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Abstract— Curvilinear coordinate frames are a widespread
representation for motion planners of automated vehicles. In
structured environments, the required reference path is often
extracted from map data, e.g., by linearly interpolating the
center points of lanes. Often, these reference paths are not
directly suited for curvilinear frames, as the representation of
points is not guaranteed to be unique for relevant parts of
the road. Artifacts arising from faulty coordinate conversions
can impede the robustness of downstream planning tasks
and may result in safety-critical situations. We present an
iterative procedure to adapt a reference path, ensuring a unique
representation of all points within a provided subset of a
map. Our numerical experiments demonstrate the efficacy of
our method when combined with two motion planning tasks:
Computing the reachable set of the ego vehicle and planning
trajectories using a sampling-based approach.

I. INTRODUCTION
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Curvilinear coordinate frames (often referred to as Frenet
frames) are commonly applied in motion planning [1],
prediction [2] and control [3] for automated road vehicles.
Because curvilinear coordinate systems can be aligned with
the road geometry (see Fig. 1), they exhibit several desireable
properties for motion planning in structured environments:
We can formulate the nonlinear collision avoidance con-
straints from the road boundaries as linear constraints. Also,
the nonlinear vehicle dynamics can be linearized around the
reference path of the curvilinear frame [4].

Despite the aformentioned benefits, curvilinear coordinate
frames inherently entail drawbacks. A major problem is the
singularity of the transformation for regions which exceed
the radius of the oscullating circle [5]–[7]. As shown in
Fig. 1, points within these regions cannot be uniquely
represented in the curvilinear coordinate frame. This is prob-
lematic, as obstacles in these areas would not be transformed
correctly for collision checking and continuous trajectories
passing through these regions would exhibit discontinuities
after transformation [8]. This issue becomes particularly
prevalent for reference paths with large curvatures relative
to the width of the road (e.g., in intersections). Apart from
that, the reference path needs to be at least C2 continuous to
ensure curvature continuity of trajectories represented in the
curvilinear coordinate frame [1]. In most works, the existence
of an appropriate reference path, e.g., the lane center points,
is implicitly assumed. However, in arbitrary, real-world sce-
narios, this reference path might not be directly suitable
for constructing the coordinate frame, as the transformation
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Fig. 1: Scenario showing a reference path for a turn at a wide intersection.
a) For the original path, using the center points of the lane, the dynamic
obstacle is outside of the unique projection domain. b) Our approach,
which modifies the reference path, ensures that the position (x, y) can be
represented uniquely in the curvilinear frame (s, d).

can be non-unique in parts of the road network due to the
occurring singular regions. In this study, we address both
aforementioned issues by adapting reference paths to ensure
that all points within a provided subset of the road network
can be uniquely represented in the curvilinear coordinate
frame and that the resulting reference path is C2 continuous.

A. Related Work

1) Motion planning within curvilinear frames: Various
types of motion planners apply curvilinear coordinate repre-
sentations: Optimization-based approaches [4], [7], [9]–[11]
utilize curvilinear coordinate frames to simplify collision
avoidance constraints and linearize vehicle dynamics around
the reference path. Planning approaches using discrete sam-
pling [1], [12]–[14] generate trajectories by sampling around
the reference path of the curvilinear coordinate system. None
of the mentioned works, however, directly addresses singu-
larities in the transformation originating from the geometry
of the reference path. Only some works circumvent this
issue by discarding trajectories that are outside the unique
projection domain [15], manually correcting trajectories after
transformation [16], or resorting to planning in Cartesian
space for high-curvature scenarios [8].

2) Reference path generation: Previous studies propose to
generate a curvature-continuous reference path for planning
in structured environments. The center points of the lanes
form a polyline which can be pre-processed via optimization
[17] and spline-based interpolation and smoothing [18].
Similarly, [13], [19] generate smooth reference paths, which
consider static obstacles. Optimization-based offline process-



ing approaches for race track applications are proposed in
[20], [21], which generate an optimized racing line. Therein,
the existence of a reference path with a unique transformation
is assumed a-priori. The work in [22] addresses the issue of
singularities and presents an offline approach by formulating
a nonlinear programm (NLP) that explicitly pushes the
evloute of the reference curve off the borders of a race track.
The approach ensures that the singular region is outside
of the track boundary, however, NLPs are computationally
expensive and are often intractable for online use.

