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Abstract—Mobility Management in 5G is challenging due to
the usage of high frequencies and dense cell deployments. This
often results in frequent handovers for users, causing disruptions
in transmission and reception and adversely affecting network
capacity. The crucial task is to integrate handover decisions with
resource allocation, ensuring the target base station guarantees
the minimum required user rate while optimizing metrics that are
essential for the operator, such as network sum throughput. The
dynamic allocation of resources to BSs, facilitated by Software-
Defined Radio Access Network (SD-RAN), emerges as a solution
for efficient resource utilization. This paper aims to maximize
network sum throughput, ensure a minimum user rate, and
minimize handovers. We adopt a two-level approach, integrating
resource allocation and mobility management using SD-RAN.
This is modeled as an integer nonlinear program, and by relaxing
it, we obtain an upper bound. Given the NP-hard nature of
the problem, we introduce two heuristics (deterministic and
probabilistic) which yield near-optimal user-to-BS assignments
and efficiently allocate resources to serving BSs and end users.
Our proposed algorithms outperform state of the art, significantly
reducing the handover rate while remaining within 2% of the
optimum, with user rate satisfaction reaching 99%.

Index Terms—Handover, mobility management, SD-RAN, 5G.

I. INTRODUCTION

Software-Defined Radio Access Networks (SD-RANs) were
proposed for the first time in 5G networks to enhance their
flexibility and performance [1]. In this architecture, the control
plane functions are decoupled from the data plane and are
shifted to centralized entities known as SD-RAN controllers.
This separation allows for more flexibility, efficiency, and dy-
namic management of resources in the Radio Access Network
(RAN) [2].

Mobility management is one of the functions in 5G
that can benefit from SD-RAN. In Ultra-Dense Networks
(UDNs) [3], [4], mobility management becomes more chal-
lenging, and the traditional LTE/5G handover approach per-
forms poorly due to the handling of numerous cells and users.
Consequently, users may encounter issues such as handover
failures, unnecessary back-and-forth handovers (referred to as
ping-pong handovers), and an increase in signaling related to
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mobility. These challenges contribute to increased mobility-
related latency and service interruptions. To address these is-
sues and fully leverage the advantages of UDNs, the separation
of control and data planes in Software-Defined Networking
(SDN) appears to be an effective solution [3]. This becomes
even more pronounced in later releases of 5G-advanced, where
novel mobility solutions are expected to optimize multiple
metrics such as interruption time, mobility robustness, and
throughput [5].

In a traditional RAN, each Base Station (BS) is configured
with a predetermined set of resources (static assignment)
that can be allocated to the users within its coverage area.
Differently, in SD-RAN, the controller has a broader view
of the network and can assign the resources to BSs based
on the current distribution of users in the network, as well
as their channel conditions. Additionally, SD-RAN allows the
controller to re-assign the resources among BSs instead of
performing handovers, thus, facilitating mobility management.
Handovers are often necessary not because the user leaves the
coverage of the serving BS, but because there is a better BS
(in terms of signal strength in case of the baseline handover
or in terms of the user rate in our approach presented later).
So, instead of a handover that causes a Handover Interruption
Time (HIT), the user might stay connected to the serving BS
when their channel conditions degrade, but are still acceptable.
This is especially beneficial when a user experiences a short
channel degradation, e.g., due to intermittent blockage of Line
of Sight (LoS).

Further, the possibility of global knowledge in SD-RAN
empowers the controller to take into account the channel
conditions and requirements of all users. In the conventional
LTE/5G handover algorithm [6], the serving BS must initiate
a request before a handover to the target BS to verify if it
possesses enough resources for accommodating the user. If
the target BS has the necessary resources, it responds with an
acknowledgment. However, there is no mechanism to switch
a user to another satisfactory BS to accommodate a newly
arrived user, either to maximize certain utility or meet the
user’s rate, in the existing handover approach.

Therefore, optimizing handover decisions and minimizing
their occurrence is of utmost importance. This goal is achieved
by strategically assigning each user to the most suitable BS,
as well as dynamically allocating Physical Resource Blocks
(PRBs) to BSs according to the distribution of users and their



channel conditions. Different approaches have already been
presented to reduce handover rate [4], [7], [8]. But, they suffer
from certain shortcomings, either as being too challenging to
implement or not considering all the causes for user handovers.
For instance, in [7], the main triggering-event thresholds are
based on the speed of the users, without taking into account the
LoS blockages. Also, the user assignment should not be based
solely on the signal-related metrics, because this may lead to
overcrowded cells. In prior works, only resource allocation
from BSs to the users is considered [4], [9], while the resources
at every BS remain fixed. Modern networks should be able
to adapt to user demands dynamically and have ideally the
exact amount of required resources available without over- or
under-provisioning. This can be achieved by utilizing SD-RAN
to perform joint mobility management and two-level resource
allocation.

