
Specification-Compliant Reachability Analysis for Autonomous Vehicles
Using On-the-Fly Model Checking

Florian Lercher and Matthias Althoff

Abstract— Compliance with the rules of the road is crucial for
the safe operation of autonomous vehicles. Previous work has
shown that one can expedite rule-compliant motion planning
by constraining the search space based on the reachable states
of the vehicle. We propose an algorithm to overapproximate
the states that a vehicle can reach while adhering to a linear
temporal logic specification. By integrating model checking into
reachability analysis, we can exclude many non-compliant states
early. Moreover, we only have to semantically split the reachable
set when necessary to decide the validity of the specification.
This significantly reduces the computation time compared to
existing approaches. We benchmark our approach in recorded
real-world scenarios to demonstrate its real-time capability.

I. INTRODUCTION

If autonomous vehicles are to be accepted by the broad
public, they need to drive safely and thus comply with the
rules of the road. To provide formal guarantees that an
autonomous vehicle does not violate the rules of the road,
they need to be formally specified. For the formalization of
complex traffic rules, temporal logics have emerged as the
language of choice [1]. In particular, [2], [3] formalize parts
of the German traffic law in metric temporal logic (MTL);
[4] uses linear temporal logic (LTL) for the same purpose.

© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

Motion planning subject to temporal logic specifications is
challenging, as it needs to respect both continuous constraints
originating, e.g., from the vehicle dynamics, and discrete
constraints arising, e.g., from the specifications [5]. By
determining the reachable set of a vehicle, we can nar-
row the search space for specification-compliant trajectories,
which facilitates the planning of intended [6] or fail-safe
trajectories [7] (see Fig. 1). The reachable set comprises
all states that the vehicle can reach while adhering to the
specifications. The algorithm presented in [8] computes the
reachable set subject to the simple specification “always
avoid collisions.” Irani Liu and Althoff [9] augment this
algorithm to handle arbitrary LTL specifications. To this end,
they split the reachable set with respect to every atomic
proposition in the specification at each step of the reacha-
bility analysis. Thus, they obtain a semantically annotated
reachability graph, from which they extract specification-
compliant driving corridors using model checking.

Splitting the reachable set along every proposition at every
step can significantly increase the number of sets to consider
in subsequent steps, leading to an increased computational

This work was supported by the German Research Foundation (DFG)
under grant numbers AL 1185/20-1 and GRK 2428.

The authors are with the School of Computation, Information and
Technology, Technical University of Munich, 85748 Garching, Germany.
florian.lercher@tum.de, althoff@tum.de

Ego
vehicle

Static
obstacle

Reachable
set

Sampled
trajectory

Fig. 1. Motivation: Sampling-based planning with reachable sets [6]. By
sampling only within the reachable set, a feasible trajectory is found faster
than with a naive approach (figure inspired by [6, Fig. 1b]).

effort. However, some splits are unnecessary because, typ-
ically, only some propositions are relevant at a given step
to decide the validity of the specification. For example,
given the specification “X holds eventually”, the propositions
in X are only relevant until X holds for the first time.
Moreover, since specification compliance is checked only
after the reachability analysis, one might explore large parts
of the state space that are only reachable when violating the
specification. Given the specification “Y never holds”, e.g.,
continuing to explore from states satisfying Y is pointless. To
address these issues, we propose to perform model checking
on the fly, i.e., while computing the reachable sets.

A. Related Work

We categorize existing techniques for motion planning
subject to temporal logic specifications into three groups:
Sampling-based and optimization-based methods directly
plan specification-compliant trajectories in the continuous
state space. Multilayer approaches, on the other hand, guide
the motion planner using a discrete abstraction of the system.

Sampling-based approaches plan specification-compliant
trajectories by randomly sampling the state space. Many
convert the specification into an automaton and incrementally
construct its product with the dynamical system using vari-
ants of the RRT* algorithm [10]–[14]. For signal temporal
logic (STL) specifications, one can leverage the quantitative
semantics in the cost function of RRT* to obtain maximally
robust trajectories [11], [15]. Typically, the employed RRT*
variants are probabilistically complete [16]; thus, they are
only guaranteed to find a solution (assuming one exists) as
the number of samples tends to infinity.

Optimization-based methods treat trajectory planning as a
constrained optimization problem. To this end, many works
encode the system dynamics and the specification as mixed-
integer constraints [17]–[22]. The objective function then

mailto:florian.lercher@tum.de
mailto:althoff@tum.de

captures robust satisfaction or soft constraints like favoring
small control inputs. In [23], the authors formulate the
planning problem as a dynamic program over the product
of the dynamical system and the specification automaton.

Multilayer approaches determine a specification-compliant
plan using a discrete abstraction of the dynamical system
and then attempt to find a continuous trajectory obeying
the discrete plan. However, the system dynamics are often
not taken into account when constructing the abstraction,
which leads to potentially infeasible plans [24]–[28]. The
authors of [29] consider the system dynamics by providing
control laws to realize the discrete transitions. Semantically
annotated reachability graphs from [9] can also be viewed
as discrete abstractions. As the graph is constructed using
overapproximative reachability analysis, the inclusion of all
dynamically feasible transitions is guaranteed, while many
infeasible ones are excluded. The extracted driving corridor
expedites trajectory planning by narrowing the search space.

While the authors of [30] do not directly address motion
planning, they overapproximate the reachable set complying
with an STL specification using a data-driven method. To
this end, they constrain the reachable set at each step
using predicate functions derived from the specification. In
contrast, our approach leverages a specification automaton to
determine the relevant propositions at each step.

