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Abstract

The study of ribonucleic acid (RNA) contents in cells aims to elucidate the relationships among gene ex-

pression, cell states, and cell functions under specific conditions. Ultimately, the study field addresses the

question of which genes drive the cell’s condition. To answer this question, researchers have developed

experimental and computational tools to facilitate the field of study. RNA sequencing allows the quantifica-

tion of RNA expression in biological samples. Applying computational methods in systems biology allows

us to study the interactions of each component inside a cell. The interactions of these components within a

system usually happen dynamically, e.g., the expression of a transcription factor can affect the transcription

of target genes over time. These dynamic components are often ignored in many experiments. Methods

for time series analysis still need to be improved, especially in the study of alternative splicing.

Three key research areas are discussed in this dissertation: 1) the investigation of potential snoRNA and

miRNA candidates associated with Alzheimer’s disease using differential co-expression network analysis,

2) the development of Spycone—a tool facilitating splicing-aware time-series network analysis at the tran-

script level, and 3) benchmarking analysis of existing tools for differential transcript usage (DTU) detection

in both two-condition experiments, time-series data, and single-cell data. Additionally, guidelines for DTU

analysis of bulk RNA-seq data are provided.

In the first publication, I demonstrated the use of a data-driven network - differential gene co-expression

network - in deciphering the involvement of small RNAs in the Alzheimer’s mouse model. One of the main

difficulties in identifying potential snoRNA and miRNA candidates is the lack of prior knowledge, namely

interaction information and functional annotation. Traditionally, differential gene expression analysis can

help us identify genes that change expression levels between conditions. However, by treating genes inde-

pendently, this method ignores the co-dependence environment within a biological system. I constructed

a data-driven network specific to the Alzheimer’s disease Tg4-42 mouse model. The resulting network

represents the differential relationship of small RNAs between the wild-type and Alzheimer’s mouse mod-

els. Extracting important nodes using centrality measures allows the identification of potential small RNA

biomarkers involved in developing Alzheimer’s disease-like phenotype in the mouse model. These findings

can help to establish new connections to the known mechanisms of Alzheimer’s disease progression.

In the second publication, I introduced Spycone, a framework for systematic analysis in alternative splic-

ing for time series data. In systems biology, gene-level analysis is typically given more attention; however,

alternative splicing plays a crucial role in determining protein diversity and function. Additionally, alterna-

tive splicing is a dynamic process that changes during the development of an organism or in a disease

like cancer. Time-series data are often used to study dynamic processes. However, only one tool, TSIS,

is specific for isoform switch detection in time series data. One of the challenges is that no tool provides

downstream analysis in alternative splicing for time series data. I developed Spycone, which includes

a novel algorithm for detecting isoform switch events in time-series transcriptomics and a framework for
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systematically analyzing time-series data. The framework consists of four main analyses: clustering inte-

grating multiple algorithms, functional enrichment incorporating NEASE specialized for splicing, network

enrichment incorporating DOMINO, and splicing factor motifs enrichment. This work outperformed the

competing tool TSIS with simulated data based on a Hidden Markov Model. I provided evidence of the

biological relevance of the findings for analyzing a time series dataset from a SARS-Cov-2 infected cell

line.

In an unpublished work, I conducted a benchmark analysis on published DTU detection tools. These

tools aim to identify genes whose transcription distribution changes between conditions. These changes

are assumed to be due to alterations in alternative splicing patterns. In this analysis, I evaluated the tools in

three types of data: simulated and real-world bulk RNA-seq data, real-world time series data and simulated

single-cell RNA-seq in multiple settings. I addressed the following questions: How do methods for pairwise

comparison compare to time series methods, and how do DTU tools perform in single-cell datasets? I

provided an updated perspective and guidelines for performing DTU analysis in these scenarios.

This dissertation strives to advance our understanding of RNA-related processes and their implications

in various biological contexts. I showed that using data-driven network reconstruction can compensate for

the lack of prior knowledge and extract possible snoRNAs involved in the etiology of Alzheimer’s disease.

Meanwhile, in Spycone, I developed a novel Python package to analyze alternative splicing in time series

data and aid biological interpretation of the results. Finally, the benchmark analysis provides an updated

view of the state-of-the-art DTU analysis for bulk RNA-seq data (static and dynamic) and a new perspective

for applying DTU analysis in single-cell experiments.

x
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Kurzfassung

Die Untersuchung der Ribonukleinsäure (RNA)-Gehalte in Zellen zielt darauf ab, die Beziehungen zwis-

chen Genexpression, Zellzuständen und Zellfunktionen unter bestimmten Bedingungen zu erhellen. Let-

ztlich geht es in diesem Bereich um die Frage, welche Gene den Zustand der Zelle steuern. Um diese

Frage zu beantworten, haben die Forscher experimentelle und rechnerische Instrumente entwickelt, die

das Studienfeld erleichtern. Die RNA-Sequenzierung ermöglicht die Quantifizierung der RNA-Expression

in biologischen Proben. Die Anwendung von Berechnungsmethoden in der Systembiologie ermöglicht es

uns, die Wechselwirkungen zwischen den einzelnen Komponenten innerhalb einer Zelle zu untersuchen.

Die Interaktionen dieser Komponenten innerhalb eines Systems laufen in der Regel dynamisch ab, z. B.

kann die Expression eines Transkriptionsfaktors die Transkription von Zielgenen im Laufe der Zeit beein-

flussen. Diese dynamischen Komponenten werden bei vielen Experimenten oft ignoriert. Die Methoden

für die Zeitreihenanalyse müssen noch verbessert werden, insbesondere bei der Untersuchung des alter-

nativen Spleißens.

In dieser Dissertation werden drei Hauptforschungsbereiche behandelt: 1) die Untersuchung poten-

zieller snoRNA- und miRNA-Kandidaten, die mit der Alzheimer-Krankheit in Verbindung gebracht werden,

unter Verwendung einer differenziellen Koexpressionsnetzwerkanalyse, 2) die Entwicklung von Spycone -

einem Tool, das eine spleißfähige Zeitserien-Netzwerkanalyse auf Transkriptebene ermöglicht, und 3) eine

Benchmarking-Analyse bestehender Tools für die Erkennung der differenziellen Transkriptnutzung (DTU)

in Experimenten mit zwei Bedingungen, Zeitseriendaten und Einzelzelldaten. Zusätzlich werden Leitlinien

für die DTU-Analyse von Massen-RNA-seq-Daten bereitgestellt.

In der ersten Veröffentlichung habe ich die Verwendung eines datengesteuerten Netzwerks - eines dif-

ferenziellen Genkoexpressionsnetzwerks - zur Entschlüsselung der Beteiligung kleiner RNAs am Alzheimer-

Mausmodell demonstriert. Eine der Hauptschwierigkeiten bei der Identifizierung potenzieller snoRNA- und

miRNA-Kandidaten ist das Fehlen von Vorwissen, d. h. von Interaktionsinformationen und funktioneller An-

notation. Traditionell kann uns die differenzielle Genexpressionsanalyse bei der Identifizierung von Genen

helfen, deren Expressionsniveau sich zwischen den Bedingungen ändert. Da bei dieser Methode die

Gene jedoch unabhängig voneinander behandelt werden, wird die Co-Abhängigkeit innerhalb eines biolo-

gischen Systems ignoriert. Ich habe ein datengesteuertes Netzwerk speziell für das Tg4-42-Mausmodell

der Alzheimer-Krankheit erstellt. Das resultierende Netzwerk stellt die unterschiedlichen Beziehungen

zwischen kleinen RNAs im Wildtyp- und im Alzheimer-Mausmodell dar. Die Extraktion wichtiger Knoten

mit Hilfe von Zentralitätsmaßen ermöglicht die Identifizierung potenzieller kleiner RNA-Biomarker, die an

der Entwicklung eines der Alzheimer-Krankheit ähnlichen Phänotyps im Mausmodell beteiligt sind. Diese

Erkenntnisse können dazu beitragen, neue Verbindungen zu den bekannten Mechanismen des Fortschre-

itens der Alzheimer-Krankheit herzustellen.
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In der zweiten Veröffentlichung habe ich Spycone vorgestellt, einen Rahmen für die systematische Anal-

yse des alternativen Spleißens bei Zeitreihendaten. In der Systembiologie wird der Analyse auf Gen-

Ebene in der Regel mehr Aufmerksamkeit geschenkt; alternatives Spleißen spielt jedoch eine entschei-

dende Rolle bei der Bestimmung der Proteinvielfalt und -funktion. Außerdem ist alternatives Spleißen

ein dynamischer Prozess, der sich während der Entwicklung eines Organismus oder bei einer Krankheit

wie Krebs verändert. Zeitreihendaten werden häufig zur Untersuchung dynamischer Prozesse verwen-

det. Es gibt jedoch nur ein Tool, TSIS, das speziell für die Erkennung von Isoformwechseln in Zeitrei-

hendaten geeignet ist. Eine der Herausforderungen besteht darin, dass kein Tool eine nachgeschaltete

Analyse des alternativen Spleißens für Zeitreihendaten bietet. Ich habe Spycone entwickelt, das einen

neuartigen Algorithmus zur Erkennung von Isoform-Switch-Ereignissen in Zeitserien-Transkriptomdaten

und einen Rahmen für die systematische Analyse von Zeitseriendaten umfasst. Der Rahmen besteht aus

vier Hauptanalysen: Clustering unter Einbeziehung mehrerer Algorithmen, funktionelle Anreicherung unter

Einbeziehung von NEASE, das auf Spleißen spezialisiert ist, Netzwerkanreicherung unter Einbeziehung

von DOMINO und Anreicherung von Spleißfaktormotiven. Diese Arbeit übertraf das konkurrierende Tool

TSIS mit simulierten Daten, die auf dem Hidden Markov Model basieren. Ich habe die biologische Rel-

evanz der Ergebnisse bei der Analyse eines Zeitreihendatensatzes von einer mit SARS-Cov-2 infizierten

Zelllinie nachgewiesen.

In einer unveröffentlichten Arbeit habe ich eine Benchmark-Analyse der veröffentlichten DTU-Erkennungswerkzeuge

durchgeführt. Diese Werkzeuge zielen darauf ab, Gene zu identifizieren, deren Transkriptionsverteilung

sich zwischen den Bedingungen ändert. Es wird davon ausgegangen, dass diese Änderungen auf Verän-

derungen der alternativen Spleißmuster zurückzuführen sind. In dieser Analyse bewertete ich die Tools

anhand von drei Datentypen: simulierte und reale Massen-RNA-seq-Daten, reale Zeitreihendaten und

simulierte Einzelzell-RNA-seq-Daten in verschiedenen Einstellungen. Ich habe die folgenden Fragen un-

tersucht: Wie schneiden die Methoden für den paarweisen Vergleich im Vergleich zu Zeitreihenmethoden

ab, und wie schneiden die DTU-Tools bei Einzelzelldatensätzen ab? Ich stellte eine aktualisierte Perspek-

tive und Leitlinien für die Durchführung von DTU-Analysen in diesen Szenarien vor.

Diese Dissertation zielt darauf ab, unser Verständnis von RNA-bezogenen Prozessen und deren Auswirkun-

gen in verschiedenen biologischen Kontexten zu verbessern. Ich habe gezeigt, dass eine datengesteuerte

Netzwerkrekonstruktion den Mangel an Vorwissen ausgleichen und mögliche snoRNAs extrahieren kann,

die an der Ätiologie der Alzheimer-Krankheit beteiligt sind. In der Zwischenzeit habe ich mit Spycone

ein neues Python-Paket entwickelt, um alternatives Spleißen in Zeitreihendaten zu analysieren und die

biologische Interpretation der Ergebnisse zu unterstützen. Schließlich bietet die Benchmark-Analyse

einen aktualisierten Überblick über den Stand der Technik der DTU-Analyse für Massen-RNA-seq-Daten

(statisch und dynamisch) und eine neue Perspektive für die Anwendung der DTU-Analyse in Einzelzellex-

perimenten.

xii
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1 Introduction

1.1 Motivation

The rapid development of RNA sequencing technology enables scientists to quantify RNA contents in

cells, especially messenger ribonucleic acids (mRNAs). The presence of mRNAs indicates gene expres-

sion; some of them are post-transcriptionally modified and translated to proteins. Beyond the coding world,

non-coding RNAs play pivotal roles in regulating cellular functions despite their lack of translation into pro-

teins. Researchers use RNA sequencing to analyze RNA behavior under certain conditions (e.g., disease,

development). Most biological processes and disease developments are dynamic. Where deterministic

temporal changes lead to a change to phenotype [1]. Time series data can capture changes and fluc-

tuations in response to stimuli, treatments, disease progression, and biological processes. Therefore, it

provides valuable insights into underlying mechanisms and patterns of change. Circadian rhythm is an ex-

ample of using time series data; 43% of protein-coding genes follow circadian rhythms in their expressions

throughout the day [2]. Time series data also facilitate the inference of dynamic gene regulatory networks

based on the co-expression of the genes and their targets. For example, key transcriptional regulators

drive different stages in the human myeloid differentiation process [3]. Networks are often used in systems

biology to help us understand the underlying biological mechanism in conditions.

In systems biology, we study a model organism as a whole. That is to investigate the components (e.g.,

transcriptome, proteome) and the interaction between these elements within a system. This methodology

is based on the understanding that cellular components do not operate in isolation but as modules grouped

by functionality. Systems biology often employs network analysis to facilitate the discovery of marker genes

under a condition by incorporating established networks. These networks include known molecular inter-

action networks (e.g., protein-protein interaction (PPI) network, RNA-RNA interaction network). Despite

pre-constructed networks, we can also use network construction techniques to create a condition-specific

data-driven network (e.g., a co-expression network).

In Alzheimer’s disease, many studies are investigating the involvement of miRNAs [4]. For example,

downregulating miR-29 and miR-107 can increase the production of Amyloid-β protein [5, 6]. As another

type of small RNA that can regulate the mRNA abundance [7], little is known about the involvement of

snoRNA in the progression of Alzheimer’s disease. Moreover, the Tg4-42 mouse model is one of the

few that develops neuron death in the hippocampus region. Hence, it can give us new insight into the

mechanism of the etiology of Alzheimer’s disease. Another problem is that we know less about snoRNA

compared to miRNA and other coding genes. Prior knowledge is limited in terms of interaction databases

and gene ontology annotation. This limitation makes it harder to study snoRNA. Here, I employed a data-
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driven approach to compensate for the lack of prior knowledge about small nucleolar RNA interaction and

function in mice. In the first publication, I applied a differential co-expression network analysis to inves-

tigate small nucleolar RNA in the hippocampus of the Tg4-42 Alzheimer’s mouse model. After building

a differential co-expression network, nodes with high centrality measures indicate the potential functional

role in the disease mechanism of the mouse model. Findings of the biomarkers indicate, indeed, some of

them are associated with Alzheimer’s disease mechanism. In addition, performing functional enrichment

analysis of their interacting genes indicates the novel small nucleolar RNA biomarkers and the association

of Alzheimer’s disease.

Deep-sequenced RNA sequencing data allows a glance at alternative splicing that carries out pre-mRNA

processing and produces different protein isoforms. There are a few limitations to studying alternative splic-

ing with RNA sequencing. First, read depth is a critical factor in inferring splicing. Second, many splicing

tools (more details in the Background section) are characterized into event-based and exon/isoform-based

methods. In this dissertation, I focused on isoform-based methods using two types of data: static and

dynamic data. Static data are the typical case-control experiments. Dynamic data is longitudinal data with

multiple time points. However, most of the isoform-based tools are developed for static data. Only a few

tools are designed for dynamic data. For example, TSIS was created to detect isoform switch (IS) events

within a time series data [8]. However, it does not provide further analysis to characterize the detected IS

events. More work is needed to improve IS detection in time series data and provide a tool for systematic

analysis.

Understanding the function of alternative splicing and its upstream and downstream regulation is impor-

tant, as dysregulation of splicing could be a primary cause of disease. For example, Spinal muscular

atrophy is caused by the loss of SMN1 gene function due to alternative splicing [9]. Splicing regulation in-

volves splicing factors, splicing enhancers, or splicing inhibitors (see background section). The outcome of

splicing alterations can potentially rewire the connection within a PPI network. Such changes can disrupt

or enhance a series of interactions within the PPI network, indicating a profound impact on gene function

alternation due to splicing on molecular interactions. Using systems biology to study the effect of a splicing

event on molecular networks will help researchers decipher the underlying molecular mechanism causing

a condition.

The second publication introduces the Spycone framework, a splicing-aware time course network en-

richer that focuses on transcript-level data. This work contains two main parts: 1) develop a novel isoform

switch detection algorithm. 2) incorporate clustering, network enrichment, and functional enrichment to

analyze the isoform-switched genes. The novel isoform switch detection algorithm aimed to overcome

the limitation of the other tool, the isoform switch detection tool, for time course data TSIS. Our analysis

showed that TSIS detects switched isoforms with low-level expression. Lowly expressed isoforms could

have less impact on the functional changes during isoform switch events. In addition, Spycone offers the

detection of differential domain inclusion and exclusion. However, to use Spycone, researchers must do

deep RNA sequencing from time series data. The cost of generating this type of data will be high. It is,

therefore, essential to be able to perform this type of analysis in pairwise settings.

2
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Numerous tools exist to perform differential transcript usage (DTU) analysis in pairwise data. Several

benchmarking analyses have been performed to compare these tools. However, they are either applied

in plant systems [10] or using an outdated aligner for the analysis [11]. In addition, more differential

transcript tools are not benchmarked. Therefore, I performed a comprehensive benchmarking analysis

for twelve tools (six of which were not benchmarked prior to this study) with simulated and real human

datasets. I covered different experimental settings, including time series data and single-cell data. The

third publication (see Unpublished results) provides a guideline and recommendation for performing DTU

analysis based on different experimental setups.

1.2 Aim of dissertation

In the introduction section, I have discussed the current state of transcriptomics data analysis, specifically

in the context of alternative splicing. It is true that while differential transcript usage and isoform switch

analysis are powerful techniques for identifying differentially spliced genes, they are primarily designed

for static comparisons, where the dynamic or time component is ignored. This is a significant limitation

because alternative splicing events can vary dynamically depending on cellular contexts, developmental

stages, or environmental cues. Furthermore, while systems biology approaches have been widely ap-

plied to gene-level studies, comparatively fewer studies focus on alternative splicing. Given that alternative

splicing can significantly impact the functional diversity of gene products, it is critical to expand our under-

standing of this process at the transcript level. As discussed in section 2.6, alternative splicing can rewire

the protein-protein interaction network. These limitations highlight the need for further methodological de-

velopments to fill the gap.

In this dissertation, the objectives are as follows: 1) investigate the involvement of snoRNA in the etiology

of Alzheimer’s disease mouse model Tg4-42; 2) develop a systematic analysis framework for alternative

splicing analysis in time series data; 3) perform a comprehensive benchmark analysis for DTU analysis

and provide an updated view of the current state of DTU analysis and guideline. Specifically, I will discuss

two papers and one ongoing work. The first paper investigates potential snoRNA and miRNA candidates

involved in the etiology of Alzheimer’s disease using differential co-expression analysis. In the second

paper, I aimed to study the impact of alternative splicing in time series transcriptomics data. However, I

found no suitable tools available for this purpose. To address this gap, I developed Spycone, a novel tool

that enables splicing-aware time series network analysis at the transcript level. Finally, to compensate

for the shortcomings of the previous benchmark analysis, I performed a comprehensive benchmark with

the existing DTU detection tools for two-condition experiments, time series DTU analysis, and single-cell

experiments. I provided guidelines for DTU analysis of bulk RNA-seq data. Overall, this dissertation

aims to overcome the limitations of existing techniques for transcriptomics data analysis and provide new

insights into transcript-level analysis. By accomplishing these objectives, I hope to contribute to advancing

network analysis in the field of transcriptomics, shedding light on crucial aspects of gene regulation and its

implications in diseases like Alzheimer’s.
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1. Introduction

Figure 1.1 Focus of this dissertation.

In this work, I first focused on studying snoRNA involvement in Alzheimer’s mouse model Tg4-42 using a

systems biology approach. Then, I investigate the possibility of applying network analysis in

transcript-level resolution. In the second focus, I aimed to fill the gap of applying systems biology

approaches in transcript-level resolution, where I developed Spycone. I performed a comprehensive

benchmark analysis in existing DTU tools to further understand the current state-of-the-art differential

transcript usage analysis.
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2 Background

2.1 Ribonucleic acid (RNA) molecules: types and roles

Nucleic acid is an abundant macromolecule that is found in the nucleus of the cells, as well as in the

mitochondria. In 1869, Friedrich Miescher first isolated DNA molecules from white blood cells [12]. Later,

in 1955, James Watson and Francis Crick uncovered the structure of deoxyribonucleic acid (DNA) based

on the X-ray image produced by Rosalind Franklin [13, 14, 15]. One of the interesting questions after the

discovery of DNA was, how are proteins synthesized? Francis Crick first enunciated the Central Dogma

theorem in 1958 [14]. The theorem consists of three main units: DNA, RNA, and protein, and it describes

the information flow from one unit to another, including DNA to DNA, DNA to RNA, RNA to protein, and

RNA to RNA (Figure. 2.1).

From the genetic information stored in DNA molecules, RNA molecules carry partial information, which is

either translated into cellular units (i.e., proteins) or functions as enzymes (known as ribozymes). In 1968,

Robert Holley was awarded the Nobel Prize in Medicine for discovering the structure of transfer RNA

(tRNA), which links protein synthesis and messenger RNA (mRNA) [16]. The major structural difference

between RNA and DNA is that RNA consists of sugar ribose rather than deoxyribose (which is ribose lack-

ing one oxygen atom). RNA molecules consist of two purine-derived nucleobases (adenine and guanine)

and two pyrimidine-derived nucleobases (uracil (instead of thymine in DNA) and cytosine). The presence

of uracil contributes to the non-Watson-Crick base pairing structure of RNA molecules [17]. Nucleic acids

have been long suspected to contribute to protein synthesis and cell growth [18]. While RNA is thought

to be the origin of life, it is not the primary genetic material for most of the multicellular organisms [19]. A

major transition in evolution is believed to be when DNA replaced RNA as the primary genetic information

storage [20]. RNA molecules act as intermediate information carriers in heredity.

Heredity involves transferring genotype and phenotype to the offspring. As a unit of heredity, a gene is

a DNA region containing promoter regions, untranslated regions, exonic and intronic regions in eukary-

otes. A gene with introns was previously thought to be disrupted since the "mature gene" contains only

exons and produces proteins. However, this definition no longer applies to our understanding of genes

today. Many genes do not result in a functional protein; these are non-coding genes. One gene region

can produce one or more functional products, such as proteins and non-coding RNAs. The production

of these functional products is referred to as gene expression. Gene expression is a highly regulated

process involving complex regulatory mechanisms, including chromosome architecture, chromatin modifi-

cation, transcription, mRNA processing, degradation, translation, protein folding and modification.

The process of converting genetic information in RNA to protein is called translation. Various types of RNA

are involved in translation, namely mRNA, tRNA and ribosomal RNA (rRNA) [21]. mRNA carries genetic

information, while tRNA and rRNA act as ribozymes [22]. The loop region of the hairpin structures of
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Figure 2.1 Central dogma of molecular biology

The flow of genetic information from DNA, RNA to protein. Source: created with BioRender.com.

tRNA contains anticodons that recognize the codons on the mRNA (Figure 2.2). The corresponding tRNA

loads desired amino acids to form peptides. Both tRNA and the generated peptide are held in place by the

ribosome, which consists of proteins and rRNA. The resulting peptide undergoes folding to form a mature

protein. Therefore, the genetic information carried by mRNA determines the protein product and function.

The expression profile of mRNA plays a role in cellular protein diversity [23].

mRNA plays a role in cellular protein diversity via post-transcriptional modification. Post-transcriptional

modification is a process where primary mRNA is modified by alternative splicing, degradation, or chem-

ical modification. For instance, microRNAs (miRNAs) regulate mRNA expression through RNA silencing.

miRNAs are predicted to be encoded in 2% of human genes, but they regulate up to 80% of human genes

[24]. Most miRNAs are found in the intergenic regions or the antisense strand to functional genes [25,

26]. Other miRNAs are located in the intronic regions of a gene. They are a class of small non-coding

RNAs with 19-25 nucleotides. MiRNA biogenesis involves the transcription of primary miRNA, followed

by a canonical pathway to generate mature miRNA. First, miRNA is transcribed by RNA polymerase II

into a primary miRNA and cleaved by Drosha at the hairpin structure of the miRNA. After exporting to the

cytoplasm, Dicer, an RNase III endonuclease, removed the terminal loop and produced mature miRNA

[27].

Another small non-coding RNA species primarily involved in post-transcriptional modification is small

nucleolar RNA (snoRNA), a non-coding RNA that is 60-300 nucleotides long. Depending on the type of

snoRNAs, they are essential for rRNA modifications. C/D box snoRNAs are highly conserved and are

responsible for 2’-O-methylation of rRNA, while H/ACA box snoRNAs are responsible for pseudouridine

modifications. These modifications are essential for the stability of RNAs. Researchers have been study-

ing these roles in snoRNA for a long time. Recently, more studies have described the potential roles of

6



2.2 Introduction of Alternative splicing 7

Figure 2.2 Structure of a tRNA

The amino acid Asparagine (Asn) is used as an exmample here. The amino acid is binded to the 3’-end

of the tRNA. Anticodon is located at the anticodon loop where the nucleic acid complementary to the

codon is found. Source: created with BioRender.com

snoRNAs in rRNA acetylation. For instance, snoRNA snR4 and snR45 can interact with an RNA cytidine

acetyltransferase and complementary to the acetylated site on 18s rRNA in yeast [28]. Knock-out and mu-

tated models suggested the validity of the finding on snoRNA’s rRNA acetylation role. Another recent study

discovered a set of snoRNAs co-purified with a 3’-mRNA processing complex. These snoRNAs interact

with a component of cleavage and polyadenylation specificity factor, FIP1. One of the snoRNA SNORD50

could block the polyadenylation of 3’-mRNA, affecting the mRNA turnover, intracellular localization, and

translation efficiency [7].

2.2 Introduction of Alternative splicing

After a eukaryotic gene is transcribed into a pre-mRNA, it undergoes a series of processing steps, includ-

ing 5’ capping, 3’ polyadenylation (polyA tail), and splicing - the removal of introns (non-coding regions)

and merging of exons (coding regions). The discovery of alternative splicing revolutionized our under-

standing of gene expression and provided insights into the molecular basis of many biological processes.

The importance of alternative splicing was recognized by awarding the Nobel Prize in Medicine to Philip

Sharp and Richard Roberts in 1993 [29]. They described how the process of splicing allows for the re-

moval of non-coding intronic regions from pre-mRNA transcripts, producing mature mRNA that can be

translated into protein. When a gene has multiple exons, splicing might merge different combinations of

exons - this process is called alternative splicing. Alternative splicing enables the production of multiple

protein isoforms from a single gene. This mechanism increases the functional diversity of the proteome

and contributes to the complexity of biological processes. For example, Tcf/Lef family isoforms are ex-

pressed in a cell-type-specific manner. The isoforms contribute to the expression of Wnt/b-catenin target

genes [30]. AS events of FOXP1 regulate the transcription of target genes responsible for stem cell differ-

entiation [31]. The regulation of alternative splicing is a highly coordinated process involving many factors,

including splice site selection, splicing factors, splicing enhancers and silencers, and other RNA binding

7
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Figure 2.3 The types of alternative splicing.

Cassette exon (also known as exon skipping, describe events where an exon is spliced out or retained in

a transcript. Alternative 3’/5’ splice site has a different 3’/5’ splice site than the canonical transcript. Intron

retention refers to transcripts with intron being retained. Source: created with BioRender.com

proteins (more details in the following section). Dysregulation of alternative splicing has been associated

with various human diseases, including cancer [32], neurodegenerative disorders [33], and developmental

abnormalities (e.g., myotonic dystrophy [34]).

Mechanisms of alternative splicing

The splicing machinery, known as the spliceosome, catalyzes the splicing process and consists of five

small nuclear ribonucleoproteins (snRNPs) - U1, U2, U4, U5, and U6 [35]. The main components of

snRNPs are small nuclear RNA (snRNAs). Once transcribed, snRNAs are 5’ capped and exported to the

cytoplasm with the help of a pre-export protein complex. During export, snRNAs are directed to snRNA-

rich Cajal bodies in the nucleus before being exported through the nuclear pore [36]. Upon entering

the cytoplasm, the pre-export complex disassociates from the snRNAs [37]. The survival motor neuron

(SMN) protein complex then recruits snRNAs and Sm proteins to form a ring structure around the snRNAs,

which is thought to stabilize them and initiate RNA processing and trimming of the 3’ end before they are

re-imported to the nucleus [38]. The reason for this export and re-import process has yet to be fully

understood. However, it is thought to be a quality assurance mechanism to ensure proper maturation

of snRNPs before they are assembled into the spliceosome. Upon re-entering the nucleus, snRNPs are

processed and remodeled in Cajal bodies before being transported to the nucleoplasmic subcompartment

known as nuclear speckles, which are believed to be involved in pre-mRNA splicing [39].

The regions around the exon-intron boundary contain specific sequences: the 5’ end of the intron con-

tains a 5’ splice site (donor site) with two nucleotides, GU. In comparison, the 3’ end contains a 3’ splice

site (acceptor site) that is an AG terminal site and a branchpoint adenosine located upstream of the 3’

8
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splice site by 15-50 base-pairs [40]. The first step of splicing involves U1 snRNP recognizing and binding

to the 5’ donor site, which is stabilized by SR protein and the cap-binding complex [41]. Simultaneously,

U2 snRNP recognizes the base-pairing near the branchpoint adenosine. U1 and U2 snRNPs interact

and bring the two exons close to each other, forming a pre-spliceosome complex [42]. After forming the

pre-spliceosome complex, U4, U5, and U6 snRNPs assemble into a pre-catalytic complex [43].