Providing a smooth operation of cellular networks, with sat-
isfied users who do not often experience service interruptions,
is challenging, mainly due to the limited network resources
and the dynamic nature of channel characteristics [10]. Also,
the cellular operator aims at assigning users and allocating
resources to the users so that the resources across different BSs
are fully utilized to maximize the utility. Hence, of particular
importance is to determine the number of PRBs a BS should
be assigned at every time slot, as well as the number of PRBs
every user should be assigned and with which BS should the
user be associated.

Several important questions related to highly efficient mo-
bility management in 5G networks arise:

• What is the policy that performs joint mobility manage-
ment and two-level resource allocation with the goal of
maximizing the sum throughput in the network, while
satisfying user’s rates and reducing handover rate?

• How does this approach perform compared to the con-
ventional baseline and state-of-the-art algorithms?

To answer these questions, we model our problem aimed
at reliably capturing system behavior, with the objective of
optimizing network sum throughput (operator’s Key Perfor-
mance Indicator (KPI)) and guaranteeing a minimum rate to
every user (end user’s KPI). The main novelty lies in the
utilization of a centralized controller, such as SD-RAN, for
mobility management in 5G. We allocate the resources to
the BSs dynamically using SD-RAN, and our approach is
3GPP-compliant with a minimal change in the signaling flow.
Due to the complex nature of the problem, besides using
a solver (Gurobi), we find an exact transformation of the
original Integer Nonlinear Program (INLP) into an Integer
Linear Program (ILP). Then, we relax the problem into a
linear one and provide an upper bound in polynomial time.
Finally, we propose two approaches on how to convert a Linear
Program (LP) solution into a solution for the original problem,
which can be obtained in polynomial time. Specifically, our
main contributions are:

• We provide a solver-based solution to the optimization
problem of jointly performing two-level resource alloca-

Fig. 1: Illustration of the system model.

tion and mobility management.
• We provide the exact transformation of the nonlinear

integer problem into an integer linear one, and then relax
the integrality constraints. We provide a formulation of
a linear problem that provides an upper bound to the
original NP-hard problem.

• We propose two approaches on how to round the values
of relaxed decision variables back to integer and obtain
a solution for INLP/ILP from a solution for LP. Our
approaches using SD-RAN perform close to the optimum,
reduce significantly the handover and ping-pong handover
rates while simultaneously achieving a high user rate
satisfaction compared to the baseline solutions.

II. PROBLEM FORMULATION

We present the system model first and then provide the
optimization formulation.

A. System Model

The network consists of multiple BSs, which are controlled
by a central controller. The sets U and B denote the sets of all
users and BSs in the network, respectively. Furthermore, we
consider a two-tier scenario with two types of BSs: macro and
micro: B = Bmacro ∪ Bmicro. The system model is depicted
in Fig. 1. We assume a similar network architecture as in [3],
where the controller performs two tasks: mobility management
and admission control.

The controller allocates PRBs to BSs and their connected
users from two pools, one for each BS type (macro and micro).
One PRB (the unit of resource allocation in 5G) is defined as
12 consecutive subcarriers in the frequency domain and one
slot in the time domain. Macro BSs have µ = 1 with a
subcarrier spacing of 30 kHz, while micro BSs have µ = 2
with 60 kHz. The bandwidth per PRB is 360 kHZ for macro
and 720 kHz for micro BSs.

We consider the problem over a time horizon of a duration
T time slots. We denote by Ru,b the rate per PRB of user
u ∈ U from BS b ∈ B. As such, Ru,b depends on the Signal
to Interference plus Noise Ratio (SINR) of the user, the type



of BS b and its bandwidth. We calculate Ru,b using Shannon’s
formula, as in [4], [9]. Let b′ denote the BS to which the user
u was connected at time step t − 1. If there was a handover
at time t, b ̸= b′. Otherwise, b = b′.

The focus is on an application that is throughput-sensitive,
such as 4K Ultra HD content [11]. Therefore, the aim is to
ensure that each user receives a minimum data rate, denoted
as ru that satisfies the traffic requirements. Latency-sensitive
applications are deferred to future work.

The decision variable xu,b is a binary variable that states
whether user u is connected to BS b or not. If user u is served
by BS b, xu,b = 1; otherwise, xu,b = 0. The other decision
variable ku,b denotes the number of PRBs the user u receives
from BS b, thus, ku,bRu,b is the rate of user u from BS b
(when xu,b = 1).