B. Contributions

We propose a novel algorithm for overapproximating the
reachable set of an autonomous vehicle subject to an LTL
specification that encodes, e.g., traffic rules. Since we com-
pute the reachable set for a finite time horizon, we interpret
the specification as LTL over finite traces (LTLf) [31]. Our
main contributions are:

• Performing model checking on the fly, i.e., during the
reachability analysis (contrary to [9]).

• Tracking the progress toward specification satisfaction
while computing the reachable sets to a) consider
only the propositions relevant to decide whether the
specification is satisfied, and b) exclude states that are
unreachable when adhering to the specification.

• Considerably lower computation times compared to [9].
This paper is organized as follows: In Sec. II, we introduce

preliminaries before presenting our problem statement. We
explain our algorithm for specification-compliant reachabil-
ity analysis in Sec. III. Finally, we evaluate our approach in
Sec. IV before coming to a conclusion in Sec. V.

II. PRELIMINARIES AND PROBLEM STATEMENT

After introducing LTLf and our vehicle model, we define
specification-compliant reachable sets. Based on this defini-
tion, we provide a formal problem statement.

A. Linear Temporal Logic over Finite Traces

Let AP be a fixed set of atomic propositions. LTLf shares
the syntax of LTL, so an LTLf formula φ over AP is
constructed according to the grammar

φ ::= a | ¬φ | φ1 ∧ φ2 | Xφ | φ1 Uφ2,

qι

q1

q2

a

¬a

¬a ∧ (b ∨ c)a

a ∧ (b ∨ c)

¬a

Fig. 2. Specification automaton for G(a → X(b ∨ c)) with AP =
{a, b, c}. We represent δ symbolically, so the edge (q1,¬a ∧ (b ∨ c), q2)
represents the transitions (q1, {b}, q2), (q1, {c}, q2), and (q1, {b, c}, q2).

where a ∈ AP [31, Sec. 2]. LTLf formulas are interpreted
over finite traces, i.e., non-empty, finite words over the
alphabet 2AP . Intuitively, the next operator X requires φ
to hold in the next state of the trace, while U requires
that φ1 holds until φ2 becomes true. We use the common
abbreviations Fφ := trueUφ (finally) and Gφ := ¬F¬φ
(globally/always). Let L(φ) denote the set of all finite traces
that satisfy the formula φ. We refer the reader to [31, Sec. 2]
for the formal definition of the satisfaction relation, which
requires in particular that all eventualities (like next and
finally) are resolved before the end of the trace.

The literature provides several methods for translating an
LTLf formula φ into a (non-deterministic) finite automaton
Aφ that accepts exactly the finite traces that satisfy φ, i.e.,
L(Aφ) = L(φ). The specification automaton Aφ has the
alphabet 2AP and the states Q with initial state qι ∈ Q
and final states F ⊆ Q. Its transition relation is δ ⊆ Q ×
2AP ×Q. We opt for an indirect translation via regular LTL
and Büchi automata (see, e.g., [32, Sec. V-A]) since with
Spot [33] there is a mature tool to perform the conversion.1

Our approach works best if we ensure that Aφ only has
states that are part of some accepting run. Fig. 2 depicts an
example automaton for φ = G(a → X(b ∨ c)) with the
above property. As shown in Fig. 2, the transition relation
induces a propositional formula ψq,q′ for each pair of states
q, q′ ∈ Q so that the automaton can transition from q to q′

if and only if ψq,q′ is satisfied.
Besides requiring an explicit representation of the state

space, our approach is independent of how the specification
is converted into an automaton. Moreover, it can also handle
specifications in other logics expressible as finite automata,
e.g., syntactically co-safe LTL [34].

B. Vehicle Model

We introduce the index k ∈ N0 to refer to the discrete
time step corresponding to the continuous time tk = k∆t,
where ∆t ∈ R>0 is a fixed time increment. Without loss of
generality, the initial time step is 0, and we denote the fixed
final time step as the planning horizon kh.

Following previous work [8], [9], we adopt a simple point-
mass model of the ego vehicle with its center as the reference
point, described in a curvilinear coordinate system [35] with
path length s and lateral deviation d. The system state xk =
(sk, ṡk, dk, ḋk)

T ∈ Xk at time step k consists of position and
velocity in s- and d-direction; the input uk = (s̈k, d̈k)

T ∈ Uk
1See https://spot.lre.epita.fr/tut12.html for details.

https://spot.lre.epita.fr/tut12.html

controls the respective accelerations. Here, Xk ⊆ R4 and
Uk ⊆ R2 denote the set of admissible states and inputs
at time step k, respectively. As stated in [9, Eq. (6)], the
discrete-time system dynamics is

xk+1 :=

1 ∆t 0 0
0 1 0 0
0 0 1 ∆t
0 0 0 1

xk +

1
2∆t

2 0
∆t 0
0 1

2∆t
2

0 ∆t

uk

︸ ︷︷ ︸
f(xk,uk)

. (1)

We conservatively bound the velocities and accelerations in
both directions to account for the kinematic limitations of the
vehicle and the effects of transforming the vehicle dynamics
to the curvilinear coordinate system (see, e.g., [36]).

C. Specification-Compliant Reachable Sets

Let X0 be the measured set of initial states of the ego
vehicle. Moreover, let [n] denote the set {0, 1, . . . , n} for
n ∈ N0. A state trajectory x[kh] := ⟨x0, . . . ,xkh

⟩ is drivable,
if it is a solution to the system dynamics (1) with initial state
in X0. We define the set of all drivable trajectories as

X := {x[kh] | x0 ∈ X0 ∧ ∀k ∈ [kh − 1]∃uk ∈ Uk :

xk+1 = f(xk,uk) ∈ Xk+1}.

