
PREPRINT (UNDER REVIEW) 1

Fully Automatic Neural Network Reduction for
Formal Verification

Tobias Ladner and Matthias Althoff

Abstract—Formal verification of neural networks is essential
before their deployment in safety-critical applications. However,
existing methods for formally verifying neural networks are not
yet scalable enough to handle practical problems involving a large
number of neurons. We address this challenge by introducing a
fully automatic and sound reduction of neural networks using
reachability analysis. The soundness ensures that the verification
of the reduced network entails the verification of the original
network. To the best of our knowledge, we present the first
sound reduction approach that is applicable to neural networks
with any type of element-wise activation function, such as ReLU,
sigmoid, and tanh. The network reduction is computed on the
fly while simultaneously verifying the original network and its
specifications. All parameters are automatically tuned to minimize
the network size without compromising verifiability. We further
show the applicability of our approach to convolutional neural
networks by explicitly exploiting similar neighboring pixels. Our
evaluation shows that our approach can reduce the number of
neurons to a fraction of the original number of neurons with
minor outer-approximation and thus reduce the verification time
to a similar degree.

Index Terms—Formal verification, neural networks, set-based
computation, neural network reduction, sound abstraction.

I. INTRODUCTION

NEURAL networks achieve impressive results in a variety
of fields, including natural language processing [1], com-

puter vision [2], and medical imaging [3]. In recent years, neural
networks have been deployed in safety-critical environments,
such as human-robot interaction [4] and autonomous driving [5].
As real-life applications are inherently exposed to noise, such
as measurement inaccuracies and external disturbances, the
deployment of neural networks in safety-critical environments
is limited due to their sensitivity to adversarial attacks [6]:
Even small perturbations of the input to a neural network,
which are often barely noticeable to the human eye, can lead
to unexpected outputs, e.g., a different predicted classification
of an image or a controller returning an unsafe action. Thus, the
formal verification of neural networks has gained importance
in recent years [7]–[9], where approaches rigorously prove that
the output of neural networks meets given specifications.

A. Related Work

Early approaches [10], [11] focus on complete algorithms
to verify neural networks with ReLU activations, where either
the specifications are formally proven or a counterexample is
extracted. However, it has been shown that verifying a neural

Tobias Ladner and Matthias Althoff are with the TUM School of Computa-
tion, Information, and Technology, Technical Univerity of Munich, Germany
(email: tobias.ladner@tum.de; althoff@tum.de).

network with n ReLU activations is NP-hard [11]. Thus, com-
puting its exact output set for a given input set requires solving
up to 2n linear subproblems. Recent developments are made
towards incomplete algorithms, where the neural networks
are abstracted to enclose the exact behavior of the network.
These approaches often formulate the formal verification of
neural networks as an optimization problem [11]–[14] or use
reachability analysis [15]–[23].

Optimization-based verifiers reason about neural networks
by introducing relaxed, linear constraints for the activation
functions and solving these relaxed problems using linear pro-
gramming, satisfiability modulo theories (SMT) solvers [11]–
[14], or symbolic interval propagation [24]–[26]. Branch-and-
bound strategies [27] can be beneficial by splitting the problem
at the neuron level [28], [29], e.g., by splitting ReLU neurons
into their linear parts. In general, algorithms that split the
problem lead to an exponential time complexity [11], so that
current state-of-the-art tools [8] use advanced branch-and-bound
strategies [30]–[32] to verify neural networks.

Verifiers using reachability analysis propagate sets through
the neural network and verify given specifications using the
computed outer-approximative output set. Simple represen-
tatives of this approach use pure interval arithmetic [33] or
convex set representations such as zonotopes [15], [16]. As
with optimization-based verifiers, splitting the set can improve
the results [34], [35]. Non-convex set representations are used
to tightly enclose the output due to the inherent nonlinearity
of neural networks, including Taylor models [17]–[19], [36],
star sets [20], [21], [37], and polynomial zonotopes [22],
[23], [38]. However, the scalability to state-of-the-art networks
remains a major challenge for optimization-based approaches
and approaches based on reachability analysis [8].

One promising research direction for improving the scal-
ability is sound neural network reduction [39]–[42], taking
advantage of the typical over-parametrization of neural net-
works [43]. Sound neural network reduction reduces the number
of neurons and provides formal bounds for the maximum error
due to this reduction to reason about the original network.
This research direction is closely related to neural network
compression [44], [45], where the main goal is to reduce
memory usage and computation time, e.g., for deployment in
embedded systems [45]. Examples of compression techniques
are quantization [46] and pruning [47]. However, the lack of
formal error bounds prevents applying these techniques to the
formal verification of neural networks.

To the best of our knowledge, there exist only a few network
reduction approaches with formal error bounds: An early
approach categorizes neurons based on analytic properties
and merges neurons of the same category afterward [39].

PREPRINT (UNDER REVIEW) 2

This work is extended using interval neural networks [40],
[42], [48], [49], where the weights of a neural network
are replaced with intervals during the sound reduction. It is
worth mentioning that the reduced network can be re-enlarged
using residual reasoning [50]. For ReLU networks, it is also
possible to merge neurons that are entirely in the nonpositive
or nonnegative region, respectively, without inducing outer-
approximations [51]. Network reductions can also be achieved
by clustering similar neurons for inputs of a given dataset [41];
however, 80− 90% of the neurons remain when formal error
bounds are demanded. Most approaches only consider ReLU
neurons, while [42], [49] also consider odd and monotone
activation functions as tanh. We present a sound network
reduction algorithm with formal error bounds for general
element-wise activation functions.

B. Contributions

Our proposed approach reduces a neural network by merging
similar neurons for given specifications. For example, consider
a noisy image as an input set to a convolutional neural network.
Neurons representing neighboring pixels often have similar
values and thus can be merged during the verification process,
which helps to reduce the size of the neural network. Such
properties cannot be inferred when analyzing a neural network
without considering a specific uncertain input. Our approach
is orthogonal to many verification techniques, thus, they can
be used as an underlying verification engin. We demonstrate
our approach using reachability analysis with zonotopes [16],
[52]. The extension to other set-based verification tools is
straightforward, including Taylor models [18], [19], [36], star
sets [20], [21], [37], and polynomial zonotopes [22], [23],
[38]. The resulting reduced network can also be exported and
verified using optimization-based verification tools. Our main
contributions are summarized as follows:

• We present a novel, fully automatic approach to soundly
reduce large neural networks by merging similar neurons
for given specifications.

• The reduced network is constructed on the fly, and the
verification of the reduced network entails the verification
of the original network.

• Our approach is applicable to all neural networks with
element-wise activation functions, including ReLU, sig-
moid, and tanh.

• To the best of our knowledge, we present the first
neural network reduction approach that explicitly considers
convolutional neural networks.

• Although our approach requires computing a new reduced
network for different specifications, we show applications
where the reduced network can be successfully reused.

• We will publish our approach with the next release of
CORA [53].

The remainder of this work is structured as follows: Sec. II
introduces the notation and background for this work. Then, we
present our novel, fully automatic, and sound network reduction
approach in Sec. III. In Sec. IV, we discuss applications of
our approach, including the reduction of convolutional neural
networks and how the reduced network can be reused for

changed specifications. Finally, we evaluate our approach in
Sec. V and draw conclusions in Sec. VI.

II. PRELIMINARIES

A. Notation

We denote scalars and vectors by lower-case letters, matrices
by upper-case letters, and sets by calligraphic letters. The i-th
element of a vector v ∈ Rn is written as v(i), and the element
in the i-th row and j-th column of a matrix A ∈ Rn×m is
written as A(i,j). The i-th row and j-th column are written
as A(i,·) and A(·,j), respectively. The concatenation of two
matrices A and B is denoted by [A B]. For n ∈ N, we denote
the identity matrix by In, and we use the notation [n] =
{1, . . . , n}. Let C ⊆ [n], then A(C,·) extracts all rows i ∈ C in
lexicographic order. We denote the cardinality of a discrete
set C by |C|. Let S ⊂ Rn be a continuous set, then S(i) is its
projection on the i-th dimension. The set-based evaluation of a
function f : Rn → Rm is written as f(S) = {f(x) | x ∈ S}.
Given two sets S1,S2, then the Minkowski sum is denoted by
S1⊕S2 = {s1+s2 | s1 ∈ S1, s2 ∈ S2}. The Cartesian product
is written as S1 × S2 = {

[
sT1 sT2

]T | s1 ∈ S1, s2 ∈ S2}. An
interval with bounds l, u ∈ Rn, where l ≤ u holds element-
wise, is denoted by [l, u]. We write R+ to refer to all positive
real numbers.

