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Abstract—While one of the main features of 5G networks is provisioning very high rates with low (or no) variability to cellular users, it
has been shown that this turns out to be very ineffective for operators because it leads to an abundance of unused network resources.
Yet, reallocating the unused resources to the same users, after providing them with the same constant rate, increases back the
variability in data rates. A more efficient way would be to provide different low-variability data rates to the users depending on their
channel conditions while trying to bring the wasted resources to the lowest possible extent. To that end, in this paper, two approaches
are considered; one with reserved resources for every user and the other where the amount of resources is decided on the fly,
depending on their current channel conditions. Then, for each approach, we look at different allocation policies and derive the
corresponding maximum achievable constant rate for every user jointly with the level of resource utilization, showing which policy is
more beneficial. Further, the performance is evaluated on a real 5G trace using both extensive simulations and real measurements
conducted on OpenAirInterface. Results show that no-resource reservation policies increase the utilization of resources and data rates
at the expense of increased rate variability across all the users. Moreover, all the policies proposed in this paper outperform
state-of-the-art approaches by at least 2×, bringing the waste of resources down to 15%.

Index Terms—5G, Resource allocation, Optimal performance, Rate variability, QoE.
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1 INTRODUCTION

5G networks have emerged as the solution that renders the best
performance for applications and services that require constant or
very low-variability data rates [2], such as real-time video stream-
ing, online gaming, augmented reality, and virtual reality, among
other features like providing ultra-low latency with extremely high
reliability [3] or providing service to a large number of devices
within a given area [4].

Providing stable data rates in current wireless communications
systems is very challenging, mainly because of the fact that cellu-
lar networks are characterized by very dynamic channel conditions
due to the mobility of the users and effects like shadowing [5].
Consequently, a different amount of resources needs to be assigned
to users at different times to satisfy the rate stability requirement.
Therefore, it is very important to determine the appropriate re-
source allocation policy that maintains the communication quality
of the users irrespective of the application/service they are running
while utilizing network resources efficiently.

While providing the same constant data rate has been consid-
ered before [6], it has also been shown that this approach leads to
very inefficient usage of network resources, leaving an abundance
of resources unused [7]. Furthermore, reallocating those unused
resources to the same users increases back the variability of
the experienced data rates, which harms the applications with
stable rate requirements. On the other hand, allocating all the
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available resources without any guarantees on providing a stable
throughput [8] leads to cellular users running applications with
low-variability rate requirements to experience severe Quality of
Experience (QoE) deterioration.

To reconcile the need for stable throughput (low-variability
data rates) with effective utilization of network resources (not
waste large portions of the resources), in this paper, we propose
an approach in which users still experience constant rates for most
of the time, but these rates differ among different users, depending
on their channel conditions.

Several important research questions arise with regard to the
provisioning of low-variability data rates with effective utilization
of resources in cellular networks:

• How to achieve the optimal trade-off between providing as
high constant data rates as possible for all the users and not
wasting network resources?

• What is the parameter that describes jointly the throughput
stability over all the users and the effective utilization of
network resources?

• Is it better to reserve the resources for every user or to assign
them dynamically over time?

• In an application that requires low-variability data rates, such
as real-time video streaming, what is the best policy that pro-
vides the highest QoE to cellular users while simultaneously
keeping it beneficial for the operator?

In this paper, we address the problem of effectively allocating
network resources within the cell in 5G networks that results
in the highest possible data rates that are characterized by low
variability, i.e., they are almost always constant for a user. To that
end, two different approaches are considered; one with reserving
resources for each user and the other with no resource reservation.
Within each approach, different allocation policies are proposed.
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Common to all these resource allocation policies is that they
provide different constant rates (for almost 100% of the time)
to different users. We derive the achievable data rates for every
policy and the level of resource utilization when using each of
them. In terms of performance, the focus is first on minimizing
rate variability and maximizing resource utilization separately.
Then, the joint problem of minimizing the rate variability and
efficiently utilizing the network resources is considered. To that
end, we introduce a new variable, coined joint satisfaction effi-
ciency, which is defined as the ratio of the average utilization
of resources and the sum of the coefficient of variation of data
rates over all users in the cell across time. Then, it is shown
which policy under which conditions and for which objective
improves performance. The results provided here are helpful for
cellular network operators in appropriately allocating resources
so that the QoE of mobile users related to the aforementioned
services/applications is maximized, and at the same time will
prevent from wasting the valuable network resources. The main
message of this paper is that providing different constant rates to
users with different channel conditions can result in lower wastage
of network resources and in minimizing rate variability compared
to other resource allocation policies, irrespective of whether they
provide constant rates or not. Further, reserving resources for the
users is shown to decrease the rate variability but at the expense
of lower utilization of network resources and lower data rates
compared to the no-resource reservation policies. While the focus
is on 5G when evaluating performance, this work could equally
apply to 4G as well, where the latter shares some similarities with
5G in terms of resource structure, but with considerably lower
rates.

Specifically, our main contributions are:

• We first propose an approach in which the resources for each
user are determined a priori based on their channel statistics,
and do not change over time.

• We also consider another approach in which resource alloca-
tion is flexible and there are no reserved resources, but they
are allocated on the fly, depending on the channel conditions
of all the users. In both approaches, the achievable data rates
for several pertinent policies are derived.

• The performance of these policies are compared analytically
in two cases. In the first, we compare separately the variabil-
ity of data rates across all the users and the total resource
utilization in the cell. In the second case, there is a joint
minimization of rate variability and the utilization of network
resources through the new parameter introduced in this paper,
the joint satisfaction efficiency.

• Using both realistic simulations that are run on a 5G trace
as well as measurements conducted on our own built system,
based on OpenAirInterface [9], it is shown that our policies
minimize the coefficient of variation of data rates across all
the users compared to other state-of-the-art policies while
enabling effective utilization of network resources.

The remainder of this paper is organized as follows. Section 2
presents some related work. The system model and the metrics of
interest are introduced in Section 3. Then, in Section 4 the detailed
analyses are presented for four resource-reservation policies, one
of which is derived as a solution to two optimization problems.
This is followed by the analyses for two no-resource reserva-
tion policies in Section 5. Some performance evaluation results,
including both outcomes from simulations and measurements,

are provided in Section 6, together with additional engineering
insights. Finally, Section 7 concludes the paper.

2 RELATED WORK

Reference [10] provides a detailed overview of various service
requirements in 5G. The authors in [11] focus on providing a
latency (a type of delay consistency) as low as possible. However,
that work is not concerned with throughput stability nor with the
usage of network resources. Additionally, in [12], the goal is to
minimize the end-to-end delay. The authors propose an archi-
tecture, coined SDUN, to accomplish that. A queueing network
model (exhibiting memoryless properties mostly) is proposed and
the presented theoretical analysis leads to finding the average
waiting time. The work in [12] is consistent in the delay sense
but does not consider resource allocation to provide stable rates.
A work similar to [12] is [13], where the goal is to provide a
consistent delay for Machine-to-machine (M2M) communications.
The analysis in [13] relies on large deviation theory. To meet
the latency and reliability constraints in 5G, a periodic radio
resource allocation is proposed in [14], and the corresponding
Modulation and Coding Scheme (MCS) is selected to minimize
resource consumption. However, providing a low-variability data
rate is not considered in any of these works, and user mobility is
not taken into account in [13], which is the case with our work.

In [15], the authors propose a use case of 5G deployment and
derive the achievable throughput by combining four traffic types
and find the rate distributions that are required for each service
type. However, the analysis in [15] is constrained by considering
only one user with four applications. On the other hand, the
approach followed in this work is valid for any number of users.

The highly variable nature of data rates in cellular networks
has already been documented in [16], with a coefficient of
variation going as high as 3. Similar conclusions were obtained
in [17], where even for static users the data rates were exhibit-
ing highly non-stable properties, with a coefficient of variation
around 2. While quantifying the rate variability is certainly useful,
neither [16] nor [17] provide insights on how to reduce rate
variability, which is what we do in this work. In [18], where the
focus is video streaming, the authors acknowledge the data rates
with high variability and propose a dynamic adaptation of the rate
at which the video is rendered (video resolution) in order to avoid
video stalling. However, in [19] it is shown that constant playout
rates outperform by a significant margin the adaptive streaming
approaches. Similarly, the lack of throughput stability has been
shown in [20] as well. But, there are no allocation policies that
prevent this from happening. On the other hand, in our work,
several policies are proposed that pertain to various scenarios
that provide throughput with low variability and at the same time
prevent the network from leaving its resources non-utilized.

The works in which there is a strict requirement on the constant
data rate at almost all times for all users (consistent rate) in cellular
networks, with the focus on 5G, are [21], [7], [6], [22]. In [21], the
focus is on determining the maximum number of consistent users
that can be admitted in the cell without violating the QoS. In [22],
the problem of providing a consistent backhaul rate to public
urban transportation systems is analyzed. The analysis captures the
scenario with two bus lines having a different number of vehicles,
where within the same line all vehicles experience identical per-
PRB rate distributions. The most important outcome from [22] is
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that on average about 2/3 of the resources remain unused. How-
ever, in all these works the focus is only on providing consistent
rates and not on increasing the utilization of network resources.
Yet, in our work, both the minimization of rate variability and the
reduction of unused resources are considered.

