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Abstract 
Diabetes mellitus is a complex, chronic metabolic disease with high unmet medical need. In 

diabetes, hormonal regulation of blood glucose is impaired because the endocrine cell system 

in the pancreas and intestine becomes progressively dysfunctional. Developing regenerative 

treatments that restore functioning endocrine cells to regain an endogenous endocrine control 

is therefore an attractive approach to halt disease progression. To be successful in any such 

endeavors it is necessary to first better understand the molecular determinants of cell identity, 

normal cell function and dysfunction in disease as well as how the biology of preclinical models 

translates to humans. Since endocrine cells are functionally heterogeneous and plastic, this 

also requires delineating the spectrum of states endocrine cells acquire. Through recent 

technological and computational advances, single-cell transcriptomics has become a powerful 

tool with the necessary depth and resolution to study cellular trajectories, composition, 

identities and states in such complex, multicellular systems. In this cumulative thesis I use 

single-cell transcriptomics to chart specific aspects of the endocrine cellular landscape of the 

pancreas and intestine, with the goal of aiding our understanding of the cells and molecular 

processes that form the endocrine system during critical windows of life and disease and could 

be targeted by therapeutics to regenerate a normal functioning endocrine system. 	
I first reviewed the current literature and discussed the impact of single-cell transcriptomics 

and computational approaches on learning cellular trajectories and studying heterogeneity in 

the pancreatic endocrine cell system. I then analyzed single-cell transcriptomic data zooming 

into different parts of the developing, healthy and diabetic endocrine pancreas and small 

intestine. First, I established a comprehensive reference cell map of the healthy human, pig 

and mouse endocrine pancreas as a framework to systematically study physiological cell 

states and to link findings between humans and two clinically relevant animal models. I then 

reconstructed a lineage model of endocrine differentiation in the developing mouse pancreas, 

which revealed markers that distinguish differentiation states and predicted regulators that 

shape cell identity. To study how these change in disease, I next created a map of cells and 

their relations to delineate how hyperglycemia and treatment affects the endocrine pancreas 

in diabetic mice. This suggested that re-differentiation of dysfunctional pancreatic β-cells is a 

viable regenerative treatment option for diabetes and revealed targetable molecular pathways 

to do so. Finally, I characterized the cellular repertoire of the small intestinal epithelium to 

describe how an obesogenic diet and pre-diabetes affects lineage allocation and endocrine 

composition of the gut. This indicated mechanisms of intestinal maladaptation and 

enteroendocrine dysfunction, which may contribute to drive progression of diabetes.  



 ii 

Through nuanced descriptions of specific endocrine cell populations this thesis generated 

novel insights into inherent endocrine biology and cellular drivers of diabetes in the pancreas 

and intestine: it described cellular and molecular mechanisms of endocrine cell identity and 

(dys-) function; identified biomarkers of (patho-)physiological cell states; predicted potentially 

targetable molecular pathways; and created a framework to assess the translational value of 

two preclinical models. The novel findings together with the accessible cellular maps represent 

a rich resource to empower diverse efforts towards regenerative therapies for diabetes.  
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Zusammenfassung 
Diabetes mellitus ist eine komplexe, chronische Stoffwechselerkrankung mit einem hohen 

ungedeckten medizinischen Bedarf. Bei Diabetes ist die hormonelle Regulierung des 

Blutzuckerspiegels gestört, weil das endokrine Zellsystem im Pankreas und im Darm 

zunehmend dysfunktional wird. Die Entwicklung regenerativer Behandlungen, die 

funktionierende endokrine Zellen wiederherstellen, um eine endogene endokrine Kontrolle 

wiederzuerlangen, ist daher ein attraktiver Ansatz, um das Fortschreiten der Krankheit 

aufzuhalten. Um bei solchen Bemühungen erfolgreich zu sein, müssen zunächst die 

molekularen Determinanten der Zellidentität, der normalen Zellfunktion und der 

Funktionsstörung bei Krankheiten besser verstanden werden. Zudem muss geklärt werden, 

wie sich die Biologie präklinischer Modelle auf den Menschen übertragen lässt. Da endokrine 

Zellen funktionell heterogen und plastisch sind, muss auch das Spektrum der Zustände, das 

endokrine Zellen annehmen, beschrieben werden. Durch die jüngsten technologischen und 

computergestützten Fortschritte ist die Einzelzelltranskriptomik zu einem leistungsfähigen 

Instrument geworden, das über die notwendige Tiefe und Auflösungsschärfe verfügt, um die 

zellulären Trajektorien, die Zusammensetzung, die Identitäten und die Zustände in solch 

komplexen, multizellulären Systemen zu untersuchen. In dieser kumulativen Dissertation 

erfasse ich mit der Einzelzelltranskriptomik spezifische Aspekte der endokrinen Zelllandschaft 

des Pankreas und des Darms mit dem Ziel unser Verständnis der Zellen und molekularen 

Prozesse, die das endokrine System während kritischer Lebens- und Krankheitsperioden 

bilden, zu verbessern und auf die Therapeutika abzielen könnten, um ein normal 

funktionierendes endokrines System zu regenerieren.  

Zunächst gebe ich einen Überblick über die aktuelle Literatur und diskutiere die Bedeutung 

der Einzelzell-Transkriptomik und computergestützter Ansätze zur Erforschung der zellulären 

Trajektorien und der Heterogenität im endokrinen Zellsystem des Pankreas. Ich analysiere 

dann transkriptomische Einzelzelldaten bestimmter Bereiche des sich entwickelnden, 

gesunden und diabetischen endokrinen Pankreas und Dünndarms. Mit einer umfassenden 

Referenzzellkarte des gesunden endokrinen Pankreas von Mensch, Schwein und Maus, die 

ich erstellt habe, untersuche ich systematisch die physiologischer Zellzustände und verknüpfe 

die Ergebnisse von Patienten mit zwei klinisch relevanten Tiermodellen. Anschließend 

rekonstruiere ich ein Abstammungsmodell der endokrinen Differenzierung in dem sich 

entwickelnden Pankreas der Maus, das Marker zur Unterscheidung von 

Differenzierungszuständen aufzeigt und Regulatoren vorhersagt, die die Zellidentität prägen. 

Um zu untersuchen, wie sich diese im Krankheitsfall verändern, erstelle ich folgend eine Karte 

der Zellen und ihrer Abstammungen, die die Auswirkung der Hyperglykämie und Behandlung 
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auf den endokrinen Pankreas von diabetischen Mäusen beschreibt. Dies deutet darauf hin, 

dass die Redifferenzierung von dysfunktionalen β-Zellen des Pankreas eine praktikable 

regenerative Behandlungsoption für Diabetes darstellt, und es zeigt zudem behandelbare 

molekulare Prozesse auf. Schließlich beschreibe ich das zelluläre Repertoire des 

Dünndarmepithels, um den Einfluss einer adipogenen Ernährung und Prädiabetes auf die 

Abstammungszuordnung und die endokrine Zusammensetzung des Darms herauszustellen. 

Es zeigt sich, dass die Mechanismen der Fehlanpassung des Darms und der 

enteroendokrinen Dysfunktion zum Fortschreiten von Diabetes beitragen können.  

Durch differenzierte Beschreibungen bestimmter endokriner Zellpopulationen liefert diese 

Arbeit neue Erkenntnisse über die inhärente endokrine Biologie und die zellulären Triebkräfte 

von Diabetes in Pankreas und Darm: Sie beschreibt zelluläre und molekulare Mechanismen 

der endokrinen Zellidentität und (Dys-)Funktion, identifiziert Biomarker für (patho-

)physiologische Zellzustände, sagt potenziell behandelbare molekulare Signalwege voraus 

und schafft einen Rahmen zur Bewertung des translationalen Werts von zwei präklinischen 

Modellen. Die neuen Erkenntnisse sind zusammen mit den verfügbaren zellulären Karten eine 

reichhaltige Ressource, um die diversen Anstrengungen in Richtung regenerativer Diabetes-

Therapien zu unterstützen.  
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1. Introduction 
 
Diabetes mellitus has become a global epidemic and heavily burdens the human health and 

socioeconomic system14. Diabetes is a complex and multifactorial metabolic disease caused 

by a pathological combination of environmental, medical, genetic and epigenetic factors of 

which many are still incompletely understood. Diabetic patients suffer from chronically 

elevated blood glucose levels because of defective glucose and lipid metabolism and 

hormonal dysregulation in multiple organs (Figure 1). A hallmark common to all types of 

diabetes is insulin deficiency. Pancreatic β-cells secrete insufficient amounts of insulin to 

stimulate glucose uptake in peripheral organs, because of progressive loss of functional β-cell 

mass or insulin resistance or both. If uncontrolled, the persistent high glucose levels can lead 

to devastating complications in many organs including enteropathy, retinopathy and 

nephropathy. Modern pharmacological treatments, including the new “GLP1” blockbusters, 

are significantly more efficacious in glucose control through added benefits on multiple organs 

and have improved the quality of life in patients15,16. However, they still only target the 

symptomatic hormone deficiencies, are applicable to only a subset of patients and it is unclear 

whether they will achieve sustained glycemic control and diabetes remission17,18. In addition, 

they often require life-long compliance and are accompanied by side effects19. The only 

treatments today that can put diabetes into long-term remission are bariatric surgery or 

transplantation20. To circumvent the need for invasive and costly treatment and improve 

patient outcomes in a wide range of patients, there is therefore still an unmet need for 

treatment options that are disease modifying, more efficacious, improve glucose control 

through other mechanisms and or target multiple aspects of the disease.  

1.1. Restoring endocrine function to treat diabetes 
Regenerative approaches aim at recovering the endogenous control of glucose through 

repairing, replacing or regenerating cells and tissues. Endocrine cells are an attractive target 

for such an approach because hormone dysregulation by the endocrine system and loss of 

functional endocrine cells are key drivers of the development and progression of diabetes 

(Figure 1). Restoring homeostasis, normal function and mass of endocrine cells holds promise 

to regain a fine-tuned, multi-dimensional and sustained systemic hormone regulation, which 

cannot be achieved through current hormone therapies that simply supplement key hormones. 

For a long time most regenerative treatment strategies for diabetes were focused on restoring 

pancreatic endocrine function, specifically regenerating insulin-producing β-cell mass and 
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function21–23. However, with the recent treatment success of bariatric surgery and therapies, 

which substitute or stimulate production of intestinal hormones (e.g., GLP1 or GIP incretins), 

targeting endocrine dysregulation in the intestine has also gained attention16,24–26 (Figure 1). 

In the following sections I present potential regenerative treatment strategies for diabetes that 

target the pancreatic or intestinal endocrine cell system and highlight some of the remaining 

gaps for successful development.   

 

 
Figure 1. The complex, multifaceted pathophysiology of diabetes. Defects in multiple organs 

contribute to hyperglycemia and diabetes and deregulated glucose metabolism. Main dysfunctions of 
the endocrine pancreas and intestine are highlighted. 

1.1.1. Restoring functional mass of pancreatic insulin-producing β-cells 

Overcoming insulin deficiency through insulin treatment has for decades been the only 

available therapy for diabetic patients and is still today an important component of diabetes 

management. However, it is associated with risks including hypoglycemia, weight gain and 

developing insulin resistance. A regenerative treatment could overcome these and in addition 

have the potential for a disease modifying effect or even disease reversal. Insulin-producing 

β-cells are located in pancreatic islets and regulate systemic blood glucose levels together 

with the other islet endocrine cells - glucagon-producing alpha cells, somatostatin-producing 
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delta cells, pancreatic polypeptide-producing PP cells and ghrelin-producing epsilon cells. In 

the predominant forms of diabetes, type 1 (T1D) and type 2 (T2D), β-cells are gradually lost 

or become dysfunctional, due to autoimmune destruction (T1D) or the persistent exposure to 

metabolic stress and exhaustion due to insulin hypersecretion as peripheral organs are 

increasingly insulin resistant (T2D). There is no consensus yet on whether insulin resistance 

or hyper-responsiveness of β-cells to environmental factors and subsequent insulin 

hypersecretion is the primary driver in T2D pathogenesis27, and many of the underlying 

molecular pathomechanisms remain elusive. Still, it is clear that progressive β-cell loss and 

dysfunction impairs controlled insulin secretion and leads to overt diabetes. Thus, regardless 

of the primary defect, it is key for any regenerative therapy to stabilize functional β-cell mass21. 

Today, islet transplantation is the only established regenerative therapy for β-cells. It is used 

for a small subset of T1D patients and can normalize glucose levels but is currently not an 

option for most patients. Suitable donors are scarce and there are potential adverse effects of 

the life-long immunosuppression, which is required to prevent rejection and recurrent 

autoimmune destruction28,29. Xenotransplantation, for example of porcine islets, is a promising 

alternative to overcome donor shortage, but its clinical relevance is still limited. It is only 

efficacious when a large amount of islets are transplanted, immune reactions persist and 

outcomes of trials in non-human primates were inconsistent30–33. 

Two alternative strategies to restore functional islets have gained attraction: i) cell-

replacement therapy with in vitro stem cell-derived islet cells and ii) pharmacotherapy to 

protect and or regenerate β-cells in situ (Figure 2).  

Recent progress showed that physiologically relevant β-cells and islet-like clusters can be 

generated in vitro from human embryonic stem cells and induced pluripotent stem cells derived 

from patients34–40. The in vitro generated β-cells secrete insulin in response to glucose similar 

to primary β-cells and restore normoglycemia in animal models of diabetes34,37,39–41. However, 

there are still barriers for stem-cell derived β-cells to become relevant in the clinic. The in vitro 

generated cells are heterogeneous and only a subset of cells is glucose-responsive38,39. 

Moreover, the cells still lack certain metabolic and transcriptional features of primary cells and 

do not functionally mature39,42. To differentiate cells more efficiently and improve their 

functional activity in vitro, the field would benefit from a better understanding of the factors and 

gene regulatory events that direct islet cells to differentiate and mature, and from biomarkers 

that label cells as they progress through different stages of development. 

Anti-diabetic drugs that protect or restore functional β-cell mass in situ could bypass some of 

the hurdles associated with exogenous cell sources5,43–45. β-cell death is a key characteristic 

of T1D and T2D and increasing evidence suggests that β-cell stress and failure precedes T1D 

and T2D onset45. Thus, protecting β-cells from the different etiological stress factors in T1D 

and T2D may naturally prevent or delay disease onset. Recent findings in animal models 
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showed that when β-cells were protected from cellular stress functional β-cell mass could be 

preserved45. For example, after selectively removing senescent β-cells with senolytic drugs in 

a mouse model of T1D, more β-cells survived and insulin secretion was preserved46. Besides 

lowering stress to prevent β-cell failure and death, functional β-cell mass could be regenerated 

from endogenous sources in patients. The main options to restore functional β-cell mass in 

vivo are to redifferentiate dysfunctional, dedifferentiated β-cells, to expand remaining β-cells 

by triggering self-replication, to induce neogenesis from putative progenitors and to 

transdifferentiate other cell types into insulin-producing cells5,44. Like for in vitro differentiation, 

success of such approaches is defined by whether and how efficiently functional β-cells can 

be regenerated or protected. Thus, they rely on our understanding of the molecular programs 

and regulators that shape β-cell identity, maintain its function and determine whether 

candidate cell sources can be reprogrammed. 

 

Figure 2. Potential approaches to protect or regenerate β-cells in situ through pharmacotherapies or 

cell replacement therapy. Figure was adopted from Tritschler et al5 and further extended. 

1.1.2. Restoring homeostasis in the endocrine intestine  

Besides loss of pancreatic endocrine function, pathological factors deregulate other parts of 

the endocrine system. In many T2D patients, relieving insulin resistance at time of diagnosis 

would result in a near-normal glucose control, since they still have sufficient β-cell mass. A 
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strong risk factor for T2D and insulin resistance is obesity, and weight loss can delay 

progression of T2D. Sustained weight reduction is however difficult to achieve through lifestyle 

changes alone47. Thus, targeting aspects of the endocrine system to control excess weight in 

addition to lowering glucose is an attractive option, especially early in disease and in obese 

patients. 

Multiple interventions that affect the endocrine response of the intestine have been established 

in the clinic to do so26. The intestine is the body’s primary site of nutrient absorption and 

digestion and releases hormones that among other things can promote satiety, digestion and 

the endocrine response of the pancreas48,49. Impaired intestinal hormone secretion contributes 

to systemic energy and glucose imbalance, changes eating behaviors and predisposes 

patients to developing obesity50. Intestinal hormones are secreted by enteroendocrine cells 

that together with absorptive enterocytes and other specialized cells line the intestinal 

epithelium. When diet or nutrition change the intestinal epithelium rapidly responds to adapt 

its hormone signaling and more efficiently absorb and digest available nutrients48,49,51–53. This 

rapid response is possible because cells are constantly renewed from a pool of multipotent 

stem cells and because differentiated cells remain plastic. However, constant overnutrition 

can lead to a maladaptive response and chronically changes gut morphology, function and 

hormone release53,54. This is associated with two hallmarks of obesity and diabetes: food 

intake is excessive and incretins, gut hormones that stimulate insulin secretion upon a meal, 

are reduced55. Current treatment options try to intervene with both aspects. 

Bariatric surgery is a potent and sustainable treatment of T2D and rapidly attenuates 

hyperglycemia and reduces weight20. Surgery leads to intestinal remodeling and changes in 

intestinal hormone and incretin secretion, which impact glucose homeostasis, β-cell function, 

appetite and food intake56. Despite its benefits, it is not economically feasible to apply bariatric 

surgery to manage the T2D epidemic. Therefore, minimally invasive treatments that try to 

mimic the effects of bariatric surgery have been developed16,24. Pharmacological approaches, 

which supplement production of incretins, have quickly become new blockbuster drugs for 

T2D and obesity as they are particularly effective in reducing hyperglycemia and weight15,17,57. 

However, they currently still recapitulate only one arm of the multi-dimensional response to 

surgery and thus are less efficacious25. In addition, it is unclear whether their effect on weight 

reduction, β-cell function, and diabetes remission are sustained long-term or when treatment 

is discontinued18. Thus, it will likely be more efficacious and potentially disease modifying 

when normal food intake and hormone regulation is regained through restoring a balanced 

composition and normal function of enteroendocrine and other intestinal cell types. Especially 

if the intervention is early and sufficient β-cell mass remains, this could prevent or delay the 

onset and progression of diabetes in obese patients. Given the high cell turnover and adaptive 

capacity of the gut it seems feasible to reverse maladaptation and enteroendocrine 
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dysregulation by directly targeting epithelial cells. To successfully develop such an approach, 

we still need a better understanding of the molecular and cellular features regulating intestinal 

lineage allocation, cell specification and plasticity in different dietary conditions and healthy, 

obese or T2D patients. 

1.2. Modeling the endocrine system at single-cell resolution  
While conceptually different, all regenerative strategies to restore β-cells or the 

enteroendocrine response require that sufficient truly functional endocrine cells are 

(re)established as a clinical endpoint to be efficacious. This depends on the ability to efficiently 

differentiate cells towards mature cells and induce and maintain their function. 

1.2.1. Endocrine heterogeneity and plasticity 

In both the pancreas and intestine multiple endocrine cell types exist, which together 

contribute to hormonal regulation. All endocrine cell types differentiate from a common 

progenitor, and a combination of different regulators specify their cell fate and maintain their 

identity. Even when fully differentiated, endocrine cells remain functionally heterogeneous and 

plastic. In the pancreas, islet cells differ even in homeostasis in their maturity, responsiveness 

to nutrient cues, proliferative capacity, hormone secretion, stress state and other 

phenotypes58–60. Similarly, mature enteroendocrine cells have been described to be spatially 

compartmentalized, remain plastic and or even polyhormonal61–64. Emerging evidence 

suggests that this heterogeneity allows to further fine-tune the response to physiological 

changes. Hence, to be able to efficiently differentiate endocrine cells and or restore their 

function it is key to expand our understanding of the inherent biology and heterogeneity of 

endocrine cell systems: how endocrine cells and their cellular ecosystem acquire their identity; 

how their composition changes under different physiological conditions; how they maintain 

function and how they respond to pathological factors; and to identify cellular sources with 

regenerative potential. 

1.2.2. Elucidating cellular composition, identity and states in tissues 

The importance of studying individual cells, their trajectories and molecular programs, as well 

as their interactions in tissues has been appreciated for many decades but limited by technical 

challenges. Traditional methods to study the diverse cell states and their composition in 

tissues use imaging or fluorescence-activated cell sorting (FACS). Although they can resolve 

single cells, they depend on a limited number of known biomarkers to classify different cell 

states. These classification schemes often cannot resolve the continuous states of 

transitioning cells, are difficult to apply globally, and importantly do not capture novel, non-
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intuitive cell states. In recent years, single-cell genomics has become an indispensable tool to 

study heterogeneous, multicellular tissues like endocrine pancreas or intestine. 

By now, often designated as a new area in cell biology, it has started with a bold vision. An 

international consortium outlined the goal to map every cell type in the human body to create 

a 3-dimensional Human Cell Atlas (HCA) - an atlas that will lead to a richer understanding of 

one of the fundamental units of living organisms: the cell - and with that accelerate both basic 

and clinical research65. Major technological breakthroughs have enabled it to probe cells and 

multicellular ecosystems at scale and with high resolution8,65. Single-cell omics technologies 

precisely measure genomic, epigenomic, transcriptomic or proteomic profiles of individual 

cells, and thus provide rich molecular cell-by-cell descriptions of developing, homeostatic, 

diseased or perturbed systems. While initially costly, still limited in throughput and depth and 

prone to introduce technical biases, the different technologies have now scaled to the point 

that it is possible to generate reproducible datasets of ten thousands to millions of cells at a 

cost affordable for most research labs. With such single-cell datasets it has now become 

possible to study multicellular tissues at an entirely new resolution, opening the door to 

addressing novel biological questions66–68. 

Firstly, single-cell resolution provides us an unbiased but comprehensive view of cellular 

systems. Cellular populations can be unbiasedly extracted and annotated from the high-

dimensional data. We can identify cell types and states by clustering similar cells, which does 

not rely on prior definitions, hypotheses or biomarkers and can reveal rare or novel populations 

that are masked in bulk measurements. Moreover, continuous processes - such as temporal 

axes (e.g., differentiation) or spatial axes (e.g., tissue zonation) - as well as gene expression 

dynamics can be accurately reconstructed when asynchronously progressing cells are 

sampled together.  

Secondly, omics data provides a holistic view of a cell’s molecular programs and is less biased 

towards prior hypotheses. The rich molecular profiles can be contextualized with prior 

knowledge or orthogonal data to decode the cell types or states in which disease genes act, 

to derive insights in cell function and disease mechanisms, and to discover novel therapeutic 

targets and biomarkers. Further, omics profiling allows us to link individual genes to context-

specific gene sets and programs in which they participate. Thus, translation between patients, 

species, models or even related diseases can be assessed at the level of gene programs, and 

thus shared function and mechanisms identified even when underlying causal genes differ. 

Moreover, this enables us to explore the many genes or proteins that still lack comprehensive 

functional annotation and thereby overcome the pitfall of being restricted to the space of what 

has been extensively reported already69,70. 

Lastly, single-cell data captures changes in both cell-intrinsic expression and cellular 

composition. It allows us to decipher which cell types or states respond to external cues and 
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how composition of a multicellular environment contributes to the response or these cues 

themselves, which are often confounded in bulk analyses. This can expand our understanding 

of how multicellular systems evolve, of the role individual cells and factors play in tissue-wide 

pathogenesis and enable us to predict treatment efficacy and resistance. 

Since the start of the HCA initiative more than 50 million cells of 16 organs and tissues have 

been sequenced 71. These single-cell maps and atlases of the HCA and many other studies 

have started to transform our understanding of biology and human disease66,67.  

1.2.3. Computational methods empower single-cell genomics  

With the increased complexity and volume of single-cell data, the ability to transform the 

wealth of information into biological insights ultimately depends on the quality of the 

computational and statistical analysis. Therefore, together with the technological and data 

boom, there was an equally impressive burst of novel computational methods to analyze 

single-cell data8,72,73. The new modes of data analysis build on methods at the intersection of 

data mining, machine learning and statistics to extract and discover patterns in the high-

dimensional data. As volume and accuracy of the data grew, computational developments 

enabled researchers to extract increasingly complex aspects of fundamental biology, from 

modeling cellular dynamics74,75 and gene regulation76, to predictions of cell fates77 and 

perturbational responses78 or inference of cell-cell communication networks79. At the same 

time, the rapid growth has not only forced a continuous reevaluation of the underlying 

statistical assumptions, but also an adaptation of methods to handle the increasing data 

volume and enable scalable analysis and integration of data from various sources8,80. Multiple 

deep learning approaches have been introduced, which integrate datasets using dimension-

reduced latent spaces to build atlases not only across studies but even across data 

modalities81–83. With such atlases more comprehensive, robust and harmonized estimates of 

cellular states can be made and they bring us one step closer to modeling population-wide 

variability. To help navigate the sheer amount of analysis options today, many efforts have 

been made to benchmark methods84–88, establish best practices68,89–91 and build scalable 

toolkits for analysis92–94. Ultimately, computation empowers the application of single-cell 

genomics and as methods advance paves the way for discoveries and exploring other aspects 

of biology.  

1.2.4. Characterizing cell populations of the endocrine pancreas 

A series of studies have created mostly transcriptomic, single-cell resolved maps of healthy 

and diabetic islets from human donors95–105 and mice46,106,107. Cellular maps of the developing 

embryonic pancreas have provided insights into the series of events that define endocrine cell 
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fate decisions and identity108,109. Similarly, a set of single-cell studies describe the 

transcriptional programs pancreatic islet cells acquire during postnatal maturation and have 

detected novel genes that mark stages of β-cell maturation in mice110,111. Healthy maps of 

adult islet cells have been used to systematically assess islet cell composition, characterize 

the transcriptional programs of islet cell types including rare cell types, derive novel cell type 

markers, and dissect cellular heterogeneity95–97,102,103. Further, by characterizing cells of 

diabetic islets, aberrant gene expression could be linked to islet cell types and suggested novel 

genes and processes associated with pathological dysfunction, dedifferentiation or enhanced 

survival101,102,104. Moreover, multiple studies reported that β-cell subtype composition is shifted 

with disease97,104,112,113. A mouse islet atlas built from multiple datasets described differences 

in β-cell states and markers across disease models and life stages114. The atlas also indicates 

the extent of β-cell plasticity and response range to different stress factors. Finally, single-cell 

transcriptomics has been proved valuable to assess in vitro β-cell differentiation protocols. It 

was leveraged to evaluate differentiation efficiency as well as benchmark maturation and 

function against primary islets38,39. The findings of these studies have indicated the potential 

of single-cell transcriptomics to advance our understanding of islet cell differentiation and 

elucidate tissue-wide cellular heterogeneity and function5. However, the impact of early 

studies is still limited because of high donor-donor variation, low cell numbers or sequencing 

depth, and technical biases introduced by isolation and sequencing technologies as well as 

lack of cross-study harmonization. This not only reduced the ability to derive consistent 

insights across studies but also to resolve heterogeneity within cell types or infer cell state 

transitions. In addition, most studies depend on cell maps of a single data point, and they lack 

or have limited complementary biochemical or functional data. Therefore, the identified 

molecular β-cell states, their origin and their biological and functional significance remain yet 

to be validated.  

1.2.5. Charting the endocrine system of the intestinal epithelium 

Like for pancreatic islets, single-cell transcriptomic studies have provided nuanced 

descriptions of the cell types that line the intestinal epithelium in physiological and pathological 

conditions7,61,64,115–120. Cellular maps of healthy intestinal epithelia revealed considerable 

cellular heterogeneity and plasticity of enteroendocrine and other cell types even in 

homeostasis61,62,121–123. Composition and gene expression vary along different spatial axes 

highlighting how intestinal function is compartmentalized61,64,117,124. Enteroendocrine cells 

express one or multiple hormones, which suggests that more subtypes than captured in 

traditional lineage nomenclatures exist61,62,121–123. Multiple studies combined single-cell 

transcriptomics with a lineage reporter model to reconstruct the enteroendocrine lineage 
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hierarchy and describe changes in gene expression when progenitor cells differentiate and 

become specified as hormone-secreting cells7,62. Lastly, single-cell data indicated that even 

mature enteroendocrine cells are surprisingly plastic and can switch hormone expression 

within specified sublineages61,62. Although focused on homeostasis, these studies show the 

power of single-cell transcriptomics to describe the composition, lineage hierarchy, and 

plasticity of the enteroendocrine system indicating it will be equally powerful to elucidate 

mechanisms underlying intestinal maladaptation and enteroendocrine dysregulation.  

1.2.6. Animal models to study endocrine systems 

Despite rapid technological advances, increase in data volume and unprecedented insights 

into cells and tissues, the progression of promising preclinical findings to therapeutic success 

remains a bottleneck. Today, animal models and in vitro systems are commonly used for basic 

and preclinical research. It is clear that there is not a single ideal surrogate to model systemic 

diseases and complex cellular populations such as diabetes and endocrine cells 125. 

Therefore, to guide selection, correctly interpret findings, identify and validate targets, or 

screen drugs, it is important to understand which aspects of human endocrine heterogeneity 

and biology are conserved in such surrogate systems.  

Diabetes and endocrine cells are mostly studied in rodents. However, since endocrine 

development, whole-body anatomy and physiology differs between humans and rodents, it is 

variable how well rodent animal models can predict human physiology and positive clinical 

outcomes 126. Pigs are an alternative to rodents with higher translational potential127. Pigs are 

a large-animal model, which more closely resemble human physiology, anatomy and 

disease128,129. Moreover, pigs have proven to be a promising source for pancreatic islet 

xenotransplantation, and ethical concerns are smaller for animal studies in pigs than for non-

human primates130,131. Still, it is unclear whether the translational value of pigs is higher than 

for rodents for modeling the diverse human endocrine cell states, and their composition132. So 

far, no systematic computational framework or datasets have been established that enable us 

to evaluate transcriptional endocrine heterogeneity in rodents and pigs, and assess how 

relevant findings in these models are for human endocrine biology. 

1.3. Goals of this thesis 
Diabetes mellitus is a complex and heterogeneous, chronic metabolic disease with high unmet 

need. Diabetes is characterized by abnormally high glucose levels. Blood glucose is regulated 

by a multifaceted system that includes insulin and other hormones, which are secreted by 

endocrine cells of the pancreas and intestine. In diabetes, aspects of this hormone regulation 

are impaired, which ultimately leads to progressive loss of insulin-producing β-cells and 



 11 

insufficient insulin secretion and action. Regenerative approaches that restore an endogenous 

fine-tuned endocrine control and function are attractive options to complement current 

pharmacological treatments. They are disease-modifying and thus have the potential for 

sustained diabetes remission or reversal. Such strategies include i) restoring or preserving 

functional insulin-producing β-cell mass through cell-replacement therapy of in vitro 

differentiated cells or pharmacotherapy to protect and or regenerate β-cell cells in situ, and ii) 

pharmacotherapy to regain a balanced intestinal hormone regulation through intestinal 

remodeling in obese patients. The development of any such approach requires restoring 

enough truly functional endocrine cells. Thus, it relies on an improved understanding of how 

differentiating cells acquire endocrine cell identity and what determines normal function and 

dysfunction in disease (Figure 3). In addition, as most pre-clinical research still relies on 

animal models, it depends on whether findings in animal models can be translated to humans. 

Since endocrine cell populations are heterogeneous and plastic, creating such understanding 

requires characterizing both the composition and molecular programs of individual cells in the 

tissue. Recent years have shown the transformative potential of single-cell transcriptomics 

and computational methods to study such complex, plastic multicellular endocrine tissues. 

Single-cell data provides the necessary cellular and molecular resolution and throughput, 

emerging analytic methods can extract increasingly complex facets of cell biology. 

This cumulative thesis uses single-cell transcriptomics to characterize specific aspects of the 

inherent biology of endocrine cells in health and disease, with the goal of revealing cellular 

and molecular mechanisms that could ultimately be induced for regenerative treatments. 

I first review the literature to address the following research questions: 

1) How can single-cell genomics advance our understanding of the cellular heterogeneity 

and plasticity in the pancreas to develop regenerative therapies?  

2) How can computational methods be used to learn cellular trajectories in development 

or disease from single-cell genomic data? 

Then I analyze single-cell transcriptomic data to address the following research questions: 

3) What are the cellular and molecular features of normal endocrine function in human 
pancreatic islets, and can they be modeled by two clinically relevant species?  

4) What are the gene programs that shape β-cell identity during pancreatic development 

in mice? 

5) Can single-cell transcriptomics combined with pharmacotherapy elucidate features of 

β-cell dysfunction and regeneration upon long-term hyperglycemia in mice? 
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6) How does composition and function of the intestinal epithelium and enteroendocrine 

system change in obese mice and what are mechanisms to revert these changes? 

1.4. Summary of results 
The series of research articles I present provide novel insights into cellular and molecular 

mechanisms of endocrine identity, function and dysfunction in disease (Figure 3). 

In two review articles I summarize and discuss the literature and current understanding of the 

impact of single-cell transcriptomic data to i) elucidate the heterogeneity and plasticity of the 

pancreas5, and ii) computationally learn cellular trajectories in development or disease6.  

I then analyzed single-cell transcriptomic data zooming into aspects of the developing, healthy 

and diseased endocrine and intestinal pancreas. To validate biological and functional 

significance of the findings and add mechanistic insights, this was complemented by my 

collaborators with lineage tracing, other omics, biochemical and functional data. 

First, I created a comprehensive reference map of healthy human, mouse, and, for the first 

time, pig pancreatic islet cells to identify evolutionary conserved and distinct molecular 

features of islet cell biology1. The map confirmed that human alpha- and β-cells are 

transcriptionally heterogenous, and captured alpha- and β-cell states associated with mature, 

functional cells as well as distinct cellular stress responses. I established an analysis 

framework that facilitates cross-study and cross-species comparisons through prior 

knowledge- and data-driven gene sets instead of individual genes. I validated the identified 

human cell states in 9 publicly available studies. Cross-species analysis indicated that pig and 

mouse cells mirror a subset of the human states, and it revealed aspects of gene expression 

that are conserved or diverge within these states. A subset of functional and regulatory human 

features was better reflected in pigs than mice, which demonstrates the potential of pigs as a 

model for studying human islet cell biology. Together, this is a valuable framework and 

resource for the field that established a healthy baseline to study disease and will facilitate 

modeling endocrine cell heterogeneity and function across species.  

Next, I reconstructed a lineage model and the differentiation trajectories from endocrine 

lineage cells, which were isolated from developing embryos at multiple time points2. This 

revealed that transient endocrine precursors are heterogeneous and express a molecular 

signature that is stage-dependent and defines endocrine cell allocation. These novel 

signatures are a blueprint of how cells become stepwise lineage restricted and acquire their 

identity during endocrinogenesis. Hence, the model provides a guide on how to direct 

differentiation towards a specific endocrine cell fate and label differentiation stages, which is 

important to improve protocols to differentiate β-cells in vitro for cell replacement, and, 
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likewise, to re-differentiate dedifferentiated β-cells or reprogram non β-cells to β-cells to 

regenerate functional β-cell mass in vivo.  

Further, I created a transcriptional map of pancreatic islet cells from healthy, diabetic and 

treated mice to characterize how β-cells respond to a long-term hyperglycemic environment 

and pharmacological treatment3. It revealed that in diabetic mice a subset of β-cells survived, 

but dedifferentiated to a dysfunctional, immature-like β-cell state, and that they responded to 

pharmacological treatment that restored β-cell function. Trajectory inference suggested that 

β-cells de- and redifferentiate upon treatment and uncovered molecular processes governing 

these cellular transitions and treatment effects. Overall, the study positions β-cell re-

differentiation as a viable new treatment option to halt or revert diabetes. It also substantiates 

that single-cell data combined with perturbations is a powerful approach to uncover molecular 

mechanisms as well as pharmacological entry points. 

Finally, I used single-cell transcriptomic data to chart the landscape of small intestinal crypt 

cells, their lineage relationships and how these adapt to an obesogenic diet4. We found that 

an obesogenic diet changed cellular composition, which altered enteroendocrine hormone 

secretion, shifted nutrient absorption and led to morphological changes of the gut epithelium 

including prolonged villi and enlargement of specific regional zones. The molecular profiles 

suggested that this dysfunction emerges already at the level of stem cells and early 

progenitors. The study identified factors that may contribute to intestinal maladaptation and 

enteroendocrine dysfunction in obese mice and therefore are potential therapeutic entry points 

to prevent progression to diabetes. 

Summaries of the presented articles and my contributions can be found in chapter 3. 

Figure 3. Overview of research questions and contributions of this cumulative doctoral thesis. The 

figure was generated using images from1–4.  
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2. Methods 
Single-cell transcriptomics has revolutionized the way we explore multicellular systems. With 

the rapidly growing volume and complexity of single-cell transcriptomic data, the number of 

computational methods to analyze such data has grown equally fast. Since the ability to extract 

meaningful biological insights ultimately depends on the quality of computational analysis, 

analysis workflows are tailored to research questions, technology and experimental design. 

While many routes of analysis exist, methods can be broadly bucketed to address three tasks: 

data processing and visualization, identifying cellular structures and revealing gene or tissue-

level mechanisms90 (Figure 4). Benchmarking efforts84–88, best practices89,90 and scalable 

analysis tool-kits92–94 aim at introducing some standards in the field and help researchers 

navigate the large number of analysis options. 
 

 
Figure 4. Overview of processing and analysis steps of single-cell transcriptomic data. The figure 

was adopted from Heumos et al.90 and extended to reflect the workflow used in this thesis. 

Reproduced with permission from Springer Nature (License Number 5774150778617). 
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In this chapter, I summarize the single-cell RNA sequencing (scRNA-seq) technology and the 

computational concepts and methods used in this thesis. First, I describe the technology that 

was used to generate scRNA-seq data (section 2.1). Next, I summarize how raw sequencing 

data was processed and quality controlled (QCed) (section 2.2). Finally, I describe the main 

methods and underlying concepts I used to analyze, explore and interpret data to identify 

cellular structure (section 2.3) and to elucidate underlying mechanisms (section 2.4). As the 

field rapidly develops, new methods outperform older approaches or address new questions. 

While the overall analysis likely remains valid, tool recommendations, applications and best 

practices can change. I focus this overview on methods used in the articles of this thesis and 

available at time of publication and only briefly highlight development since then. For all steps, 

I followed best practices and used methods as recommended by the single-cell field89,90. 

Today, most tools are easily accessible through rich analysis platforms92–94. Unless stated 

otherwise, I used the Scanpy python toolkit for analysis92,133. For details on QC decisions 

specific to each dataset, marker genes for cell annotation and other parameter choices I refer 

to each manuscript1–4. To derive biological conclusions, we interpreted and contextualized all 

analysis results with other omics, biochemical and functional data that was generated by my 

collaborators as outlined in each manuscript. 

2.1. Single-cell RNA sequencing technology 
ScRNA-seq technologies measure messenger ribonucleic acids (mRNAs) of individual cells 

to generate gene expression profiles of every cell in a sample. The workflow of scRNA-seq 

involves five steps: i) isolating and capturing individual cells, ii) lysing cells to extract their RNA 

content, iii) reverse transcription to convert RNA into complementary DNA (cDNA), iv) 

amplification of the cDNA to generate a sequencing library, and v) sequencing in a next-

generation sequencing platform (Figure 5). 

Various methods have been developed and continue to evolve and optimize different steps in 

the workflow to suit different research needs. The most commonly used scRNA-seq 

technologies mainly differ in their approach of cell isolation and capture, barcoding strategies, 

and library preparation, which affect throughput, sensitivity, transcript coverage, scalability or 

cost of a method134. Here we used the 10x Chromium system135, which uses advanced 

microfluidics to facilitate parallel processing and efficient profiling of hundreds to thousands of 

cells, and thus enables scalable and cost-effective profiling of large cell populations generate 

a sequencing library, and v) sequencing in a next-generation sequencing platform (Figure 5). 

The 10x protocol version used selectively captures and sequences the poly-adenylated 3’ end 

of the transcripts135 (Chromium Next GEM Single Cell 3' Reagent Kits v3.1, Document Number 
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CG000204 Rev D, 10x Genomics, (2022, July 13)). This 3’ enrichment is more cost-effective 

and increases gene coverage per cell compared to full-length methods as sequencing is 

focused on a small part of the transcript and therefore overall sequencing depth is reduced. 

Moreover, the 10x system tags each RNA molecule with a unique molecular barcode (UMI) to 

reduce biases introduced when cDNA is amplified and quantify gene expression more 

accurately. 

 

Figure 5. The 10x Chromium system uses microfluidics to encapsulate individual cells and uniquely 

barcoded gel beads into droplets. Within the droplets, cells are lysed to extract their RNA content. Then 

the gel beads prime reverse transcription to convert RNA into molecule- and cell-specific barcoded 
cDNA. Finally, cDNA is amplified, and the library prepared for downstream sequencing with a next-

generation sequencing platform. The figure was generated using images from the 10x Genomics user 

guide (Chromium Next GEM Single Cell 3' Reagent Kits v3.1, Document Number CG000204 Rev D, 

10x Genomics, (2022, July 13)). 

2.2. Preprocessing of single-cell RNA sequencing data 
Preprocessing represents the start of an analysis workflow and filters and transforms raw data 

in an attempt to remove unwanted sources of variation and improve signal-to-noise ratio. 

Systematic and random noise inherent to scRNA-seq data, technical artefacts or biological 

confounders such as cell cycle can bias analyses and distort biological findings. To remove 

such unwanted effects, it is important to apply appropriate analytical and statistical methods 

that account for underlying structure and complexity of the data. Preprocessing steps usually 

involve read alignment, quality control, data normalization and correction as well as feature 

selection and dimensionality reduction (Figure 4). 
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2.2.1. Read alignment, count matrix generation and quality control 

Processing and QC steps are required to generate a cell-by-gene matrix of gene expression 

from the raw output of the sequencing protocol. I preprocessed raw sequencing data of each 

sample using the CellRanger v.2.0.0 analysis pipeline provided by 10x Genomics135. The 

pipeline performs barcode demultiplexing to assign each read to a sample, droplet & UMI, 

aligns reads to the corresponding reference genome, QCs and filters reads, and quantifies 

UMIs to create a matrix or raw mRNA counts per droplet-barcode. For the 10x protocol a 

droplet-barcode can tag a single cell, a doublet (multiple cells in one droplet) or an empty 

droplet. The pipeline calls non-empty droplet-barcodes based on the overall distribution of total 

UMI counts per barcode. Doublets were identified in a downstream step (section 2.3.3). 

Subsequent QC of the raw count matrix further guaranteed sufficient data quality for 

downstream analysis (Figure 4). For each sample, QC steps included (1) to remove sparsely 

expressed genes and (2) exclude low quality or outlier cells with high fraction of mitochondria-

encoded counts (>20%) or total UMI or gene count at the tails of their distribution. For every 

step, I defined QC thresholds through visual inspection of distributions. I set permissive QC 

thresholds to avoid excluding viable cell populations and revisited the thresholds if affecting 

downstream analysis performance poorly89.  

2.2.2. Normalization and batch correction 

After QC, data is normalized to account for the variability in count depth (total number of 

counts), which is present due to inherent sampling effects in mRNA capture, reverse 

transcription and sequencing (Figure 4). Multiple approaches to normalize scRNA-seq data 

have been developed over recent years, and their performance varies between datasets136,137. 

Linear, global scaling methods scale count data cell-wise to calculate relative count 

abundances in a cell and allow for better comparison between cells with different count depth. 

I used the following linear methods to calculate size factors for scaling. 

1) Total counts of a cell.  

2) Total count normalization after excluding genes contributing to more than 5% of the 

total counts in a cell as suggested138. This extension accounts for variability in total 

counts introduced by few highly expressed genes (e.g., hormone-encoding genes). 

3) SCRAN algorithm139, which estimates cell-wise size factors from pools of cells to 

account for heterogeneity in cell size and reduce the effect of technical drop-out.   

Normalized data is then log-transformed: !"#(%"&'( + 1). Log-transformation aims at 

representing differences in gene expression as log-fold changes, and at reducing both the 

observed dependence of the variance on the mean and data skewness to better approximate 
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normally distributed data. Although scRNA-seq data is not log-normally distributed, log 

transformation is useful for these purposes. Lastly, to further reduce unwanted technical 

variability between batches I performed linear data correction using the ComBat algorithm140. 

I only performed batch correction if warranted necessary after visual inspection of how well 

batches are distributed between clusters and how well they overlap in low-dimensional 

representation of the data. For all normalization and correction steps I fixed zero values to 

avoid spurious sample-to-sample differences around zero. I then used the QCed, normalized 

and corrected count matrices as input to analyses unless indicated. 

2.2.3. Feature selection, dimensionality reduction and visualization 

Single-cell data is high dimensional, complex, noisy and sparse, which poses a challenge to 

analyze, visualize and interpret the data, and computational efficiency. Two key steps 

implemented to overcome this are feature selection and dimensionality reduction (Figure 4). 
They aim at finding a lower-dimensional representation of the data, which retains the most 

informative features and preserves relevant structure, while it filters noise and reduces 

complexity and size of the data. This assumes that not all genes are needed to sufficiently 

describe informative and relevant biological variation, i.e., cellular expression profiles and 

heterogeneity. As the first step, the gene feature space is normally reduced to top 2000-4000 

highly variable genes (HVGs). HVGs are the genes that contribute most to the observed 

variation in the data and were here defined as the genes with the highest variance-to-mean 

ratio after binning all genes by mean expression94. The number of HVGs selected depended 

on the task and complexity of the input data. Alternatively, in specific cases I defined the gene 

feature space based on prior knowledge to focus the analysis on specific biological processes 

of interest and facilitate integration across datasets. Next, dimensionality is further reduced 

through summarizing the data in a lower-dimensional space, in which features represent a 

linear or non-linear combination of selected genes. For single-cell data often multiple 

dimensionality reduction techniques are applied, e.g., linear data transformation methods such 

as principal component analysis (PCA) precede non-linear transformations. The 

dimensionality reduction techniques used in this thesis included: 

I. PCA, a linear dimensionality reduction method that transforms the data to a low-

dimensional space by maximizing the variance explained by each feature (principal 

component). PCA is a pre-processing step to many non-linear dimensionality 

reductions and downstream analysis steps. 

II. Diffusion maps, a non-linear dimensionality reduction method that aims at preserving 

local similarities and diffusion processes, and thus is useful to capture continuous 

patterns such as cellular differentiation and transitions141,142 (see also section 2.3.5).  
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III. Correlation based-gene sets143, which summarize the data through sets of highly 

correlated- and anti-correlated genes. They enable identifying context-specific gene 

sets to describe cellular states independent of curated markers or pathways.  

IV. UMAP algorithm144, which is a non-linear, graph-based method that aims at preserving 

local and global structures in the data. UMAP is used to compute a 2D embedding to 

visualize scRNA-seq data and was shown to better scale when compared to other 

visualization techniques. 

2.3. Analysis to identify cellular structure 
Once data is preprocessed, downstream analyses aim at extracting biological insights from 

the data. Here, I will consider these analyses from two viewpoints: cell-level approaches to 

identify different cellular populations (this section), and investigations to describe mechanisms 

of cell or tissue-wide phenotypes (section 2.4). Cell annotations explain cellular heterogeneity 

in the data, and many downstream analyses build on these descriptions of cellular structures 

in the high-dimensional data. Cell annotations can be obtained from either identifying discrete 

states (section 2.3.1-2.3.3), through integration and label transfer from a reference (section 

2.3.4) or by modeling continuous processes (section 2.3.5 and 2.3.6). 

2.3.1. Cell clustering 

Clustering is usually the first step in downstream analyses to determine the identity of a cell 

and the cellular composition of a sample (Figure 4). Clustering methods group cells with a 

similar gene expression profile, typically represented by the low-dimensional embedding. I 

employed an unbiased graph-based approach for clustering, which aims to detect cellular 

communities in a graph-representation of the data145 and has been shown to perform best for 

analyzing single-cell data88,89. First, a cell-cell graph is built using a k-nearest neighbor (kNN) 

approach, which connects each cell to its k most similar cells144. The similarity between cells 

is determined by the Euclidean distance in the low dimensional PC space. Next, the 

community detection algorithm identifies regions in the graph, in which cells are more densely 

connected than expected. For community (cluster) detection in the kNN-graph I used the 

Louvain algorithm145 as implemented in the louvain-igraph package146. To account for regions 

with differences in cell densities and or biological variability beyond cell type identity (e.g., cell 

cycle), clustering resolution can be adapted. I iteratively explored different cluster resolutions 

in different parts of the graph to control the number of clusters, and merged clusters that 

expressed the same genes of interest.  
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2.3.2. Cell annotation approaches 

Cell annotation approaches assign each cluster or cell a biologically meaningful label. They 

can broadly be grouped into manual and automated approaches. Manual approaches 

leverage the gene expression profile of a cluster and contextualize it with prior knowledge.  To 

do so, the profile of one cluster is compared to the profiles of other clusters in a dataset. Here, 

I derived cluster profiles through a differential expression test between the cells in one cluster 

versus the cells of all other cells (t-test with overestimated variance or the Wilcoxon rank sum 

test). I then annotated each cluster based on enriched literature-curated marker genes, which 

are known to be expressed by the diverse cell types within a tissue. To increase the confidence 

in these annotations I confirmed that not only individual markers, but also expected biological 

processes are enriched in the cluster profiles (section 2.4.2).  

In addition to a gene-level characterization, cells and clusters can also be annotated based on 

the activation of a gene set derived from prior knowledge (e.g., a pathway) or the data (e.g., 

correlated genes). Using gene sets for annotation is less prone to noise and or drop out in the 

data, which is important especially when comparing different conditions or datasets. Gene set 

activations are determined per cell, and thus can also be used to annotate cells independently 

of clustering. Here, I computed gene set activation in a cell as the mean expression of the 

genes in the gene set subtracted with the mean expression of a gene set of the same size 

randomly sampled from a background of genes with similar expression values94. I used prior 

knowledge or literature-derived annotation for cell cycle classification147, functional annotation 

with hallmark gene sets148, and inference of spatial location using zonated or regional markers 

of the intestinal epithelium124. Examples of data-driven, context-specific genes sets included 

inferred cell type markers, differentially expressed genes, and correlation based-gene sets 

(section 2.2.3), which facilitated the annotation of cell states across datasets and systems. 

Automated approaches for cell annotation include pre-trained cell type classifiers 149 or 

reference mapping (section 2.3.4). The quality of these automated annotations depends on 

the quality and suitability of the training data as well as the model used. 

2.3.3. Identification of doublet clusters 

Doublets arise from droplets containing more than one cell. If a doublet is formed by two 

different cell types, this can lead to wrong annotations and conclusions. Doublets can be 

identified as cells simultaneously expressing profiles of two cell types or clusters, and thus can 

be simulated artificially by randomly sampling pairs of cells in a dataset. Multiple algorithms 

have been developed for doublet detection, which compare such simulated doublets to 

measured cells150. However, it can be a challenge to distinguish doublets from transitioning or 

“in between phenotype” cells such as polyhormonal cells and detection accuracy can vary 
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between datasets151,152. To increase accuracy, I therefore combined a doublet detection 

method with the following criteria to identify and exclude doublet clusters. 

1) High doublet scores as inferred by the doublet detection algorithm Scrublet153. 

2) No uniquely expressed genes are detected in a doublet cluster. 

3) Doublets express marker genes at similar levels as doublet “contributor” cells.  

4) Doublets are not previously reported or experimentally validated polyhormonal cell. 

5) Observed fraction of a doublet cluster matched expected fractions of singlet clusters. 

2.3.4. Reference mapping for cross-species comparison 

One of the main goals when comparing multiple systems, e.g., different species, is to identify 

shared and differential cell states and assess feature similarity within them. This requires 

defining a feature space and approach that allows to reliably match and compare cells 

between the systems. Gene-level comparisons can be affected by noise or sparsity of the 

single-cell data, and specifically for cross species data they can also be limited because 

reference genomes differ in quality, genes lack functional annotation or mapping of gene 

orthologs is poor. Dimensionality reduction to summarize the data (section 2.2.3) can help to 

address these challenges as features are defined by groups of genes and therefore feature 

activation is less sensitive to individual genes. In this thesis, the aim was to assess to which 

extent human cell states and their gene expression profiles are conserved in other species. 

This is conceptually similar to reference mapping approaches, which first build a low-

dimensional embedding for the reference (human), and then map queries (other species) to 

this or an updated joint space for cell annotation or other more advanced applications of 

mappings between reference and query83,154–156. Many reference mapping approaches are 

designed to build references from complex and heterogeneous tissues and use machine 

learning or deep models to do so, however the features of the latent space are not directly 

interpretable, and thus cannot also be used to characterize cells. Therefore, I used here a 

simpler, but interpretable approach for reference mapping. To represent human data, I used 

correlation-based gene sets143 as a context-specific and interpretable feature space that well 

described the human cell states (section 2.2.3). Then, pig and mouse cells were matched to 

the human reference states by first embedding the pig and mouse data in that feature space 

and then predicting most similar cell state labels (Figure 4). For mapping the embedding the 

Scanpy ingest-functionality92 was used, which includes a simple kNN-classifier for label 

transfer and projecting the query data to the reference. With this reference mapping approach 

each pig and mouse cell was assigned its closest human cell state label. This allowed to 
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quantify conservation of human biology considering both cellular composition and similarity of 

gene expression within cell states. 

2.3.5. Trajectory inference and gene dynamics in continuous data 

While clustering partitions the data into discrete groups of cells, trajectory inference (TI) aims 

at modeling continuous structures in the data (Figure 4). TI approaches can be used to model 

lineage relationships and developmental paths of cells; the temporal or spatial order of cells; 

as well as gene expression dynamics regulating these continuous processes. Since single-

cell data usually only provides a snapshot of such a continuous process this is a challenge 

and relies on computational inference. TI approaches use gene expression similarity to infer 

cluster or cell relationships and reconstruct cellular trajectories from the relative ordering of 

cells based on these similarity measures. Many TI methods exist and show variable 

performance for different tasks157. I used the following methods for TI: 

I. To infer lineage relationships between clusters I used partition-based graph 

abstraction (PAGA)158. PAGA summarizes the structure and relationships within the 

high-dimensional data by creating a coarse abstracted graph representation from the 

single-cell kNN graph, in which nodes represent clusters of cells and edge weights the 

connectivity between clusters. Clusters are determined through clustering or other cell 

annotations. The PAGA algorithm computes connectivity from the likelihood that the 

fraction of connections in the kNN graph between two groups exceeds the fraction of 

connections between randomly assigned groups. Through that PAGA identifies the 

connected and disconnected parts of the data and discards spurious connections in 

the noisy single-cell kNN graph. 

II. I used the diffusion pseudotime method159 to reconstruct hypothetical axes (cellular 

trajectories) in the data that represent continuous processes, e.g., a high-confidence 

path in the PAGA graph. Diffusion pseudotime uses the concept of diffusion to compute 

a cell-to-cell distance. It simulates a diffusion process through random walks in the 

single-cell kNN graph starting from a predefined source cell and assigns each cell a 

pseudotime value representing its relative position to the source.  By ordering the cells 

based on the pseudotime value a one-dimensional cellular trajectory from the source 

cell is then reconstructed. I visualized pseudotime and the gene expression dynamics 

along the inferred trajectories to identify branching events and gene expression 

dynamics. When multiple “orthogonal” continuous processes were present in the data 

(e.g., spatial and temporal trajectories), I focused pseudotime inference on processes 

of interest through prior feature selection.  
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2.3.6. Inference of cellular dynamics 

TI approaches provide only a static, undirected representation of cellular trajectories. To infer 

cellular dynamics, i.e., to predict the fate of cells and direction of cellular transitions, RNA 

velocity inference75 can be used. RNA velocity inference leverages the splicing status of 

transcripts in cells to estimate the speed and direction of gene expression changes. Velocity 

inference is based on the principle that the rate of transcription and splicing can be 

approximated through the ratio of unspliced to spliced transcripts in cells. In addition to 

providing insights into cellular dynamics, RNA velocity analysis also facilitates identification of 

genes that drive these cellular transitions. Putative driver genes of cell fate decisions can be 

identified through examining the velocity vectors of individual genes. Here, I used the scVelo 

method74 for velocity inference, which aims at solving full transcriptional dynamics to 

generalize the concept of RNA velocity. scVelo estimates RNA velocities by fitting a likelihood-

based dynamical model of transcription for each gene. To predict the velocity of potential cell 

movements in a manifold, the RNA velocity vector of individual cells is then projected into the 

low-dimensional UMAP embedding. First, a velocity graph is computed by assigning each 

edge in the single-cell kNN graph (possible transitions) a transition probability computed from 

the correlation of the possible and predicted transition given by the velocity vector of a cell. 