Next, the pre-catalytic complex is activated, triggering the release of U1 and U4 snRNPs, leading to

the formation of the catalytic complex [43]. The catalytic complex consists of a U2-U6 snRNA dimer

that holds the 5’ donor site and the 3’ acceptor site proximal to each other [40]. It carries out the first

transesterification step, where the phosphate at the donor site is cleaved by the 2’ hydroxyl group of the

branchpoint adenosine, causing the detachment of the 5’ exon. At this point, the 5’ end of the intron ligates

to the 2’ hydroxyl group of the branchpoint adenosine, forming an intermediate structure called a lariat. In

the second step, the phosphate of the 3’ splice site is cleaved by the 3’ end of the detached exon, bringing

the two proximal exons together. This step is completed by ligation, resulting in the release of the intron

lariat structure and the formation of the post-spliceosome complex. Finally, U2, U5, and U6 snRNPs are

released, and the process is ready to repeat for the following intron [40].

The different types of alternative splicing depend on how the mRNA is spliced (Figure. 2.3). Cassette

exons are a set of exons that can be included or excluded during splicing. Exon skipping is when a cassette

exon is excluded. An alternative 5’ or 3’ splice site is when the exons are included with a modified splice

site. The mutually exclusive event happens when two exons are never spliced or skipped in the same

mature mRNA. Intron retention is when an intron is kept in the mature mRNA.

Regulation of alternative splicing

Alternative splicing, like transcription, is highly regulated. This regulation includes the selection of exons

(or splice sites), which determine the final composition of the mature mRNA and the resulting protein

product. Similar to transcription, splicing is also regulated by both cis- and trans-acting elements. Exon

(or intron) splicing enhancers (ESE/ISE) and exon (or intron) splicing silencers (ESS/ISS) are examples

of cis-elements. In contrast, proteins interacting with cis-elements are trans-acting elements, such as SR

proteins. In addition, transcription and splicing are tightly linked together. For example, transcriptional

elongation pauses or lower rates favor the exon skipping of alternative exons [44].

ESEs, typically found in constitutive exons, are associated with regular splicing, leading to exon inclu-

sion. Conversely, the absence of ESE causes exon skipping. ESEs help amplify the splice site’s splicing

signal, aiding the splice site’s recognition by splicing factors. Most ESEs contain binding motifs for SR

family proteins, splicing factor proteins with an RNA-recognition motif (RRM) domain and an Arg-Ser (RS)

rich domain at the C-terminal. The RS domain is associated with constitutive splicing by interacting with

snRNPs of the spliceosome. ISEs are intron sequences that drive the usage of neighboring or distal splice

sites. In the example of hnRNP A1 pre-mRNA, there is a highly conserved region between exon 7 and

alternative exon 7B. The interaction of hnRNP A1 with the ISE region promotes the usage of the distal 5’

splice site, hence promoting the splicing of exon 7 [45].

ESSs function mechanistically similar to ESEs, containing binding motifs for heterogeneous nuclear ribonu-

cleoproteins (hnRNPs). hnRNPs are splicing repressors that contain an RRM domain. Silencer-bound pro-

teins often bind to ESS to inhibit the splicing of an exon, acting as an antagonist and blocking the binding

9
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Figure 2.4 The molecular model of assembly of spliceosome.

The four stages of splicing begin with the assembly and recruitment of U1 and U2 SNPs. The activation

stage forms and activates complex B, which brings the two exons together. Splicing occurs by first

cleaving the 5’-end of exon two and then the 3’-end of exon 1. This stage ends with the ligation of the two

exons. Finally, the splicesome disassembles and releases the intron lariat and mature mRNA. Source:

created with BioRender.com

10



2.3 Functional impact of alternative splicing 11

of SR proteins to ESEs, thereby preventing splicing. hnRNPI (polypyrimidine-tract-binding protein (PTB))

is often bound to the 3’ splice site, acting as a blockage for U2 snRNPs. ISSs are the intronic element

that blocks splicing. In the example of FGF-R2, ISS, located upstream of exon 3B of the FGF-R2 gene,

contains the binding site of PTB. The binding of PTB with this region represses the splicing of exon 3B [46].

The spliceosome and many regulatory proteins are expressed universally and at high concentrations

(Figure. 2.4). However, splicing, like transcription, is highly specific. So, how is splicing a specific transcript

in a gene regulated when the regulatory machinery is universal? It turns out that there are multiple ways

to achieve this. In addition to selectively targeting the regulatory proteins to the designated transcript, the

combinatorial effect of SR and hnRNPs elements also plays a role [47].

For instance, in regulating exon-3 of the tat gene in HIV, hnRNPA1 binds to the ESS of the exon [48]. It

only inhibits splicing when multiple hnRNPA1 molecules bind and propagate to the 3’ splice site in the

upstream intron. This propagation ultimately blocks the interaction of the 3’ splice site with U2 snRNPs of

the spliceosome, thereby preventing splicing. However, if SF2/ASF binds to the ESE located between the

3’ splice site and the hnRNPA1-bound ESS, this action will stop the propagation and allow the splicing of

exon-3. Thus, not only does the selective effect of the regulatory protein play a role, but the concentration

of the proteins also affects the outcome of splicing [35].

2.3 Functional impact of alternative splicing

Alternative splicing affects both the abundance and diversity of transcriptome and proteome [23]. The

effect includes various aspects: protein function, transcriptome diversity, protein localization, and 5’- and

3’ untranslated region (UTR) processing.

Splicing can alter protein function by producing different protein isoforms with varying domains. These

domains are functional regions that typically define the protein’s function, making them essential for pro-

tein diversity. In humans, 81,837 proteins are listed in the latest Uniprot database, whereas there are

only around 20,000 protein-coding genes [49]. Splicing is crucial for producing certain small RNA species,

such as snoRNA and circRNA. These small RNAs are often found in intronic or intragenic regions, while

others are intergenic and independent of host genes. During transcription of host genes, splicing of the

intron where the small RNA is located occurs. Host transcripts are susceptible to Nonsense-Mediated

Decay (NMD) [50] if a premature translation stop codon is detected in the typical open-reading frame.

Many discoveries have also shown that other types of RNAs, such as tRNA and rRNA, also undergo

splicing [51, 52]. Splicing can significantly impact protein localization. For instance, NMDA receptors,

glutamate-gated ion channels expressed on the postsynaptic membrane, play a crucial role in synaptic

plasticity and neurological diseases. Before being transported to the membrane, NMDA receptor subunits

are co-translationally assembled in the endoplasmic reticulum (ER). Alternative splicing of the C terminal

of NMDA generates various transcripts, including one spliced with a C1 domain that contains an ER reten-

tion/retrieval motif, leading to receptor suppression and retention in the ER [53]. Splicing can also result in

alternative 5’ or 3’ UTRs, upstream regions of a gene’s start codon (AUG). These regions provide binding

sites for translation-regulating factors. For example, β-catenin, an oncogene, has multiple splice variants

containing alternative 3’UTRs. One variant’s 3’UTR contains an AU-rich element that maintains mRNA

11
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stability and translation efficiency. [54]. The length of 3’UTR is also associated with immune cell differen-

tiation, in which shortening of 3’ UTR is more prominent in activated lymphocytes [55]. 3’UTR contains

cellular signals that guide mRNA localization, mRNA stability, and translation efficiency.

2.4 Sequencing technologies

In the 1980s, splicing was investigated using Expressed Sequence Tag (EST) [56]. ESTs are short se-

quences that consist of a few hundred base pairs. They are derived from a cDNA library’s 5’ or 3’ end.

While ESTs were useful in the early stages of splicing research, they have limitations, including incomplete

coverage of the gene region, limited transcriptome coverage and inability to distinguish among different

transcripts. The development of high-throughput sequencing of DNA and RNA has revolutionized biomedi-

cal research. High-throughput sequencing technologies include next-generation sequencing (NGS), which

can generate millions of short reads in parallel, and third-generation sequencing (TGS), which can produce

longer reads. With these new technologies, we could identify transcripts and genomic variants associated

with diseases using the latest sequencing technology.

Before the emergence of high-throughput sequencing, Sanger sequencing was widely used to identify DNA

fragments [57]. It is beneficial for the validation of plasmid constructs or PCR products. Sanger sequencing

is based on the dideoxy method to sequence a single-stranded DNA. The reagent mixture contains de-

oxyribonucleoside triphosphates (dNTPs) and fluorescence-labeled dideoxyribonucleoside triphosphates

(ddNTPs) of all four types. DNA polymerases are added to synthesize the DNA template. The elongation

will be terminated when a ddNTP is added to the strand. At this point, the mixture contains DNA templates

of different lengths. With electrophoresis and fluorescence to visualize the DNA sequence, this method

can only sequence short DNA strands (100-1000 base pairs). Shortly before the Human Genome Project

started, shotgun sequencing was first introduced in 1988 [58]. Shotgun sequencing can sequence longer

nucleotide fragments than Sanger sequencing and was also used for sequencing in the Human Genome

Project. This method breaks up long DNA strands into random fragments, followed by chain termination.

We obtain a library of overlapping reads by running several rounds of shotgun sequencing. These reads

can be assembled by running computer software based on finding the overlapping ends of reads.

High-throughput sequencing

Illumina, one of the key players in the current sequencing industry, uses sequencing by synthesis. In this

method, library preparation requires tagmentation and indexing steps (Figure. 2.5). The DNA molecules

are fragmented into reads of lengths ranging from 150-500 bp, and the tagmentation step tags the DNA

fragments with adaptors. After ligation of the adaptors to the template, indexes and oligonucleotides re-

quired for the sequencing step are added to both ends of the fragment, following the adaptors. Before

sequencing, the fragments are amplified using bridge amplification, which generates clones of fragments

on glass flow cells. The flow cells are coated with oligonucleotides that are complementary to the oligonu-

cleotides on the fragments, and the fragments then bind to the oligonucleotides. In the first round of

synthesis by polymerase, the fluorescence signal emitted after annealing is recorded by the sequencing

machine, and a base-calling algorithm identifies the correct base. This parallel sequencing can sequence

millions of fragments simultaneously, producing an extensive database. Different generations of Illumina

12
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Figure 2.5 Schematic overview of illumina sequencing.

Library preparation step includes fragmentation of the targeted DNA sequence and ligation of adapters to

each of the fragments. Illumina carries out sequencing by synthesis (SBS), the fragments are ligated to

the flow cell through the adapters, cluster amplification creates one million copies of the fragment through

PCR. Sequencing by synthesis performs by DNA polymerases which glows every time a base is added to

the strand. Source: created with BioRender.com

sequencing machines exist, such as MiniSeq, MiSeq, NextSeq, and NovaSeq. For example, the latest

NovaSeq system can sequence up to 1.2 billion reads with a 300 bp read length and produce 360 GB of

data. The limitation of sequencing technologies is that they are highly dependent on hardware. We can

only generate as much data as we can afford for storage and analysis. Fortunately, computer storage and

speed have drastically improved since the early 2000s. We can now generate terabytes of data and obtain

more and longer reads, enabling us to study splicing and other biological processes in unprecedented

detail.

However, short reads pose challenges for analyzing repetitive regions and structural variations due to

their limited read lengths (<300 bp). Short read lengths cannot detect variants in repetitive regions, es-

pecially introns. This leads to inaccurate quantification of splicing events. Third-generation sequencing is

focused on obtaining long reads of DNA molecules, even capable of producing a whole transcript with a

single read [59]. One of the key players in this field is Pacific Biosciences (PacBio). Two of their long-read

sequencing systems are the Revio and Sequel systems, which produce HiFi reads (Figure 2.6) (Revio

system generates a higher number of reads). HiFi reads are produced based on a sequencing technology

called Single Molecule Real-Time (SMRT) sequencing, which can sequence up to 30-50 kb long DNA

fragments. The main feature of this technology is the SMRT flow cell, which contains zero-mode waveg-

uides (ZMWs) - nanophotonic chambers capable of holding only one cDNA fragment each. HiFi reads

are produced using circular consensus sequencing (CCS), where double-stranded cDNA fragments are

ligated at both ends, forming a circular bell shape, which, as a whole, is called the SMRTbell library. The
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Figure 2.6 Schematic overview of HiFi-reads technology from PacBio.

Circular consensus sequencing (CCS) creates a consensus HiFi read after sequencing is performed

multiple passes on the circular DNA ligated with adaptors. Source: created with biorender.com

SMRTbell template is then sequenced repeatedly multiple times, producing up to 16x the length of the

template. The read is then compiled, and sequencing errors are corrected based on the consensus of the

read.

Nanopore-based sequencing developed by Oxford Nanopore Technologies (ONT) is another type of

third-generation sequencing technology [60]. There are two main branches of nanopore sequencing: bi-

ological membrane systems and solid-state sensor systems. In the biological membrane system, trans-

membrane nanopore proteins inspired by natural systems are used, with alpha-hemolysin and Mycobac-

terium smegmatis porin A (MspA) being commonly used. DNA template strands are moved through the

nanopore proteins with the help of motor proteins, DNA helicases, and DNA exonucleases. In contrast, the

solid-state system uses metal and metal alloy substances for DNA passage. ONT offers systems such as

MinION, GridION, and PromethION. The portable MinION, for example, has up to 512 nanopore channels,

each equipped with a membrane and a nanopore and controlled and detected by an application-specific

integrated circuit (ASIC). As a DNA strand passes through the nanopore, the ASIC circuit detects the

disruption of the current applied to the nanopore, generating a signal (or squiggly line). A base-calling

algorithm is used to identify the nucleotides of the sequence from the generated signal since nanopore se-
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Figure 2.7 Nanopore sequencing technology

The flowcell placed in the sequencer contains active nanopores can allows DNA fragments to pass

through. While the DNA pass through the nanopore, the ASIC circuit applied to the nanopore is disrupted

and hence producing an electrical signal that indicates the bases. Source: created with BioRender.com

quencing generates signals instead of actual nucleotides (Figure 2.7). Some algorithms can detect RNA

sequences, while others are designed to identify RNA modifications [61].

2.4.1 RNA sequencing

mRNA sequencing

RNA sequencing has revolutionized the field of transcriptomics and has become the most widely used

NGS method for gene expression analysis. RNA sequencing primarily aims to identify the functional

genes involved in biological processes and diseases. Before NGS emerged, hybridization-based methods

such as microarrays were commonly used for gene expression quantification. Microarrays could quantify

thousands of genes using probes complementary to them. However, they can only detect annotated

genes with known sequences and provide relative gene abundance. Alternative methods, serial analysis

of gene expression (SAGE), and cap analysis of gene expression (CAGE) allow for the quantification of

absolute gene expression without prior knowledge of gene sequences and the use of probes [62]. Both

methods depend on capping of 5’-end and tagging of 3’-end, respectively, resulting in incomplete gene

body coverage. This limitation can lead to inaccurate detection of RNA spliced variants. Advancements in

NGS technologies include Illumina-based sequencing, allowing longer read length and deeper sequencing

depth. Paired-end sequencing can obtain reads with information from both 5’- and 3’-end of the transcript,

leading to more accurate splicing patterns detection.

Before sequencing, RNAs need to be reverse transcribed to cDNA using reverse transcriptase. rRNAs

are depleted first in the sample preparation for cDNA library for sequencing. The depletion is usually

achieved by using oligo-dT beads to enrich for polyadenylated mRNA or selectively degrade rRNA using

exonuclease, which mRNA is protected by 5’-cap. Then, fragmentation is required to reduce the size

of mRNA in order to obtain reads. In the Illumina protocol, adaptors specific for 5’ and 3’ are used to

distinguish the direction of the strand. The ligation products are then reverse-transcribed and amplified.

Significant bias can emerge during the PCR amplification step because not all fragments can be amplified
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with the same efficiency. For instance, GC-rich or AT-rich fragments have lower amplification efficiency

than GC-neutral. As a result, GC-rich or AT-rich regions will be underestimated [63]. A PCR-free protocol

was developed to mitigate this bias [64].

Bulk RNA-seq analysis ignores the heterogeneity derived from the functional difference between cell

types, the stage of the cell cycle and cell age, etc. Single-cell approaches are used to compare transcrip-

tome profiles across cell types in tissue and heterogeneity within a cell type. It can also be used to identify

new cell types and observe stochastic gene expression within a cell population, though it is susceptible

to the stage of cell cycle [65]. The rapid development of single-cell sequencing technologies allows us to

analyze more cells with a higher sequencing depth. Each cell is represented by a barcode and sequenced

in a pooled, multiplexed manner. Microfluidics technology has emerged to efficiently isolate single cells for

further investigation. Popular techniques include droplet-based and plate-based methods. Droplet-based

methods encapsulate cells in oil droplets, while plate-based methods use cell-sized microwells that trap

cells for high capture efficiency. Chromium 10x, a commercialized single-cell protocol from 10x Genomics,

enables sequencing up to 80,000 cells in a single run. Chromium 10x uses droplet-based cell sorting,

leading to a higher dropout rate than the plate-based method. Moreover, Chromium 10x specializes in 3’-

tagged transcripts sequencing, prone to 3’ coverage bias [66]. On the other hand, smart-based protocols

like Smart-seq2 [67], Smart-seq3 [68] and Smart-seq3xpress [69] are plate-based methods. They have a

lower throughput (up to 6000 cells) but a lower dropout rate. In addition, smart-based protocols employ a

template-switching step that captures the full-length transcript information, hence minimizing 3’-coverage

bias [70]. In general, single-cell sequencing captures fewer genes due to each cell’s limited abundance of

transcripts. In some protocols (e.g., Chromium 10x, Smart-seq3), unique molecular identifiers (UMI) are

added to improve the quality of gene identification and reduce amplification biases during library prepara-

tion [66].

Single-cell long reads protocols aim for better transcript identification, as well as novel transcript detection;

examples are R2C2 in Oxford Nanopore sequencing [71] and Multiplexed Arrays Sequencing (MASseq)

using the PacBio platform. cDNA libraries are prepared by concatenating multiple cDNAs (e.g., 15 cDNA

molecules) to a single molecule, following barcode ligation. The ligated cDNA underwent CCS library

construction and sequencing in the PacBio Sequel II platform (it is also possible with the PacBio Revio

platform). [72]. Although these protocols are still limited due to lower sequencing depth and high sequenc-

ing error rate.

small RNA-seq

Small RNA-seq allows for profiling small non-coding RNAs (ncRNAs) [73]. Small ncRNAs are less than

200 nucleotides and do not encode proteins, yet they form a regulatory network that interferes with many

cellular functions. Some of the most well-known small ncRNAs are transfer RNAs (tRNAs) and ribosomal

RNAs (rRNAs), which play crucial roles in translation. Another important class of small ncRNAs are mi-

croRNAs (miRNAs), short, single-stranded RNAs usually around 22 nucleotides long. They are involved in

the negative regulation of gene expression at the post-transcriptional level. Small nucleolar RNAs (snoR-

NAs) are less well-known but essential as they are involved in rRNA modification and splicing.

The crucial steps in obtaining small RNAs are total RNA isolation, RNA size selection, and cDNA library

preparation and sequencing. One challenge of small RNA-seq is that small ncRNAs can have highly
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Figure 2.8 Summary of single-cell sequencing workflow.

A tissue containing multiple cell types can be sampled with droplet-based or microwell-based protocols,

followed by sequencing and bioinformatics analysis. Source: created with BioRender.com

similar sequences, making it difficult to accurately distinguish between small RNA species. Additionally,

several biases can emerge from the sequencing process. For instance, ligation of adapters to the small

RNA can lead to intramolecular ligation, forming circularized RNAs. Moreover, secondary structure affects

the selection efficiency, meaning loss of highly structured small RNA during extraction [74]. As in mRNA

sequencing, PCR in the amplification step will lead to PCR bias. This bias can be mitigated using unique

molecular identifiers (UMIs). Despite these challenges, small RNA-seq is a powerful tool for studying the

complex regulatory networks involving small ncRNAs and their roles in various biological processes.

2.5 Computational analysis of transcriptomic data

2.5.1 Experimental design

The experimental design is tailored to the research question and is constrained by available resources.

Comparing different conditions (e.g., healthy and tumor) using a snapshot of the samples is commonly

called static conditions. In contrast, time course conditions capture dynamic patterns by providing snap-

shots of multiple time points of the samples. During sample preparation, batch effects could arise from

multiple sources, including experiment timing, handling person, sequencing machine and location, and

chemical reagents. Multiplex sequencing can sequence multiple samples in a single run to minimize batch

effects in sequencing experiments. However, this approach may only sometimes be successful due to

errors in barcode recognition that can render some reads unusable. Therefore, it is essential to perform

quality control checks to ensure the reliability of the sequencing data. Additionally, sample size is another

critical consideration: insufficient sample size can result in high variability, which can mask the actual sig-

nal and produce false positive results. Thus, carefully considering experimental design and sample size is

crucial for obtaining reliable and informative results.
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2.5.2 Alignments and Quantification

RNA-seq experiments produce fastq files with read sequences. Raw fastq reads are typically mapped to

a reference genome or transcriptome, and quality checks should be performed before and after mapping.

FastQC [75] is a useful command line tool for short-read data, while longQC [76] is designed for long-read

data. These bioinformatics tools provide basic statistics about the sample, such as read length distribution,

total number of reads, and GC content distribution.

After mapping, several aspects should be evaluated. The percentage of mapped reads directly indicates

the sample purity; high percentages of unmapped reads can indicate sample contamination. Additionally,

the GC content and read length distribution are crucial for accuracy in the quantification step since they

may reveal biases arising from PCR amplification. For transcript-level analysis, read coverage should be

uniformly distributed along the transcript. There are multiple tools available for checking these qualities,

such as RSeQC [77], Qualimap [78], and bamtools (stat module) [79].

Aligners can be categorized into two main groups: direct alignment and pseudo-alignment. One of the

widely-used tools - STAR - is an example of a direct alignment tool [80]. STAR can map reads to splice

junctions with high precision [81]. The main advantage of STAR is the ability to align reads with mis-

matches, insertions, deletions, and splice junction reads from non-contiguous genomic regions.

Salmon and Kallisto are popular pseudo-alignment tools. They allow for fast quantification of transcript

abundance without actually producing read alignments. Both tools use de Bruijn graph-based algorithms

to search seed loci for each read using k-mers [82]. Salmon first performs quasi-mapping to obtain a

binary matrix indicating which fragments are mapped to transcripts [83]. It then estimates transcript abun-

dance in two steps: (1) using variational Bayesian inference of read counts per transcript to estimate the

approximate posterior probability, and (2) optimizing the estimates with an expectation-maximization (EM)

algorithm [84]. In contrast, Kallisto uses a maximum-likelihood function followed by an EM algorithm to

estimate the probability of which fragments are selected from transcripts after quasi-mapping [85]. Both

methods offer bootstrapping (and Gibbs sampling for Salmon) to further confirm the confidence level of

the estimation after convergence of the EM algorithm. For single-cell RNA libraries, alignment can be

done similarly to bulk RNA-seq but with additional steps for barcode detection and demultiplexing. A UMI

correction step is also necessary for protocols with UMIs.

2.5.3 Data normalization and batch effects

After the sequencing reads are aligned to the reference genome, the quantification step in the analysis

pipeline is followed. The final output of gene or transcript quantification is a count matrix containing ex-

pression values for every gene or estimated count values for every transcript in each sample. Multiple

factors can affect these counts. Firstly, the intrinsic amount of starting material, including cell number, cell

volume, and intracellular localization of transcripts, cannot be fully represented by the reads [86]. Second,

technical variations in the library preparation steps can introduce biases into the sample. Different batches

of cell cultivation, reagents, sequencing batches, and even handling personnel can influence the number

of transcripts. Thus, it is crucial to control the experimental protocol. For this reason, not all variations

among samples are biological, and it is essential to apply the appropriate normalization method and batch
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effect correction when one dataset is susceptible. After obtaining the raw count matrix, we can observe

the difference in library sizes by summing up the columns. Library size refers to the number of mapped

reads in a sample. The comparison might only be meaningful if we compare sample counts by rescaling

the library sizes. For example, 10 out of 100 equals 20 out of 200. Rescaling the counts by getting the

proportion to the library size is the easiest normalization method. However, in RNA-seq data, we also

need to consider the length of the transcript. The longer the transcript, the more reads can cover it. RPKM

(reads per kilobase per million reads) is a measure that considers both the number of reads mapped to

the gene and the length of the gene [87]:

RPKM = rg × 109

flg × R
(2.1)

where rg is the number of reads mapped to gene g, flg is the effective length of gene g (usually calcu-

lated from the exonic region in the gene) and R is the library size. Another commonly used normalization

measure is TPM (transcripts per million). TPM is a slightly modified version of RPKM:

TPM = rg × rl × 106

flg × T
(2.2)

T =
∑
g∈G

rg × rl

flg
(2.3)

where rl is the average read length and T is the total number of reads transcripts.

TPM and RPKM are within-sample normalization methods, while between-sample normalization is neces-

sary for differential expression analysis. One commonly used method is the trimmed mean of M-values

(TMM), implemented in edgeR [88]. TPM and RPKM can perform poorly when the transcript distribution is

skewed, meaning they are suitable for within-sample comparison [89]. When a gene is highly expressed

in a biological sample, the sequencing depth is limited for the rest of the genes. Even if the counts are

normalized by library size, there is still an intrinsic bias toward highly expressed genes. The TMM method

corrects this bias by trimming the M-values to minimize the log fold change differences of the sample while

preserving the ranking of genes. The TMM method calculates a normalization factor that takes the trimmed

average of M-values of genes in sample k using reference sample l:

Mg = log2

rgk

Rk
rgl

Rl

(2.4)

M-value is the gene-wise log2 fold change. Trimmed mean of M-values is the average of M-values after

trimming 30% of the upper bound and the lower bound by default. The resulting normalization factor is the

weighted, log2 transformed trimmed-mean of M-values:

log2(TMMl
k) =

∑
g∈G W l

gkM l
gk

W lgk
(2.5)

where weight is an inverse variance that due with the fact that highly expressed genes have lower variance

than lowly expressed ones.

The normalized counts from TMM method gives counts-per-million (CPM):

Normalized count = rgk

TMMl
k

∗ 106 (2.6)
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Another normalization method that corrects for sequencing depth and RNA composition is the relative

log-expression (RLE) method, implemented in DESeq2 [90]. This method first calculates a sample-wise

geometric mean for each gene in every sample K with R replicates:

Yg =

√√√√ K∏
k=1

R∏
r=1

Xgkr (2.7)

Next, it calculates size factors for each sample: the ratio of counts and the geometric mean as the

reference. The size factor for each sample is obtained as the median of all ratios.

Mkr = Mediang

(
Xgkr

Yg

)
(2.8)

Finally, the raw counts are normalized by dividing each column by the corresponding size factor.

Normalized count = Xgkr

Mkr
(2.9)

2.5.4 Differential gene expression analysis

Differential gene expression is performed on top of normalized counts. At the transcript level, this anal-

ysis can be performed on top of transcript counts, and we can gain insights into differential transcript

expression. However, a major challenge of this analysis is the uncertainty of variance within samples.

To tackle this, edgeR and DESeq2 employ a negative binomial (NB) distribution to model the count ma-

trix [90]. The NB distribution generalizes Poisson distribution by introducing over-dispersion parameters.

The over-dispersion parameter is estimated using an empirical Bayes method before fitting. A gene-wise

dispersion is first estimated and then fitted with a smooth curve to generate an expected dispersion for

each gene. The estimates are then shrunk toward the expected values, and the extent of shrinkage is

automatically adjusted based on the data and sample size. They also shrink the log2 fold change towards

zero to account for the high variance of lowly expressed genes. The resulting shrunken log2 fold change

and standard errors are tested for differential expression using a Wald test.

2.5.5 Differential transcript usage analysis

Alternative splicing analysis can be categorized into two main approaches: the first approach is an exon-

/isoform-based approach, and the second approach is event-based. The exon-/isoform-based approach

quantifies reads based on the mapping to the annotated set of exons and transcripts. Event-based meth-

ods map sequencing reads into the annotated genome. By comparing the genomic features such as

exonic and intronic regions, alternative splice sites, and alternative 5’/3’ terminal, we can characterize the

variations underlying sequence changes derived from alternative splicing. The identified events are further

quantified using PSI (percentage spliced-in) values. Both approaches rely on genome annotation to some

degree; the isoform-based approach allows better biological interpretation of the result since transcripts

can directly correlate with protein products. In this dissertation, I mainly focused on the isoform-based

approach.
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Figure 2.9 Differences of event-based and isoform-based approach to alternative splicing analysis

In the event-based approach, the loci in Gene A with evidence in the RNA-seq data are compared to the

annotated splice site in the reference genome and an alternative splice site is identified. For the

isoform-based approach, the expression level of two isoforms, A and B, from the same gene are

quantified by mapping RNA-seq reads to the reference transcriptome. Source: created with

BioRender.com
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Figure 2.10 Differences of differential transcript expression and differential transcript usage

Scenario 1 are the genes that has one differentially expressed transcript, which are usually detected as

differentially expressed genes as well. Scenario 2 are the genes that changes the distribution of the

transcript abundance between conditions. This change can be involving multiple transcripts. Scenario 3

indicates an isoform switch event. The arrows indicate the direction of changes of the transcript

expression. Source: taken from [91] under CC-BY-NC-ND 4.0 International license

Differential transcript usage (DTU) analysis has the potential to identify changes in transcript expression

within a gene that are specific to alternative splicing. DTU differs from differential transcript expression

(DTE), illustrated in figure 3.4. DTU analysis focuses on detecting genes with differing distributions of

transcript abundance between conditions. Here, transcript abundance refers to the ratio of transcript ex-

pression to the total expression of the gene. Genes with DTE are usually differentially expressed genes

(DEG). In the left plot of the figure, only transcript C is differentially expressed between conditions. This

kind of change is primarily due to the activation of transcription. In the right plot, however, transcript A

is highly expressed in condition N while transcript C is highly expressed in condition T. Transcription of

this gene is activated in both conditions; only the splicing pattern has changed to give rise to different

transcripts. This redistribution behavior is called DTU. In addition, if two transcripts are involved in this

abundance change, it is also known as isoform switch (IS).