The problem of determining the maximum consistent rate that
can be offered to a group of users is analyzed in [6]. One of
the main outcomes from [6], similarly to [22], is that providing a
consistent rate to everyone leads to highly inefficient utilization of
network resources. As a way of alleviating this problem, in [6] it
is proposed to reallocate the unused resources equally to the same
users. However, assigning these unused resources to the same
users leads to highly-variable data rates because the amount of
unused resources changes rapidly from one time step to another.
This plummets the satisfaction of the users when running appli-
cations with a stable throughput requirement. A similar approach
is followed in [7], where after providing the maximum achievable
constant rate (the same rate to everyone), the authors propose to
reallocate the unused resources to satisfy two different objectives.
The first is to maximize the total cell throughput after reallocation,
whereas the second is to provide fairness. In addition to these two
objectives, in [23] the goal is to allocate the unused resources
(after guaranteeing a constant rate) in order to provide max-min
fairness. While in these scenarios the resources are fully utilized,
there is high variability in the data rate over all the users, and
those policies are not suitable for applications and that require
rates with low variability. More importantly, in Section 6 it is
shown that in a practical scenario, the approaches proposed in this
work outperform considerably state of the art.

One of the standard approaches of resource allocation men-
tioned in the 5G standard is round-robin [24]. Following on that,
in [25] the authors propose an equal share of resources not only in
the RAN but also for edge resources in computing tasks. However,
simply sharing resources does not provide any consistency or
guarantee on the data rate, due to the varying channel conditions
of mobile users. In Section 6 the advantages of different consistent
rates against round-robin are documented.

There are several other works related to resource allocation
in 5G [26], [27], [28], [29], [30]. In [26], the authors consider
resource allocation in a multi-tier mobile edge computing system.
The considered resources are the computational units in the cloud,
but not the spectrum resources as is the case with our work. They
use the data rate as part of the calculations of the task processing
delay, and more specifically, in the offloading part. However,
there are no data rate guarantees in [26]. Slice dimensioning is a
resource allocation problem too, where the goal is to determine the
number of PRBs that comprise a given slice, which would serve
the same use-case users. A work in that direction is [27], where the
three main 5G service types are considered (eMBB, URLLC, and
mMTC) in a multi-tenant 5G system. There are considerable dif-
ferences between our work and [27]. Namely, the URLLC traffic is
time-sensitive, whereas mMTC are characterized by massiveness.
Our approach is more tailored towards eMBB services. We show
that providing different consistent rates improves network resource
utilization. As such, it could be used by the approach in [27] to
improve the network efficiency.

5G network optimization with massive MIMO has been con-
sidered in [28]. The authors formulate a multi-objective optimiza-
tion problem, where one of the objectives is to maximize the user’s
average data rate. However, while maximizing the rate is impor-
tant, its variability can lead to severe performance degradation,

especially for services that require stable throughput. As we show
in the case of live streaming in our work, a no-rate-guarantee
policy leads to lower quality of experience among users. In [29],
the authors consider another aspect of optimal resource allocation.
Specifically, the goal is to jointly decide on the allocation of
the radio, optical, and mobile edge computing resources in a
5G network while minimizing the power consumption. However,
there are no requirements on the rate stability, which can hurt the
performance of applications like live video streaming. In contrast,
in our work the focus is on rate-sensitive applications.

In [30], the authors focus on allocating resources for coordi-
nated multipoint in 5G networks. URLLC is the traffic of interest.
The objective is to minimize the required bandwidth subject to
limited network resources and a maximum latency. But, there are
no rate stability guarantees. Conversely, the consistent rate that can
be provided to each user is determined with current approach, and
these rates differ among users. This provides both rate consistency
and effective allocation. More importantly, using our approach and
knowing the achievable rate, one can predict quite accurately the
transmission delay, and if low enough, it can provide the reliability
guarantee for delay-sensitive traffic (for low/moderate traffic).

In [31], the authors consider the joint problem of adaptation of
MCS and resource allocation in a cellular network. The objective
is to minimize the usage of resource blocks while satisfying
the minimum rate requirement for each user. The optimization
problem is solved using deep reinforcement learning. As opposed
to [31], in our work the focus is to effectively utilize network
resources, dedicated to a network slice. Furthermore, with our
approach one can determine the minimum rate itself (which is
constant for the vast majority of the time). The problem of cross
layer allocation in heterogeneous cloud RANs was considered
in [32]. The focus is to enhance the spectral and energy efficiency.
While the objective in the current work is providing consistent
rate, the authors in [32] maintain a maximum-delay requirement.
Of different nature is the problem in [33], where the device-
to-device communications and their interference with cellular
networks are considered. The objective in [33] is to maximize the
total sum throughput while guaranteeing a minimum probability
of coverage of every device. In our work, there is a different setup,
with the focus on cellular networks. Furthermore, the requirement
of providing a constant rate at almost all times captures the
requirement for coverage probability. In similar spirit to [33]
is [34], where the goal is again to maximize the total network
throughput, while deciding jointly on the resource allocation
and user assignment processes. However, in [34] there is no
guarantee on the consistency of data rate. In [35], the optimum
resource management concerning two objectives (separately) was
the problem of interest. The first goal, similarly to [33] and [34],
was to maximize the network sum throughput. Optimizing the
5th percentile rate was the second objective. The current work
provides closed-form optimal resource allocation policies for the
two metrics of interest not considered elsewhere.

An alternative policy, considered in [36], proposed to allocate
all the resources to the user with the best channel conditions
in a frame. While this could lead to maximizing the network
throughput, it will penalize heavily the users with bad channel
conditions. In Section 6, it is shown that this policy performs
worse than different consistent-rate approaches.

In [37], a different approach is followed. The goal is not to
guarantee a constant data rate at all times, but rather a data rate that
is within some bounds most of the time. Also, each user in [37] is
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Fig. 1: Users and their channel qualities in different positions at: a) time t1, b) time t2 > t1.

expected to receive the same data rate in a frame (which is within
the prescribed bounds), as opposed to our approach here in which
the users among themselves in general experience different data
rates, but each user sees a non-varying data rate almost at all times.

Finally, this work is a considerable extension of [1]. In the
current paper, the performance is optimized while considering
together the variability of data rates of all the users and the
utilization of network resources. Furthermore, we build a system,
based on OpenAirInterface [9], which provides various relevant
measurement outcomes, resulting further in a very good match
with theoretical and simulation results.

3 PERFORMANCE MODELING

In this section, the system model is introduced first. This is
followed by the problem formulation.

3.1 System Model
Cellular users within the coverage area of a 5G macro base station
(gNodeB) in the sub-6 GHz band (see Fig. 1) are considered. The
focus in this work is the downlink.

As in 4G, the block resource allocation scheme is used
in 5G as well, with physical resource blocks (PRB) being the
allocation unit [8], but with higher flexibility in choosing the
block bandwidth, and correspondingly, the duration of the unit of
resource allocation. Within a frame, different blocks are assigned
to different users. In general, the assignment will vary across
frames. Consequently, scheduling is to be performed along two
dimensions, time and frequency. The total number of available
PRBs within the cell covered by a BS is assumed to be K .

All users send periodically to the BS the data on their channel
conditions [24]. This parameter is known as Channel Quality
Indicator (CQI). This value ranges from 1 (very poor channel
conditions) to 15 (excellent channel conditions).

In general, a user experiences different channel conditions
(different CQIs) at different frequencies (PRBs) even within the
same radio frame, and hence every user has a different per-PRB
CQI, which is a function of Signal-to-Interference-plus-Noise
Ratio (SINR). The latter is a function of the transmission power
of the BS from which the user received service, the transmission
power of neighboring cells gNodeB’s transmitting on the same fre-
quencies (inter-cell interference), Additive White Gaussian Noise
(AWGN), and the corresponding channel gains [5], [6]. Due to
the user’s mobility and time-varying channel characteristics, per-
PRB SINR changes from one frame to another (according to some

distribution) even for the same PRB. This value of per-PRB CQI,
depending on the MCS used, sets the per-PRB rate. In our system,
the MCS is with 15 possible values, which is the typical value
encountered in practice [24], and is the same as the number of
possible CQIs, mentioned above. For example, if at time t the per-
PRB SINR lies within the interval [γj , γj+1], with γj and γj+1

being the thresholds of the MCS (j = 1, . . . , 15), the per-PRB
rate at that time would be rj(t) [38].

Further, for every user,“flat PRBs” are assumed only during
a frame (flat fading), i.e., the per-PRB rate (of any PRB) does
not change during the frame (for 10 ms). However, the per-PRB
rate changes from one frame to another randomly for all users.
Moreover, the per-PRB rates of different users are assumed to be
mutually independent.

Although in practice different PRBs “bring” different rates, in
order to preserve the analytical tractability, we make a simplify-
ing assumption. Specifically, the assumption is that the gNodeB
transmission power and channel characteristics of a user remain
unchanged across all K PRBs in a frame (identical CQI over all
PRBs for a given user). Thereby, the problem reduces to one-
dimensional scheduling, in time, in which instead of deciding
which PRBs to assign to a user over frames, another parameter
is defined as:

Definition 1. The ratio of frame during which all network re-
sources (PRBs) are allocated to user i is called frame ratio. It is
denoted as Yi and can take values in the interval [0, 1].

PRBs are assigned orthogonally through the frame duration
so that no two users receive the PRBs simultaneously. This is a
reasonable simplification as the frame ratio can be translated into
the corresponding number of PRBs assigned to a user per frame.
In this paper, the frame ratio will be the quantitative measure of
interest related to resource allocation in the cell.