B. Optimization Formulation

In line with the objective of this paper, the formulation of
the optimization problem is as follows:

max
xu,b,ku,b

|U|∑
u=1

|B|∑
b=1

xu,bku,bRu,b · (1− ηu,b′,b) (1)

s.t.
|B|∑
b=1

xu,b = 1, ∀u ∈ U , (2)

|B|∑
b=1

xu,b · ku,b ·Ru,b · (1− ηu,b′,b) ≥ ru, ∀u ∈ U ,

(3)
|U|∑
u=1

|Bmacro|∑
b=1

xu,b · ku,b ≤ Kmacro, (4)

|U|∑
u=1

|Bmicro|∑
b=1

xu,b · ku,b ≤ Kmicro, (5)

xu,b ∈ {0, 1}, ∀u ∈ U , ∀b ∈ B, (6)

ku,b ∈ {0, 1, ...Kmacro}, ∀u ∈ U , ∀b ∈ Bmacro, (7)

ku,b ∈ {0, 1, ...Kmicro}, ∀u ∈ U , ∀b ∈ Bmicro. (8)

The objective (1) is to maximize network sum throughput
considering the overhead to account for rate reduction during
handover. Constraint (2) ensures that every user is served
by exactly one BS in every slot. Constraint (3) guarantees a
minimum rate to the user accounting for HIT. Constraints (4)-
(5) state that the total number of PRBs in the network for
macro BSs is limited by Kmacro, whereas for micro it is
Kmicro. Solving this problem is of significant importance as
it addresses the needs of both the operator (maximizing sum
throughput) and the users, who seek a smooth service with a
guaranteed rate and minimal mobility-related interruptions.

To account for the data rate reduction during a handover
due to HIT, we consider the handover overhead ηu,b′,b in the
objective (1) and constraint (3), which can be expressed in
terms of the current allocation xu,b and the previous allocation

x′
u,b as ηu,b′,b = (1 − x′

u,b) ·
THIT

Tslot
[4], where THIT is the

interruption time when there is a handover, and Tslot is the
slot duration.

Note that x′
u,b is fixed at the current time slot and is not

a decision variable. The problem is formulated considering
the previous user-to-BS assignment to be able to introduce
a penalty for a handover ηu,b′,b in the objective. Then, the
optimization problem is solved repeatedly at every time slot.

The problem (1)-(8) is an Integer Non-linear Program
(INLP). Therefore, it is NP-hard [12]. Because of that, we can
obtain the optimal user-to-BS assignment and the number of
PRBs allocated to every user only using a solver, like Gurobi,
assuming that the information about all users in the network is
available at the beginning of the slot. We refer to this solution
as INLP and evaluate its performance in Section VI.

In the next section, we transform the problem into an ILP
and then the latter into an LP to derive the upper bound of
the objective function in polynomial time.

III. PROBLEM TRANSFORMATION/RELAXATION

Here, we first transform the INLP into an ILP by performing
a variable replacement and adding some extra constraints.
Then, we relax the integrality constraint on decision variables.

A. Transforming INLP into ILP

Let us examine the possible values of the product xu,bku,b.
If xu,b = 0, the value of ku,b does not play a role and can be
assumed to be 0. The product equals 0 as well. Alternatively, if
xu,b = 1, the product reduces to ku,b. We replace the product
xu,bku,b with a new variable yu,b such that

yu,b =

{
ku,b, if xu,b = 1

0, otherwise.
(9)

The following constraints need to be added to the problem

0 ≤ yu,b ≤ Kmacro · xu,b, ∀u ∈ U ,∀b ∈ Bmacro, (10)

0 ≤ yu,b ≤ Kmicro · xu,b, ∀u ∈ U ,∀b ∈ Bmicro. (11)

The objective function (1) and constraints (3)-(5) become
linear in terms of the newly introduced decision variable yu,b:

max
xu,b,yu,b

|U|∑
u=1

|B|∑
b=1

yu,bRu,b · (1− ηu,b′,b) (12)

|B|∑
b=1

yu,b ·Ru,b · (1− ηu,b′,b) ≥ ru, ∀u ∈ U , (13)

|U|∑
u=1

|Bmacro|∑
b=1

yu,b ≤ Kmacro, (14)

|U|∑
u=1

|Bmicro|∑
b=1

yu,b ≤ Kmicro. (15)

Since yu,b is the product of the binary variable xu,b and integer
variable ku,b, it takes the same values as ku,b, specifically,

yu,b ∈ {0, 1, ...Kmacro}, ∀u ∈ U , ∀b ∈ Bmacro, (16)



yu,b ∈ {0, 1, ...Kmicro}, ∀u ∈ U , ∀b ∈ Bmicro. (17)

The ILP can be then expressed as (12), (2), (6), (10)-(11),
(13)-(17). This problem formulation is equivalent to the one
in Section II, and we show in Section VI that both problem
formulations lead to exactly the same result. So, the problem
formulation is simplified by replacing the non-linear terms
with their transformed linear expressions.

