtime
of the algorithm to potentially improve the complexity and accuracy of the algo-
rithm. Further studying these details was deemed out of scope for this thesis, thus
this straightforward definition is used without further justifications. Initial orienta-
tions ϕk = 0, ϕk = π/2, ϕk = π, ϕk = 3π/2 are set according to the corresponding gk
being on the lower, right, upper or left boundary respectively. The number of phase
jumps is K, which ideally should be equal to the number of discrete eigenvalues in
the discrete nonlinear Fourier domain of the pulse. The function isJump(x, y) returns
”true” if arg(a(x)) · arg(a(y)) < 0 and |arg(a(x)) − arg(a(y))| > 1.3π are fulfilled.
Otherwise it returns ”false”. Note that in addition to the steps shown in algorithm
3, it has to be assured that the while loop is exited after some maximum number
of iterations or after the algorithm leaves some reasonable search area. Otherwise
the algorithm might get stuck if e.g. the received pulse is too heavily distorted. A
confined search area could be defined by an extended version of domain G given by
G = [Lλ − Cb · hλ, Rλ + Cb · hλ] × [0 − Cb · hλ, U + Cb · hλ] where Cb = 2. While the
presented algorithm can potentially be improved by a more refined definition of the
search area, the above definition was used over the course of the thesis.

B.4. Fiber Parameter Estimation Algorithm
Fig. B.1 shows the flow-chart of the fiber parameter estimation algorithm discussed
in section 4.10.2.

INFT /
(
T0ĉ

(i)
q

)
Channel

·
(
T0ĉ

(i)
q

)
NFTe

(
λk, λ̂k

)
Estim.
β2, γ

b(λk)
λk

β̂2
γ̂

ĉ(i+1)
q

qTX qTX,N

qRX,N
qRXb̂(λ̂k)

b̂(λ̂k)

λ̂k

λ̂k

Figure B.1.: Flow chart of fiber parameter estimation with multi-solitons.

In Fig. B.1, the first two blocks correspond to the transmitter side, while the lower
row of blocks on the left corresponds to the receiver side. The block outside of the
dashed area is executed once a suitable estimate ĉq was found by the iterative process
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depicted inside the dashed area. Parameters ĉq, b̂(λ̂k), λ̂k, β̂2 and γ̂ are estimates of
cq, b(λk), λk, β2 and γ respectively and qTX/RX is the normalized transmitted/received
signal while qTX/RX,N are the denormalized quantities.
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C
Additional Parameter Tables

In this section, additional parameter tables are given. These tables were removed from
the main body of the thesis, but still are shown here for the sake of completeness. Note,
that all the tables given hold parameters that more or less represent standard SSMF
systems with coherent receivers. The deviations between tables mostly stem from the
fact that the results in this thesis were obtained over several years and values were
slightly altered from time to time to e.g. match the values found in some literature or
to be able to more easily compare data with collaborators. None of the value changes,
apart from things like e.g. the transmission distance or amplification type yield major
differences in the system behavior.

C.1. Table for WDM Simulations
In the following, system parameters for the results presented in section 3.5 are given.
Further parameters, which were changed in the conducted simulations, are given in
the description of the respective simulation.

The number of propagating channels is given by Nch, including the evaluated COI.
Parameter Ns gives the number of samples per symbol, RBaud is the systems symbol
rate, βRO is the roll-off factor of the RRC-pulses used, BG is the guard-band between
multiplexed channels and Fn is the noise figure of the used EDFA amplifiers. The
fiber parameters are attenuation α, GVD parameter β2 and nonlinearity parameter γ.
The systems central wavelength is λs. The parameter φmaxNL is used for the step-size

199



C. Additional Parameter Tables

Parameter Value
Nch 5
Ns 8

RBaud 10 GBd
βRO 0.25
BG 2.5 GHz
Fn 5 dB

Parameter Value
α 0.2 dB

km
β2 −2.1173 · 10−26 s2

m
γ 1.3 1

W·km
λs 1550 nm
φmaxNL 10−4

Table C.1.: Common parameters for WDM Simulations in section 3.5.

calculation using the nonlinear phase-method described in section 3.1.5.

C.2. Table for PLA-Enhanced Transmission Systems
In this table, the parameters for the simulations conducted on PLA-enhanced trans-
mission systems are shown. Apart from fiber parameters, the parameters for DRA
and EDFA amplification are given as well.