Given that alternative splicing can significantly impact the proteome and other cellular processes, un-

derstanding these changes is crucial. However, traditional differential expression analysis alone cannot

pinpoint which genes undergo alternative splicing. To address this, we can turn to DTU analysis, a quanti-

tative method that effectively identifies changes in the proportion of transcripts within a gene.

Numerous tools are available to conduct DTU analysis. By leveraging these tools, researchers can gain

a comprehensive understanding of the complex interplay between alternative splicing and gene expres-

sion, shedding light on the regulatory mechanisms that govern cellular processes.

In table 2.1, exon-centric tools focus on counting bins of reads overlapping with junctions. JunctionSeq

uses generalized linear models (GLMs) to test for differential usage of splice junctions. Transcript-centric

tools start with transcript counts. DEXSeq is an extension of DESeq2 intended to detect both differential

exon usage [92] and DTU [93]. Like DESeq2, it uses a GLM on shrinkage dispersion to estimate the pa-

rameters for the Wald test. JunctionSeq [94] uses splice junction, and exon read counts from QoRT [95] for

the DTU test, and DSGSeq calculates negative binomial statistics by comparing exon-counts between two

conditions [96]. SeqGSEA combines the DSGseq and DESeq methods to generate a normalized metric
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of differential splicing (DS) and differential expression (DE) score using a rank-based strategy [97]. DRIM-

Seq uses a Dirichlet distribution to model the transcript abundance within a gene [98]. Dirichlet distribution

takes a vector of density with k-dimension. It resulted in a k-vector of probabilities that can be added up

to one, which makes it ideal to estimate the transcript ratio within the gene. DTUrtle extends it with extra

post-hoc filtering steps prior to using StageR [99], allowing gene-wise false discovery correction [100].

Iso-KTSP tests switching transcript pairs by using a classifier [101]. The classifier determines if an event

is ’tumor’ or ’normal’ by scoring every pair of transcripts in a gene. Each transcript pair is scored based on

the frequency of one transcript having a higher expression than the other. The permutation test is applied

to obtain empirical p-values. satuRn uses a quasi-binomial generalized linear model to model gene counts

[102]. Cufflinks/cuffdiff performs de novo transcript alignment and differential expression analysis at both

gene and transcript levels, using a Poisson model to model the variability of biological replicates regarding

fragment counts in a transcript.

Tool Implementation Year Reference Principle idea excluded reason

DEXSeq R 2012 [103] Negative binomial generalized linear model to model transcript counts

DRIMSeq R 2016 [98] Use dirichlet-multinomial model to model relative abundance of transcript

seqGSEA R 2014 [97] negative binomial models in DSGSeq and DESeq

DTUrtle R 2021 [100] dirichlet-multinomial model from DRIMSeq

JunctionSeq R 2016 [94] Negative binomial generalized linear model to model junction counts

NBsplice R 2020 [104] Negative binomial generalized linear model to model transcript counts, and test with a linear hypothesis

satuRn R 2021 [102] Quasi-binomial generalized linear model to model transcript counts

limmaDS R 2013 [105] Apply generalized least squares approach to detect transcript changes

Cuffdiff2 C++ 2012 [106] Use a Poisson model to estimate changes in transcript counts

iso-KTSP Java 2014 [101] Classify isoforms to condition specific based on the change of transcript abundance

DSGSeq R 2013 [96] negative binomial statistics to detect transcript changes

edgeR R 2010 [88] Negative binomial generalized linear model to model transcript counts

IUTA R 2014 [107] Estimate transcript usage, followed by testing DTU under Aitchison geometry Incompatible with STAR

IsoDOT R 2015 [108] Estimate transcript usage with a penalized regression method Long run time

rSeqDiff R 2013 [109] Apply linear poisson model to estimate transcript counts Not supporting replicates

Table 2.1 Table showing the DTU tools published after 2010

One DTU analysis is known as isoform switching, which focuses on a pair of transcripts from the same

gene and explores their switch in abundance between two conditions. The goal is to detect genes that un-

derwent splicing, which resulted in different transcripts between two conditions. To facilitate this analysis,

IsoformSwitchAnalyseR incorporates DEXSeq and DRIMSeq to identify genes exhibiting isoform switch-

ing dynamics [110]. IsoformSwitchAnalyseR assesses each transcript pair within a gene and calculates a

differential isoform fraction (dIF) value, providing valuable insights into the extent of transcript abundance

changes between the two conditions. By integrating genomic references and annotations, this tool also

discerns the specific consequences of isoform switching, such as alternative splice sites, alternative 5’ or

3’ UTRs, nonsense-mediated decay predictions, and polyA tails’ characterization.

2.6 Network approaches and systems biology

Systems biology is an approach that aims to comprehend complex biological systems wherein all com-

ponents interact functionally as modules. In this context, modules refer to components that share func-

tional similarities. Much work is needed to understand the data before conducting advanced analyses like
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functional enrichment and network analyses of high-dimensional data like transcriptomics. Unsupervised

methods enable us to examine the data and detect patterns based on the underlying variance of the sam-

ples. In this thesis, I introduce several prevalent methods used in systems biology: clustering, enrichment

analysis, and co-expression analysis.

2.6.1 Clustering analysis

Clustering analysis is an unsupervised machine learning method aimed at finding common patterns among

a group of similar objects. It is commonly applied to two major types of biological data: omics data (such

as RNA-seq and ChIP-seq) and patient data. One common feature of both types of data is their high

dimensionality. In RNA-seq data, clustering is often applied to extract features (e.g., genes) with similar

expression patterns. However, only a few use cases have been applied to transcript-level data. Here, we

will explore using clustering to study alternative splicing in RNA-seq data.

Clustering algorithms for biological data fall into five categories: partitioning k-means, hierarchical,

density-based, model-based, and graph-based. K-means separate clusters into several clusters k, and

a vector of mean or median represents each cluster. K-means aims to iteratively assign objects to the

closest cluster to minimize the mean similarity between objects and clusters. Hierarchical clustering rep-

resents clusters as nodes of a tree. If two clusters have a common parent node, they are similar. The

similarity will depend on the distance of the parent node to the clusters. Hierarchical clustering can form

clusters from two methods: 1) Initially, each object is a cluster that merges into larger clusters based on

similarity. 2) Initially, all objects are in one cluster, separated into smaller clusters. A linkage parameter

determines the similarity. For example, a single linkage takes the minimum distance between two clus-

ters, while a complete linkage is the maximum distance. Average distance takes the mean distance of the

clusters’ objects. Density-based clustering aims to find clusters of dense regions, enabling the discovery

of clusters with different shapes in 2D space. A typical algorithm of density-based clustering is DBSCAN

[111]. DBSCAN clusters a dataset spatially by categorizing each data point as either a core point (belong-

ing to a cluster) or a border point (not part of any cluster). A core point is defined as a point that falls within

a specified radius distance of another point and has a minimum number of neighboring points within that

distance.

In RNA-seq data, gene clusters with similar expression patterns are assumed to be co-regulated by

regulatory factors, such as transcription factors, or participate in a similar cellular function. For example,

three phases are defined in the yeast metabolic cycle, and each phase is assigned a gene group using

k-means clustering on RNA-seq data [112]. Clustering analysis can also stratify patients and discover

new gene candidates in disease etiology. In [113], hierarchical clustering was used to identify cancer

subgroups with distinct gene expression patterns for each group. K-means clustering and hierarchical

clustering are standard algorithms applied to RNA-seq data. However, several aspects could affect the

quality of the resulting clusters. For instance, k-means is susceptible to noise and outliers, leading to

incorrect clustering. On the other hand, sparsity in single-cell data can lead to under-representation of

the cluster, in which the clusters are very dense in lower dimensions [114]. In other words, clustering

quality highly depends on the data and the algorithm, and there is no gold standard clustering algorithm

for RNA-seq data.
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Several metrics are used to evaluate clustering performance. Depending on whether ground truth is

provided, these metrics can be categorized into internal and external metrics. Internal metrics are used

without ground truth and indicate how similar the objects are within a cluster and how dissimilar they are

between objects outside the cluster. Examples of internal metrics include the silhouette index and the

Davies-Bouldin index. External metrics such as the adjusted Rand and Jaccard indexes compare the

predicted clusters with the ground truth.

2.6.2 Time series analysis

Acquiring time course data is essential to understanding dynamic processes such as disease progres-

sion. By pinpointing clusters of genes that exhibit comparable temporal expression or AS/IS (alternative

splicing/inclusion) patterns, we can analyze the mechanism of the disease’s development. Research on

mouse retinal development demonstrated that genes displaying analogous temporal exon usage patterns

also shared similar biological functions and specificity for particular cell types [115]. Time series data

present unique challenges for RNA-seq analysis with the extra time component. Consider the left plot in

figure 2.11; when comparing two time series conditions, conventional pairwise comparison methods like

DESeq2 (full model) will detect changes in expression levels between different time points. However, if we

compare the time series, the patterns between the two conditions are similar. In the right plot, the time

series patterns differ between the two conditions. To effectively analyze time series data, the time series

analysis methods need to account for these time point differences and focus on comparing the conditions

based on the changes observed over time. Several methods address the time component in differential

gene expression analysis. DESeq2 introduced a likelihood ratio test for time series data, which uses a re-

duced model that removes the interaction between time and treatments and tests only for differences over

time [90]. Next-maSigPro identifies temporally differential expressed genes between two conditions with a

generalized linear model; this method enables the comparison of gene expression patterns between two

time series conditions [116]. When studying time-dependent changes in transcript usage, Iso-maSigPro

and TSIS are popular tools. Iso-maSigPro is an extension of Next-maSigPro that can identify differentially

expressed transcripts and splicing events within genes and compares transcript usage patterns between

two time series conditions [116]. While ANOVA can test differential expression in time series data, Next-

maSigPro specifically accounts for transcriptomics data by modeling with negative binomial distribution

instead of Gaussian distribution. TSIS, on the other hand, is designed for studies with only one time series

condition and identifies pairs of transcripts that switch abundance over time by calculating switching prob-

ability, expression differences before and after the switch, correlation coefficient, and performing statistical

tests [8]. However, TSIS resulted in a lot of low-expressed switching transcripts. I aimed to improve the

isoform switch detection algorithm to tackle this issue.

2.6.3 Enrichment analysis

Functional enrichment analysis is a powerful tool for interpreting the results of biological data analy-

sis and obtaining functional insights. It falls under a collective of methods with three main categories:

over-representation analysis, gene set enrichment analysis, and topology-based analysis [117]. Over-

representation analysis typically tests for a set of DEGs or differentially spliced genes (DSG). A Fisher
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Figure 2.11 Challenge of time series differential expression analysis

The plots show two time series expression patterns in conditions A and B, indicated with blue and orange

colors. The left plot shows no significant pattern change between the two conditions. The right plot

demonstrates the change of patterns over time.

exact test is often used to determine if the DEGs are enriched in a given gene set of a functional term,

such as a biological pathway.

In gene set enrichment analysis, the DEGs are first ranked by log2 fold change or mean expression. The

ranked gene list is then compared to a gene set, a set of genes associated with a pathway to obtain

an enrichment score [118]. The enrichment score represents the over-representation of the gene set of a

pathway or a GO term random walking along a ranked gene list (e.g., ranked based on p-values). Topology-

based analysis incorporates interaction knowledge bases (e.g., protein-protein interaction) to extract the

association of DEGs to the genes within a functional term.

However, the methods above focus on the gene level, where a set of genes is given as an input. In splic-

ing, we could decipher the functions of genes that underwent alternative splicing without knowing the actual

effect of the splicing events. The network-based enrichment method for AS Events (NEASE) uses different

knowledge bases to determine the edges of a pathway affected by differentially spliced genes (DSG).[119].

In the cellular environment, proteins function cooperatively through interactions with each other, e.g., in a

signaling cascade where receptors receive signals from the extracellular environment, which activates the

effector. The activated effector then triggers a cascade of signaling kinases that activate the downstream

transcription factor, initiating the transcription of target genes. However, RNA-seq data is often noisy and

can identify more co-expressed genes than expected, leading to a problem in finding false-positive genes.

To overcome this issue, interaction networks of prior knowledge (i.e., interactome) can be used to identify

such genes. An interactome consists of biological entities, such as proteins or RNAs, interacting in bio-

logical systems. The edges between nodes in the network indicate the interaction between entities, which

are either experimentally validated or predicted. Popular interactomes are STRING [120], BioGRID [121],

I2D [122].

NEASE first retrieves domain information of DSGs from domain-domain interaction databases (DDI),

such as 3did [123] and DOMINE [124], which contain the information about interactions between domains
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of different proteins [119]. If a splicing event of a DSG results in the disruption of a protein domain or

protein binding motifs, the interactions of the DSG with other proteins will also be disrupted [125]. NEASE

performs a hypergeometric test to determine if alternative splicing affects the interactions with a particular

pathway more than by chance. With different knowledge bases, NEASE offers a comprehensive approach

to splicing-aware functional enrichment analysis for RNA-seq data.

Network enrichment analysis involves projecting the gene set of interest onto the interactome in order

to identify active or disease modules [126]. By applying statistical tests (e.g., fisher-exact test), significant

active modules shed light on the connection between the module members and the disease context [127].

This approach enables researchers to gain valuable insights into the molecular mechanisms and interac-

tions that are crucial to the disease under investigation.

One example of active module identification is the DOMINO algorithm, which aims to overcome bias re-

lated to the non-specificity of GO terms. This bias is revealed by comparing GO terms enrichment results

from different network enrichment methods using randomized gene sets. DOMINO slices the interactome

into highly connected modules using the Louvain modularity algorithm. Each module is sliced further to

obtain subslices enriched in the gene set of interest using a fast prize-collecting Steiner tree (PCST) al-

gorithm. PCST algorithm finds the connected subnetwork that minimizes the cost function, which is the

sum of all prizes assigned to nodes and weights assigned to edges [128]. Another network enrichment

example is DIAMOnD. The DIAMOnD algorithm starts with an input set of seed nodes, and all proteins that

are connected to the seed nodes will be ranked by their connectivity p-values. This p-value represented

the probability of getting the same or more connections of the seed protein than expected. The protein with

the most significant p-value will then be added to the set of seed nodes. This process will repeat iteratively

until the algorithm spanned through the whole network.

However, recent benchmark studies pointed out that the existing network enrichment algorithms suffer

from biases due to the inherited properties of the PPI network [129]. The pitfalls will be discussed in detail

in the discussion section.

2.6.4 Co-expression network analysis

Using a biological interactome can lead to unwanted false positives. These false positives are those con-

nections in the biological interactome that are not interacting in the disease-context environment. For

example, the interaction network in a disease condition may differ from that of a healthy condition. Fur-

thermore, most biological networks are designed for general purposes. However, transcriptome profiles

are tissue-specific. Co-expression analysis is employed to identify functional modules associated with

the disease of interest based on omics data to address this issue. For transcriptomics, the analysis in-

volves finding genes with correlated gene expression values, indicating that they are expressed simultane-

ously and likely to be co-regulated across samples. Co-expression analysis has been applied to various

types of gene expression data, including transcriptomics [130], epigenomics [131], proteomics [132], and

metabolomics [133], and has been used to study various biological systems, including complex diseases,

developmental processes, and responses to environmental stress [134]. For instance, incorporating ge-

nomics data can extract expression quantitative trait loci (eQTL) signals that correlate to the expression

profile [135]. This can further strengthen the findings of co-expressed transcripts and their contributions to
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Figure 2.12 Differential gene co-expression analysis

Differential gene co-expression analysis considers the relationship between a pair of genes. The bar plots

show the count distribution of gene A and gene B replicates in conditions A and B. In differential

expression analysis, gene A and gene B might have been detected down-regulated in condition B

compared to condition A. In differential correlation, gene A and gene B are positively correlated in

condition A, while the correlation is lost in condition B.

the disease risk.

Co-expression analysis is performed by comparing the expression levels of pairs of genes across

samples and computing a similarity metric, such as Pearson correlation or Spearman rank correlation.

Weighted correlation network analysis (WGCNA) utilizes a weighted adjacency matrix to represent gene

relationships based on pairwise correlation coefficients. It applies a hierarchical clustering algorithm to

identify clusters of highly co-expressed genes. The resulting gene networks can be visualized as dendro-

grams and used to identify modules of co-expressed genes associated with particular biological processes.

Differential Gene Co-expression Analysis (DGCA) is used to identify groups of genes that are differentially

co-expressed across different conditions, such as disease and normal states, and to identify gene inter-

actions that are likely to be functionally related [136]. DGCA quantifies the expression levels of individual

genes across different samples and uses statistical methods to identify pairs of genes with significantly

different co-expression patterns (Figure. 2.12).

Centrality measures

After constructing co-expression networks, a common subsequent analysis involves the identification of

hub nodes. Hub nodes are defined as nodes that exert a significant influence on the overall topology of a

network when they are removed. These nodes play an important role in maintaining the structural integrity

and connectivity of the network. In a biological context, hub nodes often symbolize key regulators within a

module or pathway. For instance, transcription factors typically oversee the expression of multiple genes,

while specific kinases can activate numerous downstream effectors. These regulators play a pivotal role
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in the development of diseases. To identify hub nodes, four common types of centrality measures can be

used to quantify the connections: 1) degree centrality, 2) closeness centrality, 3) betweenness centrality,

and 4) eigenvector centrality.

Degree centrality refers to the count of connections a node possesses within a network. Closeness

centrality involves computing the average shortest path length between a particular node and all other

nodes in the network. The greater a node’s centrality, the closer its connections are to other nodes.

Betweenness centrality considers how often a node acts as a bridge between two other nodes within

the network. Eigenvector centrality assigns a relative score to each node, wherein a node’s centrality

is proportional to the cumulative centrality of its neighboring nodes. In simpler terms, a node becomes

significant if it is connected to essential neighbors.
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3 General methods

3.1 Small RNA network analysis

This analysis aims to extract potential small RNA biomarkers in Alzheimer’s disease mouse model Tg4-

42 using differential co-expression network analysis; figure 3.1 illustrates the workflow. The small RNA

expression dataset is obtained from a previous study [137] that performed small RNA sequencing in trans-

genic Alzheimer’s mouse model Tg4-42 and wild type. The dataset contains miRNA and snoRNA ex-

pression values. I performed differential expression analysis and applied differential gene co-expression

analysis (DGCA) to construct a differential co-expression network and centrality measures to extract po-

tential biomarkers.

Data normalization

In this analysis, I employed DESeq2 to obtain normalized counts [90]. Raw counts are first filtered for

small RNAs with more than 10 counts across samples. The raw count table is given to DESeq2, which

uses the RLE normalization method. The resulting normalized count table is then transformed using the

variance-stabilization method [138].

Differential co-expression analysis

The small RNAs’ co-expression network is built using DGCA based on the Pearson correlation for the

mouse model Tg4-42 and wild-type mouse. Each gene pair is calculated a correlation coefficient for gene

expression from gene x and gene y.

r = cov(x, y)
σxσy

(3.1)

The correlation coefficient is transformed into a z-score using the Fisher z-transformation method [139].

First, the correlation coefficient is normalized and a natural logarithm function is applied:

z = 1
2 loge(1 + r

1 − r
) (3.2)

The underlying distribution of the z-scores is assumed to be normally distributed. The variance can then

be calculated using:

s = 1
n − 3 (3.3)

n is the sample size used to calculate the Pearson correlation coefficients. The differential z-scores of a

gene pair are then given by:

dz = (z1 − z2)√
|s2

1 − s2
2|

(3.4)
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Figure 3.1 Workflow of network analysis in small RNA-seq data.

small RNA expression data was obtained from small RNA sequencing. Differential gene expression

analysis was performed using DESeq2. I then used DGCA to construct a differential gene co-expression

network and centrality measures for all nodes for k-means clustering and gene set enrichment analysis.

Source: own work
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The differential co-expression network is built using the differential z-scores of each small RNA pair

[136]. In the network, nodes represent small RNAs, and edges indicate a change of correlation coefficients

between the two conditions (e.g., positive correlation to negative correlation). An empirical p-value is

calculated for each edge by shuffling the gene expression values, and multiple testing corrections are

performed using the Benjamini-Hochberg method [140]. The interesting nodes are extracted from this

network using centrality measures of the nodes mentioned in the following section.

Centrality measures

The concept of centrality generally quantifies the frequency with which a node appears on the short-

est paths connecting all other node pairs in a network (see 2.6.4). In the publication, I employed a

betweenness-derived centrality measure for each node, focusing either on miRNA or snoRNA (Figure

3.1). The count of shortest paths relative to the alternate type of small RNA determines this centrality. For

example, the miRNA-centric centrality for each miRNA is calculated based on the number of shortest paths

connecting each pair of snoRNAs, and the reverse applies for snoRNA-centric centrality. Small RNAs with

high centrality are considered potential biomarkers.

Furthermore, to explore which pairs of small RNA will have similar correlation coefficient changing pat-

terns, I conducted clustering analysis on the correlation coefficients of small RNA pairs using the k-means

clustering method.

Gene-set enrichment analysis

I performed gene-set enrichment analysis on small RNAs with high centrality measures using GO terms

[141] and KEGG [142] databases. Here, the interactors of these small RNAs are used since functional

annotations of the small RNAs are limited. For miRNAs, miRDB obtains potential miRNA interactors with

prediction scores higher than 0.7 [143]. While snoDB is used to obtain a list of curated snoRNA interacting

genes [144].

3.2 Spycone framework

The second publication describes the framework for Spycone, a splicing-aware time-course network en-

richer. The framework includes an improved time course isoform switch detection algorithm, clustering

analysis, active module identification, functional enrichment analysis, and splicing factor analysis. Figure

3.2 provides a detailed overview of Spycone’s main components. The tool provides an exploratory analysis

and functional characterization of alternative spliced genes. The following sections describe each analysis

in detail.

3.2.1 Transcript-level analysis

There is no limitation on the type of omics data as input. The only requirement is a normalized dataset.

First, transcripts are filtered out based on the desired expression level before IS detection (e.g., only tran-

scripts with more than 10 TPM are analyzed). Isoform switch detection aims to extract pairs of transcripts
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Figure 3.2 Schematic overview of Spycone.

Spycone takes input as a count matrix of expression data and a pre-constructed molecular interaction

network (e.g., PPI networks). The isoform-level workflow starts with isoform switch detection, which

allows the visualization of detected isoform pairs. Then, the calculation of total isoform usage indicates

the splicing patterns change, where clustering can group genes with similar splicing patterns. The

clusters can then be visualized. DOMINO is integrated for active module identification. Clustering and

DOMINO results can be further analyzed with gene set enrichment analysis. In addition, splicing factors

analysis enriches potential splicing factors that directly bind to the switching isoforms. Source: taken from

[145] under Creative Commons CC BY license
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that belong to the same gene and switch abundance between any time points. This abundance switch

indicates that the underlying splicing pattern has changed by producing different gene versions.

3.2.2 Protein–protein interaction network and domain-domain interaction

Users can use a PPI network of their choice. By default, Spycone uses the protein-protein interaction

(PPI) network from BioGRID (v.4.4.208) [121]. The domain-domain interaction network is obtained from

3did (v2019_01) [123]. The edges of the default PPI network are weighted according to the number

of interactions between the domains of the protein (nodes of PPI). Weighting PPIs with domain-based

information can result in a functionally more interpretable network in diseases and pathways [146].

Isoform switch detection algorithm

Isoform switch detection starts with the detection of switch points, where two time series of transcripts

from the same gene are compared. For each pair of transcripts with a switch point, Spycone calculates six

features: 1) switching probability, 2) significance of switch points, 3) difference of relative abundance, 4)

event importance, 5) dissimilarity coefficient, and 6) domain inclusion or exclusion. Finally, p-values from

the significance of switch points are corrected with multiple testing corrections.

• Detection of switch points Switch points are defined when two time series intersect. In Spycone,

a switch point is defined where at least 60% of the replicates present the intersection. All switch

points detected here are considered for the next steps.

• Switching probability Similar to TSIS, Spycone computes the switching probability for each IS

event. The switching probability is determined by averaging the ratios of samples in which the

relative abundance I of isoform i is higher than isoform j before the switch T1, and vice versa, the

ratio of samples in which the relative abundance I of isoform i is lower than isoform j after the switch

T2. For IS events where two isoforms switched between time intervals T1 and T2, the switching

probability between isoform i and isoform j is calculated as follows:

Px(switch) = [P (
Ty∑

t=x

(Ii,t > Ij,t)) + P (
Ty∑

t=x

(Ii,t < Ij,t))]/2 (3.5)

• significance of switch points A two-sided Mann-Whitney U test is applied to the replicates to test

for the significance of the switch. The relative abundance of the transcripts before and after the

switch point is tested.

• Difference of relative abundance Spycone measures the magnitude of changes during IS by cal-

culating the average difference in relative abundance before and after a switch point. When repli-

cates are present, Spycone computes the average change in relative abundance. A cutoff of 0.1

has been chosen to ensure that the changes in relative abundance account for at least 10% of the

total gene expression. The difference in relative abundance I between switching isoforms i and j at

time point t is defined as follows:

Diffi,j,s =
[ R∑

r=1
(Ir

i,s+1 − Ir
i,s)/R +

R∑
r=1

(Ir
j,s+1 − Ir

j,s)/R

]
/2 (3.6)
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• Event importance Event importance reflects the expression level of the transcripts involved in the

switching events. I considered the event ’important’ when the expression level of the transcripts is

relatively high within the gene. Due to transcriptional noise, transcripts are often lowly expressed in

the dataset. To address this, event importance is defined as:

event importance =
R∑

r=1

[(
Ir

aGt

max(Ir
Gt)

+
Ir

aGt+1
max(Ir

Gt+1) + Ir
bGt

max(Ir
Gt)

+
Ir

bGt+1
max(Ir

Gt+1)

)
/4

]
/R (3.7)

where Ir
Gt represents the relative abundance of isoform a and isoform b of gene G at time point t,

and R is the total number of replicates. Each I value is normalized to the highest relative abundance

max(Ir
Gt) observed at the corresponding time point. The metric calculates the average of the relative

abundance of isoforms i and j before and after the switch event.

• Dissimilarity coefficient The underlying assumption is that when transcripts switch from one iso-

form to another, it results in a decrease in the expression of the latter isoform. The dissimilarity d of

transcripts is calculated from the Pearson coefficient:

r = cov(Ei, Ti)
σE , σT

(3.8)

d = 1 − r

2 (3.9)

• Domain inclusion or exclusion Pfam database v.35.0 [147] is used to map isoforms to their corre-

sponding domains. Every pair of switching isoforms is compared in Spycone to detect any loss/gain

domain in the IS events.

• Multiple testing I performed multiple testing corrections for IS detection using three available meth-

ods: Bonferroni [148], Holm–Bonferroni [149], and Benjamini–Hochberg [140] false discovery rate.

By default, Spycone employed the Benjamini–Hochberg method.

Total isoform usage

The genes that undergo splicing changes are further analyzed. Each isoform-switched gene is transformed

into a metric called total isoform usage. This metric sums up the magnitude of changes in each transcript

within a gene.

∆total.isoform.usage =
n∑

A=0

∣∣∣∣( IAGt1∑n
A=0(IAGt1) − IAGt0∑n

A=0(IAGt0))
∣∣∣∣ (3.10)

Here, I represents the expression of isoform A of gene G at time points t1 and t0, and n is the total

number of all isoforms for gene G.

3.2.3 Downstream analysis

Clustering

Clustering can be performed on direct transcript expression or total isoform usage—the former clusters

transcripts of all genes by looking at the similarity of expression patterns. The latter clusters genes based

on the similarity of splicing patterns since changes in total isoform usage imply changes in splicing. The

clustering algorithms are imported from scikit-learn (v0.23.2) [150] and tslearn (v0.5.1.0) library [151].
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Functional enrichment analysis

For a transcript-level analysis, users can obtain clusters of genes with similar total isoform usage patterns

or transcripts with similar expression patterns. Subnetworks are further extracted through the DOMINO

algorithm [152]. Gene-set enrichment analysis (GProfiler) [153] and splicing-aware functional enrichment

analysis (NEASE) [119] are implemented following isoform switch analysis.

Splicing factor co-expression and motif enrichment analysis

This functionality aims to detect splicing factors that regulate the splicing of isoform-switched genes. I

assume that the splicing factor that regulates the splicing of a gene cluster will have a similar expression

pattern as the total isoform usage: when splicing factor expression increases, more genes undergo splic-

ing. Spycone calculates the correlation between the expression of each pair of isoforms and the splicing

factor. The splicing factors with correlation coefficient > 0.7 or < -0.7 are further investigated by calcu-

lating a PSSM score, indicating the potential of binding to the regulated RNA transcript. To calculate the

PSSM score, the position weight matrix (PWM) of each splicing factor binding motifs are obtained from the

mCross database ([154]). For a given position of a sequence and a nucleotide, the log-odd ratio of finding

a specific nucleotide is indicated in the PWM. The PWM is matched with the sequence of interest (e.g.,

the 5’- and 3’- splice site flanking regions of spliced exons detected by Spycone). The PWM is matched to

the sequencing at every position, which calculates the score by summing up the log-odd ratio of a specific

nucleotide for each position. Hence, the higher the PSSM score of a given position, the higher the proba-

bility of the splicing factor binding to the motif on the exon region. This function is implemented using the

motif module of the Biopython library [155].