B. Contributions

Although curvilinear coordinate frames are well estab-
lished for motion planning, previous works cannot guarantee
that the used reference path ensures uniqueness of the coor-
dinate representation. Approaches using NLPs are often in-
tractable for online applications, which can impede planning
algorithms that rely on a swift generation of an appropriate
reference path. Therefore, we propose an efficient, iterative
reference path adaptation scheme to ensure robust and correct
transformations for all points within a given subset of the
map. More specifically, our work provides the following
contributions:

• we ensure for the first time that the coordinate transfor-
mation is unique for all points within a given area of
the road network;

• we ensure that the reference path is sufficiently smooth
for motion planning;

• we present a sweep-line-based method to efficiently
compute the unique projection domain;

• we evaluate our approach on real-world maps from the
CommonRoad [23] scenario database.

The remainder of this paper is structured as follows: Sec. II
introduces necessary preliminaries and Secs. III, IV describe
our approach. In Sec. V, we demonstrate the effectiveness of
our approach using numerical experiments. Finally, we draw
conclusions in Sec. VI.

II. PRELIMINARIES

A. Notations and Definitions

In this study, vectors and scalars x ∈ Rn are denoted
by lowercase letters, sets S ⊂ Rn by caligraphic letters, and
ordered lists/sequences L = (L1, . . . , Ln) by bold uppercase
letters. Empty lists and sets are denoted by ∅. We use ∃! to
refer to a unique existential quantification. We adhere to the
notations � and � to represent the lower and upper bounds
of the possible values of a variable �, respectively.

Definition 1 (Polyline):
A polyline P = (p1, . . . , pn) is a piecewise linear curve
which is defined by a sequence of points pi = (xi, yi)

T , i ∈
{1, . . . , n}.

We denote the length of a segment of a polyline by ∆si,
the unit tangent vector by ti ∈ R2 and the unit normal vector
by ni ⊥ ti. The signed curvature of a parametrized curve
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Fig. 2: Environment representation: The road network is described using
lanelets. A reference path Γ(s) is obtained using the center points of
lanelets. The sequence of lanelets R containing Γ(s) are referred to as
route lanelets Li ∈ R.

h(t) = (x(t), y(t))T can be computed via [24, p. 245]

κ =
x(t)′y(t)′′ − y(t)′x(t)′′

(x(t)′2 + y(t)′2)3/2
. (1)

For a (non-uniformly) sampled polyline, the required deriva-
tives can be approximated by means of first central and
second finite difference [25]. Without loss of generality,
κ > 0 represents a left bending curve and κ < 0 represents
a right bending curve. We refer to the side towards which
the curve bends as the inner side of the curve.
Definition 2 (B-Spline):
A B-spline is a piecewise polynomial curve of degree pB .
Given a list of knots U = (u0, . . . , um) and a list of control
points P = (p0, . . . , pn), the spline curve is defined as

C(u) =

n∑
i=0

Ni,pB
(u) pi, u ∈ R, pi ∈ R2, (2)

where each basis function Ni,pB
(u) is non-zero over the knot

interval u ∈ [ui, ui+pB+1) and zero otherwise. Thus, each
Ni,pB

(u) only affects the spline curve C(u) on this interval.
Basis functions of degree pB > 0 are recursively defined via
Cox-de-Boor’s formula (cf. [26, pp. 51-52]).