B. Neural Networks

We first introduce feed-forward neural networks [54,
Sec. 5.1] in their standard form and discuss the sound reduction
of convolutional neural networks [54, Sec. 5.5.6] in Sec. IV-A.

Definition 1 (Layers of Neural Networks [54, Sec. 5.1]). Let
nk−1, nk denote the number of input and output neurons
of a layer k. Further, let Wk ∈ Rnk×nk−1 , bk ∈ Rnk , and
σk(·) be the respective continuous activation function (e.g.,
sigmoid and ReLU), which is applied element-wise. Then, the
operation Lk : Rnk−1 → Rnk for a given input hk−1 ∈ Rnk−1

is computed by

Lk(hk−1) =

{
Wkhk−1 + bk if layer k is linear,
σk(hk−1) otherwise.

Definition 2 (Neural Networks [54, Sec. 5.1]). Given κ
alternating linear and nonlinear layers, n0 input and nκ output
neurons, let x ∈ Rn0 be the input and y ∈ Rnκ be the output
of a neural network, we can formulate a neural network Φ
with y = Φ(x) as follows:

h0 = x,

hk = Lk(hk−1), k ∈ [κ],

y = hκ.

The last linear and last nonlinear layers are called output
layers, all other layers are called hidden layers. If all hidden
layers output the same number of neurons, we write 6×200 to
refer to a network with 6 linear and 6 nonlinear hidden layers
with 200 neurons each.

PREPRINT (UNDER REVIEW) 3

C. Set-Based Computing

We use sets for the formal verification of neural networks.
Let X ⊂ Rn0 be the input set of a neural network Φ. Then,
the exact output set Y∗ = Φ(X) is computed by

H∗
0 = X ,
H∗

k = Lk(H∗
k−1), k ∈ [κ],

Y∗ = H∗
κ.

(1)

Our reduction approach works for any set representation
that can be enclosed by an interval and that are closed under
the Minkowski addition of intervals. We use zonotopes as an
example to demonstrate our approach:

Definition 3 (Zonotope [52, Def. 1]). Given a center vector
c ∈ Rn and a generator matrix G ∈ Rn×q, a zonotope is
defined as

Z = ⟨c,G⟩Z =

c+

q∑
j=1

βjG(·,j)

∣∣∣∣∣∣ βj ∈ [−1, 1]

 .

For zonotopes, the required operations are computed as
follows:

Proposition 1 (Interval Enclosure [55, Prop. 2.2]). Given
a zonotope Z = ⟨c,G⟩Z , the enclosing interval [l, u] =
interval (Z) ⊇ Z is

l = c−∆g,
u = c+∆g,

with ∆g =

q∑
j=1

|G(·,j)|.

Proposition 2 (Interval Addition [55, Eq. 2.1]). Given a
zonotope Z = ⟨c,G⟩Z ⊂ Rn and an interval I = [l, u] ⊂ Rn,

Z ⊕ I = ⟨c+ cI , [G diag (u− cI)]⟩Z ,

where cI = l+u
2 and diag (·) returns a diagonal matrix.

D. Neural Network Verification

We briefly introduce the main steps to propagate a zonotope
through a neural network. Since the propagation in (1) cannot
be computed exactly in general, we enclose the output of each
layer:

Proposition 3 (Image Enclosure [16, Sec. 3]). Let Hk−1 ⊇
H∗

k−1 be an input set to layer k, then

Hk = enclose (Lk,Hk−1) ⊇ H∗
k

computes an outer-approximative output set.

While zonotopes can be propagated through linear layers
exactly [52], the propagation through nonlinear layers has to
be outer-approximative to ensure soundness. The main steps to
enclose the output of nonlinear layers are illustrated in Fig. 1:
For each nonlinear layer, we iterate over all neurons i in the
current layer by projecting the input set Hk−1 onto its i-th
dimension (Step 1) and determining the input bounds using
Prop. 1 (Step 2). We then find an approximating linear function
within the input bounds via regression [54, Sec. 3] (Step 3). A
key challenge is bounding the approximation error (Step 4):
For piecewise linear activation functions, e.g. ReLU, we can

O
ut

pu
t

Step 1 Step 2 Step 3

Input

O
ut

pu
t

Step 4

Input

Step 5

Input

Step 6

Fig. 1. Main steps of enclosing a nonlinear layer. Step 1: Neuron-wise sigmoid
function. Step 2: Input bounds. Step 3: Approximating linear function. Step 4:
Approximation error. Step 5: Apply linear transformation on input. Step 6:
Enclose using approximation error.

compute the approximation error exactly using the extreme
points of the difference between the approximation polynomial
and each linear segment. For other activation functions, e.g.
sigmoid, the approximation error can be determined by an
analytic solution for specific polynomials, or sampling evenly
within the input bounds and bounding the approximation error
between two points via global bounds of the derivative [22,
Sec. 3]. Finally, we apply the linear transformation on Hk−1(i)

to approximate the nonlinear layer (Step 5) and enclose the
activation function using the approximation error (Step 6;
Prop. 2). Thus, by propagating a given input set X through
all layers of a neural network and enclosing their output
sets using Prop. 3, we can enclose the exact output set by
Y = Hκ ⊇ Y∗ = Φ(X).

E. Problem Statement

Given an input set X ⊂ Rn0 , a neural network Φ, and an
unsafe set S ⊂ Rnκ , we want to automatically construct a
sound reduced network Φ̂, for which the verification entails
the verification of the original network for the given X and S:

Φ̂(X) ∩ S = ∅ =⇒ Φ(X) ∩ S = ∅. (2)

III. AUTOMATIC NEURAL NETWORK REDUCTION

Our sound neural network reduction is based on the obser-
vation that many neurons in a layer k behave similarly for a
specific input x ∈ Rn0 , e.g., many sigmoid neurons are fully
saturated and thus output a value near 1 as shown in Fig. 2.
Neuron saturation [56] and neural activation patterns [57] have
been observed in the literature, however, to the best of our
knowledge, they have not been exploited for the verification
of neural networks. Our main idea is to merge these saturated
neurons and provide the corresponding error bounds for an
uncertain input X ⊂ Rn0 (Fig. 3). Please note that our approach
is not restricted to the saturation values of an activation
function.

PREPRINT (UNDER REVIEW) 4

0 0.2 0.4 0.6 0.8 1
0

50

100

150

Output of the activation layer k

N
um

be
r

of
ne

ur
on

s

Layer 2
Layer 4
Layer 6
Layer 8
Layer 10
Layer 12

Fig. 2. Sigmoid activations of a 6× 200 neural network with an image input
from the MNIST digit dataset. For a specific input x, many neurons output
values close to the saturation values 0 and 1.

A. Neuron Merging

Subsequently, we explain how similar neurons can help to
construct a reduced network Φ̂, where the verification of Φ̂
entails the verification of the original network Φ. We gather
the neurons with similar values using merge buckets (Fig. 3):

Definition 4 (Merge Buckets). Given output bounds Ik ⊇ H∗
k

of a nonlinear layer k ∈ [κ] with nk neurons, an output y ∈ R,
and a tolerance δ ∈ R+, then a merge bucket is defined as

Bk,y,δ =
{
i ∈ [nk]

∣∣ Ik(i) ⊆ [y − δ, y + δ]
}
.

Conceptually, we replace all neurons in a merge bucket
Bk,y,δ by a single neuron w′ with constant output y and adjust
the weight matrices of the linear layers k − 1 and k + 1 such
that the reduced network Φ̂ approximates the behavior of the
original network Φ. Finally, we add an approximation error to
the output to obtain a sound outer-approximation (Fig. 3).

Proposition 4 (Neuron Merging). Given a nonlinear hidden
layer k ∈ [κ] of a network Φ, output bounds Ik ⊇ H∗

k, a
merge bucket B, and the indices of the remaining neurons
B = [nk]\B, we can construct a sound reduced network Φ̂,
where we remove the merged neurons by adjusting the linear
layers k−1, k+1, and b̂k+1 includes the approximation error:

Ŵk−1 = Wk−1(B,·), b̂k−1 = bk−1(B),

Ŵk+1 = Wk+1(·,B), b̂k+1 = bk+1 ⊕Wk+1(·,B)Ik(B)︸ ︷︷ ︸
approximation error

.