3.3 Differential transcript usage detection benchmark

This benchmarking analysis aims to comprehensively evaluate the existing methods for detecting differen-

tial transcript usage (DTU) across static and dynamic data. Previous benchmark analyses have conducted

comparisons of diverse workflows for splicing analysis, with a specific emphasis on DTU analysis. Liu et al.

conducted a study where they compared eight differential splicing detection tools [10]. In this investigation,

DEXSeq [103] and DSGSeq [96] achieved an area under the ROC curve (AUC) of approximately 0.8. No-

tably, Cufflinks [156]exhibited superior performance with a precision of 0.9 in de novo discovery. Another

analysis, centered on human systems, was performed by Merino et al., where they evaluated differential

expression and splicing tools across varying noise levels [11]. Their findings indicated that DEXSeq and

LimmaDS [105] are the optimal tools for DTU detection. However, it is worth noting that the pipeline uti-

lized TopHat [156] as the aligner, despite the established superiority of STAR [80] in splice-aware alignment

[157, 158]. In the study by Fenn et al., the DICAST tool was introduced to benchmark eight event-based

splicing detection tools [81]. Additionally, Jiang et al. conducted a large-scale comparison involving 21

event-based detection tools [159]. In this section of the thesis, I conducted an extensive comparison of

DTU detection tools across various simulated scenarios and real-world datasets.
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Figure 3.3 Workflow for DTU detection.

Both simulated data and real transcriptomic data are utilized in this analysis. STAR is used as the aligner

for this analysis. Different transcription quantification tools are used depending on the requirement for the

DTU tools. For tools that don’t work with a specific transcript count output, three popular choices are

applied here: Salmon, kallisto and RSEM. The groundtruth and the estimated counts are compared using

RMSE and correlations. The results of DTU tools are evaluated with precision, recall and F1 score.

Source: taken from [91] under CC-BY-NC-ND 4.0 International license

3.3.1 Evaluation of DTU detection

The performances of DTU detection methods are evaluated based on simulated datasets and a real-

world transcriptomic dataset. I applied the DTU methods on the deep sequenced transcriptomics dataset

(GSE222260) [160], sequenced in short-read paired-end sequencing. This dataset has also been used as

an evaluation dataset in the previous benchmarking analysis [11]. The dataset contains twenty prostate

cancer tumor samples and ten normal tissue samples and performed short-read RNA-seq. Figure 3.3

shows the overview of this analysis.

Simulation

The simulation process closely follows the methodology proposed by Merino et al., where I utilized RSEM

(v1.3.3) to simulate both single-end and paired-end data. This was based on estimated abundances

inferred from sequencing model parameters of real datasets, and a reference transcriptome [11]. I used the

’rsem-calculate-expression’ function to estimate model parameters from actual datasets [161], collecting

statistics such as the number of reads, alignment to multiple and unique loci, read and fragment length

distribution, and quality score distribution. I estimated model parameters from GSE157490 [162] for single-

end data, a cell line dataset with SARS-Cov2 infection sequenced at 100M reads. I used GSE162562, a

patient dataset with SARS-Cov2 infection, for paired-end data sequenced at 100M reads [163]. Each

dataset was simulated with 50 million reads, the minimum depth considered robust for DTU detection

[164], and extended to 100 million reads.
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I took baseline transcript expression levels from the SARS-CoV2 datasets and adjusted the transcript

counts to create simulated data for three DTU scenarios (Figure 3.4). Recognizing that changes in tran-

script expression and DTU are intertwined with overall gene expression changes, I simulated both effects

concurrently. I considered a random fold change between 2 and 5 for each gene across conditions. The

transcript ratios were generated using a Dirichlet distribution, which calculates probabilities for k categories

within a k-dimensional density distribution. This method is ideal for simulating transcript ratios as the sum

of the vectors equals 1. Here, k represents the number of transcripts in a gene, with each assigned an

expression value. The higher the probability for transcript i, the greater its expression value. To enhance

statistical power in detecting DTU transcripts, I simulated DTU transcripts at higher expression levels. The

expression value for each transcript i in condition j was simulated using the following formula:

Transcript expression(i, j) = baseline gene expression ∗ fold change ∗ transcript ratio (3.11)

For baseline (e.g., a control), the fold change is 1, while for the condition of interest, I considered the

random fold change. To create replicates with measurement noise, I computed the expression values

using a negative binomial distribution, with dispersion for each transcript estimated via DESeq2:

Transcript expression of replicate x(i, j) = negative binomial distribution(transcript expression, 1/dispersion)
(3.12)

I distributed the genes across scenarios to achieve a mixed final dataset. While I could have consid-

ered datasets focusing on individual scenarios, this would not have provided a realistic dataset for tool

evaluation. Next, I modified the transcript ratios according to the scenarios. In scenario S1, only a single

transcript per gene changes expression. In scenario S2, more than two transcripts change relative abun-

dance. Scenario S3 involves swapping the relative abundance of two transcripts, indicating an isoform

switch event.

I simulated three background levels, 0, 0.1, and 0.5, representing increasing fractions of genes whose

expression remains unchanged. The modified transcript results were then used for further simulation.

The ’rsem-simulate-reads’ command facilitated this process, with the RSEM reference created using the

human genome GRCh38 and the theta0 parameter set to a noise proportion of 0.1 in the background. I

simulated four conditions, integrating different parameter combinations as outlined in Table 1. Simulations

with 100M reads were conducted only with four replicates at a background level of 0.5.

Simulation for single-cell data

I used two simulators for single-cell data simulation: RSEM and scDesign3 [165]. A demultiplexed Smart-

seq2 dataset from human cells is used for parameter estimation [27]. Before the simulation, I followed

the Seurat workflow for grouping cell types [166] by first embedding the cells to a k-nearest neighbor

graph and applying the Louvain algorithm [167] to cluster the cells. For RSEM, we employed an identical

simulation workflow for the bulk RNA-seq data, except that the single-cell-prior parameter is used. Our

simulation method was adjusted to accommodate single-cell transcript counts. Specifically, we utilized

the parameters designated for single-cell analysis in RSEM to replicate sparse matrices. To evaluate the

methods using straightforward single-cell data, we employed two cell types with a collective population
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Figure 3.4 Simulation of different DTU scenarios.

DTE refers to genes with a single differentially expressed transcript, often identified as differentially

expressed genes too. DTU, on the other hand, involves genes that exhibit a shift in the distribution of

transcript abundance across different conditions, potentially affecting multiple transcripts. A specific case

of DTU is the isoform switch (IS), where the abundance is redistributed between two transcripts.

of 900 for simulation. We generated balanced datasets comprising 20, 50, 100, 200, 500, and 1000

cells, with an equal number of cells for each cell type. We incorporated differential transcript usage (DTU)

events within the single-cell simulations with two background levels - 0 and 0.1. Here, the background level

denotes the proportion of expressed genes that remain unaltered between the two cell types. In addition,

scDesign3 is used for another simulation, which is dedicated to single-cell data simulation [165]. scDesign3

uses negative binomial distribution to fit each gene’s marginal distribution and a Gaussian copula to model

high-dimensionality in single-cell data. After estimating the parameters for the simulation, the mean count

of the genes for each cell is modified to assign DTU events (as described in the Simulation section). I

simulated balanced and unbalanced datasets with 0 and 0.1 backgrounds. Each balance dataset contains

two groups of cell types, each with the same number of cells (ranging from 50 to 700). Each unbalanced

dataset contains two to seven groups of cell types, and each cell type consists of a random number of

cells.

Differential transcript usage detection

I performed a comprehensive literature review using keywords like "differential transcript usage," "differ-

ential isoform usage," and "isoform switch" in PubMed and Google Scholar. This search identified 19

DTU detection tools published since 2010. However, I excluded Iso-DOT [108] due to its lengthy runtime

without parallelization, rSeqDiff [109]for not accounting for replicates, and IUTA [107] due to its incompat-

ibility with STAR output bam files and lack of sufficient documentation. The search revealed various tools

for detecting differential transcript usage (DTU), including exon/junction-centric tools such as JunctionSeq

[94], seqGSEA [97], DSGSeq [96], and transcript-centric tools like DEXSeq [103], DRIM-Seq [98], DTUrtle

[100], iso-KTSP [101], satuRn [102], NBsplice [104], LimmaDS [105], edgeR [88], along with assembly-

based tools such as Cufflinks/cuffdiff [106].

In DEXSeq, the perGeneQValue is utilized to obtain adjusted p-values. DRIMSeq employs the dmTest

function, DTUrtle uses the posthoc_and_stager function, edgeR applies the diffSpliceDGE function, Limma

uses the diffSplice function, and satuRn and JunctionSeq use the testDTU and runJunctionSeqAnalyses
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functions, respectively. NBSplice employs the NBTest function. For tools that provide adjusted p-values,

genes with values below 0.05 are deemed significant. For tools that yield gene scores, I set the threshold

for significant genes at the recommended level (iso-KTSP at 0.8 and DSGSeq at 2).

Evaluation

To assess the performance of various tools on simulated data, I used precision, recall, and F1 score as

key metrics. We compiled a list of genes marked as having DTU, either by having an adjusted p-value

below 0.05 or exceeding a set threshold for tools like iso-KTSP and DSGseq. These genes are considered

positive. True positives (TP) are identified as those positive genes also present in the simulated ground

truth, with the remainder classified as false positives (FP). Genes that are simulated with DTU but not

detected by the tools are considered false negatives (FN). We calculate each event scenario separately for

stratification analysis with the corresponding ground truth. In different DTU event scenarios, P represents

genes simulated under the respective scenario. The formulas for precision and recall are calculated as

follows:

Precision = TP

TP + FP
(3.13)

Recall = TP

TP + FN
(3.14)

F1 score = 2TP

2TP + FP + FN
(3.15)

For the transcript counts derived from kallisto, RSEM and Salmon, several measures are calculated to

evaluate the accuracy of isoform quantification.

The Root mean square error (RMSE) can be calculated using the following formula:

RMSE =
√∑

(Ei − Ti)2/n (3.16)

Here, Ei represents the estimated count of transcript i, Ti represents the ground truth count of transcript

i, and n is the total number of transcripts.

The Spearman correlation can be calculated using the following formula:

Spearman = 6
∑

(di)2

n(n2 − 1) (3.17)

Where di represents the difference in rank between the ground truth counts and the estimated counts.

The differences are summed up and scaled to obtain the final correlation coefficient based on the number

of transcripts n. The Pearson correlation can be calculated using the following formula:

Pearson =
∑ ((Ei − ME)(Ti − MT ))

((n − 1)SE(ST )) (3.18)

Here, Ei represents the estimated count of transcript i, Ti represents the ground truth count of transcript

i. Standard deviation is computed for both the estimated counts (SE) and ground truth counts (ST ), while

ME and MT are the corresponding means.
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Summary

The paper investigates the role of small nucleolar RNAs (snoRNAs) in Alzheimer’s disease (AD) using

the Tg4-42 mouse model. At the same time, dysregulation of miRNAs in AD is often studied as potential

biomarkers, and snoRNA involvement in AD needs to be better understood. The Tg4-42 mouse model

develops AD-typical neurological phenotypes, including synaptic hyperexcitability, glucose metabolism loss

and gliosis, as one of the few models that develop neuron death in the hippocampus without plaque

formation. This mouse model also expressed exclusively typical wild-type human Aβ4−42 sequence; we

believe this model will provide us valuable insights into the etiology of AD.

In this study, we aimed to investigate changes in the Tg4-42 mouse model that lead to AD-like phenotypes.

Wild type and Tg4-42 mice of different ages (3 months and eight months old) are compared to elucidate the

change before and after the onset of hippocampal neural loss, one of the hallmarks of AD. We employed

differential co-expression analysis of small RNA sequencing data to construct a differential co-expression

network. Unlike in differential gene expression analysis, where changes in genes are tested independently.

Differential gene co-expression analysis allows us to extract pairs of small RNAs that change their co-

expression behavior. This change in co-expression behavior indicates the underlying change in regulatory

mechanism. The resulting differential co-expression network represents the relationship between each

pair of small RNAs compared to wild-type and Tg4-42 mice.

We identified seven snoRNAs and five miRNAs that show high centrality. Centrality measures are often

applied to networks to find the most important node. In addition, some of those miRNAs are associated with
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AD. We found clusters of pairs of small RNAs with differential co-expression relationships between wild-

type and Tg4-42 mice. The direction of changes in the co-expression relationship defines these clusters.

We further investigate the potential functionality of these snoRNAs and miRNAs by performing gene set

enrichment analysis on the gene interactors based on available databases. The results further highlighted

several snoRNAs and microRNAs, previously not linked to AD, suggesting new avenues for research. The

study adds to understanding AD’s molecular basis and suggests that snoRNAs play a significant role in its

etiology.
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Abstract.
Background: The Tg4-42 mouse model for sporadic Alzheimer’s disease (AD) has unique features, as the neuronal expression
of wild type N-truncated A�4–42 induces an AD-typical neurological phenotype in the absence of plaques. It is one of the
few models developing neuron death in the CA1 region of the hippocampus. As such, it could serve as a powerful tool for
preclinical drug testing and identification of the underlying molecular pathways that drive the pathology of AD.
Objective: The aim of this study was to use a differential co-expression analysis approach for analyzing a small RNA
sequencing dataset from a well-established murine model in order to identify potentially new players in the etiology of AD.
Methods: To investigate small nucleolar RNAs in the hippocampus of Tg4-42 mice, we used RNA-Seq data from this
particular tissue and, instead of analyzing the data at single gene level, employed differential co-expression analysis, which
takes the comparison to gene pair level and thus affords a new angle to the interpretation of these data.
Results: We identified two clusters of differentially correlated small RNAs, including Snord55, Snord57, Snord49a, Snord12,
Snord38a, Snord99, Snord87, Mir1981, Mir106b, Mir30d, Mir598, and Mir99b. Interestingly, some of them have been
reported to be functionally relevant in AD pathogenesis, as AD biomarkers, regulating tau phosphorylation, TGF-� receptor
function or A� metabolism.
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Conclusion: The majority of snoRNAs for which our results suggest a potential role in the etiology of AD were so far not
conspicuously implicated in the context of AD pathogenesis and could thus point towards interesting new avenues of research
in this field.

Keywords: Alzheimer’s disease, miRNA, NGS, RNA-Seq, small RNA, snoRNA, Tg4-42, transgenic mouse model

INTRODUCTION

While an increasingly large number of studies are
focusing on miRNAs and their putative involvement
in the etiology of Alzheimer’s disease (AD) and/or
their potential as biomarkers for AD (reviewed in
[1–5]), almost nothing is known about small nucleo-
lar RNAs (snoRNAs) in this context. These are small
RNA molecules of 60–300 nucleotides in length,
predominantly found in the nucleolus, which play a
role in the posttranscriptional modification of other
RNAs, e.g., ribosomal RNAs. Most snoRNAs belong
to either the group of box C/D snoRNAs or box
H/ACA snoRNAs (reviewed in [6]). These groups are
defined by conserved signature-sequence elements
and characteristic secondary structures [7, 8]. C/D as
well as H/ACA RNAs are important for protein trans-
lation, rRNA acetylation, mRNA abundance, splicing
as well as translational efficiency, genome stability,
and/or other cellular processes [9]. While H/ACA
RNAs are involved in pseudo-uridinylation or the
conversion of uridine to pseudo-uridine, C/D RNAs
predominantly mediate 2′-O-ribose methylation [10].

In this study, we investigated small RNA NGS
data of the hippocampi of Tg4-42 mice [11], specif-
ically focusing on snoRNAs. The Tg4-42 mouse
line is one of only few mouse models developing
an AD-typical neurological phenotype starting with
synaptic hyperexcitability [12–14] and loss of glu-
cose metabolism [15] followed by behavioral deficits,
severe neuron loss, gliosis, and metabolic changes of
the glutamate/4-aminobutyrate-glutamine axis [14,
16–18]. It is well established that N-truncated A�4–42
is highly abundant in the brain of AD patients [19,
20] and even represents a major species in plaques
of affected individuals [21, 22]. Previously, we have
compared the transcriptomes of the 5XFAD model,
which shows early plaque formation, intraneuronal
A� aggregation, neuron loss, and behavioral deficits
[23], and the Tg4-42 model with intraneuronal N-
truncated A�4–42 accumulation, neuron loss as well
as behavioral deficits, without plaque formation
[24]. Using deep sequencing, differentially expressed
genes (DEGS) were identified. While many DEGs

were identified in 5XFAD or in Tg4-42 mice, 36
DEGs were found in both mouse models indicating
common disease pathways associated with behav-
ioral deficits and neuron loss [24].

While 5XFAD and all other commonly used
murine models are associated with familial forms
of AD, Tg4-42 mice express wild type N-truncated
A�4–42 without any mutations under the control of
the murine neuron-specific Thy1-promoter and are
thusly ideal for modelling sporadic forms of AD.
Therefore, in this study we opted for Tg4-42.

Using a differential co-expression analysis ap-
proach, our aim was to identify differences in the
networks of small RNAs between Tg-42 and wild
type (WT) hippocampi, which could point to hith-
erto unknown molecular players in the pathogenesis
of AD. Along with several miRNAs, this led to the
identification of nine snoRNAs, which seem to play
a role in the molecular basis of the AD phenotype
and were hitherto not known to be involved in the
etiology of this disorder.

MATERIALS AND METHODS

NGS-dataset of small RNAs in mouse
hippocampus

In order to elucidate the influence of small RNAs
involved in neuron loss and associated memory
decline in AD, we used 3-month-old and 8-month-
old Tg4-42 mice, which correspond to time points
before and after onset of hippocampal neuron loss
and memory deficits in the Tg4-42 model [14]. We
based our analyses on our previously reported NGS-
datasets of small RNAs [11] for eight WT and eight
Tg4-42 mouse hippocampi, respectively. Each of the
two groups (WT and Tg4-42) contained samples from
four young (three months of age) and four aged (eight
months of age) animals.

Differential expression analysis

During quality control of the mapped data, we
excluded RNAs with less than 10 read-counts across
all samples and collapsed technical replicates after
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heatmap inspection as previously reported [11]. In
our previous work, we employed DESeq2 [25], that
compares expression values of an individual gene
at different conditions, where dysregulated miRNAs
were determined by the level of log2 fold change
and its significance after hypothesis testing. In this
work, however, instead of single gene level analysis,
we employed differential co-expression analysis with
DGCA [26] that takes the comparison to the level
of gene-gene pairs (see below). With that, we con-
structed a differential co-expression network where
we assume that there are changes in the regulatory
relationship between two connected small RNAs at
different conditions and that they are likely to be reg-
ulated through the same mechanism or share similar
functions. Dysregulated small RNAs are those with
high centrality within the network that indicates its
importance to the network integrity.

Differential co-expression and network analysis
for miRNA and snoRNA

In order to establish a correlation network, we
used DGCA, an R-package that performs differen-
tial correlation analysis for two conditions [26]. We
carried out all possible comparisons with ddcorAll
functions using Pearson correlation. DGCA calcu-
lates correlation coefficients for each small RNA pair
and transforms them into z-scores while p-values are
calculated by permutation. Pairs with an adjusted p-
value < 0.05 (using the Benjamini-Hochberg method)
and a differential z-score of more than three have been
selected for further analyses.

With this approach, we compared the eight WT
with the eight Tg4-42 samples, using a variance-
stabilized expression matrix, containing both snoR-
NAs and miRNAs. A network was established using
the z-score differential coefficient. We determined
centrality values for each type of small RNAs with
respect to the other type. That is, betweenness cen-
trality reflects how many times a snoRNA is part
of the shortest paths between all pairs of miRNAs
in the network, and vice versa. We then performed
a clustering analysis of centrality values using the
Heatmap function in ComplexHeatmap [27], setting
the row km parameter at 2, thus splitting the heatmap
in two clusters by k-means clustering [28].

Functional enrichment analysis of small RNAs

Small RNAs with a high centrality and their
interaction partners were further analyzed using

clusterProfiler R package [29]. clusterProfiler pro-
vides an interface for gene ontology [30] and pathway
enrichment analysis such as KEGG [31]. It uses
a hypergeometric model to test for enrichment of
biological functions in a given gene list. Interac-
tion information was extracted from the RNAInter
database [32], which comprises RNA-associated
interactions based on computational prediction and/
or experimental validation as well as from other
databases such as miRDB [33]. We extracted the
potential RNA interactors of the small RNAs with
prediction score higher than 0.7. This score is cal-
culated based on experimental confidence (number
of publications supported), scientific community
confidence (number of citations of the supporting
publications) and types of tissues/cells (number of tis-
sue and cell types the interaction being observed in).
For snoRNAs, snoDB was used to obtain a curated
list of snoRNA interacting genes [34].

RESULTS

In order to find age-independent significant alter-
ations between WT and Tg4-42 mice, we performed
a differential correlation analysis comparing groups
of eight WT and eight Tg4-42 individuals, which in
each case comprised four young (three months of age)
and four old (eight months of age) animals. We used
a variance-stabilized expression matrix, containing
both snoRNAs and miRNAs and generated a correla-
tion network representation as shown in Fig. 1. The
network consists of 68 gene pairs with significant
correlations in at least one of the conditions (WT or
Tg4-42) with a differential z-score, i.e. difference in
correlation between the two conditions, higher than
3 or lower than –3.

To identify similar regulation patterns, we then per-
formed k-means clustering with all pairs of small
RNA in the network and thus identified two clusters of
small RNA pairs, based on a correlation shift between
WT and Tg4-42. Cluster 1 comprises pairs with a shift
from positive to negative correlation, while the pairs
forming cluster 2 show the opposite behavior (Fig. 2;
see Supplementary Table 1 for specific values).

We also determined centrality values for the
individual small RNAs included in our correlation
network with respect to the other type of small RNAs
(Supplementary Table 2 for miRNAs, Supplementary
Table 3 for snoRNAs). By identifying all the shortest
paths within one small RNA type and then count-
ing how many times each node of another type falls
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Fig. 1. Correlation network of significantly differentially correlated gene pairs when comparing WT and Tg4-42 mice. The type of RNA is
represented by the shape and color of the nodes: miRNAs are depicted as blue squares and snoRNAs as yellow circles. The type of correlation
shift is represented by the color of the connecting lines: red indicates the shift from a negative correlation in WT to a positive correlation in
Tg4-42, the opposite is indicated by blue connecting lines. Solid lines connect small RNA pairs that were found significant in both, WT and
Tg4-42, dotted lines indicate significance in only one, WT or Tg4-42.

on one path, this measure identifies small RNAs that
can be seen to act as quasi bridges between small
RNAs of the other type. As such, betweenness cen-
trality values indicate the influence of a node on the
interaction between other nodes in the network. In
total we observed seven snoRNAs and five miRNAs
with a centrality value higher than 0.1 (Table 1),
and we could observe that 22 small RNA-pairs in
Cluster 1 and nine pairs in Cluster 2 contain at least
one partner with a high centrality (> 0.1), yet only
in nine pairs from Cluster 1 and two from Cluster
2 both partners had a centrality above 0.1 (Fig. 2).
Interestingly, the majority of these pairs (21 of 31)
contain at least one snoRNA and, on average, the
seven snoRNAs had a higher centrality as compared
to the five miRNAs. Since the relatively high cen-
trality values connected with individual RNAs point
towards a more prominent functional role of these
molecules in the investigated context, we performed

a literature search focusing on all the small RNAs
with a centrality higher than 0.1 that we observed in
this study. This yielded results only for three miRNAs
and one snoRNA (Table 1), so that to the best of our
knowledge, with the exception of Snord49a, all other
snoRNAs we describe here are hitherto completely
unknown in the context of AD.

Interestingly, one miRNA (Mir1981) correlates
significantly with five of the other small RNAs, four
times highly positive in the hippocampi of WT and
strongly negative in the hippocampi of Tg4-42 ani-
mals (Fig. 2). What is more, three of the negative
correlations of Mir1981 in Tg4-42 mice involve small
RNAs (Mir598, Snord57, Snord99) that showed cen-
trality values, which were also comparatively high
(Fig. 2, Table 1).

Another interesting observation we made among
the small RNA pairs with low centrality values of both
partners concerns pairs containing Mir222 (centrality
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Fig. 2. Heatmap showing the 2 clusters of differentially correlated
small RNAs. The yellow to blue color scale represents the degree
of positive (blue) or negative (yellow) correlation between the pairs
of small RNAs in WT (“WT cor”) and Tg4-42 (“Tg4 cor”). The
green shaded annotation column on the left denotes the centralities
of the small RNAs in the corresponding positions on the right.
Small RNAs with centrality > 0.1 (see also Table 1) are shown in
boldface italics.

Table 1
Small RNAs with centrality > 0.1

Small RNA Node centrality AD-related
References

snoRNAS

Snord55 0.5153273 –
Snord57 0.5037283 –
Snord49a 0.3927092 [53]
Snord12 0.3579122 –
Snord38a 0.3446562 –
Snord99 0.2783761 –
Snord87 0.2021541 –

miRNAs

Mir1981 0.5189394 –
Mir106b 0.3598485 [37, 38, 77]
Mir30d 0.1439394 [11]
Mir598 0.1363636 [35]
Mir99b 0.1439394 [11, 36]

0) and Mir 346 (centrality 0.003). These show a
flip between positive and negative correlation val-
ues, possibly depending on the differently correlated
small RNA in the respective combinations (Fig. 2):
Mir222-Mir3102, and Mir346-Snord34 show a cor-
relation of nigh on –0.96 in WT and a correlation
value of -0.06 in Tg4-42 animals, while Mir222
is positively correlated (0.68) with Mir434 in WT,
yet negatively (–0.83) in Tg4-42 samples and the
same can be seen for the correlation between Mir346
and Snora16a (correlation 0.94 in WT and –0.22 in
Tg4-42).

Finally, we observed Mir181c (centrality 0), which
shows a positive correlation of 0.27 with Mir145 yet
a negative correlation of –0.33 with Snord82, both in
Tg4-42 hippocampi (Fig. 2).

To learn more about the possible functional impli-
cations of our findings, we performed functional
enrichment analyses on the identified small RNAs
with high centrality values. This led to an enrichment
(-log10[padjust] = 2.24697) of the GO terms “sen-
sory perception of sound” and “sensory perception
of mechanical stimulus” for Mir106b, Mir30d, and
Mir99b). Since the number of snoRNA annotations
is still quite limited, we expanded this analysis to
the predicted target genes of the small RNAs. After
filtering for a prediction score higher than 0.7 (see
Methods section), a total of 376 potential interactors
for miRNAs and 21 for snoRNAs were left (Supple-
mentary Tables 4 and 5). These were submitted to
GO enrichment analysis and KEGG pathway enrich-
ment analysis. For the analysed miRNA-interactors,
numerous GO terms were found to be enriched
(see Supplementary Table 6) and the top 20 are
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Fig. 3. A) GO enrichment results for interactors of miRNAs with centrality > 0.1. B) KEGG pathway enrichment results for interactors of
miRNAs and snoRNAs with centrality > 0.1.

shown in Fig. 3A. For snoRNA-interactors, no sig-
nificant enrichments were observed. In Fig. 3B, the
results for KEGG pathway enrichment are presented.
Among all terms, “FoxO signaling pathway” is the

most prominently enriched pathway for miRNA-
interactors while “Glycosaminoglycan biosynthesis
-heparan sulfate / heparin” is the only term enriched
for snoRNA-interactors.
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Fig. 4. Literature based snoRNA/mirRNA associations with AD-pathogenesis. Red RNAs are discussed as AD biomarkers, light blue RNAs
have low centrality values. Created with BioRender.com.

DISCUSSION

The Tg4-42 mouse model does not fully recapit-
ulate the pathology of AD (reviewed in [19]). The
transgenic mouse model Tg4-42 expresses exclu-
sively normal wildtype human A�4–42 sequence,
predominantly in pyramidal neurons in the CA1 area
of the hippocampus, associated with synaptic hyper-
excitability, reactive micro- and astroglia, reduction
in glucose metabolism is detected by 18F-PET/MRI,
loss of degenerating CA1 pyramidal neurons, and
loss of spatial reference memory [13–15]. How-
ever, no plaques and neurofibrillary tangles are
observed.

Using the large numbers of differentially expressed
small RNAs between WT and Tg4-42 hippocampi
in a network analysis (Fig. 1), we observed pairs of
small RNAs with a pronounced AD-specific shift in
correlation. Such pairs comprised one or two partners
with a high centrality in the network (Fig. 2, Table 1),
suggesting a more prominent role in the genesis of the
Tg4-42 AD-related phenotype.

We have previously shown that CA1 neurons in the
hippocampus, not other cell types like interneurons,
microglia or astroglia, express A�4–42 [14]. There-
fore, all observed changes in small RNA expression
are a consequence of neuronal A�4–42 activity.

A synopsis of what is already known about those
small RNAs for which previous AD related findings
are available (Table 1) is given in Fig. 4. Mir30b [11]
and Mir598 [35] have previously been discussed as
potential biomarkers for AD. Functional implications
are known for Mir99b and Mir106b. For Mir99b,
Ye et al. found that miR-99b-5p affects neuron sur-
vival by targeting mTOR and suggested a dynamic
change of miR-99b-5p levels during A�-associated
AD pathogenesis [36].