B. Environment Representation

We consider motion planning problems in structured envi-
ronments, where a map provides necessary information about
the drivable space. Maps are specified by the CommonRoad
format [23] [27], which models the road network as a set
of lanelets L = {Li|i ∈ {1 . . . n}} [28] (see Fig. 2). A
lanelet Li is defined by its left and right bound, where each
bound is represented as a polyline. The center points can
be retrieved from both bounds. Addtionally, each lanelet
contains attributes about its spatial relations to surrounding
lanelets, e.g, successors and lateral adjacencies. We assume
that laterally adjacent lanelets share their adjacency over their
entire length, as specified in [27, Sec. III-E.6-7]. Moreover,
we define a lanelet bound as a road boundary Bj if it is
not shared by two laterally adjacent lanelets (cf. Fig. 2).
A reference path Γ(s) : R → R2 from an initial position
to a goal position is obtained using the center points of the
lanelets (cf. Fig. 2). For lanelets with successor relationships,
their center points are concatenated and for lane changes, the
center points of two lanelets can be connected via a transition



function (e.g., using splines or polynomials), as shown in
Fig. 2. We introduce the sequence of lanelets which contain
Γ(s) as a route R = (L1, . . . , Ln), where we reorder the
list indices such that L1 is the lanelet containing the start of
Γ(s). We refer to a lanelet Li ∈ R as a route lanelet.

Definition 3 (Curvilinear Coordinate Frame [29, p. 2]):
A curvilinear coordinate frame is aligned with a reference
path Γ. Therein, a position (x, y)T in the global Cartesian
frame is expressed in terms of the arclength s along Γ and
the orthogonal deviation d to Γ(s). The representation of
a Cartesian point in the curvilinear coordinate frame is
obtained by a function TΓ : (x, y) ∈ R2 → (s, d) ∈ R2.

The function TΓ is not bijective for all Cartesian points
(x, y)T , i.e., there exist points for which the representation is
not unique, as discussed in Sec. I. To formally define the set
of points for which uniqueness is guaranteed, we introduce
the projection domain (see Fig. 1).

Definition 4 (Projection domain PΓ [30, p. 3047]):
The unique projection domain PΓ ⊂ R2 is the set of Carte-
sian points for which the projection function is bijective, i.e.,
PΓ = {(s, d) ∈ R2|∃!(x, y) ∈ PΓ : TΓ(x, y) = (s, d)}

C. Problem Statement

Let P0 be the polyline of the initial reference path with
corresponding route lanelets R. Moreover, we have a set
of m provided road boundaries Bj . We want to adapt P0 to
generate an alternative reference path Pref such that the pro-
jection domain PΓ of the associated curvilinear coordinate
system encloses all provided boundaries, i.e.,

∀j ∈ {1, . . . ,m} : Bj ⊂ PΓ (3)

III. REFERENCE PATH ADAPTATION

A. Overview

Our procedure is based on viewing the polyline P0 as
the control polyline of a cubic B-spline, which is recursively
refined via a subdivision scheme (cf. Lemma 1). We combine
this idea with a resampling step to iteratively reduce the
curvature (cf. Lemma 3) and produce a smooth C2 path.
The overall concept is illustrated in Figs. 4-5 and explained
in Sec. III-B. We motivate our choice of approximating cubic
B-splines due to their desirable properties [31]:

1) Cubic B-splines are curvature-continuous by nature, i.e.,
we do not need to enforce C2-continuity explicitly.

2) B-splines can be modified locally; changing a control
point pi only affects the knot interval [ui, ui+pB+1).

3) Strong convex hull property: B-spline segments are
bounded by the convex hull of pB + 1 control points.

If the original polyline P0 is extracted from a map, it
may contain unnecessarily many points, which result in
noisy curvatures. For numerical stability one can simplify
P0 beforehand, e.g., by using the Ramer-Douglas-Peucker
algorithm [32].