The projected directional movement or flow of cells in the UMAP is then the expected mean 

direction in the velocity graph. Building on these concepts, CellRank is a method that 

combines similarity-based TI with RNA velocity vector fields to detect start and end population 

in a trajectory, predict cell fate probabilities in multi-lineage trees, and visualize gene 

expression dynamics77. In addition, CellRank is built modular and supports other approaches 

to compute cellular transitions. For example, it leverages the concept of optimal transport (OT) 

to include experimental time and infer directionality160,161. OT can be leveraged to map a cell 

to its most likely progenies in adjacent time points. It does so by comparing and matching the 

probability distributions of cells at different time points to identify the most efficient way to 

“transport” cells from one time point to the next and through that predict transition probabilities. 

2.4. Analysis to reveal mechanisms 
Discrete or continuous cell annotations facilitate analyses to describe regulatory elements of 

cell or tissue-wide biological processes. Such analyses aim at deciphering mechanisms 

underlying cell decision-making and phenotypic changes and include detecting differences in 

gene expression and regulation and cell composition. 
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2.4.1. Differential expression analysis 

Differential expression (DE) analysis is used to reveal differences in gene expression between 

two experimental conditions such as healthy and disease tissue (Figure 4). DE analysis is 

usually performed within a cell type and separated from compositional analysis to understand 

how a cell type responds to different biological conditions. Here, the limma-trend method162,163 

was used for DE, which was originally developed for bulk RNA-seq data. Limma-trend and 

other bulk methods have been shown to perform well for single-cell data in a large-scale 

benchmarking84. To facilitate interpretation, differential gene profiles can be contextualized 

with prior knowledge (section 2.4.2).  

Notably, differences in background mRNA levels between samples can pose a problem in DE 

analysis as it leads to mistakenly called differential genes90. Background or ambient mRNA 

arises from mRNA of lysed cells that freely floats in the single-cell solution and is incorporated 

into every droplet during sample preparation. Here, I identified differential ambient genes as 

being ubiquitously expressed in all cell types or inferred them from the DE profiles of empty 

droplets. I excluded highly ambient genes before interpreting DE results.  

2.4.2. Prior knowledge contextualization through gene set enrichment 

To facilitate interpretation of a gene set or signature, e.g., differentially expressed genes, they 

can be contextualized with prior knowledge (Figure 4). For example, gene set enrichment 

analysis can be performed to assess whether specific gene sets from a background list of 

gene sets are overrepresented in the query signature. These background gene sets are 

derived from databases of literature curated gene sets that represent biological pathways, 

transcription factor targets, disease or drug perturbation responses or similar. For gene set 

enrichment I used the EnrichR framework164, which employs the hypergeometric test or the 

Fisher’s exact test (if a background list is provided) to assess whether an input list of genes is 

significantly overrepresented in the analyzed gene set. 

2.4.3. Population composition analysis 

Compositional data analysis is used to investigate shifts in cell type or state composition 

between two conditions (Figure 4). Two common challenges need to be accounted for when 

analyzing compositional shifts. Firstly, most single-cell datasets have a low number of 

replicates. Secondly, single-cell data is proportional in nature. Cell type counts are relative 

measures and not independent of each other because only a subset of the total cells in a 

sample is captured. This means that cell type abundances in a sample are fractions, which 

always sum up to one and therefore are negatively correlated. To account for this proportional 



 25 

nature of the data when comparing cell type compositions, I used a Dirichlet-Multinomial model 

as implemented by my collaborator B. Schubert. I only applied compositional analysis if cell 

numbers were sufficient to accurately determine the fraction of cells in a cluster, and sample 

numbers were at least 3 to ensure sufficient power to detect shifts despite expected variations 

in compositions due to sampling or other technical effects. scCODA is a tool that builds on a 

similar statistical approach and tackles compositional analysis and low replicate number with 

a Bayesian model165.  
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3. Summary of contributed articles 
This chapter summarizes my contributed articles in the context of the goals of this thesis.  

3.1. Research Articles 

3.1.1. A transcriptional cross species map of pancreatic islet cells 
 
Sophie Tritschler, Moritz Thomas, Anika Böttcher, Barbara Ludwig, Janine Schmid, Undine 
Schubert, Elisabeth Kemter, Eckhard Wolf, Heiko Lickert, Fabian J. Theis, A transcriptional 
cross species map of pancreatic islet cells, Molecular Metabolism, Volume 66, 101595 
(2022) 
(See also publication 1 in the bibliography and in Appendix A)  
 
Summary 
Disease can only be fully understood in the context of a healthy reference, and vice versa, 

therefore mapping the cellular landscape of healthy tissue is key to study diseased tissue. 

Similarly, it is important to understand conservation of the healthy baseline in a model system 

to assess its translational value for disease. Here, we leveraged scRNA-seq to aid in our 

understanding of healthy pancreatic islet cells in humans, and their conservation in two 

commonly used species models, pig and mouse. We generated a comprehensive healthy 

reference dataset of >50’000 cells isolated from human, pig and mouse islets and made it 

available as a queryable and Findable, Accessible, Interoperable, and Re-usable (FAIR) data 

resource166. Our cross-species map provides high cellular (number of cells per donor) and 

molecular (sequencing depth) resolution when compared to previous studies of human 

pancreatic islets, and for the first time, single-cell transcriptomic data of pig islets. We 

delineated human alpha- and β-cell heterogeneity and described cellular states that model 

mature, functional cells as well as distinct cellular stress responses. The cell states were 

consistently identified across multiple studies. Moreover, we systematically compared gene 

expression across species and mapped mouse and pig cells to the human reference map, 

which suggests that pigs can be a model of gene expression relevant for human islet cell 

biology. Together, this is a valuable and easily accessible resource that benefits future studies 

as a comprehensive reference and framework to investigate the transcriptional programs of 

mature, functional or stressed human islet cells, and their conservation in two clinically 

relevant animal models.  

 
My contribution 

I. I conceptualized the study together with Heiko Lickert and Fabian J. Theis.  
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II. All data was generated by co-authors. I contributed to the generation of the scRNA-

seq data (10x protocol). 

III. I preprocessed all raw data of the manuscript as described in section 2.2. Moritz 

Thomas contributed to the quality control and normalization steps of the human and 

pig data, gene mapping and performed early exploratory analyses. 

IV. I analyzed all data of the manuscript, reviewed the literature and interpreted the results. 

A. I characterized 50′000 endocrine cells isolated from healthy human, pig and 

mouse pancreatic islets.  

B. To evaluate conservation of human endocrine cell type signatures in mouse 

and pig, I established a framework to systematically compare and assess 

similarity of gene expression profiles across species both globally and focusing 

on specific features (literature markers, data-driven cell type enriched marker 

genes, transcription factors). Such a cross-species analysis framework has not 

been previously described for single-cell transcriptomic data. This is also the 

first study using single-cell transcriptomics for pig cells. 

C. To characterize human alpha and beta cell heterogeneity and cell states I used 

data-driven correlation-based gene sets as well as known biological processes 

of beta and alpha cell function, cellular stress and hormone signaling. This 

thorough characterization revealed a continuum of cellular states of varying 

maturity and function linked to differential stressors, pathway signaling and 

hormone receptor expression. To validate the functional and biological 

relevance of these states I curated and annotated 10 publicly available single-

cell studies of human adult pancreatic islets (>55 donors). 

D. I identified novel potential beta cell maturation factors through RNA velocity 

analyses. I validated the biological relevance of these factors in two publicly 

available single-cell studies of human pancreatic development. 

E. To evaluate conservation of the human alpha and beta cell states I used a 

reference mapping approach to annotate pig and mouse cells with human state 

labels, which uses correlation-based gene sets as features and although simple 

has as such not been previously described.  I then systematically compare 

composition and expression profiles as described in B) of these states between 

species. 

V. I wrote and edited the manuscript and designed all the figures. All co-authors 

contributed to the discussion of the results and reviewing of the final manuscript. 
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3.1.2. Comprehensive single cell mRNA profiling reveals a detailed 
roadmap for pancreatic endocrinogenesis 

 
Aimée Bastidas-Ponce*, Sophie Tritschler*, Leander Dony, Katharina Scheibner, Marta 
Tarquis-Medina, Ciro Salinno, Silvia Schirge, Ingo Burtscher, Anika Böttcher, Fabian J. Theis, 
Heiko Lickert, Mostafa Bakhti; Comprehensive single cell mRNA profiling reveals a 
detailed roadmap for pancreatic endocrinogenesis, Development 15; 146 (12): dev173849 
(2019) 
(See also publication 2 in the bibliography)  
 
Summary 
Cell replacement and in vivo regeneration are promising disease-modifying therapies to 

restore functional β-cell mass in diabetic patients. They both build on differentiating β-cells 

from endocrine lineage cells, and thus benefit from a better understanding of the factors that 

regulate endocrinogenesis during development. Single-cell transcriptomics is a powerful tool 

to study development. From the snapshot of asynchronously developing cells, cellular 

trajectories can be reconstructed in silico to chart and explore cellular dynamics and lineage 

differentiation events. Here, we used scRNA-seq to profile >35’000 endocrine lineage cells 

and create a molecular roadmap of the secondary stage of endocrine cell generation in 

pancreatic development in mice (E12.5-15.5). To enrich endocrine progenitors, which are 

marked by short and transient expression of the transcription factor Neurogenin 3 (Ngn3), we 

used a novel (Ngn3)-Venus fusion (NVF) reporter mouse line. We systematically delineated 

stage-dependent heterogeneity in endocrine differentiation steps and lineage relationships to 

describe gene expression dynamics along endocrine differentiation paths and the molecular 

programs that define lineage restriction towards specific endocrine subtypes. In our 

transcriptional map, we identified Ngn3low endocrine progenitors within multipotent progenitor 

cell, tip, trunk and ductal clusters that differentiate into Ngn3high endocrine precursors, 

endocrine lineage and finally hormone+ endocrine subtypes at unprecedented resolution. We 

uncovered putative markers and gene programs that change along the differentiation 

trajectories and thus likely govern endocrine cell induction, specification and lineage 

allocation. This included 58 signature genes that were transiently expressed in endocrine 

progenitors similar to Ngn3. Moreover, we found that endocrine precursor states are 

heterogenous and show stage-dependent gene expression, which we predict to define lineage 

trajectories towards different endocrine cell fates.  

Taken together, we provide a high-resolution transcriptional map of endocrinogenesis in 

developing mice, which is made available for future studies. This comprehensive map enabled 

us to untangle the stepwise lineage restriction from progenitors to hormone+ endocrine 

subtypes and its underlying gene expression programs. It is also a resource for future efforts 

that focus on endocrine differentiation pathways or aim at developing methods to reliably infer 
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cellular trajectories and fate and their regulatory factors from time-resolved single-cell data of 

a developing tissue. 

 

My contribution 

I. All data was generated by co-authors.  

II. I preprocessed all raw scRNA-seq data of the manuscript as described in section 2.2.  

III. I analyzed all scRNA-seq data of the manuscript with the support of Leander Dony. 

A. To describe the different cellular populations established during pancreatic 

development I annotated and characterized >35’000 pancreatic epithelial cells 

isolated from four subsequent days of development, which span the spectrum 

from multi and bipotent progenitors to differentiated endocrine, acinar and 

ductal cells. 

B. To describe regulators and timing of cell lineage restriction and fate allocation 

I built a lineage model inferring cell relationships using PAGA and compared 

composition and signatures of the populations over time. 

C. To characterize transient endocrine progenitor and precursor states and 

identify their molecular signatures and markers I performed trajectory inference 

and differential expression analysis. 

D. To investigate the timing of endocrine specification and whether endocrine 

precursors are heterogenous and primed towards a specific fate, I used RNA 

velocity inference to predict cellular fates. I further validated the suggested 

stepwise specification by characterizing the profiles of early and late precursors 

and their relationships with unipotent cells differentiating towards specific 

endocrine cell types. This was one of the first applications of the scVelo tool in 

a publication. 

IV. I interpreted the results, wrote and edited the manuscript and designed the figures for 

all parts that include the scRNA-seq data together with Mostafa Bakhti. All other co-

authors contributed to data generation, analysis and writing for other parts of the 

manuscript and to the discussion and reviewing of the final manuscript. 
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3.1.3. Targeted pharmacological therapy restores β-cell function for 
diabetes remission 

 
Stephan Sachs*, Aimée Bastidas-Ponce*, Sophie Tritschler*, Mostafa Bakhti, Anika 
Böttcher, Miguel A Sánchez-Garrido, Marta Tarquis-Medina, Maximilian Kleinert, Katrin 
Fischer, Sigrid Jall, Alexandra Harger, Erik Bader, Sara Roscioni, Siegfried Ussar, Annette 
Feuchtinger, Burcak Yesildag, Aparna Neelakandhan, Christine B Jensen, Marion Cornu, Bin 
Yang, Brian Finan, Richard D DiMarchi, Matthias H Tschöp, Fabian J Theis, Susanna M 
Hofmann, Timo D Müller, Heiko Lickert, Targeted pharmacological therapy restores β-cell 
function for diabetes remission. Nature Metabolism, 2, 192–209 (2020) 
(See also publication 3 in the bibliography and in Appendix B)  
 
Summary      
Loss and dysfunction of insulin-secreting β-cells are hallmarks of diabetes. It has been 

proposed that β-cells become dysfunctional because they dedifferentiate to an immature-like 

state. Currently, it remains unclear whether pharmacological intervention can effectively target 

these dedifferentiated β-cells to halt disease progression or promote diabetes remission. In 

this study, we leveraged single-cell transcriptomics to delineate β-cell failure and response to 

pharmacological treatment in pancreatic islets of mice. In a model of chemical induced 

diabetes (multiple low doses Streptozotocin (mSTZ) induced β-cell ablation) we observed that 

upon long-term hyperglycemia β-cells persist but dedifferentiated to a dysfunctional, 

immature-like state. Insulin treatment as well as targeted delivery of estrogen by Glucagon-

like peptide-1 (GLP-1-estrogen conjugate) restored β-cell maturation and function. When both 

treatments were combined, the required daily insulin was reduced by 60% and more β-cells 

survived and regained function. The single-cell profiles of healthy, dedifferentiated and treated 

β-cells revealed novel markers and molecular processes of β-cell dedifferentiation and 

indicated mechanisms of drug action: Insulin activates the insulin pathway in β-cells, while 

estrogen is delivered selectively to β-cells, activates the endoplasmic-reticulum-associated 

protein degradation system and further protects β-cells from cytokine-induced dysfunction. 

Moreover, the in silico reconstructed trajectories and cellular dynamics predict that β-cells de- 

and re-differentiated in response to pathological factors and treatment and other sources such 

as other islet cells or putative endocrine progenitors do not or only minimally contribute to the 

β-cell populations in our diabetic model. This was, in part, further supported as the endocrine 

progenitor marker Ngn3 was not induced in islets of mSTZ-diabetic and compound treated 

mice. Together, this study suggested that β-cells dedifferentiate in hyperglycemic conditions 

and that functional β-cell mass can be regenerated from dedifferentiated β-cells in mice, and 

it revealed targetable molecular pathways as well as pharmacological entry points to do so. 

This positions dedifferentiated β-cells as a viable target to halt or revert diabetes.  
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My contribution 
I. All data was generated by co-authors.  

II. I preprocessed all raw data of the manuscript as described in section 2.2.  

III. I analyzed all scRNA-seq data of the manuscript. 

A. To investigate the effect of long-term hyperglycemia and beta-cell ablation 

(mSTZ-treatment) on islet cells I characterized expression profiles and 

composition of islet cells of healthy and mSTZ-treated mice. Using trajectory 

inference, I found that cells transition from mature functional to immature to 

dysfunctional beta-cells suggesting beta cells dedifferentiate. I confirmed that 

the described maturation trajectory aligns with postnatal beta cell maturation 

using a public dataset. 

B. To describe properties and identify novel markers of dysfunctional, 

dedifferentiated beta cells as well as other diabetic islet cell types I performed 

differential expression analysis. 

C. To identify mechanisms underlying pharmacological treatment I characterized 

and annotated islet cells of different treatment groups. I used composition 

analysis, trajectory inference and differential expression analysis to describe 

beta cell redifferentiation states and trajectories, and potential molecular 

programs induced by treatments.   

D. To further confirm the origin and fate redifferentiated beta cells I used PAGA 

analysis and RNA velocity inference and predicted no or only minor contribution 

of other cell types or progenitors.    

IV. I interpreted the results, wrote and edited the manuscript and designed the figures for 

all parts that include the scRNA-seq data together with Stephan Sachs and Aimée 

Bastidas-Ponce as well as overall conclusions. All other co-authors contributed to data 

generation and analysis for parts of the manuscript and to the discussion and reviewing 

of the final manuscript.  
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3.1.4. Diet-induced alteration of intestinal stem cell function underlies 
obesity and prediabetes in mice 

 
Alexandra Aliluev*, Sophie Tritschler*, Michael Sterr, Lena Oppenländer, Julia Hinterdobler, 
Tobias Greisle, Martin Irmler, Johannes Beckers, Na Sun, Axel Walch, Kerstin Stemmer, Alida 
Kindt, Jan Krumsiek, Matthias H Tschöp, Malte D Luecken, Fabian J Theis, Heiko Lickert, 
Anika Böttcher, Diet-induced alteration of intestinal stem cell function underlies obesity 
and prediabetes in mice. Nature Metabolism, 3, 1202–1216 (2021) 
(See also publication 4 in the bibliography and in Appendix C) 
 
Summary 
Dysregulated nutrient uptake and hormone secretion in the gut contribute to an energy 

imbalance that leads to obesity and increased susceptibility to type 2 diabetes and colorectal 

cancer. It has been proposed that an obesogenic diet affects intestinal stem cells (ISCs) and 

alters their identity and fate, which contributes to this functional maladaptation of the gut. 

However, it remains unclear which mechanisms underlie ISC alteration and how this affects 

the composition and function of differentiated cells in the gut. In this study, we used single-cell 

transcriptomics, bulk metabolomic profiling, and lineage labeling and tracing of the small 

intestinal epithelium in a model of diet-induced obesity and pre-diabetes to investigate how 

the endocrine system of the gut adapts early in disease and contributes to disease 

progression. We confirmed that cellular composition, gene expression programs and hormone 

secretion change in enteroendocrine cells and potentially contribute to systemic deregulation 

and compensatory hyperinsulinemia in pre-diabetic mice. Besides the endocrine compartment 

we found that the gut remodels and villi are longer in high-fat diet mice to increase nutrient 

absorption and accumulate fat. ISCs and early progenitor cells are hyperproliferative and 

change their regional identity, which alters function and zonation of enterocytes towards a 

proximal phenotype of increased carbohydrate and fat uptake, and changes cell type 

composition in the villi. These changes were linked to increased fatty acid synthesis, Ppar 

signaling and the Insr–Igf1r–Akt pathway. Taken together, this study described cellular and 

molecular processes, which are putative targets to counteract enteroendocrine dysfunction 

and increased intestinal food absorption. These may provide novel therapeutic options to halt 

obesity and prevent progression to diabetes or other associated complications.  

 
My contribution 

I. All data was generated by co-authors. I contributed to the generation of the scRNA-

seq data (10x protocol).  

II. I preprocessed all raw data of the manuscript as described in section 2.2.  

III. I analyzed all scRNA-seq and single-cell qPCR data of the manuscript. 
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A. To investigate the effect of an obesogenic diet on intestinal lineage allocation I 

annotated and characterized epithelial cells of the small intestine crypts of 

healthy and obese mice and used differential expression, compositional 

analysis and PAGA to describe differences between the two conditions. I 

annotated cell types as well as cell cycle phases and regional location of the 

cells. 

B. To identify changes in enteroendocrine lineage formation and composition in 

obese mice I thoroughly characterized the profiles of the different endocrine 

cell states, described transient and specific markers, performed compositional 

analysis and built a lineage model using PAGA and RNA velocity inference. 

C. To identify mechanisms underlying altered lineage allocation I described 

differences in gene expression and proliferation in stem cells and progenitor 

populations. 

D. To confirm identified pathways through a more sensitive method I analyzed 

single-cell qPCR data of crypt stem cells and progenitors. 

E. To confirm that alterations in the crypt translate to the villi I annotated and 

characterized single cells of the villus. 

IV. I reviewed the literature, interpreted the results, wrote and edited the manuscript and 

designed the figures together with Alexandra Aliluev and Anika Böttcher for all parts 

that include the scRNA-seq data as well as the abstract, general introduction and 

discussion. All other co-authors contributed to data generation, analysis and writing for 

parts of the manuscript and to the discussion and reviewing of the final manuscript 
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3.2. Review Articles 
Further, I contributed to writing two articles, which review the insights of early single-cell 

studies into pancreatic heterogeneity and concepts and limitations of trajectory inference from 

single-cell data.  

3.2.1. Systematic single-cell analysis provides new insights into 
heterogeneity and plasticity of the pancreas 

 
Sophie Tritschler, Fabian J. Theis, Heiko Lickert, Anika Böttcher, 
Systematic single-cell analysis provides new insights into heterogeneity and plasticity 
of the pancreas, Molecular Metabolism, Volume 6, Issue 9, Pages 974-990 (2017) 
(See also publication 5 in the bibliography and in Appendix D) 
 
Summary 
Lost or dysfunctional β-cells have become the primary focus for regenerative therapies to halt 

or revert diabetes. To advance these efforts multiple aspects are crucial. First, it requires us 

to systematically characterize β-cells as well as their potential cellular sources in healthy and 

diabetic patients to identify cells with regenerative potential. Second, we need to delineate the 

molecular programs that define and regulate β-cell differentiation, maturation, maintenance 

and dysfunction to be able to (re-)generate functional β-cells. Lastly, we must be able to 

translate findings from model systems to humans. Single-cell omics provide promising 

approaches to decipher the heterogeneity and plasticity of the pancreas. Here, we reviewed 

the literature and findings from emerging single-cell technologies including single-cell RNA-

seq, single-cell mass cytometry, and flow cytometry that may facilitate aspects of endogenous 

β-cell regeneration. We summarized and discussed how single-cell data of human and mouse 

models aided our knowledge of how β-cells proliferate and mature postnatally, of endocrine 

heterogeneity and rare subtypes, and their function and impact on homeostasis and disease 

as well as of potential cell sources and molecular targets for regeneration. We concluded that 

single-cell data offers unprecedented resolution to shed light on these complex biological 

processes and may reveal cellular and molecular targets to regenerate functional β-cells in 

vivo, however most analyses and insights remain descriptive. To elucidate mechanisms, we 

suggest that we should, as a next step, aim at integrating the different layers of single-cell 

omics, adding temporal and spatial information and complementing these descriptive analyses 

with functional and mechanistic studies. 
 
My contribution 

I. I conceptualized the review together with Anika Böttcher and Heiko Lickert.  



 35 

II. I reviewed the literature, wrote and edited the manuscript together with Anika Böttcher, 

and I designed all the figures. All co-authors contributed to the discussion and 

reviewing of the final manuscript.  
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3.2.2. Concepts and limitations for learning developmental trajectories 
from single cell genomics 

 
Sophie Tritschler*, Maren Büttner*, David S. Fischer, Marius Lange, Volker Bergen, Heiko 
Lickert, Fabian J. Theis, Concepts and limitations for learning developmental trajectories 
from single cell genomics. Development 15; 146 (12): dev170506 (2019) 
(See also publication 6 in the bibliography) 
 
Summary 
Single-cell transcriptomic data is widely used to study developmental processes and cellular 

lineage relationships. Single-cell technologies continuously evolve to improve through-put and 

lower costs, and with that the scale of the data and number of cells that are routinely 

sequenced increases fast. However, it remains a challenge to analyze and interpret these 

large-scale datasets to reliably derive valuable biological insights. Typically, trajectory and tree 

models are used to describe differentiation processes and lineage hierarchies and elucidate 

their underlying mechanisms in silico. Many methods have been developed to infer such linear 

or branching trajectories, but to correctly apply them, it is required to understand their 

assumptions and limitations. Here, we described the mathematical concepts of trajectory 

inference from single-cell transcriptomic data and how it can be applied to study continuous 

processes in developmental systems or disease. We summarized the potential and key 

limitations of simple, similarity-based trajectory inference methods, which reconstruct a static, 

undirected view of a continuous process from gene expression profiles alone. We then review 

how additional information can be used to better constrain these models and predict cellular 

dynamics. Lastly, we discussed examples of how such continuous embeddings and lineage 

trees can be used to model disease. We concluded that trajectory models of single-cell 

transcriptomic data are a versatile tool that enables us to chart cell lineages of tissues and 

even whole, complex animals. While today these models are mostly descriptive and 

phenomenological, we envisioned that with increasing data size, the integration of perturbation 

data and other orthogonal data types such as spatial information or population size dynamics 

they will become even more powerful. They will allow us to predict cellular dynamics, and their 

underlying gene regulatory events, and infer how other layers like the cellular environment 

contribute to the regulation of developmental processes. 

 

My contribution 
I. I conceptualized the review together with David S. Fischer and Fabian J. Theis.  

II. I reviewed the literature, designed the figures and wrote and edited the manuscript 

together with Maren Büttner. All the other co-authors contributed on writing one 

paragraph as well as the discussion and reviewing of the final manuscript.  
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4. Discussion and outlook 
The development of regenerative treatments to regain endogenous endocrine control of 

blood glucose levels in diabetic patients depends on our understanding of mechanisms of 

cell differentiation, function and dysfunction in endocrine tissue. Single-cell transcriptomic 

data provides us unprecedented insights into such complex biological systems. It allows us 

to map and characterize heterogeneous cell populations and their dynamics, and with that 

extract cellular trajectories that predict a cell’s origin and fate, the gene programs that define 

a cell’s phenotype, and the cellular composition that determines tissue function. Such 

descriptions promise to reveal mechanisms that can be targeted by therapeutics to efficiently 

differentiate and or regenerate functional endocrine cell populations.  

4.1. Summary 
This cumulative thesis presents different applications of single-cell transcriptomics and 

computational analysis that combined with functional and biochemical data describe how 

endocrine cell populations are established and behave in health and diabetes. My key 

scientific contributions are twofold. Firstly, I discussed in two review articles how single-cell 

transcriptomics and computation has empowered research on endocrine heterogeneity and 

plasticity in the pancreas and, in general, to learn cellular trajectories and lineage hierarchies 

in developing or diseased tissues. Secondly, I thoroughly analyzed single-cell transcriptomic 

data in the context of four studies describing endocrine cell populations during specific 

windows of life of the endocrine pancreas and intestine. I built a cross-species map of the 

adult, healthy endocrine pancreas and an analytical framework to compare cellular states 

and their gene programs. This represents a comprehensive resource to bridge insights 

across human and two clinically relevant species and positioned pigs as a promising model 

to study human endocrine cell heterogeneity and function. Moreover, I reconstructed a 

lineage model for endocrine cells during pancreatic development in mice, which described 

stepwise cellular differentiation trajectories and predicted regulators of cell identity. Finally, to 

study endocrine dysfunction, I thoroughly charted the endocrine cell populations of two 

disease models. This revealed that in diabetic mice pancreatic b-cells dedifferentiate to a 

dysfunctional state, which can be re-differentiated upon pharmacological treatment. In 

addition, it proposed mechanisms of intestinal maladaptation and enteroendocrine 

dysfunction in obese mice, which may promote progression to diabetes. 

Together, these studies shed light on the control and molecular basis of endocrine cell identity 

and (dys)function in multiple species: they describe biomarkers and gene programs of 

differentiating, functional and dysfunctional states and how cells transition between such 
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states; and they propose mechanisms to (re-)differentiate and or (re-)establish functional 

endocrine cells. Moreover, the single-cell maps and source code were made easily accessible, 

which facilitates other researchers to combine these resources with their own data and further 

build on this work. The novel findings together with the readily available cellular maps are 

valuable assets that may ultimately contribute to developing regenerative therapeutics that 

improve endocrine function in obese or diabetic patients. 

4.2. Advancing our understanding of endocrine disease biology 
Although our single-cell transcriptomic analyses thoroughly describe cellular and 

transcriptional components of endocrine systems, they only capture aspects of endocrine 

disease biology. Firstly, we only consider a single molecular layer (gene expression), which is 

not enough to fully characterize a molecular cell state, catalog cellular phenotypes and 

elucidate heterogeneity and plasticity. Secondly, our findings were centered on “isolated” cells 

and cell types of a single time point and ignore how cell types act collectively with their local 

environment to direct tissue function over time. Lastly, the analyses were focused on 

identifying statistical patterns and were therefore still mostly descriptive with minimal 

mechanistic and predictive insights. Technological and computational advancements and 

integration of other data types have since opened remarkable opportunities to advance single 

to multimodal cell state definitions, cellular to tissue-wide models of cell function, and 

descriptive to mechanistic roles of genes, programs or cell states in biological systems (Figure 
6). 

4.2.1. Towards multimodal models of cellular function and heterogeneity 

Different approaches can help to improve our models of endocrine cell populations and cellular 

(dys-)function, if we i) catalog cells combining all molecular layers, and ii) consider that multiple 

factors combine to create a cell’s molecular identity: environmental stimuli (e.g., pathological 

factors or nutrient exposure), temporal processes (e.g., treatment or developmental history), 

and spatial context (e.g., cellular neighbors or morphogen gradients)167.  

 

Combining transcriptomics with other molecular layers 
While single-cell transcriptomics has long been at the forefront, the application of other single-

cell omics168–171, multi-omics or spatial technologies172 is rapidly growing and provides 

additional insights on islet biology173. Epigenomic and proteomic profiles add other layers to 

cell state definitions, and their potential to respond to environmental stimuli (Figure 6). For 

example, integration of epigenetic states may help to identify the most upstream causal factors 

that direct transcriptionally similar endocrine progenitors to differentiate into different 
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lineages174,175. The epigenome also hints at cellular plasticity, and thus may indicate how 

susceptible endocrine cells are to respond to stress, reprogramming or treatment176–178. 

Proteomic approaches can elucidate post-translational modifications, which are important 

components of signaling. A simple relevant example of using proteomics would be to measure 

the conversion of prohormones to hormones and its deregulation in disease states. Moreover, 

as for epigenomics, cell states can be characterized in more detail when protein expression is 

included169. Specifically, receptor genes, which are important therapeutic targets, are often 

only lowly expressed and thus not well captured in transcriptional data. Although single-cell 

proteomic approaches are currently still limited to a small set of proteins or low in resolution, 

we envision that with further technological advancements proteomics will be a powerful 

complement to other single-cell omics to confirm and improve cell catalogs, as recently 

exemplified in large studies of pancreatic islets of T1D104 or TD2179 patients. 

 
Superimposing additional data to validate cell trajectories 

To reconstruct temporal processes and predict fate and origin of endocrine cell states, we 

learned cellular trajectories and lineage relationships from transcriptional similarity of cells 

(pseudotemporal ordering) and predicted directionality and future states from inferred gene 

expression dynamics (RNA velocity)6. These analyses allowed us to track cells and gene 

expression during cellular transitions and identify putative markers of temporal states (for 

example progenitors, precursors, immature and mature states). However, these findings 

remain largely observational, and generate hypotheses but cannot infer causal links6. 

Incorporating experimental time, i.e., generating time-resolved data along disease 

progression, or using single-cell lineage tracing approaches can further increase the power of 

trajectory inference frameworks and validate predictions from transcriptional snapshots 

alone6,180,181. For example, time-resolved data allowed us to link the identified subpopulations 

in endocrine precursors to cell fates as the populations emerged in a stage-dependent manner 

and preferentially differentiate into alpha or β-cells2. Similarly, time course data could help to 

better resolve early and late events in β-cell failure and differentiate protective from 

regenerative drug action in our diabetes model3. Genetic labeling or lineage tracing of single 

cells to reconstruct lineage trees or clonal relationships are required to validate that β-cells 

de- and redifferentiate. In addition, such experiments could indicate whether subpopulations 

with enhanced survival or regenerative properties exist in humans as it was described in T1D 

mouse models46,182. Finally, it could improve our understanding of enteroendocrine plasticity 

and how much stem or progenitor cell identity and priming contributes to the functional 

heterogeneity of enteroendocrine cells in disease. 
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Adding cellular and spatial context 
Lastly, novel technologies and computational methods have been developed to integrate 

spatial context into models of cell function172,183,184 (Figure 6). Spatial information connects a 

cell’s molecular phenotype to its neighboring cells and the environment. This elucidates how 

cells are organized in a multicellular tissue and how their neighboring cells and local 

environment influence their fate decisions and function. Reconstructing spatial axes from 

previously identified spatial markers124 allowed us to project functional programs of 

enterocytes to intestinal regions and villi zones4. Similarly, spatial context, either measured or 

reconstructed from spatio-molecular features, could confirm the physical position of endocrine 

progenitors when the epithelium develops, and the contribution of tip cells to EP formation as 

indicated by our single-cell transcriptomic data2 and others109. It also may further elucidate 

how islet architecture contributes to cellular heterogeneity and changes in disease and identify 

or confirm neogenic and pathological niches. Moving beyond insights in spatial organization 

and heterogeneity, novel methods leverage spatial information to integrate cell-cell 

interactions and cell-intrinsic expression to improve cell communication inference and model 

intercellular communication in cellular niches185. This is a step towards unbiased models of 

tissue organization and how it impacts cellular function. For example, this could elucidate how 

niche signals contribute to changed ISC identity and fate allocation in the intestinal crypts. 

 
Figure 6. Data generation and modeling options to further advance our understanding of endocrine 

cell populations and their relevance in disease. 
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4.2.2. From genes to mechanisms 

In this work we derived hypotheses on mechanisms that control cellular phenotypes through 

knowledge enrichment (e.g., pathway enrichment) and literature review of the rich 

transcriptional profiles. However, while correlated or coordinated gene expression is 

suggestive, it does not necessarily imply causal links. Combining single-cell transcriptomic 

data with functional measurements, other omics data or interventions provides opportunities 

for systematic dissection and better interpretation of regulatory mechanisms and targetable 

pathways66,67 (Figure 6). With paired transcriptional and functional single-cell data, such as 

Patch-seq measurements101, gene expression changes can be directly linked to different 

functional activity of a cell. This does not only allow us to establish less ambiguous links of 

gene programs to function, but also to extrapolate functional activity to samples where 

functional single-cell measurements are not applicable, for example in frozen tissue or large-

scale references as we did in our study1. Direct interventions can demonstrate that a gene or 

process is causative. CRISPR-based technologies for genetic screens in single-cells hold 

promise to identify or validate novel molecular targets and reconstruct regulatory 

relationships186–188. Epigenomic and proteomic data provide complementary information to 

further constrain these gene-gene relationships to context specific networks of gene 

regulation. Finally, perturbation data, even if not directly physiologically relevant, may be 

leveraged to approximate the boundaries of the transcriptional space of a cell system and 

predict possible gene responses78,189. I envision that together this will improve our ability to 

infer causal processes from single-cell observations and link differential expression to its effect 

on a cell’s phenotype as computational methods mature. 

 

Taken together, while these novel approaches will not be able to replace experimental 

validation studies, they will help to generate more powerful hypotheses and predictions on cell 

and tissue behaviors and nominate causal processes that drive cell state transitions. This will 

hopefully reveal novel disease biology and clinical targets and reduce the overall cost and 

time of experimental validation needed. 

4.3. Advancing disease relevance with large-scale atlases 
The scale of individual single-cell datasets of pancreatic islets and the intestinal epithelium 

described here and in other studies is still too limited to capture population-wide variability. 

Moreover, technical confounders and inconsistent cell state identification and annotation make 

it difficult to relate findings between study or build on knowledge of previous studies beyond 
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comparing the composition of major cell types or lists of genes and pathways. Cell atlases 

integrate multiple single-cell maps (datasets) to a harmonized model (Figure 6). Such atlases 

have the potential to cover a broader range of variables, which are expected to impact cell 

identity and function190,191. These include clinical and demographic patient features, but also 

longitudinal datasets, different animal models, disease conditions or perturbations. Our 

reference map and analyses of healthy human pancreas are a first step towards generating 

an islet atlas with a consistent state annotation that captures normal patient variability1. We 

could confirm that the identified β-cell states are robustly detected across study and that age 

or sex do not strongly contribute to the observed donor variation when we mapped β-cells of 

9 publicly available studies (54 human donors) to our reference. Moreover, we adhered to 

FAIR data guiding principles166, which not only facilitates querying of this resource but also 

integration in future atlases. Similarly, a comprehensive reference atlas of mouse islets 

provides a resource to model β-cell states across age, models and treatment114. I anticipate 

that soon cell atlases of human islets will more comprehensively chart the cellular landscape 

of diabetic disease populations. Research consortia enable large-scale sourcing of tissues 

and data generation192–194, single-cell technologies are more robust and computational tools 

for data integration and reference mapping more advanced. Moreover, bulk RNA-seq datasets 

from large patient cohorts can be used to complement single-cell atlases and further validate 

their findings. It will remain a challenge to obtain longitudinal or early disease onset samples, 

as pancreatic biopsies cannot be safely obtained from living donors and often β-cell 

dysfunction and loss has already progressed when patients are clinically diagnosed with 

diabetes. Still, large-scale atlases will better represent patient and disease diversity and 

reduce technical noise and thus identify cell states and gene programs more relevant to 

disease.  

4.4. Towards unified foundational models of biology 
As the complexity and scale of data sets grow and different modalities are combined, 

computational methods to simplify analyses and integrate data and learnings become ever 

more important 195,196. Latent space embeddings, as learned by deep neural networks, have 

been introduced as a powerful new approach for the increasingly complex tasks (Figure 6). 

Latent representations can be used for most steps in single-cell analysis workflows including 

data correction, data integration, clustering and differential expression analysis197,198. 

Moreover, latent spaces enable to complement exploratory, unsupervised analyses with 

supervised predictions and even interpolating or creating data through generative models. 

Examples of predictive models built on latent spaces include query-to-reference mapping 

approaches, which transfer learnings from reference to query and thus enable creation and 
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continuous extension of harmonized large-scale, population-wide and multimodal 

atlases81,154,156,199. Such approaches applied for multi-layer references will not only enable 

cell label transfer, but also prediction of other layers for single-layer queries including cross-

modality or cross-species predictions. Generative models can be used for example for 

response predictions of unseen perturbations like drugs or genetic perturbations78,200–202 

Lastly, the breakthrough of large language and foundation models, which connect vast 

amount of data in an unsupervised fashion, has enabled many novel, more powerful 

generative applications in other fields. With many efforts to make omics data accessible and 

reusable10,65,203,204, training of such models becomes possible. With the growing data size 

and modeling advancements such foundation models hold the promise to enable to not only 

connect molecular but also other data modalities including for example phenotypic, 

morphological, spatial measurements195. This will ultimately provide a unified basis model for 

many separate applications as well as multi-layered biological answers for simple queries196. 

Such orthogonal and richer data will hopefully also bring us one step closer to modeling 

gene regulation and mechanisms. Interpretability of deep latent spaces, i.e. linking latent 

features to genes and gene programs, remains a key challenge. Most current approaches 

use literature curated databases as priors205,206, and therefore do not consider all available 

information in the data and insights on gene regulation remains restricted and biased to prior 

knowledge. Thus, as these predictive and generative deep models become more robust and 

are trained on even larger datasets, they will not replace experiments, but efficiently guide 

experimental design and with that massively accelerate biological discoveries.   

 
Overall, this thesis provides a deep perspective of endocrine cell populations in the pancreas 

and intestine during critical windows of life and disease. Through analysis of single-cell data 

generated to address specific questions in humans and animal models, it sheds light on cells 

and molecular programs that are involved in development and progression of diabetes and 

are potential targets for regenerative treatment strategies. In the future, as single-cell omics 

and computational models continue to advance we will be able to complement such 

exploratory analyses with more predictive insights: we will integrate these findings into 

population-wide, multi-modal atlases and latent space embeddings to describe cellular 

variation across many covariates and create a more complete catalog of endocrine cells. 

With that we will be able to connect learnings from many datasets and predict mechanisms 

of disease and drug action to guide future endeavors on the road towards successful 

regenerative therapies for diabetes.   
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ABSTRACT

Objective: Pancreatic islets of Langerhans secrete hormones to regulate systemic glucose levels. Emerging evidence suggests that islet cells are
functionally heterogeneous to allow a fine-tuned and efficient endocrine response to physiological changes. A precise description of the molecular
basis of this heterogeneity, in particular linking animal models to human islets, is an important step towards identifying the factors critical for
endocrine cell function in physiological and pathophysiological conditions.
Methods: In this study, we used single-cell RNA sequencing to profile more than 500000 endocrine cells isolated from healthy human, pig and
mouse pancreatic islets and characterize transcriptional heterogeneity and evolutionary conservation of those cells across the three species. We
systematically delineated endocrine cell types and a- and b-cell heterogeneity through prior knowledge- and data-driven gene sets shared across
species, which altogether capture common and differential cellular properties, transcriptional dynamics and putative driving factors of state
transitions.
Results: We showed that global endocrine expression profiles correlate, and that critical identity and functional markers are shared between
species, while only approximately 20% of cell type enriched expression is conserved. We resolved distinct human a- and b-cell states that form
continuous transcriptional landscapes. These states differentially activate maturation and hormone secretion programs, which are related to
regulatory hormone receptor expression, signaling pathways and different types of cellular stress responses. Finally, we mapped mouse and pig
cells to the human reference and observed that the spectrum of human a- and b-cell heterogeneity and aspects of such functional gene
expression are better recapitulated in the pig than mouse data.
Conclusions: Here, we provide a high-resolution transcriptional map of healthy human islet cells and their murine and porcine counterparts,
which is easily queryable via an online interface. This comprehensive resource informs future efforts that focus on pancreatic endocrine function,
failure and regeneration, and enables to assess molecular conservation in islet biology across species for translational purposes.

! 2022 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Keywords Pancreatic islets; b-Cell; a-Cell; Single-cell RNAseq; Cross species conservation; Translation

1. INTRODUCTION

Pancreatic b-cells are essential endocrine cells, which regulate sys-
temic glucose homeostasis together with the other endocrine islet
cells - glucagon-producing a-cells, somatostatin-producing d-cells,
pancreatic polypeptide-producing PP-cells and ghrelin-producing
ε-cells. In diabetic patients, b-cells are lost or become

dysfunctional, which leads to chronically elevated blood glucose levels.
Even in healthy individuals, b-cells are heterogeneous and differ in
their responsiveness to glucose, insulin secretion capacity, maturation
state, stress response and other functional phenotypes [1e3]. Simi-
larly, varying phenotypes and cell states of a-cells have been
described [4e6]. It has been proposed that these molecular and
functional cell states complement each other to fine tune and
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efficiently adapt the endocrine response to physiological changes in
their environment [3,7,8]. Heterogeneity can also arise from individual
cells that cycle asynchronously between phases of active insulin
biosynthesis, recovery and rest [9], different tissue locations or
phenotypic variation between cells of different ages [10]. Although it is
unclear to which extent the endocrine heterogeneity is important for
normal pancreatic endocrine function, a precise description of the
functional and molecular differences between distinct cell states in-
forms drug discovery and development of anti-diabetic drugs [4,11e
14]. Most importantly, it will help to establish a reference for a
mature, functional b-cell as a clinical endpoint. Moreover, aspects of
the molecular programs that characterize less-functional or stressed
states, may overlap with programs that contribute to pathological b-
cell dysfunction in diabetes and thus reveal novel molecular targets.
Lastly, it can indicate which subset of cells has the potential to respond
to a treatment, which affects the efficacy of a therapeutic approach.
Today, most of the pre-clinical research of the endocrine system relies
on animal models as access to pancreatic tissue from patients is
limited. Endocrine cells are mostly studied in rodents. However, dif-
ferences in endocrine development and whole-body anatomy and
physiology between human and rodents lowers the predictive value of
rodent models for human physiology and therapeutic success [15]. As
an alternative to rodents, pigs are a large-animal model with a higher
translational promise: The anatomy and physiology of pigs is more
similar to humans, porcine islets are a potential source for islet xen-
otransplantation, and, ethical concerns about animal studies are
smaller for pigs than for non-human primates [16e19]. Still, it is
unclear whether human functional states and molecular profiles of
endocrine cells are better conserved in pigs than rodents [20].
Only recently, endocrine heterogeneity can be systematically charac-
terized at the molecular level by profiling individual cells with high-
throughput single-cell RNA sequencing [12]. Most phenotypic states
are reflected in the gene or protein expression profile of a cell and can
thus be captured and resolved by single-cell approaches. Single-cell
studies have provided cell-by-cell descriptions of healthy and dia-
betic pancreatic islets from mice [11,21,22] and human donors
[4,9,13,14,23e25], however in these early studies resolution was
limited by low cell numbers - which makes it difficult to identify rare
cell states and to infer cell state transitions - and there is so far no
systematic cross-species comparison. Here, we leveraged single-cell
transcriptomics to finely resolve human endocrine heterogeneity and
its conservation in pig and mouse islets. We describe endocrine cell
type signatures and gradients as well as distinct a- and b-cell states
that can be related to distinct biological properties like function,
maturation and cellular stress. Our data represents a queryable
resource to provide insight into shared endocrine cell states and
expression profiles in humans, pigs and mice, which can be easily
accessed and explored online and adheres to the FAIR data guiding
principles [26].

2. RESULTS

2.1. Conservation of endocrine signatures across human, pig, and
mouse
We sequenced >500000 single cells from pancreatic islets isolated
from 5 healthy human donors (age 22e74 years, male and female), a
Göttingen minipig (2 replicates, age 3 years 8 months, female) and 3
mice (pooled, C57BLJ/6, age 23.5 weeks, male) to describe
transcriptome-wide expression signatures of human endocrine cell
populations and their conservation in animal models (Figure 1A, Figure
S1A, B). To facilitate exploration and reuse of our data set we published

it in the cellxgene portal (https://cellxgene.cziscience.com/collections/
0a77d4c0-d5d0-40f0-aa1a-5e1429bcbd7e) and added it to the sfaira
data zoo [27], which both follow the concept of FAIR data [26]. In all
three species we identified the four main endocrine cell types: a-, b-,
d-, PP-cells. We captured a few rare GHRL positive ε-cells in the
human, but not in pig and mouse samples, and therefore did not
consider them for downstream analyses. Likewise, we excluded poly-
hormonal cells as it is difficult to distinguish the profile of true poly-
hormonal cells from doublet cells (Supplementary Table 1). In human
islets the ratio of a- and b-cells was relatively balanced, while in pig
and mouse islets b-cells were most abundant (w80%). These cell
type frequencies are consistent with reported quantification in histo-
logical sections [28,29], which indicates our data is less confounded by
technical artifacts than previous single-cell studies with low b-cell
frequencies [14,23,25]. Human cells expressed established islet hor-
mones and transcription factors defining endocrine cell identities.
These expression patterns were conserved in pig and mouse clusters
with a few known exceptions (Figure 1B). For example, the tran-
scription factor MAFB was expressed in human a-, b- and d-cells, but
only in mouse a-cells. In pig, we detected low levels of MAFB in a-, b-
and d-cells similar to human islets as it was recently described in bulk
expression profiles of sorted islet cells [20]. Such low detection levels
are a general issue in RNA-seq studies of pig cells. The functional
annotation of the pig genome is still less complete than for mouse and
human genes, although continuity and quality of the reference
sequence has been greatly improved [30e32]. Due to incomplete
annotation of protein-coding genes, a subset of reads cannot be
confidently mapped and are thus discarded. In our data this included
the transcription factors MAFA or ARX, which were not detected in pig
cells (Figure 1B). The lower mapping rate for pig sequencing data can
limit the interpretability of genes that are not expressed.
To directly compare gene expression across species, we identified
mappable gene orthologs using the Biological Entity Dictionary (BED)
[33] tool (Figure 1C). Out of approximately 19’300 human, 130500 pig
and 180200 mouse genes (annotated and detected), 110665 genes
were mappable across all three species. The 110665 genes explained
on average 90% of the total variance in each species (human ¼ 87%,
pig ¼ 94%, mouse ¼ 89%, Figure 1C). We computed pairwise cor-
relation and clustering of cell type profiles in the principal component
analysis (PCA) representation of the scaled and concatenated cross-
species data to assess global transcriptional similarity of human, pig
and mouse endocrine cell types (Figure 1D). We did not consider the
two top-variance components, because they were almost entirely
driven by cross-species variation (Figure S1C). Cell types correlated
stronger among each other than among species, which indicates that
globally cell type expression profiles were conserved (mean pearson’s
rho for a-cells ¼ 0.15, for b-cells ¼ 0.12, for d-cells ¼ 0.23, for PP-
cells ¼ 0.2, for human-cells ¼ -0.15, for pig-cells ¼ -0.26 and for
mouse-cells ¼ 0.02). Moreover, a- and PP-cells were closely related
to each other and more distant to b- and d-cells in all three species.
During development mutual inhibition of lineage determinants pro-
motes endocrine progenitors towards a a-/PP- or b-/d-cell fate
[34,35], thus, this developmental proximity of a-/PP and b-/d-cells is
reproduced in adult islets. Further, this suggests that developmental
programs of endocrine subtype specification are conserved across
species.
Next, we evaluated the overlap of gene expression between species in
each cell type (Figure 1E, Supplementary Table 2). We found that on
average 50160 out of 110665 mappable genes showed conserved
expression in >5% of the cells in each endocrine cell type across
species. This indicates that only 50e60% of genes expressed in
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Figure 1: Conservation of endocrine signatures in human, pig, and mouse islets. A) UMAP plots of scRNA-seq data of human, pig and mouse pancreatic islets capturing all 4
major endocrine populations. Barplots show cell type compositions, which reflect islet composition in vivo. B) Expression of islet hormones and known endocrine and lineage
transcription factors in human, pig and mouse endocrine cell types. Color intensity indicates mean expression in a cluster, dot size indicates the proportion of cells in a cluster
expressing the gene. Expression is scaled per gene. N. a. means genes were not detected. C) Overview of gene orthologue mapping between species to assess conservation of the
human transcriptional signature. Explained variance is the fraction of the total variance captured by the subset of mappable genes. D) Correlation matrix of gene expression
indicates global conservation of transcriptional profiles of endocrine cell types across species. Cell types are grouped by hierarchical clustering. Pairwise correlation is computed in
the principal component analysis space after excluding the top two variance components, which are entirely driven by cross-species variation (see also Figure S1C). a-, b- and d-
cells were subsampled to 2000 cells to balance cell type representation. E) Conservation of endocrine gene and marker expression. Top: Venn diagram showing overlap between
species of enriched marker genes for each endocrine cell type. Only marker genes that are mappable across species are shown. Selected known overlapping cell type markers and
number of genes with conserved expression are indicated. Enriched marker genes are defined as genes expressed in >5% of the cells of the corresponding cell type and showing
increased expression versus all other cell types (log2-fold change>0.5). Bottom: Conservation of human enriched marker genes in pig and mouse cell types. % of human enriched
marker genes expressed/detected is indicated. Conserved: enriched marker in same cell type as human; loss: detected but not an enriched marker; switch: enriched marker in
different cell type than human. F) Expression of enriched and conserved transcription factors for each endocrine cell type in human, pig and mouse. Color intensity indicates mean
expression in a cluster, dot size indicates the proportion of cells in a cluster expressing the gene. Expression is scaled per gene.
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human cell types are shared with their mouse and pig counterparts
(Figure S1D). The majority of the other 40e50% were either only
expressed in another cell type (“loss of expression”) or not expressed
or detected. The remaining 5% were not expressed in human but
detected in pig or mouse cells (“gain of expression”). For example, we
detected high mRNA levels of free fatty acid receptor 4 FFAR4, as well
as calcium-sensing receptor CASR in human b-and d-cells
(Figure S1E). The expression of both genes was low or lost in mouse
and pig b-cells but conserved in d-cells (4.7% of cells in pig). In
addition, mouse a-cells “gained” expression of FFAR4 while pig a-
cells “gained” CASR. Similarly, the synaptic protein neuronal pen-
traxin-2 (NPTX2) was strongly expressed in human b-and d-cells, all
pig endocrine subtypes, but mostly lost or not detected in mouse cells.
Instead, mouse cells expressed neuronal pentraxin-1 (NPTX1). The
subtype expression pattern of the transcription factors DNA-binding
protein inhibitor ID1-4 was highly conserved in humans and pigs, but
not in mice. These examples highlight cell type specific species dif-
ferences in receptors and regulatory or signaling proteins relevant for
islet function. As noted previously, not detected expression of a gene
can be due to either biological species differences or technical factors
such as genome annotation or sequencing depth. For validation, we
compared our results to reported core genes derived from human and
mouse bulk b-cell transcriptomes [36] (Figure S1F). From the 85.5% of
core genes (8105/9474 core genes) captured within the 110665
mappable genes, we found that 77% overlapped with those we
identified as conserved between human and mouse b-cells. This in-
dicates that our approach approximates conservation consistent with
previous reports. Differences may be due to the distinct data types,
how conservation is defined and or detection limits in scRNA-seq data.
Beyond global gene expression profiles, we focused on cell type
enriched marker genes to approximate conservation of cell type-
specific functions (Figure 1E, Supplementary Table 3). As a positive
control, we verified that we identify established marker genes in all
species, which included GCG, IRX2 and TTR for a-, INS, PDX1 and
NKX6-1 for b-, SST and HHEX for d- and PPY for PP-cells. Surprisingly,
of the remaining identified human marker genes only 5e10% were
shared with both mouse and pig. The small overlap was not biased by
one species, because the overlap with human markers was similar for
mouse and pig markers. Overall, we observed that in all cell types less
than 20% of the human markers were conserved, approximately 20%
were expressed but did not appear as marker genes (‘loss’), and 30%
marked other populations (‘switch’). The rest was not detected or
expressed. We thus conclude that while critical identity and functional
marker genes are conserved, cell type specific expression is evolu-
tionarily more labile. We noted that, especially in mice, fewer enriched
marker genes were detected and conserved in a- and PP-cells than in
b- or d-cells, which may be explained by the high similarity of mouse
a- and PP-cell profiles.
Finally, we assessed the similarity of transcription factor (TF) expres-
sion patterns. TFs are key components of the gene regulatory networks
that determine endocrine cell identity during development and main-
tain identity and function in adult islets. Thus, we considered TF
patterns as another measure for proximity of animal models to humans
(Figure 1F). We assumed, TF networks are most likely best evolu-
tionary conserved within the shared marker genes and subset to
shared TFs. Moreover, to quantify similarity we considered TF
expression across cell types, because for modeling transcriptional
regulation in a cell type, not only TF expression but also cell type-
specificity should be conserved. Lastly, we computed a correlation
measure that includes the mean expression as well as the fraction of
cells expressing a TF in a cluster to leverage all information contained

in single-cell data (Methods). With this approach, we observed that a-
and b-cell TF patterns were better conserved between human and pig
(pearson’s rho ¼ 0.97, p-value ¼ 10#7 for a-cells, pearson’s
rho ¼ 0.73, p ¼ 10#12 for b-cells) than between human and mouse
(pearson’s rho ¼ 0.73, p ¼ 0.006 for a-cells, pearson’s rho ¼ 0.57,
p ¼ 10#7 for b-cells) (Figure S1G). a- And b-cell TF patterns also
correlated stronger between human and pig than human and mouse
when considering all TFs we identified as cell-type enriched markers in
humans (Figure S1H), or, all TFs with conserved expression (not
necessarily cell-type enriched) (Figure S1I). Conversely, for d- and PP-
cells, there were no pronounced differences between species when
subset to conserved marker TFs (Figure S1G). Human and mouse d-
and PP- TF patterns correlated stronger within all enriched marker TFs
(Figure S1H), while human and pig d- and PP-TF patterns correlated
stronger within all TFs with conserved expression (Figure S1I). Thus,
this analysis suggests that a- and b-cell TF expression and likely
target gene regulation is closer to human in pig than in mouse models.