We denote the layer operations of the reduced network Φ̂ with
L̂k. The construction is sound.

Proof. Soundness. We show that the output Ĥk+1 of layer
k + 1 of the reduced network Φ̂ is an outer-approximation of
the exact set H∗

k+1:

H∗
k+1 =

(1)
Lk+1

(
Lk

(
Lk−1(H∗

k−2)
))

=
(Def. 1)

Lk+1

(
Lk

(
Wk−1(H∗

k−2) + bk−1

))
.

Bk,y,δ
Original Network

y →
Reduced Network

Fig. 3. Neural network reduction example using a single merge bucket Bk,y,δ :
All neurons within Bk,y,δ get replaced by a single neuron with output y (in
blue). An approximation error is added to the subsequent neurons.

Without loss of generality, we relabel the neurons such that
B := [|B|] and partition the neurons of layer k accordingly:

H∗
k+1 = Lk+1

(
Lk

(
(Wk−1(B,·)H∗

k−2 + bk−1(B))

× (Wk−1(B,·)H∗
k−2 + bk−1(B))

))
=

(Def. 1)
Lk+1

(
Lk

(
H∗

k−1(B)

)
× L̂k

(
L̂k−1(H∗

k−2)
))

.

We then enclose all merged neurons by the given interval
bounds:

H∗
k+1 ⊆

(Def. 4)
Lk+1

(
Ik(B) × L̂k

(
L̂k−1(H∗

k−2)
))

= H′
k+1,

and propagate them forward to the next nonlinear layer k + 1.
This operation implicitly propagates the new constant neuron
forward to the bias of the layer k + 1 as well without
inducing additional outer-approximations. Thus, using the
identity W (Ĩ1 × Ĩ2) = W(·,B)Ĩ1 ⊕W(·,B)Ĩ2, we obtain:

H′
k+1 =

(Def. 1)
Wk+1

(
Ik(B) × L̂k

(
L̂k−1(H∗

k−2)
))

+ bk+1

=
(
Wk+1(·,B)Ik(B) ⊕Wk+1(·,B)L̂k

(
L̂k−1(H∗

k−2)
))

+ bk+1.

Finally, rearranging the terms and enclosing the output of all
reduced layers using Prop. 3 obtains:

H′
k+1 = Wk+1(·,B)L̂k

(
L̂k−1(H∗

k−2)
)

⊕ (bk+1 +Wk+1(·,B)Ik(B))

= L̂k+1

(
L̂k

(
L̂k−1(H∗

k−2)
)) (Prop. 3)

⊆ Ĥk+1,

which shows that H∗
k+1 ⊆ H′

k+1 ⊆ Ĥk+1.

PREPRINT (UNDER REVIEW) 5

B. Initialization of Merge Buckets

By iteratively applying Prop. 4, our approach can be naturally
extended to multiple disjoint merge buckets:

Bk,δ = {Bk,y1,δ, Bk,y2,δ, . . .} . (3)

The merging with multiple disjoint merge buckets can be
done in parallel as the required adaptations of the adjacent
linear layers do not interfere with each other. The overall
approximation error is then given by the Minkowski sum of
the individual approximation errors (Prop. 4):⊕

B∈B
Wk+1(·,B)Ik(B) = Wk+1(·,

⋃
B∈B B)Ik(⋃B∈B B). (4)

We define two different methods to initialize merge buckets.
a) Static buckets: The merge buckets are determined by

the asymptotic values of the respective activation function σk

of a nonlinear layer k:

Bk,δ =

 {Bk,0,δ, Bk,1,δ} if σk(x) = sigmoid(x),
{Bk,−1,δ, Bk,1,δ} if σk(x) = tanh(x),
{Bk,0,δ} if σk(x) = ReLU(x).

(5)

For ReLU layers, setting δ = 0 and using static merge
buckets results in no approximation error similar to the
approach in [51], as only neurons with entirely negative input
for the given input set X are removed.

b) Dynamic buckets: The merge buckets are dynamically
initialized using the center of the bounds Ik = [lk, uk] ⊂ Rnk

of each neuron:

Bk,δ =
{
Bk,c(i),δ

∣∣ c = lk+uk

2 , i ∈ [nk]
}
, (6)

where we ensure that the buckets are disjoint and are only used
if they contain multiple neurons. Please note that the buckets
could also be created using clustering algorithms similar to
the approach in [41]; however, we choose the center of each
neuron directly to obtain a linear computational overhead.
The computational overhead of clustering algorithms might be
negligible for other underlying verification engines than the
zonotope approach considered in this work.

C. Automatic Determination of Bucket Tolerances

The bucket tolerance δ ∈ R+ influences how many neurons
are merged, where a larger value results in more aggressive
neuron merging and thus a larger outer-approximation. How-
ever, determining a good value for δ is tedious as it is not
immediately clear how much the network is reduced for any
given value for δ. Thus, we automatically determine δ given
the desired remaining number of neurons in Alg. 1 using a
binary search algorithm. We denote the ratio of remaining
neurons compared to the original network with the reduction
rate ρ ∈ [0, 1]. To verify given specifications, we initially
choose a very small ρ and iteratively increase it if the reduction
is too outer-approximative. This realizes us to verify many
specifications using a heavily reduced network (Sec. V), and
thus to a similar degree the verification time is reduced. Once
ρ = 1 is reached, the original network is used and no reduction
is applied.

Algorithm 1 Automatic Determination of Bucket Tolerance
Require: Bounds Ik, reduction rate ρ

1: δmin ← 0, δmax ← 0.01
2: do ▷ Find upper bound for bucket tolerance
3: δmax ← 10 ∗ δmax

4: Initialize merge buckets Bk,δmax ▷ Sec. III-B
5: n̂k ← nk −

∑
B∈Bk,δmax

|B| ▷ Remaining neurons
6: while n̂k/nk > ρ
7: do ▷ Binary search
8: δ ← (δmin + δmax)/2
9: Initialize merge buckets Bk,δ ▷ Sec. III-B

10: n̂k ← nk −
∑

B∈Bk,δ
|B| ▷ Remaining neurons

11: if n̂k < ρnk then
12: δmax ← δ ▷ Too many neurons merged
13: else
14: δmin ← δ ▷ Too few neurons merged
15: end if
16: while n̂k/nk ̸≈ ρ
17: return Bk,δ

D. On-the-fly Neural Network Reduction

We require output bounds Ik of the next nonlinear layer k
to merge neurons with similar values using Prop. 4. However,
computing them requires the construction of high-dimensional
zonotopes via the linear layer k − 1 and the propagation of
the zonotopes through the nonlinear layer k, where we have
to compute the image enclosure for all neurons (Prop. 3) –
which is what should be avoided. Thus, we deploy a one-step
look-ahead algorithm (Alg. 2) using interval arithmetic [58] to
avoid these expensive computations and reduce the network on
the fly. As the look-ahead is just a single step, the computed
bounds are tight and do not contribute to the wrapping effect.

We summarize Alg. 2 subsequently: Instead of propagating
the zonotope itself forward, we just propagate interval bounds
of Hk−2 to the next nonlinear layer k (line 4-5). Although
intervals are not closed under the linear map, the output
bounds of the linear layer k − 1 are tight and the propagation

Algorithm 2 On-the-fly Neural Network Reduction
Require: Input X , neural network layers Lk, k ∈ [κ],

reduction rate ρ
1: H0 ← X , L̂1 ← L1

2: for k = 2, 4, . . . , κ do
3: if k < κ then ▷ 1) Look ahead
4: Ik−2 ← interval (Hk−2) ▷ Prop. 1
5: Ik ← Lk(L̂k−1(Ik−2))
6: Determine merge buckets Bk,δ ▷ Sec. III-C
7: L̂k−1, L̂k, L̂k+1 ← Merge neurons ▷ Prop. 4
8: end if
9: ▷ 2) Verify reduced network

10: Hk−1 ← enclose
(
L̂k−1,Hk−2

)
▷ Prop. 3

11: Hk ← enclose
(
L̂k,Hk−1

)
12: end for
13: return Y ← Hκ

PREPRINT (UNDER REVIEW) 6

through the nonlinear layer k does not induce additional outer-
approximations. This realizes a tight computation of the output
bounds Ik with negligible computational overhead. After Ik
is obtained, the merge buckets are determined (line 6) and the
network is reduced by merging the respective neurons (line 7).
Finally, we propagate the zonotope Hk−2 through the reduced
layers. Thus, we never construct a high-dimensional zonotope
during the verification. Note that the number of input and
output neurons remains unchanged.