Algorithm 1 Iterative reference path adaptation
Input: Polyline P0, Route R, Lanelets L, global abs. curvature

limit κ, max. iterations niter, num. refinements k
Output: Adapted polyline Pref

1: Set of partitions G ← GETPARTITIONS(P0), . Fig. 3
2: Boundaries B ← GETBOUNDARIES(G, R, L), . Fig. 3
3: iter = 0
4: for each partition Gm in G do
5: distpi ← DISTTOBOUNDARY(pi , Bj ), ∀pi ∈ Gm

6: p̃i ← point with the maximum ratio %, . cf. (4)
7: κGm ← absolute curvature limit for Gm, . cf. (5)
8: while iter ≤ niter do
9: Gm ← CURVESUBDIVISION(Gm , k), . Fig. 4

10: if |κpi | < κGm , ∀pi ∈ Gm then
11: distpi ← DISTTOBOUNDARY(pi , Bj ), ∀pi ∈ Gm

12: if %pi < 1, ∀pi ∈ Gm then
13: break
14: end if
15: end if
16: Ĝm ← RESAMPLING(Gm , ∆s), . Fig. 5
17: intersect← CHECKCONVEXHULLS(Ĝm , Bj ), . Fig. 6
18: if intersect then break
19: else Gm = Ĝm

20: end if
21: iter = iter + 1
22: end while
23: end for

B. Iterative Reference Path Adaptation

Subsequently, we explain the individual steps of our ap-
proach, which is summarized in Alg. 1. We are interested in
retrieving the road boundaries on the inner side of the curve
to determine the minimum required extent of the projection
domain for all parts of the curve. We first partition P0 at
its inflection points, i.e., where the sign of the curvature
changes. Additionally, we partition P0 at the transition
between two succeeding lanelets. Thus, each partition is
associated to one road section of laterally adjacent lanelets
(cf. Fig. 3). After determining the set G = {G1, . . . ,Gm}
of partitions (line 1), we determine a boundary Bj (line 2)
for each Gm, which we use to limit the maximum allowed
curvature per partition. The boundary Bj is determined by
traversing the adjacent lanelets of RGm

until the inner
boundary is reached, where RGm is the subset of route
lanelets which enclose Gm. For example, for a ”left bending”
partition (κpi

> 0, ∀pi ∈ Gm), we iterate over all left
adjacancies of RGm

. Thus, we obtain for each partition Gm

a boundary Bj which is located on the inner side (cf. Fig. 3).
Since each Gm lies within one road section of laterally
adjacent lanelets, Bj is the only corresponding boundary.

Next, we determine an absolute curvature limit κGm for
each Gm, which is determined from the distances of each
point pi ∈ Gm to the boundary (lines 5-7). The function
DISTTOBOUNDARY computes the distance distpi

along the
normal ni to the boundary Bj (cf. Fig. 3). To account for
numerical imprecisions, we over-approximate the distance
by a small user-defined value ε. Then, we determine the
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Fig. 3: Exemplary polyline with three partitions G1,G2,G3. The route
lanelets R are highlighted in dark gray. For each partition we determine
the corresponding road boundary polylines B1,B2,B3, which are colored
according to the associated partition. The road section of laterally adjacent
lanelets containing G2 and G3 is marked by the dashed lines.
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Fig. 4: Refinement step using recursive subdivision for an original polyline
Q0. The polyline Q1

0 (orange) is the results after one refinement. For
k →∞ the refined polyline converges to the cubic B-spline of the original
polyline, i.e., Qk

0 → C0(u) (green).

curvature ratio which we define as

%pi
= |κpi

| distpi
, pi ∈ Gm, (4)

and retrieve the point p̃i with the maximum ratio %. We
compute the absolute curvature limit for the partition Gm

as
κGm = min(dist−1

p̃i
, κ), (5)

where distp̃i
is the distance of the point p̃i to the boundary

and κ is a user-defined global absolute curvature limit.
We now describe our iterative procedure starting in line 8

of Alg. 1. Each iteration consists of two steps: a refinement
step which smooths the polyline Gm and a resampling
step which reduces its curvature. We begin with the refine-
ment step (line 9), for which we use the Lane-Riesenfeld
subdivision procedure [33]. For illustration purposes, we
consider the exemplary polyline Q0 shown in Fig. 4, where
we recursively apply the cubic B-spline curve subdivision
algorithm of [33]. In Fig. 4 we show the resulting polyline
Q1

0 after one recursion and the refined polyline Qk
0 after k

recursions.
Lemma 1 (Cubic B-spline curve subdivision):
The refinement converges to the limit curve C0(u) =
lim
k→∞