2.2. b-Cell heterogeneity and phenotypic states in human islets
To understand b-cell heterogeneity in human islets, we clustered the
human b-cells at higher resolution and identified six b-cell clusters
(Figure 2A). These clusters did not form separated clusters, but rather
connected states in the continuous b-cell manifold. All six clusters
were represented in all five donors, but subtype composition varied
across donors (Figure 2B,C). Approximately 60% of the cells formed a
large cluster we annotated as mature b-cells, because they highly
expressed canonical b-cell identity and maturity genes [37]
(Figure 2C,D), and scored high for the b-cell hallmark pathway
(Figure S2A). The other clusters made up less than 20% of all b-cells.
Two clusters activated hallmark pathways associated with unfolded
protein response, stress and apoptosis, which we therefore referred to
as stress I and stress II cells (Figure S2A). Identity and maturity
markers as well as b-cell hallmark scores decreased from the mature
to the stress-clusters, which suggests a gradual loss of b-cell identity
and maturity (Figure 2D). The state between themature and the stress-
clusters most resembled immature cells. In this intermediate state,
pathways associated with the cell cycle and the PI3K-Akt-mTOR
signaling axis were increased, which was previously reported to
characterize less mature b-cells in mice [37,38] (Figure S2A). How-
ever, other reported markers of murine immature b-cells like CHGB,
RBP4 and CD81 showed variable expression in the b-cell states that
did not fully correlate with loss of maturity and identity markers
(Figure 2D). We could not annotate the two remaining clusters based
on this analysis, because the top scoring hallmark pathways were not
related to an interpretable b-cell state, but described processes of
other systems or tissues. Finally, we saw no strong upregulation of b-
cell disallowed genes in any non-mature cluster compared to the
mature cluster (Figure S2B). Thus, we identified clusters with estab-
lished b-cell profiles, alongside novel transcriptional b-cell states.
b-cell-specific processes can be better captured when gene sets are
identified with an unbiased, data-driven approach. We therefore
clustered the 3000 most variable genes into groups of highly correlated
and or anti-correlated genes (hereafter referred to as gene sets) and
then related these gene sets to cellular processes based on known
marker genes and pathway enrichment for interpretation (Figure 2E,
Supplementary Table 4, Methods). This approach was previously
described to identify de novo gene sets in single-cell data [39] and is
commonly used in correlation network analysis [40]. In contrast to
describing cell states with marker genes, it gathers genes into context-
specific groups independent of the predefined cell states, i.e. the same
set of genes can be activated in multiple cell states. We identified four
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Figure 2: Transcriptional b-cell heterogeneity and states in human islets. A) UMAP plot of 110923 human b-cells. Colors highlight clustering into six different b-cell states. B)
Cell densities in UMAP space for five human donors shows that all b-cell clusters are represented by all donors. ID indicates donor ID for ADI IsletCore (see also Figure S1A). C)
Fraction of cells per b-cell cluster. Error bar indicates donor variation. D) Expression of selected known b-cell identity and maturity markers. Color intensity indicates mean
expression in a cluster, dot size indicates the proportion of cells in a cluster expressing the gene. Expression is scaled per gene. E) Gene sets capturing variation in human b-cells
that describe biological processes. Gene sets are groups of highly correlated and/or anti-correlated genes identified using hierarchical clustering on the correlation matrix of the top
3000 variable genes. Left: Scaled mean score for each gene set per b-cell cluster. For each gene set selected known b-cell identity or functional marker genes are indicated. Right:
Summary of selected enriched pathways for each gene set indicating biological processes associated to gene sets. Coloring indicates the highest scoring b-cell cluster. FeH)
Expression of genes encoding MHC class I components and b-cell autoantigens (F), members of the three canonical ER stress response arms (G), and insulin synthesis and
secretion pathways (H). Color intensity indicates mean expression in a cluster, dot size indicates the proportion of cells in a cluster expressing the gene. Expression is scaled per
gene. I) Expression of receptors for the majority of circulating hormones in human b-cell clusters. The tissue or organ origin and the type of hormone are indicated. Only receptors
detected in >5% of cells of any cluster are shown. Color intensity indicates mean expression in a cluster, dot size indicates the proportion of cells in a cluster expressing the gene.
Expression is scaled per gene.
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gene sets (G7-8, 10e11) scoring high in mature b-cells that contain
key markers and enriched pathways of b-cell identity, glucose sensing
and insulin secretion (Figure 2E). These gene sets were decreased in
the immature, stress I and stress II clusters.
Beyond canonical b-cell function, one gene set (G9) was enriched for
factors involved in antigen processing and presentation including
major histocompatibility complex (MHC) class I and lysosome. Cells
scoring high for the MHC/antigen processing-associated gene set
formed a small cluster we could not previously annotate and also
highly expressed b-cell identity and function genes as well as reported
b-cell autoantigens (Figure 2F). We therefore referred to the cluster as
MHC/autoantigen. While healthy b- and other endocrine cells steadily
present self peptides via MHC class I complex, hyperexpression of
MHC class I genes has been observed in islets of T1D patients.
Increased levels of MHC class I were suggested to contribute to
aberrant antigen presentation and autoimmune-mediated b-cell
destruction [41]. To confirm that this gene set captures biologically
relevant b-cell features, we compared theMHC/autoantigen state to b-
cells from T1D patients [42], and observed a high T1D b-cell-derived
score in MHC/autoantigen cells (Figure S2D). Vice versa, T1D b-cells
highly expressed MHC class I genes and activated the MHC/antigen
processing gene set (G9) when compared to healthy b-cells (Figure 2E,
F). Also in a- and d-cells a small subset of cells scored high for this
gene set, which suggests a similar MHC-high state exists in other
endocrine cell types (Figure S2G). Besides an increased MHC and
lysosomal gene expression, MHC/autoantigen scored low for a gene
set enriched for ribosomal genes (G4) (Figure 2E). This may indicate
reduced ribosomal biogenesis and translation. Consistently, the
expression of multiple regulatory factors of translation (e.g. translation
initiation factors) was decreased in the MHC/autoantigen state
(Figure S2H). Moreover, MHC/autoantigen cells lowly expressed genes
governing gene transcription including transcription initiation factors
and subunits of RNA polymerase, which likely was linked to a reduced
number of total genes expressed per cell (Figure S2H, I). G16, which
contained b-cell markers UCN3 and NKX6-1, also scored highest in the
MHC/autoantigen cluster. However, low overall variance of the acti-
vation score for G16 indicated that the magnitude of the activation level
differences was small and thus the gene set was similarly activated in
all b-cells (Figure S2C). Together, this suggests the presence of rare
b- as well as a- and d-cells in healthy islets, which downregulate
global transcription and translation, but maintain b-cell identity and
enhance MHC class I-mediated antigen processing and presentation.
When insulin demand is high, the ER protein folding capacity of b-cells
can be overwhelmed and misfolded proinsulin accumulates. To
counteract the overload and its resulting stress, b-cells activate a UPR-
mediated stress response [43,44]. For this adaptive UPR, also
constitutive, low autophagy is considered important to remove the
misfolded proteins and damaged organelles. We identified three gene
sets, which captured these cellular stress response pathways and
autophagosome and organelle disassembly (Figure 2E). All three gene
sets were highly activated in the stress II cluster and a subset in the
stress I cluster. Consistent with the gene set analysis, the three main
global stress response arms - IRE, PERK and ATF6-mediated stress
response-were differentially activated in the b-cell states (Figure 2G,
Figure S2J). The PERK-arm was induced in the stress I and stress II
cluster, ATF6 in the stress II and MHC/autoantigen cluster, while IRE
was only active in the stress II cluster. Stress I cells scored high for
further gene sets enriched for the stress-induced transcription factor
ATF3, AP-1 complex, metallothionein, circadian rhythm (Figure 2E).
Metallothionein and circadian rhythm genes are a part of the tran-
scriptional program recently reported to be regulated by glucocorticoid

signaling in human islets [45]. Glucocorticoid signaling has been
associated with b-cell dysfunction and we therefore further compared
the stress I profile to the transcriptional response glucocorticoid
signaling induced. Like in glucocorticoid-treated islets, in stress I cells
components of STAT and TGFb-signaling as well as other islet growth
factors including Vascular endothelial growth factor A (VEGFA) and
Platelet-derived growth factor subunit A (PDGFA) were decreased
(Figure S2K). Lastly, we annotated the remaining small cluster of cells
as mtDNA deficient because mitochondria-encoded gene expression
was low (Figure S2I). In this cluster most gene sets scored low, identity
and maturity genes were decreased and also other data quality metrics
were low (Figure 2D, Figure S2I). We therefore could not exclude that
this cluster contained dying cells. In summary, our single-cell
sequencing data captured distinct b-cell states that may reflect the
transcriptional response to different stress factors. While maturity and
identity markers and gene sets were not expressed in a large fraction
of cells of non-mature b-cell states, stress-linked gene sets showed
baseline activation in all b-cell states.
Finally, we sought to associate the distinct b-cell states with two key
properties of b-cell function: insulin synthesis and secretion. We
observed that all b-cell subpopulations expressed key genes of insulin
synthesis (Figure 2H). Surprisingly, stress I and MHC/autoantigen cells
expressed a higher level of prohormone convertase 2 (PCSK2) than
prohormone convertase 1 (PCSK1) unlike the other b-cells. PCSK-
genes encode enzymes that cleave pro-hormones including insulin and
glucagon. Consistent with the increased PCSK2 expression, also
expression of prohormone convertase subtilisin/kexin type 1 inhibitor
(PCSK1N) - a PCSK1 inhibitor - and the Neuroendocrine protein 7B2
(SCG5) - a chaperone of PCSK2, which facilitates transport and
function of PCSK2 - was increased in the stress I and MHC/autoantigen
clusters. In healthy human donors, PCSK1 levels are reportedly higher
in b-cells, while PCSK2 levels are higher in a-cells [46]. A defective
maturation of proinsulin is implicated in both T1D and T2D and plasma
proinsulin to insulin ratio serves as a clinical index for b-cell
dysfunction [47e50]. Our analysis suggests that variable PCSK
expression is part of the transcriptional programs turned on in b-cell
substates, which eventually result in functional b-cell heterogeneity.
The activation of key insulin secretion processes was more hetero-
geneous (Figure 2H, Figure S2L). Relative to mature b-cells, multiple
genes linked to glucose sensing, and secretory granules as well as ion
channels were decreased in immature, stress I and stress II cells, but
not in the MHC/autoantigen cluster. Beyond glucose and other nutri-
ents, various circulating body hormones regulate insulin secretion. To
identify the target b-cell states of these hormones we explored the
expression of their cognate receptors (Figure 2I). Reduced receptor
expression of known insulin secretion stimuli including other islet
hormones, gut incretins, adipose tissue hormones or estrogen corre-
lated with reduced expression of insulin secretion genes in immature,
stress I, stress II clusters. In stress I cells decreased insulin secretion
might be associated with increased a-2-adrenergic receptor (ADRA2A)
expression and stimulation of inhibitory adrenergic signaling leading to
reduced cAMP levels [51,52]. Consistently, the expression of several
components of cAMP signaling was decreased in stress I cells
(Figure S2M). In stress II and immature cells we observed a strong
increase of atrial natriuretic receptor 2 (NPR2) and the Anti-Müllerian
hormone receptor (AMHR2). The effects of natriuretic peptides are still
unclear, but insulinotropic and mitogenic effects on b-cells have been
suggested [53,54]. To further corroborate that the described tran-
scriptional heterogeneity is associated with functional heterogeneity
we linked the b-cell states to electrophysiological measurements of
exocytosis and ion channel activity in published single-cell “Patch-
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seq” data of human islet cells (“Patch-seq”: whole-cell patch-clamp
measurements combined with RNA sequencing) [4]. To map the Patch-
seq cells to our reference b-cell states, we represented them as
activation scores of the b-cell gene sets (Methods). The 230 b-cells
from healthy donors were similarly distributed across b-cell states and
had similar marker expression and gene set activation profiles
compared to our dataset (Figure S2N, O). As suggested from our
transcriptional characterization, for immature and stress II b-cell
decreased exocytotic function was measured compared to mature b-
cells (Figure S2O). Immature cells also showed decreased
Na þ channel activity. No MHC-like and too few stress I cells were
detected in the Patch-Seq data.
To confirm that the identified transcriptional b-cell states are robustly
detected across study, age and sex we mapped b-cells of 9 single-cell
studies (n ¼ 54 donors) [9,13,14,23,25,55e58] to our reference b-
cell map in the representative gene set space (Figure S3A, Methods).
Approximately 60% of cells mapped to the mature b-cell state, and
10e25% to immature b-cell state in all studies. Also stress I, stress II
and MHC/autoantigen-like cells were consistently captured in multiple
studies with a sufficiently large b-cell number (median >700 cells per
donor). b-Cell state fractions were not significantly increased in female
or male donors or correlated with age (Figure S3B, C), which indicates
that the observed donor variation is not strongly linked to these vari-
ables in the integrated datasets.
Collectively, these results established that changes in b-cell function
and maturation are reflected in the transcriptional profile of a cell and
include activation of stress pathways and differential hormone receptor
expression.

2.3. b-Cell maturation factors in human islets
For clinical research it is crucial to identify the transcriptional pro-
grams critical to induce or maintain a functional b-cell with high
insulin biosynthesis and secretion capacity. Single-cell sequencing
can reconstruct gene expression dynamics by RNA velocity inference
[59,60] and thereby reveal factors underlying a transcriptional state
change. We applied RNA velocity analysis to b-cells of each donor
separately, since current velocity inference methods cannot account
for batch- and or donor-variation. We then focused our analyses on
one donor (ID R266), in which all b-states were well represented
(Figure 3A), and confirmed the outcomes in the other four donors
(Figure S4A). We identified two regions with high dynamics that
captured in silico transcriptional state changes associated with b-
cell maturation and insulin secretion, respectively. For the flow from
immature to mature cells, we predicted high velocity for the
signaling proteins WNT4, BMP5 and PAK3, which are known
markers of mature b-cells [38,61,62] (Figure 3A). This showed that
maturity factors were actively transcribed in our immature cells,
which suggests that the inferred dynamics may recapitulate aspects
of b-cell maturation. Other genes with a similar dynamic behavior -
i. d. high velocity in the immature cluster and high expression in the
mature cluster - are additional putative maturation factors
(Figure 3B,C, Supplementary Table 5). For example, we identified
the co-regulatory nuclear receptor co-repressor 2 (NCOR2) as well
as LIM and calponin-homology domains 1 (LIMCH1) - a positive
regulator of non-muscle myosin II promoting focal adhesion as-
sembly - which, to our knowledge, have not been previously
associated with b-cell maturation (Figure 3C). Further also ephrinA5
(EFNA5), a well known factor of neurogenesis and potential regulator
of insulin secretion in b-cells [63], showed high velocity in immature
cells (Figure 3C). The inferred dynamic behavior of these genes was
confirmed in the other donors (Figure 4A, B). We verified the

transcriptional activity of the identified maturation-associated genes
during b-cell maturation in single-cell data of human b-cell
development from two studies [64,65] (Figure S5A-B, D-E). The
expression of WNT4, BMP5 and PAK3 as well as PAPSS2, LMO1,
NCOR2, LIMCH1 and EFNA5 and other identified factors was
increased in immature b-cells compared to b-cell progenitors and
precursors in fetal islets, which corroborates their role in b-cell
maturation (Figure S5C, F).
Within the mature b-cell cluster, our analysis indicated a static and
dynamic region of cells (Figure 3A,D). High velocity genes in themature
cluster were enriched for insulin secretion pathways and genes, which
suggests that these dynamics describe transcriptional state changes
from lower to higher insulin biosynthesis and or secretion activity
(Figure 3D, E, Supplementary Table 5). The high and low velocity
clusters were also separated by CD9 and NPY expression (Figure 3F).
CD9 has been proposed as a marker of functional b-cell heterogeneity,
which together with ST8SIA1 separates b-cells into four sub-
populations [66]. Additional markers of CD9þ and CD9- cells were
differentially expressed between high and low velocity mature cells
(Figure 3G). Within this classification scheme, NPY is a marker for CD9-

ST8SIA1þ cells, which showed higher glucose-stimulated insulin
secretion capacity consistent with the transcriptional activity in insulin
biosynthesis and or secretion observed here. We found high and low
velocity clusters with a similar marker expression profile also in the
mature cluster of three out of the four other human donors
(Figure S4C). In summary, our RNA velocity analysis predicts factors
that promote possible state transitions in the continuous transcriptional
b-cell landscape to and within mature b-cells. The predicted cellular
flows from stressed/immature-like to mature and within mature cells
indicate that these are likely interchangeable transcriptional states
located along gene expression gradients and not stable b-cell
subpopulations.

2.4. Human a-cell states
To describe molecular a-cell heterogeneity in human islets, we
refined the a-cell clustering and identified four a-cell states, which
were represented in all 5 donors (Figure 4AeC). As for b-cells we
used known marker genes and pathways as well as data-driven gene
sets to annotate and characterize the a-cell states (Figure 4DeF). We
annotated a cluster of approximately 50% of the a-cells as mature
(Figure 4AeF). The mature cells highly expressed known a-cell or
endocrine identity and maturation factors as well as glucose trans-
porters, hormone receptors, secretory-granule linked genes and ion
channels important for a-cell function (Figure 4D,E). These key
markers as well as pathways linked to a-cell function including
glucagon secretion, insulin regulation and the mitochondrial respi-
ratory chain were also captured by four a-cell gene sets (G7-8, 12e
13), which were activated in the mature a-cells (Figure 4F,
Supplementary Table 4). More than 30% of a-cells showed an in-
crease of PERK-mediated stress response genes and gene set scores
and a decrease of a-cell identity and function factors similar to stress
II b-cells and were therefore annotated as stress II a-cells
(Figure 4F,G). 1% of cells were MHC-like a-cells with increased MHC
gene expression and gene set activation (Figure S2G). The remaining
a-cell cluster had an immature or precursor-like profile (Figure 4F,H).
Multiple developmental markers including SOX4, SOX11, NRG1, ID1-
4, EPHB2 and EPHB6 were increased, while a-cell function genes
were decreased. Immature a-cells also activated gene sets enriched
for TGFb signaling, cell adhesion, ECM components, cytokines and
interferon response (G2-5) as well as several direct transcriptional
targets of the TGFb signaling or interferon response pathway
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(Figure 4F,H). We verified activation of these gene sets in endocrine
precursors and immature a-cells in single-cell data of human
pancreatic development [64,65] (Figure S5A, S6A,B). Fetal
FEVþ endocrine and a-cell precursors scored higher than a-cells for
the immature and TGFb-linked gene sets, but not for the inflam-
matory responses (Figure S6A, B). In addition, a subset of the
identified markers of immature a-cells were expressed in fetal pre-
cursors and a-cells, which together confirms that parts of the profile
of the immature adult a-cell state resembles that of developing a-
cells (Figure S6B). Stress-linked a-cells formed less distinct clusters
than stress-linked b-cells (Figure S6C), which indicates that a-cells
were transcriptionally more homogenous and elicited a smaller stress
response.

Finally, we leveraged published Patch-seq data to link the observed
transcriptional states to a-cell electrophysiology [4] (Figure S6D-G).
Cells from healthy donors mapped to the mature, immature and stress
II reference a-cell states, hence these transcriptional states are
robustly detected in different human data sets and donors (Figure S6D,
E). Like in our reference map, immature cells had increased expression
of developmental markers, TGFb signaling and interferon response
genes (Figure S6F). Stress II cells upregulated a canonical stress
response (Figure S6F). In both immature and stress II cells Naþ and
Early Ca2þ currents were decreased, while the other electrophysio-
logical parameters were unchanged (Figure S6G). Molecular hetero-
geneity described by a set of marker genes was already associated
with differences in Naþ and Early Ca2þ currents by [4]. Here, we

Figure 3: Predicted transcriptional dynamics in human b-cell maturation and insulin secretion. A) Cellular dynamics revealing areas of high induction and or repression of
gene expression in b-cells of one human donor (R-ID 266). Left: Cell transitions are inferred from estimated RNA velocities and the direction of inferred movement plotted as
streamlines on the UMAP. Colors indicate b-cell clusters. Circles highlight two areas of high velocity. Disconnected mtDNA deficient cluster was excluded. Right: UMAP showing the
velocity of selected genes with increased velocity in the corresponding circled area. Top genes indicate induction of transcription of genes involved in b-cell function and insulin
secretion. Bottom genes are associated with b-cell maturation. B) Velocity (top) and expression (bottom) of genes showing high velocity in immature b-cells along the cellular
transition from immature to mature b-cells inferred from velocities. Cells were ordered by velocity pseudotime. Velocities and expression were scaled per gene. C) Left: Gene-
resolved velocities of factors driving the transition from immature to the mature b-cell cluster. Purple lines indicate dynamics fitted with a full dynamical model. Right: Dotplot
showing mean velocity per b-cell cluster. Selected known genes involved in b-cell maturation and potential novel genes important for maturation are shown. D) UMAP indicating
two clusters of mature b-cells with high or low velocity. E) Selected top enriched Gene Ontology (GO) terms in high velocity genes of mature b-cells indicate induction of genes
involved in insulin secretion. Gene enrichment was performed with EnrichR using a modification of the Fisher’s exact test. F) Expression of two known markers of b-cell het-
erogeneity, CD9 and NPY, separates the two mature clusters in D). G) Expression of genes previously described to separate CD9þ and CD9- b-cells in high and low velocity mature
b-cells. Color intensity indicates mean expression in a cluster, dot size indicates the proportion of cells in a cluster expressing the gene. Expression is scaled per gene.
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Figure 4: Transcriptional a-cell heterogeneity and states in human islets. A) UMAP plot of 110541 human a-cells. Colors highlight clustering into four different a-cell states.
B) Cell densities in UMAP space for five human donors shows that all a-cell clusters are represented by all donors. ID indicates donor ID for ADI IsletCore (see also Figure S1A). C)
Fraction of cells per a-cell clusters. Error bar indicates donor variation. D-G) Characterization of a-cell clusters. D-E, G-H) Expression of selected known a-cell identity and maturity
markers (D), functional markers (E), adaptive stress response genes (G) and genes involved in pathways describing immature a-cells (H). Color intensity indicates mean expression
in a cluster, dot size indicates the proportion of cells in a cluster expressing the gene. Expression is scaled per gene. F) Gene sets capturing variation in human a-cells that describe
biological processes. Gene sets are groups of highly correlated and or anti-correlated genes identified using hierarchical clustering on the correlation matrix of the top 3000 variable
genes. Left: Scaled mean score for each gene set per a-cell cluster. For each gene set selected a-cell identity or functional marker genes are indicated. Right: Summary of
selected enriched pathways for each gene set indicating biological processes associated to gene sets. Coloring indicates the highest scoring a-cell cluster.
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Figure 5: Cross-species mapping of a- and b-cell states. A-D) Cross-species mapping of a- and b-cell states. A,C) Representation and cross-species mapping of b- (A) and
a-cells (C) by gene set activation scores. UMAP plot (left) shows human cells, where each cell is represented by an activation score of the corresponding cell gene sets. Pig and
mouse cells were mapped to the human reference data through projecting on the human gene set representation. Embedding and labels are mapped using the Scanpy ingest
functionality (see Methods). The barplot indicates the frequencies of mapped clusters for pig and mouse. B, D) Graph showing global transcriptome correlation of b-(B) and a-(D)
cell clusters across species. Edge weights indicate pearson correlation coefficient (see also Figure S4B). Nodes are colored by b-cell clusters. E) Pairwise correlation of the
expression pattern across endocrine cell states computed using detected hormone or hormone-like receptors (top) or ion channels (bottom). a- And b-cells were subset to mature
state. List of hormone receptors was manually curated. List of ion channels contains calcium, sodium, potassium and transient receptor potential ion channels. Pearson correlation
is computed using the harmonic average of mean expression and fraction of cells expressing a gene in a group across all cell types (see Methods). Pearson correlation coefficient is
indicated. F) Expression of selected hormone receptors (left) and ion channels (right) showing differential expression patterns in endocrine cell states across species. a- And b-cells
were subset to mature state. Hormone and peptide ligands for receptors are indicated. Color intensity indicates mean expression in a cluster, dot size indicates the proportion of
cells in a cluster expressing the gene. Expression is scaled per gene.
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established that two transcriptionally distinct states may underlie this
functional a-cell heterogeneity highlighting two potential routes that
lead to decreased function.

2.5. Cross-species mapping of human a- and b-cell heterogeneity
Gene sets are a data representation, which captures the human a- and
b-cell biology but removes species- or batch-specific details and
overcomes technical artifacts like the limited annotation and capture
rate in pig. If one assumes that the subset of mappable genes is
sufficient to indicate activation of the full gene set, the gene set space
corresponds to normalizing the data per functional gene set unit. To
assess conservation of the human a- and b-cell states, we repre-
sented each cell as an activation score of the human a- or b-cell gene
sets, respectively, and projected mouse and pig cells to the human
reference map (Figure 5A,C).
The majority of pig and mouse b-cells mapped to the mature human
reference cluster and scored high for the identified maturity gene sets
(Figure 5A, Figure S7A). The mapped mature cells highly expressed b-
cell identity and maturity markers and their gene expression profiles
strongly correlated with the human mature profile (Figure 5B, Figure
S7B, C), which validates our gene set-based mapping strategy. A
smaller cluster of pig and mouse cells resembled immature cells and
showed decreased levels of maturity gene set scores and markers
(Figure 5A, Figure S7A, B). Moreover, a small fraction of cells mapped
to the stress I and stress II references (Figure 5A). In mice, the
expression profiles of immature, stress I and stress II correlated
stronger with each other, cells clustered more tightly, and activation
level differences of markers and gene sets were smaller than for hu-
man and pig b-cells (Figure 5B, Figure S7A-D). For example, multiple
stress response genes including ATF3, DDIT3, PPP1R15A, HSPA1B,
DNAJB1, SYNV1, DERL3, FKBP11, SXRN1 were expressed in most
mature and non-mature mouse b-cells, while they were more spe-
cifically increased in stress I or stress II clusters of pig and human b-
cells (Figure S7D). Hence, mouse b-cells were more homogeneous
than human and pig b-cells and adopted a mature or immature-like
state with high basal expression of stress-response factors but not a
distinct stress-associated state. Lastly, we identified in both pig and
mouse b-clusters that mapped to the MHC/autoantigen human b-cells,
which activated the MHC/autoantigen-associated gene set (G9) and
decreased the ribosome/translation-associated gene set (G4), and
whose profiles strongly correlated with their human counterparts. This
indicates that the MHC/autoantigen b-cell state is evolutionarily
conserved.
Pig and mouse a-cells mapped to mature, immature and stress II
reference states and were similarly distributed as human a-cells
(Figure 5C). In mature cells identity and maturation markers as well as
maturity gene set activation were conserved and their transcriptomes
correlated across species (Figure 5D, Figure S7E-G). The tran-
scriptomes of immature and stress II cells correlated strongly across
and within species (Figure 5D, Figure S7F). Like in human a-cells,
immature cells had increased activation of TGFb-associated genes and
a subset of other developmental factors (Figure S7H). However, we did
not detect increased cell adhesion/ECM factors or an inflammatory
response in pig and mouse cells. Similar to b-cells, in mouse
expression level differences of stress-associated genes were smaller
and stress II cells less distinct from mature/immature cells than in
human and pig (Figure S7G, I). To confirm that the cross-species
comparison and observed states are robust across datasets we
mapped a- and b-cells of three additional healthy mice [67] to our
human references (Figure S8, Methods). For both a- and b-cells,
detected states and state fractions (Figure S8A,C) and gene set

activation (Figure S8B,D) were consistent with results observed for the
mouse data used in this study. Together, our analyses suggest that the
spectrum of human transcriptional a- and b-cell heterogeneity
including stress-associated states were better captured in our pig than
mouse data.
Finally, we investigated conservation of the transcriptional profile of
human mature states. We first focused on mappable genes within the
a- and b-maturity gene sets, respectively. Of these genes more than
60% were conserved in mature b-cells and more than 70% were
conserved in mature a-cells of pigs and mice (Figure S7J). Moreover,
putative human b-cell maturation factors identified by RNA velocity
analysis were expressed in mouse and pig mature b-cells
(Figure S7K). Finally, to approximate conservation of hormone/peptide
signaling and excitability in mature cells we explored hormone or
hormone-like receptors and ion channels in mature a- and b-cells and
the other endocrine cell types d- and PP-cells. Overall, the expression
patterns across endocrine cell types of both detected hormone re-
ceptors and ion channels (calcium, potassium, sodium and transient
receptor potential ion channels) correlated stronger between human
and pig than human and mouse (Figure 5E). Differentially expressed
receptors in mouse when compared to human islets included for
example the prolactin receptor (PRLR), leptin receptor (LEPR), Vitamin
D receptor (VDR), growth hormone receptor (GHR), Natriuretic peptide
receptor A (NPR1), Estrogen receptor 1 (ESR1), Progesterone receptor
(PGR), Vasoactive intestinal polypeptide receptor (VIPR), guanylate
cyclase-C receptor (GUCY2C), secretin receptor (SCTR), prostanoid
receptors (PTGER3, PTGER4, PTGFR) as well as ferroportin (SLC40A1)
(Figure 5F). PRLR, VDR, VIPR, NPR1, GUCY2C and GHR were highly
expressed in mouse but low or absent in pig and human mature b-
cells and instead detected in other endocrine cell types. Similarly,
ADRB2, PGR and ESR1 were expressed in human but not in mouse b-
cells, and, ADRB2 but not PGR and ESR1 was also detected in pig b-
cells. We confirmed that all of these receptors were unique or
enriched in mouse or human b-cells, respectively, in bulk b-cell
transcriptomes of human and mouse islets [36]. Surprisingly, pig b-
and a-cells expressed PTGER3 and PTGER4, which in mice have been
reported as b-cell dedifferentiation markers. Especially, PTGER3 was
strongly upregulated in STZ-treated diabetic b-cells (Figure S7L). In
humans, PTGER3 and PTGER4 were expressed in a-cells. Ion chan-
nels with differential expression in mouse and human b-cells included
potassium channel KCNJ8, sodium channel SCN3B and calcium
channels CACNA1H and CACNA2D2 (Figure 5F). KCNJ8 was expressed
in all human endocrine cell types and in pig d-cells but not detected in
mice. SCN3B, CACNA1H and CACNA2D2 were expressed in all human
and pig cell types, but only in mouse d-cells. Like prostanoid re-
ceptors, these channels were increased in diabetic b-cells of STZ-
treated mice (Figure S7L).
In summary, the identified species-specific expression patterns of
hormone receptors and ion channels suggest that these functional
genes are better conserved in pig than mouse endocrine cells.
Moreover, they exemplify the value of this data resource to explore
differences between human and two commonly used animal models.

3. DISCUSSION

Our single-cell data of human, pig and mouse endocrine islet cells is a
foundational resource for advancing our understanding of human
endocrine heterogeneity and its conservation in clinically relevant
animal models. We characterized a compendium of human tran-
scriptional a- and b-cell states, which represent a reference to
investigate endocrine cell function, maturation and disease-associated
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phenotypes. The distinct non-mature a- and b-cell states (immature/
stress/MHC) do not necessarily represent cells found as such in vivo in
healthy patients, but likely have been induced during tissue isolation,
processing, storage and transport. Moreover, the in silico predicted
transcriptional dynamics indicate that these states are likely physio-
logical and interchangeable states different from stable sub-
populations, which transition only upon specific signaling cues and can
be followed by lineage tracing [38]. Nevertheless, the captured cell
states model mature, functional a- and b-cells as well as different
types of endocrine cell stress. For example, our analyses revealed
novel putative b-cell maturation markers (e.g. NCOR2, LIMCH1,
EFNA5) and a distinct, conserved immature a-cell state with increased
expression of developmental markers (e.g. WNT2, SOX4, SOX11),
members of the TGF-b signaling pathway (e.g. TGFB1, ID1-3, SOCS3,
TNC), integrins (e.g. ITGA2, ITGA6) and a cytokine response. Endocrine
precursor cells of fetal human islets share parts of the transcriptional
profile of immature-like a-cells [64]. Stressed a- and b-cells differ-
entially express markers of hormone biosynthesis and secretion and
regulatory hormone receptors and match cells with divergent elec-
trophysiological properties, which may mirror aspects of the patho-
logical phenotype reported for type 1 and type 2 diabetic islet cells
[68]. We found that b-cells responded diversely to the multiple
exogenous stressors they were exposed to during processing and
described three distinct states linked to stress. These included a rare,
but conserved b-cell state with a reduced expression of factors gov-
erning general transcription and translation, but increased MHC-class I
and antigen expression. This suggests that in a state of high stress, in
which global transcription is diminished, b-cells can maintain
expression of identity genes and enhance antigen presentation activity,
of which the latter is a gene program also observed in b-cells of T1D
patients. Overall, we hope that this comprehensive human islet cell
map will guide future hypotheses on the control and molecular basis of
functioning islet cells and their response to stress, while also informing
the path to successful therapeutic reestablishment of islet cell function
in diabetic patients.
Despite correlation of whole transcriptional profiles and TF expression
patterns of cell states, the conservation of human gene expression is
surprisingly low (50e60%). We may have underestimated conserva-
tion due to detection limits inherent to single-cell RNAseq data and, for
pig, due to the sparser coverage and annotation of the genome.
Nonetheless, our findings suggest that large parts of gene expression
patterns are evolutionarily labile, while important identity and func-
tional marker genes and TF expression patterns are conserved. This is
consistent with previous reports that showed similarly low conserva-
tion of cell type enriched genes between human, mouse and zebrafish
[69]. These species-differences likely do not result in altered functional
or phenotypic cell states, but they can become relevant in animal
studies designed to identify pathological programs and clinical targets.
Our analyses provide evidence that pigs can be a surrogate model of
gene expression relevant for human endocrine cell function. We
showed that, overall, expression and cell type-specificity of regulatory
units like TFs, hormone/peptide signaling and cell excitability are better
mirrored in pig than mouse islet cells. For example, mature human and
pig a- or b-cells shared functional regulators not observed in mouse,
which included the TFs ID1-4, the surface hormone receptors ADRB2
and PTGER3 and the ion channels SCN3B, CACNA1H and CACNA2D2.
These examples correspond well with reported differences between
human and mouse b-cells [36], and illustrate the value of this data
resource to reveal species-specific expression of targets governing
glucose sensing and hormone secretion and to complement existing
data sources of humans and mice. Finally, we observed that in our data

the extent of human transcriptional a- and b-cell heterogeneity -
especially expression gradients of stress-associated genes - is better
conserved in pigs than in mice. While a- and b-cells of all three
species adopted mature and more immature-like states, only human
and pig cells formed distinct stressed states. In mice, stress-response
factors (e.g. DDIT3, PPP1R15A, DERL3, ATF3, DNAJB3, HSPA1B) were
expressed more homogeneously with a high basal level even in the
mature state.
Altogether, our cross-species islet map provides a framework for
investigating the transcriptional programs of human endocrine cells
and represents a FAIR data resource [26] that can inform future studies
where mouse and pig will fail to model human islet biology.

4. METHODS

4.1. Cell sources
Primary human islets were obtained from the IsletCore facility
(Edmonton, AB, Canada) with informed consent. Detailed donor in-
formation can be accessed via https://www.epicore.ualberta.ca/
isletcore/ using the R-IDs indicated for each donor in Figure S1.
A female retired breeder Göttingen minipig (age: 3 years, 8 months)
was purchased from Ellegaard (Denmark) and housed under standard
conditions (19e23 %C; 40e70% relative humidity; 12:12 h day/night
cycle). Pancreas retrieval and islet isolation was conducted as previ-
ously described [70]. Briefly, pancreas was preserved in Custodiol"-
HTK solution for 2.5 h (cold Ischemia time). For islet isolation cold
perfusion solution (Corning", NY, USA) with Collagenase NB8 (4 U/g
tissue), neutral protease (0.4 U/g tissue; both Serva, Heidelberg,
Germany) and 100 mg DNase (Roche Diagnostics, Mannheim, Ger-
many) were infused into the pancreatic duct. The digestion was per-
formed by a modified Ricordi method at low temperature (34 %C) and
with minimal mechanical force. Islets were separated from exocrine
tissue by centrifugation on a discontinuous Ficoll (SigmaeAldrich,
Taufkirchen, Germany) density gradient in a COBE 2991 cell processor
(Terumo BCT). After purification, islets were cultured in CMRL 1066
medium supplemented with 10% heat inactivated FBS, 100U/mL
penicillin, 0.1 mg/ml streptomycin (all Gibco", Darmstadt, Germany)
and 32.5 mM L-glutathione (SigmaeAldrich, Taufkirchen, Germany) at
37 %C in a 5% CO2 incubator.

4.2. Single-cell suspension
To obtain a single-cell suspension of human and pig islets, 60 islets
were hand-picked into a 1.5 ml Eppendorf tube, pelleted (280 g,
1 min), washed with PBS (minus Mg or Ca, Gibco) and digested with
Tryp-LE (Gibco) at 37 %C for 12 min. During the incubation step with
Tryp-LE, islets were mechanically disaggregated with a 1 ml pipet tip
every 2e3 min. The digestive reaction was then stopped by adding
FACS-buffer (PBS, 2% FCS, 2 mM EDTA) and cells were pelleted
(280 g, 3 min). Cells were stained with trypan blue to visualize dead
cells and counted with a hemocytometer.

4.3. Single-cell sequencing
Single-cell libraries were generated using the Chromium Single Cell 30

library and gel bead kit v2 (PN #120237) from 10x Genomics. Briefly,
we targeted 100000 cells per sample by loading 16,000 cells per
sample onto a channel of the 10x chip to produce Gel Bead-in-
Emulsions (GEMs). This underwent reverse transcription to barcode
RNA before cleanup and cDNA amplification followed by enzymatic
fragmentation and 50adaptor and sample index attachment. Libraries
were sequenced on the HiSeq4000 (Illumina) with 150 bp paired-end
sequencing of read2.
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4.4. Preprocessing and quality control of scRNA-seq data
For human and pig single-cell samples, the CellRanger analysis
pipeline (v2.0.0) provided by 10x Genomics was used to demultiplex
binary base call (BCL) files, to align and filter reads and to count
barcodes and unique molecular identifiers (UMI). Barcodes with high
quality were selected based on the distribution of total UMI counts per
cell using the standard CellRanger algorithm for cell detection. All
downstream analyses were run with python3 (v>¼3.5) using the
Scanpy package [71] (v>¼1.4, https://github.com/theislab/scanpy)
except stated differently. Python package versions that may affect
numerical results are indicated in the available jupyter notebooks (See
Data and Code availability). Genes with expression in less than 20 cells
were excluded. Low quality or outlier cells were removed if the fraction
of mitochondria-encoded counts was above 20%; (2) and based on
total UMI counts and total genes. In human samples, thresholds were
defined per sample after visual inspection of the total UMI count and
total gene distributions as recommended [72] (for threshold values,
see Data and Code availability and provided analysis notebooks). Cell-
by-gene count matrices of all samples of one species were then
concatenated to a single matrix. To account for differences in
sequencing depth, UMI counts of each cell were normalized using the
SCRAN algorithm [73] as implemented in the scran R package [74] and
values were log-transformed (log (countþ1)). Sample differences in
human and pig samples were corrected as recommended [75] using
the python implementation of ComBat [76] (https://github.com/brentp/
combat.py) adopted by Scanpy (pp.combat) with default parameters
and specifying each sample as one batch. Zero values were kept as
zero even after correction to avoid spurious sample-to-sample differ-
ences around zero.
For mouse single-cell data [11] the filtered and annotated raw count
matrix was downloaded from the Gene Expression Omnibus (GEO)
(GEO accession number: GSE128565). The raw count matrix was
filtered by subsetting to cells present in the filtered count matrix.
Counts of each cell were normalized by total counts of that cell
(pp.normalize_total with exclude_highly_expressed ¼ True). Highly
expressed genes (genes with more than 5% of total counts in a cell)
were excluded from total counts for each cell before normalization.
Counts were then log-transformed (log (countþ1)).
These count matrices were used as input for further analyses unless
indicated. Data from each species was analyzed separately until cross
species mapping described below. Custom scripts with source code
for all analyses of scRNA-seq data are available as jupyter notebooks in
a github repository (https://github.com/theislab/2022_Tritschler_
pancreas_cross_species) and the scRNA-seq data can be explored
in the cellxgene data portal (https://cellxgene.cziscience.com/
collections/0a77d4c0-d5d0-40f0-aa1a-5e1429bcbd7e).

4.5. Single cell manifolds, clustering and annotation
The manifolds and clusterings for the human, pig and murine endo-
crine cells and the human a- and b-cells were computed separately by
performing the following steps. A single-cell neighborhood graph
(kNN-graph was computed on the top principal components: 50 first
for endocrine cells and a-cells, 25 first for b-cells) using 15 neighbors.
Genes with expression in less than 10 cells were excluded. To
calculate the principal components top highly variable genes were
used as identified by the highly_variable identification function in
Scanpy (pp.highly_variable, top 4000 for mouse endocrine cells, top
2000 for others). Clustering was performed using louvain-based
clustering [77] as implemented in louvain-igraph (v0.6.1 https://
github.com/vtraag/louvain-igraph) and adopted by Scanpy (tl.lou-
vain). The resolution parameter was varied in different parts of the data

manifold to account for strong changes in resolution (for details, see
Data availability and provided analysis notebooks). For single-cell
manifolds and visualization UMAP was run as recommended [78]
and adopted by Scanpy. From the initial data mono-hormonal endo-
crine cells were annotated based on expression of genes encoding the
four main islet hormones: insulin for b-cells, glucagon for a-cells,
somatostatin for d-cells, pancreatic poly-peptide for PP cells and
ghrelin for epsilon cells. Clusters expressing known markers of non-
endocrine cells (for example SPP1 for ductal cells, PRSS2 for acinar
cells, PLVAP for endothelial cells, PTPRC for immune cells or COL1A1
for fibroblasts and stellate cells), cells identified as doublets based on
scores computed with the Scrublet algorithm [79] (v0.2.1, https://
github.com/AllonKleinLab/scrublet) and co-expression of marker
genes, and polyhormonal cells expressing multiple pancreatic hor-
mones were excluded. a- And b-cell states were annotated as
described in the main text. Clusters expressing the same hormones,
markers or gene sets (a- and b-cell states) were merged (see also
Data availability and provided analysis notebooks).

4.6. Gene orthologue mapping
To identify the genes mappable between species we used the R-based
biological entity dictionary (BED). Briefly, first, ensembl gene names of
pig samples were converted to human and mouse ensembl gene
names, and then subset to the genes shared across species, detected
in the data and with an ID set as preferred by the BED tool. For genes
that did not map 1:1 between pig and human or pig and mouse
(approximately 5% of all genes) the gene with the maximal expression
in the corresponding species-data was kept. The list of mappable and
detected genes is provided in the github repository (https://github.com/
theislab/2022_Tritschler_pancreas_cross_species/BED_mapping_
genes.csv).

4.7. Marker gene detection and comparison
Enriched marker genes of endocrine cell types were identified by
comparing the mean expression of cells of one cell type to the mean
expression of cells in all other cell types within each species. Genes
that were expressed in at least 5% of the cells of the cell type and were
increased by at least 1.4 fold (log2 (fold change) > 0.5) were defined
as enriched marker genes.

4.8. Correlation based-gene sets of human a- and b-cells
Gene sets of human a- and b-cells were identified by clustering the
top 3000 variable genes based on their pairwiseepearson correlation
values across human a- or b-cells, respectively, as previously
described in [39] to identify de novo gene sets. Genes detected in less
than 20 a-/b-cells were excluded. Clustering was performed using
Ward’s method and euclidean distance as implemented in the scipy
python package [80] (v.1.5.4). Functional enrichment of gene sets was
performed as described below. Gene sets with very low average
correlation (<0.005) were excluded from downstream analyses.

4.9. Similarity of gene expression patterns
Similarity of gene expression patterns was estimated by pearson
correlation coefficients of gene expression across cell types or states to
account for cell type or state-specificity. To leverage all information
gained from single cell resolution, Pearson correlation coefficients
were computed using the harmonic average of mean expression and
fraction of cells expressing a gene in a group across all cell types. To
account for differences in detection limits and sequencing depth the
fraction of cells expressing a gene in a group was normalized to the
mean fraction per group and species.
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4.10. Pathway and transcription factor sources and pathway
enrichment
Pathway enrichment of gene lists and sets was performed using
EnrichR [81] as adopted by the enrichr functionality in the gseapy
package (https://github.com/zqfang/GSEApy/). To evaluate hallmarks
and stress pathway activations, hallmark and ontology gene sets were
downloaded from the Molecular Signatures Database v7.2 of the Broad
Institute. To identify transcription factors within gene lists a list of
human transcription factors was downloaded from the Human Tran-
scription Factor Database [82] (http://bioinfo.life.hust.edu.cn/
HumanTFDB, v1.01).

4.11. Gene set activation and cell scores
Gene set or pathway activation in a cell was computed using the cell
scoring function described by [83] and implemented in Scanpy
(tl.score_genes). Briefly, the activation score of a cell is the average
expression of genes of the gene set in a cell subtracted with the
average expression of genes of a randomly sampled background set
with expression values within the same range.

4.12. Characterization of T1D b-cells
Raw count matrices of cells from healthy and T1D patients generated
by [42] were downloaded from GEO (Accession number GSE121863).
Genes expressed in less than 10 cells were excluded. Raw counts of
each cell were normalized by total counts of that cell not considering
highly expressed genes for the total count normalization factor of a cell
(pp.normalize_total with exclude_highly_expressed ¼ True) and log-
transformed (log (countþ1)). Mono-hormonal b-cells were identified
by iterative clustering and annotation as described above. The T1D b-
cell score was computed based on the top 50 differentially expressed
genes between b-cells from healthy and T1D donors (Welch’s t-test, tl.
rank_genes_groups).

4.13. Characterization of fetal human precursor a- and b-cells
Raw count matrices generated by [64] were downloaded from the data
visualization center descartes (https://descartes.brotmanbaty.org/bbi/
human-gene-expression-during-development/). The rsd-file was
loaded into R and an AnnData object was generated for downstream
analysis with the rpy2 (v3.3.5, https://github.com/rpy2/rpy2) and
anndata2ri (v1.0.4, https://github.com/theislab/anndata2ri) python
packages. Raw count matrices generated by [65] using the 10X Ge-
nomics technology were downloaded from OMix (https://bigd.big.ac.
cn/omix/) using the identifier OMIX236. An AnnData object was
generated for downstream analysis.
Both datasets were processed and analyzed following the same
steps: Genes expressed in less than 10 cells were excluded. Raw
counts of each cell were normalized by total counts of that cell.
Highly expressed genes in a cell were not considered for the total
count normalization factor of that cell (pp.normalize_total with
exclude_highly_expressed ¼ True). Counts were then log-
transformed (log (countþ1)). Pancreatic cell types and endocrine
clusters were identified by clustering and annotation using markers
described above. To distinguish epithelial from mesenchymal cell
clusters the markers EPCAM and VIM were used. In [65], to detect
neuronal or neuroendocrine cell clusters ASCL1 was used, for trunk
and ductal clusters HES1, SAT1 were used, and for tip and acinar
clusters CTRB1, GP2, RBPJL were used. Endocrine progenitors were
identified based on the expression of progenitor marker genes SOX4
and NEUROG3, precursors using marker gene FEV and PAX4 (b-cell
lineage) and ARX (a-cell lineage) amongst others.

4.14. Inference of b-cell dynamics using RNA velocity
To infer cellular dynamics in b-cells, RNA velocities were estimated
for each human donor with a steady-state model as initially proposed
by [60] and adopted and extended by [59] and in the scVelo python
package (v0.2.2, https://github.com/theislab/scvelo). Splicing infor-
mation of reads (spliced/unspliced) was extracted from the bam-files
using the velocyto pipeline (http://velocyto.org). The resulting loompy
file was then read into an AnnData object for downstream analysis
with scVelo and Scanpy. To estimate velocities and infer cellular
transitions the following steps were performed as recommended.
First, genes were filtered with shared spliced and unspliced
expression in less than 10 cells, the spliced and unspliced count
layers were normalized to the initial total count per cell and log
transformed (log (countþ1)), and top 4000 variable genes were
selected. Next, first- and second-order moments were calculated for
each cell across its nearest neighbors of a kNN in principal com-
ponents space (number of neighbors ¼ 30, number of PCs ¼ 30).
Then velocities were estimated by fitting a steady-state model of
transcription for each gene. Finally, a velocity graph was computed
from the cosine similarities between the cell state change predicted
by the velocity vector and possible cell transitions in the kNN. To
compute the graph only genes with a likelihood >0.1 were consid-
ered. Using this graph the estimated velocities were then projected to
the original UMAP space. To identify enriched velocity genes in
mature and immature cells a differential expression test on velocities
was applied comparing the velocity of one to all other clusters (Welch
t-test with overestimated variance, tl. rank_velocity_genes). The
velocity pseudotime was computed based on the directed velocity
graph as implemented in scVelo (tl.velocity_pseudotime). The velocity
pseudotime is a directed random-walk based distance measure
between cells.

4.15. Cross-species mapping of a- and b-cell states
Mouse and pig a- and b-cells were mapped separately onto the hu-
man a- and b-cell reference states using the Scanpy ingest func-
tionality (tl.ingest). Briefly, genes were subset to mappable genes and
cells were scored for activation of the identified human gene sets. The
gene set score matrix was scaled to standard variation (pp.scale). A
single-cell manifold was then computed for human cells in gene set
space applying the UMAP algorithm on the calculated kNN in PC space.
Mouse and pig cells were mapped to the human reference through
projecting to the PC space of the human cells. To map the single-cell
embedding the UMAP package is used. Cell type labels are mapped
using a kNN classifier.
Additional publicly available mouse data to confirm the cross species
mapping were downloaded from GEO with accession number
GSE162512 [67] and an AnnData object was generated. Cells with less
than 200 total counts or 200 total genes expressed were filtered. Genes
expressed in less than 10 cells were excluded. Raw counts of each cell
were normalized by total counts of that cell not considering highly
expressed genes for the total count normalization factor of a cell
(pp.normalize_total with exclude_highly_expressed ¼ True) and log-
transformed (log (countþ1)). Single-cell manifold generation, clus-
tering and cluster annotation were performed as described above for the
data of this study using top 2000 highly variable genes, 50 top principal
components, a neighborhood size of 15 and known marker genes.

4.16. Mapping of Patch-Seq data to a- and b-cell states
Raw count matrices and metadata files including cell type annotations
of Patch-Seq data from a- and b-cells generated by [4] were
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downloaded from https://github.com/jcamunas/patchseq/tree/master/
data. An AnnData object was generated from the text-files for down-
stream analysis. Genes expressed in less than 5 cells or with less than
10 total counts were excluded. Raw counts of each cell were
normalized by total counts of that cell. Counts were then log-
transformed (log (countþ1)). Data was subset to a- and b-cells us-
ing the provided cell type labels and mapped to our human reference
states as described above for the cross-species mapping. Genes in
gene sets were subset to 150864 overlapping genes between the two
studies before scoring. The data was then subset to patch-clamped
cells from healthy donors. Cell states with <3 cells were excluded.

4.17. Mapping of 9 publicly available datasets to b-cell states
Raw count matrices and metadata of publicly available single-cell
RNAseq datasets of pancreatic islets of healthy human donors
were downloaded from GEO from accession numbers GSE114297
[9], GSE84133 [13], GSE86469 [55], GSE85241 [14], GSE81547
[25], GSE183568 [56], GSE101207 [58], and the cellxgene data
portal (https://cellxgene.cziscience.com/collections/51544e44-293b-
4c2b-8c26-560678423380) [57]. An AnnData object was generated
for downstream analysis. Cells with less than 200 total counts or
genes expressed were filtered. Genes expressed in less than 10 cells
were excluded. Raw counts of each cell were normalized by total
counts of that cell not considering highly expressed genes for the
total count normalization factor of a cell (pp.normalize_total with
exclude_highly_expressed ¼ True) and log-transformed (log
(countþ1)). Additionally, the processed count matrix was down-
loaded from ArrayExpress (EBI) with accession number E-MTAB-
5061 [23], an AnnData object was generated and counts were log-
transformed (log (countþ1)).
Single-cell manifold generation, clustering and cluster annotation were
performed as described above for the data of this study using top 2000
highly variable genes, 50 top principal components, a neighborhood
size of 15 and known marker genes. For GSE81547 [25] and
GSE101207 [58] data of individual donors was integrated before
computing the UMAP and clusters using the BBKNN alignment method
[84]. For datasets from E-MTAB-5061 [23], GSE84133 [13,57] original
cell type labels were kept.
The datasets of each study were then subset to a- and b-cells using
the cell type labels and mapped to our human reference states as
described above for the cross-species mapping. Genes in gene sets
were subset to genes overlapping with this study before scoring.

4.18. Data and code availability
Annotated single-cell data can be explored and queried in the cellxgene
data portal (https://cellxgene.cziscience.com/collections/0a77d4c0-
d5d0-40f0-aa1a-5e1429bcbd7e) and were added to the sfaira data
zoo [27]. Pig data was mapped and subset to human genes in the
cellxgene portal. Raw data and count matrices of scRNA-seq data are
available on GEO (accession number: GSE198623). Custom python
scripts written for performing scRNA-seq analysis are available as
jupyter notebooks in a github repository (https://github.com/theislab/
2022_Tritschler_pancreas_cross_species). Python package versions
that may affect numerical results as well as specific parameters and
threshold values for all analyses are indicated in the scripts.
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A
ID sex age BMI HbAC1 %

R229 female 22 23,0 5,3

R239 female 24 22,0 5,5

R237 male 61 19,6 5,9

R245 male 63 22,3 5,6

R266 female 74 29,2 6,0

Supplementary Figure 1 Conservation of gene expression in scRNA-seq data of 
human, mouse and pig islet cells 
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Supplementary Figure 1 Conservation of gene expression in scRNA-seq data of 
human, mouse and pig islet cells

A) Metadata of the 5 human donors. ID indicates donor ID for ADI IsletCore (see Material & Methods).

B) Quality control metrics of scRNA-seq data.

C) Scatter plot of the top two principal components. Cells are colored by species.

D) Summary of conservation of human gene expression in pig and mouse in endocrine cell types. A 
gene is considered expressed if detected in >5% of the cells of the cell type.

E) Expression of selected genes in human, pig and mouse endocrine cell types exemplifying 
conservation, “gain” and “loss” of expression shown in C. Color intensity indicates mean expression in a 
cluster, dot size indicates the proportion of cells in a cluster expressing the gene.

F) Comparison of conserved β-cell genes to β-cell core genes derived from human and mouse bulk β-
cell transcriptomes [36]. Left: Venn Diagram showing the overlap of reported β-cell core genes (9’474) 
and our list of mappable genes (11’665). Right: Barplot indicating conservation of 8105 overlapping β-
cell core genes between human and mouse β-cells. A gene is considered expressed if detected in >5% 
of the cells of the cell type.

G-I) Pairwise correlation of TF expression patterns between species for each cell type. Pearson 
correlation is computed on a subset of TF as indicated using the harmonic average of mean expression 
and fraction of cells expressing a gene in a group across all cell types (Material & Methods). Pearson 
correlation coefficient is indicated. G) Cell-type enriched marker TFs conserved across species as 
shown in Figure 1G. H) All TFs enriched in human cell-types. I) All TFs with conserved expression 
across species.
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Supplementary Figure 2 Transcriptional profiling of human β-cell states
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Supplementary Figure 2 Transcriptional profiling of human β-cell states

A) Cell scores indicating hallmark pathway activation in β-cell clusters. Top 5 enriched hallmarks are 
shown per cluster. Scaled scores per pathway are shown.

B) Expression of β-cell disallowed genes in β-cell clusters. Color intensity indicates mean expression in 
a cluster, dot size indicates the proportion of cells in a cluster expressing the gene. Expression is scaled 
per gene.

C) Variance of non-scaled gene set scores across all β-cells indicating magnitude of activation level 
differences across clusters.

D-F) Comparison of the transcriptional profile of the identified MHC/autoantigen β-cell cluster to β-cells 
from T1D patients [42]. D) UMAP plot of β-cells from healthy and T1D patients. T1D score indicates 
increased expression of T1D-associated genes in the MHC/autoantigen cluster. The T1D score is 
computed from the top differentially expressed genes between β-cells of T1D patients and healthy 
individuals. E) Expression of MHC genes in healthy and T1D β-cells. F) Gene sets increased in 
MHC/autoantigen cluster are also increased in T1D β-cells.

G) UMAP plot of endocrine cells colored by MHC/autoantigen gene set (G9) scores. Circles highlight 
clusters with high activation scores in α-, β- and δ-cells.

H) Expression of RNA polymerase II and general transcription and translation factors expressed in >200 
β-cells. Color intensity indicates mean expression in a cluster, dot size indicates the proportion of cells 
in a cluster expressing the gene. Expression is scaled per gene.

I) UMAP plot of human β-cells colored by data quality metrics. Top: Percentage of counts from 
mitochondria-encoded RNA, middle: total number of counts per cell, bottom: total number of genes per 
cell.

J) Cells scores indicating stress pathway activation in β-cell clusters. Scores were computed based on 
the expression of genes in the corresponding GO pathways (see Methods).

K) Expression of transcription, signaling and growth factors in β-cell clusters. Genes were described to 
be significantly downregulated by glucocorticoid signaling in human islets [45]. Color intensity indicates 
mean expression in a cluster, dot size indicates the proportion of cells in a cluster expressing the gene. 
Expression is scaled per gene.