B. Relaxing the integer variables
To obtain an upper bound in polynomial time, we proceed

by relaxing xu,b from (6) and yu,b from (16)-(17). The decision
variables xu,b and yu,b then become

xu,b ∈ [0, 1], ∀u ∈ U , ∀b ∈ B, (18)

yu,b ∈ [0,Kmacro], ∀u ∈ U , ∀b ∈ Bmacro, (19)

yu,b ∈ [0,Kmicro], ∀u ∈ U , ∀b ∈ Bmicro. (20)

This transformation and relaxation provide an upper bound
to the original problem, denoted as LP. The LP formulation
is expressed as (12), (2), (10)-(11), (13)-(15), (18)-(20).

This is a linear optimization, which can be solved with an
off-the-shelf solver for linear programs, such as SciPy [13].
Utilizing LP allows us to efficiently establish an upper bound,
which can be used to assess the performance of the algorithms
introduced in the subsequent section. A reliable upper bound
provides a rapid assessment of how closely our solution’s
objective value approaches the optimum in polynomial time.

IV. PROPOSED APPROACHES

Our algorithms are developed by building upon LP dis-
cussed in Section III, after solving which the decision variables
xu,b and yu,b must be converted back to an integer value. We
propose two policies for this. We also introduce an additional
constraint to handle issues arising from allowing continuous
values for decision variables. Finally, we apply post-processing
to ensure that the constraints of the optimization problem are
not violated.

A. Avoiding mismatches in LP
Our simulations indicate that there are often “mismatches”

between xu,b and yu,b when decision variables are continuous.
For example, for user u, xu,b is close to 1 and the corre-
sponding yu,b = 0, while another xu,b that is almost 0 has
its corresponding yu,b set very high. These values of xu,b

and yu,b satisfy the constraints in LP, but the constraints be-
come violated after rounding the decision variables to integer.
Specifically, the minimum required rate constraint (13) and the
resource constraints (14), (15). Hence, to restrict the values of
xu,b and yu,b, we add the following constraint

0 ≤ xu,b ≤ yu,b, ∀u ∈ U ,∀b ∈ B, (21)

which states that resource amount yu,b cannot be set to a non-
zero value without setting the assignment variable xu,b to 1.

After adding constraint (21) to LP from Section III-B, the
values of yu,b and xu,b “match”, meaning that if BS b allocates
resources to user u (yu,b > 0), the corresponding xu,b ≈ 1.
This facilitates the conversion back to an integer.
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8. Reconfiguration complete

7. Random access
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target cell

Controller

2. Proposed dynamic
RA algorithm
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3.xu,b &  yu,b 3. xu,b &  yu,b

4. Allocate resources
to connected users 
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Fig. 2: Signaling diagram of the proposed approaches.

B. Rounding policies

1) Hard policy: Both decision variables, xu,b and yu,b, are
rounded to the nearest integer. This is a deterministic policy.

2) Soft policy: This approach adopts a probabilistic strat-
egy. In the first step, to round xu,b, a random value between
0 and 1 is sampled for each user at every time slot from a
uniform distribution. We sort the array of xu,b values for every
user from high to low. The likelihood of rounding an element
to 1 is determined by its value in the array; in other words,
the higher the value, the greater the probability of setting this
xu,b = 1. If the first xu,b is larger than the sampled value, we
round it to 1 and stop. Otherwise, we set the value of the next
xu,b to the sum of the first and the second xu,b values (hence,
the cumulative probability). The process is repeated until an
xu,b that is set to 1 is found.

Similarly, to convert yu,b, we select probabilitstically a value
from a distribution based on the weights calculated from the
proximity of the current decision variable value to its floor
and ceiling. For instance, if yu,b = 2.6, we round it to 3 with
a probability of 0.6 and to 2 with a probability of 0.4. Then,
we again need to apply some post-processing to ensure that
resources are not exceeded and user rates are satisfied.

C. Post-processing

Next, we implement post-processing on yu,b to prevent the
violation of the constraints, which consists of 5 steps.

In the first step, we solve LP expressed in Eqs. (12), (2),
(10)-(11), (13)-(15), (18)-(21) and round xu,b and yu,b using
either soft or hard policies, denoted as LP-Hard Decision
(LP-HD) and LP-Soft Decision (LP-SD), repeatedly. Then,
if constraints (14)-(15) are violated, we reduce accordingly
the number of PRBs allocated to the user (or users) with the
largest yu,b (corresponds to the users with the best channels
since our objective is to maximize the sum throughput) in
macro and micro pools. Next, if some resources are still
available, we allocate them to the user (or users) with the
best channel, which aligns with our objective. There might be
some resources available due to rounding down yu,b with any
of the policies.

In the third step, we compute the minimum number of PRBs
that is required to satisfy the user demand ru, given per PRB
rate Ru,b that is computed based on the channel between user
u and b at every time slot. Note that this is an integer value.



Then, we initialize multiple hash tables to store the data
and to be able to look it up easily when performing the
next operations, specifically, the mapping of BS pool to the
available extra PRBs that are not necessary to satisfy the
user rate in bs pool extra prbs (dynamically updated) and
bs pool extra prbs const (constant and used for reference),
as well as the mapping of the user ID to the extra number of
PRBs that it was allocated in user id y extra.