For Mir106b, Liu et al. report data that suggest that
miR-106b has an inhibitory effect on A�1–42-induced
tau phosphorylation by targeting Fyn [37]. Moreover,
it is surmised to be involved in the regulation of APP
expression in neuronal cell lines [38] and was found to
target T�R II and thus may possibly have an influence
on TGF-� signaling [39], for which a key role in the
etiology of AD has long been suggested [40–42].

Mir346 was shown to play a role in the upreg-
ulation of APP in the brain and to participate in
maintaining APP-related regulation of Fe homeosta-
sis [43], which is disrupted in AD (see [44]).

Mir181 seems to be downregulated by A� in hip-
pocampal cultures [45] and has been found to show
altered expression in AD patients or mice [2, 46] and
its inhibition rescues memory deficits in a murine AD
model [47].
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Interestingly, Mir1981, which correlates signifi-
cantly with five of the other small RNAs, four times
highly positive in the hippocampi of WT and strongly
negative in those of Tg4-42 animals (Fig. 2), has so
far not been implicated in the pathogenesis of AD. It
has, however, been found to belong to a group of non-
canonical miRNAs that are highly expressed in the
brain and for which a functional role in post-mitotic
neurons has been suggested [48]. Mmu-Mir1981 was
also found upregulated after alcohol treatment of
TLR4 knockout mice in a study of alcohol-induced
neuroinflammation [49] and the critical involvement
of neuroinflammatory processes in the pathogenesis
of AD has long been discussed [50–52].

The only snoRNA for which previous observations
provide a link to AD is Snord49a, where genome-
wide significant associations between risk variants
and AD have been observed [53]. Some of the
others have so far only surfaced in cancer related
investigations. Snord87, for example, was observed
to be upregulated in hepatocellular carcinoma [54]
whereas Snord55, was found to be decreased in
tumor-educated platelets from patients with non-
small cell lung cancer [55] and Snord12 has been
shown to be associated with the survival of patients
with uveal melanoma and to be part of a four-
snoRNA signature for survival prediction [56]. Still,
the findings pertaining to Snord55 and Snord12 are
in keeping with the general observation of an inverse
association between cancer and AD (for review, see
[57, 58]). Interestingly, piRNA-54265, a fragment of
Snord57, is being discussed as a biomarker for col-
orectal cancer [59]. Snord57 was also found in our
analysis and if one were to assume that full-length
Snord57 has a protective effect, the observation that
Snord57 fragments are elevated in cancer patients
could also be in agreement with an inverse correlation
between AD and cancer.

With respect to Snord38A or Snord99, our litera-
ture search did also not yield conclusive evidence as
to an involvement in human brain disorders, yet also
little else pointing to an involvement in other diseases,
seems to be known.

Still, taken together, the majority (4 out of 5) of
miRNAs we found, as well as one snoRNA have
already been implicated in the molecular basis of AD
(see Table 1, Fig. 4). This provides substantial sup-
port for our conclusion that the small RNAs with high
centrality values in our analysis are indeed involved
in cellular processes that play a role in the patho-
genesis of AD. Moreover, it strongly underpins the
likelihood of the involvement of the six snoRNAs

and one miRNA that were previously not observed in
connection with AD.

All observed changes in small RNA differences
are a consequence of the A�4–42 driven pathology in
the Tg4-42 mouse model, representing downstream
events. The intention of the current work was to iden-
tify small RNA changes in response to the toxic effect
of A�4–42 in mouse brain.

Our GO-analysis points to an involvement of
Mir106b, Mir30d, and Mir99b in “sensory percep-
tion of sound” and “sensory perception of mechanical
stimulus”. This is interesting, as sensory impairments
are part of the clinical spectrum of AD and are even
being discussed as early disease markers (e.g., [60,
61]).

With respect to the putative interactors of the small
RNAs we identified here, GO-analysis shows no
enrichment for snoRNAs, which might be owed to
the fact that still much less is known about snoRNAs
as compared to miRNAs. For the miRNAs from our
study the most prominent enriched GO terms by far
were “positive regulation of cellular catabolic pro-
cess” and “positive regulation of catabolic process”.
This is of note as various catabolic processes have
been found to play a role in AD aetiology and pro-
gression, such as tau catabolism (e.g., [62]) or A�
catabolism (e.g., [63, 64]).

Our KEGG pathway analysis revealed the “FoxO
signaling pathway” as the most prominently enriched
pathway for miRNA interactors. Forkhead box O
(FoxO) transcription factors play a role in diverse
biological processes, such as cell metabolism, cell
proliferation, DNA repair, autophagy, the reaction to
oxidative stress, etc. (e.g., [65, 66]). More impor-
tantly, however, there is a considerable body of
evidence pointing to their crucial involvement in the
aetiology of age-related diseases including AD (e.g.,
[67–71]).

Also, the “MAPK signaling pathway” features
prominently among the results of this analysis. This
is noteworthy, since MAPKs are being discussed
as therapeutic targets for neurodegenerative disor-
ders for quite some time (e.g., [72, 73]). Moreover,
p38 MAPK has been found to be activated at early
stages of AD [74] and it was recently shown that p38
MAPK-mediated loss of nuclear RNase III enzyme
Drosha underlies A�-induced neuronal stress in AD
[75].

We found only “Glycosaminoglycan biosynthesis
-heparan sulfate/heparin” enriched for snoRNA inter-
action partners. Still, glycosaminoglycan is known to
be involved in the pathogenesis of AD by contributing
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to the formation of amyloid fibrils [76] so that this
finding supports a link between the snoRNAs we
describe and AD.

Taken together, the results of the NGS-analysis of
the hippocampi of Tg4-42 mice which we present
here add further evidence for A�-driven down-stream
molecular profiles. Of note, as the model does not
generate amyloid plaques, we found evidence that
soluble A�4–42 expressed in the Tg4-42 mouse model
triggers specific AD pathways known to be involved
in tau-phosphorylation, TGF-� signaling and A�
biology. This observation supports the current discus-
sion in the AD field, that soluble amyloid peptides are
instrumental in AD etiology and that tau pathology
is triggered by A� toxicity. Moreover, we provide
evidence for a functional role of snoRNAs in AD
pathogenesis beyond the implication as biomarkers,
which opens up new avenues of research in this con-
text, for example the elucidation of how exactly the
small RNAs resulting from our study are involved in
the AD-typical neurological phenotype as presented
by the Tg4-42 animals.
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Summary

Alternative splicing is crucial for protein diversity and function in diseases and developments. Most of these

biological processes are dynamic, and crucial changes occur temporarily. Time series data with multiple

time points is often employed to detect these changes. This paper addressed the challenges in analyzing

alternative splicing (AS) across different time points during biological processes like disease progression.

Traditional methods often overlook the dynamic nature of AS, and no method provides a framework for a

systematic approach to isoform switch analysis for time course data.

I introduce Spycone, a novel framework for systematic time course transcriptomics data analysis, focusing

on isoform switches (IS) relevant to biological functions. Spycone has implemented a novel algorithm to

identify significant IS events. This algorithm highlights a new metric for isoform switch isoforms filtering:

the event importance metric. This metric indicates the expression level of the switching isoforms since

higher expressed isoforms will have more biological impact. For downstream analysis, Spycone utilizes

total isoform usage to cluster genes with similar AS patterns, performs splicing-aware functional analysis

using NEASE and active modules identification using DOMINO. In addition, the detected IS events can

be applied to splicing factors analysis to extract potential regulators. I used a new simulation method to

generate synthetic time course data for evaluation based on the hidden Markov model. The simulated

data contains isoform-switching events that act as ground truth. Spycone outperforms the only competitor,

TSIS, regarding precision and recall.

Spycone’s utility is also demonstrated through real-world data, particularly its application to SARS-CoV-

2 infection data. First, Spycone found more isoform-switching events with high event importance than

TSIS. With clustering analysis on the level of total isoform usage, Spycone found four clusters grouped

with genes with similar AS patterns, each represented by a time series trend. After applying NEASE on

these clusters, we found enrichment of SARS-Cov-2 associated pathways, particularly Toll-like receptors

(TLR) 7/8 cascades and some immune-related pathways. Some pathways were not previously associated

with SARS-Cov-2 infection, such as kinesins, signaling by NTRK and degradation of AXIN. Spycone then

utilizes DOMINO to extract network modules for each cluster. These modules are enriched by isoform-

switching genes, and the resulting module also shows affected domains by the IS event. This analysis

allows the extraction of interesting gene candidates whose functionality is affected by the IS event. For
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example, I found three kinases and a protein chaperone affected by IS events, particularly HSP90AA1,

which is associated with the endoplasmic reticulum stress caused by the infection.

The study highlights Spycone’s superior precision and recall compared to existing tools, suggesting its

potential to reveal intricate mechanisms of disease and development.
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Abstract

Motivation: During disease progression or organism development, alternative splicing may lead to isoform
switches that demonstrate similar temporal patterns and reflect the alternative splicing co-regulation of such genes.
Tools for dynamic process analysis usually neglect alternative splicing.

Results: Here, we propose Spycone, a splicing-aware framework for time course data analysis. Spycone exploits a
novel IS detection algorithm and offers downstream analysis such as network and gene set enrichment. We
demonstrate the performance of Spycone using simulated and real-world data of SARS-CoV-2 infection.

Availability and implementation: The Spycone package is available as a PyPI package. The source code of Spycone
is available under the GPLv3 license at https://github.com/yollct/spycone and the documentation at https://spycone.
readthedocs.io/en/latest/.

Contact: olga.tsoy@uni-hamburg.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Changes in alternative splicing (AS) lead to a differential abundance
of gene isoforms between experimental conditions or time points. If
the relative abundance of two isoforms of a gene changes between
two conditions or time points, this behavior is called isoform switch-
ing (IS). While differential isoform expression focus on the change in
the expression value of one isoform, IS detects switches of predom-
inantly expressed isoforms between conditions. A change of the pre-
dominant isoform appears as an intersection in time course data.
However, existing methods for time course change points detection
are applied to detect abrupt change between states while IS events
are usually slow and gradual changes of isoform expression
(Aminikhanghahi and Cook, 2017). IS has a functional impact on
the gene when the two switching isoforms perform different func-
tions or when they have different interaction partners. Vitting-
Seerup and Sandelin (2017) showed that IS changes the functions of
19% (N¼2352) of genes with multiple isoforms in cancer, most of
them leading to a protein domain loss. In cardiovascular disease, the

IS of Titin causes clinical symptoms of dilated cardiomyopathy
(Makarenko et al., 2004). Therefore, the detection and functional
interpretation of IS events is a promising strategy to reveal the

mechanism of disease development.
However, the above examples refer to molecular snapshots of

dynamic processes. In order to study such dynamic processes, like

disease progression, we need time course data. By identifying groups
of genes with similar temporal expression or AS/IS patterns, we can
dissect the disease progression into mechanistic details. A study of

mouse retinal development has shown that genes with similar tem-
poral exon usage patterns shared similar biological functions and
cell type specificity (Wan et al., 2011). However, existing tools for
AS analysis mostly focus on a single condition or two conditions

from snapshot experiments. Tools developed for time course data
analysis, e.g. TiCoNE (Wiwie et al., 2019), moanin (Varoquaux and
Purdom, 2020), TimesVector-web (Jang et al., 2021) focus on gene

expression level and neglect splicing. Thus, systematic time course
AS analysis is usually done manually. Common approaches are
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semi-automatic clustering of temporal patterns of percent-spliced-in
(PSI) value (Trincado et al. 2017; Xing et al. 2020) or differential
splicing analysis between pairs of time points (Hooper et al. 2020).
PSI values indicate the fraction of transcripts carrying an AS event
and thus do not directly reflect isoform switches which are crucial
for interpreting functional consequences of AS. Iso-MaSigPro uses a
generalized linear model to detect differential expression changes
along time courses between two experimental groups (Nueda et al.,
2018). However, Iso-MaSigPro is limited in time series data with
two conditions and it does not provide information like switching
points. TSIS, the only available tool to perform AS time course ana-
lysis in one condition, detects IS events whose effect lasts across sev-
eral time points (Guo et al., 2017). However, TSIS treats all IS
events similarly, independent of their expression level. As a result,
TSIS emphasizes isoforms with low expression while isoforms with
comparably high expression levels are expected to be more involved
in biological processes.

We introduce Spycone, a splicing-aware framework for system-
atic time course transcriptomics data analysis. It employs a novel IS
detection method that prioritizes isoform switches between highly
expressed isoforms over those with minor expression levels, thus
focusing on biologically relevant changes rather than transcriptional
noise. Spycone operates on both gene and isoform levels. For
isoform-level data, the total isoform usage is quantified across time
points. We have incorporated clustering methods for grouping genes
and isoforms with similar time course patterns, as well as network
and gene set enrichment methods for the functional interpretation of
clusters. The IS genes within the same clusters are expected to inter-
act cooperatively with other functionally related genes. Thus, we hy-
pothesize that disease mechanisms or developmental changes can be
identified with network and functional enrichment methods. We
compare the performance of Spycone and TSIS on a simulated and
real-world dataset. On the latter, we demonstrate how Spycone
identifies network modules that are potentially affected by alterna-
tively spliced genes during SARS-CoV-2 infection.

2 Materials and methods

2.1 Data preprocessing
We demonstrated the performance of Spycone on RNA-seq data
from SARS-CoV-2 infected human lung cells (Calu-3) with eight
time points and four replicates for each time point (de la Fuente
et al., 2020).

For the SARS-CoV-2 dataset, we used Trimmomatic v0.39
(Bolger et al., 2014) to remove Illumina adapter sequences and low-
quality bases (Phred score < 30) followed by Salmon v1.5.1 (Patro
et al., 2017) for isoform quantification with a mapping-based
model, the human genome version 38 and an Ensembl genome an-
notation version 104.

2.2 Protein–protein interaction network and

domain–domain interaction
A protein–protein interaction (PPI) network is obtained from
BioGRID (v.4.4.208) (Oughtred et al., 2021) and a domain–domain
interaction network from 3did (v2019_01) (Mosca et al., 2014).
The edges of the PPI network are weighted according to the number
of interactions found between the domains of the protein (nodes of
PPI), given by the domain–domain interaction. Weighting PPIs with
domain-based information can result in a functionally more inter-
pretable network in diseases and pathways (Shim and Lee, 2016).

2.3 Simulation
We used the SARS-CoV-2 dataset described above as a reference for
setting the parameters of a negative binomial distribution of gene ex-
pression counts, as well as the parameters of the Poisson distribution
of the number of isoforms for each gene.

2.3.1 First-order Markov chain

A first-order Markov chain is used for the simulation of the gene
states at each time point. In the simplest form, we defined two gene
states: switched or unswitched. Change of the states along the time
course depends on the transition probabilities.

We used a Dirichlet distribution to simulate relative abundance
for each isoform of a gene. The relative abundance of an isoform is
the ratio of the isoform expression to the total gene expression. The
outcome of the Dirichlet distribution is k-dimensional vectors x
with real numbers between 0 and 1 such that the sum of the ele-
ments in x is 1. This is suitable to simulate probability distribution
of k categories. The Dirichlet distribution is defined as:

f Mtja0; a1; . . . ; akð Þ ¼ 1

betaðaÞ
Y
i¼1

k

Mai�1
i ; (1)

beta að Þ ¼
Qk

i¼1 CðaiÞ
Cð
Pk

i¼1 aiÞ
; (2)

where the parameter is a k-dimensional vector governing the distri-
bution of the probabilities. In our case, k equals the number of iso-
forms in a gene, where each isoform will be assigned an i value. The
higher i, the higher the probability of the isoform i.

In Model 1, where we assumed that switching isoforms are high-
ly expressed, the a for switching isoforms are a ¼ f1, 2, . . ., sg*10, s
is the number of switching isoforms, while a for the remaining iso-
forms are 1. To introduce switching events, the isoform probabilities
of two highly expressed isoforms are swapped. For instance, if the
isoform probabilities of the unswitched state for gene g with five iso-
forms are f0.03, 0.07, 0.1, 0.3, 0.5g. Then, the isoform probabilities
for the switched state is f0.03, 0.07, 0.1, 0.5, 0.3g.

In Model 2, where we assumed that isoforms with abundance
higher than 0.3 have equal chances to switch, the vector is a ¼ f1, 2,
. . ., kg*10, k is the number of all isoforms. To introduce switching
events, the probabilities of two random isoforms will be swapped.

After we simulated abundances for each isoform, we multiplied
it to a gene expression mean selected based on real-life dataset to ob-
tain the transcript expression mean (li). The gene expression means
are randomly picked among the genes with the same number of iso-
forms from the real-world dataset.

We simulated time course data with 10 time points and 3 repli-
cates using 10 000 genes. The transcript expression of replicates is
sampled from normal distribution with a given transcript mean (li),
and the variance is sampled from a gamma distribution as the
following:

hi � gamma a ¼ li þ noise

li�noise

� �
(3)

Countti � normalðli; hiÞ: (4)

In order to simulate the differences generated for each individual
experiment in real life, we tested on noise levels 1, 5 and 10. This
setting can ensure isoforms with higher abundance will have a
higher variance compared to those with lower abundance. The simu-
lated dataset can be downloaded from doi: 10.5281/zen-
odo.7228475. The code for generating the benchmarking figures is
stored in https://github.com/yollct/spycone_benchmark.

The data were analyzed with Spycone’s detect_isoform_switch
function and TSIS’s iso.switch function. TSIS was further tested in
two modes—TSIS and major_TSIS—major_TSIS uses the max.ratio
¼ TRUE parameter.

2.4 Detection of isoform switch events
2.4.1 Spycone

The first step of IS detection is to filter out transcripts that have an
average transcripts per million (TPM) <1 over all time points.
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Spycone then detects IS events based on the relative abundance of
the isoforms. The IS events are defined with the following metrics:

2.4.1.1 Switching points. Switch points refer to the points where
two time courses intersect in at least 60% of the replicates. For every
pair of isoforms in a gene, Spycone detects all possible switch points
for further analysis. For a dataset that has only one replicate,
Spycone checks the intersection between isoform pairs in one
replicate.

2.4.1.2 Switching probability. As TSIS, Spycone calculates a switch-
ing probability for each IS event. A switching probability is the aver-
age of the ratio of samples where the relative abundance I of
isoform i is higher than isoform j before switch (T1), and vice versa,
the ratio of samples where the relative abundance I isoform i is
lower than of isoform j after switch (T2). If two isoforms switched
between time interval T1and T2 the switching probability between
isoform i and isoform j is:

PðswitchÞ ¼ ½PT1
ðIi;t > Ij;tÞ þ PT2

ðIi;t < Ij;tÞ�=2; (5)

where P denotes the frequency of the respective condition between
relative abundance (I) of isoform i and j at each time point t within
the time interval T.

2.4.1.3 Significance of switch points. If replicates are available,
Spycone calculates the significance of a switch point by performing
a two-sided Mann–Whitney U-test between relative abundance be-
fore and after the switch point similar to TSIS. For a dataset that has
only one replicate, a permutation test is performed, where the time
points within a time course are permuted. An empirical P-value is
calculated to indicate the probability for the two switching isoforms
to have a higher dissimilarity coefficient and higher difference of
relative abundance before and after switch. Since the goal here is to
select genes that have significant IS, Spycone takes the best switch
point for further analysis with the smallest P-value. Other significant
switch points will be reported as part of the result for users to
investigate.

2.4.1.4 Difference of relative abundance. To quantify the magni-
tude of changes during IS, Spycone calculates the average difference
of relative abundance before and after a switch point. If replicates
are available, Spycone calculates the average change of relative
abundance. We selected a cutoff of 0.1, where the changes in the
relative abundance accounts for at least 10% of the total gene ex-
pression. Difference of relative abundance I between switching iso-
forms i and j is defined as:

Diffi;j;s ¼
XR

r¼1

Ir
i;sþ1 � Ir

i;s

� �
=Rþ

X
r¼1

R

ðIr
j;sþ1 � Ir

j;sÞ=R
" #

=2 ; (6)

where s is a switch point of Isoform i and j; R is the number of
replicates.

2.4.1.5 Event importance. Event importance is a novel metric that
accounts for the expression level of switching isoforms. We defined
event importance of a switch occurs between time point t and t þ 1
as:

Event importance ¼
X
r¼1

R Ir
aGt

maxðIr
GtÞ
þ

Ir
aGtþ1

maxðIr
Gtþ1Þ

þ
Ir
bGt

maxðIr
GtÞ
þ

Ir
bGtþ1

maxðIr
Gtþ1Þ

 !
=4

" #
=R;

(7)

where Ir
aGtis the relative abundance of isoform a of a gene G at time

point t; and R is the total number of replicates. Each I is normalized
to the highest relative abundance max(Ir

Gt) at the corresponding
time point. The metric takes the average of the relative abundance
of isoforms i and j before and after switch.

For the analysis, we used IS events with differences of relative
abundance higher than 0.2 and event importance higher than 0.3.

2.1.4.6 Dissimilarity coefficient. Dissimilarity coefficients di;j assess
the dissimilarity of the time course between isoforms. It is calculated
based on the Pearson correlation ri;j between time course I and J:

ri;j ¼
covðI; JÞ

ri;rj
(8)

d ¼ 1� r

2
: (9)

The higher coefficient, the less similar are the time courses.

2.4.1.7 Domain inclusion or exclusion. We used the Pfam database
v.35.0 (Mistry et al., 2021) to map domains to isoforms. Spycone
compares isoforms in the IS event with each other to define if there
is a loss/gain of domain.

2.4.1.8 Multiple testing correction. Finally, we implemented mul-
tiple testing corrections for IS detection. Available corrections are
Bonferroni, Holm–Bonferroni and Benjamini–Hochberg false dis-
covery rate. We use the Benjamini–Hochberg method as default.

2.4.2 TSIS

To detect IS in TSIS, we used the following parameters: (i) the
switching probability > 0.5; (ii) difference before and after switch >
10; (iii) interval lasting before and after at minimum one time point;
(iv) P-value < 0.05 and (v) Pearson correlation < 0. More detailed
descriptions of parameters are found in Guo et al. (2017). The above
parameters are set with defaults suggested by TSIS, except param-
eter (iii), since we have a larger interval between time points (12 h at
maximum).

2.5 Change of total isoform usage
Isoform usage measures the relative abundance of an isoform.
Isoform usage of all isoforms from one gene are summed up to ob-
tain the total isoform usage. We defined the change of total isoform
usage as between two consecutive time points:

Dtotal isoform usage ¼Xn

A¼0

j IAGt1Pn
A¼0ðIAGt1Þ

� IAGt0Pn
A¼0ðIAGt0Þ

� �
j ; (10)

where I is the expression of isoform A of gene G at time points t1

and t0; and n is the total number of all isoforms for gene G.

2.6 Clustering analysis
The clustering algorithms are implemented using the scikit-learn ma-
chine learning package in python (v0.23.2) (Pedregosa et al., 2011)
and tslearn (v0.5.1.0) time course machine learning package in py-
thon (Tavenard et al., 2020). The available algorithms are K-means,
K-medoids, agglomerative clustering, DBSCAN and OPTICS.

The number of clusters is chosen manually by visually checking
the Ward distance dendrogram (Supplementary Fig. S6).

2.7 Gene set enrichment and network analysis
For enrichment analysis, Spycone uses g:Profiler and NEASE.
g:Profiler is a functional enrichment toolkit for GO terms and path-
ways (Raudvere et al., 2019). Gene set enrichment method is per-
formed using Fisher’s exact test. NEASE (Louadi et al., 2021) is an
enrichment method for co-regulated alternative exons. We used
NEASE with KEGG and Reactome pathways. For a seamless ana-
lysis, the newest version of the NEASE’s Python package (v1.1.9) is
integrated with Spycone.

Spycone employs DOMINO (0.1.0) (Levi et al., 2021) for active
module identification in PPI networks using default parameters.

Systematic analysis of alternative splicing in time course data using Spycone 3

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/39/1/btac846/6965022 by U
niversitat de V

alencia user on 31 January 2023



2.8 Splicing factor co-expression and motif enrichment

analysis
List of splicing factors and their position-specific scoring matrices
(PSSMs) are obtained from the mCross database (downloaded in
2022), currently only available for Homo sapiens (Feng et al.,
2019). First, we filtered splicing factors with TPM > 1 in all time
points. Next, we calculated the correlation between the relative
abundance of each isoform and the expression of splicing factors.
We filtered the pairs with correlation >0.7 or <�0.7 and adjusted
P-value <0.05.

Finally, we performed motif enrichment analysis using the motifs
module from the Biopython library (Cock et al., 2009). The motifs
module computes the log-odd probability of a specific region in the
genome to match the binding motif using the PSSM (Henikoff and
Henikoff, 1996). Hence, the higher the log-odd score, the more like-
ly the binding. We compared these scores obtained from the lost,
gained and unregulated exons from the same clusters. A Mann–
Whitney U-test is performed on the sets of scores. Each motif thresh-
old is selected using the distribution of the PSSM score over the fre-
quency of nucleotides (background). The threshold is set at a false
positive rate <0.01, meaning the probability of finding the motif in
the background is <0.01.

3 Results

3.1 Spycone overview
Spycone is available as a python package that provides systematic
analysis of time course transcriptomics data. Figure 1 shows the
workflow of Spycone. It uses gene or isoform expression and a bio-
logical network as an input. It employs the sum of changes of all iso-
forms relative abundance (total isoform usage) (de la Fuente et al.,
2020) (see Section 2), i.e. the sums of pairwise changes in relative
isoform abundance, across time points to detect IS events. It further

provides downstream analysis such as clustering by total isoform
usage, gene set enrichment analysis, network enrichment and splic-
ing factors analysis. Visualization functions are provided for IS
events, cluster prototypes, network modules and gene set enrich-
ment results.

IS detection. We propose novel metrics for the detection and se-
lection of significant IS across time. IS events are described as a
change of the isoform distribution between two conditions (time
points). To detect an IS, our algorithm first searches for switch
points, i.e. a specific time point where two isoform expression time
courses intersect.

The main challenges to detect time course IS are: (i) most genes
have multiple isoforms, the changes of the relative abundance can be
due to factors other than AS, e.g. RNA degradation. (ii) Most IS
have multiple switch points, with different magnitudes of change in
abundance; we need to consider how prominent the changes in
abundance are to be recognized as an IS event. (iii) Most genes have
multiple lowly expressed isoforms that constitute noise and might
not be biologically relevant. An ideal IS detection tool, therefore,
should prioritize IS events according to their expression level
(Supplementary Fig. S1).

Spycone overcomes these challenges by using a novel approach
to detect IS events. Spycone uses two metrics: a P-value and event
importance. The P-value is calculated by performing a two-sided
Mann–Whitney U-test between relative abundance before and after
the switch point among the replicates. Event importance is the aver-
age of the ratio of the relative abundance of the two switching iso-
forms to the relative abundance of the isoform with the highest
expression between the switching time points (see Section 2).
Examples of high and low event importance are illustrated in
Figure 2. The event importance will be highest when an IS includes
the highest expressed isoform. Similarly, event importance will be
low if an IS occurs between two lowly expressed isoforms. We also
provide different metrics to comprehensively assess features of
the IS events including switching probability, difference of abun-
dance before and after switching and a dissimilarity coefficient
(see Section 2).

Clustering analysis for identifying co-spliced genes. Similar to
how transcription factors co-regulate sets of genes, in the context of
AS, the splicing events of a subset of genes are co-regulated by splic-
ing factors (Barberan-Soler et al., 2011). For genes with important
IS events (identified as described above), we want to quantify the im-
pact of splicing regulation between two time points. To this end,
Spycone clusters genes by changes in total isoform usage over time
to identify co-spliced genes. A previous study showed that clustering
performance is highly dependent on the dataset and the clustering
method (Javed et al., 2020). Therefore, Spycone offers various clus-
tering techniques, including agglomerative clustering (hierarchical
clustering) (Johnson, 1967), K-Means clustering (Hartigan and
Wong, 1979), K-Medoids clustering (Park and Jun, 2009),
DBSCAN (Ester et al., 1996), OPTICS (Ankerst et al., 1999) and
various distance metrics such as euclidean distance, Pearson dis-
tance, as well as tslearn (Tavenard et al., 2020) for calculating the
dynamic time warping distance measure.

With temporal patterns of the clusters, Spycone dissects context-
specific processes in terms of AS. In order to gain functional know-
ledge of the clusters, Spycone offers g:Profiler (Raudvere et al.,

Fig. 1. Overview of the Spycone architecture. Spycone takes count matrices and bio-

logical networks as input. We provide isoform-level functions such as isoform

switch detection and total isoform usage calculation. Users could also cluster the

gene count matrix directly. For downstream analysis, we integrated multiple cluster-

ing algorithms and an active modules identification algorithm (DOMINO). We also

implemented splicing factors analysis for isoform-level data. Finally, visualizations

are provided to better evaluate and interpret the results

High event importance Medium event importance Low event importance

Fig. 2. Plots showing the examples of three levels of event importance. Each plot

contains all isoforms of a gene. The circle indicates the IS events with the corre-

sponding level of event importance
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2019) and NEASE (Louadi et al., 2021) for gene set enrichment ana-
lysis. The former conducts classical enrichment analysis for multiple
ontologies and pathway databases. The latter combines information

from PPI and domain–domain interaction networks and allows to
predict functional consequences of AS events caused by a set of IS

genes.
Active modules identification. Genes with consistent temporal

patterns are thought to be functionally related in terms of co-
regulation, molecular interactions or participation in the same cellu-
lar processes. To uncover the underlying mechanism that is repre-

sented by a temporal pattern, Spycone projects the results of the
clustering analysis on a molecular interaction network for active

modules identification, i.e. for detection of subnetworks enriched in
genes affected by IS. We incorporated DOMINO (Levi et al., 2021)
as it has been previously demonstrated the best performance for this

task (Lazareva et al., 2021). To elucidate the functional impact of IS
events, we further leveraged domain–domain interaction informa-
tion from the 3did database (Mosca et al., 2014). Spycone identifies

domains lost/gained during IS, which might indicate a functional
switch, and affected edges in the PPI network. This provides add-

itional insights about the functional consequences of time course IS.
Splicing factor analysis. Spycone also provides splicing factor

analysis using co-expression and RNA-binding protein motif search.
Splicing factors are a group of RNA-binding proteins that regulate
the splicing of genes. We assume that the expression of splicing fac-

tors that are responsible for an IS event correlates with the relative
abundance of participating isoforms. Spycone calculates the correl-

ation between the expression value of a list of RNA-binding proteins
derived from ENCODE eCLIP data (Feng et al., 2019) and the
relative abundance of isoforms involved in IS. We implemented

PSSM of RNA-binding protein motifs to calculate and detect the
potential binding sites along the sequence of the targeted isoforms

(see Section 2).