Qk
0 , which is the cubic B-Spline that uses Q0 as its

control polyline. Thus, for k → ∞, we obtain a refined
polyline Qk

0 which approximates the C2-continuous curve
C0(u). �

Proof: The proof follows directly from [33, Thm. 3.1] �

Q0

Q1

Q2

conv({q(2)i , . . . , q
(2)
i+3})

Qk
0 → C0(u)

Qk
1 → C1(u)

Qk
2 → C2(u)

Fig. 5: Illustration showing two iterations of our procedure: The original
polyline Q0 is refined to obtain its B-spline approximation Qk

0 (see Fig. 4).
Then, we resample Qk

0 equidistantly with a step size ∆s while keeping the
end points fixed and obtain the polyline Q1. In the next iteration, this
polyline again serves as a control polyline for its B-Spline approximation
Qk

1 after refinement. After two iterations, we obtain Qk
2 , which is enclosed

by the convex hulls conv({q(2)
i , . . . , q

(2)
i+3}) of its control polyline Q2.

The function CURVESUBDIVISION(Gm, k) performs the
recursion k times and produces the refined polyline Gm.
Before proceeding with the resampling step, we first check if
the curvature of the refined polyline fulfils our desired criteria
for the projection domain PΓ and if the iteration can thus be
terminated (lines 10-15). To this end, we first check whether
the absolute curvature |κpi | for all points pi ∈ Gm is lower
than the curvature limit κGm

(cf. (5)). If the condition is
fulfilled, we additionally check whether the ratio %pi

satisfies

%pi
< 1 , ∀pi ∈ Gm. (6)

Lemma 2 (Termination criterion):
If condition (6) is met for all points pi in Gm, the projection
domain extends beyond Bj and the iteration can be termi-
nated. �

Proof: We know that Bj is the only road boundary on
the inner side of Gm (cf. Fig. 3) and thus determines the
lateral limit of the road network for the lanelets in RGm

. By
enforcing (6), the curvature radius at any point pi is greater
than its distance distpi

to the boundary Bj . In this case, the
radius of the local oscullating circle extends beyond Bj for
all points pi ∈ Gm, which means that the projection domain
encloses Bj and we can terminate the iteration. �

We now explain the resampling step of our iteration, which
reduces the curvature of the refined polyline. For illustration
purposes, we continue the previous example from Fig. 4 and
show two steps of our iteration in Fig. 5. Qk

0 is the refined
polyline after recursively subdividing the original polyline
Q0 k times. Now, we resample Qk

0 equidistantly with a
segment length of ∆s while keeping the end points fixed
and obtain Q1, which we use in the next iteration. Refining
Q1 yields Qk

1 , i.e., an approximation of its B-spline C1(u)
(cf. Lemma 1). Similary, a second iteration yields Qk

2 .

Lemma 3 (Iterative curvature reduction):
After each iteration iter consisting of a refinement and a
resampling step, the curvature of the resulting curve Qk

iter

is reduced. �

Proof: The proof follows from Lemma 1 and the strong
convex hull property of B-splines (see Sec. III-A). Let us
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Fig. 6: For Ĝm, we check if the line pipi+pB intersects with the road
boundary Bj to ensure that the resulting curve after subdivision will not
cross the boundaries of the road network.

consider the polyline Q1 = (q
(1)
1 , . . . , q

(1)
n ) in Fig. 5. After

subdiving Q1 k times, we obtain the refined polyline Qk
1

approximating the cubic B-spline C1(u). From the convex
hull property for cubic B-Splines we know that every point
of C1(u) must lie within the union of the convex hulls of four
control points, i.e.,

∀q(1)
j ∈ Qk

1 : q
(1)
j ∈

⋃
q
(1)
i ∈Q1

i∈{0,...,n−3}

conv({q(1)
i , . . . , q

(1)
i+3}).