Parameter Value
γ ≈ 1.3174 W−1km−1

D 17 ps/nm/km
α 0.2 dB/km
λs 1.55 µm
Aeff ≈ 8.00011 · 10−11 m2

Parameter Value
wspot 5.0463 µm
Tfib 290 K
αP 0.25 dB/km
Fn 5

Table C.2.: Simulation parameters for results from section 4.9 and appendix D.4.

C.3. Table for Fiber Parameter Estimation with
Multiple Discrete Eigenvalues

In this table, the values for the simulations conducted on fiber parameter estimation,
using pulses with multiple discrete eigenvalues, are given. This includes the parameters
of the chosen probing pulses.

Note, that the third discrete eigenvalue λ3 = 0.15i, was not used for the final
estimation of β2 and γ, but was utilized in the estimation of cq. This is due to the
fact that the algorithms implemented is relying on a non-zero real part of the discrete
eigenvalue to compute cz.
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Parameter Value
Nspan 20
Lspan 80km

L 1600km
β2 −2.117 · 10−26s2m−1

γ 1.2 · 10−3(Wm)−1
K 3

Parameter Value
cq 2.38 · 1011 W-1/2s-1

cz 1.058 · 10−26 s2m-1

[λ1, qd(λ1)] [−0.1 + 0.3i, 1.0 + 1.0i]
[λ2, qd(λ2)] [0.1 + 0.3i, 4.0 + 4.0i]
[λ3, qd(λ3)] [0.15i, 1.0i]

Table C.3.: Simulation parameters for results from section 4.10.2 and appendix D.5.

C.4. Table for EM-Clustering Results
For the evaluation of the EM-clustering algorithm, the parameters slightly differ from
the standard parameter set given in table C.1. The parameters which remain fixed in
the conducted simulations are given in table C.4.

Parameter Value
β2 −21.683 ps2/km
γ 1.3174 W−1km−1

λs 1550 nm
α 0.2 dB/km
αp 0.25 dB/km

PP(0) 18.095 dBm

Parameter Value
TS 8.0535
p 99.975%

RBaud 1.5 Gbaud
BS 58.9 GHz

Lspan 25 km

Table C.4.: Parameters used for clustering test in section 4.12.

Here, α is the fiber attenuation for the signal and αp is the fiber attenuation for
the pump lasers. The values are different, due to the fact that the signal and pump
are situated at different wavelengths and thus experience differing losses. Parameter
PP(0) is the initial pump power, TS is the symbol duration in soliton units, p is the in-
window energy factor and Lspan is the span-length of the system used in the simulations
in section 4.12.
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D
Additional Simulation Results

In this section, additional results that did either did not fit into the main part of the
thesis or are just variations of results already shown in the thesis, are presented. While
the presented results will not be analyzed with the same rigor as the results in the
main chapters, they are still deemed valuable enough to be discussed shortly. Where
applicable, there will also be references to the respective sections the results belong
to.

D.1. Additional Simulation Results for WDM Systems
In the following, additional simulation results for the MI of the WDM system presented
in section 3.5 are given. They are variations of the simulation results shown in section
3.5.3. If not stated otherwise, the parameter set from table C.1 is used. Parameters
that vary between simulations are stated in the captions of the respective simulations.
Similar to Fig. 3.15, simulation results for other span-lengths were obtained. Figs.
D.1 and D.2 show the MIs for the respective point-to-point systems, while keeping
the overall transmission distance identical. The same set of parameters was tested
for the network case and the results are shown in Figs. D.3 and D.4. Note, that the
shown curves are either obtained using the CDC algorithm or the DBP algorithm with
a varying number of steps per span Ndbp for equalization at the receiver. While the
linear signal distortions can be mitigated by both algorithms, the nonlinear distortions
can only be mitigated by using the DBP algorithm. A more detailed discussion of this
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topic can be found in section 3.5.2.
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Figure D.1.: 16x16 MPSK transmission
over 25x80km (Point-to-
Point).
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Figure D.2.: 16x16 MPSK transmission
over 40x50km (Point-to-
Point).
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Figure D.3.: 16x16 MPSK transmission
over 25x80km (Network
Case).
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Figure D.4.: 16x16 MPSK transmission
over 40x50km (Network
Case).