L,M) Expression of ion channels (L) and selected components of cAMP signaling pathway (M) 
expressed in >200 β-cells. Color intensity indicates mean expression in a cluster, dot size indicates the 
proportion of cells in a cluster expressing the gene. Expression is scaled per gene.

N,O) Excitability of β-cell states measured in single-cell Patch-Seq data [4]. State labels were mapped 
in the β-cell gene set representation using the Scanpy ingest functionality. N) β-cell gene set activation 
in Patch-Seq cells. Scaled mean scores for each gene set per β-cell state are shown. O) Boxplots 
showing the distribution of different electrophysiological measurements per β-cell state (top left). Line 
indicates the median, values are FDR of differential test against mature state. Extreme values above 
97% or below 3% - quantiles were excluded. Data were analyzed by a Mann-Withney-U test and 
Benjamini-Hochberg correction for multiple testing per state comparison. Top left: Barplot showing β-cell 
state composition and total number of cells per state. Error bar indicating donor variation.



Supplementary Figure 3 Cross-study mapping of β-cell states
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Supplementary Figure 3 Cross-study mapping of β-cell states

A-C) β-cell states across 9 studies and 54 donors. A) Reference UMAP showing β-cells in gene set 
representation, where each cell is represented by an activation score of the corresponding cell gene 
sets. B) Mapping of β-cells from publicly available studies to the reference UMAP in A. Cells were 
mapped through projecting on the reference gene set representation. Embedding and labels are 
mapped using the Scanpy ingest functionality (see Methods). The barplot indicates the frequencies of 
mapped clusters. Number of donors and median numbers of cells and genes per donor are indicated. 

C) β-cell gene set activation in mapped β-cell states per study.

D) Barplot showing fraction of β-cell states in male and female donors of all studies. N.a. indicates 
donor for which sex information was not available.

E) Scatterplots showing linear relationship between fraction of cells per β-cell cluster and age. Line 
shows linear regression fit, shaded area shows the 95% confidence interval for the regression. Pearson 
correlation coefficient (r) and p-value (p) testing for non-correlation are indicated.



Supplementary Figure 4 RNA velocity analysis in β-cell across human donors
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Supplementary Figure 4 RNA velocity analysis in β-cell across human donors

A) Cellular dynamics in β-cells resolved by donor. Cell transitions are inferred from estimated RNA 
velocities and the direction of inferred movement plotted as streamlines on the UMAP. Colors indicate 
β-cell clusters.

B) Dotplots showing mean velocities per β-cell cluster resolved by donor. Selected known genes 
involved in β-cell maturation and potential novel genes important for maturation are shown.

C) Inferred high or low velocity clusters of mature β-cells. Top: UMAP indicating clustering into high or 
low velocity cells. Bottom: Expression of genes previously described to separate CD9+ and CD9- β-cells 
in high and low velocity mature β-cells. Color intensity indicates mean expression in a cluster, dot size 
indicates the proportion of cells in a cluster expressing the gene. Expression is scaled per gene.



Supplementary Figure 5 Maturation factor expression in human fetal β-cell development 
in publicly available datasets
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Supplementary Figure 5 Maturation factor expression in human fetal β-cell 
development of publicly available datasets

A-F) Comparison of identified immature β-cell cluster in adult islets to fetal β-cell development. A-C) 
Single cell sequencing data of fetal pancreata from [64]. D-F) Single cell sequencing data of fetal 
pancreata from [65]. A, D) UMAP plot of endocrine lineage cells isolated from fetal human pancreases. 
Colors indicate clusters of differentiation states from Ngn3+ endocrine progenitors (EP) or Fev+ 
precursors, respectively, to immature endocrine cells. B, E) Expression of known β-cell identity and 
maturity genes. C, F) Expression of genes driving inferred β-cell maturation dynamics (see Figure 3C). 
Color intensity indicates mean expression in a cluster, dot size indicates the proportion of cells in a 
cluster expressing the gene.



Supplementary Figure 6 Transcriptional profiling of human α-cell states
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Supplementary Figure 6 Transcriptional profiling of human α-cell states

A, B) Comparison of adult α-cell states to fetal α-cell development from [64] (Cao et al 2022) and [65] 
(Yu et al 2021), see also Figure S5A. A) Activation of adult α-cell gene sets (see Figure 4F) in fetal 
precursor and α-cell clusters. Scaled mean scores for each gene set per α-cell cluster are shown. B) 
Expression of α-cell identity and maturation factors as well as developmental factors and genes of the 
TGFβ signaling pathway.

C) Silhouette scores [85] as a proxy of cluster similarity and homogeneity. Violinplots show distribution 
of silhouette scores per β-cell (left) and α-cell (right) cluster. Silhouette scores were computed on the 50 
top principal components using euclidean distance.

D-G) Excitability of α-cell states measured in single-cell Patch-Seq data [4]. State labels were mapped 
in the α-cell gene set representation using the Scanpy ingest functionality D) Barplot showing α-cell 
state composition and total number of cells per state. Error bar indicating donor variation. E) α-cell gene 
set activation in Patch-Seq cells. Scaled mean scores for each gene set per α-cell cluster are shown. F) 
Expression of α-cell identity and maturation factors as well as genes involved in pathways describing 
immature α-cells. G) Boxplot showing distribution of different electrophysiological measurements per α-
cell state. Line indicates the median, values are FDR of differential test against mature state. Data were 
analyzed by a Mann-Withney-U test and Benjamini-Hochberg correction for multiple testing per state 
comparison.
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Supplementary Figure 7 Conservation of human α- and β-cell state signatures in pig 
and mouse

A-D) Conservation of the human β-cell states A) β-cell gene set activation scores for β-cell clusters 
across species. B) Pearson correlation matrix of gene expression of β-cell clusters across species. β-
cell clusters are grouped by hierarchical clustering. C,D) Expression of β-cell identity and maturity 
markers (C) and genes associated with a stress-response (D) in β-cell clusters across species. Color 
intensity indicates mean expression in a cluster, dot size indicates the proportion of cells in a cluster 
expressing the gene. Expression is scaled per gene.

E-I) Conservation of the human α-cell states. E) α-cell gene set activation scores for α-cell clusters 
across species. F) Pearson correlation matrix of gene expression of α-cell clusters across species. α-
cell clusters are grouped by hierarchical clustering. G-H) Expression of α-cell identity markers (G), 
genes describing immature human α-cells (H) and stress-associated genes (I) in α-cell clusters across 
species. Color intensity indicates mean expression in a cluster, dot size indicates the proportion of cells 
in a cluster expressing the gene. Expression is scaled per gene.

J) Barplot indicating conservation of gene expression in mature α- (left) and β- (right) cells from pig and 
mouse. Conservation of mappable genes within α- or β-cell maturity gene sets is shown. Genes are 
considered expressed if detected in >5% of mature cells.

K) Expression of identified β-cell maturation markers in β-cell clusters across species. Color intensity 
indicates mean expression in a cluster, dot size indicates the proportion of cells in a cluster expressing 
the gene. Expression is scaled per gene.

L) Expression of selected genes in β-cells of scRNA-seq data from vehicle and STZ-treated diabetic 
mice [11]. Color intensity indicates mean expression in a cluster, dot size indicates the proportion of 
cells in a cluster expressing the gene. Expression is scaled per gene.
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Supplementary Figure 8 Cross-species mapping of human α- and β-cell states using a 
publicly available mouse dataset

A-D) Conservation of the human α- and β-cell states in mouse cells of a publicly available mouse 
dataset [67] A,C) Mapping of mouse α- (A) and β-cells (C) to the human reference UMAP. Cells were 
mapped through projecting on the reference gene set representation. Embedding and labels are 
mapped using the Scanpy ingest functionality (see Methods). The barplot indicates the frequencies of 
mapped clusters. Number of mice, total and median numbers of cells and genes per mouse are 
indicated. B,D) α- (B) and β-cell (D) gene set activation in mapped α- and β-cell states in [67].
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The progressive loss or dysfunction of insulin-producing β-cell 
mass ultimately leads to type 1 diabetes (T1D) or type 2 dia-
betes (T2D), respectively1. Current pharmacological treat-

ments do not stop the decline of β-cell function and number that 
leads to glucose excursions and, eventually, to devastating micro-
vascular and macrovascular complications. Hence, the ideal treat-
ment should be initiated when the first diabetic symptoms appear, 
to protect or regenerate glucose-sensing and insulin-secreting β 
cells for optimal blood glucose regulation and to prevent secondary 
complications. Recently, T1D progression has been halted by anti-
CD3 immunotherapy for 2 years (ref. 2), but it will be important to 
test whether additional β-cell regenerative therapy can further or 
permanently delay the onset of diabetes. Intensive insulin therapy 
at disease onset has been shown to partially restore β-cell function, 
which slows the disease progression in patients with T1D and T2D3–

5. Despite both therapies providing similar glycaemic control, early 
intensive insulin treatment, compared with oral anti-diabetic drugs, 

in patients with T2D better preserves β-cell function, which sug-
gests additional glucose-independent beneficial effects of insulin 
therapy6,7. Thus, an understanding of the mechanisms of β-cell dys-
function and pharmacological replenishment is urgently required 
to stop or reverse diabetes progression and to improve the thera-
peutic options for patients. Dedifferentiation of β cells has been 
observed in genetic mouse models of T1D and T2D as well as in 
patients with diabetes, and is characterised by the loss of the expres-
sion of key maturation marker genes (for example, Slc2a2 (also 
known as Glut2) and Ucn3) and by impaired insulin secretion, and 
thereby contributes to β-cell dysfunction and hyperglycaemia8–10. 
To investigate whether dysfunctional β cells under hyperglycaemic 
conditions can be targeted pharmacologically to restore β-cell func-
tion, we explored the multiple-low-dose model of streptozotocin-
induced diabetes (mSTZ) in mice. STZ specifically ablates β cells, 
but when STZ is injected in multiple low doses, some residual  
β cells can survive11. Furthermore, the absence of genetic lesions and  
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autoimmunity in the mSTZ model permits the investigation of the 
fate of those remaining β cells and the effect of pharmacological 
treatment on β-cell protection and regeneration.

Results
Insulin restores β-cell function. Ten days after the last mSTZ injec-
tion, mice were severely hyperglycaemic (Extended Data Fig. 1a) 
and showed an impaired islet architecture (Extended Data Fig. 1b) 
with markedly decreased β-cell numbers in comparison to those in 
control mice (Extended Data Fig. 1b,c). Proliferation of remaining β 
cells was unchanged (Extended Data Fig. 1d), whereas β-cell apop-
tosis was significantly increased in mSTZ-treated mice compared 
to control mice (Extended Data Fig. 1e) and was accompanied by 
a loss of identity and function (Extended Data Fig. 1f–h). Hence, at 
this time point (diabetes onset), when a fraction of dysfunctional 
β cells were still remaining, we initiated a permanent drug treat-
ment over 100 d (Fig. 1a). Vehicle-treated mSTZ mice remained 
diabetic over the length of the study, which suggests that the resid-
ual β-cell functionality or endogenous β-cell regeneration12,13 is 
insufficient to maintain or restore sufficient glucose homeostasis  
(Fig. 1b–f). To correct the insulin deficiency in mSTZ mice, we 
treated diabetic mice with a long-acting pegylated insulin ana-
logue (PEG–insulin, once daily), which improved glycaemia  
(Fig. 1b), increased C-peptide levels (Fig. 1c), improved islet struc-
ture (Fig. 1d) and increased the number of insulin-positive cells  
(Fig. 1e,f). This shows functional β-cell recovery upon glycaemia 
normalisation, which extends findings from insulin treatment in 
genetic mouse models14,15. However, the risk of hypoglycaemia and 
unwanted weight gain are undesirable hallmarks of insulin therapy, 
and thus alternative pharmacological approaches are required to 
mitigate these possible effects.

GLP-1–oestrogen and insulin polypharmacotherapy. Oestrogen 
and glucagon-like peptide 1 (GLP-1) have been repeatedly impli-
cated in the treatment of diabetes due to insulinotropic and β-cell 
protective effects in preclinical studies16,17. Chemically optimised 
GLP-1 analogues profoundly improve glucose and body weight 
management in obese people and individuals with T2D18. However, 
severe gynaecological, oncogenic and mitogenic side effects pre-
clude chronic oestrogen use as a drug for diabetes and, as yet, GLP-1 

analogues have failed to preserve β-cell function and mass in obese 
and diabetic humans17.

To circumvent the gynaecological, oncogenic and mitogenic 
actions of oestrogen, we recently designed and evaluated a stable 
GLP-1–oestrogen conjugate, which reversed the metabolic syn-
drome in diet-induced obese male and female mice19. Here, we used 
the GLP-1–oestrogen conjugate to test whether the specific delivery 
of oestrogen into the GLP-1 receptor protein (GLP-1R)-expressing 
β cells could restore β-cell functionality. GLP-1–oestrogen treat-
ment for 100 d was more efficacious in decreasing fasting glucose 
(Fig. 1b) and increasing fasting C-peptide (Fig. 1c) and insulin lev-
els (Extended Data Fig. 2a) than either of the monoagonists (oestro-
gen or GLP-1 alone). Moreover, only GLP-1–oestrogen treatment 
improved pancreatic islet architecture (Fig. 1d) and increased β-cell 
number, as compared with those in mSTZ-diabetic mice treated 
with vehicle (Fig. 1e,f). These effects were independent of body 
weight loss (Extended Data Fig. 2b).

Polypharmacotherapy holds the potential to simultaneously 
activate redundant or additive pathways to enhance efficacy, and 
to enable reduced dosing of the individual components and con-
sequently reduce the risk of unwanted side effects20. We tested the 
combination of insulin and GLP-1–oestrogen to investigate a triple 
pharmacological approach to enhance the efficacy of both com-
pounds, and particularly to lessen the amount of insulin required. 
The combination therapy normalised glycaemia (Fig. 1b) and 
increased C-peptide levels (Fig. 1c), as compared with those in 
mSTZ-diabetic mice treated with vehicle. Furthermore, the com-
bination therapy displayed a superior effect compared to treatment 
with insulin alone to limit weight gain (Extended Data Fig. 2b), 
normalise glucose tolerance (Extended Data Fig. 2c), increase pan-
creatic insulin content (Extended Data Fig. 2d) and increase β-cell 
number (Fig. 1e,f). Importantly, we were able to reduce the insu-
lin dose by 60% (10 nmol kg−1) compared with that in the insulin 
monotherapy (25 nmol kg−1) and still achieve superior therapeutic 
outcomes, which reduces the risk of hypoglycaemia and unintended 
weight gain.

To test whether treatment-induced improvements on glucose and 
islet homoeostasis are maintained, we switched a group of mice after 
12 weeks of GLP-1–oestrogen treatment to two additional weeks of 
vehicle injections. Positive effects of GLP-1–oestrogen treatment to 

Fig. 1 | GLP-1–oestrogen and PEG–insulin treatment regenerates functional β-cell mass. a, Treatment scheme (no STZ-vehicle, n!=!12; mSTZ-vehicle, n!=!13; 
GLP-1, n!=!11; oestrogen, n!=!11; GLP-1–oestrogen, n!=!11; PEG–insulin, n!=!9; GLP-1–oestrogen and PEG–insulin, n!=!10). Effects on fasting blood glucose (b) 
and fasting C-peptide (c). Data are mean!±!s.e.m. Data were analysed by a one-way ANOVA with Tukey post-hoc. *P among mSTZ, oestrogen, GLP-1 and 
GLP-1–oestrogen treatment: F(b) (d.f.n, d.f.d)!=!F (3, 42)!=!24.09; F(c) (3, 28)!=!13.09. #P among no STZ, GLP-1–oestrogen, PEG–insulin and cotreatment: 
F(b) (3, 38)!=!29.32; F(c) (3, 24)!=!5.45. d, Immunostaining of Ins, Gcg and Sst in pancreatic sections at the end of the study. Images are representative 
of mice treated with no STZ-vehicle (n!=!3), mSTZ-vehicle (n!=!3), oestrogen (n!=!3), GLP-1 (n!=!3), GLP-1–oestrogen (n!=!2) or PEG–insulin (n!=!2), and 
of mice cotreated with GLP-1–oestrogen and PEG–insulin (n!=!3). Scale bars, 50!μm. Images are representative of data set shown in f. e, Total insulin 
area in pancreatic sections (no STZ-vehicle: 26 sections of n!=!3 mice; mSTZ-vehicle: 21, n!=!3; oestrogen: 27, n!=!3; GLP-1: 26, n!=!3; GLP-1–oestrogen: 18, 
n!=!2; PEG–insulin: 18, n!=!2; GLP-1–oestrogen (GLP-1–oes) and PEG–insulin (PEG–ins): 27, n!=!3). *P among mSTZ, oestrogen, GLP-1 and GLP-1–oestrogen 
treatment; data were analysed by a one-way ANOVA with Tukey post-hoc, F (3, 88)!=!17.66. #P between PEG–insulin and cotreatment; data were analysed 
by an unpaired two-sided t-test, t!=!2.11, d.f.!=!43. f, Endocrine islet cell composition at study end (no STZ-vehicle: 196 islets of n!=!3 mice; mSTZ-vehicle: 
180, n!=!3; oestrogen: 177, n!=!3; GLP-1: 199, n!=!3; GLP-1–oestrogen: 175, n!=!2; PEG–insulin: 119, n!=!2; GLP-1–oestrogen and PEG–insulin: 166, n!=!3). Data 
are mean!±!s.e.m. Data were analysed by a one-way ANOVA with Tukey post-hoc. β cells: mSTZ versus GLP-1–oestrogen (***P!<!1 × 10−15), mSTZ versus 
oestrogen (&&&P!=!4.17 × 10−9), mSTZ versus GLP-1 (§§§P!<!1 × 10−15), oestrogen versus GLP-1–oestrogen (***P!<!1 × 10−15), GLP-1 versus GLP-1–oestrogen 
(***P!<!1 × 10−15), GLP-1–oestrogen versus no STZ (###P!<!1 × 10−15), PEG–insulin versus no STZ (###P!<!1 × 10−15), GLP-1–oestrogen and PEG–insulin versus 
no STZ (###P!<!1 × 10−15); Fβ-cells (6, 1,187)!=!175.6. α-cells: mSTZ versus GLP-1–oestrogen (***P!<!1 × 10−15), mSTZ versus oestrogen (&&&P!=!1.01 × 10−8), 
mSTZ versus GLP-1 (§§§P!<!1 × 10−15), oestrogen versus GLP-1–oestrogen (***P!=!6.30 × 10−10), GLP-1 versus GLP-1–oestrogen (***P!=!2.48 × 10−6), GLP-1–
oestrogen versus no STZ (###P!<!1 × 10–15), PEG–insulin versus no STZ (###P!<!1 × 10−15), GLP-1–oestrogen and PEG–insulin versus no STZ (###P!<!1 × 10−15); 
Fα-cells (6, 1,202)!=!124.8. δ-cells: mSTZ versus GLP-1–oestrogen (***P!=!4.00 × 10−12), mSTZ versus GLP-1 (§§§P!=!5.91 × 10−6), GLP-1–oestrogen versus no 
STZ (###P!=!9.89 × 10−7), GLP-1–oestrogen and PEG–insulin versus no STZ (#P!=!1.91 × 10−2); Fδ-cells (6, 1,144)!=!45.87. Cells per islet (mSTZ, oestrogen, 
GLP-1 and GLP-1–oestrogen): mSTZ versus GLP-1–oestrogen (**P!=!2.07 × 10−3), oestrogen versus GLP-1–oestrogen (***P!=!4.43 × 10−4), oestrogen versus 
GLP-1 (§P!=!4.28 × 10−2), F (3, 727)!=!7.049. Cells per islet (all treatments): PEG–insulin versus GLP-1–oestrogen and PEG–insulin ($P!=!4.05 × 10−2), GLP-1–
oestrogen versus GLP-1–oestrogen and PEG–insulin ($P!=!3.49 × 10−2), GLP-1–oestrogen versus no STZ (###P!<!1 × 10−15), PEG–insulin versus no STZ (###P!<!1 
× 10−15), GLP-1–oestrogen and PEG–insulin versus no STZ (###P!=!7.89 × 10−7); F (6, 1,205)!=!33.94. Additional information is available in Source data.
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reduce fasting glycaemia (Fig. 2a), increase fasting C-peptide levels 
(Fig. 2b), and enhance the β-cell maturation state (Fig. 2c,d) were 
sustained after these two weeks, which supports the notion of pre-
served islet cell function even after treatment cessation.

GLP-1–oestrogen targets β cells. We next wanted to confirm 
the absence of systemic toxicity that was related to the oestrogen 

component of the GLP-1–oestrogen conjugate, a pre-requisite for 
clinical use. To that end, we investigated whether GLP-1–oestrogen 
(doses up to 10× higher than are generally used in mouse experi-
ments, and at least 1,000× the plasma oestradiol exposure as com-
pared with that in women on hormone replacement therapy (see 
Methods)) increased uterus weight in ovariectomised (OVX) rats 
after two weeks of treatment (Extended Data Fig. 3a and Methods). 
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In contrast to treatment with oestrogen alone, no treatment-related 
effect was observed with the GLP-1–oestrogen conjugate (Extended 
Data Fig. 3b), which is consistent with previously reported results 
in OVX mice19.

To confirm β-cell-specific targeting of the GLP-1–oestrogen 
conjugate, we used a double knock-in fluorescent reporter mouse 
model (Foxa2-Venus Fusion (FVF) × Pdx1-BFP (blue fluorescent 
protein) fusion (PBF); FVFPBFDHom)21, which allows α- and β-cell 
sorting (Extended Data Fig. 3c,d). Male FVFPBFDHom mice develop 
maturity onset diabetes of the young owing to reduced Pdx1 levels in 
islets, accompanied by hyperglycaemia, reduced β-cell number and 
impaired islet architecture at weaning age21. In this genetic diabetes 
model, none of the therapies used in this study improved glycae-
mia after four weeks of treatment (Extended Data Fig. 3e,f). These 
results suggest that β-cell function cannot be restored pharmaco-
logically in the presence of the genetically induced β-cell lesions in 
the FVFPBFDHom mice. However, the GLP-1–oestrogen conjugate, 
but not the monoagonists, specifically increased β-cell granularity 
of FVFPBFDHom mice in comparison to control mice, which shows 
that the conjugate selectively targets β cells (Extended Data Fig. 3g).

GLP-1–oestrogen improves human β-cell function. To provide 
human relevance to the findings, we tested GLP-1–oestrogen and 
the monoagonists in human micro-islets in the absence or presence 
of β-cell stressors (cytokine cocktail, see Methods). After acute com-
pound exposure, GLP-1–oestrogen was more potent than either of 
the individual components in increasing glucose-stimulated insulin 
secretion (GSIS) from human micro-islets in comparison to that in 
untreated and monoagonist-treated micro-islets (Fig. 3a). We next 
exposed the human micro-islets to cytokines to determine whether the 
beneficial effects of GLP-1–oestrogen protect against stress-induced 
impairment of β-cell functionality (Fig. 3b). Seven-day treatment 
with GLP-1–oestrogen enhanced GSIS, and exceeded the effects 
that were seen with either of the individual components (Fig. 3b).  
Moreover, only GLP-1–oestrogen treatment increased the total insulin  

content of cytokine-exposed human micro-islets (Fig. 3c). This was 
independent of changes in the total ATP content (Extended Data 
Fig. 4a) and in caspase luciferase activity (Extended Data Fig. 4b),  
which suggests that the compound treatment improved functional-
ity, but did not improve cell survival of human micro-islets. These 
results show that GLP-1–oestrogen is superior to both of the mono-
agonists in improving β-cell function in homoeostasis, and in acting 
upon cytokine stress in both mice and humans.

β-cell heterogeneity in homoeostatic and healthy mice. To elu-
cidate the molecular mechanisms that underlie β-cell failure in 
mSTZ diabetes, and β-cell recovery after the different therapeutic 
approaches, we performed scRNA-seq of isolated islets from mice 
that responded to treatment (Extended Data Fig. 5).

In normal islet homoeostasis, we identified the four main endo-
crine cell subtypes, α cells, β cells, δ cells and pancreatic polypeptide 
(PP) cells, by unbiased graph-based clustering. Clusters were anno-
tated on the basis of predominant endocrine hormone expression of 
glucagon (Gcg), insulin (Ins), somatostatin (Sst) and PP (Extended 
Data Fig. 6a,b and Methods). For each of the four endocrine sub-
types we identified a specific marker gene signature (Supplementary 
Table 1 and Methods). Refined clustering of insulin-positive cells 
revealed the presence of two main β-cell subpopulations, β1 and β2 
(Extended Data Fig. 6c and Methods). Single-cell trajectory infer-
ence suggests a continuum of transcriptional states, rather than dis-
crete phenotypes within β cells and a transition between β1 and β2 
subpopulations (Extended Data Fig. 6d and Methods). We found 
a progressive increase in expression of β-cell maturation marker 
genes (for example Ins1, Ins2 and Ucn3 (ref. 22)), and genes of the 
secretion machinery (G6pc2, Sytl4 and Slc2a2), as well as a concom-
itant decrease in expression of the β-cell immaturity gene Mafb23, 
and pan-endocrine lineage marker genes (Chga and Chgb) along the 
pseudotime trajectory from β2- to β1-cells (Extended Data Fig. 6d 
and Supplementary Table 2). The expression of transcription fac-
tor genes that are associated with β-cell identity (for example Pdx1, 
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Fig. 2 | Sustained effects of GLP-1–oestrogen to ameliorate mSTZ diabetes in mice. A group of GLP-1–oestrogen-treated mice were switched from daily 
GLP-1–oestrogen treatment for 12 weeks to vehicle treatment for another two weeks (mSTZ-vehicle, n!=!13; GLP-1–oestrogen, n!=!11; GLP-1–oestrogen 
to vehicle (switch), n!=!11). a, Fasting blood glucose at week 14. Data were analysed by an unpaired two-sided t-test, t!=!2.623, d.f.!=!22 (mSTZ-vehicle, 
n!=!13; GLP-1–oestrogen to vehicle, n!=!11). Data are mean!±!s.e.m. b, Fasting C-peptide levels at week 14. Data were analysed by an unpaired two-sided 
t-test, t!=!2.939, d.f.!=!19 (mSTZ-vehicle, n!=!10; GLP-1–oestrogen to vehicle, n!=!11). Data are mean!±!s.e.m. c, Ins, Gcg and Sst immunohistochemistry of 
representative pancreatic islets of the data set plotted in b at the end of the study. d, Ucn3 immunohistochemistry of representative pancreatic islets of 
the data set plotted in b at the end of the study. In c and d, images are representative of mice treated with no STZ-vehicle (n!=!3), mSTZ-vehicle (n!=!3) and 
GLP-1–oestrogen to vehicle (n!=!3). Scale bars, 50!μm. Additional information is available in Source data.
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Nkx6.1 and NeuroD1) was unchanged (Extended Data Fig. 6d). The 
β2-cell cluster was characterised by the downregulation of genes 
that are involved in insulin secretion, oxidative phosphorylation 
and cell-cycle inhibition, as well as by the upregulation of genes that 
are involved in cAMP and WNT signalling (Extended Data Fig. 6e), 
both of which observations are suggestive of a more immature and/
or proliferative state for β2 cells24. We consistently observed upregu-
lation of cell-cycle-associated genes, such as Ki67 and Cdk1 in the 
immature β2 subpopulation and, in accordance with this result, 
16 out of 403 of the β2-cells, but only 2 out of 5,319 of the mature 
β1-cells, were classified as being involved in cell cycling (Extended 
Data Fig. 6f (see Methods)). Taken together, these results confirm 
the co-existence of mature (β1) and immature and/or prolifera-
tive β cells (β2) in healthy mouse islets24,25. In addition, we found 
subpopulations of polyhormonal cells that could be distinguished 
from doublets and ambient RNA, both of which are common prob-
lems with the scRNA-seq technology (Extended Data Fig. 6g,h  
and Methods).

β-cell dedifferentiation at the single-cell level. To obtain a deeper 
understanding of the cell autonomous and non-cell autonomous 
effects that underlie chemical β-cell ablation in the islet cell niche, 
we performed a scRNA-seq survey of diabetic islets after 100 d of 
persistent hyperglycaemia. Unsupervised clustering and embed-
ding of the scRNA-seq data revealed altered endocrine subtype 
composition and cell-intrinsic gene expression profiles that were 
indicated by a shifted cell cluster location in the Uniform Manifold 
Approximation and Projection (UMAP) space of mSTZ-diabetic 
compared to healthy mice (Fig. 4a and Supplementary Table 3). 
In particular, there was a threefold decrease in the proportion of 
β cells from mSTZ-treated mice (β-mSTZ), and β-mSTZ formed 
a cluster that was clearly distinct from healthy β cells (Fig. 4a).  
In contrast to the results for β cells, few transcriptional changes 
were detected for α cells, δ cells and PP cells (Extended Data  
Fig. 7a-f and Supplementary Table 3). We next sought to describe 
the progression from healthy to dysfunctional β cells and the  
associated gene expression changes, using single-cell trajectory 
inference. Cells were ordered on the basis of a cell-to-cell distance 
metric that was calculated using the concept of diffusion pseudo-
time (see Methods). We identified a cellular trajectory in which cells 
transitioned from mature to immature to β-mSTZ cells (Fig. 4b).  
Remaining β-mSTZ cells expressed low Ins1 and/or Ins2 messen-
ger RNA and also showed sustained low expression of β-cell iden-
tity transcription factor genes, such as Pdx1, Nkx2.2, Nkx6.1, Pax6, 
Isl1 and NeuroD1 (refs. 26–31) (Fig. 4b). Pathways that are associated 
with β-cell maturity and functionality included genes with down-
regulated expression, whereas genes in ER stress and oxidative  
phosphorylation pathways were upregulated in the remaining 

β-mSTZ cells; together these observations indicate an ER stress 
response and β-cell dysfunction (Fig. 4c and Supplementary  
Table 3). Along this trajectory, expression of key markers of β-cell 
maturity and functionality gradually decreased concomitantly with 
an increase in the very few known markers of β-cell immaturity 
and dedifferentiation (for example Aldh1a3 (ref. 32) and gastrin33)  
(Fig. 4b,d). Strikingly, our single-cell analysis uncovered a large 
number of upregulated genes and pathways in β-mSTZ cells that 
are not expressed at all or are expressed only subtly in mature, 
functional murine β cells (Fig. 4e). We confirmed the increased 
expression of, for example, Cck and Slc5a10 proteins by immuno-
histochemistry in mSTZ diabetic mice (Fig. 4f). These identified 
targets may serve as biomarkers for dysfunctional β cells, and may 
have the potential to be part of druggable pathways to restore β-cell 
function. Some of these were also identified recently in β cells and 
pancreata of T1D and T2D human specimens34,35 (Extended Data 
Fig. 7g,h). There is some debate as to whether β-cell dedifferentia-
tion resembles reversal to a pluripotent (Oct3/4, Nanog, Sox2) or 
endocrine progenitor state (Neurogenin 3 or Neurog 3, hereafter 
called Ngn3), whether it is part of normal phenotypic variation 
described as β-cell heterogeneity, or whether it resembles a gluco-
toxic-induced reversible state36. Although dedifferentiated β cells 
had been characterised previously by upregulation of pluripotency 
or endocrine transcription factors8,9,15, in our study expression levels 
of Sox9, Pou5f1 (Oct3/4), Myc and Ngn3 genes were unaltered in 
mSTZ-treated β cells (Extended Data Fig. 7i).

To further characterise the maturation state of mSTZ-derived  
β cells, we compared our data set to β-cell expression profiles during 
embryonic (E17.5) to postnatal development (P60)37. We assessed 
transcriptional similarity of β-cell subpopulations using Partition-
based graph abstraction (PAGA) after data integration and com-
putation of a common embedding. The enforcement of integration 
using only genes associated to β-cell maturation in the reference 
data allowed us to match maturation states independent of differ-
ences in other biological processes between the two data sets (see 
Methods). PAGA uses a statistical model to measure the related-
ness of groups of single cells (see Methods). We found that dedif-
ferentiated β-mSTZ cells were more strongly connected to early 
time points of the maturation data set, whereas β2 cells clustered to 
intermediate time points and β1 cells to late time points (Fig. 5a).  
Remarkably, the inferred cellular trajectory from β-mSTZ to β2 
to β1 cells aligned with the trajectory of β-cell maturation from 
embryonic (E17.5) to mature β cells (P60) of the reference data set 
(Fig. 5b). An increase in known β-cell maturation and a decrease of 
immaturity markers along this trajectory further indicated that the 
cells follow a similar differentiation or dedifferentiation programme 
(Fig. 5c,d). To validate these findings, we scored each β cell using 
the gene sets that are characteristic for the start (E17.5/P0) and end 

Fig. 3 | GLP-1–oestrogen improves function of human micro-islets. a, Insulin secretion of human micro-islets after acute exposure to 16.7!mM glucose 
and vehicle, oestrogen, GLP-1 or the GLP-1–oestrogen treatment. n!=!5–6 micro-islets of n!=!3 human donors for each condition. Secretion (mean!±!s.e.m.) 
of donor 1!=!0.36!±!0.01!ng ml−1, donor 2!=!0.37!±!0.02!ng ml−1 and donor 3!=!0.29!±!0.03!ng ml−1 after vehicle exposure. Box plot of all data points. Line 
indicates the median. Data were analysed by a one-way ANOVA with donor as random effect followed by Tukey post-hoc (Flow dose(3, 65)!=!14.04; Fmedium 

dose(3, 64)!=!18.59; Fhigh dose(3, 66)!=!25.50). *P indicates P value to vehicle. b, Insulin secretion at 16.7!mM glucose of human micro-islets after 7-d exposure 
to cytokine stress and effect of oestrogen, GLP-1 or GLP-1–oestrogen treatment. n!=!6 micro-islets of n!=!3 human donors for each condition. Secretion 
(mean!±!s.e.m.) of donor 1!=!0.13!±!0.02!ng ml−1, donor 2!=!0.56!±!0.04!ng ml−1 and donor 3!=!0.51!±!0.06!ng ml−1 after chronic vehicle (no stress) exposure. 
Box plot of all data points. Line indicates the median. #P indicates P value to vehicle under the no stress condition. *P indicates P value to vehicle cytokine 
exposure. Data from no stress versus cytokine stress were analysed by an unpaired two-sided t-test (t!=!4.776, d.f.!=!33). Otherwise, data were analysed 
by a one-way ANOVA with donor as random effect followed by Tukey post-hoc (Flow dose(4, 82)!=!6.35; Fmedium dose(4, 81)!=!7.65; Fhigh dose(4, 81)!=!21.91). c, Total 
insulin content of human micro-islets after 7-d exposure to cytokine stress and effect of oestrogen, GLP-1 or GLP-1–oestrogen treatment. n!=!6 micro-islets 
of n!=!3 human donors for each condition. Insulin content (mean!±!s.e.m.) of donor 1!=!41.11!±!3.73!ng per islet, donor 2!=!30.86!±!3.36!ng per islet and donor 
3!=!82.73!±!3.99!ng per islet after chronic vehicle (no stress) exposure. Box plot of all data points. Line indicates the median. #P indicates P value to vehicle 
no stress condition. *P indicates P value to vehicle cytokine exposure. Data from no stress versus cytokine stress were analysed by an unpaired  
two-sided t-test (t!=!7.429, d.f.!=!32). Otherwise, data were analysed by a one-way ANOVA with donor as random effect followed by Tukey post-hoc  
(Flow dose(4, 80)!=!4.12; Fmedium dose(4, 78)!=!3.01; Fhigh dose(4, 79)!=!3.31). Additional information is available in Source data.
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(P60) point of the developmental trajectory (Supplementary Table 
4 and Methods). Healthy mature β cells (β1) scored high for matu-
rity genes, whereas healthy immature cells (β2) and dedifferentiated 
cells (β-mSTZ) scored higher for the embryonic immaturity gene 

set (Fig. 5e). Taken together, these results imply that during the 
transition from healthy β1 to β2 to dedifferentiated β-mSTZ, β cells 
revert, at least in part, back to a more immature and, further, to an 
embryonic-like state.
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To separate the altered maturation state from other processes 
induced in dedifferentiated β cells, we compared differentially regu-
lated gene ontologies and pathways between embryonic (E17.5/P0) 
and mature (P60) β cells and between β-mSTZ cells and healthy 
control β cells (see Methods). According to the trajectory and PAGA 
analysis, these β-cell states of the reference data set correspond best 
to dedifferentiated β-mSTZ cells and mature, healthy β cells, respec-
tively. Embryonic and mSTZ-diabetic β cells shared downregulation 
of molecular processes connected to β-cell function and maturity 
(for example, insulin secretion and FoxO signalling) compared to 
healthy mature β cells (Extended Data Fig. 8a and Supplementary 
Table 4), whereas genes involved in oxidative phosphorylation and 
gene and protein transcription were upregulated (Extended Data 
Fig. 8b and Supplementary Table 4). Specific to embryonic β cells 
was a downregulation of lipid and carbohydrate metabolism and 
an upregulation of WNT signalling (Extended Data Fig. 8a,b). This 
corresponds to known mechanisms of β-cell maturation during 
embryogenesis37. Interestingly, in mSTZ-diabetic β cells, but not 
the embryonic β cells, we found an upregulation of pathways and 
ontologies associated with ER stress and a decreased expression of 
genes involved in insulin and MAPK signalling in comparison to 
healthy mature β cells (Extended Data Fig. 8a,b).

Thus, β-cell dedifferentiation involves partial reversal to an 
embryonic or immature β-cell programme and upregulation of an 

ER stress response and altered signalling state. These results suggest 
that surviving β cells are dedifferentiated, which shows that mSTZ-
induced diabetes is a good model in which to study mechanisms 
of β-cell dedifferentiation and redifferentiation in the absence of 
genetic lesions.

Mechanisms of β-cell redifferentiation. In line with the phar-
macological data, single-cell analysis of the different treatments 
revealed that β cells of mice treated with vehicle (Extended Data 
Fig. 9a), oestrogen (Extended Data Fig. 9b) and GLP-1 (Extended 
Data Fig. 9c) remained dedifferentiated. By contrast, we observed 
an increased fraction of immature β2-cells from GLP-1–oestrogen-
treated mice (Extended Data Fig. 9d). In PEG–insulin-treated mice 
(Extended Data Fig. 9e) and GLP-1–oestrogen plus PEG–insulin-
cotreated mice (Extended Data Fig. 9f), almost no dedifferentiated 
β cells remained and most cells clustered with immature β2-cells. 
To further assess the transcriptional state of β cells from the treated 
mice, we calculated a cell-to-cell distance so that cells could be 
ordered along the cellular trajectory from dedifferentiated to healthy  
β cells (see Methods). On this one-dimensional axis, β cells of mice 
treated with PEG–insulin or with the combination of PEG–insulin 
and GLP-1–oestrogen were located closest to β cells from healthy 
mice (Fig. 6a–c). This transcriptional similarity to healthy β cells 
was further supported by PAGA (see Methods). In the PAGA graph, 

Maturity
Ins1
Ins2

Ucn3
Trpm5
Slc2a2

Slc30a8

Sytl4
Nkx6-1

Neurod1
Pdx1

Nkx2-2
Pax6

IsI1
Pcsk1

Pam
Cpe

Gast
Iapp
Mafb
Chgb
Rbp4

Aldh1a3

G6pc2
Insulin
secretion

TF

Protein
processing

Immature/
dedifferentiation

β1 β2 β-mSTZ
log (P)

0 –5–5 –10–10

Response to glucose (GO:0009749)

Regulation of insulin secretion (GO:0050796)

Prolactin signalling pathway (hsa04068)

FoxO signalling (hsa04068)

Maturity onset diabetes of the young (hsa04950)

MAPK signalling (hsa04010)

Response to ER stress (GO:0034976)

Electron transport chain (GO:0022904)
Oxidative phosphorylation (hsa00190)

Glut2 

Ins

No STZ mSTZ

Ins

Ucn3

No STZ mSTZ

Aldh1a3

Ins

No STZ mSTZ

Ins

Cck 

No STZ mSTZ

76.0%
23.7%

0.9%
4.3%

5.9%
22.9%

6.6%

U
M

A
P

2

23.2%
10.5%
25.8%

β-no STZ
β-mSTZ

α-no STZ
α-mSTZ
δ-no STZ
δ-mSTZ

PP-no STZ
PP-mSTZ
Poly-no STZ
Poly-mSTZ

a b c

d e f

Plasma membrane

Intracellular

Secreted

Unknown

β-mSTZ
β-healthy

β1 β2 β-mSTZ

Slc5a10

Ins

No STZ mSTZ

Ins

Gastrin

No STZ mSTZ

UMAP1

Slc5a10
Phlda3
Sorcs2

Dpp6
Ldlrad3

Nrsn1
Bcam

Tmem212
Clmp

Sh2d5
Slc39a11

Ptger3
Ache

Tenm4
Aldh1a3

Tagln3
Pabpc1I

Aldob
Gsto2
Ttc25
Gast
Cck

Cthrc1
Cartpt

Smoc1
Prss23

Gm2115
Pcp4I1

RP23-477O13.1

Fig. 4 | β-cell dedifferentiation in mSTZ-diabetic mice. a, UMAP plot of 12,430 cells from healthy and STZ-treated mice. Colours highlight endocrine cell 
clusters, and colour tone distinguishes no STZ (dark colours) or mSTZ treatment (light colours). Values indicate the proportions of each cell cluster in no 
STZ or mSTZ treatment. Poly, polyhormonal cells. b, Gene expression changes of representative markers of β-cell identity, maturation and function along 
the trajectory from mature (β1) to immature (β2) to β-mSTZ indicating a continuous transition. TF, transcription factor. Cells are ordered on the basis 
of a random-walk-based cell-to-cell distance metric. Expression is shown as the running average along the inferred trajectory scaled to the maximum 
observed level per gene. β1-cells were downsampled to 1,500 cells for better visualisation. c, Gene Ontology (GO) term and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway enrichment analysis of significantly up- and downregulated genes in β cells of mSTZ-treated mice compared to β cells of 
healthy mice (absolute log(fold change)!>!0.25, FDR!<!0.01; selective pathways are depicted; see also Supplementary Table 3). Cells were pooled from 
mice treated with no STZ-vehicle (n!=!3) and mSTZ-vehicle (n!=!3). We used limma-trend to find differentially expressed genes (see Methods). Gene 
enrichment was done with EnrichR using Fisher’s exact test to identify regulated ontologies or pathways (see Methods). d, Immunohistochemical analysis 
of Glut2, Ucn3, Aldh1a3 and gastrin in β cells of mSTZ mice and healthy mice at study end. Images are representative of mice treated with no STZ-vehicle 
(n!=!3) and mSTZ-vehicle (n!=!3). Scale bars, 50 μm; scale bar zoom-in, 20!µm. e, Gene expression along the trajectory from β1 to β-mSTZ (as in c) of 29 
genes specifically expressed in β cells from mSTZ-treated mice (expression in!<5% of no-STZ-β cells and in >25% of β-mSTZ cells, see Methods). Cellular 
locations of associated proteins are indicated. f, Immunohistochemical analysis of Slc5a10 and Cck in β cells of mSTZ and healthy mice at study end. 
Images are representative of mice treated with no STZ-vehicle (n!=!3) and mSTZ-vehicle (n!=!3). Scale bars, 50 μm; scale bar zoom-in, 20!µm.
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β cells of PEG–insulin-treated and GLP-1–oestrogen plus PEG–
insulin-cotreated mice showed the strongest connection to healthy 
β cells (Fig. 6d). The observed overall re-establishment of the 
healthy β-cell expression profiles was substantiated by an increased 

expression of β-cell maturity markers and decreased expression of 
immaturity and dedifferentiation markers along the inferred trajec-
tory (Fig. 6e–g). Moreover, Ucn3 expression recovered during the 
pharmacological treatment (Extended Data Fig. 10a). This shows 
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that the maturation state before treatment was different from that 
achieved after treatment. Hence, upon PEG–insulin or PEG–insulin 
plus GLP-1–oestrogen treatment, β cells adopt a molecular imma-
ture yet functional phenotype that is sufficient for blood glucose 
normalisation and diabetes remission.

β cells from mice treated with PEG–insulin or the combination of 
PEG–insulin and GLP-1–oestrogen were grouped in distinct β-cell 
subpopulations, albeit at a similar maturation state (Fig. 6b). This 
implies the existence of a compound-specific mechanism-of-action 
(MOA) that underlies the recovery of β-cell function. To investi-
gate the distinct MOAs of the different treatments, we identified 
the β-cell-specific transcriptional signature of treated and mSTZ-
derived β cells (Supplementary Table 5). An increased expression of 
genes involved in β-cell functionality and maturation (Fig. 6h) was 
common to both treatments and may result from improved blood 
glucose levels and/or stimulation of shared pathways of insulin and 
GLP-1–oestrogen signalling. GLP-1, oestrogen and insulin receptor 
activation regulate MAPK and FoxO signalling38–40, both of which 
were increased after PEG–insulin, GLP-1–oestrogen and PEG–
insulin and GLP-1–oestrogen co-therapy (Fig. 6h). Although we 
cannot dissect the signalling contribution of each individual recep-
tor, we believe that the polypharmacological approach might poten-
tiate the simultaneous activation of commonly regulated pathways.

Unexpectedly, treatment with PEG–insulin elicited a β-cell-
specific stimulation of the insulin signalling cascade as well as stim-
ulation of the recently characterised RNA polymerase II mediated 
pathway41 (Fig. 6h). Hence, our data suggest that direct effects of 
insulin on β cells contribute to the improvement of β-cell function 
and recovery, as was proposed for T2D42,43.

Our goal was to use GLP-1–oestrogen to selectively deliver oes-
trogen into β cells. We consistently found β-cell-specific induction 
of the ER-associated degradation (ERAD) pathway and induction 
of transfer RNA signalling in PEG–insulin and GLP-1–oestrogen 
cotreated mice (Fig. 6h). ERAD mitigates ER stress, which, when 
unresolved, contributes to functional β-cell mass loss in T1D and 
T2D44. Chemical and genetic disturbances of ERAD impair β-cell 
function44. We found an increased proinsulin-to-C-peptide ratio in 
mSTZ-diabetic mice, which is used as an ER-stress surrogate in dia-
betes45 (Extended Data Fig. 10b). GLP-1–oestrogen, PEG–insulin 
and GLP-1–oestrogen and PEG–insulin co-therapy normalised this 
ratio (Extended Data Fig. 10b). Recently, it has been reported that 
oestrogen, via nuclear oestrogen receptor alpha signalling, stabilizes 
the ERAD proteins Sel1l and Hrd1in β cells, an effect associated with 
diabetes amelioration in Akita mice46. We observed increased co-
staining for insulin and Sel1l in GLP-1–oestrogen and PEG–insu-
lin cotreated islets only 25 d after treatment initiation (Extended 
Data Fig. 10c). In addition to upregulation of Sel1l and Hrd1 (also 
known as Syvn1), ERAD-associated gene expression (for example, 

expression of Sdf2l1, Herpud1, Dnajb11, Dnajb9, Derl3 and Hspa5 
genes) was specifically increased in β cells of GLP-1–oestrogen and 
PEG–insulin cotreated mice (Extended Data Fig. 10d). The Sdf2l1, 
Herpud1 and Hspa5 genes encode ERAD-proteins that have benefi-
cial effects on β cells that allow correct insulin folding and/or func-
tion47–49. Dnajb9 and Dnajb11 are chaperone proteins that might aid 
correct insulin protein folding. Derl3 is required for ER-associated 
degradation50. The specific role of Derl3 in β cells is unknown, but 
interestingly, Derl3 expression was shown to protect cardiomyo-
cytes against ER-stress-induced death by enhancing ERAD50. These 
results support a role for ERAD activation by GLP-1–oestrogen and 
PEG–insulin cotreatment that induces a treatment-specific molecu-
lar profile for the protection and regeneration of β cells (Fig. 6b).

In a similar manner, tRNA signalling is known to be an intra-
cellular target of oestrogen, and an increased abundance of tRNA 
has been associated with proliferating cells51,52. Indeed, from the 
single-cell data, we observed the highest fraction of proliferative  
β cells in the PEG–insulin and GLP-1–oestrogen conjugate cotreated 
mice (Fig. 7a). Moreover, we found increased β-cell proliferation in 
GLP-1–oestrogen and PEG–insulin cotreated mice that was already 
evident after 25 d of treatment, and that, importantly, was not evi-
dent in the single-treatment groups (Fig. 7b). Stressed β cells, such 
as those under chronic hyperglycaemic conditions, lack an adequate 
response to GLP-1 therapy probably as a result of decreased expres-
sion of GLP-1R53–55. Here, we reasoned that the restoration of gly-
caemia in mSTZ mice, notably through additional chronic insulin 
therapy, may increase the expression of GLP-1R. Indeed, we found 
progressively increased levels of GLP-1R on the surfaces of β cells of 
mice with improved glucose levels (Fig. 7c). This may have facili-
tated the enhanced delivery, uptake and action of oestrogen and 
GLP-1 in β cells, especially for those cells cotreated with GLP-1–
oestrogen and insulin.

To examine whether other endocrine cells have contributed 
to the regeneration of functional β cells, we explored cluster rela-
tions and possible cellular transitions using PAGA and RNA veloc-
ity estimation (see Methods). For this we included β-mSTZ cells 
as the origin (starting point) of treated cells and we investigated 
where cells moved from that baseline (Fig. 8a). We found no direct 
connection or cell movement from other (non-β) cell populations 
towards redifferentiated β cells. We next examined the RNA veloc-
ity and potential fate of treated endocrine cells (Fig. 8b). The veloc-
ity of some of the immature β cells observed after GLP-1–estrogen, 
PEG–insulin and combined treatment pointed towards mature  
β cells of healthy mice, thus further substantiating β-cell rediffer-
entiation. Moreover, the scRNA-seq data suggested that neogenesis 
was not increased after 100 d of treatment, as the expression levels 
of Ngn3 mRNA remained unchanged in endocrine cell subtypes 
(Fig. 8c). We also found no indication, from Ngn3 immunostaining  

Fig. 6 | β-cell redifferentiation upon insulin and GLP-1–oestrogen treatment. a,b, UMAP plot of β cells from all treatment groups. Colour indicates 
random-walk-based cell-to-cell distance (a) and treatment groups (b). c, Cell density of treatment groups and β-cell subpopulations along a cell trajectory 
from dedifferentiated cells to mature β cells that indicate the redifferentiation state. Cells are ordered according to a random-walk-based cell-to-cell 
distance as shown in a. d, Abstracted graph of transcriptomic similarity of β cells between treatment groups inferred on the basis of a measure for cluster 
connectivity using PAGA. Edge weight indicates link significance. e, Gene expression changes of the top 200 upregulated and downregulated genes in 
β cells of mSTZ-treated mice along the cell trajectory from a dedifferentiated to mature state as in c and d. Expression is shown as the running average 
scaled to the maximum observed level per gene. Genes are ordered by their maximum expression. The bar at the bottom shows the location of individual 
cells coloured by treatment group. f, Gene expression of selected β-cell maturity and dedifferentiation markers along the cell-to-cell distance. Dots show 
expression levels of individual cells coloured by treatment group. Superimposed red lines are polynomial regression fits. g, Immunohistochemical analysis 
of the β-cell maturity marker Ucn3 at the end of the study. Images are representative of mice treated with no STZ-vehicle (n!=!3), mSTZ-vehicle (n!=!3), 
oestrogen (n!=!3), GLP-1 (n!=!3), GLP-1–oestrogen (n!=!2) and PEG–insulin (n!=!2), and of mice cotreated with GLP-1–oestrogen and PEG–insulin (n!=!3). 
Scale bars, 50 μm. Scale bar zoom-in, 20!µm. h, Venn diagram shows the number of upregulated genes (log(fold change)!>!0.25, FDR!<!0.01) specifically 
in β cells of PEG–insulin-treated mice and GLP-1–oestrogen plus PEG–insulin-cotreated mice compared to mSTZ-treated mice (left). Selected GO terms 
and KEGG pathways are depicted (all pathways are listed in Supplementary Table 5). We used limma-trend to find differentially expressed genes (see 
Methods). Gene enrichment was done with EnrichR using Fisher’s exact test to identify regulated ontologies or pathways (see Methods). Cells of n!=!3 
mice per treatment were pooled.
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in tissue sections of earlier time points, that overt neogenesis con-
tributed to β-cell regeneration (Fig. 8d). Together, these results 
suggest that redifferentiation of β cells along dedifferentiation 
and redifferentiation trajectories is the main mechanism that 

underlies the re-establishment of functional β cells in the mSTZ 
model by treatment with GLP-1–oestrogen or PEG–insulin, or 
by their cotreatment. By using a combination of low dose insu-
lin with GLP-1–oestrogen treatment, we were able to trigger a 
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β-cell-specific transcriptional response that was characterised by 
increased β-cell proliferation and enhanced functionality.

Discussion
Herein we have established the mSTZ model of diabetes as a model 
to study β-cell dysfunction and dedifferentiation. Single-cell profil-
ing of remaining β cells identified many markers of β-cell dediffer-
entiation that were undescribed previously and that code for surface 
molecules, receptors and secreted proteins. These may be used as 

biomarkers or may allow the detection, isolation and characterisa-
tion of dedifferentiated β cells. This could reveal pathomechanisms 
of T1D and T2D and may have the potential to identify unique diag-
nostic markers and therapeutic targets. Using scRNA-seq we were 
able to delineate a β-cell fate trajectory in which cells transitioned 
from mature to immature to dedifferentiated β cells, which implies 
that β cells can be characterised by a continuum of transcriptional 
states that reflect discrete phenotypes. Inference of cell transitions 
using the RNA velocity concept further suggested that there was 
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Fig. 7 | Treatment specific effects of β-cell regeneration. a,b, Contribution of β-cell proliferation to β-cell regeneration after drug treatment of mSTZ mice. 
a, ScRNA-seq of endocrine cells after 100 d of treatment suggests an increased proliferation of specifically β cells after GLP-1–oestrogen and PEG–insulin 
cotreatment. b, Increased rate of proliferating β cells as indicated by EdU+ β cells per islet in mice treated with no STZ, mSTZ, GLP-1–oestrogen and 
PEG–insulin, and GLP-1–oestrogen plus PEG–insulin-cotreated mice after 25 d and 100 d of treatment. Day 25: No STZ, 73 islets of n!=!3 mice; mSTZ, 36 
islets, n!=!3; GLP-1–oestrogen, 37 islets, n!=!3; PEG–insulin, 61 islets, n!=!3; GLP-1–oestrogen and PEG–insulin, 50 islets, n!=!3. Day 100: No STZ, 47 islets 
of n!=!3 mice; mSTZ, 47 islets, n!=!3; GLP-1–oestrogen, 36 islets, n!=!2; PEG–insulin, 30 islets, n!=!2; GLP-1–oestrogen and PEG–insulin, 47 islets, n!=!3. 
Data are mean!±!s.e.m. One-way ANOVA followed by Tukey post-hoc comparison at day 25 or day 100 (FD25 (4, 247)!=!3.413; FD100 (4, 198)!=!3.814). c, 
Immunohistochemical analysis of GLP-1R expression. A GLP-1R knockout (GLP-1R KO) mouse was used to show specificity of the GLP-1R antibody within 
the islets of Langerhans. Scale bar, 50!μm. Day 0: Images are representative of mice treated with no STZ-vehicle (n!=!3) and mSTZ-vehicle (n!=!3). Day 25: 
Images are representative of mice treated with no STZ-vehicle (n!=!3), mSTZ-vehicle (n!=!3), PEG–insulin (n!=!3) and GLP-1–oestrogen (n!=!3), and of mice 
cotreated with GLP-1–oestrogen and PEG–insulin (n!=!3). Day 75: Images are representative of mice treated with no STZ-vehicle (n!=!2), mSTZ-vehicle 
(n!=!2), PEG–insulin (n!=!1) and GLP-1–oestrogen (n!=!3), and of mice cotreated with GLP-1–oestrogen and PEG–insulin (n!=!3). Additional information is 
available in Source data.
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no ongoing transdifferentiation from other non-β and non-endo-
crine cells towards dedifferentiated β cells. Upregulation of the 
endocrine master regulator Ngn3 might depend on the severity of 
hyperglycaemia; high glucose levels ( >33 mM) have been shown to 
induce Ngn3 expression9,15, whereas lower levels ( <25 mM) had no 
effect14,56. We show that β-cell dedifferentiation in mSTZ-diabetic 
mice is independent of induction of Ngn3+ endocrine progenitors 
and that the transcriptional state of dedifferentiated β cells is more 
similar to late embryonic or early postnatal β cells.