In the forth step, we loop over the users with unsatisfied
rate and try to satisfy it if there are available resources in
the pool of their serving BS. We also update the hash table
bs pool extra prbs that tracks in every pool.

In the last step, we need to subtract the resources that
we reallocated in the previous step from the users who
received more PRBs than necessary to satisfy the user rate
of unsatisfied users. If the hash tables are not the same,
specifically, bs pool extra prbs const ̸= bs pool extra prbs,
which means that some resources were reallocated in step
3. We iterate over the users and BS pools and balance the
resources to avoid the violation of resource constraints by
subsequently deducting the number of reallocated PRBs from
the user id y extra hash table. The reallocated PRBs are sub-
tracted from the extra PRB count of each user user id y extra,
which was sorted from high to low based on the number of
extra allocated PRBs. Since the objective is to maximize the
sum throughput, these are the users with the best channel
conditions in the macro and micro pools of BSs.

D. Complexity analysis

The complexity of the first step from Section IV-C is
O(|U| · |B|) because it requires rounding of every xu,b and
yu,b. Subsequent steps have a worst-case complexity of O(|U|)
except for the last step that requires sorting, thus, has a
complexity of O(|U|·log(|U|). The total complexity of LP-HD
and LP-SD algorithms becomes then O(|U|·|B|+|U|·log(|U|).

E. SD-RAN controller

Our approach reuses most of the signaling implementation
proposed by 3GPP in [6] and the signaling flow is presented in
Fig. 2. Users send their Measurement Reports (MRs) to their
serving BSs, which forward them to the SD-RAN controller,
where LP-HD and LP-SD are executed. Then, the controller
communicates the assignment and resource allocation deci-
sions to the BSs. To summarize, the controller needs to know
user SINR values to the neighboring BSs and user required
rates to make a decision at every time slot. We assume that the
controller “remembers” the previous user-to-BS assignment as
well as the total available resources at every BS. If a handover
decision is made, the BSs send a handover reconfiguration
message to the user. The serving BS does not need to send
an admission request to the target BS in case of a handover
because the controller has global knowledge about network
resources and informs the target BS if it should accept a
new user. We focus on the scenario with a single SD-RAN
controller, but it can be extended to a distributed control

plane scenario. Note that our approach is agnostic to mobility
patterns, as the user trajectory is transformed into SINR.

V. BASELINE MODELS

In this section, we describe the two baseline models against
which we are going to compare the performance of our
approaches later in Section VI.

A. SINR-based (Baseline) Handover

The user periodically measures the channel and sends the
measurement report to its serving BS, which contains the
signal strength of the serving and neighboring BSs. 3GPP
allows for periodic and event-triggered MRs [14]. We assume
that users signal their measured channels to their serving BSs
periodically. In the baseline handover algorithm, the network
makes handover decisions and signals them to the users [6].
Before reporting the measurements, the user applies Layer-
3 filtering and averages Reference Signal Received Power
(RSRP) or SINR values over 200 ms [6]. Based on these
measurements, the serving BS selects the target BS that should
be prepared for handover. The network initiates a handover
when a neighboring BS becomes better than the serving BS
by a certain margin (e.g., 3 dB) during a certain period of
time (e.g., during 320 ms), similarly to [9], [15]. The handover
and Radio Link Failure (RLF) rates greatly depend on these
handover parameters, and to achieve optimal performance,
they can be adjusted per user and per cell, considering the user
speed and other system- and user-related parameters. We use
SINR measurements to make handover decisions, hence, we
refer to this baseline algorithm as the SINR-based handover.

B. Adaptive handover parameter baseline

The authors in [8] adjust handover parameters, like the
handover margin (in dB) and Time-to-Trigger (TTT) (in ms),
based on user velocity. They propose to use two thresholds
to split users in different groups based on their speed. When
the calculated user velocity is up to 10 km/h, then they set
handover margin and TTT to 6 dB and 512 ms, respectively.
If the user velocity is in the range between 10 and 45 km/h,
then they set the handover parameters to 4 dB and 128 ms.
Finally, in case user velocity is above the second threshold
of 45 km/h, they select small handover parameters (2 dB and
32 ms) to speed up the handover process and avoid delayed
handovers that might result in an RLF.

VI. PERFORMANCE EVALUATION

First, we describe the simulation setup. Then, we present
results for a smaller network evaluated with 5G traces, which
is followed by results for a network with a larger number of
entities with simulated channels.