Theorem 1 (Sound Network Reduction). Given an input set X ,
a neural network Φ, and a reduction rate ρ, Alg. 2 constructs
a reduced network Φ̂ρ satisfying the problem statement in
Sec. II-E.

Proof. The algorithm is sound as each step is outer-
approximative.

IV. APPLICATIONS

In this section, we discuss applications of our novel neural
network reduction approach and evaluate them in Sec. V.

A. Reduction of Convolutional Neural Networks

Convolutional neural networks are obtaining state-of-the-
art results for image classification tasks [2]. However, neural
networks for image classification are typically very large and
thus particularly hard to verify. We show in this section that
our novel neural network reduction approach can be naturally
extended to convolutional networks. Let us start by introducing
the main layer within a convolutional network:

Definition 5 (Convolutional Layer [54, Sec. 5.5.6]). Given an
input I ∈ RcI×hI×wI and a kernel K ∈ RcO×cI×hK×wK , a
convolutional layer computes the output O ∈ RcO×hO×wO for
k ∈ [cO], i ∈ [hO], j ∈ [wO] as follows:

O(k,i,j) =

cI∑
l=1

hK∑
m=1

wK∑
n=1

K(k,l,m,n)I(l,i+m,j+n),

where hO = hI − (hK − 1), wO = wI − (wK − 1) and cI , cO
are the number of input and output channels, respectively.

Convolutional layers can be viewed as linear layers as defined
in Def. 1 with shared weights [54, Sec. 5.5.6]. Thus, the same
operation as in Def. 5 can be computed by flattening the input
image I into a vector:

I⃗ =
[
I1 . . . IcI

]T
,

with Il =
[
I(l,1,·) . . . I(l,hI ,·)

]
, l ∈ [cI],

(7)

and correctly populating each row of the sparse weight matrix
WK ∈ R(cO·hO·wO)×(cI ·hI ·wI) with the kernel K:

WK =

K(1,1,1,1) K(1,1,1,2) . . . 0

0 K(1,1,1,1)

. . . 0
...

. . .
...

0 · · · · · · K(cO,cI ,hK ,wK)

 . (8)

An analogous conversion can be done for other typical layers
within a convolutional network, such as subsampling and
average pooling layers [54, Sec. 5.5.6].

One important property of convolutional networks is the
preservation of neighborhood: As the same kernel is applied to
the entire input, pixels of the output have similar values if the
respective pixels in the input have similar values. Neighboring
pixels having similar values are typical in the field of image
classification because many images contain large areas or
objects with a similar color. For example, the sky has similar
shades of blue, and traffic signs typically have only one
background color and one foreground color. It is thus important
to use dynamic merge buckets (Sec. III-B) as these colors might
not be at the saturation points of the activation function. To the
best of our knowledge, our approach is the first to explicitly
exploit this property of convolutional networks for sound neural
network reduction.

Intuitively, an uncertain image is compressed into superpixels
with formal error bounds. Let us demonstrate this by an
example: CIFAR-10 images require 32× 32× 3 = 3072 input
neurons to the network. However, many of these pixels have
very similar values (Fig. 4). Thus, using our approach with
dynamic merge buckets, we can compress an image as follows:

Corollary 1 (Sound Compression). Given an uncertain image
X ⊂ RcI×hI×wI

+ and a reduction rate ρ ∈ [0, 1], we can
construct a neural network Φ̂ρ that compresses this image
with formal error bounds as follows: Let K ∈ R3×3×1×1 be
a kernel of a convolutional layer, where

K(k,l,1,1) =

{
1 for k = l,
0 otherwise, k, l ∈ [3], (9)

and Φ be a neural network with two convolutional layers with
kernel K and one ReLU activation. The reduced network Φ̂ρ,
obtained by applying Thm. 1 using dynamic merge buckets,
X , and ρ, compresses the input X with sound error bounds
according to ρ.

Proof. The original network Φ computes the identity by
construction. The image is compressed in the hidden layer
of Φ̂ρ (Thm. 1). The computed bounds ensure X ⊆ Φ̂ρ(X).

In the truck example in Fig. 4, for a perturbation radius
ϵ = 0.01 and a reduction rate ρ = 0, all 3072 neurons of the
hidden layer of the compression network Φ̂ρ are dynamically
merged using 21 merge buckets. Thus, the image is compressed
into a 21-dimensional space in the hidden layer of Φ̂ρ and then
re-enlarged to 3072 neurons in the output layer with added
approximation error. Please note that usually, the image is
not re-enlarged and the compressed image is passed to the
next layer, where we again merge similar neurons using our
approach – we just do this here for illustration purposes (Fig. 4):
Due to the three color channels, the original truck image has
983 unique colors, which get compressed into 178 unique
colors with formal error bounds. Similarly, the original horse
image has 891 unique colors, which get compressed into 142
unique colors, again using 21 dynamic merge buckets.

In larger convolutional networks, a similar reduction happens
in each hidden layer; however, these are usually not as easy
to grasp visually due to the increased number of channels
in hidden layers. Note that we can prepend the layers of the

PREPRINT (UNDER REVIEW) 7

y2 →

y1 →

Original Compressed

Fig. 4. Visualization of CIFAR-10 images: Original images (left) and
corresponding compressed images (right), where we show all neurons within the
same merge bucket Bk,yi,δ ∈ B with value yi without added approximation
error. Verifying the compressed image with formal error bounds drastically
reduces the number of neurons of hidden layers.

compression network defined in Cor. 1 to any network as a
preprocessing step to reduce the input dimension.

The required steps for this preprocessing are provided in
Alg. 3: We first construct the compression network as in Cor. 1.
As we only compute the layers of the reduced network in
line 2, we only require the input set represented as an interval
Xint. Thus, we can construct a new low-dimensional input H−2

represented by the used set representation according to the
remaining neurons. The output set is computed in line 5 by
propagating the set through all remaining layers and reducing
them on the fly (Alg. 2).

Algorithm 3 Sound Compression Preprocessing
Require: Input Xint, neural network Φorg, reduction rate ρ

1: L−2, L−1, L0 ← Construct Φpre ▷ Cor. 1
2: L̂−2, L̂−1, L̂0 ← Reduce Φpre using Xint, ρ ▷ Thm. 1
3: H−2 ← ⟨0, []⟩Z ⊕ L̂−2(Xint) ▷ Prop. 2
4: Φ′

org(·)← Φorg(L̂0(L̂−1(·)))) ▷ Prepend layers
5: Y ← Execute Alg. 2 using H−2,Φ

′
org, ρ ▷ Thm. 1

6: return Y

Input sets are often given as an interval [7], and thus, we
are not required to initialize the high-dimensional input set
using a more complex set representation, i.e., a zonotope in
our case. We only use the more complex set representation
in the low-dimensional space and initialize it in line 3 with
H−2. For zonotopes, this results in fewer generators as we
create a new generator for each dimension in the respective
interval (Prop. 2). Due to the on-the-fly reduction, the more
complex set representation is kept in a low-dimensional space
as by the time it arrives at a given layer, this layer is already
reduced (Alg. 2). This becomes increasingly beneficial with
the complexity of the set representation used to verify the
network. Note that Alg. 3 works on any neural network, but
is especially beneficial for convolutional networks because
neighboring pixels often have similar values.

0 1 2 3 4 5

0

1

2

Time

A
lti

tu
de

Goal set
Reachable set
Simulations

Fig. 5. Quadrotor example [9, Fig. 15]: As the reachable set stays within a
given goal set, a reduced network can be reused as long as the reachable set
stays within the goal set.