D.2. Accuracy of the Continuous Spectrum NFT

The results shown in Fig. D.5, are obtained using the same simulation setup as
described in section 4.4.1. The simulations differ only in the pulse used to test the
accuracy of the algorithms. In Fig. D.5 the amplitude of the rectangular pulse was
set to A = 2, while in Fig. 4.8 from section 4.4.1 in the main part of the thesis the
amplitude was set to A = 6. Note, that the RK is not visible in Fig. D.5. This is
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due to the fact that it is very close to the results obtained for TD and thus is almost
fully covered by the other curve. There are also results for the accuracy of the NFTs
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Figure D.5.: Accuracy of continuous spectrum estimation for the rectangular pulse
(A = 2, T = 1).

which were computed using the SY-pulse as a test pulse. The results for several of
the algorithms presented in 4.4.1 are given in Figs. D.6 and D.7. It can be seen,
that at least when speaking about orders of magnitude, the algorithms evaluated in
Figs. D.6 and D.7 all react similar to changes in the in-window energy factor p, except
for cases where Ns is very low. The number of samples Ns decreses the NMSE for
higher values for some algorithms, but as visible in e.g. Fig. D.6d and Fig. D.7c,
some algorithms perform more or less independent of Ns for the SY-pulse. Without
going into detail too much, the results for the SY-pulse can be compared with the
results fo the rectangular pulse from Figs. 4.8 and D.5. The different behavior in
regards to Ns could be due to the fact that the SY-pulse is a more smooth function
than the rectangular pulse and thus increasing the resolution at the transients of the
rectangular pulse always improves the estimation, while the resolution is no major
concern for the transformation of the SY-pulse after some threshold value is reached.
Increasing the value p improves the accuracy for all algorithms tested with the SY-
pulse. This could be due to the fact that the SY-pulse is infinitely broad and thus is
always truncated for finite temporal support. Contrary to that, the rectangular pulse
can be fully supported on a finite time-window, which is why the in-window energy
was not varied for the accuracy test of the rectangular pulse. If the time-window
would be decreased beyond the time-support, the pulse-duration would be altered and
the influence of this is well captured in the closed-form expressions for the nonlinear
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Figure D.6.: Accuracy of the continuous spectrum estimation of a SY-pulse (Part 1).

Fourier transform of the rectangular pulse given in section 4.3.1.

D.3. Accuracy of the Eigenvalue Removal NFT
In section 4.4.3, the results for K = 2 discrete eigenvalues were already presented in
Fig. 4.15. Similar results were also obtained for a transmission pulse generated with
K = 3 discrete eigenvalues. The results are shown in Fig. D.8. The ranges for the two
parameters changed during simulation are A ∈ (0.6, 1.5) and CEV ∈ (0.3, 1.2). Most
of the observations made for K = 2 in section 4.4.3 are also true for K = 3. Some
additional remarks on the K = 3 case are given in the following. It can be seen, that
for the case shown in Fig. D.8 the continuous spectrum detection is not benefiting from
the truncation process in most cases. The algorithm can potentially even degrade the
quality of the obtained continuous spectrum, while in a small region there is also some
improvement visible which it is quite confined. No further studies were conducted
to understand under which conditions this improvement can be achieved in a more
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Figure D.7.: Accuracy of the continuous spectrum estimation of a SY-pulse (Part 2).

generalized way. Thus a similar approach to splitting the detection into two parallel
routines such as already discussed for the case K = 2 seems beneficial in this case as
well.

The detection accuracy of discrete eigenvalues and b(λk) values can be seen in Figs.
D.8b and D.8c. Compared to the K = 2 case, the improvement over purely search-
based detection is less pronounced, but still the removal based algorithm is generally
more accurate. For the discrete eigenvalues (Figure D.8b) the algorithm still shows
some improvement, but there is no clear slope visible. One possible explanation could
be that for K = 3 the discrete eigenvalues have a larger imaginary part and therefore,
the truncation threshold Tc could be reached more quickly. As a result the numerical
error could not be reduced further by truncation. Further, since Tc poses an ultimate
threshold for the reduction in numerical complexity, the current implementations com-
plexity will be very close to the complexity of the search-based method if Tc is very
close to the temporal width of the received pulse. In Figure D.8c one can see that for
the b-values the improvement is reduced for larger CEV and A. We assume, that the
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Figure D.8.: Comparison of detection algorithms for K = 3 eigenvalues.

reason for this behaviour is the less accurate detection of large discrete eigenvalues,
which might in return cause larger errors in the eigenvalue removal step or even fail to
remove all eigenvalues from the pulse. As discussed earlier in section 4.4.3, the algo-
rithm defaults to the accuracy of the search-based NFT, if all eigenvalue removal steps
fail. In Fig. D.8d, the difference in computation time is depicted and it can be seen,
that for small values of CEV, the ER-NFT takes longer to compute than the purely
search-based method. This effect is much less pronounced for the case of K = 2.
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D.4. PLA-Enhanced Multi-Soliton Systems