A. Simulation Setup

We use two types of data for the evaluation. First, we
evaluated the algorithms with 5G traces [16] for a small
scenario with 4 BSs (one macro and three micro) and 15 users
over 100 s. To the best of our knowledge, there are no traces
available for multiple BSs in the area for a large network,
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which are suited for mobility-related evaluations. Thus, in the
second case (for a larger network scenario) we consider a
two-tier network with urban channel models for macro and
micro cells, respectively, from 3GPP 5G Release 14 [17] and
simulate the channel for a higher number of BSs. In the latter,
we model the path loss and shadowing for LoS and no LoS
as in [17]. The large network consists of 10 BSs (3 macro
and 7 micro BS) and 50 users. We run the simulation over
1000 s. We refer to the first case as the small network scenario,
whereas to the second as the large1 network scenario. Random
Waypoint mobility model is used to generate the mobility-
related data [18] for pedestrian users, bikes, and cars for the
large scenario. The other simulation parameters are provided
in Table I. An RLF occurs when the user’s SINR falls below an
RLF Tout threshold during T310 timer. For the large scenario,
the frequency reuse factor is 3 for the baseline algorithms,
while in our algorithms (INLP, ILP, LP-HD, LP-SD) PRBs
are distributed among BSs within a common pool, meaning
that both macro and micro BSs draw upon resources from
their respective shared pool.

To illustrate the influence of the SD-RAN controller on
performance, we contrast the optimal approach with fixed and
dynamic allocation of PRBs to BSs. The method, employing
a fixed number of PRBs per BS, is referred to as INLP-fixed,
while the dynamic resource allocation strategy is denoted
as INLP. The proposed transformed problem is denoted as
ILP. The overall count of PRBs remains constant across

1We refer to this scenario as large to distinguish it from the small scenario
with no intention of implying how many users comprise a large network.
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Fig. 5: Impact of η on the objective function.

TABLE I: Simulation Parameters [6], [17]
Parameter Value

Carrier frequency (macro) 2.5 GHz
Carrier frequency (micro) 28 GHz
Channel measurement periodicity 10 ms
L3 filtering time constant 200 ms
Ping-pong window 3000 ms
HIT 80 ms
Handover preparation time 28.5 ms
Handover execution margin and TTT 3 dB, 320 ms

all algorithms. However, in INLP-fixed, PRBs are set at a
fixed value for each BS. In the dynamic approach, PRBs are
allocated to each BS every 100 ms, with both macro and micro
BSs having their respective pools of available PRBs. Then, we
compare our approaches (LP-hard and LP-soft), proposed in
Section IV, against INLP-Fixed and two baselines that were
explained in Section V. Finally, we provide a relaxed solution
(denoted LP), which is an upper bound to INLP.

B. Small network scenario with 5G traces

Fig. 3a shows the computed objective function from Eq. (1)
for the evaluated handover algorithms. These are box plots,
where the median is denoted as a horizontal line, the mean as
a black square, error bars show the minimum and maximum
values and empty circles show the outliers. INLP and ILP
achieve exactly the same objective value, which demonstrates
that we achieve the exact transformation from a non-linear into
a linear optimization problem as described in Section III-A.
One can notice a slight difference in some metrics between



Baselines 0.8 0.9 0.99
Handover Overhead (η)

0.0

0.1

0.2

0.3

0.4
H

an
do

ve
r R

at
e

SINR-based
Adaptive
ILP
LP-HD
LP-SD

(a)

Baselines 0.8 0.9 0.99
Handover Overhead (η)

0

20

40

60

80

100

U
se

r R
at

e 
Sa

tis
fa

ct
io

n 
(%

)

(b)
Fig. 6: Impact of the handover overhead η (the legend bar is provided in subfigure (a)).

INLP and ILP, e.g., handover rate in Fig. 3b is slightly
different, namely, 0.151 vs. 0.149. This happens because
there can be multiple optimal user assignments and resource
allocation decisions with INLP that lead to the same objective
value, but other KPIs such as handover rate can be different.
Moreover, the decision at the current slot impacts the decisions
in the next time slots because the previous assignment is
considered in the handover overhead ηu,b′,b.

The proposed algorithms LP-HD and LP-SD are within
1% of the ILP obtained with Gurobi (see Fig. 3a); they
even achieve a larger objective because they trade off user
rate satisfaction for the objective. They achieve a user rate
satisfaction of 96% (while ILP reaches 100%), as shown in
Fig. 3b. LP provides an upper bound to ILP because the
integrality constraints are relaxed. The relaxed and transformed
solution, LP, proposed in Section III-B, obtains the optimal
solution with an optimality gap of 2%. So, LP provides a
good insight on what the optimal value can be in polynomial
time. The adaptive handover baseline outperforms the SINR-
based baseline by 11%, while the proposed LP-HD and LP-
SD by 27%. Baseline approaches achieve a low user rate
satisfaction (SINR-based 78% and adaptive handover baseline
79%) because they do not consider available resources at the
target BS before a handover and do not consider the handover
overhead to compensate for HIT by allocating more resources
before/after the handover. LP-HD and LP-SD enhance the
user rate satisfaction by ≈ 18%, surpassing the baselines and
achieving a user rate satisfaction of ≈ 96%.