B. Reusing Reduced Networks

In general, our approach requires the computation of a new
reduced neural network for different input sets. In this section,
we highlight several applications where the reduced networks
can be reused nevertheless:

1) Branch-and-bound: Current state-of-the-art tools, e.g.,
all top-ranked tools of the last VNN competition [8], verify
a neural network by applying different kinds of branch-
and-bound algorithms in the verification. Branch-and-bound
algorithms [27] partition the verification problem into multiple
simpler subproblems, solve them individually, and aggregate
the results to reason about the overall problem. For example,
splitting ReLU neurons into their linear parts [30] makes each
subproblem simpler. This approach was later extended to other
nonlinear functions [32].

Our novel reduction approach is orthogonal to these branch-
and-bound algorithms and can be combined with them. Splitting
a set usually requires more sophisticated set representations
than zonotopes, as the splitted sets can, in general, no longer be
represented by a zonotope. We can reuse the reduced network
on all subsets of the input set since the reduced network does
not depend on using a specific set representation:

Corollary 2 (Reusing Reduced Network on Subsets). Given
a neural network Φ, an input set X , and a reduction rate ρ,
then a reduced network Φ̂ρ according to Thm. 1 can be reused
for all X ′ ⊆ X .

Proof. The proof follows from the construction of Φ̂ρ.

2) Closed-loop verification: In closed-loop scenarios, a
neural network is used as a controller in a dynamic system
which is updated every ∆t. While branch-and-bound strategies
work well in open-loop verification, other techniques are more
common in closed-loop scenarios [9]. The issue with branch-
and-bound strategies is that each subset has to be propagated
according to a differential equation until the next network eval-
uation, where each subset might again get splitted. Therefore,
many techniques use more sophisticated set representation [18],
[21], [22] and improve the abstraction by enclosing nonlinear
functions with higher-order polynomials [23].

PREPRINT (UNDER REVIEW) 8

One frequent goal in closed-loop verification is to show
the stability of a given dynamic system over a specified time
horizon. For example, the QUAD benchmark in the last ARCH
competition [9] requires showing the stability of a neural-
network-controlled quadrotor at a given altitude (Fig. 5). We
can infer from the simulations that the state of the system
barely changes over the last second. Thus, we can slightly
enlarge the current reachable set at t = 4s and use it to reduce
the size of the network. This reduced network can then be
reused in subsequent evaluations if the reachable set stays
within the set used to reduce the network controller (Cor. 2).

3) Export of reduced network: As the reduced network
can be reused as described above, we provide an interface to
export a reduced network for later usage, e.g., to verify the
reduced network using another verification tool. Please note
that a reduced network is of the form given in Def. 2, with the
exception that the bias of a linear layer is an interval (Prop. 4).
As biases can be seen as additional inputs to the network,
most verifiers can verify networks of this form, including
optimization-based verifiers.

V. EVALUATION

We evaluate our novel neural network reduction approach
using several neural network variants and benchmarks from the
VNN competition [7]. For all image datasets, we sample 100
correctly classified images from the test set and average the
results. The perturbation radius ϵ ∈ R+ is always stated with
respect to the normalized images X ⊂ [0, 1]n0 . All following
figures show the mean remaining input neurons per nonlinear
layer k ∈ [κ] as well as the number of input and output neurons
of the network at 1 and κ+ 1, respectively. We do not show
the number of input neurons of linear layers, as a preceding
nonlinear layer does not change the number of neurons. The
number of neurons of the original network is shown in the
same color with reduced opacity. Additionally, we show error
bars indicating one standard deviation from the mean reduction
per layer. If not otherwise stated, feed-forward neural networks
are reduced using static merge buckets and convolutional neural
networks using dynamic merge buckets (Sec. III-B).

We implemented our approach in MATLAB and use
CORA [22], [53] to verify the neural networks. All com-
putations were performed on an Intel® Core™ Gen. 11 i7-
11800H CPU @2.30GHz with 64GB memory. We first show
that our underlying assumption (Fig. 2) also holds in practice by
choosing a fixed bucket tolerance δ, followed by automatically
determining δ to obtain the desired network reduction ρ, where
ρ is automatically increased if the image could not be verified.

A. Feed-Forward Neural Networks

1) MNISTFC Benchmark: In our first experiment, we used
networks taken from the MNISTFC benchmark [7]. The
benchmark uses images from the MNIST handwritten digit
dataset. The images have a perturbation radius ϵ = 0.01, and we
use a bucket tolerance δ = 0.01 for our evaluation. In Fig. 6, we
show the reduction results on three neural networks with 6×256,
4× 256, and 2× 256 neurons. The reduced network retains,
on average, only a small fraction of the neurons, ranging from

1 2 4 6 8 10 12 14
0

200

400

600

800

Number of input neurons of layer k

R
em

ai
ni

ng
ne

ur
on

s 6× 256 ReLU
4× 256 ReLU
2× 256 ReLU

Fig. 6. MNISTFC benchmark: Networks with large reduction with static
merge buckets. The error bars show one standard deviation from the mean
reduction.

1 2 4 6 8 10 12 14
0

200

400

600

800

Number of input neurons of layer k

R
em

ai
ni

ng
ne

ur
on

s 6× 500 ReLU
6× 200 ReLU
6× 100 ReLU

Fig. 7. ERAN network variants: We obtain similar formal reduction results
compared to informal results in [41, Fig. 2 & Tab. 2].

5% to 15% depending on the size of the network. where more
neurons remain in earlier layers and only a few in later layers.
While our network reduction induces outer-approximation, we
were still able to verify all images using the reduced networks.

2) ERAN Benchmark: The authors of [41] apply their
reduction approach on multiple network variants of the ERAN
benchmark1. They first show that large informal network
reductions using a small perturbation radius ϵ = 0.001 are
possible. However, once formal guarantees are demanded,
80 − 90% of the neurons remain [41, Fig. 2 & Tab. 2]. We
obtained very similar reduction rates compared to their results;
however, our approach provides sound error bounds: Fig. 7
shows the reduction results using a bucket tolerance δ = 0.005
for the ReLU network of the ERAN benchmark and the two
network variants with 6× 100, 6× 200, and 6× 500 neurons,
respectively. As we are able to reduce neural networks with any
element-wise activation function using our approach, we can
additionally reduce the network with sigmoid activations from
the ERAN benchmark. Fig. 8 shows that we obtain similar
reduction results using a bucket tolerance δ = 0.005 for both
networks.

Our approach automatically reduces neural networks by
determining the bucket tolerance δ. However, how much the
network is reduced for any given value for δ is not immediately
clear. To illustrate how different values for δ affect the reduction
results, Tab. I specifies the remaining number of neurons and
the verification rate for varying perturbation radii ϵ and bucket

1 Variants taken from the ERAN website: https://github.com/eth-sri/eran

https://github.com/eth-sri/eran

PREPRINT (UNDER REVIEW) 9

1 2 4 6 8 10 12 14
0

200

400

600

800

Number of input neurons of layer k

R
em

ai
ni

ng
ne

ur
on

s 6× 200 Sigmoid
6× 200 ReLU

Fig. 8. ERAN benchmark: Networks with large reduction with static merge
buckets for different activation functions.

TABLE I
ERAN BENCHMARK: CHANGE OF VERIFICATION RATE (VR) AND

REDUCTION RATE ρ WITH VARYING PERTURBATION RADIUS ϵ AND BUCKET
TOLERANCE δ.

Network 6× 200 Sigmoid ReLU
ϵ δ ρ VR [%] ρ VR [%]

0.0050 0.1000 0.2392 69.00 0.5496 76.00
0.0050 0.0100 0.3700 99.00 0.5500 100.00
0.0050 0.0050 0.4242 100.00 0.5573 100.00
0.0050 0.0010 0.5146 100.00 0.5607 100.00
0.0050 0.0001 0.6380 100.00 0.5618 100.00

0.0020 0.1000 0.1640 94.00 0.3602 95.00
0.0020 0.0100 0.3028 99.00 0.3556 100.00
0.0020 0.0050 0.3455 100.00 0.3549 100.00
0.0020 0.0010 0.4705 100.00 0.3479 100.00
0.0020 0.0001 0.6004 100.00 0.3494 100.00

0.0010 0.1000 0.1318 98.00 0.3143 92.00
0.0010 0.0100 0.2782 100.00 0.2846 100.00
0.0010 0.0050 0.3336 100.00 0.2931 100.00
0.0010 0.0010 0.4507 100.00 0.2909 100.00
00.0010 0.0001 0.5882 100.00 0.2882 100.00

tolerances δ. The verification rate is the ratio of images that
were verifiable with the reduced network compared to the
original network. We iteratively reduce the bucket tolerance δ
to measure how different merging strategies affect the reduction
and verification: For the sigmoid network, a more aggressive
merging strategy (large δ) results in fewer remaining neurons
but yields a smaller total number of verified images. However,
even for δ = 0.1 over half of the images can be verified, and
already more than 95% for the next smaller bucket tolerance.
This tradeoff is less apparent for the ReLU network as most
of the merged neurons in a nonlinear layer have an entirely
negative input, thus, are merged regardless of the chosen bucket
tolerance. The remaining variation is due to the neurons that
have an input near 0. Note that a too aggressive merging strategy
might lead to fewer remaining neurons in earlier layers, which
can result in larger outer-approximation in later layers and thus
fewer neurons being merged in total.