Having in mind the previous assumptions, it follows that in
every frame user’s i per-PRB rate can be modeled as a discrete
random variable, Ri, with values in the set {r1, r2, . . . , r15}, such
that r1 < r2 < . . . < r15, with a probability mass function (PMF)
pi(x). The latter is a function of user’s i SINR over time.1

Number of users: There are n users in the cell with different
per-PRB rate distributions. The set of users is denoted by N .

Data rate: As the focus of this work are applications which re-
quire stable throughput, it is reasonable to assume that users most

1. For the matter of notational convenience, we omit the reference to time
in the remainder of this paper.
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of the time will experience constant rates. In order to efficiently
utilize network resources, the assumption is that users will have
different data rates among themselves, but they are constant most
of the time. These are denoted as Ui, i ∈ N . As shown in [6],
relaxing the requirement on providing the constant rate from 100%
of the time to (1−ϵ) ·100% of the time increases considerably the
achievable rate. Therefore, the data rate is allowed to be different
from Ui, i ∈ N for ϵ · 100% of the time, where ϵ is known as the
outage probability. Its value is usually very small. These almost-
always constant data rates are denoted as Ui(ϵ),∀i ∈ N . These
rates are also known as consistent rates [6].2

Each user sends information about her CQI to the base station
she is receiving service from. Then, based on the resource alloca-
tion policy used by the BS (which is usually for an optimization
objective), the latter allocates the resources to the users (in our
case the BS determines the value of Yi and acts accordingly in
sending the corresponding resources).

The relation between the frame ratio and data rate (in a frame)
for user i is

Ui = KYiRi, (1)

which implies that to provide the constant rate Ui, user i needs all
the PRBs for the frame ratio of Yi =

Ui

KRi
. This leads to:

Definition 2. The utilization of resources after providing the con-
stant rates Ui(ϵ),∀i ∈ N , in a frame is

∑n
i=1 Yi =

∑n
i=1

Ui(ϵ)
KRi

,
where Ri,∀i ∈ N , are the per-PRB rates of the users in that
frame.

3.2 Problem Formulation
The first objective of this paper is to minimize the variation of data
rates across all users in the cell. The parameter that captures the
variability of a random variable is the coefficient of variation [39],
which for the random variable X is defined as3

cV (X) =

√
Var(X)

E[X]
. (2)

Therefore, the first optimization objective in this paper is to
minimize the sum of the coefficient of variations of all the users
in the cell, i.e.,

min
Y1,...,Yn

n∑
i=1

cV,i =
n∑

i=1

√
Var(Ui)

E[Ui]
. (3)

To realize this, the data rate should be almost always constant for
every user. As data rates Ui are constant for all the users for 1− ϵ
of the time, the variances of data rates are small already. Therefore,
our second goal is to effectively utilize network resources or equiv-
alently, to reduce the amount of wasted resources, i.e., to make the
total frame ratio as high as possible. Ideally,

∑n
i=1 Yi → 1.

While considering separately the minimization of rate variabil-
ity and the maximization of resource utilization (first and second
goal mentioned above) is used as a first step, it does not guarantee
an overall joint optimization. Therefore, we go a step further and
combine these two requirements into a single objective. To that
end, a new metric is introduced:

Definition 3. The ratio of the average level of utilization of
resources and the sum of the coefficients of variation of data rates

2. The terms constant and consistent rate are used interchangeably in this
paper.

3. Note that E[X] denotes the expectation of the random variable X ,
whereas Var(X) represents the variance of the random variable X .

TABLE 1: Notation

N Set of all the users
n = |N | Number of users in the cell
Ri(t) Per-PRB rate of user i in frame t

pi(x) PMF of user’s i per-PRB rate
K Total number of PRBs
ϵ Outage probability
Ui(ϵ) Data rate with outage ϵ of user i
Yi Frame ratio resources are allocated to user i
cV (X) Coefficient of variation of X
fi Resource effectiveness for user i
JSE Joint satisfaction efficiency

of all the users is called joint satisfaction of rate variability and
utilization efficiency, or referred to as shortly joint satisfaction
efficiency, and is defined as

JSE =

∑n
i=1 E[Yi]∑n
i=1 cV,i

. (4)

As the goal is to jointly maximize the level of resource
utilization (the numerator of (4)), or equivalently, to minimize
the amount of wasted resources, and to minimize the data rate
variability across all the users in the cell (hence maximizing
its inverse 1∑n

i=1 cV,i
), this leads to the equivalent objective of

maximizing the joint satisfaction efficiency (4). Note that in this
objective, i.e., maximizing JSE, there are the first- and second-
order statistics (the mean and the standard deviation) for one of
the metrics (cV ). This makes the problem with a time horizon
dimension. Therefore, the decision on the amount of resources to
be allocated to every user has to be made by the base station in
every frame, and will in general differ from one frame to another
for all the users.

In this paper, we consider two approaches. In the first, de-
scribed in detail in Section 4, the resources (PRBs) are reserved
for the users. Then, depending on a user’s channel conditions in
a frame and the targeted data rate for that user, the BS decides to
what extent the reserved resources for that user are utilized. In the
second approach, resources are not reserved; they are allocated on
the fly for all the users. The comprehensive analysis for the latter
is presented in Section 5. For each of these two approaches, in
the corresponding sections, the analyses for several policies are
developed.

Before proceeding any further, Table 1 summarizes the nota-
tion used throughout this paper.

4 PERFORMANCE ANALYSIS FOR RESERVED RE-
SOURCES

In this section, we present the approach in which resources are
reserved for all the users from the beginning, and then in the next
section the second, more flexible approach is presented in which
there is no reservation of resources. Rather, they are allocated on
the fly on a per-frame basis depending on the channel qualities
of all the users in the frame. Common to both techniques is that
they allocate resources in such a way that any user experiences
a constant data rate at almost all times. These rates differ among
different users and depend on the channel characteristics (CQI
distribution) of all the users.
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4.1 The Notion of Resource Effectiveness

With this approach, PRBs are reserved from the beginning. User
i will receive Ki PRBs in each frame, where

∑n
i=1 Ki = K . As

the requirement is to guarantee the data rate Ui to user i for 1− ϵ
of the time, the rate constraint can be expressed as

P
(

Ui

KiRi
≤ 1

)
≥ 1− ϵ, ∀i ∈ N . (5)

Inequality (5) is equivalent to

P
(

1

Ri
≤ Ki

Ui

)
≥ 1− ϵ, ∀i ∈ N . (6)

In (6), there are two unknowns, Ki and Ui. To determine the
ratio Ui

Ki
, (6) should be closely examined. Since its left-hand side

(LHS) is the Cumulative Distribution Function (CDF) of 1
Ri

, it
is an increasing function in Ki

Ui
(i.e., decreasing in Ui

Ki
), and it

should not be smaller than 1 − ϵ. Therefore, the point at which
the strict equality in (6) holds is of interest. At that point, the
maximum allowed value of Ui

Ki
is achieved. As a result, for every

user i, based on its channel characteristics, the maximum value of
Ui/Ki can be determined, so that the constraint (5) is not violated.
It follows:4:

Result 1. The maximum value of Ui

Ki
for user i is(

Ui

Ki

)
max

=
1

F−1
1
Ri

(1− ϵ)
, ∀i ∈ N , (7)

where F−1
1
Ri

(1− ϵ) denotes the inverse of the CDF of 1
Ri

at 1− ϵ.

Definition 4. The parameter fi(ϵ) =
Ui(ϵ)
Ki

,∀i ∈ N , is called the
resource effectiveness of user i, and represents the data rate user
i experiences per unit of allocated resource (PRB).

Essentially, the meaning of this parameter is that the user with
higher resource effectiveness will have a higher data rate for the
same amount of allocated PRBs compared to the user with lower
resource effectiveness. As the goal is to improve the performance
of the users, in this paper it is assumed that all the users operate
with their maximum resource effectiveness.

Intuitively, users with good channel conditions should have
higher resource effectiveness. However, higher resource effective-
ness is not necessarily related to the first moment of per-PRB
rates. In fact, it depends on the entire distribution of the per-PRB
rate, and not solely on the first moment. This will be shown in
Section 6.

Fig. 2 illustrates the way in which 1
fi(ϵ)

, i.e., F−1
1/Ri

(1− ϵ), is
determined. Point A in Fig. 2 is the crossing-point of the CDF of
1
Ri

with 1 − ϵ. The value that corresponds to that point on the x-
axis is 1

r (r can take its value from the discrete set {r1, . . . , r15}).
Therefore, the resource effectiveness is 1

1
r

= r, which means that
it can take a value only from the discrete set of possible per-PRB
rates. Also, relaxing the requirement on the time to provide the
guaranteed data rate, i.e., increasing the value ϵ, leads to higher
values of the resource effectiveness. The last claim comes from
the fact that increasing ϵ decreases 1− ϵ, hence the crossing point
of 1− ϵ and F−1

1/Ri
(1− ϵ) shifts down to the lower values on the

x-axis, i.e., 1
r declines, increasing thus the value of f = r.

4. The distribution of 1
Ri

is used instead of that of Ri for practical purposes,

in order to be able to express the maximum value of Ui
Ki

in closed form.

F

1/r15 1/r1

1
1-e

1/r

A

Fig. 2: Illustration of how f is determined.

Note: We remind the reader that the corresponding constant
data rate is guaranteed to every user for 1− ϵ of the time. For the
remaining ϵ, when the data rate guarantee is not met, resources are
split equally among all the users.