Finally, ILP with dynamic resource allocation to BSs using
SD-RAN elevates the objective function by 7% compared
to INLP-fixed, as depicted in Fig. 3a. While this percentage
might seem relatively small, it becomes crucial in resource-
constrained scenarios. As demonstrated later in this section,
it is challenging for INLP-fixed to find a feasible solution,
whereas ILP, with dynamic resource allocation, successfully
identifies a viable solution.

Dynamic resource allocation brings many other advantages
such as significantly lower handover and ping-pong handover
rates as shown in Figs. 3b (handover rates are shown per
user per second). The baseline algorithms have a very high
handover rate of ≈ 0.43, which implies that the user would

experience on average an outage of more than 2 seconds
every minute, while the proposed LP-HD algorithm achieves
a total HIT of 0.75 seconds. ILP reduces the handover rate by
≈ 65% compared to the baselines, while LP-HD by 62% and
LP-SD by 53%. Even though randomized rounding usually
performs well [19], due to the probabilistic nature, LP-SD has
a higher handover rate than LP-HD. Furthermore, the ping-
pong handover rate reduces by 75%, from 0.13 to 0.03 with
LP-HD compared to the baselines, so ping-pong handovers
are almost completely avoided with our approach. Reducing
handover and ping-pong handover rates reduces the signaling
in the network and increases user satisfaction because HIT is
reduced.

The optimal distribution of resources among micro BSs
varies significantly from one time slot to another, as illustrated
in Fig. 4 (for 80 time slots or 8 seconds). One reason for this
is that instead of performing a handover, the resources might
be allocated to the currently serving BS to satisfy the user’s
required rate as the handover and ping-pong handover rates
reduce with ILP by 17% and 32%, accordingly, compared to
INLP-fixed. Moreover, due to a poor channel or an unavoid-
able handover the user might require more resources to satisfy
its user rate, so more PRBs are allocated to the serving BS.

C. Impact of the handover overhead

Figs. 5-6 show the impact of the handover overhead on the
objective function, handover rate, and user rate satisfaction. As
expected, the objective value reduces with a larger overhead,
while the handover rate decreases, especially with the very
large handover overhead of 0.99. User rate satisfaction is
not impacted by the handover overhead. A larger overhead
implies a larger penalty in constraint (13), which decreases
the objective and reduces the handover rate. The reason is that
more resources are allocated to the user that is performing a
handover to satisfy its required rate instead of allocating them
to the BS with the best channel, or a handover is avoided at
the cost of less efficient resource utilization.

D. Resource-constrained scenarios

Fig. 7 displays the results for two resource-constrained
scenarios. In the first, (denoted as Fixed-1 and Dynamic-1,
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Fig. 7: Comparison between the Fixed and the Dynamic resource allocation with SD-RAN among BSs is conducted in two
scenarios, with the second scenario having only half of the resources of the first one. Note that with Fixed-2, the problem is
infeasible in 15% of the time slots.
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Fig. 8: The performance results for the large scenario.

which correspond to INLP-Fixed and ILP), it is challenging
for INLP-Fixed to find a feasible solution in all time slots.
In the second scenario, the number of resources in the micro-
pool is halved, and Fixed-2 cannot find a feasible solution in
15% of the time slots. For Fixed-2, we exclude those time
slots and depict the results only for the slots with feasible
solutions. In contrast, the Dynamic approach utilizes all traces.
The proposed dynamic approach enhances the objective by
7%, reduces the handover rate by ≈ 10%, and diminishes
the ping-pong handover rate by ≈ 20%. Crucially, SD-RAN-
enabled ILP identifies a feasible solution, meeting all user
requirements, a task in which INLP-Fixed falls short. This un-
derscores the rationale for deploying SD-RAN to dynamically
allocate resources to BSs.

E. Larger network scenario

Finally, we evaluate the proposed LP-HD and LP-SD algo-
rithms along with LP and the baseline approaches for a large
scenario. The observed trend aligns with the small scenario;
notably, the objective function sees an increase of 77% with
LP-HD and LP-SD compared to SINR-based baseline, while
the handover rate experiences a decrease of 52% with LP-
HD and LP-SD compared to the baselines. The current ping-
pong handover rate with SINR-based baseline is notably low,
however, LP-HD and LP-SD further diminish it by 70%.
LP-HD and LP-SD closely approach the upper bound LP,
with a marginal difference of less than 2%. The proposed
approaches enhance the user satisfaction, progressing from

23% with the SINR-based baseline to a remarkable 99% with
LP-HD and LP-SD approaches. These substantial improve-
ments underscore the significant advantage our approach offers
for effective mobility management and resource allocation in
wireless networks.