(7)
For the next iteration, Q2 is obtained by resampling Qk

1 .
From (7) we know that the refined polyline Qk

2 must lie within
the union of convex hulls of Q2. Since the convex hulls of Q2

are strictly placed on the inner side of C1(u), the resulting
polyline Qk

2 also lies on the inner side of C1(u) and thus its
maximum curvature |κ| is reduced. �

Figuratively speaking, we gradually push the control
points of a B-spline towards the inner side of the curve. The
chosen resampling step size ∆s determines the rate of the
curvature reduction. Before starting the next iteration with
the resampled polyline Ĝm (line 16), we want to ensure
sufficient clearance to the boundary Bj . We use the convex
hull property and check whether the line segments pipi+pB

intersect with the boundary (line 17 and Fig. 6). Only if
the line segments pipi+pB

do not intersect with Bj we set
Gm = Ĝm (lines 18-21).

Theorem 1 (Convergence):
Alg. 1 convergences and terminates when all boundaries Bj

are enclosed in PΓ. �

Proof: The proof follows from Lemma 2 and Lemma 3.
We know that with each iteration, the maximum curvature
|κGm

| of each partition Gm is reduced (cf. Lemma 3).
Moreover, the resulting polyline after each iteration lies on
the inner side of the previous polyline (cf. Lemma 3), thus
distpi monotonically decresases. Additionally, we know that
the radius of the local oscullating circle, which limits PΓ,
extends beyond the corresponding boundary Bj for all points
pi ∈ Gm if condition (6) is fulfilled (cf. Lemma 2). Since
each iteration step reduces |κpi | and distpi , condition (6)
will be reached for all points pi and thus Alg. 1 converges.�

IV. TRANSFORMATION ROUTINE

We now describe how we use the adapted reference
path within the transformation routine of the curvilinear

coordinate system. To project a point onto Pref , we use the
Lanelet transformation routine [28]. This routine matches a
Cartesian point to the closest segment of Pref and interpo-
lates the curvilinear abscissa s to avoid discontinuities near
the discrete vertices (cf. [34, Eq. 6-9]). Finding the closest
segment for a point becomes increasingly expensive the more
segments Pref has. Since the subdivision algorithm of [33]
increases the number of points in each recursion, Pref can
be sampled very densely. Therfore we resample Pref adap-
tively for efficiency during the coordinate transformation:
We adjust the segment length for resampling Pref inversely
proportional to the curvature with a user-defined minimum
∆s and maximum ∆s step size, i.e.,

∆si = 1/(α κi), ∆s ≤ ∆si ≤ ∆s.

We set the scaling factor α such that the minimum step size
∆s is applied to the point with the maximum curvature κref ,
i.e., α = 1/(∆s κref).

Proposition 1 (Adaptive resampling of Pref ):
By adjusting ∆s we can make the approximation error e of
the resampled reference path arbitrarily small to ensure that
the properties of Pref are preserved.

Proof: Let us consider a circular arc segment with a cur-
vature κref . By approximating the arc with line segments of
length ∆s the chord error can be computed as

e =
1

κref
·
[
1− cos

(
κref∆s

2

)]
,

which follows from the trigonometry of chord lengths for
circular arcs [35, pp. 57-59.]. Thus, we can set ∆s to bound
the chord error to a desired maximum value e < emax.
Since we adjust the error bound for an arc segment with the
maximum curvature κref , we can guarantee that the error e
is bounded for all points in the resampled reference path.�

For the interested reader, we also provide an efficient
algorithm for computing the polygon of the unique projection
domain PΓ (e.g., as visualized in Fig. 1) in the Appendix.

V. NUMERICAL EXPERIMENTS

We evaluate our approach numerically using real-world
maps from the CommonRoad [23] benchmark suite. To gen-
erate the initial reference path, we utilize the CommonRoad
Route Planner1. The algorithm for the projection domain
computation is implemented in C++ and the algorithm for
adapting the reference path is implemented in Python1. All
experiments are performed on a single thread of a 1.80 GHz
Intel CoreTM i7-10510U CPU with 32 GB of memory.

A. Reference Path Adaptation

We demonstrate our method using the maps from the
following CommonRoad scenarios.