4.2 Maximizing Network Utilization

The approach we follow in this paper is a consequence of the fact
that by allowing for a small ratio of time a deviation from an at-all-
times constant rate, the data rates that a user experiences increase
significantly [23], but the ratio of time this deviation happens is
quite small, not increasing thus the coefficient of variation of data
rates. Therefore, it is a reasonable approach to obtain the “best
of both worlds.” In that case, assuming that irrespective of the
actual allocation policy with reserved resources the coefficients of
variation of all the users would be small (as an argument in that
direction are Fig. 7 and Fig. 10 later in Section 6), we look only
at the level of resource allocation and derive the policy which
maximizes it. To that end, the following optimization problem
needs to be solved:

max
K1,...,Kn

E

[
n∑

i=1

Yi(ϵ)

]
(8)

s.t.
n∑

i=1

Ki ≤ K, (9)

Ki ≥ 1, ∀i ∈ N . (10)

The objective is a function of ϵ because for different outages
different allocation policies will need to be enforced. This will be
more clear after solving the aforementioned optimization problem.
In terms of the constraints, every user will need at least one PRB
reserved (10). Otherwise, she would experience a 0 data rate,
which does not make sense.

Let us pay a closer attention to the objective function E [Yi(ϵ)],
which yields

E

[
n∑

i=1

Yi(ϵ)

]
=

∑n
i=1

(
P(Ri < fi) + P(Ri ≥ fi)fiE

[
1
Ri

∣∣∣Ri ≥ fi
])

Ki

K
,

(11)

where

E
[
1

Ri

∣∣∣∣Ri ≥ fi

]
=

∑r15
rl=fi

1
rl
pi(rl)

P(Ri ≥ fi)
. (12)
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The expression under the sum on the right-hand side (RHS) of
(11) denotes the average frame ratio all Ki PRBs are utilized
by user i. In cases when the consistent rate is not provided,
resources are fully utilized, i.e., the entire frame. This occurs with
probability P

(
Ui

KiRi
> 1

)
= P

(
fi
Ri

> 1
)
= P(Ri < fi). On

the other hand, in frames in which the consistent rate is provided,
which occurs with probability P

(
Ui

KiRi
≤ 1

)
= P(Ri ≥ fi), on

average the dedicated PRBs are allocated to user i for the frame
ratio of E

[
Ui

KiRi

∣∣∣Ri ≥ fi
]
= fiE

[
1
Ri

∣∣∣Ri ≥ fi
]
.

Substituting (12) into (11) yields

E

[
n∑

i=1

Yi

]
=

1

K

n∑
i=1

P(Ri < fi) + fi

r15∑
rl=fi

1

rl
pi(rl)

Ki.

(13)
The general form of the resource utilization level can be rewritten
as

E

[
n∑

i=1

Yi

]
=

1

K

n∑
i=1

AiKi, (14)

where

Ai = P(Ri < fi) + fi

r15∑
rl=fi

1

rl
pi(rl), (15)

and Ai does not depend on the resource allocation policy, but only
on the channel characteristics of the user.

As, in line with constraint (10), at least one PRB must be
assigned to every user, objective (8) reduces to

E

[
n∑

i=1

Yi

]
=

1

K

(
n∑

i=1

Ai(Ki − 1) +
n∑

i=1

Ai

)
. (16)

In (16), the only term that depends on the PRB allocation is∑n
i=1 Ai(Ki − 1). Therefore, as equivalent objective arises:

max
K1,...,Kn

n∑
i=1

Ai(Ki − 1). (17)

The maximum of (17) is achieved if first all the users receive
one PRB, and the remaining PRBs are reserved for the user with
the highest A, i.e., j = argmax

i∈N
Ai is the user that receives the

remaining PRBs. Hence, it follows:

Result 2. With resource reservation, the maximum average uti-
lization of network resources where different constant data rates
are guaranteed to all the users with outage ϵ is achieved if the
resource allocation is done according to the policy:

Ki = 1, ∀i ∈ N \ j, and Kj = K − n+ 1, (18)

where j = argmax
i∈N

Ai. The maximum average utilization that can

be achieved is

max
K1,...,Kn

E

[
n∑

i=1

Yi(ϵ)

]
=

Aj(K − n+ 1)

K
+

n∑
i=1,i̸=j

Ai

K
, (19)

where Ai’s are given by (15).

This policy will be referred to as RR-OPT. As will be seen in
Section 6, RR-OPT outperforms the other policies with resource
reservation in terms of resource utilization.

4.3 Maximizing JSE

Next, the goal is to optimize the performance by jointly consid-
ering the variability of data rates (through their coefficient of
variation) and the level of resource utilization. To that end, the
following optimization problem has to be solved:

max
K1,...,Kn

∑n
i=1 E[Yi]∑n
i=1 cV,i

(20)

s.t.
n∑

i=1

Ki ≤ K, (21)

Ki ≥ 1, ∀i ∈ N . (22)

The same explanation of the constraints holds for this optimization
formulation as for (8)-(10). This is a stochastic optimization
problem [40]. Due to its structure, it is possible to fins a solution
in a “non-conventional way.” Let us pay closer attention to the
objective. Substituting (14) for E[Yi] and (3) for

∑n
i=1 cV,i into

(20) yields ∑n
i=1 E[Yi]∑n
i=1 cV,i

=
1
K

∑n
i=1 AiKi∑n

i=1

√
E[Ũ2

i ]−(E[Ũi])2

E[Ũi]

. (23)

We have made a slight change in notation in (23) and now Ũi

denotes the data rate instead of Ui. This is done as for up to ϵ of
the time, the rate is different from Ui. The data rate of user i when
the advertised rate cannot be provided is KiRi. This happens in
instances in which Ri < fi. As the quasi-constant rate Ui is
provided whenever the per-PRB rate of the user is at least equal to
the resource effectiveness of user i (see the discussion succeeding
(12)), then

E[Ũi] = P(Ri ≥ fi)Ui + P(Ri < fi)E[KiRi|Ri < fi], (24)

which after substituting Ui = Kifi, results in

E[Ũi] = KifiP(Ri ≥ fi) +KiE[Ri|Ri < fi]P(Ri < fi).
(25)

Note that Ki does not depend on the current Ri in the frame
(reserved resources), hence, it goes outside of the expectation.
Similarly, for the second moment of the data rate it holds

E[Ũ2
i ] = K2

i f
2
i P(Ri ≥ fi) +K2

i E[R2
i |Ri < fi]P(Ri < fi).

(26)
Combining (25) and (26), for the coefficient of variation of the
data rate of user i, it holds

cV,i =

√
f2
i P(Ri ≥ fi) + E[R2

i |Ri < fi]P(Ri < fi)

(fiP(Ri ≥ fi) + E[Ri|Ri < fi]P(Ri < fi))
2 − 1,

(27)
which leads to the conclusion that

n∑
i=1

cV,i ̸= f(Ki). (28)

Having this in mind, the optimization problem (20)-(22) attains
the same solution as the optimization problem (8)-(10). Namely, as
already shown, there are no decision variables in the denominator
of (23) - see (28). So, the objective (23) is equivalent to the
objective function

max
K1,...,Kn

n∑
i=1

AiKi, (29)
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where the latter, as already shown, given that at least one PRB has
to be allocated to every user, is equivalent to (17). Therefore, the
same solution for the resource allocation is obtained as in Result 2.
The value of the objective is different, however, because of the sum
of the coefficients of variation of data rates in the denominator.
Nevertheless, the actual value of JSE is not as descriptive as the
average level of resource utilization. Hence, it is omitted here. To
summarize, the following result is obtained:

Result 3. With resource reservation, the maximum JSE is
achieved if the resource allocation is done according to the policy:

Ki = 1, ∀i ∈ N \ j, and Kj = K − n+ 1, (30)

where j = argmax
i∈N

Ai.

The importance of this result is highlighted by the fact that
irrespective of whether one is interested in maximizing only the
resource utilization (and hence minimizing the amount of wasted
resources) or by considering jointly the utilization level and the
variability of data rates (maximizing JSE), the same optimal
allocation policy is obtained, i.e., RR-OPT, which further implies
that it suffices to look only for maximizing the average level of
network utilization5, as long as the same rate is provided to a
user for most of the time. Needless to say, for different values of
ϵ, different resource allocation policies will be in place. This is
reminiscent of the fact that the resource effectiveness depends on
ϵ, and for different values of the latter, the resource effectiveness
of one user can be larger than the resource effectiveness of another
user, but this can change for another value of ϵ. More on this in
Section 6.

4.4 Other Resource-Reservation Policies

In the previous two subsections, we proved that the policy RR-
OPT is optimal in terms of both maximizing the resource uti-
lization and JSE. However, there is a drawback associated with
RR-OPT. Namely, its main feature is that only the user with the
highest Ai will receive many PRBs, and hence will experience
a very high data rate, while all the other users will receive
only one PRB each. This leads to extremely low rates for most
users.6 Hence, the performance of three other resource-reservation
policies is considered here. These are: 1) equal-share of resources
(RR-ES), 2) resources are allocated directly proportionally to the
resource effectiveness of the users (RR-P), and 3) resources are
allocated inversely proportionally to the resource effectiveness of
the users (RR-IP).

4.4.1 Equal-share of resources (RR-ES)
With this policy, each user will in total have Ki = K

n PRBs
(reserved) in every frame. Therefore, from (7), it follows:

Result 4. Using the RR-ES policy, user i will have a constant
data rate of

Ui(ϵ) =
Kfi
n

=
K

nF−1
1
Ri

(1− ϵ)
, ∀i ∈ N . (31)

With this policy, users with higher resource effectiveness
(higher fi) will experience higher data rates.