Recently, the Kushner laboratory has provided evidence that some 
of the remaining insulin in the blood stream of patients with long-term 
T1D57 originates from dedifferentiated β cells and/or from polyhor-
monal non-β cells that function as ‘insulin microsecretors’58. Similarly, 
the Korsgren laboratory found histological evidence for β-cell dedif-
ferentiation at T1D onset59. Therefore, triggering the redifferentiation 
of dedifferentiated β cells seems to be an intuitive approach for the 
treatment of diabetes that does not involve β-cell proliferation or neo-
genesis per se60. Preclinical as well as clinical findings from patients 
with type 1 and 2 diabetes suggest that a transient recovery of β-cell 
dysfunction occurs upon glycaemia normalisation by intensive insulin 
treatment by either β-cell rest or redifferentiation3,15. By using scRNA-
seq we can dissect endocrine subtype-specific treatment responses 
and show that insulin treatment triggers transcriptional changes in 
β cells that are connected to insulin and/or IRS signalling. This sup-
ports the idea that in addition to lowering the glucotoxic stress on 
β cells, direct insulin- or IGF-signalling improves β-cell health and 
performance and can redifferentiate β-cell mass in diabetic models43. 
Importantly, the redifferentiated β cells that were induced by insulin 
therapy were functional and responded to physiological stimuli, as 
indicated by increased fasting plasma C-peptide levels.

Moreover, we show that targeted delivery of oestrogen using 
GLP-1 as a peptide carrier and intensive insulin co-therapy by a dis-
tinct MOA alleviates hyperglycaemia, increases fasting C-peptide 
levels and redifferentiates β cells, whereas it reduces daily insulin 
requirements by 60% and limits weight gain in mice. The enhanced 
restoration of GLP-1R expression in dedifferentiated β cells by the 
GLP-1–oestrogen and insulin cotreatment renders them suscep-
tible to targeted delivery of oestrogen. As has been proposed previ-
ously in the Akita mouse model46, we observed that stimulating the 
ERAD pathway by GLP-1–oestrogen beneficially influences β-cell 
physiology in rodent models of diabetes. In future studies, it might 
be of specific interest to test GLP-1–oestrogen with and without 
PEG–insulin co-therapy in genetically perturbed mouse models of 
ERAD. Finan et  al. showed previously that peptide-based target-
ing prevented adverse side effects of oestrogen, such as uterus and 
tumour growth19. There was also no measurable oestrogen-induced 
increase in bone content owing to the effect of the absence or lim-
ited expression of GLP-1R on off-target tissues and cells19. Here, we 
extended the safety profile of GLP-1–oestrogen and demonstrated 
that GLP-1–oestrogen did not stimulate uterine tissue growth in 
OVX rats. This study further verified that there is insufficient free, 

systemic oestrogen to drive toxicity as well as the selectivity and 
specificity of GLP-1–mediated oestrogen targeting. The strategy to 
use GLP-1 as a carrier may be adopted to selectively target any other 
small molecule or biologic to β cells. The prerequisite for the trans-
port of the molecule of interest into the target cell (that is, stressed 
and dedifferentiated β cells) is adequate GLP-1R expression. Under 
hyperglycaemic conditions, adjunctive treatments that reduce the 
glycaemic burden, such as chronic insulin therapy as demonstrated 
here, can facilitate the restoration of GLP-1R expression in stressed 
β cells. Notably, chronic PEG–insulin treatment also increased func-
tional β-cell number and the scRNA-seq data suggest a direct effect 
of insulin on β cells. Thus, combinatorial pharmacological treat-
ments that include insulin might have additional beneficial effects 
on β-cell survival, protection, proliferation and function. In sum-
mary, our work has identified mechanisms and pathways of β-cell 
dedifferentiation and opens avenues for pharmacological targeting 
of these dedifferentiated cells for diabetes remission.

Methods
mSTZ treatment. mSTZ (Sigma-Aldrich cat. no. S0130) was injected 
intraperitoneally in 8-week-old male C57BLJ/6 mice (n = 125) at 50 mg kg−1 for "ve 
consecutive days following the mSTZ model to induce diabetes. A subset of age-
matched male mice was injected with ice-cold citrate bu#er (pH 4.5) as  
control animals (n = 20). C57BLJ/6 mice were obtained from Janvier Labs. Ten 
days a$er the last mSTZ injection, fasting blood glucose was taken, as well as 
fasting plasma, to determine fasting insulin and C-peptide levels. We included 
hyperglycaemic mice with fasting blood glucose levels of >190 mg dl−1 (n = 116). 
We estimated β-cell function and mass of mSTZ-treated mice by combining fasting 
blood glucose levels, the homeostatic model assessment (HOMA)-β-score and 
the ratio of fasting C-peptide to blood glucose levels. Among mSTZ-treated mice, 
animals with fasting glucose levels of >25th percentile, a HOMA-β-score of <25th 
percentile and a C-peptide to blood glucose ratio of <25th percentile were excluded 
from the study (n = 9).

Pharmacological study in mSTZ mice. mSTZ diabetic mice were randomised and 
evenly distributed to different treatments according to fasting blood glucose levels. 
Ten days after the last STZ injection, mice were allocated to different treatments  
of daily subcutaneous injection with vehicle (PBS; n = 17, not mSTZ-treated),  
vehicle (PBS; n = 17, mSTZ-treated), a GLP-1 analogue (n = 16), oestrogen (n = 14), 
GLP-1–oestrogen (n = 28, of which n = 11 mice were switched to vehicle (PBS) 
treatment after 12 weeks of GLP-1–oestrogen treatment), PEG–insulin (n = 13), or 
GLP-1–oestrogen and PEG–insulin (n = 16) at the doses indicated in Fig. 1a for 100 d.  
Mice were housed up to four per cage on a 12:12-h light-dark cycle at 22 °C and 
given free access to a normal chow diet (Altromin 1314) and water. Compounds 
were administered in a vehicle of PBS (Gibco) and were given by daily subcutaneous 
injections at the indicated doses at a volume of 5 μl g−1 body weight for the indicated 
durations as indicated in the figure legends. The investigators were not blinded to 
group allocation during the in vivo experiments or to the assessment of longitudinal 
endpoints. All rodent studies were approved by and performed according to the 
guidelines of the Animal Use and Care Committee of Bavaria, Germany.

Study in FVFPBFDHom mice. Male 8-week old FVFPBFDHom mice with fasting 
blood glucose > 250 mg dl−1 were randomised to vehicle (n = 7), oestrogen (n = 5), 
GLP-1 (n = 9) or GLP-1–oestrogen (n = 11) treatment according to their fasting 
blood glucose levels. FVFPBFDHom mice were obtained from breeding. Mice were 
treated daily for four weeks with subcutaneous injections. Fasting blood glucose 
was measured after a 6-h fast. We single- or group-housed the mice on a 12-h light, 

Fig. 8 | Origin and fate of treated endocrine cells. a,b, Cluster relationships and cell transitions to indicate the origin and fate of treated endocrine cells. 
Graphs of lineage relationships are derived from cluster connectivity using PAGA. Paths in the graph signify potential lineage transitions and are weighted 
by significance. Cell transitions are inferred from estimated RNA velocities and the direction of movement plotted as streamlines on the UMAP. a, Plots 
show endocrine cells from mice treated with mSTZ and GLP-1–oestrogen (left two), PEG–insulin (middle two) or GLP-1–oestrogen plus PEG–insulin (right 
two), showing movement from mSTZ (origin or starting point) towards treated cells. b, Plots show endocrine cells from healthy mice and and those 
treated with GLP-1–oestrogen (left two), PEG–insulin (middle two) or GLP-1–oestrogen plus PEG–insulin (right two), showing a potential movement of the 
treated cells towards healthy cells (fate). c,d, Expression of the endocrine progenitor marker Ngn3 to assess the contribution of β-cell neogenesis to β-cell 
regeneration by GLP-1–oestrogen, PEG–insulin and GLP-1–oestrogen plus PEG–insulin treatment. c, ScRNA-seq shows no increase in Ngn3 gene expression 
in endocrine cells after 100 d of treatment. d, Immunohistochemistry of Ngn3 expression during the course of the study. Mouse E15.5 pancreas was used as 
a positive control and shows nuclear staining for Ngn3. Scale bar, 50 μm. Day 0: Images are representative of mice treated with no STZ-vehicle (n!=!3) and 
mSTZ-vehicle (n!=!3). Day 25: Images are representative of mice treated with no STZ-vehicle (n!=!3), mSTZ-vehicle (n!=!3), PEG–insulin (n!=!3) and GLP-1–
oestrogen (n!=!3), and of mice cotreated with GLP-1–oestrogen and PEG–insulin (n!=!3). Day 75: Images are representative of mice treated with no STZ-
vehicle (n!=!2), mSTZ-vehicle (n!=!2), PEG–insulin (n!=!1) and GLP-1–oestrogen (n!=!3), and of mice cotreated with GLP-1–oestrogen and PEG–insulin (n!=!3).
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12-h dark cycle at 22 °C and provided free access to food and water. This study was 
approved by and performed according to the guidelines of the Animal Use and 
Care Committee of Bavaria, Germany.

Uterotrophic assessment in OVX rats. The study was designed in accordance with 
the Endocrine Disruptor Screening Programme Test Guidelines OPPTS 890.1600: 
Uterotrophic Assay, a standardised in vivo screening test intended to evaluate 
the ability of a chemical to elicit biological activities consistent with agonists of 
natural oestrogens (for example, 17ß-oestradiol). The test measures the increase 

in uterine weight or uterotrophic response in comparison with non-treated 
controls61. The study was further designed according to accepted pharmacological 
principles and followed Good Laboratory Practice (conducted by Envigo). A total 
of 44 OVX female Sprague-Dawley rats (Charles River) were supplied for the 
study, of which 40 animals were allocated to treatment groups (randomised by 
body weight to ensure equal group mean starting body weight) and the remaining 
4 animals were allocated as spares. On the day of dosing (following 14–22 d of 
acclimatisation), rats were approximately 9–12 weeks of age, and weighed 217 g to 
348 g. Four groups of 8 rats each were treated for 14 consecutive days with once-
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daily subcutaneous administration of GLP-1–oestrogen at doses of 400 μg kg−1, 
2,200 μg kg−1 and 4,000 μg kg−1 per day or with volume-matched vehicle (PBS). 
An additional group of animals received once-daily subcutaneous injections of 
vehicle for the first 10 d followed by once-daily subcutaneous injection of 17 alpha-
ethynyl oestradiol (positive control) at 300 μg kg−1 d−1 on days 11 to 14. Animals 
were weighed daily from day 1 (prior to dosing) until the day of necropsy, and 
food consumption was recorded on days −4, 1, 4, 8, 11 and 15 (day of necropsy). 
Standard toxicological organ weight measurement was carried out at necropsy, 
including the weighing of wet and dry (blotted) uterine tissue. The uterus was 
sampled and weighed according to OPPTS 890.1600.

Administration of EdU. To investigate cell proliferation, we used the modified 
uracil analogue 5´ethynyl-2´-desoxyuridine (EdU). EdU was injected 
intraperitoneal (i.p.) at 50 µg kg body weight −1 24 h prior to sacrifice.

Compound formulation and peptide synthesis and cleavage. GLP-1 and 
GLP-1–oestrogen. Peptides were synthesised by solid-phase peptide synthesis 
methods using in situ neutralisation for %uorenylmethoxycarbonyl (Fmoc)-based 
chemistries. For Fmoc-based neutralization peptide synthesis, we used 0.1 mmol 
Rink MBHA resin (0.5–0.7 mmol g–1, 100–200 mesh, Novabiochem) on a Symphony 
peptide synthesiser by standard Fmoc methods using diisopropylcarbodiimide/1-
hydroxybenzotriazole chloride (DIC/HOBt-Cl, both from AAPPTec) in 
dichloromethane (DMF, VWR Chemicals) for coupling and 20% piperidine in DMF 
for deprotection of N-terminal amines. Completed peptidyl resins were treated with 
tri%ouracetic acid (TFA, VWR Chemicals), triisopropylsilane (TIS, Sigma-Aldrich) 
and water (9.0:0.5:0.5 (v/v/v)) for 2 h with agitation. We con"rmed the peptide 
molecular weights and character by liquid chromatography–mass spectrometry on 
an Agilent 1260 In"nity/6120 Quadrupole instrument with a Kinetex C8 column 
and a gradient of 10%–80% eluent B. Eluent A is water with 0.05% TFA and eluent 
B is 10% water, 90% MeCN, 0.05% TFA. Preparative HPLC puri"cations were 
performed on a Waters instrument with a Kinetex 5 μ C8.

To synthesise the derivatized oestrogen for construction of the conjugate, we 
reacted oestradiol 17-acetate (Sigma) and a tenfold excess of ethyl 2-bromoacetate 
in dioxane in the presence of K2CO3 under reflux conditions and agitation. After 
the removal of dioxane in vacuo, we resuspended the intermediate product 
in dioxane with 1 N NaOH with heat, followed by a re-acidification by HCl in 
dichloromethane. After the removal of DCM in vacuo, the crude product was 
resuspended in aqueous solvent containing at least 20% MeOH, 20% acetronitrile 
(ACN, VWR Chemicals) and 1% AcOH. The crude extract was purified by 
reversed-phase HPLC.

The derivatized oestrogen was added covalently to the side-chain amine on the 
C-terminal lysine amide residue. We used a C-terminal N-methyltrityl-l-lysine 
(Lys(Mtt)-OH) residue, whose side chain was orthogonally deprotected with four 
10-min treatments with 1.5% TFA, 2% TIS and 1% anisole in DMF. The oestrogen 
was attached through this side-chain amine of the C-terminal lysine after treatment 
with a threefold excess of the purified derivatized oestrogen and DIC/HOBt-Cl in 
N-methyl- 2-pyrrolidone. After TFA cleavage as described above, the crude extract 
was resuspended in aqueous buffer containing 20% ACN and 0.1 M NH4HCO3. 
The conjugate was purified as described above.

PEG–insulin. Pegylated insulin (PEG–insulin) was prepared by insulin N-terminal 
amine reductive amination with 20 K methoxy PEG propionaldehyde. In brief, 
human insulin was dissolved in 50 mM sodium acetate buffer (pH 5.0) and 50% 
ACN. A 30-fold excess of sodium cyanoborohydride and a 1.5-fold excess of 
methoxy PEG propionaldehyde (M-ALD-20K, JenKem Technology) was added to 
the buffer containing insulin for 3 h at room temperature with stirring. Purification 
by reverse phase chromatography on a C-8 column in 0.1% TFA acetonitrile 
solvents yielded the final product at greater than 95% purity.

Oestrogen (17β-oestradiol, Sigma-Aldrich) was dissolved in 100% ethanol 
(Sigma-Aldrich) at a concentration of 1 mg ml−1 and was diluted with PBS to the 
required concentration.

Blood parameters. Blood was collected from tail veins after a 4-h fast, using EDTA-
coated microvette tubes (Sarstedt). Blood was immediately chilled on ice. Plasma 
was separated by centrifugation at 5,000g at 4 °C for 10 min using a micro centrifuge 
and was stored at −20 °C until further usage. Plasma insulin and C-peptide 
(Crystal Chem) and Proinsulin (Alpco) were quantified by ELISA (enzyme-linked 
immunosorbent assay) following the manufacturer’s instructions. Four-hour fasting 
blood glucose levels were determined using a handheld glucometer (FreeStyle).

Pancreas dissection. Adult pancreata were dissected and fixed in 4% PFA in PBS 
for 24 h at 4 °C. The tissues were cryoprotected in a sequential gradient of 7.5%, 
15% and 30% sucrose-PBS solutions at room temperature (2 h incubation for each 
solution). Next, the pancreata were incubated in 30% sucrose and tissue embedding 
medium (Leica) (1:1) at 4 °C overnight. Afterwards, they were embedded in a 
cryoblock using tissue-freezing medium (Leica), frozen in dry ice and stored at 
−80 °C. Sections of 20 μm thickness were cut from each sample, mounted on a 
glass slide (Thermo Fisher Scientific) and dried for 10 min at room temperature 
before use or storage at −20 °C.

Immunostaining of sections. The cryosections were rehydrated by three washes 
with 1× PBS, and were permeabilised with 0.2–0.15% Triton X-100 in H2O for 
30 min. Permeabilisation was not performed for staining with GLP-1R. Then, 
the samples were blocked in blocking solution (PBS, 0.1% Tween-20, 1% donkey 
serum, 5% FCS) for 1 h. The following primary antibodies were used: guinea pig 
polyclonal anti-insulin (1:300, Thermo Fisher Scientific), goat polyclonal anti-Glut2 
(1:500, Abcam), goat polyclonal anti-Nkx6.1 (1:200, R&D Systems), goat polyclonal 
anti-somatostatin (1:500, Santa Cruz), rat monoclonal anti-somatostatin (1:300, 
Invitrogen), rabbit polyclonal anti-urocortin 3 (1:300, Phoenix Pharmaceuticals), 
rabbit monoclonal anti-insulin (1:300, Cell Signaling), guinea pig polyclonal 
anti-glucagon (1:500, Takara), guinea pig polyclonal anti-insulin (1:300, ABD 
Serotec), rabbit polyclonal cleaved caspase-3 (Asp 175) (1:300, Cell Signaling), 
rabbit monoclonal anti-ki67 (1:300, Abcam), rabbit polyclonal anti-Aldh1a3 
(1:300, Abcam), rabbit monoclonal anti-GLP-1R (1 µg ml−1, Novo Nordisk), rabbit 
polyclonal anti-gastrin (1:100, Abcam), rabbit polyclonal anti-cholecystokinin 
(1:100, ENZO), goat polyclonal anti-Sel1l (1:300, Novus Biologicals) and rabbit 
anti-Ngn3 (1:800, donated by H. Edlund). Dilutions were prepared in blocking 
solution and sections were incubated overnight at 4 °C. Thereafter, sections were 
rinsed 3× and washed 3× with 1× PBS. All secondary antibodies were used at a 1:800 
dilution prepared in blocking buffer. We used the following secondary antibodies: 
donkey anti-goat IgG (H + L) secondary antibody (Alexa Fluor 633, Invitrogen 
A-2108), donkey anti-rabbit IgG (H + L) secondary antibody (Alexa Fluor 555, 
Invitrogen A-31572); donkey anti-rabbit IgG (H + L) secondary antibody (Alexa 
Fluor 488, Invitrogen A-21206); donkey anti-guinea pig IgG (H + L) secondary 
antibody (DyLight 649, Dianova, 706–495–148); donkey anti-rat IgG (H + L) 
secondary antibody (DyLight 647 Dianova 711–605–152); donkey anti-rat IgG 
(H + L) secondary antibody (Cy3, Dianova 712–165–153); donkey anti-guinea pig 
(H + L) secondary antibody (Alexa Fluor 488, Dianova 706–545–148). After 4–5 h 
of incubation, pancreatic sections were stained with DAPI (1:500 in 1× PBS) for 
30 min, rinsed and washed 3× with 1× PBS, and subsequently mounted. All images 
were obtained with a Leica microscope of the type DMI 6000 using LAS AF software 
(Leica). Images were analysed using the LAS AF and/or ImageJ software programme.

Automatic tissue analysis. Stained tissue sections were scanned with an AxioScan.
Z1 digital slide scanner (Zeiss) equipped with a ×20 magnification objective. We 
scanned three sections per animal. Images were evaluated using the commercially 
available image analysis software Definiens Developer XD 2 (Definiens). First, 
regions of interest were annotated manually to select islets of Langerhans for 
analysis. A specific rule set was then defined to detect and quantify the cells 
within each defined region on the basis of the fluorescence intensity of DAPI, 
morphology, size and neighbourhood. The Ins-, Gcg- or Sst-expressing cells were 
classified automatically using the fluorescence intensity of each hormone.

EdU detection protocol. EdU staining was carried out according to the EdU 
imaging kit manual (Life Technologies) after staining with the secondary antibody. 
DAPI staining and mounting was performed as described above.

Pancreatic insulin content. Pancreatic insulin content was determined by an 
acid ethanol extraction. The pancreas was dissected, washed in 1× PBS and 
homogenised in an acid-ethanol solution (5 ml 1.5% HCl in 70% ethanol) followed 
by incubation at −20 °C for 24 h. After 2 rounds of acid-ethanol precipitation, 
the tissue was centrifuged (2000 r.p.m., 15 min, 4 °C) and the supernatant was 
neutralised with 1 M Tris pH 7.5. Insulin was measured using a mouse insulin 
ELISA (Crystal Chem) and was normalised over the protein concentration that was 
determined by BCA protein assay.

Islet isolation. Islet isolation was performed by collagenase P (Roche) digestion of 
the adult pancreas. In brief, 3 ml of collagenase P (1 mg ml−1) was injected into the 
bile duct and the perfused pancreas was consequently dissected and placed into 
another 3 ml of collagenase P for 15 min at 37 °C. Then, 10 ml of G-solution (HBSS 
(Lonza) + 1% BSA (Sigma-Aldrich)) was added to the samples, and this was followed 
by centrifugation at 1,600 r.p.m. at 4 °C. After another washing step with G-solution, 
the pellets were re-suspended in 5.5 ml of gradient preparation (5 ml 10% RPMI 
(Lonza) + 3 ml of 40% Optiprep (Sigma-Aldrich) per sample), and placed on top of 
2.5 ml of the same solution. To form a 3-layer gradient, 6 ml of G-solution was added 
on the top. Samples were then incubated for 10 min at room temperature before 
centrifugation at 1,700 r.p.m. Finally, the interphase between the upper and the 
middle layers of the gradient was harvested and was filtered through a 70 μm Nylon 
filter then washed with G-solution. Islets were hand picked under the microscope.

Single-cell suspension. To achieve a single-cell suspension of islets, islets were 
hand picked into a 1.5 ml Eppendorf tube, pelleted (800 r.p.m., 1 min) washed with 
PBS (minus Mg or Ca, Gibco) and digested with 0.25% trypsin with EDTA (Gibco) 
at 37 °C for 8 min. Mechanical disaggregation every 2–3 min was required. The 
digestive reaction was then stopped and cells were pelleted (1200 r.p.m., 5 min).

Single-cell sequencing. Single-cell libraries were generated using the Chromium 
Single-cell 3′ library and gel bead kit v2 (PN 120237) from 10x Genomics. In brief, 
to reach a target cell number of 10,000 cells per sample 16,000 cells per sample 
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were loaded onto a channel of the 10x chip to produce Gel Bead-in-Emulsions 
(GEMs). This underwent reverse transcription to barcode RNA before cleanup 
and cDNA amplification followed by enzymatic fragmentation and 5′ adaptor and 
sample index attachment. Libraries were sequenced on the HiSeq4000 (Illumina) 
with 150 bp paired-end sequencing of read2.

FACS sorting. FACS sorting of endocrine cells was performed using the FACS-
Aria III (BD Biosciences). Single cells were gated according to their FSC-A (front 
scatter area) and SSC-A (side scatter area). Singlets were gated dependent on the 
FSC-W (front scatter width) and FSC-H (front scatter height) and dead cells were 
excluded using the marker 7AAD (eBioscience). The FVF endocrine populations 
were discriminated according to their Venus fluorescence emission at 488 nm 
and the β- and α-lineages were discriminated according to their BFP emission at 
405 nm (positive and negative respectively). To enrich for β cells the distinct SSC-A 
high populations were gated. FACS sorted cells were sorted directly into Qiazol 
(Qiagen) for RNA isolation.

RNA isolation and cDNA preparation. The mRNA isolation was performed using 
the miRNeasy Micro Kit (Qiagen) according to the manufacturer’s instructions. 
On-column DNase I treatment was applied to degrade DNA. For cDNA 
preparation the SuperScript Vilo cDNA Synthesis Kit (Thermo Fisher Scientific) 
and the GoScript Reverse Transcript System Kit (Promega) were used. The cDNA 
synthesis was carried out according to both manufacturers’ instructions.

Quantitative PCR. Quantitative PCR (qPCR) was carried out using the Viia7 Real 
Time PCR System (Thermo Fisher Scientific) and the following TaqMan probes 
(Life Technologies): Ins 1 (Mm01950294_s1), Ins 2 (Mm00731595_Gh), Gcg 
(Mm01269055_m1), Sst (Mm00436671_m1), Ppy (Mm01250509_g1), Ghrelin 
(Mm00445450_m1), Pecam1 (Mm01242584_m1), Gapdh (Mm99999915_g1) and 
18S (Mm03928990_g1). Each reaction contained 25 ng of cDNA. For analysis, the 
Ct-values were transformed to the linear expression values and were normalised to 
the reference genes (Gapdh and 18S) and to the control samples.

Reaggregated human micro-islets. All primary human islets were obtained 
through Prodo Laboratories with no information on the identity of the donor for 
ethical and privacy reasons (donor 1: male, BMI 32.38, age 48, HbA1c 5.6%; donor 
2: male, BMI 33.2, age 46, HbA1c 5.4%; donor 3: male, BMI 28.65, age 34, HbA1c 
5.2%). For all donors, consent was obtained from next of kin. For each preparation 
of InSphero 3D InSight human islet microtissues, 10,000–20,000 islet equivalents 
were dispersed in dissociation solution (1× TrypLE Express solution (Thermo 
Fisher Scientific 12604013) with 40 µg ml−1 DNase I (Sigma-Aldrich 10104159001)) 
by gentle pipetting at 37 °C. Remaining cell clumps were removed by filtering the 
cell suspension through a cell strainer (70 μm pore size). Islet microtissues were 
produced by hanging-drop-based scaffold-free reaggregation of 2,500 cells in each 
well of the InSphero 96-well Hanging Drop System for 5 d. The primary aggregates 
were then transferred to the Akura 96 well-plate to further mature for at least 
another 8 d before the start of the experiments. All experiments were performed 
within 30 d after the start of the aggregation. Islet microtissues were maintained in 
3D InSight Human Islet Maintenance Medium (InSphero).

Compound, cytokine treatments and GSIS with human micro-islets. Dilution 
series of compounds were performed in 3D InSight Human Islet Maintenance 
Medium. Each of the assessed compounds was added to the culture medium at the 
concentration indicated below, one day prior to the start of the cytokine treatment. 
The cytokine cocktail contained: tumour necrosis factor alpha (TNFα, 10 ng ml−1, 
Thermo Fisher Scientific PHC3016), interferon gamma (IFNγ, 10 ng ml−1, Sigma-
Aldrich I3265) and interleukin-1beta (IL-1β, 2 ng ml−1, Sigma-Aldrich I17001), 
was prepared in PBS containing 0.1% BSA (Sigma-Aldrich A7888). The same 
concentration of PBS–BSA solution was maintained in each experimental condition. 
Regular redosings with cytokines and compounds were performed every 2–3 d. Prior 
to GSIS, culture medium was removed and islet microtissues were washed twice 
with Krebs Ringer Hepes Buffer (KRHB; 131 mM NaCl, 4.8 mM KCl, 1.3 mM CaCl2, 
25 mM Hepes, 1.2 mMm KH2PO4, 1.2 mM MgSO4, 0.5% BSA) containing 2.8 mM 
glucose and equilibrated for 1 h in the same solution. GSIS was performed in KRHB 
containing indicated glucose concentrations for 2 h. Following GSIS, the tissues 
were lysed using the CellTiter-Glo Luminescent Cell Viability Assay (Promega 
G9241) with protease inhibitor cocktail (Promega G6521) and the luminescence 
was recorded with a microplate reader (Infinite M1000, TECAN) for the analysis of 
total ATP content. The lysates were then used for assessment of total insulin content. 
After the correct dilutions in KRHB were performed, total and secreted insulin 
was quantified using the Stellux Chemi Human Insulin ELISA (Alpco, 80-INSHU-
CH10). The Caspase-Glo 3/7 Assay (Promega, G8090) was used to assess caspase-3 
and caspase-7 activity in the islet microtissues following compound treatment.

Statistical analysis not including scRNA-seq data. Preliminary data processing and 
calculations during ongoing studies were carried out using Microsoft Excel 2016. 
All further statistical analyses were performed using GraphPad Prism 8. We used 
the one-way analysis of variances (ANOVA) followed by Tukey’s post hoc analysis 
to determine significance among the different treatment groups. In the case of only 

two groups, the unpaired Student two-tailed t-test was used to detect significant 
differences. The human micro-islets were derived from three different donors, each 
of whom naturally varied in their GSIS. To compare the treatment effects among 
all donors, we used one-way ANOVA with the different donors as random effect 
followed by Tukey’s post hoc analysis. This analysis was performed in R. Grubbs’ 
test (α < 0.05) was used to detect significant outliers, which were then excluded from 
subsequent statistical analysis and figure drawing. P < 0.05 was considered to be 
statistically significant. All results are mean ± s.e.m. unless otherwise indicated.

Preprocessing of droplet-based scRNA-seq data. Demultiplexing of binary  
base call (BCL) files, alignment, read filtering, barcode and unique molecular 
identifier (UMI) counting were performed using the CellRanger analysis pipeline 
(v2.0.0) provided by 10x Genomics. High quality barcodes were selected on the basis 
of the overall distribution of total UMI counts per cell using the standard CellRanger 
cell detection algorithm. All further analyses were run with python3 using the 
scanpy package62 (v1.0.4 + 92.g9a754bb, https://github.com/theislab/scanpy) 
except stated otherwise. Genes with expression in less than ten cells were excluded. 
Furthermore, as is also applied as standard preprocessing steps in scanpy tutorials, 
low quality or outlier cells were removed if they: (1) had a high fraction of counts 
from mitochondrial genes (40% or more); (2) expressed more than 7,000 genes; or 
(3) had more than 100,000 UMI counts. Cell-by-gene count matrices of all samples 
were then concatenated to a single matrix. To account for differences in sequencing 
depth, UMI counts of each cell were normalised by total counts of that cell (pp.
normalize_per_cell with mean = TRUE) and values were log-transformed. Highly 
variable genes (n = 1,625) were selected on the basis of normalised dispersion using 
the setting the lower cutoffs for the mean to 0.0125 and for the dispersion to 0.5. 
This matrix was used as input for all further analyses unless otherwise indicated.

Embedding, clustering and cell type annotation. Clustering was performed on the 
full data set to reduce systematic biases such as batch effects as was recommended 
in ref. 63. A single-cell neighbourhood graph (kNN-graph) was computed on 
the 50 first principal components using 15 neighbours. To minimise condition 
effects and to facilitate clustering we recomputed the kNN-graph using the first 15 
diffusion components of the PCA-based graph as suggested in ref. 64. For clustering 
and cell type annotation, Louvain-based clustering65 was used as implemented in 
louvain-igraph (v0.6.1 https://github.com/vtraag/louvain-igraph) and adopted by 
scanpy (tl.louvain). The resolution parameter was varied in different parts of the 
data manifold to account for strong changes in resolution (for details, see Data 
availability). Clusters were annotated on the basis of the mRNA expression of the 
four main hormone genes Ins1 and Ins2, Gcg, Sst and Ppy (endocrine cells) and 
other known marker genes (non-endocrine cells) and were merged if they reflected 
heterogeneity only in a cell type outside the focus of this study.

Ductal cells (that express Krt19), acinar cells (that express Prss2), endothelial 
cells (that express Plvap), stellate cells (that express Col1a2) and small clusters of 
potential doublet-like cells that co-express endocrine and non-endocrine markers 
were removed from further analysis. Immune cells (that express Cd74) that 
infiltrate the islets were finely subclustered into macrophages (that express Cd86, 
Adgre1 and Cd14), dendritic cells (that express Cd86, Itgax and Iftim3), B cells (that 
express Cd79a and Cd79b) and T cells (that express Cd8a and Cd3d).

The hormone genes Ins1 and Ins2, Gcg, Sst and Ppy were expressed at very 
high levels and showed background level expression in all other endocrine 
subtypes and non-endocrine cell types. Such background expression is a common 
phenomenon in droplet-based scRNA-seq data. It is commonly said to be due to 
free-floating mRNA in the single-cell solution that comes from lysed cells and that 
is incorporated into all droplets. For annotation, only hormone expression that was 
well above the background level in non-endocrine cells, such as ductal, immune 
and endothelial cells, was considered.

For the identification of β-cell substates a new kNN-graph on the first 50 
principal components was calculated and put into Louvain-based clustering of 
both Ins monohormonal and the connected Ins-PP cells. Similarly, Ins-Sst cells 
were subclustered from Ins-Sst-PP cells after recalculating the kNN-graph on the 
first 50 principal components. Ins-Gcg-Sst cells were assigned using a manual 
threshold for all three hormones that was well above ambient levels (threshold = 6 
for normalised data).

For visualisation, UMAP was run as recommended in ref. 66. For each UMAP-
plot the UMAP was newly calculated by recomputing the kNN-graph on the 
represented cell subset using the first 50 principal components.

Identification of polyhormonal singlets and doublet-like endocrine cell 
clusters. Polyhormonal cells have previously been reported to exist in pancreatic 
islets67–69. However, the expression of multiple hormones in the same droplet 
can also be an indication of a doublet. It can therefore be difficult to distinguish 
polyhormonal singlets from doublets. A doublet rate of ~8–10% was measured 
in experiments with the same concentration of cells using the 10x technology70. 
This rate includes doublets with contributions from two different cell types (here, 
polyhormonal doublets) and from the same cell type (here, monohormonal 
doublets). The monohormonal doublets resemble monohormonal singlets and do 
not affect subsequent analyses71. We calculated the expected doublet frequency 
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of polyhormonal doublets for a doublet rate of 10% using the frequency of 
monohormonal cell types that contribute to the doublet (doublet contributors) 
and assuming that doublets are generated by sampling singlet cells uniformly at 
random71. In every sample the proportion of observed polyhormonal cells clearly 
exceeded the expected polyhormonal doublet frequency. Therefore, in our data set it 
is unlikely that all detected polyhormonal cells are doublets. Application of doublet 
cell detection tools Scrublet71 (v0.1, https://github.com/AllonKleinLab/scrublet) and 
DoubletDetection (https://github.com/JonathanShor/DoubletDetection) failed to 
resolve which clusters represent doublets and which clusters represent polyhormonal 
singlets. Predictions of the tools disagreed with each other and the doublet rate 
was consistently overestimated. We therefore used the following criteria to evaluate 
polyhormonal cell clusters and to distinguish between singlets and doublets:

(1) Doublets should not express unique genes. All genes should also be 
expressed in at least one doublet contributor.

(2) Doublets should express marker genes or lineage-determining transcription 
factors of the doublet contributors. Downregulation of these genes indicates singlet 
populations.

(3) Previous reporting of polyhormonal singlet cells in the literature.
(4) Clusters of polyhormonal cells with a higher frequency than expected by our 

doublet simulation indicate polyhormonal singlet clusters (Extended Data Fig. 6g).
(5) Clusters with Scrublet doublet score distributions that are comparable  

to monohormonal singlet clusters indicate polyhormonal singlets (Extended  
Data Fig. 6h).

On the basis of these criteria we found sufficient evidence for Ins-PP, Ins-
Sst-PP, Gcg-PP (low) and Gcg-PP (high) cells to be polyhormonal singlets, but we 
excluded Ins-PP-Gcg, Ins-Gcg, Ins-Gcg-Sst, Gcg-Sst-PP and Sst-PP(high) cells as 
probable doublets.

Cell-cycle classification. To classify cells into cycling and non-cycling cells, first, a 
score was assigned to each cell for a set of S and G2/M phase genes72 as proposed73, 
and second, all cells with an S-score or a G2/M-score > 0.25 were classified as 
cycling. The threshold was chosen on the basis of the score distribution. The score 
for a given gene set was computed as described74 and implemented in scanpy (tl.
score_genes_cell_cycle).

Marker genes of the main endocrine cell types. For the characterisation of the 
four endocrine cell types, specific marker genes were identified by comparing the 
gene expression profile of each cell type against all cells of the other three cell types 
using a test with overestimated variance as implemented in scanpy (tl.rank_genes_
groups). All genes that ranked within the top 300 genes, had a test score of >8 and 
were unique markers for one cell type were considered as marker genes.

Differential expression testing to describe subpopulations and treatment 
responses. Differential expression testing between treatments and for the 
characterisation of immature β cells and polyhormonal subpopulations was 
performed on quantile-normalised (quantile threshold = 0.95) and log-transformed 
data to account for extremely highly expressed genes (for example, the main 
hormones in endocrine cells) that may incorrectly alleviate the expression of 
other genes in a cell when total count normalisation is applied. By quantile 
normalisation, each cell is normalised by the total UMI count in the cell, of genes 
that account for less than 5% of the total UMI counts across all cells. Thus, very 
highly expressed genes are not considered for normalisation. For differential 
expression testing we used limma-trend75,76, as implemented in the Bioconductor 
package limma (v3.28.10), through an rpy2 (v2.9.1) interface as recommended in 
ref. 77. In each test only genes expressed in >1% of cells in any of the two subsets 
tested were considered. Gene set enrichment was performed using EnrichR78 
through its web interface. Genes with a false discovery rate (FDR) of <0.01 and 
an estimated log(fold change) (output from limma model, not the actual log(fold 
change), as log-transformed data were the input) of >0.25 were used as input. 
Notably, the hormone genes Ins1 and Ins2, Gcg, Sst and Ppy, as well as other known 
cell type marker genes Pyy, Iapp, Ttr, Gpx3, Ctrb1 and Try5 were also differentially 
expressed in other cell-types in which they are expressed only at background levels 
(free-floating mRNA, see Embedding, clustering and annotation). These genes are 
indicated in the Supplementary Tables and were excluded from plotting.

Identification of specific β-cell dedifferentiation markers. Genes specific for 
dedifferentiated β cells (β-mSTZ) were extracted from the list of all significantly 
upregulated genes (FDR < 0.05, estimated log(fold change) > 0.25) in β cells from 
mSTZ-treated mice compared to β cells of healthy mice by two filtering steps. 
First, non-specific genes that were also differentially expressed in any of the other 
monohormonal endocrine cell types (α, δ and PP) were excluded. Second, only 
genes that were expressed in at least 25% of β cells from mSTZ-treated mice and in 
less than 5% of β cells from healthy mice were considered. Location was extracted 
from the GeneCards database (https://www.genecards.org).

Inference of β-cell maturation, dedifferentiation and regeneration trajectories. 
Pseudotime of β-cell maturation in healthy islets and dedifferentiation upon mSTZ 
treatment was calculated using diffusion pseudotime (dpt)79,80 as implemented in 
scanpy (tl.dpt), selecting a random root cell within the starting population. The 

choice of root cell did not affect the inferred pseudotemporal ordering strongly. 
Similarly, the dpt approach was used to model β-cell regeneration and to estimate 
the location of treated β cells along the path from dedifferentiated to mature β cells. 
Here, dpt was used as a cell-to-cell distance metric across samples. Cycling cells as 
well as a small subpopulation of β cells were excluded from visualisation as they 
were not part of the linear trajectory and they showed very high pseudotime values.

Comparison of β-cell dedifferentiation trajectory to embryonic and postnatal 
maturation. To compare the dedifferentiation trajectory to embryonic and 
postnatal maturation we used a publicly available single-cell RNA-seq data set 
as a reference that contained cells that were sorted from Gcg-Venus and Ins-
GFP reporter mice at 6 different time points (E17.5, P0, P3, P9, P18 and P60)37. 
The filtered and annotated raw count matrix was downloaded from the Gene 
Expression Omnibus (GEO) (GEO accession number: GSE87375). The analysis 
was run using the updated scanpy package v1.4.4, as only this version includes 
the necessary data integration methods. ERCC RNA spike-in and genes with 
expression in fewer than three cells were excluded. The data were normalised to 
total counts per cell using the pp.normalize_total function in scanpy with default 
parameters and excluding highly expressed genes, and were log-transformed (pp.
log1p). For the scope of this manuscript we used a subset of the data that contained 
only β cells (Ins1-positive cells). Therefore, we computed a kNN-graph on the 50 
first principal components using 15 neighbours and performed a first round of 
Louvain-based clustering (tl.louvain). As input, data were subset to the 3,000 top 
ranking highly variable genes (pp.highly_variable_genes). We excluded all clusters 
that showed high expression of Gcg, which is indicative of α cells, or that showed 
high expression of Mki67, which is indicative of proliferative cells. In addition, we 
filtered cells that showed high expression of the δ cell markers Sst or Hhex.

We integrated this reference data set with the data from our study, which was 
subset to β cells from Ctrl and mSTZ-Vehicle treatment, using BBKNN81 from the 
scanpy external package (sce), which allowed us to compute an embedding and 
trajectory that included both data sets. To reduce noise, we excluded genes that 
were expressed in fewer than 15 cells in each data set. In addition, cycling cells 
(Mki67 > 1, 33 reference cells and 30 of the cells from this study) were excluded, 
as their expression profile is dominated by the expression of cell-cycle genes and 
these cells therefore formed a separate cluster which was not part of the linear 
maturation trajectory. To ensure that β-cell maturation dominates the gene 
expression variation we first considered only the 2,000 top-ranked highly variable 
genes (pp.highly_variable_genes) of the reference data set that were also expressed 
in our data, and, second, we reduced the contribution of heterogeneity within the 
β1 and β-mSTZ cluster to gene expression variation by randomly subsetting both 
clusters to 500 cells. We then scaled and zero centred each data set separately (pp.
scale) and concatenated the two data sets, which resulted in a 1,788 cells by 1,654 
genes count matrix. We computed a common kNN-graph on the first ten principal 
components using the sce.pp.bbknn function with default parameters and k = 5 
within batch neighbours. As the data sets did not show a strong batch effect even 
without integration, assessed by visual inspection of the first principal components 
and diffusion components, and thus transitions between cells from the two data 
sets also showed a high probability, we were able to use diffusion pseudotime 
(tl.dpt) to infer the maturation trajectory with the common kNN-graph as 
input. The trajectory was calculated by selecting a random root cell from the 
embryonic cells that were sampled at E17.5. The choice of root cell did not affect 
the inferred ordering strongly. The ordering of the cells from each data set was 
largely consistent with the ordering obtained prior to integration, assessed by the 
distribution along the trajectory of the time points or β-cell subgroups. To quantify 
the cluster similarity, PAGA was applied to the common kNN-graph (tl.paga).

To compute an embryonic or immaturity cell score and a maturity cell score 
we extracted the gene signatures from the reference data set. The reference data 
was subset to the 2,000 top ranked highly variable genes and Louvain-based 
clustering was performed on the kNN-graph that was computed on the first 50 
principal components with 15 neighbours. The cluster that consisted of cells that 
were sampled at E17.5 and P0 was annotated as ‘embryonic or neonatal’, whereas 
the cluster consisting mainly of cells that were sampled at P60 was annotated as 
‘mature’. Differentially expressed genes between these two clusters were used for 
scoring. Genes that were upregulated in the mature cluster or in the embryonic 
or neonatal cluster were used as a gene set for maturity or for embryonic or 
immaturity score, respectively. For differential expression testing the t-test with 
overestimated variance implemented in the tl.rank_genes_groups function of 
scanpy was used. The top 500 ranked genes with a log(foldchange) > 0.25 and 
an adjusted P value < 0.01 were considered. Cell scores were computed using the 
tl.score_genes function in scanpy.

Inference of cluster-to-cluster distances, lineage relations and cell movement. 
PAGA64 was performed to infer cluster and lineage relations using the tl.paga 
function of scanpy with a threshold on edge significance of 0.05. In a PAGA graph, 
paths represent cluster connections or relations that indicate potential routes of cell 
transitions. Edge weights represent the confidence of a connection calculated on 
the basis of a measure of cluster connectivity.

To infer the direction of possible transitions82 and cell movements we estimated 
RNA velocity using a stochastic version implemented in the scVelo python package 
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(v0.1.16.dev13 + c1a6dad, https://github.com/theislab/scvelo with scanpy v1.3.2). 
Splicing information of reads was extracted using the velocyto pipeline (v0.17.7, 
http://velocyto.org). We then followed the recommended steps described in scVelo to 
estimate RNA velocities and RNA velocity force fields. First, data were preprocessed 
by filtering genes with less than 30 spliced or 30 unspliced counts and both unspliced 
and spliced counts were normalised by total counts. Then the first- and second-
order moments for each cell were computed across its 15 nearest neighbours of 
the kNN graph in PC space (50 PCs). Next, RNA velocities were estimated using 
a stochastic model of transcriptional dynamics. To obtain a more conservative 
estimate a 95% quantile fit was used. Finally, to project the velocity vector of each 
cell into the low-dimensional UMAP embedding for visualisation and interpretation, 
the expected mean direction given all potential cell transitions on the kNN graph 
was computed. Each potential cell transition is assigned a probability corresponding 
to the correlation to the predicted transition by the velocity vector (velocity graph). 
For example, a high probability corresponds to a high correlation with the velocity 
vector. The projection results in a low dimensional map of RNA velocity which 
indicates the predicted cell state transitions. For computation of the velocity graph 
and embedding only genes with an r2 > 0.1 of the velocity fit were considered.

The velocities of each gene were calculated over all treatments except for 
healthy β cells, for which only healthy cells were used. A treatment can here be 
considered as a process by which cells move from the diseased cells potentially 
towards healthy cells, as for the pseudotime inference described above. During 
this process genes are induced and/or repressed, as approximated by RNA velocity. 
Therefore, to also take into account these intermediate gene states, all treatments 
were included for model fitting and velocity estimation. Both PAGA and the RNA 
velocity graph and projection were instead only computed on the represented cell 
subset. For this, the kNN-graph was recalculated for the cell subset using the first 
50 principal components and the highly variable genes as initially defined.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Custom python scripts written for performing scRNA-seq data analysis are 
available in a github repository (https://github.com/theislab/pancreas-targeted_
pharmacology). Versions of packages that might influence numerical results are 
indicated in the scripts. Raw data and gene expression matrices of scRNA-seq are 
deposited in GEO under the accession number GSE128565. Source data for  
Figs. 1–3 and 7 and Extended Data Figs. 1–5 and 10 are provided with the paper.
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Extended Data Fig. 1 | Remaining β cells lose cell identity 10 days after last STZ injection. Effects of either vehicle or the mSTZ treatment on a, fasting 
blood glucose (No STZ: n!=!20, mSTZ: n!=!107; unpaired two-sided t-test; t!=!14.64, df!=!125), b, pancreatic islets histology (No STZ: 179 islets of n!=!3 
mice, mSTZ: 182, n!=!3; unpaired two-sided t-test; β: t!=!11.44, df!=!358; α: t!=!10.98, df!=!356; δ: t!=!4.27, df!=!338; images are representative from no STZ 
n!=!3 and mSTZ n!=!3 mice), c, the insulin positive area within pancreatic sections (No STZ: 27 sections of n!=!3 mice; STZ: 27, n!=!3; unpaired two-sided t- 
test; t!=!3.646, df!=!52), d, the proliferation (No STZ: 58 islets of n!=!3 mice; STZ: 69, n!=!3) and e, apoptosis rate in β cells (No STZ: 46 islets of n!=!3 mice; 
STZ: 42, n!=!3; unpaired two-sided t-test, t!=!3.955, df!=!86), f, the expression of β-cell functional marker Ucn3 and Glut2 (images are representative of 
dataset plotted in b from no STZ n!=!3 and mSTZ n!=!3 mice), g, the homoeostatic model assessment of β-cell function (HOMA-β) (No STZ: n!=!20, STZ: 
n!=!107; unpaired two-sided t-test; t!=!20.65, df!=!124) and h, the ratio of fasting C-peptide to fasting blood glucose (No STZ: n!=!20, STZ: n!=!106; unpaired 
two-sided t-test; t!=!14.03, df!=!122). Boxplots covering all data points are depicted. Line indicates the median. Scale bar, 50 μm. Scale bar zoom-in, 20!µm.
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Extended Data Fig. 2 | Benefits of polypharmcotherapy to ameliorate mSTZ diabetes in mice. Effect of treatment with indicated compounds and doses 
on a, fasting plasma insulin levels at week 12 of treatment (mSTZ-vehicle, n!=!12; oestrogen, n!=!10; GLP-1, n!=!11; GLP-1/oestrogen, n!=!11; one-way ANOVA 
with Tukey post-hoc; F (3, 39)!=!10.66) and b, body weight in the end of the study (no STZ-vehicle, n!=!12; mSTZ-vehicle, n!=!13; GLP-1, n!=!11; oestrogen, 
n!=!11; GLP-1/oestrogen, n!=!11; PEG-insulin, n!=!9; GLP-1/oestrogen and PEG-insulin, n!=!10; unpaired two-sided t-test; t!=!2.436, df!=!17). (c, d) Comparison 
of PEG-insulin and GLP-1/oestrogen plus PEG-insulin co-treated mice. c, Blood glucose after intraperitoneal glucose (0.5!g/kg) at week 12 (no STZ-vehicle, 
n!=!12; PEG-insulin, n!=!9; GLP-1/oestrogen and PEG-insulin, n!=!10; one-way ANOVA with Tukey post-hoc (F (2, 27)!=!24.71)). d, Pancreatic insulin content 
in the end of the study (no STZ-vehicle, n!=!4; PEG-insulin, n!=!4; GLP-1/oestrogen and PEG-insulin, n!=!4; unpaired two-sided t-test; t!=!4.534, df!=!6). All 
data are mean!±!SEM.
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Extended Data Fig. 3 | Tissue specificity and β-cell selectivity of the GLP-1/oestrogen conjugate. (a, b) Treatment of female OVX Sprague-Dawley rats. 
a, Study scheme. b, Dry uterus weight. Data are mean!±!SEM. N!=!8 female rats per group. One-way ANOVA with Tukey post-hoc (F (4, 34)!=!44.89). 
(c-g) Treatment of male FVFPBFDHom mice. (c) FACS gating strategy of dispersed endocrine cells based on granularity (Side Scatter Cell (SSC)) and PBF 
(405!nm) intensity. d, qPCR analysis confirmed sorting strategy of endocrine cells. Data are values of sorted cells from n!=!2 mice. e, Study scheme; 
FVFPBFDHom male mice were treated with vehicle (n!=!7), oestrogen (n!=!5), GLP-1 (n!=!9), or GLP-1/oestrogen (n!=!11) at the indicated doses for four weeks. 
f, Fasting blood glucose. Data are mean!±!SEM. g, Sorted endocrine cell populations after treatment (vehicle (n!=!4, cells of n!=!2 mice each were pooled), 
oestrogen (n!=!4, cells of n!=!2 mice each were pooled), GLP-1 (n!=!5, cells of n!=!2 and n!=!3 mice were pooled), or GLP-1/oestrogen (n!=!6, islets of n!=!3 
mice each were pooled)). Data are mean!±!SD.
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Extended Data Fig. 4 | Viability and cell death of human micro-islets. Measurement of human micro-islet viability and cell death with and without 
cytokine exposure and in the present of different compounds at the indicated doses. (a) ATP content and (b) Caspase 3/7 activity of human micro-islets. 
a, N!=!6 micro-islets of n!=!3 human donors for each condition. Boxplot of all data points. Line indicates the median. #P indicates P-value to vehicle no 
stress condition. *P indicates P-value to vehicle cytokine exposure. No stress versus cytokines stress by unpaired two-sided t-test (t!=!1.756, df!=!33). 
Otherwise one-way ANOVA with donor as random effect followed by Tukey post-hoc (Flow dose(4, 81)!=!6.68; Fmedium dose(4, 82)!=!10.68; Fhigh dose(4, 81)!=!6.30). 
b, N!=!3–4 micro-islets of n!=!3 human donors for each condition. Boxplot of all data points. Line indicates the median. #P indicates P-value to vehicle no 
stress condition. *P indicates P-value to vehicle cytokine exposure. No stress versus cytokines stress by unpaired two-sided t-test (t!=!2.567, df!=!22). 
Otherwise one-way ANOVA with donor as random effect followed by Tukey post-hoc (Flow dose(4, 52)!=!5.58; Fmedium dose(4, 52)!=!4.44; Fhigh dose(4,53)!=!4.23).
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Extended Data Fig. 5 | Physiological characteristics of mice used for scRNA-seq. Representative mice (n!=!3) of each treatment were used for scRNA-
seq. a, Fasting glucose levels. One-way ANOVA with Tukey post-hoc test among mSTZ, oestrogen, GLP-1 and GLP- 1/oestrogen treated mice (F (3, 
8)!=!21.23). One-way ANOVA with Tukey post-hoc among no STZ, GLP-1/oestrogen, PEG-insulin, and co-treated mice (F (3, 8)!=!94.06). b, Fasting 
C-peptide levels. One-way ANOVA with Tukey post-hoc test among STZ, oestrogen, GLP-1 and GLP- 1/oestrogen treated mice (F (3, 8)!=!9.073). All data 
are mean!±!SEM.
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Extended Data Fig. 6 | β-cell heterogeneity in healthy mice. a, Endocrine cell annotation is based on the hormone expression of insulin (Ins), glucagon 
(Gcg), somatostatin (Sst), and pancreatic polypeptide (PP). b, UMAP plot showing all endocrine cells (7578 cells in total) from healthy mice. The cell 
number and proportion of each endocrine cluster is indicated. c, Redefined clustering of the Ins+ β cells revealed two main β-cell subpopulations. d, 
Expression changes of genes from selected pathways along a pseudotime trajectory from β2- to β1 cells. β1-cells were downsampled to 1000 cells for 
better visualisation. e, GO term and KEGG pathway enrichment analysis of up- (log(fold change)!>!0.25) and downregulated (log(fold change)!<!-0.25) 
genes in β2- (278 cells) compared to β1 cells (5380 cells). Cells were pooled from n!=!3 mice. Representative terms from Supplementary table 2 are 
depicted. We used limma-trend to find differentially expressed genes (M&M). Gene enrichment was done with EnrichR using Fisher’s exact test to identify 
regulated ontologies/pathways (M&M). f, Violin plots showing the distribution of the expression of proliferation and β-cell maturation genes suggesting 
an immature phenotype of cycling β-cells. Accordingly, 16/403 of the β2 cells, whereas only 2/5319 of the mature β1 cells were classified as cycling 
(M&M). Cells were pooled from n!=!3 mice. Violin shows the distribution as a kernel density estimate fit. Points in violin interior show individual data 
points. Boxplot in violin interior shows median, quartile and whisker values. g, Measured proportion and expected doublet frequency of polyhormonal cell 
clusters. Expected doublet frequency is calculated given a doublet rate of 10% (M&M). h, Boxplot displaying the doublet score distribution of mono- and 
polyhormonal cell clusters. A high score indicates a high doublet probability. Cells were pooled from n!=!3 mice. Boxplot shows the quartile values and 
extreme values. Whiskers extend to 1.5 IQRs of the lower and upper quartile. Outliers are displayed individually.
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Extended Data Fig. 7 | β-cell dedifferentiation in mSTZ-diabetic mice. (a–d), Volcano plots showing differential expression and its significance 
(-log10(adjusted p-Value), limma-trend) for each gene in (a) β-, (b) α-, (c) PP-, and (d) δ-cells from mSTZ treated versus healthy mice. Red line indicates 
thresholds used on significance level and gene expression change. Significantly regulated genes are highlighted in black. Genes significantly regulated in 
only one cell type but not the others are highlighted in blue. p-values were correct for multiple testing using BH. Cells were pooled from no STZ (n!=!3) and 
mSTZ-vehicle (n!=!3) treated mice. (e, f) GO term and KEGG pathway enrichment analysis of up- (log(fold change)!>!0.25) and downregulated (log(fold 
change)!<!-0.25) genes in (e) α- and (f) δ cells in mSTZ treated versus healthy mice. We used limma-trend to find differentially expressed genes (M&M). 
Gene enrichment was done with EnrichR using Fisher’s exact test to identify regulated ontologies/pathways (M&M). Cells were pooled from no STZ 
(n!=!3) and mSTZ-vehicle (n!=!3) treated mice. (g, h) Comparison between dysregulated genes in mSTZ-β cells in mice with (g) data from RNA-seq of 
human T2D pancreata and (h) from scRNA-seq of human T1D β cells. Gene names of overlapping genes and identified dedifferentiation markers in Fig. 
4e) are listed. i, Violin plots showing the distribution of the expression of endocrine developmental genes in beta cells of mSTZ treated and healthy mice. 
Violin shows the distribution as a kernel density estimate fit. Points in violin interior show individual data points. Boxplot in violin interior shows median, 
quartile and whisker values. Cells were pooled from no STZ (n!=!3) and mSTZ-vehicle (n!=!3) treated mice.