For the PLA-enhanced transmission described in section 4.9, further results were ob-
tained for various modulation schemes. Since they give similar insights into the ef-
fectivity of the PLA-approach, they are only shortly presented and discussed in this
section for the sake of completeness. Apart from the MPSK modulation case discussed
in section 4.9, further results were obtained for EV-OOK and PSK modulation systems.
The results for these are depicted in Fig. D.9. The span-length and Baud-rate are
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Figure D.9.: BER curves for PLA-enhanced systems

Lspan = 60 km, RBaud = 0.6 GBaud for the EDFA amplified EV-OOK case presented
in Fig. D.9a, Lspan = 100 km, RBaud = 0.57 GBaud for the DRA amplified EV-OOK
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case in Fig. D.9b, Lspan = 10 km, RBaud = 0.8 GBaud for the EDFA amplified PSK
case in Fig. D.9c and Lspan = 80 km, RBaud = 1.2 GBaud for the DRA amplified
PSK case in Fig. D.9d. The system parameters used are identical to the ones used in
section 4.9 and can be found in table C.2. It can be seen, that for all cases shown in
Fig. D.9, the PLA approach can improve the systems BER significantly. For EDFA
amplification and EV-OOK signaling the results presented in Fig. D.9a show that for
the used span-length is is not feasible to transmit data at the used Baud-rate without
using the PLA approach. For the results using PLA rescaling it can be seen that,
just as a quick check using 10−3 as a FEC-threshold, transmission distances beyond
2500 km can be achieved. The unsteady movement of the ”PLA on” curve could be
due to the choice of the temporal support, causing the symbol to expand beyond the
allocated window for certain transmission distances. This, however, was not further
studied. For the EDFA case, using PSK modulation in Fig. D.9c, the improvement in
the PLA-enhanced case is rather significant as well. Note, that in this case the effect
from Fig. D.9a is not visible, which might be due to a better choice for the temporal
support. For both DRA cases, presented in Figs. D.9b and D.9d, the improvement is
less impressive, but still quite significant. Again there are some fluctuations visible in
D.9b in both curves. This further strengthens the conjecture that some of the used
pulses extended beyond their allotted time-window for certain transmission distances.
Using the PSK modulation scheme yields a more uniform pulse-set than the EV-OOK
method and thus it is more likely that the heuristically chosen temporal support for
the simulations depicted in Figs. D.9a and D.9c caused the visible fluctuations in the
BER.

D.5. Fiber Parameter Estimation

In addition to the results presented in section 4.10, additional simulation results were
obtained for the ideal channel case and the PLA-enhanced system case. The parame-
ters used are identical to the parameters used in section 4.10.2 and are given in table
C.3. To visualize the signal degradation due to normalization parameter ĉq diverging
from the ideal value cq, two channel configurations were tested. First the channel was
assumed to behave according to the ideal channel model, enabling the solitonic pulses
to propagate ideally through the fiber if normalized correctly. This normalization and
denormalization process then was slightly disturbed by setting ĉq = C · cq with some
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C 6= 1. The movement of the discrete eigenvalues in the positive complex halfplane
due to this disturbance is shown in Figs. D.10a - D.10e. Note, that for Fig. D.10a
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Figure D.10.: Transmitted and received discrete eigenvalues in parameter estimation
setup for the ideal channel.

the discrete eigenvalue with the smallest imaginary part could not be detected at the
receiver. Further it can be seen that the discrete eigenvalues are perturbed the least
for the case ĉq = cq. This is not necessarily true for channels with e.g. an EDFA ampli-
fication scheme, as depicted in Fig. 4.32. In Figs. D.11a - D.11c, the same parameter
estimation algorithm is tested with an EDFA amplified fiber channel. Here it can be
seen that, once more, the deviations are more pronounced if C 6= 1. Additionally, the
ideal case depicted in D.11b now also shows some deviations. This is due to the fact
that the PLA scheme does not fully counteract the perturbations due to attenuation.
This effect is explored in more detail in section 4.10.1, albeit only for the fundamental
soliton case.
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Figure D.11.: Transmitted and received discrete eigenvalues in parameter estimation
setup for PLA-enhanced EDFA transmission.