To define the specification-compliant reachable sets, we
need to interpret a given LTLf specification φ over a tra-
jectory x[kh]. Each atomic proposition a ∈ AP is typi-
cally associated with a predicate pa [2]–[4]. The predicate
pa(x; . . .) depends on the state x of the ego vehicle, and
possibly also on its environment (denoted by “. . . ” above),
which includes, e.g., other traffic participants and traffic
signs. To access information about the environment when
evaluating predicates, we assume that an environment model
is provided. The model includes a behavior prediction of the
dynamic obstacles, the kind of which depends on the use
case: For determining motion planning constraints, one could
use a most likely trajectory, while a set-based prediction
is more appropriate for computing fail-safe trajectories. A
predicate pa then induces the set JpaKk ⊆ Xk containing the
states that satisfy pa at step k ∈ [kh]. We write x |=k a
for x ∈ JpaKk and extend this notation to propositional
formulas ψ over AP . Using the predicates, we can label each
state in x[kh] with the propositions it satisfies. This yields
the proposition trace τ(x[kh]) of x[kh], whose k-th element
is {a ∈ AP | xk |=k a}. A trajectory is specification-
compliant, if its proposition trace τ(x[kh]) satisfies φ, i.e.,
τ(x[kh]) ∈ L(φ).

We can now define the exact specification-compliant
reachable set Re

k at step k ∈ [kh] as the set of all
states reachable by following a drivable and specification-
compliant trajectory for k steps. Formally, we have

Re
k := {xk | x[kh] ∈ X ∧ τ(x[kh]) ∈ L(φ)}. (2)

D. Problem Statement

Even when considering collision avoidance as the only
specification, it is impossible to efficiently determine the

exact reachable sets [8]. Therefore, we aim to compute a
tight overapproximation R+

k ⊇ Re
k for all k ∈ [kh]. Because

the point-mass model with conservative bounds is reachset
conformant [37, Sec. 3.5], our overapproximation encloses
all drivable and specification-compliant trajectories of the
real vehicle.

We emphasize that computing the specification-compliant
reachable set does not replace specification-compliant motion
planning. Rather, it is a preparatory step to facilitate planning
by restricting the search space. Since some driving situations
have a very narrow solution space, we need to ensure
that the restricted search space still contains all admissible
trajectories, while the planner takes care of guaranteeing
that the planned trajectories adhere to the specification. If
no specification-compliant trajectory is found in time, the
autonomous vehicle can fall back to a previously computed
fail-safe trajectory, e.g., as described in [7].

III. SPECIFICATION-COMPLIANT REACHABILITY
ANALYSIS

In the case of a discrete system model, one would con-
struct the product of the specification automaton Aφ and
the system model to determine satisfying executions [38,
Sec. 5.2]. However, our system model has a continuous state
space, so this is not readily feasible. Instead, we construct a
reachability graph GR as an overapproximative discretization
of the system model as described in Sec. III-A. We store the
reachable states of the specification automaton in addition
to the reachable system states, to track the progress in
satisfying the specification. Finally, we extract the desired
overapproximations R+

k from GR as shown in Sec. III-B.

A. Computing the Reachability Graph

Fig. 3 shows an example reachability graph. In line with
previous work [8], [9], each graph node is a base set. A
base set R(i)

k ⊆ Xk represents a set of states reachable at
time step k, with the index i ∈ N0 distinguishing base sets
of the same time step. It is given as the Cartesian product
of two convex polytopes, one of which represents reachable
positions and velocities in s-direction, and the other the same
in d-direction. Moreover, we tag each R(i)

k with a non-empty
set of automaton states Q(i)

k ⊆ Q to track the states that the
specification automaton Aφ can reach. The directed edges
in GR indicate the reachability relation between base sets of
successive time steps.

Alg. 1 constructs the reachability graph iteratively for the
time steps k ∈ [kh]. For ease of presentation, we abbreviate
{R(0)

k , . . . ,R(n)
k } as Rk; Qk, R̂k, etc. have an analogous

meaning. In the k-th iteration, the algorithm computes the
successors of Rk−1 in GR. Fig. 4 shows this exemplarily for
the reachability graph from Fig. 3. The forward propagation
step generates all dynamically reachable states for step k,
while the semantic splitting step removes states that violate
the specification. Before updating GR, we merge and reparti-
tion the base sets representing the successors to reduce their
number. We detail these steps below.

q1

q2

q1

q2

q1

q2
. . .

R(0)
k−1

R(1)
k−1

R(2)
k−1

R(0)
k

R(1)
k

R(2)
k

R(0)
k+1

R(1)
k+1

R(2)
k+1

. . .

Fig. 3. Example reachability graph resulting from the automaton in Fig. 2
(shaded areas indicate associated automaton states, e.g., Q(0)

k = {q1})

Algorithm 1 Computing the Reachability Graph
Input: Planning horizon kh, initial states X0, automaton
Aφ = (2AP ,Q, δ, qι,F), environment model E

Output: Reachability graph GR

1: for k = 0 to kh do
2: if k = 0 then ▷ Initialization
3: R̂k ← {X0}
4: Q̂k ← {{qι}}
5: else
6: R̂k ← PROPAGATE(Rk−1)
7: Q̂k ← Qk−1

8: end if
9: R̃k, Q̃k ← SEMANTICSPLIT(R̂k, Q̂k, Aφ, E)

10: Rk,Qk ← REPARTITION(R̃k, Q̃k, Q̂k)
11: GR.UPDATE(Rk, Qk)
12: end for
13: return GR