3.2 Evaluation using simulated data
To evaluate the performance of Spycone, we compared its perform-

ance (precision and recall) to TSIS using simulated data. TSIS pro-
vides an option to filter for IS events that involve only the highest

abundance isoform—we refer to the result after filtering as
major_TSIS. We aimed to investigate whether the performance of
TSIS improves when applying this option.

We use a hidden Markov model to simulate the switching state
of the genes at each time point (see Section 2). We simulated two

models (Supplementary Fig. S2): Model 1 allows only major iso-
forms, i.e. those with the highest abundance per gene, to be involved

in IS events across time points; Model 2 allows IS to occur between
isoforms with relative abundance higher than 0.3. We used Model 2
to show that neither tool is biased towards events that involve only

major isoforms.
For both tools, we varied their parameters (difference of relative

abundance), to investigate how this affects their precision and recall.
We also considered different levels of variance of gene expression,
namely 1, 5 and 10, across replicates to mimic the noise (Fig. 3).

In Model 1, Spycone achieved high precision and recall. The pre-
cision of TSIS dropped drastically with increasing recall. After filter-

ing major events, TSIS’s recall reached 0.5. Spycone performs better
in the setting with the highest noise level as it maintains high preci-

sion (0.95) and acceptable recall (0.75). In Model 2, Spycone
achieved higher precision and recall than TSIS; however, they
dropped as the model allows more IS events. We applied spline re-

gression to detect switch points and calculated precision and recall
as above (Supplementary Fig. S3). Results showed that spline regres-

sion does not improve precision and recall in both tools. Moreover,
TSIS has a higher algorithmic complexity of O(n*log(n)) than
Spycone with a complexity of O(n), leading to a drastically lower

runtime for Spycone in the range of a few minutes rather than hours
(Supplementary Fig. S4). In summary, Spycone outperforms TSIS in
detecting IS events.

3.3 Application to SARS-Cov2 infection data
We applied Spycone to an RNA-seq time course dataset of SARS-
CoV-2-infected human lung cells (Kim et al., 2021). The dataset
contains eight time points: 0, 1, 2, 4, 12, 16, 24 and 36 h post-
infection. We kept isoforms with TPM > 1 across all time points
resulting in 36 062 isoforms for IS event detection with Spycone and
TSIS. To call an IS significant, we used the following criteria: for
Spycone, (i) switching probability > 0.5; (ii) difference of relative
abundance > 0.2 before and after the switch; (iii) dissimilarity coef-
ficient > 0.5; and (iv) adjusted P-value < 0.05. For TSIS, we used (i)
switching probability > 0.5; (ii) difference of expression before and
after switch > 10; (iii) correlation coefficient < 0; and (iv) adjusted
P-value < 0.05. The dissimilarity coefficient from Spycone and the
correlation coefficient from TSIS are used to filter for IS events with
negatively correlated isoforms. The values are chosen according to
the performance on Model 2 simulated data with noise level 10 that
showed the best precision. Spycone reported 915 IS events, of which
418 affected at least 1 protein domain. TSIS reported 985 events, of
which 417 affected at least one protein domain. On gene level,
Spycone reported 745 genes with IS events, TSIS reported 858 genes
where 225 genes were found by both Spycone and TSIS (Fig. 4A).

We then used the event importance metric to assess the ability of
each method to detect IS events from higher abundance isoforms.
We calculated event importance for IS events identified by Spycone,
TSIS and major_TSIS (Fig. 4B). Spycone results include mostly
events with high importance, while in TSIS events with low import-
ance prevail. Supplementary Table S1 shows the result for the
SARS-CoV-2 dataset from the Spycone IS detection. Event import-
ance has no clear prevalence towards overall gene expression and
adjusted P-value (Supplementary Figs S5 and S6).

To exclude IS events with lowly expressed isoforms, we applied
a filter of event importance higher than 0.3 to both Spycone and
TSIS results. We calculated the change of total isoform usage of the
IS genes across time points and employed Ward linkage hierarchical
clustering. This led to four clusters with similar temporal patterns of
changes in total isoform usage for Spycone (Fig. 4C, Supplementary
Fig. S7, Supplementary Table S2) and four clusters for TSIS
(Supplementary Fig. S10A). Each cluster is represented by a cluster
prototype, which is the median change of total isoform usage per
pair of time points.

IS events that lead to domain gain or loss might break the inter-
actions, hence rewiring the PPI network. Moreover, if the IS events
belong to the same cluster, it indicates the synchronized gain or loss
of interactions with particular pathways. Our goal is therefore to as-
sess if IS events within clusters rewire interactions with particular
pathways during SARS-CoV-2 infection. We performed AS-aware
pathway enrichment analysis using NEASE with KEGG (Kanehisa
et al., 2016) and Reactome (Jassal et al., 2020) pathway databases
for results from Spycone (Supplementary Fig. S8, Supplementary
Table S3) and TSIS (Supplementary Table S4, Supplementary Fig
S10B). In addition, we performed classical gene set enrichment ana-
lysis using g:Profiler. The results are not informative since only five
terms are found in Cluster 3 and zero in others.

Overall, clusters with similar prototypes from both tools are
enriched in distinct pathway terms. For example, TSIS’s Cluster 1

Fig. 3. Precision and recall curves for Spycone, TSIS and major-isoforms filtered

TSIS from simulated data of two models (rows) and three noise levels (columns)
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and Spycone’s Cluster 1 have a strong peak between 4 and 12 h
post-infection. Only transforming growth factor (TGF)-beta signal-
ing is commonly found in both tools. MAPK pathway and DNA
damage checkpoint are enriched uniquely in Spycone. TSIS’s Cluster
2 and Spycone’s Cluster 3 have lower changes of total isoform usage
overall. Spycone’s clusters showed more unique and relevant terms:
70 enriched Reactome terms in Spycone’s clusters and only 7 terms
in TSIS’s clusters. TSIS’s Cluster 3 and Spycone Cluster 2 show an
increase of change of total isoform usage after 12 h post-infection.
Spycone’s cluster is enriched uniquely in protein folding chaperonin
complex TriC/CCT and NOTCH signaling pathway. Finally, TSIS’s
Cluster 4 and Spycone’s Cluster 4 have increasing changes of total
isoform usage overall. TSIS’s cluster is enriched in mitosis-related
pathways, cell cycle and tubulin folding. Whereas in Spycone’s
Cluster 4 is found with signaling by PTK6, interferon, metabolism
of proteins, pentose phosphate pathway, etc.

Next, we detected active modules that show over-representation
of IS genes from the same cluster based on DOMINO using a PPI
network from BioGRID (Oughtred et al., 2021) (see Section 2).
Detected active modules suggest the impact of splicing on regulatory
cascades and cellular trafficking (Table 1, Fig. 5, Supplementary
Fig. S7).

3.3.1 Splicing factor Anaysis

Assuming that multiple IS events occurring between the same time
points are co-regulated by the same splicing factor, we perform co-
expression and motif analysis. The co-expression analysis yields
thirteen significant RNA-binding proteins that are positively or

negatively correlated with at least two isoforms of the same gene: in
cluster 1 - FUBP3, HLTF, IGF2BP3, ILF3, RBFOX2, RBM22,
SF3B1 and TAF15; in cluster 3 - IGF2BP3, RBM22, RPS6, SRSF7
and SUGP2; ( jrj > 0.6 and adjusted p-value < 0.05) (Table S5). To
investigate whether the regulated exons, i.e. the lost or gained exons
after IS events, show higher PSSM scores to a certain RNA-binding
protein motif than the unregulated exons in a cluster, we applied
motif enrichment analysis. We calculated PSSM scores along the
flanking regions of the exons 5’ and 3’ boundaries and excluded the
first and last exons in an isoform since these are often regulated by
5’-cap binding proteins and polyadenylation regulating proteins
(Zheng, 2004). All exons in the switched isoforms within a cluster
are categorized to 1) lost exons, 2) gained exons, and 3) unregulated
exons for the analysis (Fig.6, Table S6). RNA-binding proteins with
multiple motifs are numbered with an underscore. Each motif is
selected with a threshold where the false-positive rate is below 0.01.
Position-specific log-odd scores higher than the corresponding
threshold are obtained after calculating the PSSM scores of each
motif for all exons (see Methods section). The ILF3_9 and ILF3_14
motifs show higher log-odd scores at the 5’ end of the lost/gain
exons than of the unregulated exons in cluster 1 (one-sided Mann-
Whitney U test p-value < 0.05) (Fig. 6A). HLTF_7 and SRSF7_1
motifs show higher log-odd scores at the 3’ end (Fig. 6B).

4 Discussion

AS regulates dynamic processes such as development and disease
progression. However, AS analysis tools typically compare only two
conditions and neglect how AS changes dynamically over time.
Currently, the only existing tool for time course data analysis that
accounts for splicing is TSIS. TSIS detects temporal IS events but is
biased towards IS events between lowly expressed isoforms and does
not offer features for downstream analysis which is important for
interpreting the functional consequences of IS events.

Spycone, a framework for analysis of time course transcriptom-
ics data, features a new approach for detecting temporal IS events
and a new event importance metric to filter out lowly expressed iso-
forms. We demonstrate that Spycone’s IS detection method outper-
forms TSIS in terms of precision and recall based on simulated data.
A key advantage of Spycone is that it explicitly considers how well
IS events agree across replicates while TSIS considers averaged ex-
pression values among replicates and/or by natural spline-curves fit-
ting. More specifically, Spycone uses a non-parametric Mann–
Whitney U-test to test for significant IS and performs multiple test-
ing correction to reduce type I error.

We have demonstrated the usability of Spycone by analyzing
time course transcriptomics data for SARS-CoV-2 infection where
we found affected signaling cascades. We performed NEASE enrich-
ment on the clusters and compared the results from Spycone and
TSIS. Spycone results are enriched in relevant terms such as mito-
gen-activated protein kinase (MAPK) pathway (Cluster 1), NOTCH
signaling (Cluster 2), fibroblast growth factor receptor (FGFRs) and
toll-like receptor (TLR) pathways (Cluster 3) and pentose phosphate
pathway (Cluster 4). NOTCH signaling pathways are found up-
regulated in the lungs of infected macaques (Rosa et al., 2021).

The MAPK pathway has a pro-inflammatory effect by interact-
ing with SARS-CoV-2 downstream pathogenesis, especially in
patients suffering from cardiovascular disease (Weckbach et al.,
2022). TLR 7/8 cascades are related to ssRNA, and there is a study
supporting the association of TLR 7/8 with SARS-CoV-2 infection
(Salvi et al., 2021). The pentose phosphate pathway is an alternative
pathway of glycolysis that produces more reduced NADP (NADPH)
oxidase. It is activated during SARS-CoV-2 infection in response to
oxidative stress and the activation of the immune response (Yang
et al., 2021). Spycone also detected the enrichment of pathways
which association with severe acute respiratory syndrome corona-
virus 2 (SARS-CoV-2) infection has not been characterized yet: kine-
sins, signaling by NTRKs, degradation of AXIN, signaling by
Hedgehog and 5-phosphoribose 1-diphosphate biosynthesis.

The active modules extracted from the clusters highlight mecha-
nisms involved in the host cell response to infection. In Cluster 2

A

B

C

Fig. 4. Comparing IS detection results from Spycone and TSIS (A) Venn diagram

showing the number of genes detected with isoform switch events by Spycone and

TSIS (all). (B) The distribution of the detected events in Spycone, TSIS and

major_TSIS based on the event importance metric of Spycone. The number of events

for each tool is indicated in brackets in the legend. (C) Cluster prototypes and all

objects show the pattern of the change of total isoform usage across time points
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Module 1 (Fig. 5B) revealed that interactions between three kinases
(MAPK39, AURKC and DCLK2) and a protein chaperone,
HSP90AA1 is affected by IS. HSP90 is expressed under the endo-
plasmic reticulum (ER) stress caused by SARS-CoV-2 and its inhibi-
tor is identified as a therapeutic inhibition target (Wyler et al.,
2021). A previous study found that knock down of MAP3K9
reduced SARS-CoV-2 virus replication (Higgins et al., 2021).
DCLK2 is differentially expressed in SARS-CoV-2 patients
(Alqutami et al., 2021). AURKC would be an interesting candidate
to investigate for its role in SARS-CoV-2 infection.

Besides these three kinases, network enrichment analysis high-
lighted the general importance of kinases in infection development,
e.g. JAK1, LYN, TYK2 and PRKCZ (Fig. 5). JAK1 is responsible for
interferon signaling (Yan et al., 2021). Inhibition of LYN reduces
the efficiency of SARS-CoV-2 virus replication (Meyer et al., 2021).
TYK2, which is a key player for IFN signaling, has been associated
with cytokine storms in SARS-CoV-2 patients (Solimani et al.,
2021). IS events of kinases might cause major rewiring of the trans-
duction cascade, which could lead to altered immune response, cell
cycle control and promote viral replication.

Our analysis also suggests an important role of growth factor
receptors (FGFR, epidermal growth factor receptor (EGFR) and
vascular endothelial growth factor (VEGF)) and their downstream
kinases. They are essential for viral infection since they modulate
cellular processes like migration, adhesion, differentiation and
survival. One example is that activation of EGFR in SARS-CoV-2

can suppress the IFN response and aid viral replication (Klann et al.,
2020).

Another key finding is that E3 ubiquitin ligases are affected by
IS. They are known to mediate host immune response by removing
virus particles. Various virus species hijack the host E3 ubiquitin
ligases in favor of viral protein production (Dubey et al., 2021).
They are also involved in maintaining TMPRSS2 stabilization dur-
ing virus entry to the host cells (Chen et al., 2021).

In splicing factor analysis, ILF3 and SRSF7 are identified as a
splicing factor affecting the splicing of exons. ILF3 plays a role in
antiviral response by inducing the expression of interferon-
stimulated genes (Watson et al., 2020). In another computational
analysis, SRSF7 is also predicted to have binding potential with
SARS-CoV-2 RNA (Horlacher et al., 2021).

Lastly, in order to get confident time course analysis results, one
will need high-resolution data in terms of number of time points and
sample replicates. Consequently, at least three time points and three

Table 1. Related biological processes and pathways of the respective modules found in clusters

Clusters Module Related biological processes

1 (Fig. 5, Supplementary Fig. S9A) 1 RNA splicing and mRNA processing

2 Cellular protein modification genes, signal transduction in the VEGF signaling pathway

3 Positive regulation of protein ubiquitination

4 Protein and intracellular trafficking genes

5 Protein and intracellular trafficking genes

2 (Supplementary Fig. S9B) 1 Transcription and mRNA splicing

2 Ras and Rho protein signaling transduction

3 Ubiquitination

4 Protein import into the nucleus

5 Transition of cell cycle to G2/M phase

3 (Supplementary Fig. S9C) 1 Regulation of transcription, cell cycle arrest and protein catabolic process

2 Transmembrane receptor protein tyrosine kinase signaling pathway, in particular MAPK

cascade and ERK cascade

3 Protein ubiquitination

4 Histone acetylation

5 Organelle membrane fusion

4 (Supplementary Fig. S9D) 1 Transcription and apoptotic processes

IS genes

non-IS genes

Fig. 5. Spycone results in modules of the PPI network and their corresponding gene

set enrichment results. Active network modules are identified using DOMINO.

Each node represents a domain of a gene. Darker nodes are the isoform switched

genes and lighter nodes are non-IS genes from the PPI. Dashed edges are the affected

interactions between the genes due to the loss/gain of domains during the IS events

A

B

Fig. 6. (A) Boxplots showing the PSSM score difference between lost/gained exons

and unregulated exons at the exon 50 boundaries in logarithmic scale (one-sided

Mann–Whitney U-test P-value < 0.05). (B) Boxplots showing the PSSM scores dif-

ference between lost/gained exons and unregulated exons at the exon 30 boundaries

in logarithmic scale (one-sided Mann–Whitney U-test P-value < 0.05). LE, lost

exons; GE, gained exons; UE, unregulated exons
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replicates are recommended in Spycone analysis. However, this cri-
terion is rather met due to technical and economical restraints.
Thus, Spycone also provides an option for a permutation test with
only one replicate for the dataset under investigation. We demon-
strated this usage in a tumor development dataset with one replicate
(see Supplementary information).

Limitations. Spycone achieves high precision and considerably
higher recall than the only competing tool TSIS. Nevertheless, the
moderate recall we observe in particular in the presence of noise
shows that there is further room for method improvement. In our
simulation Model 2, where we allowed for isoform switches be-
tween minor isoforms, we observed a reduction in both precision
and recall. Spycone identifies only two isoforms that switch per
event, but in reality, an event could involve more than two isoforms.
In the future, we should consider multiple-isoforms switches to han-
dle more complex scenarios. In addition, the usage of weighted PPI
network might introduce selection bias. However, the higher weight
gives higher confidence to an interaction, meaning more domains
between the proteins are interacting. Therefore, using weighted PPI
helps prioritizing interactions with higher confidence. We believe
this advantage outweighs the potential bias. Nevertheless, the usage
of weighted PPI is optional.

Spycone uniquely offers features for detailed downstream ana-
lysis and allows for detecting the rewiring of network modules in a
time course as a result of coordinated domain gain/loss. This type of
analysis is limited by the availability of the structural annotation.
However, the current developments in computational structural
biology that could expand the information about domains and do-
main–domain interactions e.g. AlphaFold2 (Jumper et al., 2021),
will greatly strengthen our tool. Lastly, our PSSM-based approach
for splicing factor analysis does not allow us to investigate splicing
factors that bind indirectly through other adaptor proteins, requir-
ing further experiments that establish binding sites for such proteins.
In our future work, we plan to optimize the algorithm and include
introns in the analysis.

Spycone was thus far applied exclusively to bulk RNA-seq data.
When considering tissue samples, IS switches between time points
could also be attributed to changes in cellular composition. An at-
tractive future prospect is thus to apply Spycone for studying IS in
single-cell RNA-seq data where dynamic IS events could be traced
across cellular differentiation using the concept of pseudotime.
However, the current single-cell RNA-seq technologies are limited
in their ability to discern isoforms (Arzalluz-Luque and Conesa,
2018).

5 Conclusion

With declining costs in next-generation sequencing, time course
RNA-seq experiments are growing in popularity. Although AS is an
important and dynamic mechanism it is currently rarely studied in a
time course manner due to the lack of suitable tools. Spycone closes
this gap by offering robust and comprehensive analysis of time
course IS. Going beyond individual IS events, Spycone clusters genes
with similar IS behavior in time course data and offers insights into
the functional interpretation as well as putative mechanisms and co-
regulation. The latter is achieved by RNA-binding protein motif
analysis and highlights splice factors that could serve as potential
drug targets for diseases. Using simulated and real data, we showed
that Spycone has better precision and recall than its only competitor,
TSIS and that Spycone is able to identify disease-related pathways in
the real-world data, as we demonstrated for SARS-CoV-2 infection.
In summary, Spycone brings mechanistic insights about the role of
temporal changes in AS and thus perfectly complements RNA-seq
time course analysis.
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5.1 Comprehensive benchmark of differential transcript usage analysis

for static and dynamic conditions
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Summary

Differential transcript usage (DTU) provides a great means for investigating the effect of alternative splic-

ing changes. This is done by observing and modeling the changes in transcript abundance within a

gene among conditions. DTU changes indicate the change in the underlying splicing patterns between

conditions. Several tools allow this type of analysis, and several benchmarking analyses are performed.

However, not all published DTU tools are benchmarked, and some additional experimental settings should

be investigated. This paper aimed to provide an updated view of DTU analysis with never-benchmarked

tools. I evaluated the DTU tools under different experimental conditions, such as bulk RNA sequencing

with fewer and more replicates in both single-end and paired-end data. I compared the qualitative differ-

ence (i.e., functional enrichment) between pairwise comparison DTU tools and time series DTU tools. I

simulated single-cell balanced and unbalanced data with DTU events to evaluate single-cell DTU tools.

I used RSEM simulator for both bulk RNA-seq and single-cell RNA-seq data. For bulk RNA-seq, single-

end and paired-end data with 50 and 100 million reads are simulated, each with four and eight replicates.

For single-cell data, only balanced dataset with two cell types are simulated. Each group in each dataset

contains ranging from 10 to 500 cells. These data contain DTU events as ground truth for the evaluation.

With simulated data, I provided guidelines for using DTU tools for both paired-end and single-end data with

fewer or more replicates processed with different quantification methods. Our result provided insights into

the biological interpretation of time series analysis using time-series-specific tools. We evaluated single-

cell DTU tools on simulated single-cell data. Our results provided a comprehensive current DTU analysis

under various experimental conditions.
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Abstract

RNA sequencing offers unique insights into transcriptome diversity, and a plethora of tools have been
developed to analyze alternative splicing. One important task is to detect changes in the relative
transcript abundance in differential transcript usage (DTU) analysis. The choice of the right analysis
tool is non-trivial and depends on experimental factors such as the availability of single- or paired-end
and bulk or single-cell data. To help users select the most promising tool for their task, we performed
a comprehensive benchmark of DTU detection tools. We cover a wide array of experimental settings,
using simulated bulk and single-cell RNA-seq data as well as real transcriptomics datasets, including
time-series data. Our results suggest that DEXSeq, edgeR, and LimmaDS are better choices for
paired-end data, while DSGseq and DEXSeq can be used for single-end data. In single-cell simulation
settings, we showed that satuRn performs better than DTUrtle. In addition, we showed that Spycone
is optimal for time series DTU/IS analysis based on the evidence provided using GO terms
enrichment analysis.

Introduction
In higher eukaryotes, alternative splicing (AS) is an important process contributing to protein diversity.
Different splicing events include exon skipping, alternative 3’/5’ splice site usage, mutually exclusive
exon usage and intron retention. When a gene is spliced differently between two conditions, the
relative abundance of a transcript can shift, irrespective of a change in the overall expression of a
gene. In differential transcript usage (DTU), the distribution of transcript abundance changes,
irrespective of a change in gene expression. DTU can have various functional consequences, e.g.,
switching from a protein-coding transcript to a non-coding transcript or switching between transcripts
with different functions. Isoform switching is a special case of DTU, where we focus on DTU of the
most abundant transcript [1].
DTU has been studied in various diseases. For example, Vitting-Seerup and Sandelin et al. showed
that 19% of genes with multiple transcripts involve functional isoform switches in cancer [1]. Parkinson
disease-related gene candidates were implicated in DTU, but these were not detected as differentially
expressed genes, highlighting the importance of this type of analysis [2]. Since many tools have been
proposed for DTU analysis, a key question is which tool to choose for a particular analysis.

To address this question, previous benchmark analyses have compared different workflows for DTU
detection. Focusing on plant systems, Liu et al. compared differential splicing detection tools in
simulated and real datasets [3]. Differential splicing events were simulated based on the changes
indicated by relative transcript abundance in each gene using the Flux simulator [4]. DEXSeq and
DSGSeq performed well with simulated data with area under the ROC curve (AUC) around 0.8 [5,6].
To evaluate the performance of tools in detecting novel, i.e. not previously annotated, events, the
authors also performed DTU analysis with a truncated annotation. Cufflinks performed best with



acceptable precision (0.9) and recall (0.7) on the de novo splicing events discovery . DICAST, a
docker-integrated alternative splicing benchmark tool, allows users to compare splicing-aware
mapping tools and splicing event detection tools on simulated and real data sets [7,8]. Similarly, a
large-scale study by Jiang et al. focused on event-based tools applied to simulated datasets [9].
However, only tools that detect and quantify splicing events in one condition are included in the
pipeline. In Merino et al., differential splicing tools were tested systematically in scenarios with
differential splicing and/or differential transcript expression [10]. The authors concluded that DEXSeq
[6] and LimmaDS [11] are the best tools for detecting DTU. However, the pipeline used the outdated
tool TopHat [12] as aligner, whereas STAR [13] has been shown to perform better [14,15]. In a method
paper by Love, Soneson and Patro, DEXSeq [6] and DRIMSeq [16] are used to perform DTU analysis
[17]. These two papers only included five DTU tools, while we could currently find twelve tools for
detecting DTU. The recent addition of new contenders motivated us to perform a comprehensive
benchmark covering various experimental settings. In particular, we acknowledge a growing interest in
single-cell DTU analysis, which has thus far not been covered in benchmarking analyses.
We further consider the challenging scenario of time series AS analysis, which was not previously
covered in benchmark studies despite the importance of such analysis in recapitulating AS changes
during development or in response to environmental changes. For example, time-dependent AS
genes were detected in plants after exposure to cold temperatures, suggesting changes in
night-to-day conversion and circadian control [18].

We compared twelve DTU detection tools, six of which had not previously been benchmarked. We
utilized both simulated datasets and actual human transcriptomic datasets for this comparison. Our
simulations covered various settings: in bulk settings, sequencing technology types (either single-end
or paired-end), number of replicates (four or eight), and three background levels are considered. The
term ‘background’' refers to the likelihood of a gene not exhibiting differentially expressed transcripts,
with a higher probability indicating a greater number of genes without DTU events. Our primary focus
in the results section is on paired-end data. In single-cell settings, the number of cells and two
background levels are considered. While we anticipate that paired-end sequencing excels in transcript
detection, some studies still employ cheaper single-end sequencing, e.g. in time-series analysis, to
support a larger sample number [19]. Understanding the performance of single-end data in DTU
analysis is therefore crucial. In each bulk scenario, we simulated three scenarios contributing to
transcript changes. We further categorized the results based on smaller or larger fold changes and
the number of isoforms in a gene to understand the impact of different features on DTU detection. We
simulated single-cell datasets to evaluate single-cell DTU tools such as DTUrtle and satuRn [20,21].
Additionally, we explored the qualitative differences between static pairwise comparisons and time
series DTU analyses.
For paired-end sequencing, edgeR, DEXSeq, and LimmaDS emerged as top-performing tools
[6,11,22]. In the context of single-end sequencing, we recommend DEXSeq and DSGseq [5].
LimmaDS was robust in detecting different types of DTU events (Figure 1). For time series data,
Spycone was particularly effective in identifying biologically relevant events throughout the
progression of a SARS-Cov-2 infected cell line. In single-cell data, satuRn has a better performance
than DTUrtle. Taken together, this analysis provides a comprehensive view of the current state of DTU
analysis in various scenarios.

Methods
Simulation
Our simulation process is similar to the one proposed by Merino et al., i.e. we used RSEM (v1.3.3) to
simulate single-end and paired-end data using estimated abundances that are inferred from
sequencing model parameters from real datasets and reference transcriptome [10]. The
rsem-calculate-expression function estimates model parameters from real datasets [23]. The function
collects statistics from the dataset, including the number of reads, the number of reads aligned to
multiple and unique loci, the read and fragment length distribution and the quality score distribution.



The single-end data model parameters are estimated from GSE157490 [19], a cell line dataset with
SARS-Cov2 infection sequenced at 100M reads. The paired-end data used to learn parameters is
GSE162562 and GSE190680, which is also a dataset of patients with SARS-Cov2 infection
sequenced at 100M reads [24,25]. Each dataset is simulated with 50 million reads, which is the
minimum depth to robustly detect DTU [26] and 100 million reads.

Baseline transcript expression levels are taken from the SARS-CoV2 datasets. Next, we adjust the
transcript counts to generate simulated data for three DTU scenarios (Figure 1). Since changes in
transcript expression and DTU are confounded by changes in the overall expression of a gene, we
consider both effects together. First, for each gene, we consider a random fold change ranging from 2
to 5 between conditions. The transcript ratios are generated using a Dirichlet distribution, which
describes the probabilities of k categories given a density distribution with k dimensions. This
approach is ideal for simulating transcript ratios as the sum of the vectors is 1. k represents the
number of transcripts in a gene, with each transcript being assigned an expression value. The higher
the probability associated with transcript i, the higher the expression value. To have a higher statistical
power for detecting DTU transcripts, we simulate DTU transcripts with higher expression level. The
following formula shows the simulation of expression value for each transcript i in condition j. :

𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 (𝑖, 𝑗) =  𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑔𝑒𝑛𝑒 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 * 𝑓𝑜𝑙𝑑 𝑐ℎ𝑎𝑛𝑔𝑒 * 𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡 𝑟𝑎𝑡𝑖𝑜

Note that for the baseline (e.g. a control), the fold change is 1, whereas for the condition of interest we
consider the random fold change. For creating replicates with measurement noise, we compute the
expression values using a negative binomial distribution, where the dispersion for each transcript is
estimated using DESeq2:

𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑜𝑓 𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑒 𝑥 (𝑖, 𝑗) =  𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑏𝑖𝑛𝑜𝑚𝑖𝑎𝑙  ~( 𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛,  1/𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛)

We split the genes across scenarios to obtain a mixture for the final data set. In theory, we could
consider data sets that only consider individual scenarios, but this would not result in a realistic data
set for evaluating the tools. In the next step, we must modify the transcript ratios according to the
scenarios we consider. For scenario S1, only a single transcript of the gene changes expression. For
scenario S2, more than two transcripts are subject to changes in relative abundance. In scenario S3,
the relative abundance of two transcripts is swapped, signifying an isoform switch event.