D.6. EV-OOK Labeling Schemes
Apart from the results shown in Figs. 4.36a and 4.36b, further results on the impact
of the ”gray” labeling algorithm presented in section 4.11 were obtained. Some of
the results will be presented in the following. Note, that the systems simulated in
section 4.11 are not identical to the system models for this section. Thus, while the
results still show similar trends, they can not be compared directly. The used system
parameters are given in table C.2. In Fig. D.12, the BER for transmission over a
DRA amplified fiber channel is given for ”gray” and binary labeling. Additionally, the
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Figure D.12.: BER curves for DRA and EV-OOK with PLA approach. (RBaud = 0.57
GBaud, Lspan = 100 km, K = 5)
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SER divided by the number of discrete eigenvalues K = 5 is given. This is the lower
bound for which only one bit-error per symbol-error occurs. As it can be seen, similar
to the results from section 4.11, this bound is achieved for ’gray’ labeling for a fairly
long distance. Around 2800-2900km the results start to diverge from the optimum
value, which means that the heuristic channel model assumed in section 4.11 is no
longer adequately modeling the behavior of the simulated channel. Similarly, results
for an EDFA amplified fiber channel are shown in Fig. D.13. It can be seen, that
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Figure D.13.: BER curves for EDFA and EV-OOK with PLA approach. (RBaud = 0.6
GBaud, Lspan = 60 km, K = 5)

the behavior of the ’gray’ labeled curve is similar to the one in Fig. D.12, but the
deviation gets even more pronounced for longer distances. For ≈ 5400-6000km the
values of BERGray is similar to BERBin, which means that the heuristic model does no
longer hold in this case as well.

D.7. Clustering Algorithm for Discrete Spectrum Data

In the following, some additional results and figures regarding the topic of clustering,
discussed in section 4.12, will be presented. The two main groups of additional material
contain an example for the iterative grouping of a data set using the EM algorithm
and some additional results for the performance of transmission systems using the
k-means (KM) algorithm for detection at the receiver. Note, that the KM algorithm
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is not discussed in detail in this thesis. A detailed treatment of the KM algorithm can
be found in e.g. [147].

D.7.1. Example for Clustering with the EM Algorithm

To illustrate the iterative process by which the EM-clustering algorithm is grouping
the received data y, a simplified example of a 8-PSK modulated signal is used. The
channel will just add noise before the receiver. The noise itself is AWGN which either is
circularly symmetric (CS) of non-CS. Several depictions of the received constellations
are given in Fig. D.14. In Fig. D.14a, the received constellation is superimposed by CS
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Figure D.14.: Received constellations for MD and EM detection.

AWGN. The black dotted lines show the decision boundaries for MD detection. It can
be seen, that as long as the noise is CS, the MD boundaries are ideal. On the contrary,
in Fig D.14b, the superimposed noise is non-CS and it can be seen, that the rotation
and deformation of the symbol clouds leads to suboptimal detection by MD. In Fig.
D.14c, the same data is shown, but the errors are marked in red. The resulting SER
for the data and detection scheme shown in Figs. D.14a - D.14c is SER = 7.00 · 10−2.
If now EM-clustering is used, the algorithm tries to find parameters to best represent
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the received data by a MOG. In Fig. D.14d, these Gaussians for iteration i = 0
are shown. The black circles give their initial mean values, set by the transmission
alphabet. The dashed circles visualize the 95% confidence interval for each Gaussian.
In the next iteration i = 1, new mean values are computed for the clusters. The mean
values are again given by the black circles in Fig. D.14e. Also the data is clustered
again using the new values for mean and (co-)variance of the Gaussians. It can be
seen, that already after the first iteration less detection errors occur. In Fig. D.14e
this is especially visible for the yellow cluster in the bottom left. The errors are also
visualized in Fig. D.14f by the red data points. The error after the first iteration is
reduced to SER = 1.05 · 10−2. Similarly the errors after iteration i = 2 and i = 6
are depicted in Figs. D.14g and D.14h and result in error rates of SER = 6 · 10−3

and SER = 4 · 10−3 respectively. It can be seen, that in this case the EM algorithm
reduced the SER by more than one order of magnitude in a few iterations.