NATURE METABOLISM | www.nature.com/natmetab

http://www.nature.com/natmetab


ARTICLESNATURE METABOLISM ARTICLESNATURE METABOLISM

Extended Data Fig. 8 | Common and distinct pathways of embryonic and dedifferentiated β cells. Gene ontologies (Pvalue!<!0.0001) and KEGG 
pathways (Pvalue!<!0.05) that are commonly and specifically (a) down- and (b) upregulated in embryonic and mSTZ-derived β-cells. Representative 
terms from Supplementary Table 4 are depicted. Gene enrichment was done with EnrichR using Fisher’s exact test to identify regulated ontologies/
pathways (M&M). Cells were pooled from mSTZ-vehicle (n!=!3) treated mice.
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Extended Data Fig. 9 | Effects on endocrine cells of different treatments. UMAP plot of all endocrine cells after 100 days of treatment showing endocrine 
cell distribution in each individual treatment. Total cell number for (a) mSTZ diabetic mice 5001, for (b) oestrogen treated mice 4889, for (c) GLP-1 treated 
mice 3874, for (d) GLP-1/oestrogen treated mice 5201, for (e) PEG-insulin treated mice 3217, and for (f) GLP-1/oestrogen (GLP-1/E) and PEG-insulin (PEG-
ins) co-treated mice 3276. Values indicate the proportions of each cell cluster. Cells of n!=!3 mice for each treatment were pooled.
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Extended Data Fig. 10 | See next page for caption.

NATURE METABOLISM | www.nature.com/natmetab

http://www.nature.com/natmetab


ARTICLES NATURE METABOLISMARTICLES NATURE METABOLISM

Extended Data Fig. 10 | β-cell maturation after compound treatment. a, Immunohistochemical analysis of Ucn3 expression during the course of 
the study. Scale bar, 50 μm. Day 0: Images are representative of no STZ-vehicle (n!=!3) and mSTZ-vehicle (n!=!3) treated mice. Day 25: Images are 
representative of no STZ-vehicle (n!=!3), mSTZ-vehicle (n!=!3), GLP-1/oestrogen (n!=!3), PEG-insulin (n!=!3), and GLP-1/oestrogen and PEG-insulin (n!=!3) 
co-treated mice. Day 100: Images are representative of no STZ-vehicle (n!=!3), mSTZ-vehicle (n!=!3), GLP-1/oestrogen (n!=!2), PEG-insulin (n!=!2), and 
GLP-1/oestrogen and PEG-insulin (n!=!3) co-treated mice. b, Plasma proinsulin/C-peptide ration in the end of the study (no STZ-vehicle, n!=!8; mSTZ-
vehicle, n!=!8; oestrogen, n!=!6; GLP-1, n!=!5; GLP-1/oestrogen, n!=!6; PEG-insulin, n!=!6, GLP-1/oestrogen and PEG-insulin, n!=!6; one-way ANOVA with 
Tukey post-hoc: F(6, 36)!=!8.12). Data are mean!±!SEM. c, Representative staining for insulin and Sel1l after 25 days of treatment. Arrow indicates 
Sel1l!+!insulin!+!-cells, which were especially found in GLP-1/oestrogen and PEG-insulin co-treated mice. Sel1l!+!insulin–cells (arrow head) were more 
common in mSTZ-diabetic and PEG-insulin treated mice. Images are representative of no STZ-vehicle (n!=!3), mSTZ-vehicle (n!=!3), PEG-insulin (n!=!3), 
and GLP-1/oestrogen!+!PEG-insulin (n!=!3) co-treated mice. Scale bar, 20μm. d, Expression of selected ER stress and ERAD-associated genes by scRNA-
seq at study end.
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Diet-induced obesity is a serious public health and economic 
problem. Obese people are at higher risk of developing type 2 
diabetes (T2D), cardiovascular diseases and cancer, all lead-

ing causes of death worldwide (https://www.who.int). Today, bar-
iatric surgery is the most effective treatment to achieve long-term 
weight loss and notably leads to diabetes remission1. Surgical pro-
cedures cause profound changes in secretion of gut hormones with 
beneficial effects on whole body metabolism, appetite and food 
intake2. These findings suggest gut hormones as candidates for new 
therapies against obesity and diabetes3.

The gut, as the body’s digestive and largest endocrine system, 
serves as a central regulator of energy and glucose homeostasis and 
quickly responds to dietary and nutritional changes4–8. Constant 
overnutrition is thought to lead to intestinal maladaptation and dys-
function and to contribute to the development of obesity and pre-
diabetes8. This is evident as two hallmarks of obesity, excessive food 
intake and a reduced stimulation of postprandial insulin secretion 
by gut hormones, are linked to impaired gut function9. Moreover, 
differences in gut morphology and physiology have been observed 
between lean and obese individuals8,10,11. Tackling gut dysfunction at 
an early stage of disease might therefore be a promising treatment 
option to fight obesity and the resulting risks and complications.

Intestinal functions are carried out by specialized epithelial cells lin-
ing the gut: absorptive enterocytes, antimicrobial-peptide-secreting 
Paneth cells, hormone-secreting enteroendocrine cells (EECs), 
mucus-secreting goblet and chemosensory tuft cells. The cells 
of the intestinal epithelium are constantly generated from ISCs12. 

ISC identity is defined by multi-lineage potential and self-renewal 
capacity, but also by properties that are not hard-wired, such as the 
proliferative, epigenetic and metabolic state12,13. High cell turnover 
and cellular plasticity contribute to the natural adaptive capacity of 
the gut, but the mechanisms underlying maladaptation in response 
to an obesogenic diet are still unclear. Specifically, we do not know 
whether the hormonal imbalance and increased absorptive capac-
ity emerge at the level of early lineage commitment from ISCs9,14. 
Moreover, the functions of enterocytes and EECs differ between gut 
regions15–17. Proximal enterocytes, for instance, are specialized to 
absorb iron and nutrients (carbohydrates, fat and protein), whereas 
distal enterocytes absorb bile acids and vitamin B12. Proximal EEC 
types secrete serotonin and ghrelin, whereas distally located EECs 
preferentially secrete Glp-1 (ref. 17). Gut functions are also spa-
tially compartmentalized along the crypt–villus axis. Enterocytes 
shift their expression profile from an antimicrobial to a nutri-
ent absorption to an immunomodulatory program while migrat-
ing from the bottom of the villus to its tip. The spatial–functional 
compartmentalization of nutrient absorption is achieved through 
zoned expression of nutrient transporters, with the highest expres-
sion of carbohydrate and amino acid transporters in the mid-villus 
region and of apolipoproteins and fatty acid transporters, such as 
Apoa4 and Fabp1, at the villus tip18. Similarly, enteroendocrine cell 
types switch their hormone expression pattern along the crypt–vil-
lus axis19. Regional identities are thought to be determined at the 
level of the ISCs by epigenetic mechanisms, and the crypt–villus 
compartmentalization is at least partly established by growth-factor 
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Excess nutrient uptake and altered hormone secretion in the gut contribute to a systemic energy imbalance, which causes obe-
sity and an increased risk of type 2 diabetes and colorectal cancer. This functional maladaptation is thought to emerge at the 
level of the intestinal stem cells (ISCs). However, it is not clear how an obesogenic diet affects ISC identity and fate. Here we 
show that an obesogenic diet induces ISC and progenitor hyperproliferation, enhances ISC differentiation and cell turnover and 
changes the regional identities of ISCs and enterocytes in mice. Single-cell resolution of the enteroendocrine lineage reveals an 
increase in progenitors and peptidergic enteroendocrine cell types and a decrease in serotonergic enteroendocrine cell types. 
Mechanistically, we link increased fatty acid synthesis, Ppar signaling and the Insr–Igf1r–Akt pathway to mucosal changes. This 
study describes molecular mechanisms of diet-induced intestinal maladaptation that promote obesity and therefore underlie 
the pathogenesis of the metabolic syndrome and associated complications.
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gradients, but it is unknown whether and how the compartmental-
ization of gut functions is affected by an obesogenic diet20,21.

Developing pharmacological approaches to counteract obesity 
and diabetes require in-depth understanding of the mechanisms 
that underlie maladaptation and endocrine dysfunction in the gut, 
specifically during the transition from a healthy to an obese and to 
a prediabetic state. In this study we combined single-cell profiling 
with genetic lineage labelling and tracing of ISC fate decisions and 
in situ metabolomics to elucidate the cellular and molecular mech-
anisms that underlie intestinal maladaptation to an obesogenic 
western-style high-fat/high-sugar diet (HFHSD) in mice.

Results
HFHSD remodels the intestinal mucosa and leads to obesity.  
To study mechanisms of intestinal maladaptation to an HFHSD,  
we maintained male Foxa2–Venus fusion (FVF) reporter mice on 
a diet regimen for 12 weeks22. Over this time, mice on an HFHSD 
gained significantly more body weight (fat and lean mass) than did 
control diet (CD)-fed mice, and this was accompanied by an increase 
in length and weight of the small intestine (SI), increased villus 
length and decreased crypt density (Extended Data Fig. 1a–l). Crypt 
depth, number of cells per crypt and cell sizes in crypts and villi 
were not changed (Extended Data Fig. 1k,m–p). Histological assess-
ment of the SI mucosa showed cellular fat inclusions in the villi of 
HFHSD-fed mice, suggesting disturbances in fatty acid metabolism 
in the gut epithelium (Extended Data Fig. 1q). Metabolic assess-
ment showed that our diet-induced obese mice developed predia-
betes, which was characterized by fasting hyperglycaemia, impaired  
glucose tolerance and pronounced hyperinsulinaemia as well as 
insulin resistance (Extended Data Fig. 1r–u). Thus, an HFHSD 
changes mucosal morphology, which is indicative of altered ISC 
homeostasis and lineage recruitment.

HFHSD alters ISC lineage allocation and regional identity. To 
dissect the metabolic impact of an HFHSD on ISC lineage recruit-
ment, we employed single-cell RNA-sequencing (scRNA-seq) 
of crypt cells from the SI of CD- and HFHSD-fed FVF reporter 
mice (Fig. 1a). FVF-lineage labelling enabled us to flow sort and 
enrich for ISCs and EECs, cell types that together usually make up 
less than 6% of the intestinal epithelial cells (Fig. 1a and Extended 
Data Fig. 2a)17. This enrichment strategy not only allowed us to 
assess compositional changes on an HFHSD, but also to molecu-
larly and functionally characterize rare crypt-cell types. We profiled 
27,687 cells obtained from three biological replicates of CD- and 
HFHSD-fed mice and detected on average 3,500 genes per cell 
(Extended Data Fig. 2b). Unsupervised graph-based clustering 
and annotation based on known marker genes revealed all mature 
intestinal cell lineages as well as ISCs and distinct progenitor states 
for each intestinal lineage (Fig. 1b,c and Extended Data Fig. 2c,d). 
Lineage marker gene expression as well as the expression of known  

regulators that drive intestinal lineage decisions toward the  
absorptive (for example Notch1) and secretory lineages (Dll1, Dll4 
and Atoh1) and PAGA topology23 were unchanged between diet 
conditions (Fig. 1c, Extended Data Fig. 2c–f and Supplementary 
Table 1). Corresponding subtypes showed high correlation in their 
transcriptomes, indicating that an HFHSD did not alter lineage 
identities (Extended Data Fig. 2g). Instead, we observed a shift of 
cell densities indicating that an HFHSD impacts the composition 
of the mucosal epithelium (Fig. 1d,e and Extended Data Fig. 2d,h). 
Note that we excluded the Paneth cell lineage from the scRNA-seq 
analysis because of reported sampling issues, which might impact 
cell-type ratios17. To assess whether the HFHSD affects regional 
subtypes, we separated cell types into proximal and distal cells 
using recently described regional signature genes (Extended Data  
Fig. 3a)17. We found that the fractions of ISCs, enterocytes and gob-
let cells with proximal identity increased in mice fed an HFHSD 
(Fig. 1f,g and Extended Data Fig. 3b). Together, these data sug-
gest that an HFHSD boosts formation of the absorptive and goblet 
cell lineage and promotes proximal cell identities, indicating that  
the intestine adapts cell-type composition and specific cellular  
functions to nutrient availability.

Altered lineage relations in the crypt translate into the villus. As 
our scRNA-seq experiment indicated alterations of lineage abun-
dances in the crypt on HFHSD, we next performed short-term 
genetic lineage tracing of ISC fate decisions using a dual-fluorescent 
inducible Cre-reporter Foxa2nEGFP-CreERT2/+;Gt(ROSA)26mTmG/+ mouse 
(Fig. 2a)24,25 to determine how these changes impact the composi-
tion of the mature villus compartment. Foxa2 is expressed in qui-
escent and rapidly dividing ISCs (Supplementary Fig. 1). In this 
mouse model, Foxa2 expression-driven CreERT2 induces a switch 
from membrane-Tomato (mT) to membrane-GFP (mG) in ISCs 
after tamoxifen administration. At 48 h after Cre-ERT2 activa-
tion by tamoxifen, we observed labelled mG-positive ISCs next 
to Paneth cells at the crypt bottom and labelled single cells and 
small cell clusters in duodenal crypts at similar frequencies in CD- 
and HFHSD-fed mice (Extended Data Fig. 4a). To determine the 
effect of an obesogenic diet on ISC lineage recruitment, we anal-
ysed the abundance of mature enterocytes, goblet cells and EECs 
in Cre-reporter labelled mG-positive lineage ribbons in the villi of 
CD- and HFHSD-fed mice 70 h after tamoxifen induction (Fig. 2b).  
In mice fed an HFHSD, longer ribbons (>6 cells) appeared more 
frequently, suggesting higher ISC or progenitor proliferation or 
increased cell turnover (Fig. 2c,d and Extended Data Fig. 4b). 
Within the lineage ribbons, total numbers of villin+ enterocytes 
and Muc2+ goblet cells were increased, whereas the number of 
ChgA+ EECs was reduced (Fig. 2c,d). The relative abundances of 
enterocytes and ChgA+ EECs within lineage ribbons were dimin-
ished owing to the large increase in goblet cell numbers in mice fed  
an HFHSD (Fig. 2c and Extended Data Fig. 4c). In accordance, 

Fig. 1 | HFHSD alters lineage allocation from ISCs and shifts the regional identity of cells. a, Experimental design for FVF-based SI crypt-cell enrichment 
by flow cytometry and scRNA-seq. Single FVF+ and whole crypt cells from SI crypts of CD- and HFHSD-fed FVF mice were isolated in equal numbers  
by flow cytometry and combined for each sample. FVF-enriched single-cell samples were then transcriptionally profiled by scRNA-seq. b, Uniform 
manifold approximation and projection (UMAP) plot of 27,687 profiled single SI crypt cells. Colours highlight clustering into major intestinal cell types 
based on the expression of previously published marker genes. One cluster of cells could not be assigned owing to a missing marker gene signature (NA).  
c, Heatmap depicting scaled expression of cell-type-specific gene signatures in CD- and HFHSD-derived cells. Cells are represented in columns and genes 
are represented in rows. Colour bars indicate cell types assigned to both cells and genes. Selected known marker genes for every lineage are indicated. 
d,e, Cell-type composition differences in CD- and HFHSD-derived single-cell samples visualized by cell density projected onto the two-dimensional 
UMAP embedding (d) and quantified as proportions over cell types (mean!±!s.e.m. of biologically independent samples, n!=!3 mice per group, Dirichlet 
multinomial model) (e). Densities were estimated using Gaussian kernels. * Indicates a credible shift (95% highest posterior density interval of the 
frequency shift modelled by a Dirichlet multinomial model does not overlap 0). n!=!3!CD mice, n!=!3 HFHSD mice. f, UMAP coloured by the regional 
identities of cells in ISCs and goblet cell and enterocyte cell lineage. Subclusters were classified on the basis of expression of regional marker genes.  
g, Proportions of cells with proximal or distal identity in ISCs and enterocyte and goblet cell lineage (mean!±!s.e.m. of biologically independent samples). 
n!=!3 CD mice, n!=!3 HFHSD mice.
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goblet cell numbers in the duodenal villi were increased and num-
bers of ChgA+ EECs were reduced in the duodenum and ileum of 
HFHSD-fed FVF mice (Fig. 2e–j and Extended Data Fig. 4d). Note 
that the number of ileal goblet cells was not altered, suggesting that 
gut regions are differently affected by an HFHSD (Extended Data 

Fig. 4e). As we excluded Paneth cells from our scRNA-seq analysis, 
we determined the Paneth cell numbers in situ and found no differ-
ence between CD- and HFHSD-fed mice (Extended Data Fig. 4f,g). 
To understand whether the shift in regional identity in crypt cells 
translates to the villi and results in altered function, we performed 
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Fig. 2 | Altered lineage relations in the crypt translate into the mature villus compartment. a, Foxa2nEGFP-CreERT2/+;Gt(Rosa26)mTmG/+ lineage-tracing model. 
mT Foxa2-negative cells (red) convert into mG Foxa2-lineage-positive cells (green) upon Foxa2-promoter-driven Cre expression via an intermediate 
(mTmG+, yellow) state. pCA, chicken β-actin core promoter with a CMV enhancer. b, Experimental scheme of short-term lineage tracing of Foxa2-positive 
cells using the Foxa2nEGFP-CreERT2/+;Gt(Rosa26)mTmG/+ mouse model. c,d, Representative laser scanning microscopy (LSM) images of Cre-driven recombination 
in the duodenum of CD- and HFHSD-fed Foxa2nEGFP-CreERT2/+;Gt(Rosa26)mTmG/+ (c) and analysis of lineage-positive cells (d) 70!h after tamoxifen induction. 
Single converted mG+ cells and lineage ribbons (green) containing Muc2+ goblet cells (red), ChgA+ EECs (white) and villin+ enterocytes (white) are 
observed in crypts and villi. Scale bar, 100!µm. For Foxa2-lineage analysis, only confluent mG+ cell patches located in the villi were considered (n!=!3 
mice per group). Data are mean!±!s.e.m. Statistical significance was determined by two-tailed Student’s t-test. DAPI, 4,6-diamidino-2-phenylindole. 
e–j, Abundances of mature intestinal cell types are altered in HFHSD-fed FVF mice. e,g, Representative LSM images (e) of goblet cells (Muc2+) and 
quantification thereof (f,g). Scale bar, 75!µm, n!=!3 mice per group. h–j, Representative LSM images (h) of ChgA+ EECs and quantification thereof (i,j). 
Scale bar, 75!µm, n!=!4 mice per group. Data are mean!±!s.e.m. of biologically independent samples. Statistical significance was determined by two-tailed 
Student’s t-test.
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scRNA-seq of villus cells from the SI (Extended Data Fig. 5a–c). 
We focused on enterocytes because regional and spatial compart-
mentalization of enterocyte function is well described and classified 
them into proximal and distal enterocytes using reported regional 
transcription factors (Extended Data Fig. 5d,e)17,18. Consistent 
with crypt scRNA-seq data, we also found an increased fraction of 
proximal-type villus enterocytes in mice fed an HFHSD (Extended 
Data Fig. 5f). Furthermore, proximal and distal-type enterocytes 
showed upregulation of functional proximal genes such as Fabp1 
and Apoa4 (Extended Data Fig. 5g).

Next, we assessed whether enterocyte zonation is affected by an 
HFHSD. We inferred a pseudospatial ordering of cells using previ-
ously reported zonation markers and partitioned cells into five zones 
along the axis from villus bottom to tip (Extended Data Fig. 6a)18. 
We found that in proximal and distal enterocytes, the spatial expres-
sion pattern of several genes associated with carbohydrate and fatty 
acid absorption was altered in HFHSD-fed mice (Extended Data 
Fig. 6b)18. Analysis of Fabp1 and Apoa4 immunolocalization in the 
ileum and duodenum confirmed the proximalization of enterocytes 
and altered enterocyte zonation. The expression zones of Fabp1 and 
Apoa4 were enlarged on an HFHSD and reached from villus tip to 
villus bottom (Extended Data Fig. 6c–k).

Thus, more goblet cells and proximal-type enterocytes are gen-
erated under HFHSD conditions, which leads to morphological 
changes of the gut mucosa and an increase in fatty acid transport 
and absorption. Reduced ChgA+ EEC numbers imply changes in 
specific EEC subsets.

HFHSD changes the allocation of the enteroendocrine lineage. 
Secreted gut hormones are critical regulators of food intake and sys-
temic metabolism along the gut–brain–pancreas axis and hormonal 
imbalance is linked to the metabolic syndrome26,27. To elucidate the 
mechanisms underlying EEC dysfunction in response to an obeso-
genic diet, we first refined the clustering of our 2,865 EEC lineage cells 
into distinct subpopulations, which revealed five enteroendocrine pro-
genitor (EEP) clusters characterized by expression of Sox4, Ngn3, Arx/
Isl1, Ghrl and Pax4, respectively, and six polyhormonal EEC clusters: 
SILA cells (coexpress Sct, Cck, Gcg, Ghrl and Gal), SILP cells (coex-
press Sct, Cck, Gcg and Pyy), SIK cells (coexpress Sct, Cck and Gip), 
SAKD cells (coexpress Sct, Cck, Ghrl, Gip and Sst), SIN cells (coex-
press Sct, Cck, Gcg and Nts), enterchromaffin (EC) cells (coexpress Sct, 
Tac1, Tph1) and Reg4+ EC cells (coexpress Sct, Tac1, Tph1, Ucn3 and 
Reg4) (Fig. 3a,b and Extended Data Fig. 7a,b)17,19,28. We also identi-
fied a population of heterogeneous EECs coexpressing endocrine and 
ISC markers that we termed Lgr5+ EECs and which are reminiscent 
of Lgr5+ label-retaining cells (Fig. 3a,b and Extended Data Fig. 7a)29. 
Notably, we found that Lgr5+ EECs are characterized by active Bmp 
signalling, which has been shown to regulate the hormonal plasticity 
of EECs (Extended Data Fig. 7c)19. To determine EEC lineage hierar-
chy and to understand the relationship of EEP and mature clusters, 

we used PAGA in combination with RNA velocity (Methods)30. The 
abstracted graph represents possible differentiation paths that cells 
follow and RNA velocity predicts the future state of a cell based on 
gene expression state (gene induction or repression), thus indicating 
the direction of differentiation. We observed two main differentiation 
trajectories from the Sox4+ progenitors to mature subtypes: (1) a path 
via Arx/Isl1+ and Ghrl+ progenitors to peptidergic EECs (SILA, SILP, 
SIK and SAKD) and (2) a route via Pax4+ progenitors to serotonergic 
EC and mature Reg4+ EC cells (Fig. 3c). To identify transcriptional sig-
natures and regulators of EEC lineage allocation, we extracted genes 
that were either only transiently expressed in a specific EEP stage or 
mature cell subtype (state-specific genes) or turned on with sustained 
expression in subsequent states (global or lineage-specific genes) 
(Fig. 3d, Extended Data Fig. 7a,d and Supplementary Tables 2 and 3).  
Transiently expressed markers in progenitor stages (for example Sfrp5 
in Ngn3+ progenitor) are potentially important for specification. 
Global or lineage-specific markers (for example Nefm in peptidergic 
lineage) might regulate endocrine cell identity. Together, our data 
confirm EEC lineage differentiation from an early common progeni-
tor into EC-biased (Pax4+) and non-EC-biased (Arx/Isl1+) progeni-
tors and their respective molecular programs17,28,31. We then compared 
EEC lineage allocation in CD- and HFHSD-fed animals. We found 
that an HFHSD reduces the number of Sox4+ early EEPs, increases 
the fraction of Ngn3+ EEPs, reduces the number of Lyz1−BrdU+ cells 
that correspond to label-retaining Lgr5+ EECs and affects mature 
SILA and Reg4+ EC cells, which are most abundant in the duodenum  
(Fig. 3e–o and Extended Data Fig. 7e–i)17. Serotonin (5-HT)+Reg4+ 
EC numbers were decreased in HFHSD crypts, whereas Ghrl+ 
SILA cells were more abundant in the duodenal crypts and villi 
(Fig. 3h–m). Numbers of ileal located SILA/SILP cells expressing 
Gcg, which encodes the incretin Glp-1, were also increased with an 
HFHSD (Fig. 3n,o). We next assessed whether an HFHSD induces 
transcriptome changes that might affect EEC lineage allocation or 
function. Single-cell messenger RNA expression levels of hormones 
did not differ between CD and HFHSD EEC subsets (Extended Data 
Fig. 7j). However, genes associated with metabolism (for example 
Slc5a1, Acadl in SIK cells), vesicular trafficking machinery and the 
secretome (for example Cplx2 in EC and Sct in SIK cells) as well as 
signalling (transduction) (for example ID1/ID3 in Sox4+ progeni-
tors, Gnas in EC cells) and transcription factors (for example Cdx2 
in Sox4+ progenitor, Hmgn3 in EC cells) were differentially expressed 
between CD and HFHSD conditions (Extended Data Fig. 7k–m and 
Supplementary Table 4).

Next, we examined EEC functionality by assessing hormone 
secretion (Extended Data Fig. 7n). Intestinal EC cells produce over 
90% of the body’s serotonin32. We found that basal plasma levels 
of serotonin were lower in mice fed an HFHSD, which correlates 
with reduced numbers of 5-HT+ EECs (Reg4+ EC cells) (Extended 
Data Fig. 7o). By contrast, despite a higher number of Ghrl+ SILA 
EECs, plasma levels of ghrelin were reduced in HFHSD-fed mice 

Fig. 3 | EEC lineage formation and composition in homeostasis and upon HFHSD. a, Colour-coded UMAP plot of 2,865 EEC lineage cells from CD-  
and HFHSD-derived samples. Cluster annotation was based on known marker genes and labelling of mature EEC subtypes as previously described17.  
b, Expression levels of selected EEC markers (hormones and transcription factors) across EEC clusters plotted in UMAP space. c, Streamline plot of 
RNA velocity projected into UMAP space showing the direction of cell differentiation along trajectories for the endocrine lineage in CD-derived samples. 
Arrows indicate estimated future states of cells. d, Heatmap showing mean expression values per cluster of genes upregulated in EEP clusters during 
endocrine lineage formation. Genes were selected from (pan)endocrine, lineage- and stage-specific markers (Methods). Colour bars on the side indicate 
expression in the progenitor populations (Fig. 3a). e, Cell proportions in EEC lineage subsets from CD- and HFHSD-derived samples (mean!±!s.e.m. of 
biologically independent samples, n!=!3 mice per group, Dirichlet multinomial model). *Indicates a credible shift (95% highest posterior density interval 
of the frequency shift modeled by a Dirichlet multinomial model does not overlap 0). f–o, Validation of EEC frequencies in CD- and HFHSD-fed FVF mice 
by immunofluorescence staining. Representative LSM images (f) and quantification of Ngn3+ cells in isolated small intestinal crypts (g). Scale bar, 10!µm, 
n!=!4 mice per group. Representative LSM images (h) and quantification of 5-HT+ cells in isolated small intestinal crypts (i). Scale bar, 10!µm, n!=!4 mice 
per group. Representative LSM images (j) and quantification of Ghrl+ cells in duodenal sections (k–m). Scale bar, 100!µm; crypt, n!=!5 for CD mice and 
n!=!4 HFHSD mice; villus, n!=!4 CD and HFHSD mice. Quantification of Gcg+ cells in ileal sections (n,o), n!=!3 CD and HFHSD mice. Data are shown as 
mean!±!s.e.m. of biologically independent samples. Statistical significance was determined by two-tailed Student’s t-test.
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(Extended Data Fig. 7p), suggesting that Ghrl+ EECs are func-
tionally impaired upon HFHSD. Glp-1 plasma levels were also 
increased, which corresponds with increased numbers of ileal Gcg+ 
cells (Extended Data Fig. 7q). Taken together, these results show that 
an HFHSD impacts EEPs, alters the number of specific mature EEC 
subtypes and circulating gut hormone levels and affects expression 

of genes that are potentially important for endocrine cell differen-
tiation and/or function.

HFHSD induces hyperproliferation of ISCs and progenitors.  
We next asked whether the increased number of Ngn3+ EEPs,  
as well as the increase in villus length and higher abundance of 
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the enterocyte and goblet cell lineage under HFHSD conditions, 
resulted from enhanced proliferation. To test this, we identified 
proliferating cells using a cell-cycle signature score that assigns each 
cell to a cell-cycle state (G1, S and G2M; Methods) (Extended Data 
Fig. 8a). HFHSD mainly increased the proportion of cells in G2M 
phase, indicating that HFHSD alters cell-cycle dynamics (Fig. 4a,b). 
In particular, in ISCs, enterocytes, goblet cells and the early Sox4+ 
and Ngn3+ EEP clusters, the proportion of cycling cells was clearly 
increased (Fig. 4c and Extended Data Fig. 8b). Moreover, several 
genes, including the known cell-cycle regulators Ccnb1, Cenpa, Dut, 
Pbk and Smc2, which correlated with the S/G2M cell-cycle score, 
were differentially expressed in proliferating cells upon HFHSD, 
further suggesting that cell-cycle dynamics of ISCs and progenitors 
is accelerated (Fig. 4d and Supplementary Table 5).

To confirm the increase in proliferative activity, we first iden-
tified 5-ethynyl-2ʹ-deoxyuridine (EdU)-positive progenitor cells 
2 h after an EdU pulse. Consistent with the crypt scRNA-seq data, 
we found a higher number of proliferative progenitors in the 
transit-amplifying (TA) zone in SI crypts of HFHSD-fed FVF mice 
(Fig. 4e,f). To directly assess the number of proliferating ISCs we 
put Lgr5-ki mice33 on an HFHSD (Extended Data Fig. 8c). In con-
trast to our scRNA-seq data, we found no difference in the num-
bers of ISCs between CD and HFHSD by flow cytometry on the 
basis of high Lgr5-EGFP fluorescence intensity (Extended Data  
Fig. 8d and Fig. 4g). However, the numbers of EdU-positive ISCs 
were increased on HFHSD (Fig. 4h,i).

Further, we determined antigen immunoreactivity to Ki67 and 
the migration rate of crypt cells. We observed that Ki67-labeled 
domains were significantly larger in mice fed an HFHSD and, in 
contrast to controls, extended into the villi. Also, the crypt-to-villus 
migration rate of pulse-labeled 5-bromo-2ʹ-deoxyuridine 
(BrdU)-positive cells was increased on HFHSD (Extended Data 
Fig. 8e–i) which altogether suggests that an HFHSD enhances  
cell turnover.

In summary, these data demonstrate that an obesogenic diet 
increases the proliferation rate of ISCs and progenitors leading to 
increased villus length. Enhanced cell-cycle activity of ISCs did 
not result in physical expansion of the ISC pool due to accelerated 
differentiation and cell turnover. This is reflected by the decreased 
fraction of ISCs and increased fraction of progenitors in our crypt 
scRNA-seq data (Fig. 1e). These results further indicate that ISC 
homeostasis and identity is disturbed in HFHSD-fed animals.

HFHSD upregulates fatty acid synthesis and Ppar signalling.  
A central role of metabolic pathways in the regulation of stem cell 
maintenance and fate control has been described in several adult 
stem cell systems34,35. Both Wnt/β-catenin and Igf1/insulin sig-
nalling integrate metabolic and proliferative cues, and increased 

activity of these pathways has been shown to induce ISC hyperp-
roliferation upon high-fat diet (HFD) feeding6,36–38. We assessed 
Wnt/β-catenin pathway activation in bulk ISC-enriched FVFlow 
cells and FVFneg enterocyte progenitors, which we isolated by flow 
cytometry (Supplementary Fig. 2a,b). Unexpectedly, the level of 
nuclear β-catenin was decreased or unchanged in ISC-enriched 
FVFlow cells or enterocyte progenitor-enriched FVFneg cells, respec-
tively (Supplementary Fig. 2c,d). Consistently, expression of 
Wnt/β-catenin target genes was downregulated in ISC-enriched 
FVFlow cells and HFHSD-derived single-cell ISCs (Supplementary 
Fig. 2e–g and Supplementary Table 1). As glycogen synthase kinase 
3β (Gsk3β) is a negative regulator of Wnt/β-catenin signalling 
and an important modulator of cellular metabolism, we checked 
Gsk3β activity39. Decreased levels of phosphorylated Gsk3β in 
HFHSD-derived SI crypts indicated increased Gsk3β activity and 
enhanced Gsk3β-mediated destruction of β-catenin (Supplementary 
Fig. 2h,i). Together, these results demonstrate that Wnt/β-catenin 
signalling does not drive hyperproliferation of ISCs and progeni-
tors and enhanced progenitor recruitment in our HFHSD mouse 
model. Instead, decreased Wnt/β-catenin signalling indicates that 
differentiation of ISCs is accelerated and thus provides further evi-
dence of disturbed ISC homeostasis40,41. HFHSD caused obesity and 
hyperinsulinaemia in our mouse model. Analysis of InsrIgf1rAkt 
pathway activity in SI crypt lysates showed increased phosphoryla-
tion of InsrIgf1r and Akt as well as upregulation of several genes 
associated with PI3K and Akt signalling, which is in line with pro-
nounced hyperinsulinaemia and confirms previous findings that 
Igf1insulin signalling induces hyperproliferation in diet-induced 
obesity (Extended Data Figs. 1r–u and 9a–c).

To uncover additional metabolic pathways that link HFHSD to 
hyperproliferation and cell fate changes, we compared metabolite 
profiles from SI crypt regions of CD- and HFHSD-fed FVF mice 
using matrix-assisted laser desorption/ionization mass spectrom-
etry imaging (MALDI–MSI)42. MALDI–MSI allows analysis of 
metabolites directly in tissue sections without isolation bias. We 
identified 297 discriminative masses; of these, 257 were enriched 
and 40 were less abundant in SI crypts of HFHSD-fed animals  
(Fig. 5a). Pathway enrichment analysis revealed that HFHSD 
upregulated metabolite signatures related to fatty acid biosynthe-
sis (for example, octadecanoic acid) and linoleic acid metabolism 
(for example, phosphatidylcholine) and downregulated metabolites 
linked to pathways of glucose metabolism, such as the pentose phos-
phate pathway and pentose glucuronate interconversions (for exam-
ple, d-glyceraldehyde 3-phosphate) (Fig. 5b and Supplementary 
Table 6). To map the metabolic changes from tissue to cell-type 
level, we integrated metabolomics data with bulk transcriptomes 
of ISC-enriched FVFlow cells, secretory progenitor-enriched FVFhigh 
cells and enterocyte progenitor-enriched FVFneg cells (Extended 

Fig. 4 | HFHSD induces hyperproliferation of ISCs and progenitors. a, Distribution of cycling cells across CD- and HFHSD-derived cell clusters depicted  
as cell densities projected onto the UMAP plot and quantified as proportions of cells in each cell-cycle stage. Cells were classified using a cell-cycle  
score, calculated using the expression of genes related to cell cycle. Data are mean!±!s.e.m. of biologically independent samples, n!=!3 mice per group.  
b, Distribution of ISCs and progenitors over the three cell-cycle stages visualized as cell densities in a scatter-plot of S- versus G2/M-phase score levels. 
Higher score levels indicate higher expression of involved genes. Dotted lines depict classification borders. Densities are Gaussian kernel estimates.  
c, Proportions of cycling cells in CD and HFHSD-derived ISCs and progenitor clusters. Table indicates percentages. Data are shown as mean!±!s.e.m. of 
biologically independent samples, n!=!3 mice per group. EP, enterocyte progenitor; GP, goblet progenitor. d, Heatmap of mean expression values per cluster 
of selected genes used for cell-cycle scoring (black) or highly correlating with S and G2M scores (grey, Pearson correlation >0.7). Only cells classified as 
cycling (S or G2M phase) are shown. * Indicates differentially expressed genes between CD and HFHSD conditions (two-sided, limma, adjusted P!<!0.01, 
logFC!>!0.1), n!=!3 mice per group. FC, fold change. P values are provided in Supplementary Table 5. e,f, Representative LSM images (e) and quantification 
(f) of EdU incorporation after a 2-h EdU (white) pulse in the TA zone in duodenal sections of CD- and HFHSD FVF mice. Lyz1+ Paneth cells are shown 
in red. Scale bar, 25!µm, n!=!4 mice per group. Data are mean!±!s.e.m. of biologically independent samples. Statistical significance was determined by 
two-tailed Student’s t-test. FDR, false discovery rate. g, Determination of Lgr5–EGFPhi cells from CD- and HFHSD-fed Lgr5-ki mice by flow cytometry,  
n!=!4 mice per group. Data are mean!±!s.e.m. of biologically independent samples. h,i, Representative LSM images from cytospin (h) and quantification  
(i) of EdU+Lgr5–EGFPhi cells from CD- and HFHSD-fed Lgr5-ki mice after a 2-h EdU (white) pulse. Scale bar, 40!µm, n!=!4 CD mice, n!=!3 HFHSD mice. 
Data are mean!±!s.d. of biologically independent samples. Statistical significance was determined by two-tailed Student’s t-test.
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Data Fig. 9d, Fig. 5c and Methods). The HFHSD metabolite sig-
nature overlapped with regulated genes involved in carbohydrate 
metabolism (for example, sucrose degradation, maturity onset 
diabetes of young (MODY) signalling) and pro-proliferative 
fatty acid biosynthesis pathways (for example, stearate synthesis  

and acyl-CoA-hydrolysis)43. Regulation of these pathways was 
most pronounced in enterocyte progenitor-enriched FVFneg and 
ISC-enriched FVFlow cells (Fig. 5d and Supplementary Table 7). 
Next, to determine the cell subtypes in which an HFHSD altered 
metabolism and to identify the molecular pathways associated with 
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deregulated HFHSD metabolites, we compared the transcriptional 
profiles of CD- and HFHSD-derived cells. We found that gene 
signatures associated with Ppar signalling (for example Hmgcs2, 
Acdvl, Acaa2, Fabp1 and Fabp2) and fatty acid biosynthesis (for 
example Acot1, Acox1, Scd2, Srebf1, Fads1 and Me1) were upregu-
lated in HFHSD-derived ISCs and progenitor clusters (Fig. 5e–g  
and Supplementary Tables 1,8 and 9). Upregulation of these gene 
sets was stronger in subpopulations with proximal identity; in 
particular, in proximal ISCs, enterocyte and goblet progenitors  
(Fig. 5e,f and Supplementary Table 8). Moreover, genes associated 
with carbohydrate metabolism (for example glycolysis, gluconeo-
genesis and the pentose phosphate pathway) were downregulated 
in these subtypes (Fig. 5e–g). We confirmed upregulation of active 
Srebp1 (mature, m-Srebp1), Acc, Pparγ and Scd1, the master tran-
scriptional regulators and key enzymes of Ppar signalling and fatty 
acid synthesis in HFHSD crypt protein lysates and in ISCs and 
progenitors, by a sensitive, targeted single-cell qPCR approach  
(Fig. 5h,i, Extended Data Fig. 10 and Supplementary Table 10). 
Finally, consistent with crypt enterocytes, we also found that mature 
villus enterocytes increase the expression of genes associated with 
intracellular fat accumulation and lipid uptake, de novo lipogenesis 
and peroxisomal fatty acid oxidation (Supplementary Fig. 3).

Thus, by integration of in situ metabolomics, bulk and 
single-cell transcriptomics and targeted protein expression analy-
sis, we have revealed diet-induced metabolic rewiring and cell- and 
subtype-specific transcriptional changes that correlate with an 
increase in proliferation and endocrine dysfunction.

Discussion
In this study we provide a basic mechanistic explanation of 
diet-induced ISC dysfunction and intestinal maladaptation that 
underlie the development of obesity and prediabetes and increase 
the risk for gastrointestinal cancer.

With our study we aimed to determine the immediate effects of a 
western-style HFHSD on intestinal function. We observed enlarge-
ment of the SI, longer villi and decreased crypt density and an altered 
cellular composition in the crypts, which was confirmed in the villi 
by lineage-tracing studies. We are aware that our lineage-tracing 
approach using the dual-fluorescent, inducible Cre-reporter Foxa
2nEGFP-CreERT2/+;Gt(ROSA)26mTmG/+ mouse has its limitations; for exam-
ple, inefficient labelling of stem cells, which generates fewer clonal 
ribbons in comparison to the Lgr5-ki reporter33 and analysis of only 
one time point. Therefore, we validated our findings from the crypt 
scRNA-seq experiment not only by a lineage-tracing approach but 
also independent of a reporter in tissue sections.

We show that ISCs and progenitors are hyperproliferative, and 
that differentiation and cell turnover are accelerated by an HFHSD. 

Accelerated differentiation and cell turnover also explain the  
discrepancy between the scRNA-seq data (decrease in ISCs)  
and the data from the Lgr5-reporter mice (no change in the  
number of ISCs). ISCs in HFHSD-fed mice divide faster and newly 
formed cells are still Lgr5–EGFPhi, but already express markers of 
differentiated cells. Whole-transcriptome-based clustering in our 
scRNA-seq data groups Lgr5hi ISCs and Lgr5hi progenitors sepa-
rately, whereas when using only Lgr5–EGFP as a marker in tissue 
sections and flow cytometry we cannot discriminate between an 
ISC and a progenitor.

Hyperproliferation in the crypt, which can promote cancer initi-
ation and progression, has previously been associated with an HFD; 
however, the molecular pathways that couple dietary cues to this 
cellular response are still debated and probably depend on the type 
of diet (for example fat and sugar source)37,38,44. Also, a role of meta-
bolic pathways in ISC maintenance, number and fate control has 
been highlighted in several studies7,44,45. Hyperproliferation upon 
HFHSD is not driven by Pparδ-mediated activation of the major 
oncogenic pathway in the gut, Wnt/β-catenin signalling, as previ-
ously reported for a lard-based chronic HFD6,46,47. Instead, we found 
that a coconut oil- and sucrose-based high-lipid and -carbohydrate 
content diet specifically elevates pro-proliferative Pparγ signal-
ling, Srebp1-mediated lipogenesis and InsrIgf1r–Akt signalling. 
Upregulation of Pparγ and Srebp1-mediated de novo lipogenesis 
has been associated with inflammation, increased proliferation 
and tumour progression in many types of cancer and thus provides 
a possible link between HFHSD-induced metabolic signalling, 
crypt-cell hyperproliferation and increased risk of gastrointestinal 
cancer43. As tumour initiation and progression require biomass pro-
duction and therefore depend on a high nutrient supply, chronic 
activation of these pathways as observed with an HFHSD might 
reduce the barrier to oncogenic transformation or tumour growth 
and proliferation.

Further, we found a profound impact of an HFHSD on the 
enterocyte lineage. Enterocytes are metabolically rewired, increase 
the expression of genes linked to carbohydrate and fat uptake and 
show an intracellular fat accumulation, which is reminiscent of 
the vesicular accumulation of triglycerides in hepatic steatosis that 
causes liver fibrosis and cancer48–50. In addition, HFHSD induces 
a regional and spatial repatterning of enterocyte gene expression 
and function. An HFHSD increased the number of proximal-type 
enterocytes, which are specialized on carbohydrate and fatty acid 
absorption and altered enterocyte zonation along the crypt–vil-
lus axis (increased expression of the fatty acid transporter Fabp1). 
Thus, our results imply that enterocytes functionally adapt to an 
HFHSD, which may increase calorie intake and fat accumulation 
and promote obesity.

Fig. 5 | Fatty acid synthesis and Ppar signalling are upregulated on HFHSD. a, Heatmap-based clustering analysis of the 297 discriminative metabolite 
masses (FC!≥!2 and P!≤!0.05). Each coloured cell on the map corresponds to an intensity value, with samples in rows and features in columns. Euclidean 
distance and Ward’s method were applied for clustering analysis. Statistical significance was determined by two-tailed Student’s t-test. b, Pathway 
enrichment analysis of deregulated metabolites was performed with MetaboAnalyst 3.0. The enrichment method was hypergeometric test. Topology 
analysis was based on relative betweenness centrality. The P value was calculated from the enrichment analysis without adjustment (FC!≥!2 and P!≤!0.05). 
Metabolic pathways are represented as circles according to their scores from enrichment (vertical axis) and topology analyses (pathway impact, 
horizontal axis). c, Overview of experimental design for data integration. d, Ingenuity pathway analysis showing overlap of significantly deregulated 
metabolites on HFHSD from MALDI–MSI profiling and genes from microarray analysis. Shown are values from microarray analysis and the red line 
indicates the significance cutoff. e, Enriched KEGG pathways in genes differentially regulated between CD and HFHSD conditions (Enrichr, Fisher’s exact 
test, two-sided). Genes with FDR!<!0.01 and logFC!>!0.1 were considered and weighted by logFC. f, Volcano plots showing differential expression and its 
significance (−log10(FDR), limma) for each gene on HFHSD compared to CD. Red lines indicate thresholds used for significance level and gene expression 
change and regulated genes are highlighted in black. Annotated genes are the top ten genes ranked by FDR. g, Mean expression levels for selected genes. 
* Indicates a significant change (limma, FDR!<!0.01, logFC!>!0.1). h,i, Protein expression analysis by western blot in cytoplasmic (cyto) and nuclear (nucl) 
extracts from SI crypts of CD- and HFHSD-fed FVF mice. Representative immunoblots (h) and relative quantification of band signal intensity (i), n!=!4 mice 
per group (Srebp1, Scd1, Acc, Fasn) and n!=!7 mice per group (Pparγ). Data are presented as box-and-whisker plots. The lower and upper boundaries of 
the boxes represent the 25th and 75th percentiles, respectively. The centre lines indicate the medians and whiskers represent the maximum and minimum 
values. Statistical significance was determined by two-tailed Student’s t-test. Circles represent biological independent samples. norm., normalized.
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Our in-depth molecular and functional analysis of the EEC  
lineage reveals mechanisms of EEC dysfunction in obesity that 
include (1) higher abundance of Ngn3+ EEPs owing to increased 

proliferation, (2) lower abundance of serotonergic Reg4+ EC cells 
and lower plasma serotonin levels, (3) higher abundance of peptide-
rgic Ghrl+ SILA cells but lower ghrelin plasma levels, (4) increased 
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numbers of ileal Gcg+ cells and increased Glp-1 levels and (5) lower 
abundance of Lgr5+ EECs. The physiological roles of gut-derived 
serotonin are broad and it regulates various processes both in the gut 
and systemically32. Accumulating evidence indicates a link between 
peripheral serotonin and systemic glucose and lipid metabolism, 
as well as metabolic diseases51. Whether blood serotonin levels are 
changed in obesity is controversial, due to difficulties in measur-
ing serotonin51. However, intraperitoneal injection of 5-HT to mice 
inhibits weight gain, hyperglycaemia and insulin resistance on an 
HFD52. Thus, reduced numbers of serotonin-producing cells and 
blood serotonin levels as observed in our mouse model might pro-
mote the development of obesity. The hunger hormone ghrelin is 
known to increase gastric emptying and decrease insulin secre-
tion53. A negative correlation between plasma insulin and ghrelin 
has been reported in human obesity, which is in line with our data54. 
Notably, we found that lower plasma ghrelin levels are not due to a 
reduced number of Ghrl+ SILA cells, suggesting that an impaired 
secretory machinery might affect ghrelin levels. However, given that 
ghrelin-secreting cells are also present in the stomach, changes in 
plasma ghrelin levels may not be solely attributed to duodenal Ghrl+ 
EECs. Lower postprandial GLP-1 levels are reported in obesity and 
incretin hormone secretion and activity are impaired in individu-
als with prediabetes, although findings are contradictory9,55. In our 
obesity model, however, the number of Gcg-expressing cells and 
Glp-1 plasma levels were increased. Glp-1 stimulates insulin secre-
tion from pancreatic β-cells, so the higher levels of circulating Glp-1 
in HFHSD-fed mice may be a compensatory response to insulin 
resistance at the prediabetic state, which leads to hyperinsulinaemia.

Finally, in contrast to other studies, Paneth cell numbers were 
not affected in our obesity model6.

The discrepancies between our results and those of previous 
studies support the emerging evidence that the intestine fine-tunes 
its response to environmental stimuli6,37,38. Different factors, such 
as the selected mouse model (for example, diet versus genetically 
induced obesity), type of diet (for example HFD versus HFHSD), 
fat source (for example lard versus coconut oil) and/or duration of 
diet (short-term versus chronic) can influence intestinal remod-
elling and response. For instance, in contrast to the coconut oil, 
high-sucrose diet for 12–14 weeks used in this study, a lard-based 
low-sugar chronic diet for 9–14 months caused shorter villi, 
increased the number of ISCs, decreased the number of Paneth cells 
and did not affect goblet cells and EECs6. Hence, careful selection 
and reporting of dietary information in animal studies is crucial to 
interpret and contextualize results.

In summary, our study reveals that functional maladaptation of 
the gut in response to an HFHSD is caused by disturbed ISC iden-
tity, changes in the regional identity of cells and an altered mature 
cell-type composition. Further, we describe targetable pathways 
that are induced by an HFHSD and potentially underlie the patho-
genesis of the metabolic syndrome and gastrointestinal cancer. 
This new understanding of the mechanisms of disease is crucial 
to develop non-invasive therapeutic options to resolve obesity and 
insulin-dependent diabetes, for example by counteracting entero-
endocrine dysregulation (for example, by elevating peripheral 
serotonin levels) and increased nutrient absorption (for example,  
by inducing distal enterocyte phenotypes).

Methods
Experimental model. Animals. Animal experiments were carried out in 
compliance with the German Animal Protection Act and with the approved 
guidelines of the Society of Laboratory Animals and of the Federation of 
Laboratory Animal Science Associations. "is study was approved by the 
institutional Animal Welfare O#cer (Helmholtz Center Munich) and by 
the Government of Upper Bavaria, Germany. Homozygous FVF mice were 
generated as previously described and backcrossed to C57BL/6 background22. 
Foxa2nEGFP-CreERT2 mice25 (CD1 background) were crossed with Gt(ROSA)26mTmG 
mice24 (mixed 129/SvJ, C57BL/6J background) to obtain heterozygous Fo

xa2nEGFP-CreERT2/+;Gt(ROSA)26mTmG/+ animals and bred in our own facilities. 
Other mouse lines were Lgr5-EGFP-IRES-creERT2 (ref. 33) (Lgr5-ki, C57BL/6J 
background) and wild-type C57BL/6N (bred in our own facilities).

Mice were housed in groups of two to four animals and maintained at 23 ± 1 °C 
and 45–65% humidity on a 12-h dark/light cycle with ad libitum access to diet 
and water unless otherwise indicated. All experiments were performed using male 
animals at 3 to 7 months of age.

Dietary interventions. For dietary interventions, 10–12-week-old male mice were 
randomized into test groups matched for body weight, with similar variance, and 
given ad libitum access to either an obesogenic HFHSD (58% kcal from fat, 25% 
kcal from carbohydrates, 17% kcal from protein (Research Diets, no. D12331)) 
or CD (11% kcal from fat, 64% kcal from carbohydrates, 25% kcal from protein 
(ssniff Spezialdiäten, E15051-04)) for a period of 11–13 weeks. Body weights were 
measured every second week.

Body composition analysis. Lean and fat masses were measured in FVF mice 
12 weeks after the start of the diet using quantitative nuclear magnetic resonance 
technology (EchoMRI).

Glucose tolerance and insulin secretion tests. Glucose tolerance was assessed by 
an oral glucose tolerance test (oGTT) in FVF mice, maintained for 12 weeks on 
CD or HFHSD. After a 6-h fast, mice received an oral glucose bolus (1.5 mg g−1 
body weight of 20 % (wt/v) d-(+)-glucose (Sigma-Aldrich) in PBS). Tail blood 
glucose concentrations were measured with a handheld glucometer (Abbott) before 
(0 min) and 15, 30, 60 and 120 min after the glucose bolus. To measure the insulin 
secretion, tail vein blood samples were collected into EDTA-coated microvette 
tubes (SARSTEDT) at time points 0, 15 and 30 min of the oGTT. Plasma was 
extracted by centrifugation (3,500 r.p.m., 15 min, 4 °C) and insulin concentration 
was determined using the Ultra-Sensitive Mouse Insulin ELISA Kit (Crystal Chem, 
90080) according to the manufacturer’s instructions.

The homeostasis model assessment of insulin resistance (HOMA-IR) and 
HOMA-β were used to assess insulin resistance and beta-cell function, respectively, 
in FVF mice at 12 weeks after diet start. HOMA indices were calculated from basal 
blood glucose and plasma insulin levels after a 6-h fast based on the conventional 
formulas: HOMA-IR = fasting blood glucose (mg per 100 ml) × fasting insulin 
(µU per ml)/405 and HOMA-β = fasting insulin (µU per ml) × 360/fasting glucose 
(mg per 100 ml) − 63 (ref. 56).

Plasma hormone measurements. Circulating hormones, serotonin, ghrelin 
and Glp-1 were assessed in FVF mice maintained for 13 weeks on a CD or an 
HFHSD. For basal levels (ghrelin and serotonin), mice were fasted for 6 h and tail 
vein blood was sampled into EDTA-coated microvette tubes (SARSTEDT). To 
compare postprandial plasma hormone levels (Glp-1, ghrelin), fasted mice were 
gavaged with 250 µl of mixed-meal-containing liquid diet (Osmolite HiCal, Abbott) 
supplemented with dextrose at 20% (wt/v) (Sigma-Aldrich). Blood was collected 
10 min after the mixed-meal bolus either from the tail vein or, under terminal 
anaesthesia with isoflurane, from the vena cava57–59. For Glp-1 measurement, blood 
samples were immediately mixed with 0.1 mM Diprotin A (Abcam, 145599) and 
500 KIU ml−1 aprotinin (Sigma, A-1153). Plasma was extracted by centrifugation 
(13,000 r.p.m., 2 min, 4 °C). Total ghrelin concentrations were determined using an 
ELISA kit from Millipore-Merck (EZRGRT-91K), total plasma Glp-1 was measured 
using a mouse Glp-1 ELISA kit (Crystal Chem, 81508) and serotonin concentration 
was determined using a serotonin ELISA kit from Enzo (ADI-900-175).

Proliferative cell labelling with EdU and BrdU and tamoxifen administration 
in mice. To assess the epithelial replication rate in the SI, EdU (Thermo 
Fisher Scientific, A10044) or BrdU (Sigma, no. B5002) was administered as an 
intraperitoneal injection at 100 μg g−1 body weight or at 50 μg g−1 body weight, 
respectively, each from a 10 mg ml−1 stock and in sterile PBS. Mice were killed 
2 h post-EdU or 24 h post-BrdU administration. For the assessment of BrdU 
label retention, FVF mice maintained for 10 weeks on a diet were given BrdU in 
drinking water at 1 mg ml−1 supplemented with 1% sucrose for 14 d. BrdU was 
then withdrawn and mice were further maintained on a diet with ad libitum 
drinking water for a chase period of 21 d. A group of mice was killed after 14 d of 
continuous BrdU labelling or after a 21d period of chase. For short-term genetic 
lineage studies, Foxa2nEGFP-CreERT2/+;Gt(ROSA)26mTmG/+ mice were fasted for 3 h 
and Cre-recombinase activity was induced by a titrated single dose of tamoxifen 
administered orally by gavage (Sigma-Aldrich, T5648) at 0.25 mg g−1 body weight 
in sunflower oil. Mice were killed 70 h after the tamoxifen gavage.

Crypt and villus isolation and single-cell preparation. Isolation of small 
intestinal crypts was carried out as previously reported60. In brief, SIs were removed 
and washed with cold PBS. Villi were scraped off with a glass slide. The remaining 
tissue was cut into 2-cm pieces, washed several times with cold PBS and incubated 
in 2 mM EDTA/PBS for 35 min at 4 °C on a tube roller. Subsequently, crypts were 
collected by rigorous shaking and filtered through a 70-µm mesh to remove villous 
fragments. For single-cell preparation, isolated crypts were incubated with TrypLE 
(Life Technologies, no. 12605) for 5 min on ice and then 5 min at 37 °C and treated 
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with 10 µg ml−1 DNase in crypt complete medium (DMEM/F-12 containing 10% 
FCS) for 5 min at 37 °C. Single-cell suspension was achieved by gentle repeated 
pipetting. Cells were washed twice with 2% FCS in PBS and pelleted at 300g for 
5 min at 4 °C. For flow cytometry, cells were collected in 1–2 ml FACS buffer  
(2% FCS, 2 mM EDTA in PBS) (Sigma-Aldrich, no. Y0503) and passed through 
40-µm cell strainer caps of FACS tubes.

To obtain a single-cell suspension of villi cells, villi were scraped off and 
incubated with TrypLE as described for crypt cells.

Flow cytometry. For gene expression measurement (microarray, single-cell 
transcriptomics) and western blotting, small intestinal crypt cells were sorted 
using FACS-Aria III (FACSDiva software v.6.1.3, BD Bioscience) with a 100-µm 
nozzle. For all experiments, single cells were gated according to their FSC-A (front 
scatter area) and SSC-A (side scatter area). Singlets were gated dependent on 
the FSC-W (front scatter width) and FSC-H (front scatter height) and dead cells 
were excluded using 7-AAD (eBioscience, no. 00-6993-50). For quantitative PCR 
with reverse transcription (qRT–PCR), cells were sorted directly into Qiazol lysis 
reagent (QIAGEN, no. 79306). To obtain FVF-enriched small intestinal crypt-cell 
samples for scRNA-seq, we sorted 30,000 FVF+ (FVFlow and FVFhigh) cells followed 
by sorting 30,000 live crypt cells per sample. Cells were sorted into modified FACS 
buffer (2% FCS, 0.02 mM EDTA in PBS).