1) Forward Propagation: We propagate the base sets
Rk−1 of the preceding time step according to the system
dynamics (1), obtaining the base sets R̂k. Details on the
propagation are provided in [8, Sec. IV-A]. Let Q̂k := Qk−1

denote the tags of the propagation sources. In the initial step
(k = 0), there is nothing to propagate. Instead, we set R̂(0)

0

to enclose the initial states X0; Q̂(0)
0 contains just the initial

state qι of Aφ.
2) Semantic Splitting: We consider every R̂(i)

k ∈ R̂k

individually. We want to remove all system states from R̂(i)
k

whose satisfied atomic propositions cause the specification
automaton to get stuck, thereby violating the specification.
Thus, we restrict R̂(i)

k so that we only keep system states
that allow Aφ to transition from at least one state in Q̂(i)

k .
Recall from Sec. II-A that Aφ can transition from state q

to q′ if and only if ψq,q′ is satisfied. Thus, the formula

ψq :=
∨

q′∈Q̂(i)
k

ψq′,q

characterizes the system states that enable Aφ to reach the
state q ∈ Q from Q̂(i)

k . To restrict R̂(i)
k as described above,

we determine a disjunctive normal form (DNF) of each ψq .
The fixed structure of the DNF facilitates the computation
of the restriction: We can implement disjunctions using set

unions and conjunctions using set intersections. Let Ψq

denote the set of conjunctive subformulas of the DNF of
ψq , which we refer to as product terms. For each product
term π ∈

⋃
q∈Q Ψq , we restrict R̂(i)

k to states satisfying π
by successively intersecting it with JλKk for each literal λ
occurring in π, where

JλKk :=

{
JpaKk if λ = a with a ∈ AP
Xk \ JpaKk if λ = ¬a with a ∈ AP

.

Depending on the predicate, we can only overapproximate
the intersection using the union of multiple base sets. We
assume that an implementation of the overapproximative
intersection is provided for each predicate; in Sec. IV-A,
we give an example for a concrete predicate. Collecting
the base sets created for each product term, we obtain the
non-empty base sets R̃(j)

k ; empty base sets are omitted. If
R̃(j)

k was created for the product term π, we tag it with
Q̃(j)

k := {q ∈ Q | π ∈ Ψq}. Due to non-determinism in Aφ,
a single product term may occur in multiple Ψq . We show
that the union of the R̃(j)

k subsumes the set of states that
allow Aφ to transition out of R̂(i)

k ; in particular, we prove:

Proposition 1. For all q ∈ Q, the union of all R̃(j)
k that are

tagged with q cover the states that enable transitioning to q.
Formally, this means⋃

j s.t. q∈Q̃(j)
k

R̃(j)
k ⊇ {x ∈ R̂

(i)
k | x |=k ψq}.

Proof. Let x ∈ R̂(i)
k with x |=k ψq be arbitrary. As x |=k ψq ,

there exists π ∈ Ψq such that x |=k π by definition of the
DNF. Hence, x ∈ JλKk for all literals λ in π. We create at
least one R̃(j)

k for π that contains x, as the intersections of
R̂(i)

k with the JλKk are overapproximative. Finally, q ∈ Q̃(j)
k

holds, as π ∈ Ψq .

Since the number of new base sets increases with the num-
ber of product terms, using a DNF with few product terms
is crucial for computational efficiency. As computing the
shortest DNF of a formula is NP-hard (cf. [39, Thm. 4]), we
settle for an irredundant DNF [40], which can be computed
efficiently (see, e.g., [41]). An irredundant DNF is minimal
in that we cannot delete a product term, nor a literal in any
product term. It is necessary to compute the DNF on the fly
to deal with non-deterministic specification automata. For
deterministic automata, one could precompute all necessary
DNFs. Although any non-deterministic automaton can be
made deterministic using the powerset construction [42,
Def. 11], this may lead to an exponential growth of its state
space. When working with a fixed rule set, this trade-off
should be investigated.

Let us consider the example in Fig. 4. When processing
R̂(0)

k , we find that Ψq1 contains the product terms a∧ b and
a∧c, according to the specification automaton from Fig. 2. As
indicated by the arrow labels, R̃(0)

k is the result of restricting
R̂(0)

k to a∧ b, i.e., it overapproximates R̂(0)
k ∩ JaKk ∩ JbKk. In

this example, no state in R̂(2)
k satisfies a, which means that

Rk−1,Qk−1 R̂k, Q̂k R̃k, Q̃k Rk,Qk

Forward Propagation Semantic splitting Repartitioning

R(0)
k−1, {q1}

R(1)
k−1, {q2}

R(2)
k−1, {q2}

R̂(0)
k , {q1}

R̂(1)
k , {q2}

R̂(2)
k , {q2}

R̃(0)
k , {q1}

R̃(1)
k , {q1}

R̃(2)
k , {q1}

R̃(3)
k , {q2}

R̃(4)
k , {q2}

R(0)
k , {q1}

R(1)
k , {q1}

R(2)
k , {q2}

a ∧ b

a ∧ c

a

¬a

¬a

Fig. 4. Constructing the reachability graph from Fig. 3 using Alg. 1: Base sets and their associated automaton states during the k-th iteration. The arrow
labels in the semantic splitting step indicate the product terms used for restricting the propagated base sets.

the discrete transition from q2 to q1 is dynamically infeasible
at this point. Therefore, the intersection of R̂(2)

k with JaKk
is empty, and the resulting base sets are omitted. Similarly,
no state in R̂(0)

k enables transitioning to q2.
3) Repartitioning: To reduce the number of base sets to

consider in the next iteration, we merge and repartition the
base sets in R̃k. For this, we apply the procedure from [8,
Sec. IV-B], skipping the collision detection step. To ensure
that we only merge semantically equivalent base sets, we
process them grouped by their discrete source and target
states (Q̂k and Q̃k). In Fig. 4, this allows us to merge R̃(0)

k

and R̃(1)
k even though the contained states satisfy different

propositions. We store the repartitioned base sets Rk as
nodes in GR and create an edge from R(i)

k−1 to R(l)
k ∈ Rk,

if R(l)
k is reachable from R(i)

k−1. For each R(l)
k , we set Q(l)

k

to the discrete target states of the corresponding group.