5. The allocation policy in Result 2 is identical to that of Result 3.
6. Nevertheless, RR-OPT can serve as an indicator of the upper bound of

the resource utilization and JSE.

4.4.2 Users with higher resource effectiveness receive pro-
portionally more resources (RR-P)
In this case, the relation between the allocated resources for two
users is expressed as

Ki

Kj
=

fi
fj

, (32)

i.e., each user will receive the number of PRBs proportionally to
its resource effectiveness. Further, (32) yields

Kj = Ki
fj
fi
. (33)

Substituting (33) into
∑n

j=1 Kj = K , and solving for Ki, leads
to

Ki = K
fi∑n
j=1 fj

, ∀i ∈ N . (34)

Finally, from Ui(ϵ)
Ki

= fi(ϵ) and (34), the following result is
obtained:

Result 5. When allocating the PRBs according to the RR-P policy,
user i will receive the constant data rate of

Ui(ϵ) =
Kfi(ϵ)

2∑n
j=1 fj(ϵ)

, ∀i ∈ N . (35)

With this policy, users with good resource effectiveness (higher
fi) are rewarded, whereas there is a penalization for users with low
resource effectiveness (lower fi).

4.4.3 Users with worse channels receive proportionally
more resources (RR-IP)
In this case, for two users i and j, the number of PRBs allocated
to them satisfies the condition

Ki

Kj
=

fj
fi
, (36)

i.e., each user will receive the number of PRBs which is inversely
proportional to its resource effectiveness. This yields

Kj = Ki
fi
fj

. (37)

Next, substituting (37) into
∑n

j=1 Kj = K , and solving for Ki

yields

Ki = K

1
fi∑n

j=1
1
fj

, ∀i ∈ N . (38)

Finally, substituting (38) into Ui(ϵ)
Ki

= fi(ϵ) leads to:

Result 6. When allocating the PRBs according to the RR-IP
policy, user i will receive the constant data rate of

Ui(ϵ) =
K∑n

j=1
1

fj(ϵ)

, ∀i ∈ N . (39)

Result 6 shows that every user will receive the same constant
data rate under RR-IP. This policy penalizes users with good re-
source effectiveness because they receive fewer network resources
than users with low resource effectiveness so that everyone has the
same rate for the vast majority of the time.

Note: The levels of resource utilization achieved by RR-ES,
RR-P, and RR-IP can be compared among themselves, after
substituting the corresponding Ki policy into (13), and based on
that one can decide which policy to use for a given scenario. We
omit this analysis here. It can be found in our technical report [41].
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5 PERFORMANCE ANALYSIS FOR NO-
RESERVATION OF RESOURCES

When there is no reservation of resources for the users, the deci-
sion on what amount to allocate to every user is made dynamically
over time, depending on the channel conditions of all the users in
a given frame. The constraint on service outage with this approach
is

P

(
n∑

i=1

Ui

KRi
≤ 1

)
≥ 1− ϵ, (40)

or equivalently,

P

(
n∑

i=1

Ui

Ri
≤ K

)
≥ 1− ϵ. (41)

Determining a single set of maximum (constant) values
Ui(ϵ),∀i ∈ N , from the previous inequality is impossible, as
it is an under-determined inequality, i.e., one needs to determine n
unknowns from a single inequality. Nevertheless, we will approach
this problem in a slightly different way in order to obtain the
maximum constant rates for every user. It is worth mentioning
that now since the amount of allocated resources is not fixed
(no resource reservation), using the resource effectiveness does
not make sense. Therefore, in the policies that follow, a different
strategy is used to determine the maximum Ui for a given ϵ.

The main question that arises is: Knowing that frame ratio
(resource utilization) changes across frames, how does one decide
on the constant rate to guarantee to a user with probability 1− ϵ?

With this dynamic approach, solving any of the optimization
problems (8)-(10) or (20)-(22) is not feasible. Hence, regarding
this approach, the performance of two policies is considered: 1)
All users receive the same frame ratio on average (NR-EY), and 2)
users will have data rates proportionally to their average per-PRB
rates (NR-P). As will be seen in Section 6, both these dynamic
allocation policies outperform the optimal resource-reservation
policy in the level of resource utilization.

5.1 All Users Receive the Same Frame Ratio on Aver-
age (NR-EY)

The amount of resources (frame ratio) user i receives in frame t is

Yi(t) =

{
Ui

KRi(t)
,
∑n

i=1
Ui

KRi(t)
≤ 1

1
n ,

∑n
i=1

Ui

KRi(t)
> 1

In frames in which resources are not sufficient to provide the rate
Ui, the frame ratio is 1

n , i.e., every user will receive all the PRBs
for 1

n of the frame. In the frames in which the (different) constant
rates of all the users can be provided, if there is a requirement for
the average utilization ratio to be the same across all the users,
i.e., E[Y1] = . . . = E[Yn], for those frames it must hold (note
that in frames in which resources are not sufficient to provide
the constant rates to all the users, the resources are anyway split
among the users)

UiE
[
1

Ri

]
= const, ∀i ∈ N . (42)

Expressing (42) in terms of user 1, it follows that

Ui = U1 ·
E
[

1
R1

]
E
[

1
Ri

] , ∀i ∈ N . (43)

Substituting (43) for all the users in (41), and rearranging, the
following holds:

P

(
n∑
i

di
Ri

≤ K

U1

)
≥ 1− ϵ, (44)

where di =
E
[

1
R1

]
E
[

1
Ri

] .

The LHS of (44) is the CDF of the sum of independent random
variables di

Ri
. As is well known [39], the CDF of the sum of

independent random variables is the convolution of the CDF of
the first variable with the probability mass functions (PMF) of the
other variables. In this case, it would correspond to

F∑
i

di
Ri

(x) = F d1
R1

(x) ∗ p d2
R2

(x) ∗ . . . ∗ p dn
Rn

(x). (45)

The first RHS term of (45) transforms into

P
(
d1
R1

≤ x

)
= P

(
1

R1
≤ x

d1

)
=

15∑
k1=1

p1(rk1
)u

(
x− d1

rk1

)
,

(46)
where u(x) represents the Heaviside (unit) step function [42],
whose value is 1 for x ≥ 0. Otherwise, its value is 0. Further, for
the other RHS terms (i ̸= 1), it holds:

p di
Ri

(x) = P
(

1

Ri
=

x

di

)
=

15∑
ki=1

pi(rki)δ

(
x− di

rki

)
, (47)

where δ(x) represents the delta function [42], whose value is 1
only at x = 0. Otherwise, it is 0.

Before proceeding with (45), it should be pointed out that the
delta function is the unit element with respect to the operation of
convolution. Also, it holds that x(t) ∗ δ(t− t0) = x(t− t0) [42],
i.e., it shifts the function.

With the previous facts in mind, combining (46) and (47),
∀i ∈ N\{1}, into (45), and rearranging, the following is obtained:

F∑
i

di
Ri

(
K

U1

)
=

15∑
k1=1

. . .
15∑

kn=1

n∏
i=1

pi(rki)u

(
K

U1
−

n∑
i=1

di
rki

)
.

(48)
Obtaining U1 from (48) is not tractable. Nevertheless, there exists
a simpler way. As the CDF is an increasing function in K

U1
,

it follows that it is a decreasing function in U1. Therefore, as
maximum value of U1 should be taken the one for which (44)
reduces to a strict equality, i.e.,

F∑
i

di
Ri

(
K

U1

)
= 1− ϵ, (49)

which yields
U1(ϵ) =

K

F−1∑
i

di
Ri

(1− ϵ)
. (50)

Finally, substituting (50) into (43) yields:

Result 7. The maximum constant data rate that can be guaranteed
to user i in the cell for 1− ϵ of the time with the NR-EY policy is

Ui(ϵ) =
K

F−1∑
j

dj
Rj

(1− ϵ)
·

E
[

1
R1

]
E
[

1
Ri

] , ∀i ∈ N . (51)

Observing Result 7, one can infer that better channel condi-
tions (lower E

[
1
Ri

]
) imply a higher rate for user i. This is coherent

with the fact that, on average, all the users receive the same amount
of resources. Consequently, the user with better channel conditions
experiences a higher data rate.
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Given that for ϵ of the time the data rates Ui cannot be
provided, and then all the resources are split among the users
(utilization is 100%), the average resource utilization with this
policy is

E

[
n∑

i=1

Yi(ϵ)

]
NR-EY

= ϵ+(1−ϵ)
n∑

i=1

E

[
Ui(ϵ)

KRi

∣∣∣∣∣
n∑

i=1

Ui(ϵ)

KRi
≤ 1

]
.

(52)
The second RHS term in (52) corresponds to the frames in which
resources are sufficient to provide the constant rates Ui when the
utilization is less than or equal to 100%. As average utilization is
the same for all the users, (52) transforms into

E

[
n∑

i=1

Yi(ϵ)

]
NR-EY

= ϵ+
(1− ϵ)n

K
E

[
Ui(ϵ)

Ri

∣∣∣∣∣
n∑

i=1

Ui(ϵ)

Ri
≤ K

]
,

(53)
where Ui(ϵ) are obtained using (51). The previous expectation
part leads to

E

[
Ui

Ri

∣∣∣∣∣
n∑

i=1

Ui

Ri
≤ K

]
=

∑r15
rki

=r1
· · ·
∑r15

rkn≥yn

Ui

rki

∏n
i=1 pi(rki

)

P
(∑n

i=1
Ui

Ri
≤ K

) ,

(54)
where yn = Un

K−
∑n−1

i=1
Ui
rki

. Note that the denominator of the RHS

of (54) is simply (assuming the network is pushed to operate to
the maximum values of Ui until the rate constraint holds)

P

(
n∑

i=1

Ui

Ri
≤ K

)
= 1− ϵ. (55)

In terms of yn, that value was obtained in the following way: For a
given realization of (R1, . . . Rn−1), say (rk1

, . . . , rkn−1
), for the

realization of Rn = rkn
, given that the expectation is conditioned

upon
∑n

i=1
Ui

Ri
≤ K , it follows

Un

rkn

≤ K −
n−1∑
i=1

Ui

rki

, (56)

which leads to

rkn
≥ Un

K −
∑n−1

i=1
Ui

rki

= yn. (57)

A similar expression is obtained for other values in the lower
bound of the corresponding summation term.