With these results, we apply our fully automatic approach
from Sec. III-C to automatically determine the bucket tolerance
δ to verify a given image. As the construction of the reduced
network is computationally cheap, the verification time is
reduced to a similar degree as shown in Fig. 9: We vary the
desired reduction rate ρ and show the resulting average relative

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Reduction rate ρ

R
el

at
iv

e
ve

ri
fic

at
io

n
tim

e

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Reduction rate ρ

Fig. 9. The relative verification time of the reduced network primarily depends
on the reduction rate ρ: ERAN sigmoid network (left) and ERAN CNN (right).

−60 −40 −20 0

0
1
2
3
4
5
6
7
8
9

Prediction

L
ab

el

10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

Fig. 10. Fully automatic network reduction: Comparison of outer-
approximative bounds of the prediction for an MNIST image with ϵ = 0.01
using the ERAN sigmoid network for different reduction rates ρ.

time to reduce and verify a network compared to verifying
the original network directly. The average times to verify
the original ERAN sigmoid network and the convolutional
variant are 0.97s and 3.76s, respectively. The surrounding
region shows one standard deviation. Thus, we can verify
most images using the reduced network for small ρ (Tab. I) in
significantly less time (Fig. 9) and can iteratively increase ρ
where the verification is more challenging. For a challenging
MNIST image with label 6, Fig. 10 shows the computed outer-
approximative output bounds using the ERAN sigmoid network
for different ρ. The bounds quickly converge with increasing ρ,
and the image can be verified with ρ ≥ 30% in this example.

B. Convolutional Neural Networks

We demonstrate the unique advantage of our reduction
approach on convolutional neural networks by explicitly exploit-
ing similar neighboring pixels. The subsequent convolutional
networks from ERAN are again trained on the MNIST
handwritten image dataset, and the networks from the Marabou
and Cifar2020 benchmarks are trained on the CIFAR-10 colored
image dataset [7]. For all convolutional networks, we use
dynamic merge buckets unless stated otherwise, normalize the
input image, and repeat each experiment over 100 correctly
classified images. To show that our underlying assumption of
many pixels having similar colors holds in practice, we again
first show the reduction results on the ERAN networks for
a fixed bucket tolerance δ = ϵ. The results using our fully

PREPRINT (UNDER REVIEW) 10

1 2 4 6 8
0

1,000

2,000

3,000

Number of input neurons of layer k

R
em

ai
ni

ng
ne

ur
on

s CNN (static)
CNN (dynamic)

Fig. 11. Convolutional neural networks require dynamic merge buckets to
exploit similar neighboring pixels.

1 2 4 6 8
0

1,000

2,000

3,000

Number of input neurons of layer k

R
em

ai
ni

ng
ne

ur
on

s CNN (ReLU)
CNN (Sigmoid)
CNN (Tanh)

Fig. 12. ERAN networks with convolutional layers: Huge reductions are
possible across all networks with different activation functions.

automatic reduction approach are then shown on the Marabou
and Cifar2020 benchmarks.

1) ERAN: Fig. 11 shows the necessity for dynamic merge
buckets to exploit similar neighboring pixels for a convolutional
neural network with sigmoid activations. While barely any
neurons are merged using static merge buckets, we obtain huge
reductions using dynamic merge buckets, especially in the
second layer, while still verifying the images. Further, we show
a comparison of the reduction using networks with different
activation functions in Fig. 12. Interestingly, large reductions
can be achieved for all networks in the second layer. For the
ReLU network, we can maintain a low number of neurons in
later layers, too, while they increase again for the sigmoid and
tanh networks for fixed δ. An equal reduction in all layers can
be obtained using the fully automatic approach.

2) Marabou: We show the network reduction using our fully
automatic approach on the Marabou benchmark in Fig. 13. The
networks consist of two convolutional layers followed by three
linear layers with ReLU activation. The input sets have a
perturbation radius ϵ = 0.01. Our fully automatic approach
reduces these networks on average to ∼ 10% of the original
number of neurons. Please note that in layer 4, the remaining
number of neurons are roughly equal for all three networks
despite having different number of neurons in the original
network.

3) Cifar2020: Next, we consider the networks from the
Cifar2020 benchmark. This network is an order of magnitude
larger than the other convolutional networks and is thus
particularly hard to verify. The network consists of four
convolutional layers with up to 32, 768 neurons per layer

1 2 4 6 8 10
0

2,000

4,000

6,000

8,000

Number of input neurons of layer k

R
em

ai
ni

ng
ne

ur
on

s CNN (large)
CNN (medium)
CNN (small)

Fig. 13. Marabou benchmark: Fully automatic network reduction comparison
of three networks on the CIFAR-10 dataset.

1 2 4 6 8 10 12 14
0

1

2

3

·104

Number of input neurons of layer k

R
em

ai
ni

ng
ne

ur
on

s Reduced (ϵ = 0.01)
Reduced (ϵ = 0.001)

Fig. 14. Cifar2020 benchmark: Our fully automatic reduction approach is
also applicable to very large networks.

followed by three linear layers and ReLU activation. We depict
the reduction results of our network reduction in Fig. 14 for
two different perturbation radii ϵ ∈ [0.01, 0.001]. While the
reduction results depend on the perturbation radius ϵ of the
input set X , the difference becomes less apparent in later layers.

4) Compression network: Fig. 15 shows how the sound
compression preprocessing of the input image (Alg. 3) can
further reduce the overall network size. The prepended layers
shown at −1 and 0 only have very few remaining neurons,
where we only show the number of neurons corresponding to
the dimension of the constructed zonotope. Thus, the average
total computation time is reduced from 4.59s to 0.78s as the
initial reduction (Alg. 3, line 2) is computationally cheap and
the representation of the involved sets is much smaller, i.e., the
zonotopes have fewer generators, compared to verifying the
original network. Our evaluation shows that, on average, only
28 input neurons remain for the ERAN CNN with sigmoid
activation compared to the 28 · 28 = 784 input neurons of the
original image (Fig. 15).

C. Resuing a Reduced Network

Finally, we give two examples where the reduced network
was reused despite its input set restriction (Cor. 2).

1) ACAS Xu benchmark: We demonstrate the applicability
of our approach on non-image data using the ACAS Xu
benchmark [7]. The benchmark consists of multiple networks
and properties used to verify turn advisories to an aircraft to
avoid collisions. The networks have 6× 50 hidden layers with

PREPRINT (UNDER REVIEW) 11

-1 0 1 2 4 6 8
0

1,000

2,000

3,000

Number of input neurons of layer k

R
em

ai
ni

ng
ne

ur
on

s Compression
Normal

Fig. 15. ERAN CNN with sigmoid activation: Input compression (Alg. 3)
versus normal reduction (Alg. 2).

TABLE II
AVERAGE NETWORK REDUCTION AND VERIFICATION TIME OF A PROPERTY

OF THE ACAS XU BENCHMARK.

Neural Network Number of Neurons Verification Time

Original Network 100.00 % 7.38s
Reduced Network 61.33 % 4.21s

5 input and 5 output neurons. As this benchmark is particularly
hard to verify, we apply a branch-and-bound strategy by
recursively splitting the input set along the most sensitive
dimension. Using Cor. 2, we can reduce the network once
on the original input set and reuse the reduced network in
all subsets. We show an example verification in Tab. II. The
verification time also includes the time to reduce the network
and is averaged over 10 runs. While the authors of [42] state that
they can reduce the ACAS Xu networks down to a total number
of 10 neurons, the obtained output sets are very conservative
with a radius up to 1017 [42, Fig. 14-16], which makes it
impossible to verify the given specifications.