VII. RELATED WORK

Numerous works on mobility management have focused
on adapting handover parameters [8], performing joint re-
source allocation and handover management [4], [9], reducing
mobility-related signaling [20], [21] and using lower level sig-
naling for mobility [22]. In [21], the authors analyze in depth
mobility-related issues and propose a handover prediction
system to improve the quality of experience of mobile users.
Furthermore, their measurements show that frequent handovers
in 5G diminish throughput and deplete user batteries, causing
in the worst case a complete service outage.

Several approaches aimed at reducing handover rate by
setting the handover parameters based on some criteria [7], [8].
In [7], the suggestion is to adjust the handover margin and
TTT based on user speed and measured channel conditions.
Similarly, the authors in [8] propose dynamic adjustments
to handover parameters based on user speed, cell load, and
load balancing between neighboring cells. The authors in [23]
also propose a dynamic adjustment of TTT and handover
margin aimed at minimizing latency and enhancing overall
throughput. An intelligent approach using Deep RL (DRL) to



provide proportional fairness among users and perform user-
to-BS assignment with equal resource split among connected
users was proposed in [4]. The authors in [3] employ SDN
for the management of handovers, and their approach leads
to reductions in both delay and handover failures. However,
to our best knowledge, the gains of utilizing SD-RAN for
mobility management in cellular networks have not been
studied so far.

The concept of SD-RAN has gathered significant attention
in recent years. Early studies, such as [2] and [24], advocate
for transferring control decisions from the BS to a centralized
controller. These works highlight the increased flexibility
achieved through the adoption of SD-RAN.

The gains of enhanced overall throughput through dynamic
resource allocation to BSs under resource constraints using
SD-RAN were explored in [25]. Additionally, the investigation
into the advantages of SD-RAN flexibility in resource alloca-
tion, aiming to achieve proportionally fair resource distribution
among users, is presented in [26].

The works most closely related to ours in the realms of
mobility management and the utilization of SD-RAN in the
context of 5G are [4] and [25]. However, the authors in [4]
focus on a one-level resource allocation scenario, specifically
without SD-RAN, where the resources at every BS remain
fixed. On the other hand, we optimize the resource proportion
of every user and ensure a minimum rate guarantee for
every user to satisfy their Quality of Service (QoS) require-
ment. In [25], the authors propose a policy for achieving
proportionally-fair resource allocation among the BSs and
users, employing a two-level resource allocation - from the
controller to the BSs and then to the users. However, their
study does not consider mobility or handover management,
crucial components that are inherently connected with the
process of resource allocation.

VIII. CONCLUSION

In this paper, we considered the problem of joint mobility
management and two-level resource allocation using SD-RAN.
To that end, we formulated an optimization problem and trans-
formed it into a linear one. Because of the complexity of the
optimization problem, we proposed two near-optimal solutions
(hard and soft policies) and showed that our approaches signif-
icantly outperform other state-of-the-art baselines while being
very close to the optimal solution. Moreover, we provided an
upper bound that the objective function of the optimization
problem can achieve, which can be found in polynomial time,
and showed that our approaches are not far from it. In the
future, we plan to consider the allocation of computational
resources on top of the RAN PRBs and distributed control
plane.

REFERENCES

[1] X. Foukas, N. Nikaein, M. M. Kassem, M. K. Marina, and K. Konto-
vasilis, “Flexran: A flexible and programmable platform for software-
defined radio access networks,” in Proc. of ACM CoNEXT, 2016.

[2] A. Gudipati, D. Perry, L. E. Li, and S. Katti, “SoftRAN: Software
defined radio access network,” in Proc. of the second ACM SIGCOMM
workshop on Hot topics in software defined networking, 2013.

[3] T. Bilen, B. Canberk, and K. R. Chowdhury, “Handover management
in software-defined ultra-dense 5G networks,” IEEE Network, vol. 31,
no. 4, 2017.

[4] A. Prado, F. Stoeckeler, F. Mehmeti, K. Patrick, and W. Kellerer,
“Enabling proportionally-fair mobility management with reinforcement
learning in 5G networks,” IEEE Journal on Selected Areas in Commu-
nications, vol. 41, no. 6, 2023.

[5] Nokia, “Rock solid mobility innovations from 5G to 5G-
advanced,” June 2022, accessed on Jan, 2024. [Online]. Available:
https://onestore.nokia.com/asset/212564

[6] 3GPP, “NR; NR and NG-RAN Overall description; Stage-2,”
3rd Generation Partnership Project (3GPP), Technical Specification
(TS) 38.300, 3 2021, version 16.5.0. [Online]. Available:
http://www.3gpp.org/DynaReport/38300.htm

[7] A. Alhammadi, M. Roslee, M. Y. Alias, I. Shayea, S. Alraih, and
K. S. Mohamed, “Auto tuning self-optimization algorithm for mobility
management in LTE-A and 5G HetNets,” IEEE Access, vol. 8, 2019.
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