Substituting (54) into (53), for the average utilization it holds

E

[
n∑

i=1

Yi

]
NR-EY

= ϵ+
n

K

r15∑
rki

=r1

· · ·
r15∑

rkn≥yn

Ui

rki

n∏
i=1

pi(rki
).

(58)
Finally, substituting (51) into (58), the following result is

obtained:

Result 8. The average utilization of network resources with the
NR-EY policy is

E

[
n∑

i=1

Yi

]
NR-EY

= ϵ+
nE
[

1
R1

]∑r15
rki

=r1
· · ·
∑r15

rkn≥yn

∏n
i=1 pi(rki

)

rki

E
[

1
Ri

]
F−1∑

i
di
Ri

(1− ϵ)
.

(59)

Result 8 suggests that the lower the value of F−1∑
i

di
Ri

(1 − ϵ),

the higher the utilization of network resources is.

5.2 Users with Better Channel Conditions Receive Pro-
portionally Higher Data Rates (NR-P)
With this policy, the relation between the data rates of two users
is expressed as

Ui

Uj
=

E[Ri]

E[Rj ]
, (60)

i.e., each user will receive a data rate that is proportional to its
first moment of per-PRB rate. Adapting (60) with respect to user
j = 1, the following holds:

Ui = U1ei, ∀i ∈ N , (61)

where ei =
E[Ri]
E[R1]

. Combining (61) into (41) leads to

P

(
n∑

i=1

ei
Ri

≤ K

U1

)
≥ 1− ϵ. (62)

The remainder of the procedure for deriving the maximum value
of U1(ϵ) is the same as when obtaining (50), yielding

U1(ϵ) =
K

F−1∑
i

ei
Ri

(1− ϵ)
. (63)

Finally, substituting (63) into (61) results in:

Result 9. The maximum constant rate that can be guaranteed to
user i in the cell for 1− ϵ of the time with NR-P is

Ui(ϵ) =
K

F−1∑
i

ei
Ri

(1− ϵ)
· E[Ri]

E[R1]
, ∀i ∈ N . (64)

In a similar vein with NR-EY, the average utilization of
network resources when using NR-P is

E

[
n∑

i=1

Yi(ϵ)

]
NR-P

= ϵ+(1− ϵ)
n∑

i=1

E

[
Ui(ϵ)

KRi

∣∣∣∣∣
n∑

i=1

Ui(ϵ)

KRi
≤ 1

]
,

(65)
or equivalently,

E

[
n∑

i=1

Yi(ϵ)

]
NR-P

= ϵ+
1− ϵ

K

n∑
i=1

E

[
Ui(ϵ)

Ri

∣∣∣∣∣
n∑

i=1

Ui(ϵ)

Ri
≤ K

]
.

(66)
Substituting (54) into (66) leads to

E

[
n∑

i=1

Yi

]
NR-P

= ϵ+

∑n
i=1

∑r15
rki

=r1
· · ·
∑r15

rkn≥yn

Ui

rki

∏n
i=1 pi(rki

)

K
(67)

Finally, substituting (64) into (67) yields:

Result 10. The average utilization of network resources with the
NR-P policy is

E

[
n∑

i=1

Yi

]
NR-P

= ϵ+

∑n
i=1 E[Ri]

∑r15
rki

=r1
· · ·
∑r15

rkn≥yn

∏n
i=1 pi(rki

)

rki

E[R1]F
−1∑

i
ei
Ri

(1− ϵ)

(68)

Because of the complex interplay of E[Ri] and E
[

1
Ri

]
on

the one hand, as well as F−1∑
i

di
Ri

(1 − ϵ) and F−1∑
i

ei
Ri

(1 − ϵ) on

the other, it is difficult to analytically predict under what channel
conditions the utilization will be higher with NR-P than with NR-
EY and vice versa.

Substituting (59) and the corresponding data rates achieved
with NR-EY into (4), JSE for NR-EY is obtained. Similarly,
JSE for NR-P is obtained by substituting (68) and the corre-
sponding data rates into (4).
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TABLE 2: Per-PRB rates and the corresponding probabilities for every user from the Republic of Ireland trace [43]

R (kbps) 48 73.6 121.8 192.2 282 378 474.2 612 772.2 874.8 1063.8 1249.6 1448.4 1640.6 1778.4
p1(rk) 0 0 0 0 0 0 0.01 0.05 0.11 0.13 0.14 0.18 0.06 0.11 0.21
p2(rk) 0 0 0 0 0 0.01 0.02 0.06 0.13 0.14 0.2 0.21 0.07 0.09 0.07
p3(rk) 0.01 0 0 0 0 0.01 0.01 0.02 0.06 0.13 0.17 0.18 0.08 0.18 0.15
p4(rk) 0 0 0 0 0 0.02 0.03 0.13 0.06 0.2 0.32 0.11 0.01 0.09 0.03
p5(rk) 0 0 0 0 0 0 0.04 0.07 0.13 0.17 0.22 0.2 0.05 0.06 0.06
p6(rk) 0 0 0 0 0.01 0.03 0.11 0.12 0.19 0.15 0.15 0.12 0.05 0.04 0.03
p7(rk) 0 0 0 0 0 0 0.04 0.07 0.13 0.17 0.22 0.2 0.05 0.06 0.06
p8(rk) 0 0 0 0 0.01 0.03 0.11 0.12 0.19 0.15 0.15 0.12 0.05 0.04 0.03

In Section 6, results for the variability of data rates and
resource utilization for these policies will be shown, and also their
performance will be compared against other approaches.

Note that it is completely inefficient to provide higher data
rates to users with worse channel conditions, and also unfair to
users with good channel conditions. Therefore, we do not pursue
that policy here.

The analyses derived in the paper assume there is no link
outage. If the connectivity drops when a UE is supposed to send
its CQI, the BS could assume the value of the last received
CQI from that UE in making the resource allocation decision,
or it can exploit the knowledge of the channel statistics. It is
also worth pointing out that the computational complexity for
both approaches can be shown to be O(n2), hence, scalability
is guaranteed.

6 PERFORMANCE EVALUATION

First, the simulation setup and the measurement setup are de-
scribed. Then, our results are validated using our own built system
relying on OpenAirInterface. This is followed by results related
to both approaches (resource reservation and no reservation)
for different policies, and comparisons with other state-of-the-
art techniques. Finally, the outcomes from a practical use-case
scenario are presented.

6.1 Simulation Setup
For input parameters, we used a 5G trace with data measured in
the Republic of Ireland, as this is the best data trace available to
date. These traces can be found in [44], with a detailed description
in [43], and a statistical analysis in [17]. The parameter of interest
from the trace is CQI with 15 levels (with data showing a certain
degree of correlation), which serves to determine the per-PRB rate
of a user in a frame. These measurements were conducted for
one user, but on different days, for different applications, both
for the cases when the user was static and moving around. To
mimic the dynamic nature of these users, we picked data for eight
different days when the user was moving around and represented
them in our analysis as eight different users in the same cell. It
should be mentioned that we could not find any trace with CQI
data in a 5G network for multiple users simultaneously, despite
our comprehensive search. Based on the frequency of occurrence
of a per-PRB rate for every user, the corresponding per-PRB rate
probabilities were obtained (Table 2). 7

The frame duration is 10 ms. The subcarrier spacings of
15 KHz and 30 KHz are considered, with 12 subcarriers per PRB.

7. Evaluations with different configurations have been conducted with con-
clusions remaining unchanged compared to the presented results. Due to space
limitations, we omit showing other results.

Hence, in scenarios corresponding to the first case the PRB width
is 180 KHz, whereas in the others it is 360 KHz. In 30 KHz
scenarios, the number of PRBs is 2738 [24]. The simulations are
conducted in MATLAB R2022b.

6.2 Measurement Setup

In order to validate the theoretical results presented in the previous
sections, here details are provided with respect to the measurement
setup. Our setup is based on the OpenAirInterface architecture [9],
which resembles the cellular network infrastructure. More specifi-
cally, our setup is split into three parts, namely core network, BS,
and UEs. For our measurements, the 4G version of OpenAirInte-
face core [45] is utilized due to its stability compared to the 5G
counterpart as well as the fact that the choice of the core network
does not alter the decision of the scheduling policies in RAN.
Furthermore, in this work, for the BS and UEs, the emulation
mode of OpenAirInterface based on the mosaic5g-oai-sim
branch [46], [47] is used. The rationale for this choice is twofold.
Firstly, the mosaic5g-oai-sim possesses a realistic wireless
channel model based on 3GPP standardization and secondly, it
renders an easier deployment and assessment of results with
realistic UE traces but also enables reproducibility. Within the
BS, several UEs can be created and depending on the scheduling
policy running at the BS, 25 PRBs are shared among eight UEs.
Similar to the OpenAirInterface tutorials (see [48] for details), we
measure the throughput of each UE within a BS using iperf [49]
every 1 s, whereas measurements are performed for 1200 s. The
subcarrier spacing supported by our system is 15 KHz. To match
the OpenAirInterface deployment, the subcarrier spacing in the
validation part (Section 6.3) is 15 KHz. In the other scenarios, the
subcarrier spacing (in the simulations) is assumed to be 30 KHz,
to distinguish the 5G from the 4G setup.