D.7.2. Results for K-Means Clustering

KM also is an algorithm for clustering data. Compared to EM clustering the algorithm
is easier to implement, but in many cases also is less good at clustering data. A more
detailed treatment of KM clustering can be found in e.g. [147]. In Fig. D.15 the
BER for transmission of a PSK modulated signal over a DRA amplified fiber channel
with varying transmission distances L is shown. The modulated quantities are either
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Figure D.15.: BERs for DRA amplification and 8-PSK. (RBaud = 1.2 GBaud, Lspan =
80 km K = 2)
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the discrete nonlinear spectral amplitudes qd(λk) or the b(λk) values. The detection is
either done by MD or KM clustering. It can be seen, that in both cases clustering by
KM significantly improves the BER in a certain range. Assuming the FEC-threshold
10−3, in both cases the achievable transmission distance can be increased by ≈ 300
km.

Similar results were obtained for the EDFA amplified channel. The results are given
in D.16. It can be seen, that the influence of using KM clustering on the BER is much
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Figure D.16.: BERs for EDFA amplification and 8-PSK. (RBaud = 0.8 GBaud, Lspan =
10 km K = 2)

smaller in this case. While this was not studied further, this decrease in effectivity
could be caused by the reduced influence of nonlinear distortions. Compared to the
DRA case, the fluctuation in signal power over each span of EDFA amplified fiber
is much more pronounced. Thus, for large portions of the transmission distance,
the signal power is rather low and signal distortions are more likely to stem from
fiber attenuation and the resulting mismatch between the theoretic and the simulated
channel model.

216



E
Notation, Common Functions,
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E.1. Notation and Functions
(·)∗ Complex conjugate

(·)H Hermetian of vector/matrix

(·)T Transposition of vector/matrix

={·} Imaginary part of complex number

<{·} Real part of complex number

∠(·) Argument of complex number

X Matrix containing entries xij with i, j denoting row and column respectively

x Vector containing entries x1, x2, · · · , xN

〈·, ·〉 Inner product

E[·] Expected value

H(·) Entropy of a random variable
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H(·|·) Conditional entropy of two random variables

I(·; ·) Mutual information

F{·} Fourier transform

F−1{·} Inverse Fourier transform

H{·} Hilbert transform

H−1{·} Inverse Hilbert transform

Cov[·, ·] Covariance

INFT({·, ·, ·}) Inverse nonlinear Fourier transform

NFT(·) Forward nonlinear Fourier transform

Var[·] Variance

W(·, ·) Wronskian

supp(·) Support of a random variable

σ(·) Spectrum of an operator

| · | Absolute value

|| · || Norm
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E.2. Symbols
Aeff Effective area

BG Guard bandwidth

BS Symbol bandwidth

Brec Receiver bandwidth

DPMD PMD parameter

D Dispersion parameter

Eχ Complex electrical amplitude in eigenpolarization χ

Eψ Complex electrical amplitude in eigenpolarization ψ

Ex Complex electrical amplitude in x-polarization

Ey Complex electrical amplitude in y-polarization

Feff Effective noise figure for Raman amplifiers

Fn Noise figure

GEDFA EDFA gain

Gon−off On-off gain for Raman amplifiers

KT Shifted phonon occupancy factor (KT = 1 + ηP)

L0 distance normalization coefficient (NFT)

Nb,error Number of bit-errors

Nb Number of total transmitted bits

Nch Number of channels

Ndbp Number of steps per span for DBP algorithm

Nspan Number of spans in transmission link
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Ns Number of samples

P0 power normalization coefficient (NFT)

PN Noise power

PP Pump power

PS Signal power

Q(τ, `) Complex envelope of a narrowband signal in natural units

Qm(τ, `) Entries of signal vector Q(τ, `)

RBaud Baud rate

T0 temporal normalization coefficient (NFT)

TS Symbol duration

Tfib Fiber temperature

τ̄g,χ Group-delay in eigenpolarization χ

τ̄g,ψ Group-delay in eigenpolarization ψ

∆` step-size (SSFM)

Γ(·) Complex gamma function

ΩR Raman shift

αNR Step modifier for Newton-Raphson search

α Fiber loss coefficient

β̄2 Average GVD for the SCME channel model

β(ω) Mode-propagation constant

β2 Group velocity dispersion coefficient

βχ Propagation constant of eigenpolarization χ

βRO Roll-off factor
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Symbols

βψ Propagation constant of eigenpolarization ψ

βx Propagation constant of x-polarization

βy Propagation constant of y-polarization

β Propagation constant

E(`, τ) Complex electrical amplitude vector

Q(τ, `) Vector of complex envelopes of a multimode signal in natural units

qc(λ) Continuous nonlinear spectrum vector (multi-mode case)