RNA isolation for qRT–PCR and microarray. For bulk gene profiling studies 
(qPCR, microarray), RNA isolation from crypts or flow-sorted cells was 
performed using the RNA isolation kit miRNeasy Mini (QIAGEN, no. 217004) 
or miRNeasy Micro kit (QIAGEN, no. 217084) depending on the amount of the 
sample. Complementary DNA was synthesized using the SuperScript VILO cDNA 
synthesis kit (Invitrogen, no. 11754). RNA was reverse transcribed and amplified 
with the Ovation PicoSL WTA System V2 kit (NuGEN, no. 331248).

Microarray analysis. For gene profiling of flow-sorted FVFlow, FVFhigh and FVFneg 
cells from CD- and HFHSD-fed FVF mice, total RNA was isolated as described 
above and RNA integrity was assessed using an Agilent 2100 Bioanalyzer (Agilent 
RNA 6000 Pico Kit). RNA was amplified with the Ovation PicoSL WTA System 
V2 in combination with the Encore Biotin Module (Nugen). Amplified cDNA 
was hybridized on Affymetrix Mouse Gene 1.0 ST arrays. Staining (Fluidics script 
FS450_0007) and scanning of the microarray were performed according to the 
Affymetrix expression protocol including minor modifications as suggested in the 
Encore Biotin kit protocol. Expression Console (v.1.3.0.187, Affymetrix) was used 
for quality control and annotation of the normalized robust microarray analysis 
gene-level data, and standard settings, including median polish and sketch-quantile 
normalization, were used.

TaqMan qRT–PCR. For gene expression analysis, real-time qRT–PCR was 
performed using TaqMan probes (Life Technologies), TaqMan Fast Advanced 
Master Mix (Applied Biosystems, no. 4444557) or TaqMan Universal Master Mix II 
(Applied Biosystems, no. 4440040) for amplified cDNA and the ViiA 7 Real-Time 
PCR System (Thermo Fisher Scientific).

The following probes were used: Mm00782745_s1 for Rpl37, Mm00438890_m1 
for Lgr5, Mm01320260_m1 for Olfm4, Mm01268891_g1 for Ascl2, Mm00443610_
m1 for Axin2, Mm03928990_g1 for RN18S, Mm02524776_s1 for Fzd2, and 
Mm00433409_s1 for Fzd7.

scRNA-seq: RNA preparation, library generation and sequencing. FVF-enriched 
single-cell samples of crypts isolated from the small intestinal epithelium 
(duodenum, jejunum and ileum) and villus samples from the SI of C57BL/6N mice 
were prepared as described above. Dead cells were excluded by flow cytometry 
after 7AAD labelling. Dead cell exclusion was controlled by trypan blue staining 
and sorted cells were counted. Single-cell libraries were generated using the 
Chromium Single cell 3′ library and gel bead kit v2 (10X Genomics, no. 120237) 
according to the manufacturer’s instructions. Libraries were sequenced on a 
HiSeq4000 (Illumina) with 150-bp paired-end sequencing of read 2.

MALDI–MSI. Fresh-frozen samples were cut into 12-μm sections using a 
cryo-microtome at −20 °C (Leica CM1950, Leica Microsystems) and mounted 
onto precooled conductive indium-tin-oxide-coated MALDI target glass slides 
(Bruker Daltonics). Sections were coated with 9-aminoacridine hydrochloride 
monohydrate matrix (Sigma-Aldrich) at 10 mg ml−1 in water/methanol 30:70 
(v/v) by a SunCollect automatic sprayer (Sunchrom). The matrix application was 
performed at flow rates of 10, 20 and 30, respectively, for the first three layers.  
The other five layers were performed at 40 μl min−1. MALDI–MSI measurement 
was performed on a Bruker Solarix 7T FT-ICR-MS (Bruker Daltonics). MALDI–
MSI data were acquired over a mass range of m/z 50–1,000 in negative ionization 
mode with 30-μm spatial resolution using 50 laser shots at a frequency of 500 Hz. 
The acquired data underwent spectrum processing in FlexImaging v.4.2 (Bruker 
Daltonics). Following MALDI imaging experiments, the matrix was removed  
with 70% ethanol. Tissue sections were stained with haematoxylin and eosin.  
Slides were scanned with a MIRAX DESK digital slide-scanning system  
(Carl Zeiss MicroImaging).

Western blot. For protein expression analyses, whole-cell lysates from isolated 
crypts or flow-sorted cells were prepared using the RIPA buffer (50 mM Tris, pH 
7.5, 150 mM NaCl, 1 mM EDTA, 1% Igepal, 0.1% SDS, 0.5% sodium deoxycholate) 
containing phosphatase (Sigma-Aldrich, P5726, P0044) and proteinase inhibitors 
(Sigma-Aldrich, P8340). Nuclear and cytosolic extracts from isolated crypts 
were prepared using the NE-PER Nuclear and Cytoplasmic Extraction Reagents 
kit (Thermo Fisher Scientific, no. 78833) according to the manufacturer’s 
instructions. Cell lysates were mixed with Laemmli sample buffer, resolved by 
SDS–PAGE and blotted onto a PVDF membrane (Bio-Rad). Membranes were 
blocked with 5% milk in Tris-buffered saline containing 0.2% Tween-20, then 
incubated overnight with primary antibodies in blocking solution at 4 °C, followed 
by a 1-h incubation with horseradish peroxidase (HRP)-conjugated IgG secondary 
antibodies. Protein bands were visualized using a chemiluminiscence reagent 
(Bio-Rad, no. 170-5061) and quantified using ImageJ software. For quantification, 
expression of proteins was normalized to α-tubulin or lamin in cytoplasmic or 
nuclear fractions, respectively.

Primary antibodies used were mouse anti-Srebp1 (1:1,000 dilution, 
Novus Biologicals, NB600-582SS); rabbit anti-Acc (1:1,000 dilution, Cell 
Signaling Technology, 3676); rabbit anti-Pparγ (1:1,000 dilution, Cell Signaling 
Technology, 2435); goat anti-lamin (1:1,000 dilution, Santa Cruz, sc-6217); mouse 
anti-α-tubulin (1:1,000 dilution, Sigma-Aldrich, T6199); rabbit anti-Fasn (1:1,000 
dilution, Cell Signaling Technology, 3180); rabbit anti-Scd1 (1:1,000 dilution, 
Cell Signaling Technology, 2794); mouse anti-β-catenin (1:1,000 dilution, BD, 
610154), rabbit anti-Gsk3β (1:5,000 dilution, Cell Signaling Technology, 12456); 
and rabbit anti-phospho Gsk3β (1:5,000 dilution, Cell Signaling Technology, 5558). 
Secondary antibodies used were goat anti-mouse HRP (1:15,000 dilution, Dianova, 
115036062); goat anti-rabbit HRP (1:15,000 dilution, Dianova, 111036045) or 
rabbit anti-goat HRP (1:15,000 dilution, Dianova, 305035045).

Tissue morphology assessment. For tissue histology, intestines were flushed and 
fixed in 4% paraformaldehyde (PFA) overnight, paraffin embedded according 
to standard procedures and sectioned at 6 µm. Sections were dried, dehydrated 
through a graded ethanol series and cleared in xylene. Standard haematoxylin and 
eosin staining was performed and images were acquired using the Zeiss AXIO 
Scope A1 microscope (Carl Zeiss AG).

Histochemistry and immunofluorescence. SIs were isolated, rinsed with ice-cold 
PBS and fixed with 4% PFA for 3 h at 4 °C. Tissue was cryopreserved through a 
progressive sucrose gradient (7.5% for 1 h, 15% for 1 h, 30% sucrose overnight), 
embedded in a tissue-freezing medium (Leica Biosystems, no. 14020108926) and 
sectioned at 14 µm. For whole-mount staining, isolated small intestinal crypts were 
fixed in 4% PFA for 30 min at room temperature (RT) and subsequently washed 
in PBS. For immunofluorescence staining, sections or crypts were permeabilized 
with 0.5% Triton X-100 in PBS for 30 min at RT, blocked (10% FCS, 0.1% BSA and 
3% donkey serum in PBS/0.1% Tween-20) for 1 h and incubated with primary 
antibodies overnight at 4 °C. Sections or crypts were washed in PBS/0.1% Tween-
20 and incubated with secondary antibodies in blocking solution for 1 h at RT, 
stained with DAPI (ROTH, 6335.1) to visualize the nuclei and mounted with the 
Elvanol antifade reagent.

To assess proliferation, EdU staining was performed using the Click-iT Staining 
kit (Invitrogen, no. C10340) according to the manufacturer’s instructions.

For BrdU staining, sections were incubated with 3.3 N HCl for 10 min on ice, 
followed by incubation for 50 min at 37 °C and two wash steps with borate buffer, 
pH 8.5, to neutralize the reaction (each wash 15 min at RT).

Ki67 immunoreactivity was assessed on paraffin tissue sections after 
heat-induced antigen retrieval (at ~90 °C, 10 min) using the Antigen Unmasking 
Solution, Citric Acid-Based (Vector Laboratories, no. H-3300-250).

Fluorescent images were obtained with a Leica SP5 confocal microscope 
(Leica Microsystems) and analysed using LAS AF software (LAS AF software 
v.2.6.0-7266).

The primary antibodies used were chicken anti-GFP (1:600 dilution, Aves Labs, 
GFP-1020); goat anti-ChgA (1:200 dilution, Santa Cruz, sc-1488); rabbit anti-Lyz1 
(1:1,000 dilution, DAKO, M0776); rabbit anti-Muc2 (1:1,000 dilution, Santa Cruz, 
sc-7314); rat anti-BrdU (1:200 dilution, Abcam, ab6326); rabbit anti-5-HT (1:1,000 
dilution, Neuromics, RA20080); anti-rabbit Ngn3 (1:100 dilution, a kind gift from 
H. Edlund); goat anti-villin (1:200 dilution, Santa Cruz, sc-7672); goat anti-ghrelin 
(1:200 dilution, Santa Cruz, sc-10368); rabbit anti-Ki67 (1:200 dilution, Abcam, 
ab15580); rabbit anti-E-cadherin (extracellular domain) (1:1,000 dilution, a gift 
from D. Vestweber); rabbit anti-Fabp1 (1:300 dilution, Abcam, ab222517); and 
rabbit anti-Apoa4 (1:300 dilution, Abcam, ab231660). The secondary antibodies 
used were donkey anti-chicken Alexa Fluor 488 (1:800 dilution, Dianova, 
703225155); donkey anti-mouse Cy5 (1:800 dilution, Dianova, 715175151); donkey 
anti-goat Alexa Fluor 555 (1:800 dilution, Invitrogen, A21432); donkey anti-rabbit 
Alexa Fluor 555 (1:800 dilution, Invitrogen, A31572); and donkey anti-rabbit Alexa 
Fluor 649 (1:800 dilution, Dianova, 711605152).

RNAScope in situ hybridization for detection of target RNA. In situ detection of 
FOXA2, LGR5 and OLFM4 mRNA was performed using the RNAscope Intro Pack 
for Multiplex Fluorescent Reagent Kit v2-Mm (ACD; no. 323136) according to the 
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manufacturer’s protocol. RNAscope 3-Plex Negative Control Probe (dapB; ACD; 
no. 320871) and RNAscope 3-Plex Positive Control Probe (ACD; no. 320881) 
were used as internal controls. Probes used were Mm-Foxa2 (ACD; no. 409111), 
Mm-Olfm4-C2 (ACD; no. 311831-C2) and Mm-Lgr5-C3 (ACD; no. 312171-C3) 
with respective fluorescent dyes Opal 520 Reagent (AKOYA; no. FP1487001KT) 
for channel 1, Opal 570 Reagent (AKOYA; no. FP1488001KT) for channel 2 and 
Opal 690 Reagent (AKOYA; no. FP1497001KT) for channel 3, diluted 1:800 in 
RNAscope Multiplex TSA Buffer (ACD; no. 322809). The assay was performed 
on FFPE mouse intestinal jejunum sections prepared as described above with a 
thickness of 7 µm and standard pretreatment conditions with protease III (ACD; 
no. 322340) as recommended by the manufacturer.

After completion of the RNAscope assay, sections were stained using DAPI 
(ROTH, 6335.1) to visualize the nuclei, washed with PBS three times and mounted 
with ProLong Diamond Antifade Mountant (Life Technologies; no. P36970). 
Samples were visualized using a Leica SP5 confocal microscope (LAS AF software 
v.2.6.0-7266).

Gene expression analysis from bulk sorted cells. Statistical bulk transcriptome 
analyses were performed using the statistical programming environment R 
implemented in CARMAweb61,62. Gene-wise testing for differential expression was 
carried out employing the limma t-test. Sets of regulated genes were defined by 
raw P < 0.01, FC > 1.3× and average expression in at least one group >32. Enriched 
canonical pathways were analysed through the use of QIAGEN’s ingenuity pathway 
analysis (https://www.qiagen.com/ingenuity). Microarray data are available at Gene 
Expression Omnibus (GEO).

Bioinformatics and statistical analysis of MALDI–MSI data. MATLAB R2014b 
(v.7.10.0, Mathworks) was used as MALDI spectral pre-processing tool for the 
subsequent data bioinformatics analysis. Peak picking was performed using an 
adapted version of the LIMPIC algorithm63. In brief, the parameters of peak 
picking included m/z 0.0005 minimal peak width, signal-to-noise threshold 
of 4 and intensity threshold of 0.01%. Isotopes were automatically identified 
and excluded. Statistical comparisons were performed with a Student’s t-test 
(two-tailed). Metabolites were considered to be significant if they had an intensity 
FC ≥ 2 and a P value ≤0.05. Metabolite annotation was performed by matching 
accurate mass with databases (mass accuracy ≤4 ppm, METLIN, http://metlin.
scripps.edu/; Human Metabolome Database, http://www.hmdb.ca/; MassTRIX, 
http://masstrix3.helmholtz-muenchen.de/masstrix3/; METASPACE, http://
annotate.metaspace2020.eu/). Heat-map-based clustering and enrichment analysis 
of metabolic pathways were performed with MetaboAnalyst v.3.0 (http://www.
metaboanalyst.ca).

Integration of bulk transcriptome and metabolome. Lists of genes participating 
in the candidate pathways from the ingenuity canonical pathways analysis of the 
microarray data of FVFlow, FVFhigh and FVFneg cells were compiled. For each of the 
genes on the lists, information on the reaction it is involved in and the participating 
metabolites were extracted from the mouse specific BiGG databank (https://www.
ncbi.nlm.nih.gov/pmc/articles/PMC2874806/, https://www.ncbi.nlm.nih.gov/
pubmed/20959003). If genes and metabolites within a reaction were also significant 
in their analyses as described above, the reaction and its pathway were said to be 
affected at both the metabolomics and the transcriptomics levels.

Single-cell gene expression analysis by microfluidic qRT–PCR. To assess the 
transcriptional profiles of single FVFlow and FVFhigh cells, a nested single-cell 
qPCR design was used. FVFlow or FVFhigh cells isolated from three CD- and 
HFHSD-fed FVF mice were sorted as described above directly into single wells of 
96-well plates containing 5 μl of a pre-amplification solution composed of 1.2 μl 
5× VILO reaction mix (Invitrogen, no. 11754-050), 0.3 μl 20 U μl−1 SUPERase-In 
(Ambion, no. AM2694), 0.25 μl 10 % NP40 (Thermo Fisher Scientific, no. 28324), 
0.25 μl RNA spikes mix (Fluidigm, no. 100-5582) and 3 μl of nuclease-free 
water (Promega, no. P119C). Cells were lysed by incubation at 65 °C for 90 s 
and cDNA transcription from RNA was performed by reverse transcription 
cycling (25 °C for 5 min, 50 °C for 30 min, 55 °C for 25 min, 60 °C for 5 min and 
70 °C for 10 min) with 1 μl reverse transcription mix solution containing 0.15 μl 
10× SuperScript enzyme mix (Invitrogen, no. 11754-050), 0.12 μl T4 Gene 32 
Protein (New England BioLabs, no. M0300S) and 0.73 μl nuclease-free water. 
The efficiency and specificity of outer and inner primer pairs for target-specific 
cDNA amplification were tested in advance. Primers showing single peaks and 
single bands by melt curve analysis and by separation of qPCR products on a 2.5% 
agarose gel, respectively, were considered specific. Primer efficiency was analysed 
over a range of tenfold cDNA dilutions (1:1 to 1:100) and primers with 100 ± 15 
% efficiency were qualified for further proceedings. Specific target amplification 
was performed with 9 μl reaction mix containing 7.5 μl TaqMan PreAmp Master 
Mix (Applied Biosystems, no. 4391128), 0.075 μl 0.5 M EDTA, pH 8.0 (Invitrogen, 
no. Am9260G), 1.5 μl 10× outer primer mix (500 nM) under the following cycling 
conditions: enzyme activation step at 95 °C for 10 min, 20 cycles of denaturation for 
5 s at 96 °C and 4 min annealing/extension at 60 °C. Amplified cDNA samples were 
then treated with 6 μl Exonuclease I reaction mix containing 0.6 μl reaction buffer, 
1.2 μl Exonuclease I (New England BioLabs, no. M0293S) and 4.2 μl nuclease-free 

water. To increase target specificity, amplified single-cell cDNA samples were 
analysed with gene-specific inner primer pairs and SsoFast EvaGreen Supermix 
with Low ROX (Bio-Rad Laboratories, no. 172-5210) using the 96.96 Dynamic 
Array on the BioMark System (Fluidigm). BioMark Real-Time PCR Analysis 
software (Fluidigm) was used to calculate Ct values.

Computational analyses of single-cell data. A detailed description of the 
computational analyses of single-cell data is provided in the Supplementary 
information.

Statistical analyses. Data collection was performed using Microsoft office 
Excel 2016–2018 and statistical analysis was performed using GraphPad Prism 
6 Software (GraphPad Software). All data are shown as mean ± s.e.m. unless 
otherwise specified. In box-and-whiskers plots, data are represented as minimum 
and maximum with centre lines indicating the median. All samples represent 
biological replicates. For statistical significance testing of two independent groups, 
an unpaired two-tailed Student’s t-test was used. For statistical comparison of 
longitudinal data (body weight curves, GTT and IST), two-way analysis of variance 
corrected by Sidak’s multiple comparison test was used. P values of < 0.05 % were 
considered statistically significant. For metabolic studies (GTT and IST), sample 
size was statistically determined; otherwise sample size estimates were not used. 
Studies were not blinded and investigators were not blinded during analysis.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All data generated or analysed during this study are included in this article and 
its supplementary files. Microarray data have been submitted to NCBI/GEO 
(GSE148227). scRNA-seq data have been submitted to NCBI/GEO (GSE147319). 
Source data are provided with this paper.

Code availability
Code and custom scripts for scRNA-seq analysis have been deposited on  
https://github.com/theislab/2021_Aliluev_Tritschler_gut_HFD.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | HFHSD remodels the intestinal mucosa and leads to obesity and prediabetes. a, Weekly assessment of body weight. n!=!8 mice 
per group. Data are shown as mean!±!s.e.m. of biologically independent samples. Statistical significance was determined by two-way ANOVA with 
Sidak’s multiple comparison test. b–d, Analysis of fat (b) and lean mass (c) by nuclear magnetic resonance (NMR) and fat mass ratio (d). n!=!3 mice per 
group. Data are shown as mean!±!s.e.m.. Statistical significance was determined by two-tailed Student’s t-test. e, f, Assessment of small intestinal length 
(e, n!=!10 mice per group) and weight (f, n!=!8 mice versus 10 mice per group). Data are shown as mean!±!s.e.m. of biologically independent samples. 
Statistical significance was determined by two-tailed Student’s t-test. g–m, Representative LSM images of duodenal sections depicting crypt-villus units 
(g) or crypt regions (k). Assessment of crypt and villus morphology in duodenal and ileal sections. Duodenum: h, j, l, m. Ileum: i, n!=!8 mice versus 7 
mice (h), n!=!3 mice (i, j), n!=!4 mice (l) and n!=!8 mice (m) per group. Data are shown as mean!±!s.e.m. of biologically independent samples. Statistical 
significance was determined by two-tailed Student’s t-test. Scale bars, 75!µm (g), 25!µm (k). n–p, Cell number (n) and size (o) quantification in the crypts 
(n!=!4 mice per group) and cell size quantification in the villi (p, n!=!3 mice per group). Data are mean!±!s.e.m. of biologically independent samples.  
q, Histological assessment of duodenal tissue sections by haematoxylin and eosin staining. Black square depicts an enlarged villus section. Black 
arrowheads indicate fat inclusions. Scale bar, 100!µm. n!=!3 biologically independent CD and HFHSD samples. r, s, Assessment of glucose tolerance 
(r, n!=!8 per group) by oral glucose tolerance test (oGTT) and insulin secretion (s, n!=!4 mice versus 5 mice per group) by insulin secretion test (IST). 
Data are shown as mean!±!s.e.m. of biologically independent samples. Statistical significance was determined by two-way ANOVA with Sidak’s multiple 
comparison test. t, u, Estimation of insulin resistance ((HOMA-IR) and β-cell function (HOMA-β). n!=!6 mice per group. Data are shown as mean!±!s.e.m. 
of biologically independent samples. Statistical significance was determined by two-tailed Student’s t-test.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Characterization of small intestinal epithelial cell types and lineage relations in CD- and HFHSD-conditions by scRNA-seq. 
a, Representative flow cytometry plot for FVF-based enrichment of SI crypt cells for scRNA-seq. Gating strategy distinguishes FVF-positive cells from 
random live whole crypt cells (FVF all). b, Quality metrics for the scRNA-seq data. c, Levels of cell scores calculated based on the expression of a set of 
known marker genes specific for each cell type and used for cluster annotation. Violin plots show distribution of score levels assigned to the respective 
cell type in CD- and HFHSD-derived samples. d, UMAP plots of crypt cells colored by cell densities of individual CD and HFHSD mice. e, Mean expression 
levels of selected genes known to regulate lineage decisions in intestinal crypt cells of CD and HFHSD mice. *indicates a significant change in HFHSD mice 
(limma, FDR!<!0.01, logFC>0.1). f, Lineage relations in CD- and HFHSD-derived SI crypt cells inferred based on a measure for cluster connectivity using 
PAGA. Edges are weighted by significance, node positions are cluster centres in UMAP space. g, Pearson correlation of mean expression profiles of high 
variance genes broken down by cell type and diet. Rows and columns are ordered using hierarchical clustering. h, Frequency shifts of each cluster from 
HFHSD-derived samples compared to CD-derived samples estimated using a Dirichlet-Multinomial model. Expected mean and the 95% highest posterior 
density interval (HPD-region) of the frequency shift for each cell type is shown. A credible shift is assumed if the HPD-region does not include 0. n!=!3 CD 
mice. n!=!3 HFHSD mice.

NATURE METABOLISM | www.nature.com/natmetab

http://www.nature.com/natmetab


ARTICLESNATURE METABOLISM ARTICLESNATURE METABOLISM

Extended Data Fig. 3 | Proximal- and distal-type enterocytes exert different functions. a, Violin plots showing expression distribution of regional markers 
Onecut2 (proximal) and Bex1 (distal) used to classify proximal and distal cells17 (see Methods). b, Genes and their associated function characteristic for 
enterocytes with proximal or distal identity, respectively. Heatmap shows estimated fold change in proximal versus distal cells from CD-derived samples.
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Extended Data Fig. 4 | Analysis of Foxa2 lineage positive cells and frequency of mature intestinal cell types in FVF mice in CD and HFHSD conditions. 
a, Representative LSM images of tamoxifen-induced recombination in duodenal crypts of CD- and HFHSD-fed Foxa2nEGFP-CreERT2/+; Gt(Rosa26)mTmG/+ mice 
after 48!h. Yellow arrows indicate recombined mG+ slender crypt base cells (CBC) at positions typical for ISCs, adjacent to pyramid-shaped Paneth cells. 
Scale bar, 25!µm. n!=!3 biologically independent CD and HFHSD samples. b, Frequencies of coherent Foxa2-lineage ribbons of different sizes in the villi of 
CD- and HFHSD-fed Foxa2nEGFP-CreERT2/+; Gt(Rosa26)mTmG/+ mice at 70!h after tamoxifen induction. n!=!3 mice per group. Data are mean!±!s.e.m. of biologically 
independent samples. Statistical significance was determined by two-tailed Student’s t-test. c, Percentage of villin+ enterocytes, Muc2+ goblet cells and 
ChgA+ EECs within Foxa2 lineage ribbons. n!=!3 mice per group. Data are mean!±!s.e.m. of biologically independent samples. Statistical significance was 
determined by two-tailed Student’s t-test. d, e, Quantification of ChgA+ EECs (d, n!=!3 mice per group) and Muc2+ goblet cells (e, n!=!4 mice per group) in 
ileal tissue sections of CD- and HFHSD-fed FVF mice. Data are shown as mean!±!s.e.m. of biologically independent samples. Statistical significance was 
determined by two-tailed Student’s t-test. f, g, Representative LSM images (f) and quantification (g) of Paneth cells (Lyz1+) in the duodenum. Scale bar, 
25!µm, n!=!8 mice per group. Data are mean!±!s.e.m. of biologically independent samples.
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Extended Data Fig. 5 | Regional identity of villi enterocytes is changed upon HFHSD. a, Overview of the experimental setup for scRNA-seq of villi cells. 
b, UMAP plot of 4205 profiled single SI villi cells. Colors highlight clustering into major intestinal cell types based on expression of previously published 
marker genes17. c, UMAP plot of enterocyte progenitors (EP) and enterocytes computed using a set of 44 transcription factors previously described to be 
differential between proximal and distal gut regions17. Colors highlight diet. d, UMAP plot of EP and enterocytes computed using a set of 44 transcription 
factors previously described to be differential between proximal and distal gut regions17. Colors highlight regional annotation. e, Violin plots showing cell 
scores of the proximal and distal transcription factors used in c)17 in CD and HFHSD-derived EPs and enterocytes. f, Proportions of enterocytes and EPs 
annotated as proximal- or distal-type enterocytes based on regional transcription factor scores in c. g, Heatmap showing the log2- fold change of the 
expression of selected functional proximal genes in HFHSD vs CD distal and proximal enterocyte cluster. *indicates a significant change. The p-values are 
provided in Supplementary table 1.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Enterocyte zonation is altered upon HFHSD. a, Activation of zonation scores along a pseudospatial ordering of EP and enterocytes 
from SI villi, which reflects the axis from villus bottom to tip. Cell scores for each zone were computed on reported markers18 and approximated by 
polynominal regression fits along the pseudospatial axis. Crossing points of the fitted lines define the partitioning into the five zones. b, Dot plots 
showing the expression of selected markers of enterocyte function in distal and proximal enterocytes. Cells are partitioned into zones along the inferred 
pseudospatial axis from villus bottom (zone 1) to tip (zone 5). c–e, Representative LSM images (c) and quantification of Fabp1 mean fluorescence intensity 
in ileal villi (d) and determination of the length of the Fabp1 positive zone (e). Scale bar, 50!µm, n!=!3 CD mice and n!=!4 HFHSD mice. Data are shown as 
mean!±!s.d. of biologically independent samples. Statistical significance was determined by two-tailed Student’s t-test. f–h, Representative LSM images (f) 
and quantification of Apoa4 mean fluorescence intensity in ileal villi (g) and determination of the length of the Apoa4 positive zone (h). Scale bar, 50!µm, 
n!=!3 CD mice and n!=!4 HFHSD mice. Data are shown as mean!±!s.d. of biologically independent samples. Statistical significance was determined by two-
tailed Student’s t-test. i–k, Representative LSM images (i) and quantification of Apoa4 mean fluorescence intensity in duodenal villi (j) and determination 
of the length of the Apoa4 positive zone (k). Scale bar, 50!µm, n!=!5 mice per group. Data are shown as mean!±!s.e.m. of biologically independent samples. 
Statistical significance was determined by two-tailed Student’s t-test.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | HFHSD changes transcription in EEC subsets and gut plasma hormone levels. a, Violin plots showing the distribution of expression 
of selected genes in EEC clusters. b, PAGA plot showing lineage relationships for the endocrine lineage in CD-derived samples. c, Mean expression levels 
per cluster of genes associated with BMP signaling. d, Mean expression levels per cluster of subset-specific genes in EEC clusters. e, Frequency shifts of 
each cluster from HFHSD-derived samples compared to CD-derived samples estimated using a Dirichlet-Multinomial model. Expected mean and the 
95% highest posterior density interval (HPD-region) of the frequency shift for each cell type is shown. n!=!3 mice per group. f–i, Abundance of label-
retaining cells (LRCs). f, Schematic depicting the experimental strategy of the 5-bromo-2-deoxyuridine (BrdU) pulse-chase experiment to determine the 
LRC frequency. g, Representative LSM images of duodenal sections after 14 days of BrdU labelling. BrdU-labelled cells are stained in red. Scale bar, 50!µm. 
n!=!3 biologically independent CD and HFHSD mice. h, Representative LSM images of duodenal crypts after a chase period of 21 days. Yellow arrowhead 
highlights a BrdU+/Lyz1− LRC. Blue arrowheads indicate BrdU+/Lyz1+ cells. Scale bar, 25!µm. i, Proportion of Lyz1− and Lyz1+ BrdU-labelled cells of total 
BrdU+ cells in duodenal crypts. n!=!4 mice versus 5 mice per group. Data are presented as mean!±!s.e.m. of biologically independent samples. Statistical 
significance was determined by two-tailed Student’s t-test. j, Mean hormone expression levels in EECs. Mean was calculated only from cells with high 
expression levels (log (count!>!3). k–m, Differential gene expression in selected EEC clusters tested using limma. For each gene, the estimated logFC  
and its associated FDR is plotted. Red lines indicate thresholds used for significance level and gene expression change. Regulated genes are highlighted  
in black, of which annotated genes are the top 10 genes ranked by FDR. n, Experimental scheme for the assessment of selected hormone plasma levels. 
o–q, Plasma levels of serotonin (n!=!4 mice per group) (o), ghrelin (n!=!5 mice /4 mice per group) (p) and Glp-1 (n!=!5 mice /4 mice per group) (q).  
Data represent mean!±!s.e.m. of biologically independent mice. Statistical significance was determined by two-tailed Student’s t-test.
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | HFHSD increases turnover of SI crypt cells. a, Left: Cell score levels for cell-cycle phases S and G2/M calculated based on 
the expression of a set of genes related to cell-cycle are visualized in a UMAP plot. Right: Cells assigned to the corresponding cell-cycle phase are 
highlighted in red. b, Proportions of cycling cells assigned to S and G2/M cell-cycle phases in CD and HFHSD-derived in indicated clusters. Table indicates 
percentages. Data are shown as mean!±!s.e.m., n!=!3 mice per group. c, Assessment of body weight over the course of 14 weeks of CD- and HFHSD-fed 
Lgr5-ki mice. n!=!4 per group. Data are shown as mean!±!s.e.m. of biologically independent samples. Statistical significance was determined by two-tailed 
Student’s t-test. d, Representative FACS plots showing gating strategy to determine the proportion of Lgr5-EGFPhi cells (ISCs) in CD and HFHSD fed 
Lgr5-ki mice. e, f, Representative LSM images (e) and quantification (f) of Ki67+ (green) proliferative regions. Scale bar, 75!µm, n!=!4 mice per group. Data 
are mean!±!s.e.m. of biologically independent samples. Statistical significance was determined by two-tailed Student’s t-test. g–i, Representative LSM 
images of BrdU-labelled cells (BrdU+ nuclei, red) along the crypt-villus axis 24!h after BrdU administration in duodenal sections from CD- and HFHSD-
fed FVF mice (g). Quantification of cell migration length by measuring the distance from the crypt base to the highest labelled cell in the villus (h). Net 
BrdU migration (i), calculated as the average distance of BrdU-labelled migration front minus the Ki67+ zone to correct for increased cell proliferation on 
HFHSD. Scale bar, 25!µm. n!=!4 mice per group. Data are mean!±!s.e.m. of biologically independent samples. Statistical significance was determined by 
two-tailed Student’s t-test.
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Extended Data Fig. 9 | HFHSD stimulates the Insr/Igf1r/Akt pathway and fatty acid synthesis and Ppar signaling. a, b, Representative immunoblots of 
phosphorylated (p)Igf1r/Insr (Tyr1158/Tyr1162/Tyr1163) and total Igf1r, Insrβ, pAkt (Ser473) and total Akt (a) and quantification of the protein levels (b). 
Protein expression was analysed in whole-cell lysates from SI crypts of CD- and HFHSD-fed FVF animals. For quantification, signal intensities of all protein 
bands were normalised to α-tubulin; phosphorylated proteins were additionally normalised to the corresponding non-phosphorylated protein. n!=!3 mice 
per group for pIgf1r/pInsr, n!=!7 mice per group for Igf1r, n!=!9 mice per group for (p)Akt and total Akt. Data are presented as box-and-whisker plots. The 
lower and upper boundaries of the boxes represent the 25th and 75th percentiles, respectively. The center lines indicate the medians, the crosses denote 
the mean values, and whiskers represent the maximum and minimum values. Statistical significance was determined by two-tailed Student’s t-test. Circles 
represent biological independent samples. c, Mean expression levels per cluster of genes involved in PI3K/Akt signaling in CD and HFHSD. * indicates 
a significant change in HFHSD mice (limma, FDR!<!0.01, logFC>0.1)). The p-values are provided in Supplementary table 1. d, Predicted activation or 
inhibition of upstream regulators in bulk transcriptomics. Significantly regulated genes from each population (each HFHSD versus CD) were analysed by 
Ingenuity Pathway Software to predict the activation (yellow; z-score >2) or inhibition (blue; z-score!<!−2) of upstream regulators. Shown are all genes 
with three z-scores available and from which at least two were significant (z-score!>!׀ 2׀).
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Extended Data Fig. 10 | Confirmation of expression differences in metabolic genes in FVF-positive cells from CD- and HFHSD-fed mice by targeted 
single-cell qPCR. a, b, UMAP plot of 465 profiled FVF positive crypt cells from 3 CD and 3 HFHSD-fed mice coloured by cell type (a). Cluster annotation 
was based on lineage marker gene expression depicted in the heatmap (b). c, Violin plots showing expression of selected metabolic genes related to fatty 
acid synthesis, Ppar signaling and glycolysis in indicated single-cell clusters split by diet.
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Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection 1. Microsoft office excel 2016-2018 
2. qPCR was carried out using the Viia7 Real Time PCR System (Thermo Fisher Scientific). 
3. Microarray data was obtained using Agilent 2100 Bioanalyzer and Affymetrix Mouse Gene 1.0 ST arrays. 
4. MALDI-MSI measurements were obtained with a Bruker Solarix 7T FT-ICR-MS (Bruker Daltonics, Bremen, Germany) and after matrix 
removal scanned with a MIRAX DESK digital slide-scanning system (Carl Zeiss MicroImaging, Göttingen, Germany). 
5. Western blot analysis was carried out using UVP Chem Studio SA (Analytik Jena AG, Biometra GmbH Jena Germany). 
6. Tissue histology images were obtained with a Zeiss AXIO Scope A1 microscope (Carl Zeiss AG, Germany). 
7. Fluorescent histological images were obtained with a Leica SP5 Confocal microscope (Leica Microsystems, Germany) using the LAS AF 
software v2.6.0-7266. 
8. single-cell qRT-PCR were run on 96 × 96 Dynamic Array on the BioMark System (Fluidigm). Ct values for each gene in each cell was 
calculated using BioMark Real-Time PCR Analysis software v3 (Fluidigm). 
9. single-cell libraries were sequenced on the HiSeq4000 (Illumina) with 150 bp paired-end sequencing of read 2. 
10. BD FACS ARIA III and BD FACSDiva software v6.1.3  
11. EchoMRI, Houston, TX, USA for body composition analysis 

Data analysis 1. Prism 6 software  (Graphpad) http://www.graphpad.com/scientific-software/ N/A prism/. 
2. Microarray was processed with Expression Console (v.1.3.0.187, Affymetrix),  
3. Spectra processing of MALDI-MSI data was done with FlexImaging v. 4.2. 
4. MATLAB R2014b (v.7.10.0, Mathworks, Inc., Natick, MA) was used as MALDI spectral pre-processing tool for the subsequent data 
bioinformatics analysis, LIMPIC algorithm was used for peak picking 
5. Metabolite annotation was performed with databases (METLIN, http://metlin.scripps.edu/; Human Metabolome Database, http://
www.hmdb.ca/; MassTRIX, http://masstrix3.helmholtz-muenchen.de/masstrix3/; METASPACE,http://annotate. metaspace 2020.eu/).  
6. Heatmap-based clustering and enrichment analysis of metabolic pathways were performed with MetaboAnalyst 3.0 (http://
www.metaboanalyst.ca). 
7. Western blots protein bands were quantified with the ImageJ software v1.51.   
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8. Histological images were analyzed using the LAS AF software program v2.6.0-7266.. 
9. scRNA-seq data were analyzed using python 3.5.4, 3.6.12 and 3.7.5. The raw reads were processed using the CellRanger analysis 
pipeline (v2.0.0) provided by 10X Genomics. Subsequent analyzes were carried out using custom scripts, Scanpy (https://github.com/
theislab/scanpy, v1.0.4+92.g9a754bb and 1.4.4post for velocity estimation and scRNA-seq of villi cells), scVelo (0.1.26.dev7+g5e6d395, 
https://github.com/theislab/scvelo with scanpy v1.3.4), velocyto (v0.17.7, http://velocyto.org), limma (http://bioinf.wehi.edu.au/limma/, 
v3.28.10) via an rpy2 interface (v2.9.1) and gseapy  (v0.9.3) implementation of EnrichR (2018/2019). 
10. QIAGEN’s Ingenuity Pathway Analysis (IPA®, QIAGEN Redwood City, www.qiagen.com/ingenuity). 
11. CARMAweb  

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. 
We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

All data generated or analysed during this study are included in this published article and its Supplementary Information files. Source data are provided with this 
paper.  
Microarray data have been submitted to NCBI/GEO (GSE148227). 
scRNAseq data have been submitted to NCBI/GEO (GSE147319). 
Code and custom scripts for scRNAseq analysis have been deposited on https://github.com/theislab/2021_Aliluev_Tritschler_gut_HFD. 
Databases: http://metlin.scripps.edu/; Human Metabolome Database, http://www.hmdb.ca/; MassTRIX, http://masstrix3.helmholtz-muenchen.de/masstrix3/; 
METASPACE,http://annotate. metaspace 2020.eu/ 
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Life sciences study design
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Sample size Sample size was calculated based on α-error=0.05, power=0.8, and effect size=1.58. We obtained a sample size of n=>8/condition group for 
physiological measurements during the high-fat high sugar diet feeding based on published data.  
 
For single-cell RNA-seq a minimum expected requirement of ~3000 cells per experiment was used and by far exceeded in all cases for 
confident identification of rare cell subpopulations (~0.05% of cells). No statistical test or power analyzes were used to pre-determine sample 
size. 
Otherwise, we chose the sample size of individual experiments based on past experience on detecting differences with a given method and 
relevant literature (PMID: 26935695, PMID: 22722868, PMID: 29727683).

Data exclusions For the single-cell RNAseq data cells were filtered using previously described standards for quality control. For each experiment the count 
matrix was filtered as follows: for scRNA-seq samples of crypt cells genes with expression in less than 20 cells were removed and cells with a 
fraction of UMI counts from mitochondrially encoded genes of 10% or more were excluded, for scRNA-seq samples of villi cells genes with 
expression in less than 5 cells were removed and cells with a fraction of UMI counts from mitochondrially encoded genes of 25% or more 
were excluded. These criteria were based on the cell quality within this study. Otherwise, no data were excluded. Some mice that were on a 
HFHSD did not gain weight (=non-responder) and were excluded from the analysis.

Replication Experiments were performed at least in triplicates most with three or more biological replicates unless otherwise indicated. All attempts of 
replication were successful. Further details about the replication of data are stated in the figure legends. 

Randomization For dietary interventions mice were randomized into test groups based on body weight distribution. For microscopy, the fields of images were 
randomly selected.  For FACS experiments, at least 50,000 events were randomly sampled by the FACS machine. Most other results were 
derived from computation therefore randomization was not required.

Blinding The investigators were not blinded to group allocation during in vivo experiments as CD and HFHSD mice were clearly distinguishable by eye. 
Investigators were not blinded during data collection or analysis as most experiments/analyses were performed by automatic devices such as 
the FACS or qPCR cycler. For cell-based assays such as Western blot or qPCR blinding was not possible because the experiments were 
performed by a single researcher. 
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Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
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Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies
Antibodies used primary antibodies: 

chicken anti-GFP (1:600, Aves Labs, USA, GFP-1020);  
goat anti-ChgA (1:200, Santa Cruz, sc-1488);  
rabbit anti-Lyz1 (1:1000, DAKO, M0776);  
rabbit anti-Muc2 (1:1000, Santa Cruz, sc-7314);  
rat anti-BrdU (1:200, Abcam, ab6326);  
rabbit anti-5-HT (1:1000, Neuromics, RA20080);  
anti-rabbit Ngn3 (1:100, a gift from Helena Edlund lab);  
goat anti-villin (1:200, Santa Cruz, sc-7672);  
goat anti-ghrelin (1:200, Santa Cruz, sc-10368);  
rabbit anti-Ki67 (1:200, Abcam, ab15580);  
rabbit anti-E-cadherin (extracellular domain) (1:1000, a gift from Dietmar Vestweber) 
mouse anti-Srebp1 (1:1000, Novus Biologicals, NB600-582SS);  
rabbit anti-Acc (1:1000, Cell Signaling Technology, 3676);  
rabbit anti-Pparγ (1:1000, Cell Signaling Technology, 2435);  
goat anti-lamin (1:1000, Santa Cruz, sc-6217);  
mouse anti-α-tubulin (1:1000, Sigma-Aldrich ,T6199);  
rabbit anti-Fasn 1:1000, Cell Signaling Technology, 3180);  
rabbit anti-Scd1 (1:1000, Cell Signaling Technology, 2794);  
mouse anti-β-Catenin (1:1000, BD, 610154); 
rabbit anti-Gsk3β (1:5000, Cell Signaling Technology, 12456); 
rabbit anti-phospho Gsk3β (1:5000, Cell Signaling Technology, 5558) 
 
Secondary antibodies: 
donkey anti-chicken Alexa Fluor 488 (1:800, Dianova, 703-225-155);  
donkey anti-mouse Cy5 (1:800, Dianova, 715-175-151);  
donkey anti-goat Alexa Fluor 555 (1:800, Invitrogen, A21432);  
donkey anti-rabbit Alexa Fluor 555 (1:800, Invitrogen, A31572);  
donkey anti-rabbit Alexa Fluor 649 (1:800, Dianova, 711-605-152); 
goat anti-mouse HRP (1:15000, Dianova, 115-036-062);  
goat anti-rabbit HRP (1:15000, Dianova, 111-036-045); 
rabbit anti-goat HRP (1:15000, Dianova, 305-035-045) 

Validation primary antibodies: antibodies were validated by the company 
chicken anti-GFP (1:600, Aves Labs, USA, GFP-1020); https://www.aveslabs.com/products/green-fluorescent-protein-gfp-
antibody 
goat anti-ChgA (1:200, Santa Cruz, sc-1488); https://www.scbt.com/de/p/chr-a-antibody-c-20 
rabbit anti-Lyz1 (1:1000, DAKO, M0776); https://www.labome.com/product/Dako/A0099.html 
rabbit anti-Muc2 (1:1000, Santa Cruz, sc-7314); https://www.scbt.com/p/mucin-2-antibody-ccp58 
rat anti-BrdU (1:200, Abcam, ab6326); https://www.abcam.com/brdu-antibody-bu175-icr1-proliferation-marker-ab6326.html 
rabbit anti-5-HT (1:1000, Neuromics, RA20080); https://www.neuromics.com/RA20080 
anti-rabbit Ngn3 (1:100, a gift from Helena Edlund lab); as a control we used a secondary antibody only control, https://
pubmed.ncbi.nlm.nih.gov/31160421/ 
goat anti-villin (1:200, Santa Cruz, sc-7672); https://www.scbt.com/de/p/villin-antibody-c-19 
goat anti-ghrelin (1:200, Santa Cruz, sc-10368); https://www.scbt.com/p/ghrelin-antibody-c-18 
rabbit anti-Ki67 (1:200, Abcam, ab15580); https://www.abcam.com/ki67-antibody-ab15580.html 
rabbit anti-E-cadherin (extracellular domain) (1:1000, a gift from Dietmar Vestweber) 
mouse anti-Srebp1 (1:1000, Novus Biologicals, NB600-582SS); https://www.novusbio.com/products/srebp1-
antibody-2a4_nb600-582 
rabbit anti-Acc (1:1000, Cell Signaling Technology, 3676); https://www.cellsignal.de/products/primary-antibodies/acetyl-coa-
carboxylase-c83b10-rabbit-mab/3676 
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rabbit anti-Pparγ (1:1000, Cell Signaling Technology, 2435); https://www.cellsignal.de/products/primary-antibodies/pparg-
c26h12-rabbit-mab/2435 
goat anti-lamin (Santa Cruz, sc-6217); https://www.scbt.com/de/p/lamin-b-antibody-m-20 
mouse anti-α-tubulin (Sigma-Aldrich ,T6199); https://www.sigmaaldrich.com/catalog/product/sigma/t6199?lang=de&region=DE 
rabbit anti-Fasn 1:1000, Cell Signaling Technology, 3180); https://www.cellsignal.de/products/primary-antibodies/fatty-acid-
synthase-c20g5-rabbit-mab/3180 
rabbit anti-Scd1 (1:1000, Cell Signaling Technology, 2794); https://www.cellsignal.de/products/primary-antibodies/scd1-c12h5-
rabbit-mab/2794  
mouse anti-β-Catenin (BD, 610154); https://www.bdbiosciences.com/us/applications/research/stem-cell-research/cancer-
research/human/purified-mouse-anti--catenin-14beta-catenin/p/610154 
rabbit anti-Gsk3β (1:5000, Cell Signaling Technology, 12456); https://www.cellsignal.de/products/primary-antibodies/gsk-3b-
d5c5z-xp-rabbit-mab/12456 
rabbit anti-phospho Gsk3β (1:5000, Cell Signaling Technology, 5558); https://www.cellsignal.de/products/primary-antibodies/
phospho-gsk-3b-ser9-d85e12-xp-rabbit-mab/5558 
 
Secondary antibodies: 
donkey anti-chicken Alexa Fluor 488 (Dianova, 703-225-155); https://www.dianova.com/en/shop/703-175-155-donkey-igg-anti-
chicken-igy-hl-cy5-minx-bogogphshohumsrbrtsh/ 
donkey anti-mouse Cy5 (Dianova, 715-175-151); https://www.dianova.com/en/shop/715-175-151-donkey-igg-anti-mouse-igg-hl-
cy5-minx-bockgogphshohurbrtsh/ 
donkey anti-goat Alexa Fluor 555 (Invitrogen, A21432); https://www.thermofisher.com/antibody/product/Donkey-anti-Goat-IgG-
H-L-Cross-Adsorbed-Secondary-Antibody-Polyclonal/A-21432 
donkey anti-rabbit Alexa Fluor 555 (Invitrogen, A31572); https://www.thermofisher.com/antibody/product/Donkey-anti-Rabbit-
IgG-H-L-Highly-Cross-Adsorbed-Secondary-Antibody-Polyclonal/A-31572 
donkey anti-rabbit Alexa Fluor 649 (Dianova, 711-605-152); https://www.dianova.com/shop/711-605-152-esel-igg-anti-
kaninchen-igg-hl-alexa-fluor-647-minx-bockgogphshohumsrtsh/ 
goat anti-mouse HRP (1:15000, Dianova, 115-036-062); https://www.dianova.com/shop/115-036-062-ziege-fab2-anti-maus-igg-
hl-hrpo-minx-huboho/ 
goat anti-rabbit HRP (1:15000, Dianova, 111-036-045); https://www.dianova.com/shop/111-036-045-ziege-fab2-anti-kaninchen-
igg-hl-hrpo-minx-hu/ 
rabbit anti-goat HRP (1:15000, Dianova, 305-035-045); https://www.dianova.com/shop/305-035-045-kaninchen-igg-anti-ziege-
igg-hl-hrpo-minx-hu/ 

Animals and other organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals Homozygous Foxa2-Venus fusion (FVF) mice were generated as previously described and backcrossed to C57BL/6 background. 
Foxa2nEGFP-CreERT2 mice (CD1 background) were crossed with Gt(ROSA)26mTmG mice (mixed 129/SvJ, C57BL/6J background) 
to obtain heterozygous Foxa2nEGFP-CreERT2/+; Gt(ROSA)26 mTmG/+ animals and bred in our own facilities. Other mouse lines: 
Lgr5-EGFP-IRES-creERT232 (Lgr5-ki, C57BL/6J background), wild-type C57BL/6N (bred in our own facilities).  
Mice were housed in groups of two to four animals and maintained at 23 ± 1 ⁰C on a 12-hour dark/light cycle with ad libitum 
access to diet and water unless otherwise indicated. All experiments were performed using male animals 3 to 7 months of age.  
 
All experiments were performed using 3-7-month-old male mice.  
Mice were housed in groups of two to four animals and maintained at 23 ± 1 ⁰C and 45-65 % humidity on a 12-hour dark/light 
cycle with ad libitum access to diet and water unless otherwise indicated. 

Wild animals The study did not involve wild animals

Field-collected samples No field collected samples were used in this study.

Ethics oversight Animal experiments were carried out in compliance with the German Animal Protection Act and with the approved guidelines of 
the Society of Laboratory Animals (GV-SOLAS) and of the Federation of Laboratory Animal Science Associations (FELASA). This 
study was approved by the institutional Animal Welfare Officer (Helmholtz Center Munich) and by the Government of Upper 
Bavaria, Germany.  

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Methodology

Sample preparation Small intestines were removed and washed with cold PBS. Villi were scraped off with a glass slide. The remaining tissue was cut 
into 2-cm pieces, washed several times with cold PBS and incubated in 2 mM EDTA/PBS for 35 min at 4 °C on a tube roller. 
Subsequently, crypts were harvested by rigorous shaking and filtered through a 70-μm mesh to remove villous contaminations/
fragments. 
Isolated crypts were incubated with TrypLE (Life technologies, #12605) for 5 min on ice and then 5 min at 37 °C and treated with 
10 μg/ml DNase in crypt complete medium (DMEM/F-12 containing 10 % FCS) for 5 min at 37 °C. 
Single cell suspension was achieved by gentle repeated pipetting. Cells were washed twice with FACS buffer (2 % FCS, 2 mM 
EDTA in PBS) and pelleted at 300xg, 5 min, 4 °C. For flow cytometry, cells were collected in 1-2 ml FACS buffer supplemented 
with 10 μM Rock-inhibitor (Sigma-Aldrich, #Y0503) and passed through the 40 μm cell strainer caps of FACS tubes. 

Instrument Single cells were analyzed by FACS-Aria III (BD) with a 100 μm nozzle.

Software Data were analyzed with the FACS DIVA software v6.1.3.

Cell population abundance Abundance of intestinal cell populations (from live cells = 40-60%) are reported in this manuscript and source data (Fig. 4g, F, 
Extended  Data Fig. 9a). When possible purity of post-sort fractions were checked by briefly re-running a small amount of 
sample. Purity was usually 90-95%. 

Gating strategy Single cells were gated according to their FSC-A (front scatter area) and SSC-A (side scatter area). Singlets were gated dependent 
on the FSC-W (front scatter width) and FSC-H (front scatter height) and SSC-W and SSC-H and dead cells were excluded using the 
marker7AAD (eBioscience). To obtain FVF-enriched small intestinal crypt cell samples for single-cell RNA sequencing, 30,000 FVF
+ (FVFlow and FVFhi) cells were sorted followed by sorting 30,000 live crypt cells per sample.

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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Systematic single-cell analysis provides new
insights into heterogeneity and plasticity of the
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ABSTRACT

Background: Diabetes mellitus is characterized by loss or dysfunction of insulin-producing b-cells in the pancreas, resulting in failure of blood
glucose regulation and devastating secondary complications. Thus, b-cells are currently the prime target for cell-replacement and regenerative
therapy. Triggering endogenous repair is a promising strategy to restore b-cell mass and normoglycemia in diabetic patients. Potential strategies
include targeting specific b-cell subpopulations to increase proliferation or maturation. Alternatively, transdifferentiation of pancreatic islet cells
(e.g. a- or d-cells), extra-islet cells (acinar and ductal cells), hepatocytes, or intestinal cells into insulin-producing cells might improve glycemic
control. To this end, it is crucial to systematically characterize and unravel the transcriptional program of all pancreatic cell types at the molecular
level in homeostasis and disease. Furthermore, it is necessary to better determine the underlying mechanisms of b-cell maturation, maintenance,
and dysfunction in diabetes, to identify and molecularly profile endocrine subpopulations with regenerative potential, and to translate the findings
from mice to man. Recent approaches in single-cell biology started to illuminate heterogeneity and plasticity in the pancreas that might be
targeted for b-cell regeneration in diabetic patients.
Scope of review: This review discusses recent literature on single-cell analysis including single-cell RNA sequencing, single-cell mass
cytometry, and flow cytometry of pancreatic cell types in the context of mechanisms of endogenous b-cell regeneration. We discuss new findings
on the regulation of postnatal b-cell proliferation and maturation. We highlight how single-cell analysis recapitulates described principles of
functional b-cell heterogeneity in animal models and adds new knowledge on the extent of b-cell heterogeneity in humans as well as its role in
homeostasis and disease. Furthermore, we summarize the findings on cell subpopulations with regenerative potential that might enable the
formation of new b-cells in diseased state. Finally, we review new data on the transcriptional program and function of rare pancreatic cell types
and their implication in diabetes.
Major conclusion: Novel, single-cell technologies offer high molecular resolution of cellular heterogeneity within the pancreas and provide
information on processes and factors that govern b-cell homeostasis, proliferation, and maturation. Eventually, these technologies might lead to
the characterization of cells with regenerative potential and unravel disease-associated changes in gene expression to identify cellular and
molecular targets for therapy.