B. Extracting the Overapproximations from the Graph

We want to assemble our desired overapproximations R+
k

of the specification-compliant reachable set by unifying base
sets from the reachability graph. For the following theorem,
we define an accepted path as a path R(i0)

0 , . . . ,R(ikh)

kh
in

GR, where Q(ikh)

kh
∩F ̸= ∅, i.e., R(ikh)

kh
is tagged with at least

one final state.

Theorem 1. Suppose x[kh] is a drivable and specification-
compliant trajectory. Then, there exists an accepted path
R(i0)

0 , . . . ,R(ikh)

kh
in GR with xk ∈ R(ik)

k for all k ∈ [kh].

Sketch of proof. As x[kh] is specification-compliant, there
exists an accepting run ⟨qι, q0, . . . , qkh

⟩ of Aφ for τ(x[kh]),
where qkh

∈ F . We proceed by induction on the time step k
and rely on the fact that all operations in our algorithm are
overapproximative. Suppose we have already shown xk ∈
R(ik)

k and qk ∈ Q(ik)
k . As the trajectory is drivable, the

states generated by propagating R(ik)
k must include xk+1.

Moreover, the atomic propositions satisfied by xk+1 allow
Aφ to transition from qk to qk+1. Thus, xk+1 is included
in a base set tagged with qk+1 after the semantic splitting
step (cf. Prop. 1). As the repartitioning is overapproximative

and preserves the tags of the base sets, it yields the desired
R(ik+1)

k+1 that contains xk+1 and is tagged with qk+1. We can
reason similarly for the base case of the induction.

We choose our overapproximations R+
k as the union of all

base sets R(i)
k lying on any accepted path. Using Thm. 1, we

show that these subsume the exact specification-compliant
reachable sets Re

k as required.

Corollary 1. For all k ∈ [kh], we have R+
k ⊇ Re

k.

Proof. We show that R+
k ⊇ Re

k by proving that every state
in the exact specification-compliant reachable set is included
in our overapproximation. Thus, let xk ∈ Re

k be arbitrary.
By definition of the exact specification-compliant reachable
set (2), xk must be part of a drivable and specification-
compliant trajectory. Therefore, Thm. 1 yields an accepted
path R(i0)

0 , . . . ,R(ikh)

kh
with xk ∈ R(ik)

k . As R(ik)
k lies on an

accepted path, we have R(ik)
k ⊆ R+

k and thus xk ∈ R+
k .

Inspired by [8, Sec. V], we prune the reachability graph to
remove all base sets not contributing to the overapproxima-
tions. To this end, we first delete allR(i)

kh
where Q(i)

kh
∩F = ∅.

Then, we iteratively eliminate the R(i)
k with k ∈ [kh−1] that

no longer have successors in the graph.

IV. EVALUATION

We evaluate our approach using intersection and interstate
traffic rules from [2] and [3]. Since these are given in MTL
with past connectives, we rewrite them to LTLf as described
in [9, Sec. VI]. We compare our approach with that from
[9], since, to the best of our knowledge, it is the only other
approach for computing the reachable set of an autonomous
vehicle adhering to an LTLf specification. To this end, we
use simple hand-crafted scenarios. Then, we benchmark our
prototype on scenarios from the exiD dataset [43] to evaluate
its performance in real-world situations.

A. Implementation Details

Our prototype builds on CommonRoad-Reach [44] and
is implemented in Python and C++. It expects the input

scenarios to be in the CommonRoad2 [45] format. In our
prototype, the environment model provides a most likely
trajectory as behavior prediction for each dynamic obstacle.
We performed our experiments on a laptop with an Intel
Core i7-12700H 4.7 GHz processor. Considering the physical
limits of a typical vehicle, we choose the following bounds
for the velocities and accelerations of the vehicle model:

−13.9m/s ≤ ṡ ≤ 50.8m/s −4.0m/s ≤ ḋ ≤ 4.0m/s

−11.5m/s2 ≤ s̈ ≤ 11.5m/s2 −2.0m/s2 ≤ d̈ ≤ 2.0m/s2

All computation times are averaged over five executions.
For our experiments, we set collision avoidance as a

default specification. The corresponding LTLf formula is
G c free, where the predicate c free(xk;E) is true, if
and only if the occupied region of the ego vehicle in
state xk is disjoint from all obstacles in the environment
model E. To overapproximate the intersection of a base set
with Jc freeKk, we underapproximate the shape of the ego
vehicle with its inscribed circle. Then, we can filter out the
violating states by recursively splitting the base sets that
collide with an obstacle as described in [8, Sec. IV-B]. The
intersection with J¬c freeKk can be implemented similarly.

B. Comparison on Simple Scenarios

Fig. 5 shows an intersection in which the horizontal road
is a priority road (scenario ID: ZAM Yield-1 1 T-1).
According to the priority rule R-IN4 [2, Tab. VI], the ego
vehicle, which is approaching from the bottom, must not
endanger the left vehicle crossing the intersection on the
priority road. Consequently, the ego vehicle should stop
before entering the intersection and give way to the crossing
vehicle. We set kh := 15 and ∆t := 0.2 s. Using rather
coarse time steps is sufficient here, as our goal is to narrow
the search space of a motion planner, which then checks the
specification compliance of the planned trajectories.