We considered three background levels with an increasing fraction of genes whose expression
remains unchanged: 0, 0.1, and 0.5. The modified transcript results are then used for the simulation.
The rsem-simulate-reads command is used for the simulation. RSEM reference is generated with the
human genome GRCh38, theta0 parameter, noise proportion to the background is set to 0.1.
In our study, we simulated a total of four conditions, incorporating various parameter combinations
(Table 1). 100M reads are simulated only with four replicates and background level 0.5.



Figure 1. Scenario 1 (S1) are events that have one differentially expressed transcript, which are
usually detected as differentially expressed genes as well. S2 are events that change the distribution
of the transcript abundance between conditions. This change can involve multiple transcripts. S3 are
events when the abundance is redistributed between two transcripts, it is called isoform switch (IS).
The arrows indicate the changes represented in each scenario.

Table 1. Different simulated data generated

Type replicates depth background

paired-end 4 50M, 100M 0, 0.1, 0.5

paired-end 8 50M 0, 0.1, 0.5

single-end 4 50M, 100M 0, 0.1, 0.5

single–end 8 50M 0, 0.1, 0.5

Single cell simulation
We used the same simulation workflow for a single cell, except the model parameters for RSEM are
learned from a demultiplexed Smart-seq2 dataset derived from human cells [27]. We adapted our
simulation method for single-cell transcript counts. In particular, we used the –single-cell-prior
parameters in RSEM to model sparse matrices. RSEM seems to perform better in simulating
Smart-seq2 dataset (Figure S2). To test the methods with simple single-cell data, we used two cell
types with a population of 900 to simulate. We simulated balanced datasets with 20, 50, 100, 200, 500
and 1000 cells containing the same amount of cells for each cell type. We simulated DTU events in
single-cell with two background levels - 0 and 0.1. Background level here also means the percentage
of expressed genes that will stay unchanged between the two cell types.

Differential transcript usage methods
We performed an in-depth literature search in databases PubMed and Google Scholar with keywords
such as “differential transcript usage”, “differential isoform usage”, “isoform switch”. We selected
publications that describe a novel method for DTU analysis for bulk transcriptomics data. Iso-DOT is
excluded due to long runtime (>20 days without parallelization) [28], rSeqDiff is excluded due to not
supporting replicates [29] and IUTA is excluded due to incompatibility with STAR output [30].
Tools that can detect DTU can be categorised into exon/junction-centric (JunctionSeq [31], seqGSEA
[32], DSGSeq [5]) and transcript-centric (DEXSeq [6], DRIM-Seq [16], DTUrtle [20], iso-KTSP [33],
satuRn [21], NBSplice [34], edgeR [22], LimmaDS [11]), as well as assembly-based (Cufflinks/cuffdiff
[35]).
Exon-centric tools like DEXSeq (v1.24.0) and JunctionSeq (v1.5.4) use a generalized linear model to
analyze differences in exon and splice junction usage. DEXSeq, originally designed for exon counts,
also works with transcript counts. It uses a formula to compare conditions and identifies significant
genes based on adjusted p-values. JunctionSeq also uses adjusted p-values for gene evaluation.
DSGSeq (v0.1.0) compares exon counts between conditions using negative binomial statistics. At the
same time, seqGSEA (v1.36.0) combines DSGseq and DESeq methods, using exon counts and a
rank-based strategy to output p-values for differential transcript usage (DTU) genes. Transcript-centric
tools include DRIMSeq (v1.24.), which uses a dirichlet-multinomial model for transcript abundance
analysis, and DTUrtle (v1.0.2), which adds extra filtering steps and uses StageR for more accurate
gene-level false discovery rate correction. Iso-KTSP (v1.0.3) identifies transcript pairs that
differentiate conditions, scoring them based on expression frequency. satuRn (v1.4.2) models
transcript counts using a quasi-binomial model, and Cufflinks/cuffdiff (v2.2.1) aligns transcripts de
novo and analyzes differential expression. For gene significance, tools using adjusted p-values
consider values below 0.05 as significant. Iso-KTSP and DSGseq, which don't provide p-values, use
cutoffs of 0.5 and 5 based on author recommendations. These tools are listed in Table 2.



Table 2. All DTU tools published after 2010.

Tool

Imple
mentat
ion Year Reference Principle idea Excluded

DEXSeq R 2012 [6]
Negative binomial generalized linear model to
model transcript counts

DRIMSe
q R 2016 [16]

Use dirichlet-multinomial model to model
relative abundance of transcript

seqGSE
A R 2014 [32]

Negative binomial models in DSGSeq and
DESeq

DTUrtle R 2021 [20] Dirichlet-multinomial model from DRIMSeq

Junction
Seq R 2016 [31]

Negative binomial generalized linear model to
model junction counts

NBsplice R 2020 [34]

Negative binomial generalized linear model to
model transcript counts, and test with a linear
hypothesis

satuRn R 2021 [21]
Quasi-binomial generalized linear model to
model transcript counts

limmaD
S R 2013 [11] Apply linear model to detect transcript changes

Cuffdiff2 C++ 2012 [35]
Use a poisson model to estimate changes in
transcript counts

iso-KTS
P Java 2014 [33]

Classify transcripts to condition specific based
on the change of transcript abundance

DSGSeq R 2013 [5]
Negative binomial statistics to detect transcript
changes

edgeR R 2010 [22]
Negative binomial generalized linear model to
model transcript counts

IUTA R 2014 [30]
Estimate transcript usage, followed by testing
DTU under Aitchison geometry

Incompatibl
e with STAR

IsoDOT R 2015 [28]
Estimate transcript usage with a penalized
regression method

Long run
time

rSeqDiff R 2013 [29]
Apply linear poisson model to estimate
transcript counts

Not
supporting
replicates

Time series tools

TSIS R 2017 [36]
detection and characterization of isoform
switches for time series data

Spycone python 2023 [37]
detection and characterization of isoform
switches for time series data

Differential transcript usage methods for time series data
There are two time series tools for detection of isoform switches in time series data: TSIS [36] and
Sypcone [37]. TSIS and Spycone are the tools that detect switch points between transcript pairs and



calculate adjusted p-values based on the replicates. Then, it applies filters to select features like
switching probabilities (i.e. the ratio of samples that has a higher relative abundance in one transcript
than the other) , the difference of transcript expression before and after the switch. In Spycone,
additional metrics are calculated such as event importance and domain difference. To detect DTU
genes in TSIS, the following filtering metrics are used by default: 1) probability of switching > 0.5, 2)
difference of expression before and after switching > 1, 3) p-value < 0.05, 4) correlation coefficient >
0.5. For the usage of Spycone, DTU genes are filtered with default parameters: 1) difference of
relative abundance before and after switch > 0.2, 2) adjusted p-value < 0.05, 3) dissimilar correlation
> 0.5 and 4) event importance > 0.3. For DEXSeq, we used a log-likelihood test with a reduced
model. For LimmaDS, each time point is treated as a factor in multiple conditions.
We used clusterProfiler R package to perform GO term enrichment analysis [38].

Preprocessing and quantification
STAR (v2.7.8a) is used to align the reads to the genome (GRCh38 v107). We used STAR, which is
currently among the best tools for splice-aware alignment [7]. Salmon (v1.7.0), kallisto (v0.44.0),
RSEM and Cufflinks (v2.2.1) are used for transcript quantification. HTSeq (v2.0.1) is used to quantify
exon counts for the input of seqGSEA. The workflow is shown in Fig. 2.

Figure 2. Analysis workflow of the methods.
Different scenarios are simulated to evaluate the performance of the tools. STAR is used to map
RNA-seq reads and the resulting bam files are used by RSEM, QoRT, HTSeq and cufflinks to
generate transcript counts, junction and exons counts. Salmon and Kallisto directly use RNA-seq
reads in fastq format to generate transcript counts. Transcript counts derived from Salmon, Kallisto
and RSEM are compared by calculating root mean squared error (RMSE), Spearman and Pearson
correlation. We generate DTU detection results from NBsplice, satuRn, DEXSeq, DRIMSeq, DTUrtle,
and Iso-KTSP using transcript counts from Salmon, Kallisto and RSEM. Other DTU tools use the
corresponding count tables. All DTU detection results are compared by calculating precision and
recall compared to the simulated ground truth.

Evaluation of performance
To evaluate the effectiveness of the tools on simulated data, we employed precision and recall as our
performance metrics. We obtained a list of genes identified as having DTU, based on an adjusted
p-value of less than 0.05, or surpassing a specific threshold in the case of iso-KTSP and DSGseq.
These genes are positive. True positives (TP) are those among the positive genes that also appear in



the simulated ground truth, while the rest are categorized as false positives (FP). Conversely, genes
that are simulated with DTU but remain undetected by the tools are labeled as false negatives (FN).
For stratification analysis, each event scenario is calculated separately. For different DTU events
scenarios, P are genes simulated with the corresponding scenario. The formulas for calculating
precision and recall are as follows:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  𝑇𝑃
𝑇𝑃 + 𝐹𝑃

𝑅𝑒𝑐𝑎𝑙𝑙 =  𝑇𝑃
𝑇𝑃 + 𝐹𝑁

𝐹1 𝑠𝑐𝑜𝑟𝑒 =  2𝑇𝑃
2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

To evaluate the performance in a real dataset, a prostate tumor dataset (GSE222260) is used. The
dataset consists of 10 normal tissues and 20 prostate carcinoma tissues.

Data availability
The RNA-seq data of prostate tumor dataset is available from GSE222260 [39] and data from patients
with SARS-Cov-2 infection is available from GSE162562 and GSE190680 [24,25]. Both datasets were
preprocessed and analyzed as mentioned above. The time series RNA-seq data of SARS-Cov-2
infection data was obtained from GSE157490 [19]. The data is processed as described in [40].

Code availability
Code for simulation, analysis and plot generation are available at
https://github.com/yollct/diffIsoUsage_benchmark under the terms of the GNU General Public
License, Version 3.

Results
Overall performance of DTU detection
In this study, we evaluated twelve DTU tools using simulated datasets that incorporated various
scenarios, including single-end or paired-end data, four or eight replicates, and three distinct
background levels.

The datasets included three DTU scenarios for differentially expressed genes. We assessed
precision, recall and F1 scores for each scenario based on the significant results obtained, as detailed
in Table 1. For tools providing adjusted p-values, a threshold of 0.05 was used to identify positive
results, while for iso-KTSP and DSGseq, the thresholds were set at 0.8 and 5, respectively. The
transcript counts from each simulated dataset were compared against a ground truth outlined in the
supplementary file (Figure S1).

Figure 3 presents the metrics for the DTU detection tools on simulated data with four and eight
replicates. Generally, an increase in recall was observed with eight replicates. DRIMSeq, DTUrtle, and
JunctionSeq demonstrated comparable performances. NBSplice showed the highest precision overall,
even with a background of 0.5 in four replicates, though its recall was low. LimmaDS achieved the
highest recall (>0.2) in both sets of replicates. However, iso-KTSP's precision decreased to 0.4 as
background increased. In contrast, DEXSeq and satuRn showed less impact on precision at a
background of 0.5 (Figure 3A). When evaluating with F1 scores, iso-KTSP appears to be the best
performing tool despite low recall (Figure 3B).

Figure S4 illustrates the results for single-end data, where all tools exhibited low recall in four
replicates, possibly due to the lack of additional information from the paired-end protocol. This
limitation can be mitigated with more replicates (eight). edgeR and DEXSeq achieved the best
precision in four and eight replicates, respectively. Notably, DEXSeq combined with Kallisto showed
promising results in both sequence types (Figure S5). Similar to paired-end data, DEXSeq with



Kallisto excelled in both four and eight replicates. However, LimmaDS displayed low recall in all cases
(close to 0), and its precision significantly dropped to 0.4 when the background was set at 0.5 (Figure
S12).

To investigate the effect of increasing sequencing depth, we simulated 100M reads for 4 replicates at
0.1 background. Most tools have increased recall. LimmaDS has the most improvement (+0.1), but
precision dropped. DSGseq has increased precision and decreased recall (Figure S19).

Figure 3. Metrics plot of all combinations of quantification tools and DTU methods from paired-end
data with 4 replicates (upper-row) and 8 replicates (lower-row). A) Precision and recall plot. B) Radar
plots showing the corresponding F1 scores.

Performance of tools in different stratifications
Figure 4 presents the F1 scores for various event types based on data quantified by Salmon. The
results from Kallisto and RSEM quantifications are provided in the supplementary figures (Figures
S6-8). The ranking of tools according to F1 scores are the same, except DEXSeq with kallisto



quantification has the best performance. Additionally, we have stratified the genes according to the
number of transcripts (Figure S3-5) and the extent of the fold change (Figure S9-11). F1 scores are
determined using the ground truth for each specific category. While iso-KTSP demonstrates improved
performance in Figure 4, this is not reflected in Figure 3A, where its tendency towards lower recall
needs to be taken into account.

As expected, the performance of all tools improves with eight replicates. LimmaDS, in particular,
achieves the highest F1 score and recall (>0.4) for S2 and S3 DTU events (Figure S9, 11). When
eight replicates are used, satuRn maintains high precision, even with a high background (Figure S10).
When paired with Kallisto, DEXSeq outperforms LimmaDS. Generally, an increase in fold change
magnitude correlates with higher detection of events, thereby boosting the F1 scores. Nonetheless,
iso-KTSP's F1 score remains consistent regardless of fold change. Moreover, satuRn demonstrates
superior precision. Subsequently, we categorized genes into groups based on the number of
transcripts, revealing a direct correlation between the number of transcripts and F1 scores. However,
this categorization appears to have minimal impact on precision (Figure S4).
ev
In the analysis of single-end data, DEXSeq combined with Kallisto consistently exhibited superior
performance in both four and eight replicate scenarios, as shown in Figure S13. Specifically, DEXSeq
achieved an F1 score of 0.2 for S1 DTU events and approached 0.6 with eight replicates. iso-KTSP
maintained steady F1 scores across all cases, similar to its performance in paired-end data, but it also
identified false positives, as indicated in Figure S12. In contrast, LimmaDS showed weaker results in
single-end data. For quantifications using RSEM and Salmon, seqGSEA outperformed others with an
F1 score of 0.2 in eight replicates, while JunctionSeq led in the four-replicate category. Similar to
paired-end data, a positive correlation between fold change and F1 scores was observed (Figure
S14). However, the number of isoforms appeared to have a minimal impact on the results (Figure
S15).



Figure 4. Radar plots showing F1 scores calculated after stratification for all combinations of
quantification tools and DTU methods in paired-end data with 4 replicates (top row) and 8 replicates
(bottom row). This result is derived from Salmon quantification. A) DTU events stratified by different
scenarios B) DTU events stratified by fold change. C) DTU events stratified by number of transcripts.

Benchmarking with a real transcriptome dataset
In our study, we utilized the paired-end prostate cancer dataset, previously used by Merino et al., to
evaluate various DTU tools. We quantified sequencing reads using Salmon, Kallisto, and RSEM,



applying all DTU tools except JunctionSeq, which was excluded due to its excessive runtime. Figure 5
illustrates the overlap in DTU gene sets detected by different tools, along with the F1 scores derived
from our simulation analysis (Figure 5).

Iso-KTSP identified the highest number of DTU genes, but the F1 score was relatively low (0.25),
indicating a higher rate of false positives in the simulated data. Conversely, LimmaDS, with a higher
F1 score (0.4), detected only a limited number of genes in this dataset. We observed variations in the
number of genes detected by different DTU tools depending on the quantification method used. For
instance, DEXSeq identified the most genes with Kallisto counts, while edgeR and LimmaDS detected
the most with Salmon counts, and satuRn found the most with RSEM counts. Notably, NBSplice did
not detect any significant genes in Salmon and Kallisto, and only one gene in RSEM.

Figure 5. Upset plots showing the overlapping DTU genes found by each tool
Cancer dataset obtained from [39] are analyzed with the workflows. Each upset plot shows the
number of DTU genes detected for each tool and the overlaps among them. The right dot plot shows
the F1 scores obtained from the simulated dataset, with 8 replicates and a background of 0.5.

Performance in single-cell data
We assessed the performance of DTUrtle and satuRn on single-cell data using a simulated dataset
created with the specified method. Each dataset comprised two cell types, each with an equal number
of cells. We calculated precision and recall based on the simulated ground truth. Figure 6 illustrates
the precision and recall as the number of cells in each cell type increases. Generally, we note a high
precision (around 0.9) when there are 50 or more cells in each cell type. The recall, however, shows a



gradual increase with the rising number of cells. SatuRn demonstrated a higher recall than DTUrtle,
reaching a recall of 0.9 when each cell type had 500 cells, compared to DTUrtle's 0.73. As the
background level rises, both precision and recall decline. SatuRn registered a precision of 0.83 and a
recall of 0.88, whereas DTUrtle posted a precision of 0.93 and a recall of 0.69. However, with a higher
background level, an increase in the number of cells resulted in a slight dip in precision (a decrease of
0.06 from 100 to 200 cells and a further decrease of 0.01 thereafter). In addition, we performed a
pseudo-bulk analysis where transcript counts are aggregated into meta cells. The meta cells are then
analyzed using methods designed for bulk data. The result shows that this approach does not
improve precision and recall (Figure S17).

Figure 6. Precision and recall of satuRn and DTUrtle for single-cell simulation. Each plot consists of
the result from a different number of cells (x-axis). Precision from simulation with background level 0
(top left). Recall from simulation with background level 0 (top right). Precision from simulation with
background level 0 (bottom left). Recall from simulation with background level 0.1 (bottom right).

Time series isoform switch analysis
Another method for inferring isoform switches is time series isoform switch detection. With time series
data, we can extract dynamic changes in transcript usage. Here, we applied DEXSeq, LimmaDS,
satuRn, TSIS and Spycone on time series single-end transcriptomic data for SARS-Cov-2 infection
with eight time points and four replicates [19]. Figure 7 shows the results of the comparison. In all the
comparisons, DEXSeq and LimmaDS have many overlapping DTU genes (1731). edgeR didn’t find
any significant genes. Spycone and TSIS, which are specifically designed for time series data, have
only a few overlaps (Figure. 7A). In GO terms biological processes enrichment of the significant DTU



genes, the terms enriched in each of the sets are different, in which DEXSeq, LimmaDS and TSIS are
enriched in generic cellular functions such as cadherin binding, ubiquitin-related terms etc (Figure.
7B). satuRn has similar but less enriched The Spycone gene set is enriched in MHC protein complex
binding, which is essential to adaptive immunity. For the term IgA bindings, IgA are found to be as part
of the early humoral immune response to neutralize SARS-Cov-2 virus upon infection [41].

Figure 7. A) An upset plot showing the overlapping DTU genes detected by DEXSeq, TSIS, NBSplice,
LimmaDS and Spycone time series isoform switch detection. B) Dotplot showing the enrichment
terms from the DTU genes detected by all tools. NBSplice didn’t report significant genes.

Discussion
In this analysis, we conducted a comprehensive benchmark study using both simulated data and real
transcriptomics datasets, considering both static and dynamic conditions. Our simulation approach
aimed to mimic real datasets, including the presence of stochastic noise. To achieve this, we
simulated three background levels: 0, 0.1, and 0.5, representing the proportion of expressed genes
that remain unchanged between two conditions. Additionally, we simulated both paired-end and
single-end RNA-Seq data with four and eight replicates.
Our simulation approach contrasts with that of Merino et al. [10], where the authors specifically
assigned abundance to each transcript between two conditions to simulate differential transcript
abundance. Instead, we adopted a dirichlet-multinomial model to simulate abundance based on
transcript probabilities. The Dirichlet-multinomial model effectively manages transcript expression as
multivariate count data, accommodating overdispersion to more accurately reflect real-world data
scenarios. Furthermore, while Merino et al. focused solely on simulating DTU events where two
transcripts change in abundance and evaluated them using DTU tools, we simulated events with more
than two transcripts change in abundance (S2) and assessed their performance with DTU tools.
In the simulated scenarios, we observed that single-end data exhibited lower recall (Figure S12). This
decrease in recall can be attributed to the limitations of single-end sequencing, which cannot capture
both ends of a cDNA fragment, leading to a reduced probability of observing junction reads.
Consequently, single-end data has lower power for detecting the correct transcript. In our simulations,
we found that single-end data could detect approximately 10,000 transcripts, while paired-end
sequencing detected around 30,000 transcripts at a depth of 50M reads (Figure S18). However,
despite its higher sensitivity, paired-end sequencing faces challenges in transcript detection due to
transcriptional noise stemming from transcriptional stochasticity [42]. Furthermore, short reads cannot



accurately detect transcript counts due to the increased likelihood of mapping reads to multiple
genomic locations. This limitation can be mitigated by long-read sequencing technology once it
becomes more prevalent [43].
Another factor influencing our observations is the simulation methods employed. RSEM served as the
simulation engine, and since it is one of the quantification methods used in our analysis, there may be
a bias in favor of RSEM. In our simulation approach, we used the mean expression values for each
transcript from a real transcriptome dataset. Additionally, our simulation approach utilized a
Dirichlet-multinomial model to generate transcript abundances, which might favor tools that also utilize
the Dirichlet-multinomial model for modeling, such as DRIMseq and DTUrtle.
In our findings, we noted that tools employing a generalized linear model, such as NBSplice, DEXSeq,
satuRn, JunctionSeq, and edgeR, as well as those utilizing a Dirichlet-multinomial model, such as
DRIMSeq and DTUrtle, typically exhibited superior precision. Conversely, the only tool employing a
linear model, LimmaDS, demonstrated higher recall. As for other approaches employed, they
generally exhibited low performance.
For evaluating the performance of different DTU tools, we utilized precision, recall and F1 score
(Table 2). For transcript-level analysis, we recommend using paired-end sequencing, as DTU analysis
with single-end data captures less transcript information. When working with fewer than four replicates
in paired-end data, we suggest using RSEM or Salmon as the quantification tool. Both tools perform
similarly, but Salmon offers better runtime efficiency. If recall is a top priority, consider LimmaDS. If
there are fewer replicates, DEXSeq could be a better choice. For more replicates, consider edgeR.
When single-end sequencing is the only option, we also provided a guideline. For prioritizing recall,
DSGseq can be employed. If there are fewer replicates, edgeR could be a better choice. For more
replicates, consider DEXSeq. In addition, all tools’ performance is affected by the fold change and the
number of transcripts. As the fold changes and the number of transcripts increases, recall of the tools
generally increases. Most prominently, the precision of the tools decreases due to the greater number
of S1 of DTU events found. S1 events are likely to be regulated by transcription factors rather than
splicing. In our analysis, the tool with higher recall in S2 and S3 events and lower recall in S1 events
is LimmaDS.

In our time series case study, we utilized both pairwise comparison tools that accommodate time
series data and dedicated time series tools on a single-end time series transcriptome dataset from
SARS-Cov-2 infected human cells. Interestingly, each tool identified different genes and few overlaps
were observed. We observed that the pairwise comparison tools identified a substantial number of
genes, exceeding 3000, whereas the time series tools reported fewer genes. Among the time series
tools, only 48 genes were commonly identified. The Spycone method predominantly highlighted
switching transcripts with high expression levels by calculating the event importance metrics. While
TSIS found a lot of low expressed transcripts based on previous findings [37]. Furthermore, while
Spycone focuses on detecting IS events, our simulation study revealed that both LimmaDS and
DEXSeq do not differentiate between DTU scenarios. These observations suggest the importance of
distinguishing S1 events, as doing so can yield unique insights. Even though the time series data is
derived from single-end sequencing, it is shown that there are quantitative and qualitative differences
while applying pairwise comparison tools and time series tools.

Greater effort is required to differentiate between DTU events scenarios, especially since these
events are often mixed with varying degrees of change in real-world situations. In future work, we
could leverage additional metrics from Spycone and apply them as filtering criteria to the results
generated by pairwise comparison tools.
Exploring differential transcript usage (DTU) in single-cell data presents a fascinating avenue of study.
Analyzing single cells offers a deeper understanding of transcript usage heterogeneity across various
cell types. This can potentially reveal alternative splicing patterns that contribute to the emergence of
distinct cell types. Several tools, such as DTUrtle and satuRn, have been developed specifically for
detecting DTU in single-cell data, alongside with bulk RNA-seq. Our analysis indicates that while



satuRn boasts a higher recall, its precision is marginally lower than that of DTUrtle. For datasets with
a larger number of cells (>250 per cell type), DTUrtle is recommended for those prioritizing precision.
Conversely, satuRn is the preferred option for datasets with fewer cells (<250 per cell type) and where
recall is prioritized.
However, it's worth noting that our analysis was based solely on a simulated dataset with an equal
number of cells across two cell types. This balanced distribution does not always reflect real-world
scenarios. Future analyses could benefit from simulating unbalanced datasets. Additionally, single-cell
datasets often comprise more than just two cell types. As such, tools capable of comparing multiple
cell types are more desirable. For instance, Acorde is designed to pinpoint co-DTU across several cell
types [44]. Exploring DTU variations across pseudo-time within single-cell data presents a compelling
direction for future research. However, single-cell transcript analysis faces technical challenges in
obtaining accurate transcript counts. Ongoing developments in single-cell transcript analysis
technologies suggest a promising future for understanding alternative splicing at the single-cell level
[45,46].

Type of
sequencing

Number of
replicates Quantification Priority

Recommended
tools

paired-end

>8

kallisto

precision DEXSeq

recall LimmaDS

<8

precision DEXSeq

recall DEXSeq

paired-end

>8

RSEM

precision satuRn

recall LimmaDS

<8

precision satuRn

recall LimmaDS

paired-end

>8

Salmon

precision satuRn

recall LimmaDS

<8

precision satuRn

recall LimmaDS

single-end

>8

Kallisto

precision DEXSeq

recall DEXSeq

<8

precision DEXSeq

recall DEXSeq

single-end

>8

RSEM

precision seqGSEA

recall seqGSEA

<8

precision LimmaDS

recall LimmaDS

single-end

>8

Salmon

precision seqGSEA

recall seqGSEA

<8

precision LimmaDS

recall LimmaDS



Table 2. Recommended workflow for bulk single-end and paired-end data in DTU analysis. This
workflow is for counts derived from different transcript quantification methods.

Conclusion:

In this comprehensive benchmark study, we have rigorously evaluated various transcriptomics
datasets under both static and dynamic conditions, utilizing a blend of simulated and real data. We
observed a general trend where tools using generalized linear models or Dirichlet-multinomial models
showed superior precision, while LimmaDS, which employs a linear model, demonstrated higher
recall. This suggests that the choice of DTU tools should be tailored to the specific needs of the study,
considering factors like the number of replicates, sequencing method (single-end or paired-end), and
the prioritization of precision or recall. Our analysis of time series data revealed interesting insights
into DTU. Tools like Spycone, designed for time series DTU detection, showed differences in
functional outcome.

Looking ahead, there is a clear need for further differentiation between DTU events in complex
real-world scenarios. Additionally, exploring DTU in single-cell data remains a promising avenue,
albeit with technical challenges in obtaining accurate transcript counts. As single-cell transcript
analysis technologies continue to evolve, they hold significant promise for advancing our
understanding of alternative splicing at the single-cell level. Future research could benefit from
simulating more diverse and unbalanced datasets, as well as focusing on tools capable of comparing
multiple cell types and analyzing DTU variations across pseudo-time.

Key points:
● We performed an analysis involving a comprehensive benchmark study that used

both simulated data and real transcriptomics datasets. It considered both static and
dynamic conditions. We included the 12 DTU tools for static conditions. Our study
suggests that tools using generalized linear models produce better precision and with
linear models produce better recall.

● Based on the stratifications of the DTU genes, recall of most tools are positively
affected by the fold changes and number of transcripts. Our results show that
LimmaDS is better in detecting S2 and S3 events scenarios.

● We provided guidelines for performing DTU analysis for different sequencing types,
considering the number of replicates. LimmaDS, edgeR and DEXSeq are better for
paired-end sequencing. DSGseq and DEXSeq are better for single-end sequencing.

● We provided evidence that Spycone can detect IS that has a different biological
interpretation to the condition of interest.

● For datasets containing more than 250 cells per cell type, DTUrtle is the suggested
choice for those valuing precision. On the other hand, for datasets with less than 250
cells per cell type, satuRn is recommended when recall is of greater importance.

Funding
This work was supported by the Technical University Munich – Institute for Advanced Study, funded
by the German Excellence Initiative. This work was supported in part by the Intramural Research
Programs (IRPs) of the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK). JB
was partially funded by his VILLUM Young Investigator Grant nr.13154. Partly funded by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation) – 422216132. This work was
supported by the German Federal Ministry of Education and Research (BMBF) within the framework
of the *e:Med* research and funding concept (*grants 01ZX1908A / 01ZX2208A* and *grants
01ZX1910D / 01ZX2210D*). This project has received funding from the European Union’s Horizon



2020 research and innovation program under grant agreement No 777111. This publication reflects
only the author's view, and the European Commission is not responsible for any use that may be
made of the information it contains.

Author contributions
C.T.L. planned and carried out the analysis. T.D. performed the single-cell analysis. M.H. and L.W.
preprocessed the SARS-CoV2 datasets. C.T.L., M.L., M.H., O.T., and J.B. wrote and reviewed the
manuscript.