2) Closed-loop verification: Finally, let us revisit the quadro-
tor example from Sec. IV-B to show the applicability of
our approach in closed-loop systems: We enlarge the current
reachable set at t = 4s by a factor of 1.5 to compute the
reduced network controller. This enlargement is necessary as
the reachable set still oscillates around its equilibrium. The
reduced network can then be reused in 60% of the remaining
network evaluations. Whenever the current reachable set leaves
the enlarged set used to reduce the network, the verification
algorithm falls back to the original network until the reduced
network can be used again. In the quadrotor example, the
reduced network was always used again after one time step.
Fig. 16 shows the relevant part of Fig. 5 and includes the
reachable set computed with the reduced network, where
both reachable sets remain within the desired goal region,
and the reachable set computed with the reduced network is
insignificantly larger.

VI. CONCLUSION

We present a fully automatic and sound neural network
reduction approach, where the verification of the reduced
network entails the verification of the original network. To
the best of our knowledge, we present the first approach that
works on all element-wise activation functions. The neural

3 3.5 4 4.5 5
0.6

0.8

1

1.2

Time

A
lti

tu
de

Goal set Simulations

Reachable set (Φ̂) Network reduction
Reachable set (Φ)

Fig. 16. Quadrotor example: We can reuse a reduced network Φ̂ once the
system starts to converge to the desired altitude. The resulting reachable set is
insignificantly larger.

network reduction is computed on the fly while verifying given
specifications on the original network and merges neurons
of nonlinear layers based on the output bounds of these
neurons. The reduced network is computationally cheap to
construct and does not induce large outer-approximations
compared to the original network. All parameters of our
approach are automatically tuned to minimize the network
size without compromising verifiability and is orthogonal
to many verification tools and thus can be combined with
them. Further, our approach is the first to address the unique
challenges of convolutional neural networks by explicitly
exploiting similar neighboring pixels. Moreover, we show how
our reduced network can be reused despite its restriction on
the input set during branch-and-bound algorithms and closed-
loop verification. Our evaluation shows the applicability of our
approach on various benchmarks and network architectures,
where the size of the networks is drastically reduced, which
also decreases the total computation time.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge financial support from
the project FAI funded by the German Research Foundation
(DFG) under project number 286525601. We also want to
thank our colleagues Lukas Koller and Mark Wetzlinger from
our research group for their revisions of the manuscript.

REFERENCES

[1] A. B. Nassif, I. Shahin, I. Attili, M. Azzeh, and
K. Shaalan, “Speech recognition using deep neural
networks: A systematic review,” IEEE access, vol. 7,
pp. 19 143–19 165, 2019.

[2] Z. Li, F. Liu, W. Yang, S. Peng, and J. Zhou, “A survey
of convolutional neural networks: Analysis, applications,
and prospects,” IEEE Transactions on Neural Networks
and Learning Systems, vol. 33, pp. 6999–7019, 2022.

[3] D. Karimi and S. E. Salcudean, “Reducing the Hausdorff
distance in medical image segmentation with convolu-
tional neural networks,” IEEE Transactions on Medical
Imaging, vol. 39, pp. 499–513, 2019.

PREPRINT (UNDER REVIEW) 12

[4] D. Mukherjee, K. Gupta, L. H. Chang, and H. Naj-
jaran, “A survey of robot learning strategies for human-
robot collaboration in industrial settings,” Robotics and
Computer-Integrated Manufacturing, vol. 73, 2022.

[5] É. Zablocki, H. Ben-Younes, P. Pérez, and M. Cord,
“Explainability of deep vision-based autonomous driving
systems: Review and challenges,” International Journal
of Computer Vision, vol. 130, pp. 2425–2452, 2022.

[6] I. Goodfellow, J. Shlens, and C. Szegedy, “Explaining
and harnessing adversarial examples,” in International
Conference on Learning Representations, 2015.

[7] S. Bak, C. Liu, and T. T. Johnson, “The second interna-
tional verification of neural networks competition (VNN-
COMP 2021): Summary and results,” arXiv preprint
arXiv:2109.00498, 2021.

[8] C. Brix, S. Bak, C. Liu, and T. T. Johnson, “The fourth
international verification of neural networks competition
(VNN-COMP 2023): Summary and results,” arXiv
preprint arXiv:2312.16760, 2023.

[9] D. M. Lopez, M. Althoff, M. Forets, T. T. Johnson,
T. Ladner, and C. Schilling, “ARCH-COMP23 category
report: Artificial intelligence and neural network control
systems (AINNCS) for continuous and hybrid systems
plants,” in Proceedings of 10th International Workshop
on Applied Verification for Continuous and Hybrid
Systems, vol. 96, 2023, pp. 89–125.

[10] X. Huang, M. Kwiatkowska, S. Wang, and M. Wu,
“Safety verification of deep neural networks,” in Interna-
tional Conference on Computer Aided Verification, 2017,
pp. 3–29.

[11] G. Katz, C. Barrett, D. L. Dill, K. Julian, and M. J.
Kochenderfer, “Reluplex: An efficient SMT solver for
verifying deep neural networks,” in International Confer-
ence on Computer Aided Verification, 2017, pp. 97–117.

[12] H. Zhang, T.-W. Weng, P.-Y. Chen, C.-J. Hsieh, and L.
Daniel, “Efficient neural network robustness certification
with general activation functions,” Advances in Neural
Information Processing Systems, vol. 31, 2018.

[13] G. Katz, D. A. Huang, D. Ibeling, et al., “The Marabou
framework for verification and analysis of deep neural
networks,” in International Conference on Computer
Aided Verification, 2019, pp. 443–452.

[14] M. N. Müller, G. Makarchuk, G. Singh, M. Püschel,
and M. Vechev, “PRIMA: General and precise neural
network certification via scalable convex hull approx-
imations,” Proceedings of the ACM on Programming
Languages, vol. 6, pp. 1–33, 2022.

[15] T. Gehr, M. Mirman, D. Drachsler-Cohen, P. Tsankov,
S. Chaudhuri, and M. Vechev, “AI2: Safety and ro-
bustness certification of neural networks with abstract
interpretation,” in IEEE Symposium on Security and
Privacy, 2018, pp. 3–18.

[16] G. Singh, T. Gehr, M. Mirman, M. Püschel, and M.
Vechev, “Fast and effective robustness certification,”
Advances in Neural Information Processing Systems,
vol. 31, 2018.

[17] R. Ivanov, T. Carpenter, J. Weimer, R. Alur, G. Pappas,
and I. Lee, “Verisig 2.0: Verification of neural network

controllers using Taylor model preconditioning,” in In-
ternational Conference on Computer Aided Verification,
2021, pp. 249–262.

[18] S. Bogomolov, M. Forets, G. Frehse, K. Potomkin,
and C. Schilling, “JuliaReach: A toolbox for set-based
reachability,” in Proceedings of the 22nd ACM Interna-
tional Conference on Hybrid Systems: Computation and
Control, 2019, 39–44.

[19] C. Huang, J. Fan, X. Chen, W. Li, and Q. Zhu, “POLAR:
A polynomial arithmetic framework for verifying neural-
betwork controlled systems,” in Automated Technology
for Verification and Analysis, 2022, pp. 414–430.

[20] S. Bak, “nnenum: Verification of relu neural networks
with optimized abstraction refinement,” in NASA Formal
Methods Symposium, 2021, pp. 19–36.

[21] D. M. Lopez, S. W. Choi, H.-D. Tran, and T. T.
Johnson, “NNV 2.0: The neural network verification
tool,” in International Conference on Computer Aided
Verification, 2023, pp. 397–412.

[22] N. Kochdumper, C. Schilling, M. Althoff, and S. Bak,
“Open-and closed-loop neural network verification us-
ing polynomial zonotopes,” in NASA Formal Methods
Symposium, 2023, pp. 16–36.

[23] T. Ladner and M. Althoff, “Automatic abstraction
refinement in neural network verification using sensitivity
analysis,” in Proceedings of the 26th ACM International
Conference on Hybrid Systems: Computation and Con-
trol, 2023, pp. 1–13.