Figs. 5a and 5b show the drivable area of the ego vehicle
at time step 9 computed with our on-the-fly approach and
the offline model checking approach in [9], respectively.
The drivable area at step k is defined as the projection
of the base sets Rk to the position domain. As the offline
approach disregards the specification during the reachability
analysis, the resulting reachability graph indicates that the
ego vehicle could enter the intersection. In the subsequent
model checking step, the algorithm determines that stopping
before the intersection is the only rule-compliant maneuver.
At step 9, the model-checked reachability graph thus contains
only the base set corresponding to the drivable area hatched
in Fig. 5b. With our approach, this is the only base set
generated for step 9, even before pruning the reachability
graph. However, pruning is generally required to achieve
results comparable to the offline approach.

Tab. I compares the number of base sets in the reach-
ability graph (before pruning) and the computation time
for the reachability analysis (including pruning). In addition
to the scenario introduced above, the table considers the

2https://commonroad.in.tum.de

Initial
state

Dynamic
obstacle

Drivablearea
Goal
region

(a) Our approach (b) Approach in [9]

Fig. 5. Drivable area for the give-way scenario at time step 9 (hatching
in (b) indicates the drivable area that remains after model checking).

TABLE I
COMPARISON WITH THE OFFLINE APPROACH IN [9]

ID (ZAM . . .) #Base Sets Comp. time

Ours Theirs Ours Theirs

Yield-1 1 T-1 23 163 12ms 185ms
TIV-1 1 T-1 29 187 11ms 37ms
TIV-2 1 T-1 58 181 22ms 204ms

interstate and intersection scenarios used in [9, Sec. VIII]
(IDs: ZAM TIV-1 1 T-1 and ZAM TIV-2 1 T-1). Our
approach creates considerably fewer base sets in all scenarios
because we can discard many non-compliant system states
early. Besides, our repartitioning strategy is more liberal
since, contrary to the offline approach, we do not require all
states in a base set to satisfy the same atomic propositions.
As a result, our approach is faster by a factor of up to
15. Computing the specification automaton took about 1 ms
for the interstate scenario and 10 ms for the intersection
scenarios. The separate model checking step in the offline
approach required 8 ms on average. However, this step runs
in Python, while the other computations run mainly in C++.

C. Benchmarking in Real-World Scenarios

To assess the performance of our approach in real-world
scenarios, we extracted CommonRoad scenarios from the
exiD dataset [43] (location: Merzenich-Rather). The scenar-
ios feature an interstate with a three-lane main carriageway
and one on-ramp, as well as several dynamic obstacles.
Since we want to consider the “respect entering vehicles”
rule R I5 [3, Tab. I] for our benchmark, we selected 125
scenarios in which vehicles enter the main carriageway via
the on-ramp. Thus, we include only scenarios in which R I5
cannot be deemed irrelevant a priori due to the absence
of entering vehicles. Fig. 6 depicts an example scenario

https://commonroad.in.tum.de

Initial
state

Dynamic
obstacle

Goal
region

Reference
path

Fig. 6. A scenario from the exiD dataset with one car and two trucks
going in the same direction as the ego vehicle. Due to the car entering the
interstate, the ego vehicle must not change to the right lane.

0 10 20 30 40 50 60 70 80 90 100

Total

Repartitioning

Splitting

Propagation

Computation time [ms]

Fig. 7. Benchmark results on selected scenarios of the exiD dataset (outliers
are not shown; the maximum total computation time is 332 ms).

at the initial time step, including the reference path for
the curvilinear coordinate system and the trajectories of the
dynamic obstacles. As backward driving is prohibited on
interstates, we additionally impose the rule G¬reverses
(see [3, Sec. IV-B] for the predicate definition).

Fig. 7 shows the computation time of our algorithm broken
down by the steps described in Sec. III-A. With kh := 30 and
∆t := 0.08 s, the algorithm terminated within 70 ms for 75 %
of the scenarios. This is well below the real-time planning
horizon of kh · ∆t = 2.4 s, suggesting that our approach is
real-time capable. Eleven scenarios exceeded a computation
time of 100 ms, with the maximum observed time at 332 ms
for a scenario with three entering vehicles. Compared to
the total execution time, the time required for creating the
specification automaton and pruning the reachability graph
is negligible (on average 1 ms and 0.03 ms, respectively).

V. CONCLUSION

We proposed integrating LTLf model checking into
set-based reachability analysis to overapproximate the
specification-compliant reachable set of an autonomous ve-
hicle. By performing model checking on the fly, we can
exclude many dynamically reachable but non-compliant sys-
tem states early on during the reachability analysis. We
demonstrated that our algorithm is considerably faster than
the offline approach in [9] for both intersection and interstate
scenarios. Our evaluation using recorded real-world scenarios
suggests that the approach is real-time capable.

In the future, the order in which the predicates are applied
during semantic splitting could be optimized. For example,
it might be helpful to apply the most restrictive predicates

first in order to quickly decide whether the formula can
be satisfied at all. Moreover, more predicates need to be
implemented in our prototype to support additional traffic
rules. We will integrate our implementation into an upcoming
release of CommonRoad.

REFERENCES

[1] N. Mehdipour, M. Althoff, R. D. Tebbens, and C. Belta, “Formal
methods to comply with rules of the road in autonomous driving:
State of the art and grand challenges,” Automatica, vol. 152, 2023.