I : USA Lanker-2 5 T-1
II : USA Peach-2 1 T-1

1Code provided at: https://commonroad.in.tum.de/

https://commonroad.in.tum.de/
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Fig. 7: Our approach modifies the reference path such that projection domain covers the relevant parts of the road network.

modified
original

Fig. 8: Scenario II: Curvature κ and curvature rate κ̇ of the original and
modified reference path.

III : ZAM Tjunction-1 42 T-1

Each of the chosen scenarios showcases a reference path for
a tight turning maneuver in an intersection, which is particu-
larly challenging for curvilinear representations (see Fig. 7).
We set the number of recursions for each refinement step to
k = 5 (see line 9, Alg. 1) and the step size for the resampling
step to ∆s = 2 (see line 16, Alg. 1). For all three scenarios,
we observe that our approach modifies the original reference
path extracted from the center points of the lanelets such
that the unique projection domain covers the relevant parts
of the road network along the route. Moreover, we see how
the reference path is sampled more densely in parts where
the curvature is high, thus preserving the smoothness of the
path and simultaneously reducing the number of segments
for an efficient coordinate transformation (cf. Sec. IV).

To investigate the smoothness of the resulting reference
path, we compare the profiles of the curvature κ and cur-
vature change κ̇ for scenario II (see Fig. 8). The modified
reference path is smooth and both the curvature and curvature
change are continuous (C2). In comparison, the profiles of
the original reference path are very noisy and especially the
curvature change shows high peaks. The improvements for κ
and κ̇ are evaluated in Tab. I (a) for all three scenarios, which
shows that in all cases our approach reduces the maximum
absolute values for κ and κ̇. Low curvature rates of the
reference path are required to ensure curvature-continuity
of trajectories which are transformed from the curvilinear
coordinate frame to the Cartesian frame and vice versa [1].

Our procedure modifes the path only locally, while the

TABLE I: QUANTITATIVE EVALUATION

Scenario I II III

(a) Curvature
∆|κ| 0.164 0.172 0.050
∆|κ̇| 0.079 0.107 0.019

(b) Deviations
∆s [m] 4.078 4.22 1.535
∆d [m] 1.107 0.332 0.067
∆θ [rad] 0.118 0.287 0.011

(c) Runtime [ms]
reference path 73.44 87.69 167.59
projection domain 0.873 1.326 1.005

overall shape of the initial reference path is mostly preserved.
We evaluate the deviation from the original path in terms of
the changed path length ∆s, as well as the average lateral
deviation ∆d and average deviation of the orientation ∆θ in
Tab. I. Our approach reduces the overall path length, due to
the reduced curvature. The average lateral deviation as well
as the deviation in the orientation of the path are minor, i.e.,
the overall shape of the original reference path is retained.
One might argue that the modified reference path cuts corners
at intersections, which may result in undesirable maneuvers
when following this path with a local trajectory planner.
However, keeping a desired lane can easily be enforced
in a trajectory planner, for example by adding a high cost
term for lane deviations. The runtimes for both the reference
path adaptation and the projection domain computation in
Tab. I (c) show that our method is efficient and suitable for
online applications.

B. Combination with Motion Planning

Next, we demonstrate the efficacy of our approach for two
downstream planning tasks: computing the reachable set of
the ego vehicle and planning feasible trajectories.

1) Reachable Set Computation: We compute the
collision-free reachable set of the ego vehicle using
the polytopic set propagation method [36] implemented
in CommonRoad-Reach [37]. The over-approximative
reachable sets are computed in the curvilinear frame for
a horizon of 30 time steps. Fig. 9 shows the reachable
sets in the position domain at time step k = 27 after
transforming the sets to Cartesian coordinates. We observe
that the reachable set in Fig. 9a does not cover the entire



(a) Original reference path. (b) Modified reference path.

Fig. 9: Scenario III: Computed reachable sets of the ego vehicle at time
step k = 27.

(a) Original reference path. (b) Modified reference path.