In our setup, an Intel(R) Core(TM) i7-7700T CPU @ 2.9 GHz
is used for both OpenAirInterface BSs and the core network
operation. The PC that operates the BS contains four physical CPU
cores and 16 GB of RAM, whereas the core network contains one
CPU and 4 GB of RAM. The operating system is Ubuntu 16.04.04
LTS with 4.4.0-116-generic kernel.

6.3 Validations

Some of the analytical results obtained in this paper for throughput
and resource utilization are validated in this subsection.

Apart from realistic measurements provided with our Ope-
nAirInterface setup, we further verify our theoretical findings with
simulations. In order to do that, the input simulation parameters
need to match with those of the measurements.

8. Higher subcarrier frequencies pertain to the mmWave communications,
which are not considered in this work.
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(c) ϵ = 0.05

Fig. 3: Validating the results for the throughput with RR-ES (a), RR-P (b), and RR-IP (c) for different values of ϵ.
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Fig. 4: Validating the results for the average resource utilization with RR-ES (a), RR-P (b), and RR-IP (c) for different ϵ.

TABLE 3: Sum rate (Mbps) for the scenarios of Fig. 3

Policy Theory Simulations Measurements
RR-ES (ϵ = 0.01) 3.32 3.32 3.33
RR-P (ϵ = 0.03) 4.26 4.26 4.31
RR-IP (ϵ = 0.05) 3.48 3.48 3.47

The simulation environment consists of a single BS and eight
UEs, whose CQI distributions are given in Table 2, from which
also the conversion between the UE CQI and per-PRB rate is
obtained. In total, there are 25 PRBs shared among UEs. For every
UE within the BS, a list that contains a CQI value for the UE
according to its CQI distribution is created. Since the BS possesses
the information about all CQIs at each point and depending on the
scheduling policy, the resources are distributed among UEs. The
final throughput is calculated based on the CQI in the list entry
and the applied policy.

Once the measurements and simulations have been performed
for each ϵ, the corresponding throughput of each UE is assessed
and then compared with the corresponding theoretical values. The
list of the measured and simulated throughput for each UE is
sorted in descending order. Afterward, for each ϵ, the respective
point within the list is captured for each policy.

Fig. 3 shows the results for the achievable rate with RR-ES
(for ϵ = 0.01), RR-P (ϵ = 0.03), and RR-IP (ϵ = 0.05) for
all eight users. The analytical results are obtained using (31),
(35), and (39) accordingly for the corresponding policy. As can
be observed, there is a good match among analytical, simulation,
and measurement results in all cases. Table 3 summarizes the sum
throughput for these scenarios.

Having demonstrated the effectiveness of our theoretical
model with measurements and simulations for the resource-
reservation policies in terms of throughput, we further evaluate
each policy’s resource utilization in Fig. 4. Similarly to the
previous scenario, we provide not only simulation results but

also measurements to verify the theoretical results, obtained using
(13) accordingly, for each of the three policies with different
outage probabilities. As can be observed, our theoretical values
match closely the simulation and measurement results. Another
observation is that increasing the outage leads to an increase in the
utilization level. Due to space limitations, other validation results
are not shown. In all cases, there is a match between the three
types of results (theory, simulations, and measurements).

6.4 Resource-Reservation Policies
First, we look at the maximum values that can be obtained for
the resource effectiveness of all eight users. From now on, the
subcarrier frequency is 30 KHz. Fig. 5 shows the results for
an outage of ϵ = 0.03. Users 1-3 have the highest resource
effectiveness, whereas users 6 and 8 have the lowest. The reason
is that users 1-3 for at least 97% of the time have at least a per-
PRB rate of r7, while users 6 and 8 have for at least 97% of the
time a per-PRB rate of at least r5. If RR-ES is used, each user
would have a data rate of K/8 times its resource effectiveness
from Fig. 5. Fig. 6 shows the values of resource effectiveness
when ϵ increases to 0.05. Now, user 3 alone has the highest
resource effectiveness. Apparently, increasing ϵ can never decrease
the resource effectiveness for a user.

Another important outcome is that for a given ϵ the user
with the highest average per-PRB rate is not necessarily the
user with the highest resource effectiveness. Namely, from Ta-
ble 2 one can find that the average per-PRB rate for user 6 is
E[R6] = 1.07 Mbps, whereas for user 7 it is E[R7] = 0.92 Mbps,
i.e., E[R6] > E[R7]. On the other hand, from Fig. 5 and Fig. 6
one can see that f6 < f7. This implies that resource effectiveness
is a function of the entire distribution of the per-PRB rate and ϵ,
and not only of the first-order statistics of channel conditions.

Next, the impact of outage probability on the four resource-
reservation policies - RR-ES, RR-P, RR-IP, and RR-OPT -
is explored. Fig. 7 illustrates the results for the sum of the
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coefficients of variation of data rates of each user. While a higher ϵ
provides a higher Ui, it also increases the coefficient of variation,
as more often there will be deviations from the constant value.
This conclusion propagates across the four policies. These policies
provide a very low sum of coefficients of variation. Note that there
are eight users, so for instance when ϵ = 0.03, each user will
roughly have a cV lower than 0.08 with RR-P, and even lower
with other policies. This is a rate that is characterized by very low
variance.

The resource utilization for the same policies and the same
values of ϵ is investigated next. Fig. 8 shows the results (expressed
in %). As can be observed from Fig. 8, increasing ϵ provides
higher resource utilization. The reason is the higher U which
requires more resources, whereas ϵ does not increase significantly.
Regarding the best policy, the highest resource utilization, up to
72%, can be achieved using RR-OPT, which is expected as it
is the solution to the optimization problem. However, the penalty
when using one of the other policies is not large, especially for
higher values of ϵ.

To complete the picture of resource efficiency for this approach
from both the operator’s and user’s perspective, the attainable
JSE values are investigated too. Fig. 9 portrays the results for
the same policies in terms of JSE, corroborating that RR-OPT
is indeed the solution to the optimization problem (20)-(22). As
for the other three policies, from Fig. 8, the resource utilization
is roughly the same (except for ϵ = 0.01), and given the lower
variability for RR-IP (see Fig. 7), the latter is the policy with the
second highest JSE.

6.5 No-Resource-Reservation Policies
While the rate variability is very low with the reservation policies,
the resource utilization is not satisfactorily high even with the

optimal policy. Therefore, the performance of the policies with
no reservation of network resources is looked at next. Fig. 10
illustrates the sum of the coefficients of variation vs. ϵ (the same
eight users) for the two no-reservation policies, NR-EY and NR-
P, as well as for the resource-reservation policy RR-OPT.

Note that, same as previously, increasing ϵ from 0.03 leads
to a higher Ui and higher sum of coefficient of variation. In
those frames in which the constant data rate cannot be provided,
the resources are split equally among the users. An interesting
outcome from Fig. 10 is that only for ϵ = 0.01, NR-P provides a
lower sum of cV ’s. For higher values of ϵ, NR-EY performs better
than the other no-reservation policy. The resource-reservation RR-
OPT outperforms heavily both no-reservation policies in terms of
lower variability. However, there is a price to pay for this outcome.
Namely, regarding resource utilization, whose results are depicted
in Fig. 11, it can be observed that both no-reservation policies
perform almost identically, with insignificant differences across
all considered values of ϵ but outperform RR-OPT on average
by more than 10%. The level of utilization increases considerably
with these policies, reaching a value as high as 85%, which is
much higher than with the optimal resource-reservation policies
(72%).

When it comes to JSE, RR-OPT outperforms both no-
reservation policies considerably. This is shown in Fig. 12. The
reason for such an outcome lies in the fact that the variability in
data rates is much lower with RR-OPT than with no-reservation
policies, and the advantage in terms of resource utilization of the
latter is lower than the variability penalization (from the definition
of JSE).

So far, we have compared the sum of the coefficients of
variations, the level of utilization of network resources, and JSE
for the six policies (four resource-reservation and two no-resource-
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reservation policies). But, what are the data rates provided by
these policies? First, we of the users is picked (user 5), and for
two of the outage probabilities, ϵ = 0.01 and ϵ = 0.05, the
corresponding data rates with all the policies proposed in this
paper are shown. Fig. 13 illustrates those results. Obviously, the
two no-resource-reservation policies outperform all the resource-
reservation policies. E.g., for ϵ = 0.01, the data rate provided
by NR-EY is at least 65% higher than with resource-reservation
policies. For ϵ = 0.05, the difference is at least 20%. It is
noteworthy mentioning that RR-OPT performs the worst for
user 5. The reason is that this user does not have the highest Ai

among its peers (according to Result 2). Therefore, user 5 always
receives only one PRB.

Motivated by the previous outcome, we further investigate the
impact of different policies on the rate across all the users. This is
done for ϵ = 0.05. Table 4 shows the results. As can be observed,
with RR-OPT user 3 experiences an extremely high rate (higher
than 200 Mbps) because it has the highest Ai, receiving almost all
PRBs, whereas the other users receive only one PRB each. There-
fore, despite providing the highest utilization and JSE among the
policies with (almost always) constant rates, RR-OPT is beneficial
only for the user with the highest Ai. The performance of other
users suffers severely under this policy. As expected, with RR-IP
all the users experience the same throughput. The third outcome
is that no-resource-reservation policies provide higher rates for
almost all users compared to the resource-reservation policies.