[2] S. Maierhofer, P. Moosbrugger, and M. Althoff, “Formalization of
intersection traffic rules in temporal logic,” in Proc. of the IEEE
Intelligent Vehicles Symp. (IV), 2022, pp. 1135–1144.

[3] S. Maierhofer, A.-K. Rettinger, E. C. Mayer, and M. Althoff, “For-
malization of interstate traffic rules in temporal logic,” in Proc. of the
IEEE Intelligent Vehicles Symp. (IV), 2020, pp. 752–759.

[4] K. Esterle, L. Gressenbuch, and A. Knoll, “Formalizing traffic rules
for machine interpretability,” in Proc. of the IEEE Connected and
Automated Vehicles Symp. (CAVS), 2020, pp. 1–7.

[5] E. Plaku and S. Karaman, “Motion planning with temporal-logic
specifications: Progress and challenges,” AI Communications, vol. 29,
no. 1, pp. 151–162, 2015.

[6] G. Würsching and M. Althoff, “Sampling-based optimal trajectory
generation for autonomous vehicles using reachable sets,” in Proc. of
the IEEE Int. Intelligent Transportation Systems Conf. (ITSC), 2021,
pp. 828–835.

[7] C. Pek, S. Manzinger, M. Koschi, and M. Althoff, “Using online
verification to prevent autonomous vehicles from causing accidents,”
Nature Machine Intelligence, vol. 2, no. 9, pp. 518–528, 2020.

[8] S. Söntges and M. Althoff, “Computing the drivable area of au-
tonomous road vehicles in dynamic road scenes,” IEEE Transactions
on Intelligent Transportation Systems, vol. 19, no. 6, pp. 1855–1866,
2018.

[9] E. Irani Liu and M. Althoff, “Specification-compliant driving corridors
for motion planning of automated vehicles,” IEEE Transactions on
Intelligent Vehicles, vol. 8, no. 9, pp. 4180–4197, 2023.

[10] C. I. Vasile, X. Li, and C. Belta, “Reactive sampling-based path
planning with temporal logic specifications,” The International Journal
of Robotics Research, vol. 39, no. 8, pp. 1002–1028, 2020.

[11] J. Karlsson, F. S. Barbosa, and J. Tumova, “Sampling-based motion
planning with temporal logic missions and spatial preferences,” IFAC-
PapersOnLine, vol. 53, no. 2, pp. 15 537–15 543, 2020.

[12] F. Penedo, C.-I. Vasile, and C. Belta, “Language-guided sampling-
based planning using temporal relaxation,” in Proc. of the Workshop
on the Algorithmic Foundations of Robotics (WAFR), 2020, pp. 128–
143.

[13] F. S. Barbosa, L. Lindemann, D. V. Dimarogonas, and J. Tumova,
“Integrated motion planning and control under metric interval temporal
logic specifications,” in Proc. of the European Control Conf. (ECC),
2019, pp. 2042–2049.

[14] L. I. Reyes Castro, P. Chaudhari, J. Tůmová, S. Karaman, E. Frazzoli,
and D. Rus, “Incremental sampling-based algorithm for minimum-
violation motion planning,” in Proc. of the IEEE Conf. on Decision
and Control (CDC), 2013, pp. 3217–3224.

[15] A. Linard, I. Torre, E. Bartoli, A. Sleat, I. Leite, and J. Tumova,
“Real-time RRT* with signal temporal logic preferences,” in Proc. of
the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS),
2023, pp. 8621–8627.

[16] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” The International Journal of Robotics Research,
vol. 30, no. 7, pp. 846–894, 2011.

[17] V. Kurtz and H. Lin, “Mixed-integer programming for signal temporal
logic with fewer binary variables,” IEEE Control Systems Letters,
vol. 6, pp. 2635–2640, 2022.

[18] A. Rodionova, L. Lindemann, M. Morari, and G. J. Pappas, “Com-
bined left and right temporal robustness for control under STL
specifications,” IEEE Control Systems Letters, vol. 7, pp. 619–624,
2023.

[19] E. Aasi, C. I. Vasile, and C. Belta, “A control architecture for provably-
correct autonomous driving,” in Proc. of the American Control Conf.
(ACC), 2021, pp. 2913–2918.

[20] Z. Lin and J. S. Baras, “Optimization-based motion planning and
runtime monitoring for robotic agent with space and time tolerances,”
IFAC-PapersOnLine, vol. 53, no. 2, pp. 1874–1879, 2020.

[21] Y. E. Sahin, R. Quirynen, and S. D. Cairano, “Autonomous vehicle
decision-making and monitoring based on signal temporal logic and
mixed-integer programming,” in Proc. of the American Control Conf.
(ACC), 2020, pp. 454–459.

[22] E. M. Wolff, U. Topcu, and R. M. Murray, “Optimization-based
trajectory generation with linear temporal logic specifications,” in
Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA),
2014, pp. 5319–5325.

[23] I. Papusha, J. Fu, U. Topcu, and R. M. Murray, “Automata theory
meets approximate dynamic programming: Optimal control with tem-
poral logic constraints,” in Proc. of the IEEE Conf. on Decision and
Control (CDC), 2016, pp. 434–440.

[24] K. Esterle, V. Aravantinos, and A. Knoll, “From specifications to
behavior: Maneuver verification in a semantic state space,” in Proc.
of the IEEE Intelligent Vehicles Symp. (IV), 2019, pp. 2140–2147.

[25] K. Cho, J. Suh, C. J. Tomlin, and S. Oh, “Cost-aware path planning
under co-safe temporal logic specifications,” IEEE Robotics and
Automation Letters, vol. 2, no. 4, pp. 2308–2315, 2017.