Fig. 10: Scenario III: Trajectory samples at k = 30, with feasible trajectories
(blue), infeasible trajectories (gray) and the optimal trajectory (orange).

width of the road in the apex of the curve, in contrast to
Fig. 9b. Hence, our approach is necessary to ensure that
the reachable set can be represented correctly for the entire
feasible space of the road.

2) Sampling-based planner: We further demonstrate our
approach with a planner that samples a set of trajectories
in the curvilinear frame [1]. Fig. 10 shows the set of 360
trajectory samples at planning step k = 30 for a planning
horizon of 5 s. With the original reference path (see Fig. 10a),
305 trajectories are infeasible, as they either can not be
transformed between the coordinate frames or exceed the
kinematic limits for the curvature and curvature rate of the
ego vehicle. In contrast, our modified reference path ensures
that all samples can be transformed correctly and the number
of infeasible trajectories is reduced to 170 (see Fig. 10b).
The remaining infeasible samples stem from the high lateral
accelerations and yaw rates required for the tight turning
maneuver in this scenario. Both the enhanced projection
domain as well as the improved smoothness and continuity
of the reference path contribute to a higher sample efficiency
and feasibility rate.

VI. CONCLUSIONS

We present for the first time an optimization-free approach
for adapting a reference path for motion planning to ensure
that the representation of points in the curvilinear coordinate
frame is unique for a given subset of the map. Our iterative
procedure is based on a curve subdivision scheme which
gradually reduces the curvature and simultaneously produces
smooth (C2) paths. The approach is model-free, in contrast
to using optimization techniques, and thus well suited as a

Algorithm 2 Computation of projection domain PΓ

Input: Polyline Pref , discrete curvature vector κref , maximum
lateral distance dP ;

Output: Projection domain polygon PΓ

1: Left normal line segments NL ← ∅;
2: Right normal line segments NR ← ∅;
3: for each point pi in Pref do
4: NL ← add ni · dP
5: NR ← add ni · (−dP)
6: end for
7: Left border PP,L ← SWEEPLINEINTERSECT (NL)
8: Right border PP,R ← SWEEPLINEINTERSECT (NR)
9: PΓ ← CREATEPOLYGON(PP,L,PP,R)

robust method for generating a suitable reference path for
curvilinear coordinate frames. Our numerical experiments
using CommonRoad scenarios demonstrate the efficacy of
the method when combined with downstream planning tasks,
e.g., for computing the reachable set or improving the
feasibility rate of trajectory planners.

APPENDIX

Algorithm for computing the projection domain PΓ

The vertices of the polygon PΓ are obtained by the
concatenation of two lists PP,L and PP,R, which we denote
as the left border and right border, respectively. The borders
are computed based on the intersections of the normal vectors
ni of the polyline Pref , as shown in Fig. 11. For each ni,
we compute the set of intersection points

Ai = {ni ∩ nj | j 6= i} (8)

with the other vectors nj . Afterwards, we determine for each
ni the point

ai = argmin
a∈Ai

‖a− pi‖2, pi ∈ Pref , (9)

i.e., we retrieve the intersection point a ∈ Ai closest to
pi ∈ Pref . The points ai are added to the corresponding
border PP of the projection domain PΓ. The procedure
is summarized in Alg. 2. To efficiently compute the inter-
sections we use the Bentley-Ottmann sweep-line algorithm
[38], which has a complexity of O(n + k)log(n) for n
lines with k intersections. We scale the normals by a user-
defined value dP (line 4–5). This value determines the
maximum lateral distance of the vertices of PΓ to Pref and is
required for cases where there are no intersections between
the normals, e.g., if Pref is a straight line. The function
SweepLineIntersect implements (9) and returns the
borders PP,L and PP,R which are used to construct PΓ

(line 7–9).
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Fig. 11: Example for constructing the left border PP,L (orange line) for
a polyline Pref (bold black line) with normals n1 . . . n4. The intersection
points ai ∈ Ai (orange points) of the normals ni are determined via the
sweep-line algorithm. They are used to construct PP,L and form the vertices
of the polygon of the projection domain PΓ.
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