! 2017 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords b-Cell heterogeneity; Single-cell analysis; Diabetes; Regeneration; Endocrine cells; Transdifferentiation; Dedifferentiation; Matu-
ration; Subpopulations

1. INTRODUCTION

Diabetes mellitus is a complex and multifactorial disease characterized
by progressive loss or dysfunction of the insulin-producing b-cells in
the pancreas. This results in chronic hyperglycemia and systemic
metabolic complications and, in the long-term, causes multi-organ
damage including nephropathy, retinopathy, and enteropathy. Today,
over 382 million people worldwide have been diagnosed with diabetes
and the number is expected to rise to 592 million by 2035 [1]. Type 1
diabetes (T1D) is an autoimmune disorder caused by destruction of b-

cells through cytotoxic T-cells. Unlike in T1D, onset of the more
prevalent type 2 diabetes (T2D) is usually in adulthood and is often
consequence of genetic predisposition, obesity and lack of physical
exercise. T2D is triggered by insulin resistance of the peripheral tis-
sues, which is concomitant with b-cell mass expansion, b-cell
exhaustion, and gradual loss of functional b-cell mass through b-cell
dedifferentiation and/or b-cell death [2,3]. Thus, the common feature
of both pathologies is loss of functional b-cells. Despite its high
prevalence and increasing impact on global health, diabetes is still
incurable and our knowledge of the underlying pathomechanisms is far
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from complete. Current treatments succeed in reducing symptoms;
however, they fail to alleviate long-term complications and require
lifelong compliance from patients. Therefore, intensive efforts in the
field of diabetes research are put into the development of novel
therapeutic strategies to stop the progression of the disease and
restore functional b-cell mass.
Human islet transplantation from cadaveric donors has been suc-
cessfully established as a therapeutic treatment for a subset of patients
with “brittle” T1D that do not respond to standard conventional and
intensive insulin therapies and suffer from kidney failure [4,5]. How-
ever, donor shortage and risks associated with life-long immunosup-
pression demand the development of alternative therapies. Two main
strategies are currently extensively explored to replace lost and/or
dysfunctional b-cells: i) in vitro differentiation of b-cells from stem
cells and ii) endogenous b-cell regeneration. The former holds great
promise for cell-replacement therapy and tissue engineering. In the
past years, major advances have enabled the generation of mono-
hormonal and glucose-responsive b-like cells from human embry-
onic stem cells and patient-derived induced pluripotent stem cells [6e
8]. Importantly, these cells were able to secrete insulin and restored
normoglycemia in diabetic mice [9]. Still, prior to application in
humans, the differentiation efficiency and functionality of in vitro
generated b-like cells needs to be improved. In this regard, the field
would benefit greatly from a better understanding of the postnatal b-
cell maturation process and the identification of biomarkers that label
the different maturation stages and functional glucose-responsive b-
cells. In addition, their immune-protection as well as safety must be
guaranteed as not fully differentiated stem cells might have teratoma-
initiating potential.
Stimulating regeneration of insulin-producing cells from cells residing
within the adult pancreas or even in other metabolically active organs,

such as the liver or gut (not discussed in this review), is an appealing
approach that could bypass the aforementioned hurdles. The main
routes pursued to restore functional b-cell mass in situ include
boosting the replication of remaining b-cells, maturation of immature
(dedifferentiated) b-cell subpopulations, mobilization of putative pre-
cursors present in the adult pancreas and reprogramming of other cell
types into insulin-producing b-like cells (Figure 1) [10]. Important in
this respect is the existence of b-cell subpopulations that differ in their
glucose responsiveness, proliferative activity, maturation state, or
susceptibility to metabolic deregulation in animal models [11]. More-
over, adult exocrine and other endocrine cell types showed the ability
to reprogram and produce insulin under certain conditions [12]. Further
characterization of these candidate sources for the generation of new
insulin-producing cells as well as the identification of biomarkers and
therapeutic targets requires detailed dissection of the cellular het-
erogeneity within the pancreas and their underlying molecular
mechanisms. To this end, single-cell studies might be paradigm
changing. Single-cell technologies allow for simultaneously measuring
the expression of tens to thousands of genes (e.g. single-cell RNA
sequencing) or proteins (e.g. single-cell mass cytometry, flow
cytometry) in individual cells with high-throughput and precision.
Clustering of cells as per their expression profiles allows for unbiased
detection and characterization of cell types and states including rare or
unanticipated subpopulations that are masked in bulk analyses
(Figure 2). By pooling many cells with partially correlated measure-
ments, one can derive rich molecular profiles without prior knowledge
of defining criteria and screen for subtype specific marker genes even
if only a limited number of transcripts or proteins per cell are captured
[13,14]. In addition, single-cell measurements provide an accurate
temporal resolution of continuous processes, such as differentiation or
reprogramming, as cells of all present (transient and stable) stages are

Figure 1: Main routes to restore functional b-cell mass in situ. Schematic summarizing the possible ways of b-cell regeneration that are discussed in the text.
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Figure 2: Identification and characterization of heterogeneity by single-cell analysis. Single-cell approaches enable the identification and characterization of cellular
subtypes in a heterogeneous population and their implications in disease based on rich expression profiles acquired at single-cell resolution. Computational analyses translate the
high-dimensional data into low-dimensional cell maps and extract information on subtype composition and gene expression differences within and between subtypes in healthy
and diseased conditions as well as reconstruct cellular trajectories of continuous processes.
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captured simultaneously. The temporal order and lineage choices can
be reconstructed from single-cell snapshot data using computational
algorithms that infer a pseudotime and detect branching events [15e
17]. This provides information on the genes most involved in deter-
mining the identity of a cell and on the factors that are expressed
transiently. Finally, single-cell analyses have important implications in
medicine since they allow parallel identification of disease-associated
alterations in cellular composition as well as in gene expression of cell
subtypes. Differences shed light on how cell-to-cell variability could
lead to different cell function or fate of seemingly identical cells of a
(sub)population, and on how these subpopulations respond to external
cues or drugs, and therefore on etiology, pathomechanisms, and
treatment efficiency (Figure 2).
Here we provide an overview of single-cell analyses of pancreatic cells
and discuss how these new data add to our knowledge of pancreatic
cell heterogeneity and improve our understanding of possible endog-
enous b-cell regeneration routes.

2. DETERMINATION OF THE CELLULAR COMPOSITION OF THE
PANCREAS

The mature pancreas can be subdivided into the functionally distinct
endocrine and exocrine compartment. The exocrine tissue comprises
more than 95% of the pancreas mass and is composed of acinar and
ductal cells. The endocrine tissue is organized into cell clusters, the so-
called islets of Langerhans, that are dispersed within the exocrine
tissue. The islets of Langerhans are comprised of five distinct endo-
crine cell types: a-cells (secreting glucagon), b-cells (insulin), g/PP-
cells (pancreatic polypeptide), d-cells (somatostatin), and ε-cells
(ghrelin), together making up less than 5% of the pancreas mass.
Islet composition is determined during embryonic development, and
has been extensively discussed in excellent reviews [18,19]. Briefly, in
mice, the pancreas is first identified by the expression of the tran-
scription factor pancreatic and duodenal homeobox 1 (Pdx1) in the
foregut endoderm at embryonic day (E) 8.5. Pdx1 expression is fol-
lowed by the expression of several other transcription factors that are
required for pancreatic specification, including Pancreas specific
transcription factor 1 (Ptf1a), Forkhead box protein A 1/2 (Foxa1/2),
SRY box 9 (Sox9), Hepatocyte nuclear factor-1b (Hnf1b), Gata4/6,
Hairy and enhancer of split 1 (Hes1), and Nkx2.2 [18,19]. During the
initial phase of murine pancreatic development, which has been
referred to as primary transition, the Pdx1 multipotent pancreatic
progenitor cells (MPCs) have high proliferative capacity and primarily
give rise to a few glucagon-producing a-cells [20,21]. The secondary
transition, which encompasses the time between E12.5 and birth, is
characterized by expansion and branching morphogenesis of the
pancreatic epithelium and is closely linked to endocrine cell differen-
tiation. During these complex morphogenetic events, MPCs become
lineage restricted and adopt either tip or trunk identity. The trunk
progenitors are bi-potential and further differentiate into ductal or
endocrine precursor cells. The ductal versus endocrine fate decision is
thought to be controlled by graded Notch activity, with high Notch
signaling promoting ductal fate and localized inhibition of Notch
signaling, allowing transient Ngn3 expression and endocrine differ-
entiation [22]. Shortly after induction of Ngn3 expression, endocrine
committed cells start to delaminate from the ductal epithelium and
form nascent islets. Ngn3 activates the expression of several tran-
scription factors implicated in endocrine lineage maintenance and
specification including the pan-endocrine marker neuronal differenti-
ation 1 (Neurod1), the LIM homeobox protein islet 1 (Isl1), paired box 4
and 6 (Pax4 and Pax6), and aristaless-related homeobox (Arx).

Specification into a- and b-cell precursor relies on mutual repression
between opposing lineage determinants. The transcription factors
Pax4, Nkx2.2, and Nkx6.1 are direct transcriptional repressors of Arx,
which specifies a-cell fate and conversely, Arx represses Pax4,
Nkx6.1, and Pdx1, which specify b-cell fate [23]. The subsequent
maturation of insulin-positive cells into functional, glucose-responsive
b-cells is characterized by a switch from MafB to MafA expression in
mice [24e26]. Importantly, the transcription factors Pax6 and Nkx2.2
are not only crucial for b-cell lineage formation and function but they
also actively repress non-b-cell transcriptional programs, a require-
ment for maintenance of b-cell identity [27,28]. While the tran-
scription factors determining a- and b-cell fate are known, the
formation of the less abundant g/PP, d- and ε-cells is not well un-
derstood and their fate might be determined by combinatorial action
of different transcription factors.
Physiologically, a- and b-cells act in concert to regulate blood glucose
levels. b-cells release insulin in response to high blood glucose levels
to stimulate glucose uptake into peripheral tissues such as liver,
muscle, and fat tissue. In contrast, a-cells release glucagon in
response to low levels of glucose to stimulate glycogenolysis in the
liver and in order to prevent hypoglycemia during fasting or exercise
[29]. So far, the function of d-, g/PP-, and ε-cells remains largely
elusive due to their low abundance. Recently, it has been shown that
the peptide hormone urocortin3 which is co-released with insulin
potentiates somatostatin secretion from d-cells and possibly in this
way d-cells fine-tune insulin secretion [30]. Pancreatic polypeptide,
which is released by g/PP-cells, is believed to regulate pancreatic
exocrine and endocrine secretions [31e33].
Interestingly, differences in islet composition and architecture between
rodents and humans have been reported. Murine islets of Langerhans
are comprised of up to 60e80% of insulin-producing b-cells that are
clustered in the center of the islet and are surrounded by a mantle of
endocrine a-(15e20%), d-(< 10% of islet cells), and g/PP-cells
(< 1% of islet cells) [34]. Cell type composition and architecture of
human islets seem to be more variable and are still matter of debate
[35e37]. Yet, after birth, the majority is similarly organized as murine
islets and show the characteristic mantle-core feature [37]. The human
islet cell-type composition is on average w50% b-cells, w40% a-
cells, andw10% d-cells, up to a few percent g/PP cells, and very few
ε-cells [38e40]. The differences between rodents and humans in islet
cell-type abundance might indicate additional functions of a-cells and/
or increased functional dependencies of a- and b-cells in humans.

3. SINGLE-CELL ANALYSIS UNRAVELS THE TRANSCRIPTIONAL
PROGRAM OF ADULT PANCREATIC CELL TYPES AND IDENTIFIES
SPECIES-SPECIFIC DIFFERENCES

Recent technological advances in the field of single-cell ‘omics’ now
allow for easily measuring gene or protein expression in thousands of
cells. Importantly, pure cell populations can be derived during sub-
sequent data analyses by clustering of cells based on their high-
dimensional expression profiles, which is not possible through isola-
tion from a population using a few markers. The systematic tran-
scriptome analysis of adult human pancreatic cell types revealed that
the expression of most lineage-determining transcription factors is
conserved between human and mice (Figure 3). Strikingly, classifying
hormone expression accounted for 50% of the total cellular transcripts
in b-, g/PP-, and d-cells. Whereas in a- and ε-cells the expression of
GCG and GHRL, respectively, made up 20% of their transcriptomes
[41]. Single-cell analysis also revealed that 15% of all a- and b-cell
enriched genes show distinct species-dependent expression [42].
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Genes with robust expression in human, but not in mouse b-cells are
for example RBP4, DLK1, ADCYAP1, RGS16, SOX4, BMP5, TIMP2,
TSPAN1, MAFB, and TFF3. Genes with high expression in mouse but
not in human b-cells are UCN3, S100A1, ADH1C, FAM151A, COX6A2,
BACE2, TTYH2, SYTL4, SDF2L1, FRZB, and PRLR [42].
Besides differences in expression levels, some cell-type enriched
genes also showed notable species differences. As mentioned above
the transcription factors MafB and MafA regulate b-cell lineage for-
mation and function in rodents [26]. During mouse endocrine lineage
specification MafB expression becomes restricted to a-cells, whereas
MafA is expressed in b-cells [24e26]. In contrast, in humans, MAFB
expression has been detected in adult a-cells but also in b-cells and
its expression pattern has now been expanded to d-cells [41e44].
Interestingly, Li et al. found that half of the b-cells they studied
expressed MAFA and MAFB concomitantly, suggesting that MAFB is a
new marker describing b-cell heterogeneity in humans [44]. The Notch
pathway component delta like non-canonical Notch ligand 1 (DLK1),
which has been associated with T1D in genome-wide association
studies (GWAS), was found to be specifically expressed in human b-
cells, whereas it is highly expressed in postnatal, immature a- and b-
cells, and adult a-cells but not adult b-cells in mice [42,44e46].
Similarly, several groups confirmed previous findings by the Kaestner
group that the gene group-specific component (vitamin D binding
protein) (GC) is specifically expressed in a-cells in human tissue,
whereas it is co-expressed with insulin in mouse islets (Figure 3)
[44,47,48]. Vitamin D deficiency and common GC non-coding variants
have been associated with T1D, T2D, and an increased risk of
gestational diabetes mellitus [49,50]. These findings implicate a
contribution of dysfunctional a-cells to the pathogenesis of diabetes.
In-depth analysis of the genetic framework of b-cells might identify
new transcription factors that drive functional maturation of b-cells.
Indeed, several groups reported the expression of SIX2 and SIX3 in
human b-cells [41,45,48,51]. These two transcription factors have
recently been shown to elevate insulin content and insulin secretion in
juvenile, immature b-cells suggesting a crucial role of SIX2 and SIX3 in
b-cell maturation [52]. Importantly, Six2 and Six3 seem not to be
expressed in adult mouse b-cells. Altogether, these findings call for
caution when extrapolating findings from mice to humans and highlight
the importance of studying human pancreatic cell types as well as
indicate the requirement of cell-type specific mapping of genes.
So far, our understanding about the transcriptional program and
function of pancreatic d- and g/PP-cells is limited due to their low

abundance. Only recently, DiGruccio et al. reported that murine d-cells
express several receptors, which they partially have in common with
b-cells, such as glucagon-like peptide 1 receptor (Glp1r), the alpha 2
adrenergic receptor (Adra2a), and the glucagon receptor (Gcgr),
whereas the expression of somatostatin receptor (Sstr1) and ghrelin
receptor (Ghsr) seems to be restricted to d-cells [53]. Ghrelin has a
central role in energy and glucose metabolism and a well-known
insulinostatic action [54], which can now be explained by its direct
effect on somatostatin-releasing d-cells. Several single-cell RNA
sequencing studies confirmed the expression of GHSR in human d-
cells and additionally identified the leptin receptor (LEPR) as a d-cell
specific receptor [41,45,48,51]. Leptin is an adipose tissue-derived
hormone that plays an important role in the maintenance of body
weight and glucose homeostasis [55]. Until now, the peripheral target
cell of leptin action was controversial. Several studies in mice have
suggested a direct effect of leptin on b-cells. It has been shown that
leptin suppressed insulin release from insulinoma cells and pancreas-
specific leptin receptor knock-out mice exhibited improved glucose
tolerance, increased early-phase insulin secretion and increased b-cell
size [56,57]. However, leptin receptor deletion in insulin- or
proglucagon-expressing cells had only a minor impact on glucose
homeostasis [58]. Thus, the d-cell-specific expression of the leptin
receptor would explain the conflicting results obtained by a pancreas-
specific (including d-cells) versus b/a-cell-specific leptin-receptor
deletion. Interestingly, several diabetes risk genes such as PDX1,
HADH, and UCP2 are expressed by b- and d-cells, thus implicating the
d-cell type in islet dysfunction in rare and common forms of diabetes
[51]. Taken together, these new data strongly suggest an important
role of d-cells in maintaining b-cell function and systemic regulation of
appetite, food intake, and energy balance.
Little is known about the function of the rare g/PP-cells. Human g/PP-
cells have now been reported to express high levels of the transcription
factors MEIS2, ETV1, ID4, and the serotonergic transcription factor
FEV/PET1 besides TPH1, SERTM1, SPOCK1, ABCC9, and SLITRK6,
suggesting similarity of g/PP-cells with neuronal cells [41,44,45,51].
To summarize, recent single-cell studies reveal the transcriptional
program of rare islet cell-types and species-specific differences in
gene expression important for the interpretation of conditional knock-
out studies in mice and for consideration when designing new ther-
apies for diabetes (Figure 3).

4. APPROACHES OF ENDOGENOUS b-CELL REGENERATION

4.1. Targeting b-cell subpopulations
Endogenous regenerative therapy aims to stimulate subset(s) of cells
with the potential to compensate for the lost functional b-cell mass. A
tempting source in this regard is the remaining (dedifferentiated) b-
cells that survive disease for long periods. It has been reported that in
T1D patients a small amount of functional b-cells remain for many
years and escape immune attack [59e61]. Similarly, not all b-cells
undergo cell death in T2D patients. A fraction of cells regress to a more
immature state, creating a pool of possible precursor cells that can
potentially be re-differentiated [3,62,63]. In addition, in an early stage
of disease, there are still functional b-cells, which may be expanded by
inducing their proliferation. The molecular differences that cause cells
to adopt distinct fates and make them survive, die, or proliferate are
still elusive. Thus, to directly target specific b-cell subpopulations and
trigger their proliferation and/or functional maturation, it is crucial to
decipher b-cell heterogeneity and to identify the underlying molecular
mechanism driving it. It is long known that b-cells are a heterogeneous
population of cells that differ in morphology, glucose responsiveness,

Figure 3: Transcriptional program of human pancreatic endocrine cells revealed
by single-cell transcriptomics. Depicted genes are highly or exclusively expressed in
the given endocrine cell type. Genes highlighted in blue show species-specific differ-
ences in cell-type expression.
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insulin secretion, proliferative capacity and maturation state [11,64e
67]. Regardless of these extensive studies of phenotypic and func-
tional b-cell heterogeneity first described over 50 years ago, hetero-
geneity has only recently moved into the spotlight of regenerative
diabetes research [11,68,69]. Besides pathological dedifferentiation,
heterogeneity may be caused by differences in the microenvironment,
islet architecture, and distinct origins of b-cells. Markers that are
differentially expressed in b-cells in homeostasis include insulin
[67,70], the transcription factor Pdx1 [71], the membrane transporter
glucose transporter Glut2 [72], and signaling components such as
WNT antagonist DKK3 [73] among many others [11]. b-cell hetero-
geneity has been mostly studied in rodents. The detection of b-cell
heterogeneity within human pancreatic cell populations remains
currently a challenging task due to large donor-to-donor variability
[41,74], specific loss of b-cells during the experimental procedure
[41], and a requirement to analyze a large number of cells. None-
theless, recent single-cell studies confirm that murine and human b-
cells differ in their proliferative capacity, insulin secretion, and
response to diabetogenic cues as discussed below (Figure 4).

4.1.1. Triggering b-cell proliferation
Pancreatic islets possess the functional flexibility to adapt rapidly to
environmental changes by b-cell mass expansion and enhanced in-
sulin secretion. Exploiting natural proliferation cues to increase cell
number in disease, therefore, is evident. b-cell proliferation peaks
during the early postnatal period, in which b-cell mass is determined.
Qiu et al. showed that 25% of the b-cells are proliferative on postnatal
day (P) 3 in mice based on the expression of cell cycle-related genes.
However, from P9 onwards proliferation decreases rapidly and the
adult b-cell turnover is minimal (below 1% in mice) but stable
[46,74,75]. Understanding the molecular mechanisms that drive the
early postnatal b-cell proliferation boost and induce cell cycle arrest of
most b-cells thereafter might be helpful for therapeutic approaches.
Two recent single-cell RNA-sequencing studies aimed to reconstruct
the developmental trajectory of pancreatic b-cells to gain insight into
the regulation of postnatal proliferation and maturation. Zeng et al.
used the mIns1-H2B-mCherry reporter mouse line to isolate b-cells
whereas Qiu et al. made use of the Ins1-RFP and Gcg-Cre; Rosa-RFP
reporter mouse lines to isolate b-cells and a-cells, respectively
[46,76]. In both studies, the maturation trajectory was reconstructed
by ordering b-cells isolated from multiple postnatal time points based
on their transcriptional similarity. Qiu et al. reported 664 genes and
448 genes to be dynamically regulated during the b-cell maturation
and a-cell maturation processes, respectively. Interestingly, their re-
sults suggest that b-cells mature primarily through the upregulation of
genes. In contrast, a-cells seem to mature through downregulation of
genes expressed in immature a-cells [46]. Furthermore, pseudo-
temporal cell ordering revealed the signatures of immature, prolifer-
ative b-cells and associated expression changes of genes regulating
amino acid uptake and metabolism, mitochondrial respiration, and
reactive oxygen species (ROS) production with postnatal b-cell
development. Precisely, the results of the Sander group suggest that
amino acid deprivation due to downregulation of amino acid trans-
porter genes, as well as reduced ROS level and downregulation of
serum response factor (Srf) and its target genes during b-cell matu-
ration might contribute to the postnatal decline in b-cell proliferation
[76]. Other pathways that are regulated in pseudotime and implicated
in proliferation are MAPK and PDGF signaling [76]. In addition, the
transcription factor Foxm1 and several members of the pro-
proliferative E2F transcription factor family and their targets are
highly expressed in postnatal proliferative b-cells [46,76]. In that

respect, it is also worth mentioning that cell cycle exit/proliferation
seems to be differently regulated in immature and mature a-/b-cells
as the cell cycle inhibitors p57 and p18 are highly expressed in
immature and mature islet cells, respectively [46]. Thus, targeting the
ROS/SRF/MAPK/PDGF pathways and amino acid availability might
reactivate and stimulate proliferation in adult human b-cells.
As a boost of b-cell proliferation is observed under high metabolic
demand, such as pregnancy or obesity, it would be interesting to
investigate if pathways implicated in the regulation of early postnatal
b-cell proliferation are reactivated under these conditions [77]. How-
ever, increased b-cell proliferation upon metabolic demand shows that
at least a subset of adult b-cells maintains the ability to replicate.
Unlike tissues with rapid cell turnover, such as skin, blood, or gut, the
presence of stem cells in the pancreas is controversial [10]. Even
though neogenesis of ductal facultative stem cells residing outside the
islets may contribute to formation of new b-cells [78,79], lineage-
tracing studies indicate that self-replication of pre-existing b-cells is
the major source of new b-cells in vivo in homeostasis and upon injury
[80]. Others reported the existence of a small (< 1%) adult pancreatic
multipotent progenitor (PMP) population within both mouse and human
islets. The described PMP cells are insulin-positive and show high
proliferative capacity, can give rise to all endocrine cell types in vitro,
and may contribute to b-cell compensation under stress and hyper-
glycemia [72,81,82]. The presence of PMPs would have major impli-
cations for regenerative therapy; however, due to the very low cell
turnover in the islet the concept needs verification. Identification of
marker genes for the isolation of PMPs as well as stem cell assays to
test potency and the ability of self-renewal are warranted [10].
To efficiently stimulate b-cell replication, it is important to delineate
heterogeneities in the replicative potential of cells. The presence of
adult, proliferative human b-cells in homeostasis is supported by a
single-cell mass cytometry study, in which islets of 20 human donors
covering ages from birth to adulthood were profiled [74]. In accordance
with previous studies, cell percentage and proliferation of all major
endocrine cells was highest neonatally and declined after childhood
with some basal proliferation remaining in adults. Moreover, hierar-
chical clustering revealed three, distinct b-cell states. Proliferative
cells segregated into two of these subgroups. The cluster containing
most of the Ki67-positive b-cells also showed higher levels of the
proliferation marker Ki67 and an upregulation of signaling components
involved in b-cell proliferation (PDGFRA, pERK1/2, pSTAT3, and
pSTAT5) [83]. The surface markers CD44 and CD49F were identified
among the proteins highest expressed in proliferative b-cells, which
have been associated with pancreatic progenitor cells and pancreatic
cancer-initiating cells [84,85]. Strikingly, the number of proliferative
cells is decreased in T2D donors [74]. Nevertheless, treatment with the
drug harmine, which has been previously demonstrated to enhance
human b-cell proliferation [83,86,87], had similar effects on various
endocrine cells from T2D and healthy donors indicating that even in an
impaired metabolic state endocrine mass can be expanded.
So far, single-cell RNA sequencing captured proliferative b-cells only
from early postnatal stages [46,76]. This is possibly due to the very low
replication rate inherent to adult b-cells [74] and high sensitivity of
proliferative b-cells to flow cytometry, on which many single-cell
technologies rely [41]. In addition, most studies to date analyzed a
limited number of cells or lacked an in-depth analysis of b-cells, and,
therefore, rare cell types might have been missed. Still, several single-
cell RNA sequencing studies found indications for the presence of
proliferative b-cell subpopulations in adult islets. The Sandberg group
identified five clusters within the b-cell population, of which three
showed elevated expression of inhibition of differentiation (ID) genes
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[41]. ID transcription factors have been shown to be involved in the
regulation of cell proliferation and inhibition of differentiation in several
cell types [88]. Specifically, upregulation of IDs has also been asso-
ciated with cancerous pancreatic tissue, expansion of ductal pro-
genitors, and inhibition of endocrine cell differentiation [89,90].
Interestingly, Id1 and Id3 are also highly expressed in early postnatal
b-cells, in which they are implicated in the regulation of ROS, an
important driver of postnatal b-cell proliferation [76]. Further, two
groups independently detected a human b-cell subpopulation
expressing genes that function in the unfolded protein response (UPR),
also known as endoplasmic reticulum (ER) stress [45,48]. Recent work
has linked high insulin demand and b-cell proliferation to mild ER

stress. Sharma et al. suggest that b-cells sense insulin demand via the
UPR mechanism, which triggers proliferation [91]. Importantly, the set
of genes upregulated in this novel subtype overlap between the studies
(e.g. HERPUD1, DDIT3, TRIB3, PP1R15A, LURAP1L, ATF3), which in-
dicates their biological significance. In agreement, Zeng et al. observe
a downregulation of ER stress related genes (e.g. Atf4, C/EBP, Ddit3)
concomitant with downregulation of genes associated with prolifera-
tion during postnatal b-cell maturation in mice, further supporting a
role of mild ER stress in the control of the proliferative response [76].
Together, these studies hint at proliferative b-cell subpopulations
owing the potential to restore part of the b-cell mass and at underlying
pathways including UPR/ER stress pathway, SRF- and ROS-mediated

Figure 4: New heterogeneities in pancreatic cell types. Table summarizing the new concepts and markers of cellular heterogeneity in the pancreas that are discussed in the
text.
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signaling, as well as PDGF and JAK/STAT signaling, but, clearly, more
detailed knowledge is required to target b-cell self-replication for
therapeutic purposes.

4.1.2. Triggering b-cell maturation
The most stringent prerequisite to effectively restore metabolic ho-
meostasis is to achieve full functionality and maturity of the newly
generated b-cells. As part of naturally reversible events and aging, b-
cells are expected to undergo a spectrum of changes in adulthood
equivalent to varying differentiation states [92]. A mature b-cell
phenotype is generally associated with high levels of Insulin (Ins) and
expression of b-cell-specific glucose transporter 2 (Glut2) as well as of
the transcription factors MafA and Nkx6.1 among others. In contrast,
immature cells in mice are described by elevated expression of genes
involved in early b-cell development (MafB, Pax4, Pax6, and, in
extreme cases, Ngn3) and decreased insulin secretion, in brief a loss of
key maturation factors needed for optimal function [3,93]. The iden-
tification of markers and a detailed characterization of the different
stages would be of great benefit, since hyperglycemia in diabetes is
thought to cause a fraction of b-cells to move toward a more primitive
state, a process often termed dedifferentiation [3,92]. Recent work
suggests that even in T1D a subpopulation expressing immature
features persists long-term immune attack (for more detail see section
4.1.3) [61].
The presence of immature b-cells in adult islets has been reported in
mice and human. Szabat et al. detected two stable subpopulations of
PDX1 positive b-cells with distinct insulin levels [71]. 25% of human
and mouse b-cells were PDX1þ/Insulinlow and displayed an immature
expression profile together with an increased replication rate and
diminished insulin secretion. Moreover, a significant fraction of these
cells transition into a more mature state in culture. The recent findings
from our lab further confirm the presence of immature or pre-b-cells
and link active WNT/planar cell polarity (PCP) signaling to b-cell
maturation [69]. We showed that Flattop (Fltp), a downstream effector
and reporter of the WNT/PCP pathway is heterogeneously expressed
among pancreatic endocrine cells and subdivides b-cells in mice into
Fltp Venus reporter (FVR)-negative proliferative cells (20%) and FVR-
positive metabolically active cells (80%) [69,94]. Intriguingly, in-
depth analysis revealed that FVR-negative b-cells show characteris-
tics similar to the proposed PMPs (Insulinþ, Glut2low), which suggests
that proliferative potential varies among b-cells in the adult islet and
indicates that pre-b-cells might be enriched in the FVR-negative
population. Moreover, a genome-wide transcript profiling array of
FVR-positive and FVR-negative endocrine populations showed differ-
ential expression of WNT and MAPK signaling components, b-cell
maturation markers, genes associated with G-protein coupled receptor
(GPCR), hormones, proliferation markers, and glycolysis enzymes,
which suggests that b-cell subpopulations indeed can be selectively
targeted [69]. Interestingly, WNT and MAPK signaling components are
highly expressed in both immature, postnatal b-cells, and FVR-
negative endocrine cells [46,69]. However, Qui et al. did not detect
differences in the transcriptional profile of Fltp mRNA-positive and Fltp
mRNA-negative b-cells [46]. The reason is due to the transient
expression of the Fltp mRNA during WNT/PCP acquisition [[69,94] and
Böttcher et al. in preparation]. As already speculated by the authors,
the WNT/PCP pathway acts preferentially at the post-transcriptional
level to establish planar polarization, which is accompanied by the
acquisition of distinct physiological features. Therefore, while differ-
ences at the transcriptional level are minor, post-translational WNT/
PCP signaling is essential to trigger a mature b-cell phenotype. These
studies emphasize that the analysis of proteins and post-translational

modifications in single cells is warranted to reveal in-depth knowledge
of physiology and disease.
Together, these results demonstrate that b-cells pass through different
maturation states in adult islets. This implies that promotion of both
replication and maturation is required to obtain functional, insulin-
producing b-cells. The FVR-negative cells described above show a
combined proliferative and immature phenotype and eventually mature
into insulin-secreting cells, which is triggered by active WNT/PCP
signaling [69]. Similarly, a number of recent single-cell studies re-
ported on heterogeneities in expression of genes involved in insulin
regulation and b-cell development. Apart from differential expression
of ID genes (see above) the Sandberg group detected two clusters with
high levels of serum retinol-binding protein (RBP4) and GPR120 (also
known as FFAR4) [41]. The adipokine RBP4 promotes insulin resis-
tance and is increased in obese and T2D individuals [95], whereas
engagement of GPR120 induces insulin secretion [96]. Strikingly,
Baron et al. also identified a b-cell state with elevated expression of
RBP4 concomitant with the expression of marker genes of mature b-
cells [45]. Further, Muraro et al. described a b-cell subpopulation
expressing ER stress genes indicative of less mature cells [48].
Looking at the expression fold change in the published data of these
cells shows a slight decrease of RBP4, which is, however, not sig-
nificant. Interestingly, RBP4 expression is also downregulated in a b-
cell subpopulation resistant to the immune response associated with
T1D [61]. Together, this suggests a role of RBP4 also in homeostatic
regulation of insulin secretion, which is potentially impaired in diabetes
and contributes to dysfunction and disease. While RBP4 shows
different expression levels, GPR120 seems to be completely absent in
a fraction of cells [41]. Given its function in insulin release, GPR120 is
an interesting candidate marker for functional and mature b-cells. In
this context, it is important to note that cells might not clearly separate
into distinct maturation states due to the continuous nature of the
maturation process and the presence of transitioning cells. Indeed,
Baron et al. describe rather gradual changes in gene expression over
the whole b-cell population, instead of clear on/off states [45]. Taken
together, single-cell analysis identified new potential markers of
mature b-cells. However, to molecularly dissect b-cell heterogeneity
and to better understand and drive b-cell maturation we need more
information on regulatory elements such as transcription factors and
signaling molecules, which are low in expression but might have a
strong effect on cell fate and state (Figure 4).

4.1.3. b-Cell heterogeneity in the pathogenesis of diabetes
The available data clearly support the presence of b-cell heterogeneity
in adult islets; its role in the pathogenesis of diabetes mellitus, how-
ever, is not fully understood. Single-cell studies considerably extended
the list of genes with aberrant expression in b-cells of diabetic pa-
tients. Most of the recent single-cell studies, however, failed to detect
b-cell subpopulations and thus ignore the evidently present hetero-
geneity [42,51,63]. Distinct b-cell subpopulations might respond
differently to diabetic stressors. Likewise, not all cells are equally
susceptible to therapeutic interventions. In addition, metabolic stress
itself might contribute to heterogeneity, as novel dysfunctional b-cell
subtypes can arise or mature cells dedifferentiate to a more immature
state. Indeed, Baron et al. found indication of a disappearing b-cell
subtype under hyperglycemic conditions [45]. They detected down-
regulation of ER stress marker genes such as Herpud1 in b-cells in the
diabetic state that were associated to a b-cell subpopulation in healthy
pancreatic islets [45]. Accordingly, Dorell et al. describe two surface
markers, ST8SIA1 and CD9, that discriminate four b-cell sub-
populations in the human adult islets [68]. All four populations
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expressed common b-cell markers but displayed differences in insulin
secretion rates and in their gene expression profiles. Importantly, the
subtype distribution was altered in T2D islets highlighting the rele-
vance of the described b-cell heterogeneity and its implication in
disease. In line with these results, three distinct b-cell groups were
identified that shift in number in T2D or with age and BMI [74]. All three
studies could not clarify whether altered partitions of cells were a
cause or consequence of b-cell dysfunction. In addition, it remains
unclear whether these subtypes have a temporal relationship or are
independent lineages and whether distorted proportions result from
the selective loss of a b-cell subtype and/or from cellular transitions.
More detailed molecular profiles of these b-cell subgroups are
required to determine their biological significance, function, ontogeny,
and implication in disease. A challenge in this regard is the high donor-
to-donor variation that was detected by multiple single-cell studies
[41,45,74]. Conclusions on islet cell composition in homeostasis and
disease, therefore, should only be drawn if they are robust over
multiple donors.
Records of subpopulation-specific expression profiles also would help
to solve the debate on the contribution of partial dedifferentiation to the
reduction of functional b-cell mass in T2D. b-cell dedifferentiation is
characterized by diminished expression of b-cell specific transcription
factors (e.g. PDX1, NKX6.1, MAFA), reactivation of developmental
genes (e.g. Ngn3) and, surprisingly, pluripotency genes (e.g. Oct4,
Nanog, L-myc), as well as decreased insulin production [3,62,92,97]
and expression of disallowed genes that are silenced in healthy b-
cells including lactate dehydrogenase A (Ldha), the monocarboxylate
carrier (Mct1), as wells as glucose-6-phosphatase (G6pc), and hexo-
kinase I (Hk1) [98,99]. Recent studies demonstrated that acquiring and
maintaining b-cell identity and function also requires sustained
repression of other endocrine gene programs and, thus, give an
explanation on how adult b-cells can partially dedifferentiate or
become reprogrammed into other islet endocrine cells [27,28,100].
Indeed, Wang et al. found evidence of dedifferentiated cells in diabetic
islets when comparing their transcriptional profiles to cells of healthy
patients [63]. b-cells of adult T2D individuals exhibit transcriptional
patterns of juvenile endocrine cells indicating partial regression to an
immature state characterized by a less well-defined a- and b-cell
gene signature and expression of CDKN2B, BARD1, JUNB, and PRKD1.
Segerstolpe et al. reported significantly lower INS mRNA levels in T2D
b-cells, a feature of dedifferentiated b-cells [41]. However, the authors
of both studies did not comment on the expression of NGN3, FOXO1, or
other factors associated with b-cell dedifferentiation.
In a recent study, a novel murine b-cell subpopulation was described
that develops during progression of T1D in response to immune cell
activity and persists for a long time [61]. These cells resist immune
assault, exhibit increased proliferation rates, and acquire stem-like and
immature features while the expression of mature b-cell marker
genes, insulin content, and diabetes antigens is decreased. A similar,
less-differentiated b-cell subpopulation appeared when human islets
were co-cultured with allogeneic lymphoid cells. These changes in
gene expression likely account for the long-term survival of a few b-
cells in T1D patients [61]. Together, these studies indicate that a group
of b-cells adapt to metabolic and immune stressors in T2D and T1D,
respectively, by regression to an immature state. To what degree
dedifferentiation occurs in diabetes and whether b-cells revert to a
multipotent precursor or a novel, reversible dedifferentiated state will
have to be established [62,101]. Nevertheless, dedifferentiation clearly
contributes to the etiology of diabetes together with b-cell death and
creates a pool of cells that can possibly be triggered to redifferentiate

and reestablish islet function. Since b-cell dedifferentiation is asso-
ciated with and possibly caused by hyperglycemia, reconstitution of
normoglycemia might restore a normal mature b-cell phenotype [92].
In summary, b-cell subpopulations show varying responses to meta-
bolic stress; thus, heterogeneity needs to be considered to gain an
understanding of the pathomechanisms of diabetes and to identify
therapeutic targets (Figure 4).

4.2. Intra-islet cell transdifferentiation
Recent findings in mice have revealed unexpected plasticity and po-
tential of intra-islet (e.g. a-cell) and extra-islet (acinar and ductal) cells
to transdifferentiate and produce insulin. Transdifferentiation is defined
as a process whereby a differentiated cell is converted into another
type of cell either directly via a double hormone-positive intermediate
cell or through a dedifferentiated state. Examples for both forms exists
in the pancreas and are reviewed in Puri et al. [12].

4.2.1. a- to b-cell conversion
a-cells secrete the hormone glucagon, which induces glycogenolysis
to elevate blood glucose levels. Importantly, a-cells are more resistant
to metabolic stress than b-cells, and their number does not signifi-
cantly change in T1D and T2D patients [41,51,63,102]. Considering
the close developmental and physiological relationship between a- and
b-cells as well as the big overlap of their transcriptome, a-cell
transdifferentiation draws much attention as a source for b-cell
regeneration. Transdifferentiation of a-cells into b-cells has been
observed by several groups in different experimental settings
[47,103e109]. Single gene manipulations suffice to induce a-cell
conversion towards the b-cell fate, as first shown by Collombat et al.
through ectopic overexpression of Pax4 [103]. Interestingly, besides
forced expression of key transcription factors, b-cell depletion after
puberty drives the conversion of remaining a-cells albeit by a different
mechanism; nevertheless indicating a natural regeneration mechanism
that could be triggered in diabetic conditions [104]. The recent iden-
tification of urocortin3-negative, insulin-expressing b-cells (1e2% of
all b-cells) that are transcriptionally (lack expression of e.g. G6pc2,
Eroib, and Glut2) and functionally (do not sense glucose) immature
suggests a naturally occurring a- into b-cell conversion as part of islet
homeostasis [109]. Lineage-tracing studies revealed that these cells
represent an intermediate stage in both the transdifferentiation of a-
cells to mature b-cells as well as the inverse transition from b-cells to
functional a-cells. Interestingly, transdifferentiation takes place within
a specialized neogenic niche at the periphery of healthy islets, which
might exist in humans, at least at a younger age, as well [109]. Other
studies also reported on ‘intermediate’ cells expressing both a- and b-
cell markers in human islets [70]. The transcriptional profile of double
hormone-positive cells could give insights into the mechanisms un-
derlying a- to b-cell conversion and unravel driving factors. Indeed,
such rare double hormone-positive cells were captured by single-cell
RNA sequencing studies but not further commented on or excluded as
doublet cells [41,63].
The relative ease with which a-cells can be transdifferentiated into b-
cells may be partly explained by their plastic epigenomic state. a-cells
have hundreds of bivalent activating and repressing histone marks on
developmental genes, strikingly similar to the histone modification
map of human embryonic stem cells, indicating an undifferentiated
multipotent epigenomic state [105]. Indeed, inhibition of histone
methyltransferases resulted in the appearance of bi-hormonal, insulin-
, and glucagon-positive cells. Analysis of open chromatin in a- and b-
cells using the assay for transposase-accessible chromatin with high
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roughput sequencing (ATAC-Seq) confirmed a bivalent chromatin state
in a-cells [47]. In addition, a-cells have more open chromatin regions
compared to b-cells, of which many are associated with b-cell
signature genes. Interestingly, simultaneous inactivation of the a-cell
regulator Arx and DNA methyltransferase 1 (Dnmt1) is sufficient to
promote rapid conversion of a-cells into b-like cells capable of insulin
production and secretion [110], which substantiates that the conver-
sion process involves epigenetic changes in addition to modulation of
cell-type specific master regulators. Single-cell RNA sequencing and
functional evaluation revealed strikingly little difference between
converted and native b-cells but uncovered cells retaining a-cell
character suggesting that not all a-cells are equally susceptible to
reprogramming [110].
Two recently published studies report that stimulation of g-amino-
butyric acid (GABA) signaling can induce b-cell regeneration and
reverse severe diabetes in mice [106,107]. Ben-Othman et al. describe
that long-term administration of GABA induces a-cell mediated b-like
cell neogenesis in vivo [106]. Precisely, GABA triggers conversion of a-
cells to functional b-like cells through downregulation of Arx, the
transcriptional repressor of Pax4. This, in turn, stimulates a-cell
regeneration mechanisms involving the reactivation of Ngn3-controlled
endocrine developmental processes and increases proliferation of
duct-lining progenitor cells, which gives rise to new a-cells. The newly
generated a-cells are subsequently converted into b-cells upon pro-
longed GABA exposure. GABA treatment results in increased islet
number and size, and b-cell mass could be repeatedly replaced in
chemically induced diabetes. Most important, human islets responded
similarly to GABA, indicating that the findings in mice indeed might be
translatable to humans. In a complementary study, Li et al. found that
the antimalarial drug artemether exerts similar effects by binding to
gephyrin, a protein associated with the GABA receptor complex [107].
Together these studies suggest a therapeutic potential of GABA
pathways, but, clearly, further research is needed to confirm these
results and to clarify how GABA acts in diabetic human islets. Although,
a-cell mass and metabolism seem not to be strongly affected by
diabetes, gene expression is clearly changed. Up to 200 differentially
expressed genes between healthy and T2D islets were identified by
single-cell transcriptomics, of which approximately 35% overlap be-
tween different studies [41,42,51,63]. This suggests altered a-cell
states, which might influence GABA treatment efficiency. Thus,
whether adaptive neogenesis of a-cells induced by GABA is possible in
humans remains to be shown.
Besides a-cell replacement from exocrine tissue, a reserve a-cell pool
that converts into b-cells upon metabolic stress could also be estab-
lished by triggering a-cell proliferation. Strikingly, of all major endo-
crine cell types, a-cells show the highest basal proliferation rate as
well as the most robust mitotic response to the mitogen harmine
across healthy and T2D donors [74]. Concurrently with these findings,
single-cell transcriptomics identified and enabled transcriptional
profiling of rare proliferating a-cells [41,46,63]. The Kaestner group
identified a single proliferating a-cell out of 190 annotated a-cells,
which showed high expression of the proliferation marker Ki67, acti-
vation of cell cycle pathways and inhibition of cell cycle checkpoint
control genes [63] (Figure 4). In addition, both DYRK1A and GSK3b
were downregulated, which is consistent with their suggested role as
inhibitors of endocrine cell replication [86,111]. Common targets of
both proteins are the GLI transcription factors, which implicates
modulation of the Sonic Hedgehog (SHH) signaling pathway in repli-
cating a-cells [112e114]. Segerstolpe et al. also detected a small
population of proliferative a-cells with increased expression of

proliferation-associated genes and slightly reduced levels of several a-
cell specific markers [41]. This proliferating subtype was further
distinguished by 439 significantly differentially expressed genes.
Interestingly, when looking more closely at the list of the differential
gene expression analysis, we see that the transcriptional regulator of
the SHH pathway GLI2 is enriched, however not significantly. More-
over, the expression of Stathmin (STMN1), which is associated with
dividing acinar cells (see below) and progenitor cells in other organs, is
significantly increased in proliferative a-cells [115]. Taken together,
the high-dimensional single-cell profiles provide information on acti-
vated and repressed pathways in replicating cells and potential targets
to trigger a-cell proliferation.
The accumulating evidence supports the model that a-cells represent
a natural source of new b-cells. a- to b-cell transdifferentiation can be
induced by rather simple genetic and epigenetic manipulations or drug
treatment and to some extent occurs spontaneously in homeostasis
and upon b-cell depletion or in T1D. Together with the higher rate of
proliferation, the bivalent histone modifications at loci of developmental
genes and open-chromatin regions in b-cell genes, this makes a-cells
a tempting target for future clinical applications in T1D and T2D and
imply that a-cells might have an important function besides glucagon
secretion.

4.3. Extra-islet cell conversion

4.3.1. Acinar to b-cell conversion
Acinar cells are the major constituent of the adult pancreatic tissue and
responsible for the production and secretion of digestive enzymes.
Owing to their abundance and origin from common pancreatic pro-
genitor cells, acinar cells represent an appealing pool for b-cell
replacement. Several studies reported successful conversion of acinar
cells into endocrine cells in vivo and in vitro either via a pancreatic
progenitor state or by direct lineage switching [12]. Acinar-to-b-cell
reprogramming can be stimulated by ectopic expression of specific
transcription factors [116,117], administration of signaling and growth
factors [118e120] and co-transplantation with fetal pancreatic cells
[121e123]. The Melton group was the first to show successful in situ
formation of cells with b-cell like function and morphology in mice by
the expression of b-cell transcription factors (Pdx1, Ngn3, MafA) in
acinar cells [116]. Importantly, human acinar cells also can be induced
to transdifferentiate into insulin-producing b-cells [124]. The contri-
bution of acinar cells to b-cell regeneration in vivo, for example after
injury, remains unclear. Moreover, inconsistencies exist as to whether
acinar cells assume a b-cell state through transdifferentiation or
dedifferentiation to a facultative progenitor or both [125]. Genetic-
lineage tracing experiments using acinar specific promoters could
not yet clearly identify the origin of new b-cells after triggering cell
conversion [119,120]. To harness acinar cell reprogramming towards
b-cell production in diabetic patients, we need a better understanding
of the factors that control the lineage conversion process and clarify if
and to what extent it is a natural process in regeneration. To this end,
high-dimensional analyses at the single-cell level can give important
insights. Until now, the existence of possible heterogeneity in acinar
cells that might influence reprogramming efficiency has been mostly
neglected in conversion protocols. Indeed, distinct acinar subclusters
have been identified in single-cell studies [41,48]. In a very recent
study, Wollny et al. found a progenitor-like acinar subpopulation in
rodents with the capacity for long term self-renewal in homeostasis by
lineage-tracing and organoid-formation assays [115]. Single-cell RNA
sequencing of acinar cells and immunohistochemistry supported these
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results and revealed a small subpopulation of dividing cells charac-
terized by high expression of STMN1 (Figure 4). Stathmin plays an
important role in the regulation of the cytoskeleton by destabilizing
microtubules and has been identified as a marker for progenitor cells in
other organs [126]. A subset of the STMN1-positive cells also
expressed the transcription factor Sox9 that has been associated with
exocrine progenitor cells of the pancreas [127]. Strikingly, the number
of STMN1-positive acinar cells is increased upon injury, suggesting
transient acquisition of proliferative capacity by normally non-
proliferative cells. In line with these results, Segerstolpe et al. found
a small subset of acinar cells (w4%) expressing proliferation markers
[41]. They did not investigate these cells in detail, and it is not known
whether they represent the proliferating acinar cells described by
Wollny et al. [115]. A progenitor-like exocrine subtype could be a target
for endogenous b-cell regeneration, and it would be interesting to see
if the transcriptional profile of the proliferating acinar cells resembles a
cell state of the acinar-b-cell reprogramming. Other groups also re-
ported on acinar cell heterogeneity in single-cell transcriptomics data.
Muraro et al. described differential expression of a member of the
regenerating (Reg) protein family, REG3A, among acinar cells [48]. Reg
proteins, first discovered in pancreatic inflammation and islet regen-
eration, exert anti-inflammatory, anti-apoptotic, and mitogenic effects
in various physiological and disease contexts and are involved in dif-
ferentiation and proliferation of various cell types [128]. REG3A in
particular has been suggested to be involved in tumorigenesis of
pancreatic cells by regulation of key genes and pathways implicated in
cell growth [129]. Strikingly, REG3A-positive acinar cells formed cell
patches close to the islets and showed lower expression levels of the
acinar cell marker PRSS1 and key acinar genes encoding secretory
enzymes (CEL, CELA3A, CELA3B, AMY). The reduced expression of
functional acinar genes but increased level of proliferative signaling
might suggest a more immature cell state potentially harboring the
actively dividing acinar cells. More detailed analyses are required to
confirm the existence of these cell subtypes and fully characterize
them, to draw connections between them, and to investigate their
function and plasticity. Proliferative or progenitor-like exocrine cells
also may provide clues on regeneration mechanisms in endocrine cells
since they are derived from a common progenitor. Furthermore, recent
evidence indicates that acinar reprogramming efficiency is significantly
reduced upon pancreatic inflammation or hyperglycemia but improved
by inhibition of contact-mediated signaling [125,130e132]. This
highlights the importance of investigating extrinsic factors that
potentially hamper or enhance cell conversion in vivo. For example,
acinar cells have been demonstrated to produce different inflammatory
mediators as part of the first immune response to injury [133].
Consistently, Segerstolpe et al. detected a functionally distinct sub-
population that showed increased inflammatory markers in single-cell
data [41]. If and how they influence reprogramming is an open
question.
Taken together, acinar cells show plasticity in vivo and in vitro and
could serve as a pool for b-cell regeneration. Importantly, results
from rodents were translatable to human. However, the often con-
tradictory experimental outcomes suggest that heterogeneity,
contact-mediated lateral signals, the microenvironment, and physi-
ological conditions also influence reprogramming and need to be
understood to efficiently and reliably convert acinar into b-cells. Of
note, genetic reprogramming and loss of acinar cell identity are
critical early drivers of pancreatic ductal adenocarcinoma (PDA)
formation, one of the deadliest malignancies [134,135]. Therefore,
caution must be taken when manipulating acinar cell fate or trig-
gering acinar cell proliferation.

4.3.2. Duct cell conversion into b-cells
The pancreatic duct drains the exocrine fluid into the duodenum and
produces bicarbonate to regulate the luminal pH of acinar and duct cells
[136]. Strikingly, ductal cells might have an important function beyond
their physiological implication by providing a reserve pool of progenitor
cells with the potential to give rise to endocrine cells, a process known
as neogenesis. During the neonatal period in rodents, the b-cell pool
further expands by b-cell replication as well as by neogenesis from
ductal cells [79]. Neogenesis has also been reported to occur in certain
experimental conditions such as ectotopic expression of Pax4 in a-cells,
upon which duct-lining cells sense glucagon-shortage and reactivate
Ngn3 expression and associated developmental pathways to generate
a-cells that eventually transdifferentiate into b-cells [103,137]. Xu et al.
found that duct cells can give rise to new b-cells upon pancreatic duct
ligation [138]. Furthermore, cultured murine adult pancreatic duct-like
cells could be directly reprogrammed to insulin-producing b-like cells
by adenoviral delivery of Pdx1, Ngn3, and MafA [139].
Whether adult duct lining cells also contribute to homeostatic renewal
of b-cells is still under debate. Dor et al. concluded from their studies
that replication and not neogenesis is the mechanism of b-cell
expansion in adult mice [80]. In contrast, Seaberg et al. showed that
besides islet cells, adult duct cells contain a population of pancreatic
multipotent progenitors (PMP) that can give rise to all pancreatic
lineages as well as neural lineages [81]. In agreement, Grün et al.
identified two ductal cell clusters with a high multipotency score in the
adult human pancreas using their newly developed StemID algorithm
to detect potential stem cell populations within heterogeneous cell
populations [140]. The inferred pancreatic lineage tree implies that
distinct subtypes of ductal cells give rise to different endocrine sub-
types and acinar cells. Precisely, they found that the cell cluster
characterized by high CEACAM6 expression, is linked to a- and d-
cells, whereas a cell cluster highly expressing the ferritin subunits
FTH1 and FTL is linked to b-, g/PP- and acinar cells (Figure 4).
Moreover, the authors also observed ductal as well as b-cells that co-
express insulin and FTL, suggesting that ferritin-positive ductal cells
differentiate into mature b-cells and implying that neogenesis con-
tributes to homeostatic endocrine cell renewal. The ductal cell sub-
populations reported by Baron et al. that are characterized by the
expression of CFTR or TFF1, TFF2, and MUC1, most likely reflect their
localization within the duct and form the terminal duct or connect to
the acinus, respectively [45] (Figure 4). How these two duct cell
populations relate to ductal PMPs or to the ductal subpopulations
described by Grün et al. is not clear. Taken together, genetically
manipulated mice show that neogenesis can be induced upon injury.
Now, there is new evidence that ductal neogenesis not only occurs in
the neonatal period and to some extent in homeostasis and upon
injury in rodents but might indeed be part of homeostatic renewal of
endocrine cells in humans [78]. Further work is necessary to identify
the signals that mobilize ductal progenitors to provide a route to
replenish b-cells in situ. In rodents, ductal cells convert either into b-
or a-cells depending on the injury mode. To identify the signals and
transcriptional program that specifically drive ductal into b-cell con-
version, we need to study the behavior of ductal cells in different injury
models at the single-cell level. Notably, the presence of ductal pro-
genitor cell giving rise to b-cells could also explain part of the
observed b-cell heterogeneity

5. CONCLUSION

Here, we reviewed recent literature on single-cell analysis of
pancreatic cell types and discussed the findings with respect to
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endogenous b-cell regeneration routes. Single-cell genomics in the
human pancreas is still at an early stage. Nevertheless, it has already
provided new insights into the transcriptional program of pancreatic
cells including those of rare cell types such as d- and g/PP cells.
Expression of the leptin receptor and diabetes risk genes, such as
PDX1, HADH, and UCP2 in d-cells for instance strongly suggests an
important role of d-cells in the maintenance of glucose homeostasis
despite their low number and demands to study d-cells in more detail
[41,45,48,51].
One of the most promising strategies to restore b-cell mass is stim-
ulation of b-cell replication and/or maturation. Single-cell tran-
scriptomics data on postnatal, murine b-cells revealed the signature of
immature b-cells and implicate ROS, ER stress, SRF, MAPK, TGF-b,
WNT, and PDGF signaling in the regulation of postnatal b-cell prolif-
eration and maturation [46,76]. Strikingly, PDGF and MAPK signaling
as well as ER stress have also been associated with potentially pro-
liferative and regenerative adult human b-cell subpopulations
[45,48,74]. Thus, modulating these pathways could be a strategy for
reactivating and promoting the expansion and maturation of residual
b-cells in diabetic patients.
Reprogramming of intra-islet cells into b-cells is an alternative approach
considered for b-cell regeneration. New data implicate a contribution of
a- into b-cell conversion as well as ductal neogenesis to homeostatic b-
cell renewal in mice [109,140]. Since severe b-cell depletion is known to
trigger transdifferentiation of a-cells into b-cells in mice and a-cells are
the most proliferative cell-type among the endocrine cells, employing a-
cells might be a promising approach for b-cell regeneration [74,104].
Therefore, identifying the signals that drive a-cell proliferation and a-cell
into b-cell conversion in homeostasis and upon injury is crucial. Prolif-
erative adult a-cells have been captured by single-cell RNA sequencing
and SHH signaling has been identified as a candidate pathway regulating
a-cell proliferation [41,63,74].
Additionally, single-cell transcriptomics revealed species-specific dif-
ferences in gene expression important to consider when designing
new therapies for diabetes.
In conclusion, single-cell studies on pancreatic cells identified several
genes and pathways critical for driving proliferation and maturation of
b-cells and shed light on intra-endocrine cell heterogeneity, hint at
underlying molecular mechanisms, and describe potential regenerative
subpopulations and therapeutic targets.

6. FUTURE PERSPECTIVE

To understand the pathomechanisms of T1D and T2D and find po-
tential routes to restore b-cell mass - the basis for diagnosis and
therapy e we must determine the factors that shape b-cell identity,
drive differentiation, and maintain function and plasticity in the
pancreas. At the cellular level, these include the molecular phenotype
and response mechanisms to external stimuli that regulate function,
the spatial position and local environment, and the developmental
history and maturation state [141]. Current studies almost exclusively
have focused on descriptive analyses and statistical pattern identi-
fication, but they lack mechanistic insights. Single-cell analysis can
infer function through correlation but will not substitute thorough
functional validation by interventional analysis and perturbation ex-
periments. New CRISPR-based technologies for gene manipulation in
single-cells are promising approaches to obtain functional answers
and fill the gap between the molecular profile and actual phenotype
of a cell [142e145]. In addition, the transcriptome only hints at active
processes and pathways but needs to be connected to a cell’s
proteome and epigenome to make conclusive statements on its

functional state and reveal post-translational mechanisms that can
be targeted in therapy. Finally, and most importantly, the single-cell
information needs to be mapped back onto healthy and diseased
tissue as well as onto the temporal trajectory of differentiation. Im-
aging methods such as single-molecule RNA fluorescence in situ
hybridization (FISH) [146,147] and imaging mass-cytometry [148]
enable spatially resolved quantification of single mRNA molecules
and proteins and connect a cell’s phenotype to neighboring cells and
the environment. Time-resolved data elucidate the genes controlling
every single step in differentiation and maturation, important infor-
mation lacking in end-point analyses. Single-cell methods and
lineage-tracing in combination with organ on a chip approaches or
in vitro differentiation approaches [7,149] will allow to follow the
temporal progression of a cell, either live or in pseudotime recon-
structed by machine learning algorithms.
Insights from pioneering single-cell studies of pancreatic cells have
illustrated the potential of single-cell data. Now, we need to go beyond
collecting data and simple descriptive, correlative analyses and
integrate cellular profiles over multiple omics layers in space and
time. This will pave the way to understand the mechanisms under-
lying diabetes and to design strategies for in vivo regeneration of
functional islets.
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