[26] Y. Zhou, D. Maity, and J. S. Baras, “Timed automata approach for
motion planning using metric interval temporal logic,” in Proc. of the
European Control Conf. (ECC), 2016, pp. 690–695.

[27] M. Lahijanian, M. R. Maly, D. Fried, L. E. Kavraki, H. Kress-
Gazit, and M. Y. Vardi, “Iterative temporal planning in uncertain
environments with partial satisfaction guarantees,” IEEE Transactions
on Robotics, vol. 32, no. 3, pp. 583–599, 2016.

[28] E. M. Wolff, U. Topcu, and R. M. Murray, “Automaton-guided
controller synthesis for nonlinear systems with temporal logic,” in
Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems
(IROS), 2013, pp. 4332–4339.

[29] C. K. Verginis, C. Vrohidis, C. P. Bechlioulis, K. J. Kyriakopoulos, and
D. V. Dimarogonas, “Reconfigurable motion planning and control in
obstacle cluttered environments under timed temporal tasks,” in Proc.
of the IEEE Int. Conf. on Robotics and Automation (ICRA), 2019, pp.
951–957.

[30] A. Alanwar, F. J. Jiang, M. Sharifi, D. V. Dimarogonas, and K. H. Jo-
hansson, “Enhancing data-driven reachability analysis using temporal
logic side information,” in Proc. of the IEEE Int. Conf. on Robotics
and Automation (ICRA), 2022, pp. 6793–6799.

[31] G. De Giacomo and M. Y. Vardi, “Linear temporal logic and linear
dynamic logic on finite traces,” in Proc. of the Int. Joint Conf. on
Artificial Intelligence (IJCAI), 2013, pp. 854–860.

[32] S. Dutta and M. Y. Vardi, “Assertion-based flow monitoring of

SystemC models,” in Proc. of the ACM/IEEE Conf. on Formal Methods
and Models for Codesign (MEMOCODE), 2014, pp. 145–154.

[33] A. Duret-Lutz, E. Renault, M. Colange, F. Renkin, A. Gbaguidi Aisse
et al., “From Spot 2.0 to Spot 2.10: What’s new?” in Proc. of the Int.
Conf. on Computer Aided Verification (CAV), S. Shoham and Y. Vizel,
Eds., 2022, pp. 174–187.

[34] O. Kupferman and M. Y. Vardi, “Model checking of safety properties,”
Formal Methods in System Design, vol. 19, no. 3, pp. 291–314, 2001.

[35] E. Héry, S. Masi, P. Xu, and P. Bonnifait, “Map-based curvilinear
coordinates for autonomous vehicles,” in Proc. of the IEEE Int.
Intelligent Transportation Systems Conf. (ITSC), 2017, pp. 1–7.

[36] J. Eilbrecht and O. Stursberg, “Challenges of trajectory planning with
integrator models on curved roads,” IFAC-PapersOnLine, vol. 53,
no. 2, pp. 15 588–15 595, 2020.

[37] H. Roehm, J. Oehlerking, M. Woehrle, and M. Althoff, “Model con-
formance for cyber-physical systems: A survey,” ACM Transactions
on Cyber-Physical Systems, vol. 3, no. 3, pp. 30:1–30:26, 2019.

[38] C. Baier and J.-P. Katoen, Principles of Model Checking. MIT Press,
2008.

[39] C. Umans, “The minimum equivalent DNF problem and shortest
implicants,” Journal of Computer and System Sciences, vol. 63, no. 4,
pp. 597–611, 2001.

[40] W. V. Quine, “The problem of simplifying truth functions,” The
American Mathematical Monthly, vol. 59, no. 8, pp. 521–531, 1952.

[41] S.-i. Minato, “Fast generation of prime-irredundant covers from binary
decision diagrams,” IEICE Transactions on Fundamentals of Electron-
ics, Communications and Computer Sciences, vol. E76-A, no. 6, pp.
967–973, 1993.

[42] M. O. Rabin and D. Scott, “Finite automata and their decision
problems,” IBM Journal of Research and Development, vol. 3, no. 2,
pp. 114–125, 1959.

[43] T. Moers, L. Vater, R. Krajewski, J. Bock, A. Zlocki, and L. Eckstein,
“The exiD dataset: A real-world trajectory dataset of highly interactive
highway scenarios in Germany,” in Proc. of the IEEE Intelligent
Vehicles Symp. (IV), 2022, pp. 958–964.

[44] E. Irani Liu, G. Würsching, M. Klischat, and M. Althoff,
“CommonRoad-Reach: A toolbox for reachability analysis of auto-
mated vehicles,” in Proc. of the IEEE Int. Intelligent Transportation
Systems Conf. (ITSC), 2022, pp. 2313–2320.

[45] M. Althoff, M. Koschi, and S. Manzinger, “CommonRoad: Compos-
able benchmarks for motion planning on roads,” in Proc. of the IEEE
Intelligent Vehicles Symp. (IV), 2017, pp. 719–726.

	Introduction
	Related Work
	Contributions

	Preliminaries and Problem Statement
	Linear Temporal Logic over Finite Traces
	Vehicle Model
	Specification-Compliant Reachable Sets
	Problem Statement

	Specification-Compliant Reachability Analysis
	Computing the Reachability Graph
	Forward Propagation
	Semantic Splitting
	Repartitioning

	Extracting the Overapproximations from the Graph

	Evaluation
	Implementation Details
	Comparison on Simple Scenarios
	Benchmarking in Real-World Scenarios

	Conclusion
	References