qd(λk) Discrete nonlinear spectrum vector (multi-mode case)

q(t, z) Vector of complex narrowband signal envelopes in soliton units

v(λ, t, z) eigenfunctions of isospectral Lax operator

χ(3) Cubic material polarization

` Propagation distance in natural units

ηP Phonon occupancy factor

η imaginary part of a generalized frequency λ

γ Nonlinearity coefficient

D̂dbp Linear terms for DBP

D̂ Linear terms of the NLSE

N̂dbp Nonlinear terms for DBP

N̂ Nonlinear terms of the NLSE

Q̂(ω, `) Fourier transform of a narrowband signal in natural units

κ Nonlinear coupling coefficient for the SCME channel model

λk Discrete eigenvalues

λ generalized frequency

221



Symbols

λ Wavelength in natural units (only used in Section 3)

L(z) isospectral operator of Lax pair

M(z) spatial propagation operator of Lax pair

P(z) temporal propagation operator of Lax pair

bRX Received bitstream

bTX Transmitted bitstream

H Hilbert space

Leff Effective length

Lspan Length of one fiber-span

L Transmission distance

Z Normalized transmission distance

diag(·) diagonal matrix operator

dτ̄g Differential group-delay

e Euler’s number

j Imaginary unit j =
√

−1

µ Mean of a random variable

ωc Angular carrier frequency

ω Angular frequency

φmaxNL Maximum allowed nonlinear phase-rotation in nonlinear phase-rotation method

ρME Modulation efficiency

σ2
ASE,span ASE noise variance per span

σ2
ASE Total ASE noise variance

σ2
DRA Noise variance for the DRA channel
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Symbols

σ2
IDRA Noise variance for the IDRA channel

σ2
N Noise variance

σ2 Variance of a random variable

τ Temporal parameter in natural units

ξ real part of a generalized frequency λ

{a(λ), b(λ), ā(λ), b̄(λ)} Scattering coefficients

{φ(λ, t), φ̄(λ, t),ψ(λ, t), ψ̄(λ, t)} Jost solutions for the NLSE-based NFT

a(λ) Nonlinear Fourier coefficient

b(λ) Nonlinear Fourier coefficient

bm(λ) Nonlinear Fourier coefficients for the multi-mode case

c Speed of light in vacuum

fc Carrier frequency

f Frequency in linear Fourier domain

gRRC(τ) Root raised cosine

gR Raman gain

h(t) Linear channel impulse response

hP Planck constant

kB Boltzmann constant

n(ω) Frequency dependent refractive index

ng Group refractive index

nsp Spontaneous emission factor

q(t, z) Complex envelope of a narrowband signal in soliton units

qc(λ) Continuous nonlinear spectrum
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Symbols

q(m)
c (λ) M -th continuous nonlinear spectrum (multi-mode case)

qd(λk) Discrete nonlinear spectrum

q
(m)
d (λk) M -th discrete nonlinear spectrum (multi-mode case)

qfs(t, z) Fundamental soliton in time domain

qrec(t) Rectangular pulse in time domain

qsy(t) Satsuma-Yajima pulse in time domain

qm(t, z) Entries of q(t, z)

t Temporal parameter in soliton units

vg Group-velocity

wspot Spot radius

z Propagation distance in soliton units

C− Negative complex half-plane

C+ Positive complex half-plane

C Set of complex numbers

R Set of real numbers

Z−
0 Set of negative integer numbers (including zero)

Z− Set of negative integer numbers (excluding zero)

Z+
0 Set of positive integer numbers (including zero)

Z+ Set of positive integer numbers (excluding zero)

Z Set of integer numbers
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E.3. Acronyms

E.3. Acronyms
AIR achievable information rate

AL Ablowitz-Ladik

AL-DLP Ablowitz-Ladik discrete layer peeling

ASE amplified spontaneous emission

AWGN additive white Gaussian noise

B2B back-to-back

BER bit error-rate

CD chromatic dispersion

CDC chromatic dispersion compensation

CDEP central difference eigenproblem

CDM central discretization method

CN Crank-Nicolson

COI channel of interest

CS circularly symmetric

DBP digital back-propagation

DCF dispersion compensating fiber

DFT discrete Fourier transform

DGD differential group-delay

DLP discrete layer peeling

DRA distributed Raman amplification

DSP digital signal processing
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Acronyms