[24] P. Henriksen and A. Lomuscio, “Efficient neural network
verification via adaptive refinement and adversarial
search,” in European Conference on Artificial Intelli-
gence, 2020, pp. 2513–2520.

[25] G. Singh, T. Gehr, M. Püschel, and M. Vechev, “An
abstract domain for certifying neural networks,” Proceed-
ings of the ACM on Programming Languages, vol. 3,
pp. 1–30, 2019.

[26] C. Brix and T. Noll, “Debona: Decoupled boundary
network analysis for tighter bounds and faster adversarial
robustness proofs,” arXiv preprint arXiv:2006.09040,
2020.

[27] R. Bunel, P. Mudigonda, I. Turkaslan, P. Torr, J. Lu, and
P. Kohli, “Branch and bound for piecewise linear neural
network verification,” Journal of Machine Learning
Research, vol. 21, pp. 1–39, 2020.

[28] E. Botoeva, P. Kouvaros, J. Kronqvist, A. Lomuscio, and
R. Misener, “Efficient verification of relu-based neural
networks via dependency analysis,” in Proceedings of
the AAAI Conference on Artificial Intelligence, vol. 34,
2020, pp. 3291–3299.

[29] G. Singh, T. Gehr, M. Püschel, and M. Vechev, “Boost-
ing robustness certification of neural networks,” in
International Conference on Learning Representations,
2018.

[30] S. Wang, H. Zhang, K. Xu, et al., “Beta-CROWN: Effi-
cient bound propagation with per-neuron split constraints
for complete and incomplete neural network verification,”
Advances in Neural Information Processing Systems,
vol. 34, 2021.

PREPRINT (UNDER REVIEW) 13

[31] C. Ferrari, M. N. Mueller, N. Jovanović, and M. Vechev,
“Complete verification via multi-neuron relaxation guided
branch-and-bound,” in International Conference on
Learning Representations, 2022.

[32] Z. Shi, Q. Jin, J. Z. Kolter, S. Jana, C.-J. Hsieh, and
H. Zhang, “Formal verification for neural networks
with general nonlinearities via branch-and-bound,” 2nd
Workshop on Formal Verification of Machine Learning,
2023.

[33] L. Pulina and A. Tacchella, “An abstraction-refinement
approach to verification of artificial neural networks,” in
International Conference on Computer Aided Verifica-
tion, 2010, pp. 243–257.

[34] W. Xiang, H.-D. Tran, and T. T. Johnson, “Output reach-
able set estimation and verification for multilayer neural
networks,” IEEE Transactions on Neural Networks and
Learning Systems, vol. 29, pp. 5777–5783, 2018.

[35] A.-K. Kopetzki and S. Günnemann, “Reachable sets of
classifiers and regression models: (Non-)robustness anal-
ysis and robust training,” Machine Learning, vol. 110,
pp. 1175–1197, 2021.

[36] K. Makino and M. Berz, “Taylor models and other
validated functional inclusion methods,” International
Journal of Pure and Applied Mathematics, vol. 6,
pp. 239–316, 2003.

[37] S. Bak and P. S. Duggirala, “Simulation-equivalent
reachability of large linear systems with inputs,” in In-
ternational Conference on Computer Aided Verification,
2017, pp. 401–420.

[38] N. Kochdumper and M. Althoff, “Sparse polynomial
zonotopes: A novel set representation for reachability
analysis,” IEEE Transactions on Automatic Control,
vol. 66, pp. 4043–4058, 2020.

[39] Y. Y. Elboher, J. Gottschlich, and G. Katz, “An
abstraction-based framework for neural network verifi-
cation,” in International Conference on Computer Aided
Verification, 2020, pp. 43–65.

[40] P. Prabhakar and Z. R. Afzal, “Abstraction based output
range analysis for neural networks,” Advances in Neural
Information Processing Systems, vol. 32, 2019.

[41] P. Ashok, V. Hashemi, J. Křetínský, and S. Mohr,
“DeepAbstract: Neural network abstraction for accel-
erating verification,” in International Symposium on
Automated Technology for Verification and Analysis,
2020, pp. 92–107.

[42] F. Boudardara, A. Boussif, P.-J. Meyer, and M. Ghazel,
“INNAbstract: An INN-based abstraction method for
large-scale neural network verification,” IEEE Transac-
tions on Neural Networks and Learning Systems, 2023.

[43] B. Neyshabur, Z. Li, S. Bhojanapalli, Y. LeCun, and
N. Srebro, “Towards understanding the role of over-
parametrization in generalization of neural networks,”
arXiv preprint arXiv:1805.12076, 2018.

[44] L. Zhangheng, T. Chen, L. Li, B. Li, and Z. Wang, “Can
pruning improve certified robustness of neural networks?”
Transactions on Machine Learning Research, 2022.

[45] L. Deng, G. Li, S. Han, L. Shi, and Y. Xie, “Model
compression and hardware acceleration for neural net-

works: A comprehensive survey,” Proceedings of the
IEEE, vol. 108, pp. 485–532, 2020.

[46] J. Cheng, J. Wu, C. Leng, Y. Wang, and Q. Hu,
“Quantized CNN: A unified approach to accelerate and
compress convolutional networks,” IEEE Transactions
on Neural Networks and Learning Systems, vol. 29,
pp. 4730–4743, 2017.

[47] L. Gonzalez-Carabarin, I. A. Huijben, B. Veeling, A.
Schmid, and R. J. van Sloun, “Dynamic probabilistic
pruning: A general framework for hardware-constrained
pruning at different granularities,” IEEE Transactions
on Neural Networks and Learning Systems, vol. 35,
pp. 733–744, 2024.

[48] M. Sotoudeh and A. V. Thakur, “Abstract neural net-
works,” in Static Analysis, 2020, pp. 65–88.

[49] F. Boudardara, A. Boussif, P.-J. Meyer, and M. Ghazel,
“Interval weight-based abstraction for neural network
verification,” in International Conference on Computer
Safety, Reliability, and Security, 2022, pp. 330–342.

[50] Y. Y. Elboher, E. Cohen, and G. Katz, “Neural network
verification using residual reasoning,” in International
Conference on Software Engineering and Formal Meth-
ods, 2022, pp. 173–189.

[51] Y. Zhong, R. Wang, and S.-C. Khoo, “Expediting
neural network verification via network reduction,” arXiv
preprint arXiv:2308.03330, 2023.

[52] A. Girard, “Reachability of uncertain linear systems
using zonotopes,” in International Workshop on Hybrid
Systems: Computation and Control, 2005, pp. 291–305.

[53] M. Althoff, “An introduction to CORA 2015,” in Proc.
of the Workshop on Applied Verification for Continuous
and Hybrid Systems, 2015, pp. 120–151.

[54] C. M. Bishop and N. M. Nasrabadi, Pattern recognition
and machine learning. 2006, vol. 4.

[55] M. Althoff, “Reachability analysis and its application
to the safety assessment of autonomous cars,” Ph.D.
dissertation, Technische Universität München, 2010.

[56] A. Rakitianskaia and A. Engelbrecht, “Measuring satu-
ration in neural networks,” in IEEE Symposium Series
on Computational Intelligence, 2015, pp. 1423–1430.

[57] A. Bäuerle, D. Jönsson, and T. Ropinski, “Neural
activation patterns (NAPs): Visual explainability of
learned concepts,” arXiv preprint arXiv:2206.10611,
2022.

[58] L. Jaulin, M. Kieffer, O. Didrit, and É. Walter, Interval
analysis. 2001.

	Introduction
	Related Work
	Contributions

	Preliminaries
	Notation
	Neural Networks
	Set-Based Computing
	Neural Network Verification
	Problem Statement

	Automatic Neural Network Reduction
	Neuron Merging
	Initialization of Merge Buckets
	Automatic Determination of Bucket Tolerances
	On-the-fly Neural Network Reduction

	Applications
	Reduction of Convolutional Neural Networks
	Reusing Reduced Networks
	Branch-and-bound
	Closed-loop verification
	Export of reduced network

	Evaluation
	Feed-Forward Neural Networks
	MNISTFC Benchmark
	ERAN Benchmark

	Convolutional Neural Networks
	ERAN
	Marabou
	Cifar2020
	Compression network

	Resuing a Reduced Network
	ACAS Xu benchmark
	Closed-loop verification

	Conclusion