6.6 Comparisons with Other Approaches
One of the policies from each approach is chosen for com-
parison with other state-of-the-art resource allocation schemes.
From resource-reservation policies, RR-ES is selected. The reason
for not choosing one of the three other policies, including RR-
OPT, is that RR-ES provides the best trade-off between data
rates across all the users and resource effectiveness, expressed
through the sum of cV ’s, resource utilization, and JSE. From
no-resource-reservation policies, NR-EY is chosen as it provides
lower variability (in the majority of the cases) and higher rates
than NR-P for most of the users.

The performance of RR-ES and NR-EY is compared against
some benchmark models. For the latter, these state-of-the-art
policies are chosen:

• Non-consistent round-robin policy [24], [25]: Every user will
receive 1

n of network resources in every frame with no con-
sistent rates guaranteed but with full utilization. Obviously,
the resource utilization, in this case, is 100%.

• The same consistent rate to everyone [6].

TABLE 4: Data rates with different policies for ϵ = 0.05

User RR-ES RR-P RR-IP RR-OPT NR-EY NR-P
1 21.04 21.55 20.1 0.61 31.57 21.36
2 21.04 21.55 20.1 0.61 28.47 23.78
3 26.55 34.3 20.1 206.96 27.25 21.08
4 21.04 21.55 20.1 0.61 27.25 26.25
5 21.04 21.55 20.1 0.61 27.38 24.87
6 16.3 12.94 20.1 0.47 27.25 29.03
7 21.04 21.55 20.1 0.61 27.38 24.87
8 16.3 12.94 20.1 0.47 27.25 29.03

• Reallocating unused resources to the same users after pro-
viding the same consistent rate to everyone, such that unused
resources are split equally among the users [7], [23].

• Best-CQI [36]: The user with the highest CQI in a frame
receives all the resources (or they are split equally if two or
more users have the same highest CQI).

• 5th percentile rate [35]: It guarantees that the data rate
across all users and all frames is in 95% of the realizations
higher than the given value.

Similar to the first benchmark, in the third and fourth bench-
mark models the resource utilization is 100% as well. So, for these
policies the focus is only on the coefficient of variation.

Fig. 14 shows the results for the sum of the coefficients of
variation of all the users vs. ϵ for the aforementioned policies,
RR-ES, and NR-EY. As can be observed from Fig. 14, RR-ES
provides the lowest values, outperforming the other policies by
several times. An order of magnitude higher values were achieved
with Best-CQI [36]; specifically, the sum of the coefficients of
variation is 21.79. We do not show this result in Fig. 14. As far
as 5th percentile rate [35] policy is concerned, the sum of the
coefficients of variation for this scenario was found to be 0.51,
which is still higher than for low values of ϵ with RR-ES.

On the other hand, the value of JSE with Best-CQI obtained
via simulation was 4.59, which is almost two orders of magnitude
lower than with RR-OPT (see Fig. 12). Higher values of JSE
are achieved with 5th percentile rate policy; specifically, 155.93.
The reason lies within the low values of coefficient of variation
achieved with the latter. However, this value, as can be observed
from Fig. 12 is lower than the highest value of RR-OPT.

Finally, Fig. 15 shows the utilization of network resources
for RR-ES, NR-EY, and the same-consistent-rate-to-everyone
policy [6]. For the other policies, the results are not shown here
because all the resources are fully utilized. The results from
Fig. 15 show that NR-EY outperforms the other two policies for
all the values of ϵ, reaching a utilization level of up to almost
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85%. While the reallocation policy utilizes 100% of the resources,
it leads to poor performance in terms of data rate variability (as
shown in Fig. 14), being close to the policy with no consistency
in rate provisioning (round-robin). Also, it is worth mentioning
that the maximum achievable constant rate with the policy in
which every user receives the same consistent rate is 6.54 Mbps
for ϵ = 0.01 and 12.71 Mbps for ϵ = 0.05. Compared to the rates
from Fig. 13 and Table 4, these values are much lower than any of
the rates the policies proposed in this paper would provide, except
for RR-OPT that rewards the user with the highest Ai, whose data
rate outperforms that of [6] by almost two orders of magnitude.
This corroborates the prediction that providing different constant
rates, which we do in this paper, is more efficient than providing
the same constant rate to everyone.9

The reason why NR-EY performs much better than RR-ES
in terms of resource utilization and data rates is the dynamic
adjustment feature of the number of allocated PRBs depending
on the channel conditions in every frame, whereas RR-ES does
not have that flexibility in allocating resources.

To summarize, it is up to the operator to decide whether the
choice would be a resource-reservation or no-resource-reservation
policy. If the goal is to increase the level of resource utilization
(and provide higher rates to users), NR-EY should be the right
choice. If, on the other hand, users are very conservative in terms
of the rate variability, RR-ES is to be chosen as the resource
allocation policy.10

6.7 Practical Scenario
Finally, the advantages offered by our approach in a practical
setup are shown. The focus is on the use case of real-time video
streaming. The performance of the eight users from Table 2 is
considered. A high video resolution, or equivalently a high and
stable playout rate, with very few video stalls (due to rebuffering
events) and little loss of information (due to the buffer being full
and discarding new packets/chunks) is one of the main indicators
of high QoE for mobile users when streaming live video. The
other important indicator for a good QoE is the small buffer
size (resulting in low latency of playing the video from the
occurrence of the event) needed to support that high playout rate.
The latter is achieved if the variation in data rates is kept small
(low coefficient of variation). Therefore, as the QoE metric in
this setup is considered the ratio of the playout rate that can be

9. The average resource utilization with 5the percentile rate is lower than
70%.

10. When running the simulations, the results were obtained on the order of
µs.

guaranteed and the size of the buffer such that no more than 5%
of the packets are lost and no more than 5% of the time the video
stalls, i.e.,

QoEi =
Up,i

Bi
, (69)

where Up,i denotes the (constant) playout rate of user i, whereas
Bi is the required buffer size.

Performance should be compared when using our RR-ES,
NR-EY, and RR-OPT against two of the already mentioned
benchmarks: round-robin and the policy that provides the same
consistent rate to everyone [6]. Fig. 16 portrays the results for the
QoE of the eight users.

As can be observed from Fig. 16, the highest QoE is provided
by our NR-EY policy. The reason is that NR-EY provides data
rates with low variability, resulting in small buffer sizes, and high
resource utilization, leading to high data rates and subsequently,
to high playout rates. While RR-ES, as already shown, provides
very low rate-variability, the data rates achieved by this policy, due
to lower resource utilization levels, are considerably lower than
with NR-EY (see Fig. 13 and Table 4). RR-OPT performs worse
than NR-EY and RR-ES because all the users, other than the one
with the highest value of Ai (see (15)), experience very low data
rates, whereas user 3 (with the highest Ai) does not experience
considerably lower rate variability than with RR-ES and NR-EY.
The QoE with the policy in which everyone experiences the same
consistent rate [6] is lower, mostly because users experience low
data rates (12.71 Mbps in this scenario), whereas their buffer sizes
are not lower than with RR-ES and NR-EY, due to the higher
coefficient of variation of their data rates (see Fig. 14 for ϵ =
0.05). On the other hand, while the round-robin policy [24] indeed
provides higher data rates, especially for users with better channel
conditions (the average can go up to 43 Mbps in this scenario), the
variance of data rates is much higher with this policy, resulting in
considerably larger buffers needed to support those high playout
rates. Consequently, the QoE values with round-robin are lower
than with the other four policies considered in this scenario.

7 CONCLUSION

This paper considered the problem of minimizing the rate vari-
ability across all mobile users in a cell while effectively utilizing
network resources. To that end, two approaches were considered.
In the first one, every user is allocated fixed resources (resource
reservation). The second approach is dynamic, and resources
are allocated differently across frames (no resource reservation).
For each of the approaches, different allocation policies were
proposed, and the corresponding (almost at all times) constant data
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rates and the level of resource utilization were derived. For the
resource-reservation approach, four policies were considered in
total, one of which (RR-OPT) was derived as the solution to two
optimization problems, with the objective to maximize the level of
resource utilization and to maximize joint satisfaction efficiency.
The other three resource reservation policies allocate resources
proportionally to the resource effectiveness of users (RR-P),
assign resources equally to all the users (RR-ES), and allocate
resources inversely proportionally to user’s resource effectiveness
(RR-IP). For the no-resource reservation approach, two policies
were considered. In the first policy, all the users receive the same
frame ratio on average (NR-EY), whereas in the second, users
will have data rates proportionally to their average per-PRB rates
(NR-P). The performance of these policies was compared in terms
of the sum of the coefficients of variation of data rates of all the
users, the average utilization of network resources, and the joint
satisfaction accuracy (which combines the previous two aspects).
The results were validated using measurements conducted on
OpenAirInterface and simulations run on a 5G dataset. Results
show that our policies outperform other state-of-the-art approaches
considerably by minimizing the rate variability and reducing the
level of wasted resources. Also, we corroborate that no-reservation
policies provide higher data rates and higher resource utilization
than resource-reservation policies but at the expense of higher
variability in data rates.

As part of our future work, we plan to consider the problem of
minimizing the coefficient of variation of data rates in mmWave
networks and to consider the general problem of providing α-
fairness across all the users in the cell.
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