DT Darboux transform

EDFA erbium doped fiber amplifier

EM expectation maximization

ER eigenvalue removal

EV-OOK eigenvalue on-off keying

FB forward-backward

FD forward discretization

FEC forward error correction

FFT fast Fourier transform

FT Fourier transform

FWM four wave mixing

GLM Gelfand-Levitan-Marchenko

GVD group-velocity dispersion

I in-phase

IDRA idealized distributed Raman amplification

INFT inverse nonlinear Fourier transform

ISI inter symbol interference

IST inverse scattering transform

KM k-means

LP layer-peeling

MD minimum Euclidean distance
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Acronyms

MF matched-filter

MI mutual information

MMF multi-mode fiber

MMI mismatched mutual information

MOG mixture of Gaussians

MPSK multi-ring phase-shift keying

MSE mean squared error

NFD nonlinear Fourier domain

NFDM nonlinear frequency division multiplexing

NFT nonlinear Fourier transform

NLSE nonlinear Schrödinger equation

NMSE normalized mean squared error

PAM pulse amplitude modulation

PDF probability density function

PJT phase jump tracking

PLA path-loss averaged

PMD polarization mode dispersion

PMF probability mass function

PPM pulse-position modulation

PSK phase-shift keying

Q quadrature

QAM quadrature amplitude modulation
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Acronyms

RH Riemann-Hilbert

RK Runge-Kutta

ROADM reconfigurable optical add-drop multiplexer

RRC root raised cosine

RV random variable

RX receiver

SB Shannon-bound

SCME strong-coupling Manakov equation

SDM space division multiplexing

SE spectral efficiency

SER symbol error rate

SMF single mode fiber

SNR signal to noise ratio

SPM self-phase modulation

SRS stimulated Raman-scattering

SSFM split-step Fourier method

SSMF standard single mode fiber

SY Satsuma-Yajima

TBP time-bandwidth product

TBR time-bandwidth requirement

TD trapezoidal discretization

TX transmitter

228



Acronyms

VFS vectorial fundamental soliton

WDM wave division multiplexing

XPM cross-phase modulation

ZS Zakharov-Shabat
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List of Publications

In the following, a list of all publications, that were written by the author during the
work on this thesis, is presented. This does not include papers, that were written by
the author before or after his doctoral studies. Posters at workshops/conferences and
talks without a corresponding paper are not included. This list is just meant to give
a quick overview of the authors publications. If they are referenced in the thesis, they
are referenced by the identifier given in the bibliography section.

• Soliton Transmission with 5 Eigenvalues Over 2000km of Raman-Amplified Fiber

– Authors: Leible, B.; Chen, Y.; Yousefi, M. I.; Hanik, N.

– Conference/Journal: 20th International Conference on Transparent Optical
Networks (ICTON), 2018

• Clustering Algorithm for Detection in the Discrete Nonlinear Fourier Spectrum

– Authors: Leible, B.; García-Gómez, F. J.; Hanik, N.

– Conference/Journal: 45th European Conference on Optical Communica-
tion (ECOC), 2019
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• Eigenvalue Trajectories in Multispan Soliton Transmission Systems under Lumped
and Distributed Amplification

– Authors: Leible, B.; Hanik N.

– Conference/Journal: 21st International Conference on Transparent Optical
Networks (ICTON), 2019

• Approaches to Bit-Labeling for Eigenvalue On-Off-Keying Systems

– Authors: Leible, B.; Göttsberger, T.; Hanik, N.

– Conference/Journal: International Conference on Transparent Optical Net-
works (ICTON), 2020

• Stability of the Full Spectrum Nonlinear Fourier Transform

– Authors: Leible, B.; Plabst, D.; Hanik, N.

– Conference/Journal: International Conference on Transparent Optical Net-
works (ICTON), 2020

• Back-to-Back Performance of the Full Spectrum Nonlinear Fourier Transform
and Its Inverse

– Authors: Leible, B.; Plabst, D.; Hanik, N.

– Conference/Journal: Entropy Journal 22 (10), 2020

• The Nonlinear Fourier Transform and its Extension to the Strong Coupling
Multi-Mode Case

– Authors: Leible, B.; Hanik, N.

– Conference/Journal: 25st International Conference on Transparent Optical
Networks (ICTON), 2023

• Algorithms for the Nonlinear Fourier Transform in the Strong Coupling Multi-
Mode Case

– Authors: Leible, B.; Hanik, N.

– Conference/Journal: 25st International Conference on Transparent Optical
Networks (ICTON), 2023
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