References

1. Vitting-Seerup K, Sandelin A. The Landscape of Isoform Switches in Human Cancers. Mol. Cancer
Res. 2017; 15:1206–1220
2. Dick F, Nido GS, Alves GW, et al. Differential transcript usage in the Parkinson’s disease brain.
PLoS Genet. 2020; 16:e1009182
3. Liu R, Loraine AE, Dickerson JA. Comparisons of computational methods for differential alternative
splicing detection using RNA-seq in plant systems. BMC Bioinformatics 2014; 15:364
4. Griebel T, Zacher B, Ribeca P, et al. Modelling and simulating generic RNA-Seq experiments with
the flux simulator. Nucleic Acids Res. 2012; 40:10073–10083
5. Wang W, Qin Z, Feng Z, et al. Identifying differentially spliced genes from two groups of RNA-seq
samples. Gene 2013; 518:164–170
6. Anders S, Reyes A, Huber W. Detecting differential usage of exons from RNA-Seq data. Nature
Precedings 2012; 1–1
7. Fenn A, Tsoy O, Faro T, et al. Alternative splicing analysis benchmark with DICAST. bioRxiv 2022;
2022.01.05.475067
8. Manz Q, Tsoy O, Fenn A, et al. ASimulatoR: splice-aware RNA-Seq data simulation. Bioinformatics
2021; 37:3008–3010
9. Jiang M, Zhang S, Yin H, et al. A comprehensive benchmarking of differential splicing tools for
RNA-seq analysis at the event level. Brief. Bioinform. 2023; 24:
10. Merino GA, Conesa A, Fernández EA. A benchmarking of workflows for detecting differential
splicing and differential expression at isoform level in human RNA-seq studies. Brief. Bioinform. 2019;
20:471–481
11. Ritchie ME, Phipson B, Wu D, et al. limma powers differential expression analyses for
RNA-sequencing and microarray studies. Nucleic Acids Res. 2015; 43:e47
12. Kim D, Pertea G, Trapnell C, et al. TopHat2: accurate alignment of transcriptomes in the presence
of insertions, deletions and gene fusions. Genome Biol. 2013; 14:R36
13. Dobin A, Davis CA, Schlesinger F, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics
2013; 29:15–21
14. Engström PG, Steijger T, Sipos B, et al. Systematic evaluation of spliced alignment programs for
RNA-seq data. Nat. Methods 2013; 10:1185–1191
15. Baruzzo G, Hayer KE, Kim EJ, et al. Simulation-based comprehensive benchmarking of RNA-seq
aligners. Nat. Methods 2017; 14:135–139
16. Nowicka M, Robinson MD. DRIMSeq: a Dirichlet-multinomial framework for multivariate count
outcomes in genomics. F1000Res. 2016; 5:1356
17. Love MI, Soneson C, Patro R. Swimming downstream: statistical analysis of differential transcript
usage following Salmon quantification. F1000Res. 2018; 7:952
18. Calixto CPG, Guo W, James AB, et al. Rapid and Dynamic Alternative Splicing Impacts the
Arabidopsis Cold Response Transcriptome. Plant Cell 2018; 30:1424–1444
19. Kim D, Kim S, Park J, et al. A high-resolution temporal atlas of the SARS-CoV-2 translatome and
transcriptome. Nat. Commun. 2021; 12:5120
20. Tekath T, Dugas M. Differential transcript usage analysis of bulk and single-cell RNA-seq data with
DTUrtle. Bioinformatics 2021;
21. Gilis J, Vitting-Seerup K, Van den Berge K, et al. satuRn: Scalable analysis of differential transcript
usage for bulk and single-cell RNA-sequencing applications. F1000Res. 2021; 10:374
22. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential
expression analysis of digital gene expression data. Bioinformatics 2010; 26:139–140
23. Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a
reference genome. BMC Bioinformatics 2011; 12:323
24. Lee HK, Knabl L, Pipperger L, et al. Immune transcriptomes of highly exposed SARS-CoV-2



asymptomatic seropositive versus seronegative individuals from the Ischgl community. Sci. Rep.
2021; 11:4243
25. Lee HK, Knabl L, Knabl L Sr, et al. Immune transcriptome analysis of COVID-19 patients infected
with SARS-CoV-2 variants carrying the E484K escape mutation identifies a distinct gene module. Sci.
Rep. 2022; 12:2784
26. Liu Y, Ferguson JF, Xue C, et al. Evaluating the impact of sequencing depth on transcriptome
profiling in human adipose. PLoS One 2013; 8:e66883
27. Vento-Tormo R, Efremova M, Botting RA, et al. Single-cell reconstruction of the early
maternal–fetal interface in humans. Nature 2018; 563:347–353
28. Sun W, Liu Y, Crowley JJ, et al. IsoDOT Detects Differential RNA-isoform Expression/Usage with
respect to a Categorical or Continuous Covariate with High Sensitivity and Specificity. J. Am. Stat.
Assoc. 2015; 110:975–986
29. Shi Y, Jiang H. rSeqDiff: detecting differential isoform expression from RNA-Seq data using
hierarchical likelihood ratio test. PLoS One 2013; 8:e79448
30. Niu L, Huang W, Umbach DM, et al. IUTA: a tool for effectively detecting differential isoform usage
from RNA-Seq data. BMC Genomics 2014; 15:862
31. Hartley SW, Mullikin JC. Detection and visualization of differential splicing in RNA-Seq data with
JunctionSeq. Nucleic Acids Res. 2016; 44:e127
32. Wang X, Cairns MJ. SeqGSEA: a Bioconductor package for gene set enrichment analysis of
RNA-Seq data integrating differential expression and splicing. Bioinformatics 2014; 30:1777–1779
33. Sebestyén E, Zawisza M, Eyras E. Detection of recurrent alternative splicing switches in tumor
samples reveals novel signatures of cancer. Nucleic Acids Res. 2015; 43:1345–1356
34. Merino GA, Fernández EA. Differential splicing analysis based on isoforms expression with
NBSplice. J. Biomed. Inform. 2020; 103:103378
35. Trapnell C, Hendrickson DG, Sauvageau M, et al. Differential analysis of gene regulation at
transcript resolution with RNA-seq. Nat. Biotechnol. 2013; 31:46–53
36. Guo W, Calixto CPG, Brown JWS, et al. TSIS: an R package to infer alternative splicing isoform
switches for time-series data. Bioinformatics 2017; 33:3308–3310
37. Lio CT, Grabert G, Louadi Z, et al. Systematic analysis of alternative splicing in time course data
using Spycone. Bioinformatics 2023; 39:
38. Wu T, Hu E, Xu S, et al. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data.
Innovation (Camb) 2021; 2:100141
39. Kannan K, Wang L, Wang J, et al. Recurrent chimeric RNAs enriched in human prostate cancer
identified by deep sequencing. Proc. Natl. Acad. Sci. U. S. A. 2011; 108:9172–9177
40. Lio CT, Louadi Z, Fenn A, et al. Systematic analysis of alternative splicing in time course data
using Spycone. bioRxiv 2022; 2022.04.28.489857
41. Sterlin D, Mathian A, Miyara M, et al. IgA dominates the early neutralizing antibody response to
SARS-CoV-2. Sci. Transl. Med. 2021; 13:
42. Varabyou A, Salzberg SL, Pertea M. Effects of transcriptional noise on estimates of gene and
transcript expression in RNA sequencing experiments. Genome Res. 2020; 31:301–308
43. Berbers B, Saltykova A, Garcia-Graells C, et al. Combining short and long read sequencing to
characterize antimicrobial resistance genes on plasmids applied to an unauthorized genetically
modified Bacillus. Sci. Rep. 2020; 10:4310
44. Arzalluz-Luque A, Salguero P, Tarazona S, et al. Acorde unravels functionally interpretable
networks of isoform co-usage from single cell data. Nat. Commun. 2022; 13:1828
45. Hagemann-Jensen M, Ziegenhain C, Chen P, et al. Single-cell RNA counting at allele and isoform
resolution using Smart-seq3. Nat. Biotechnol. 2020; 38:708–714
46. Hahaut V, Pavlinic D, Carbone W, et al. Fast and highly sensitive full-length single-cell RNA
sequencing using FLASH-seq. Nat. Biotechnol. 2022; 40:1447–1451



87

6 Discussion and Outlook

With the increased usage of large omics datasets, computational methods can facilitate analysis and our

understanding of complex biological mechanisms and disease development. In the previous chapters, I

showed that differential gene co-expression network analysis could extract potential snoRNA biomarkers

involved in the etiology of Alzheimer’s disease. On the other hand, to improve isoform switch detection in

time series data, I developed the Spycone framework for transcript-level time series data by incorporating

prior biological knowledge like a PPI network with computational analysis such as clustering, functional

analysis, and splicing factors analysis. The goal is to decipher the underlying effects of the changes in

transcriptome due to alternative splicing and the potential mechanism that leads to specific biological con-

ditions. In the following sections, I will discuss the findings of each publication, the pitfalls of the methods

used, and the results in the benchmark analysis for differential isoform usage analysis (unpublished). Fi-

nally, I will discuss the outlook and perspective of the technology and computational analysis in omics.

6.1 Discovery of small RNAs biomarkers in Alzheimer’s disease mouse

model

Tg4-42 mouse model expresses a wild-type N-truncated Aβ, which is highly abundant in patients’ CA1

area of the hippocampus [168]. This protein is associated with symptoms like synaptic hyperexcitability,

reactive astroglia, and reduction of glucose metabolism. Compared to the 5XFAD mouse model, Tg4-42

exhibits synaptic hyperexcitability and loss of glucose metabolism, accumulation of N-truncated Aβ, and

neuronal loss without plaque formation. Tg4-42 mouse model is therefore considered to be a better option

for studying the etiology of Alzheimer’s disease.

In the snoRNA publication, I used a data-driven approach - differential gene co-expression network anal-

ysis - to extract potential small RNA biomarkers that contribute to developing the abovementioned pheno-

types of the Tg4-42 mouse model. The intuition behind the method is to elucidate the small RNA pairs

that change their co-expression behavior between wild-type and Tg4-42 mouse models. Instead of looking

for changes for each small RNA independently, I aimed for a systematic view of the changes that indicate

the rewiring of the underlying transcriptional regulatory mechanism. Using the centrality measures (see

Methods), I extracted miRNAs and snoRNAs that have been associated with Alzheimer’s disease: Mir30b

[137], Mir598 [169], Mir99b [170], Mir106b [171], Mir346 [172], Mir181 [173] and Snord49a [174]. In con-

trast, others have not been linked to Alzheimer’s disease and are considered potential novel biomarkers:

Mir1981, Snord38A, Snord99. With the lack of prior knowledge of the functions of snoRNAs and the miR-

NAs, I used the databases for miRNA interaction (miRBD [143]) and snoRNA (snoDB [144]) to extract

interactors (genes) and performed functional enrichment analysis with those genes. The results further
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provide evidence that the small RNA markers could be linked to Alzheimer’s disease and can be further

studied in neurodegenerative disease in humans. However, several limitations should be considered when

using this method. The pitfalls of co-expression analysis are discussed in the following section.

6.2 Pitfalls of co-expression analysis

In biological studies, there are various approaches to network analysis, which can be broadly classified

into two categories: those that utilize protein-protein interaction (PPI) as prior knowledge and those that

use network reconstruction. In the publication of small RNA in an Alzheimer’s mouse model, I employed

a network reconstruction method to construct a co-expression network based on similarities in differential

co-expression patterns across multiple samples between different conditions using DGCA. This approach

was selected due to the lack of prior knowledge of miRNA and snoRNA, particularly the interaction infor-

mation amongst the small RNAs. The resulting network consisted of nodes representing small RNAs, with

edges weighted with differential z-scores of the correlation coefficients from two conditions, denoting the

differential interactions between the wild-type and Tg4-42 mouse model. The DGCA method established

edges between two nodes if their differential z-scores exceeded a predetermined threshold. Once the final

network was constructed, we investigated connections that were specific to the targeted conditions.

Although the co-expression network is a promising approach for constructing context-specific networks,

some limitations must be considered. These include potential confounding factors such as batch effects

or technical variation, which can impact the network structure. Additionally, co-expression networks may

only capture some functional relationships between genes/proteins, and other interaction types, such as

post-translational modifications or protein-protein interactions, may be overlooked. The DGCA approach

captures linear relationships due to the nature of the Pearson correlation. Linear methods can select strong

relationships that are more likely to have direct interactions [175]. WGCNA (Weighted gene co-expression

network analysis) allows the detection of gene modules that are highly interconnected in the network. On

the other hand, GENIE3 (a tree-based regression method)is developed to capture non-linear relationships.

However, WCGNA and GENIE3 consider only one condition as input and are recommended to use more

samples (>20). In our case, using DGCA can directly compare the two conditions. Nevertheless, these

network reconstruction methods remain valuable in biological studies and should be investigated in future

work. The following are some guidelines for performing co-expression analysis [176, 177]:

• Parameters : The threshold of a correlation coefficient affects the topology of the final network.

Carefully choosing the threshold, e.g., visualizing the distribution before setting a threshold, can

improve the quality of the network.

• False-positives : As discussed above, RNA-sequencing data is noisy due to transcriptional noise

and sequencing artifacts. Due to this reason, some edges of the co-expression network may arise

from this noise. It is challenging to distinguish artifact edges from context-specific edges [178].

This could be improved by having a larger sample size (Ballouz et al. 2015 suggested >20 sample

size) and a reasonable filtering threshold for expression level. Another source of false-positives

arises from confounded variables: genes that covariate due to technical artifacts like RNA integrity
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number, mapping covariate, and GC bias. Using the principle component correction method can

improve confounding effects that cause false positives [179].

• Normalization: Where spike-in Normalization is not available in Johnson et al. 2022, they com-

pared different normalization methods affecting the accuracy of co-expression network reconstruc-

tion. In summary, between-sample Normalization (specifically Counts adjusted with TMM Factors

(CTU) or Counts adjusted with Upper quartile Factors (CUF)) is recommended. While for comparing

samples within a dataset, TPM is recommended [180].

6.3 Systematic analysis of alternative splicing with Spycone

In the publication of Spycone, I aimed to develop a novel IS detection algorithm and a framework for sys-

tematic analysis of time series data. IS events involve the re-distribution of isoform abundance over time.

Current challenges in detecting IS events in RNA-seq data include the fact that most genes have multiple

isoforms. For example, detecting IS events in genes with two isoforms is harder than in genes with ten

isoforms. These genes also have multiple lowly expressed isoforms that could be noise. The Spycone

algorithm aims to overcome these challenges by proposing novel metrics to filter relevant IS events. I

proposed using event importance to select IS events that contribute to a higher abundance of overall gene

expression.

I tested Spycone in two simulation models. The first model consists of only highly expressed isoforms in

the IS events, while lowly expressed isoforms are switched in the second model. Spycone demonstrates

high precision and significantly better recall in both models than TSIS, its only direct competitor. However,

moderate recall, particularly in noisy conditions, indicates potential areas for methodological enhancement.

In the simulation of the second model, we noted a decline in precision and recall. This result indicates that

the algorithm needs further improvement to detect IS events involving lowly expressed isoforms. While

Spycone identifies switches involving only two isoforms, real-world events may include more than two. Fu-

ture developments should thus account for multiple-isoform switches to better address complex scenarios.

In Spycone, a PPI network is used for network enrichment. Combining prior knowledge from the PPI

network and transcriptomics data can facilitate biological interpretations and analysis. However, there are

limitations to using the PPI network (see section 6.5). Spycone employs a weighted PPI network using the

domain-domain interactions (DDI) (see method section 3.2.2), which is prone to selection bias. Selection

bias occurs when genes are often chosen as a study target in many studies; these genes are usually hub

genes (nodes that have a greater number of edges (interactions). However, a higher weight in this network

implies greater confidence in an interaction, as it indicates more domains interacting between proteins.

This approach of using weighted PPI, which prioritizes higher-confidence interactions, is believed to offset

the potential selection bias.

Spycone is not limited to transcriptomics data alone; users can apply it to various time-series data like

proteomics. Other general time series data analysis tools are TiCoNE [181] and moanin [182]. TiCoNE

provides a graphical user interface in Cytoscape [183] that provides clustering and network enrichment

using KeyPathwayMiner [184]. However, the tool is limited in reproducibility due to the use of a graphi-

cal user interface and lack of biological interpretation like functional enrichment analysis. In moanin, users

can perform differential gene expression analysis in time series data, clustering, and functional enrichment
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analysis. However, k-means is the only clustering algorithm provided. We know from previous studies that

the performance of the clustering algorithm is highly dependent on the data [185]. In Spycone, multiple

clustering algorithms are incorporated from Scikit-learn and tslearn library. Functional enrichment and

network enrichment analysis are incorporated with gprofiler [153] and DOMINO [152].

Time series proteomics analysis is getting popular in studying dynamic processes like osteogenic differen-

tiation [186], COVID-19 progression [187], mouse embryonic development [188]. In proteomics, peptides

are mapped to protein groups instead of genes/transcripts in transcriptomics, mainly to one protein iso-

form. This limits the use of isoform switch detection in Spycone and only allows downstream analysis at

the gene level by bypassing the isoform switch detection step. Currently, users are required to provide a

processed count matrix. Different proteomics technologies (label-free, TMT tags) require different normal-

ization methods, which may challenge non-computational experts. To address this issue, we should make

normalization processes more accessible and user-friendly for non-computational experts. This could in-

volve the development of intuitive software interfaces that guide users through the normalization process,

offering automatic detection of the proteomics technology used and suggesting appropriate normalization

methods accordingly. There is no best type of data to study biological processes; however, transcriptomics

currently has the advantage of looking beyond gene expression to alternative splicing of genes. However,

Spycone is prone to noise in transcriptomics data, which indirectly affects the sensitivity of downstream

analysis. These limitations are discussed in detail in the following sections.

6.4 Noise and stochasticity in transcriptomics

Transcriptomic data is inherently noisy. Gene expression is regulated by the expression of another gene,

forming regulatory cascades. The transcription initiation process depends on time and space: it starts

when transcription factors signal transcription and when subunits of the transcriptional complex are avail-

able. Transcription can be initiated by stochastic intrinsic noise when the above factors are met. As a

result of transcription, the expression of the target genes will enhance the effect of the intrinsic noise.

These gene expressions might be misunderstood as condition-specific markers if detected under specific

conditions [189]. Though these products might not be related to the biological/disease condition of in-

terest, they could have the advantage of the flexibility of handling sudden events like cell stress [190].

This stochasticity could arise from several sources: 1) stochastic molecular processes of biochemical sub-

stances and probabilistic collision (e.g., Brownian motion) [191], which drives the binding of transcription

factors to gene promoters, and the initiation of mRNA and protein degradation. 2) Other cellular factors

include the activity of ribosomes and polymerases, cell size, age, and cell-cycle stage. In addition, pro-

moter noise can result in an observational phenomenon known as transcriptional bursting. The fluctuation

of gene expression depends on the stochastic characteristic of the promoter, including the binding of regu-

latory elements and the affinity of the binding sites in the promoter. In RNA-seq, bursting can be reflected

by observing high variability among genes. Transcriptional noise can increase the number of low-count

genes and affect the accuracy of downstream analysis, such as differential expression analysis.

Another possible source of noise is technical artifacts. In library preparation, genomic DNA might con-

taminate the samples, or even during poly(A) enrichment, oligoT primers bind to Adenince-rich regions

instead of poly(A) tails. This limitation is then also inherited in the Spycone method. The above events
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could produce false positives when aligning reads and isoforms expression quantification. During library

preparation, genomic DNA contamination in RNA-seq samples must be thoroughly removed. This can

be done using ribosomal RNA depletion or poly(A) enrichment and DNAse treatment. After sequencing,

several measures can be taken to reduce false positives: 1) perform a thorough quality check of the tran-

scriptomics data before alignment. For raw fastq files, quality reads are filtered based on sequencing

quality indicated by phred scores [192], GC contents, overrepresented k-mers, and duplicated reads. After

alignments, the unique mapping percentage is expected to be around 70-90% [193]. 2) Filter genes and

transcripts with low read counts. 3) Use appropriate normalization methods to correct technical biases

and experimental noise, such as normalization by sequencing depth or spike-in controls. 4) Utilize multiple

replicates to increase the analysis’s statistical power and reduce the effect of biological variability.

In short, using transcriptomics in Spycone requires careful consideration of biological and technical noise

to ensure accurate analysis. The inherent stochasticity of gene expression, influenced by complex regu-

latory networks and cellular conditions, can be misleading if not adequately accounted for. Furthermore,

technical artifacts introduced during sample preparation and sequencing can further complicate the anal-

ysis. Rigorous preprocessing steps are essential, including quality checks, appropriate normalization, and

multiple replicates. Despite paying attention to the abovementioned measures, several best practices of

RNA-seq should be followed to get the best out of the RNA-seq data [89, 194, 195].

6.5 Pitfalls of the usage of PPI networks

In Spycone, the PPI network is used as a prior network for network enrichment analysis. The aim is to

extract functional modules for genes clustered together based on expression or splicing patterns. However,

there are limitations to using PPI networks, most notably the presence of selection or study bias in PPI

networks. Regarding network theory, most PPI networks exhibit a power-law distribution of the node

degrees, resulting in sparse connectivity and a few highly connected hub nodes [196]. Recent studies

show that several biases drive the PPI network to have a power-law distribution instead of biological motive

[197], indicating that the phenomenon of power-law distribution might not be the result of biological reason.

PPI networks are constructed based on experimental validation or prediction and are heavily influenced

by research focus [121]. Genes already known to be involved in certain diseases, such as cancer, receive

significant attention, resulting in an over-representation of edges in the network and a higher likelihood of

being identified as hubs, perpetuating this bias. This selection bias can lead to the under-representation

of other genes and pathways that may also be relevant to disease development and progression but have

received less attention from the scientific community [198]. Another limitation of PPI networks is the

lack of specificity regarding conditions. Interactions in normal conditions might not be present in cancer

conditions, and vice versa. In addition, splicing affects the structural outcome of a protein. Protein isoforms

might contain different sets of domains, which usually define the function and the interaction partners of

the isoforms. PPI networks ignore this aspect entirely. DIGGER was developed to fill this gap [199] by

incorporating domain-domain interaction information into PPI.

Despite these limitations, PPI networks remain valuable in biomedical research, particularly for identifying

disease-related gene modules. To mitigate selection bias, researchers need to consider using multiple

complementary methods for network construction and analysis, including integrating data from different
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sources, such as gene expression and functional annotation, and using unbiased sampling techniques to

identify nodes and edges in the network. By doing so, researchers can broaden their perspective and

uncover novel gene interactions and pathways relevant to disease. In addition, computational tools are

developed to reduce selection bias and improve the quality of PPI networks. For example, AlphaFold2 [200]

and AlphaFold-Multimer [201] are developed to accurately predict protein-protein interaction and protein

complex. Constructing condition-specific networks, as in the first publication of small RNA in Alzheimer’s

mouse model, can also mitigate selection bias and non-context-specific edges.

6.6 Usage of annotations

In Spycone, I implemented a framework that requires different sources of annotations: the mapping of

transcripts to the genome annotation, mapping of domain information for each transcript, domain-domain

interaction, and protein-protein interaction, as well as splicing factor discovery with known splicing factors.

Reference annotation is a valuable resource for identifying genes and transcripts in RNA-seq data analy-

sis. However, this approach has limitations as it ignores the dynamic evolution of biological systems. One

such limitation is that reference annotations may be derived from a limited set of cell types, leading to an

underestimation of transcript diversity in different scenarios [202]. Additionally, reference annotations can

overlook the complexity of alternative splicing. Moreover, due to the limitations of short-read sequencing,

reconstructing transcripts that were present in the cell is even more challenging [203]. This limitation in-

cludes the generally low sequencing depth in most studies to effectively detect transcripts. Nevertheless,

reference annotation remains useful for identifying transcripts in biological data. Researchers can use de

novo assembly methods, such as Cufflinks, as a data-driven approach for transcript reconstruction to dis-

cover novel transcripts in short read data [156]. However, de novo assembly methods yield a subpar per-

formance than those that use annotations due to lowly expressed RNAs and complex alternative splicing

events [10]. Long-read sequencing can potentially facilitate the discovery of novel transcripts. However, the

sequencing depth of the current state in long-read technology is too low to provide a high confidence level.

In the computational aspects, long-read sequencing data can also be assembled with reference-based

or reference-free tools. In reference-based tools (e.g., Bambu, FLAIR) perform well with the reference

genome; however, using the reference genome might lose the potential of long-read sequencing to detect

novel transcripts. On the other hand, it is challenging to perform reference-free assembly as seen in the

benchmark [204].

6.7 Limitations and Guidelines for RNA-seq DTU analysis

In my comprehensive benchmark study, I evaluated twelve DTU tools using simulated and real transcrip-

tomics datasets under static and dynamic conditions [91] (see chapter 5). The simulations aimed to repli-

cate real datasets, including stochastic noise, by simulating three background levels (0, 0.1, and 0.5) to

represent the proportion of genes unchanged between two conditions. We also simulated single-end and

paired-end RNA-Seq data with four and eight replicates.

This simulation approach differed from Merino et al. (2019), who assigned specific abundances to each

transcript between two conditions. I used a Dirichlet-multinomial model for simulating abundance based
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on transcript probabilities, which handles transcript expression as multivariate count data and accounts

for overdispersion. Unlike Merino et al., who focused on DTU events involving two transcripts, I simu-

lated events with more than two transcripts changing in abundance and evaluated them using DTU tools.

This simulation method, mainly using RSEM as the simulation engine, might introduce a bias towards

RSEM quantification. I used mean expression values from a real transcriptome dataset and a Dirichlet-

multinomial model to generate transcript abundances, potentially favoring tools like DRIMseq and DTUrtle

that use similar models. For the DTU tool performance evaluation, I used precision, recall, and F1 score.

In the simulations, single-end data showed lower recall, attributed to its inability to capture both ends of

a cDNA fragment, thus reducing junction read observation. Single-end data detected about 10,000 tran-

scripts, while paired-end sequencing detected around 30,000 transcripts at 50M read depth. However,

paired-end sequencing also faces challenges in transcript detection due to transcriptional noise. Long-

read sequencing technologies could address short reads’ limitations in accurate transcript count detection

in the future.

Tools using generalized linear models (e.g., NBSplice, DEXSeq, satuRn, JunctionSeq, edgeR) and Dirichlet-

multinomial models (e.g., DRIMSeq, DTUrtle) generally showed higher precision than non-linear models.

LimmaDS, using a linear model, demonstrated higher recall. However, further investigation is needed to

determine whether this advantage is due to the potential bias from the simulation method. I recommend

paired-end sequencing for transcript-level analysis, as it captures more transcript information than single-

end data. For fewer replicates in paired-end data, RSEM or Salmon are suggested, with Salmon being

time-efficient.

Based on the analysis, I have devised a guideline for conducting Differential Transcript Usage (DTU) anal-

ysis, as depicted in figure 6.1. This guideline aims to assist researchers in selecting the appropriate tools

and strategies based on their specific experimental setups and analytical goals. Here are the key recom-

mendations: DEXSeq, LimmaDS, and satuRn are better choices for paired-end data. When the data is

quantified using Salmon and RSEM, satuRn is recommended when precision is favored, and LimmaDS

when recall is favored. Kallisto works the best in general with DEXSeq. In single-end data, Kallisto works

the best with DEXSeq as well. For quantification with RSEM and Salmon, LimmaDS is the best choice if

there are fewer than eight replicates; otherwise, seqGSEA is used for more than eight replicates.

Each tool identified different genes with minimal overlap in the time series case study on SARS-Cov-2

infected human cells. Pairwise comparison tools (DEXSeq, NBSplice, LimmaDS, satuRn) identified over

3000 genes, while time series tools (Spycone, TSIS) found fewer. Spycone focused on high-expression

switching transcripts, and TSIS identified many low-expressed transcripts. Spycone mainly focuses on

finding genes with IS events that are highly expressed using the event importance metric. The resulting

genes in each tool are performed gene set enrichment analysis. The result distinguished Spycone from

other tools, providing a different view of the biological interpretation of the result.

In the single-cell analysis, I used RSEM to generate simulated single-cell data. In the preprint [91], the

simulated dataset contains a balanced number of cells comparing two cell types. The number of cells in

each cell type ranges from 10 to 500. Two background levels are simulated, indicating a gene’s probability

to remain unchanged between the two cell types. The simulated datasets are applied with DTUrtle and

satuRn, where both tools’ papers demonstrated the application to single-cell datasets. Essentially, both

tools achieve high precision (close to 1) with 0 background. satuRn have decreased precisions (0.8) with
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Figure 6.1 Recommendation of DTU tools

For both paired-end and single-end data, according to the number of replicates and the quantification tool

used, are shown with the recommended DTU tools. The solid lines and the dotted lines represent

prioritizing over precision and recall, respectively. Source: own work
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0.1 background [91]. One of the limitations of this simulation method is the correctness of using RSEM as

a single-cell simulator. Even though RSEM provides a single-cell prior parameter to tackle zero-inflated

data, it is not a standard tool in this scenario. Moreover, all single-cell datasets contain unbalanced cell

types; this simulated dataset only illustrates a perfect scenario, which does not account for real-world data.

To address these limitations, I used another tool, scDesign3, dedicated to single-cell data simulation. I

simulated balanced and unbalanced datasets with 0.1 background (Figure 6.2. In a balanced dataset, two

groups are compared. Each group contains from 50 to 700 cells. In the unbalanced dataset, I compared

two to seven groups, each containing a random number of cells. DTUrtle and satuRn show similar preci-

sions across both balanced and unbalanced data. satuRn has a slight decrease in precision in unbalanced

datasets. In balanced datasets, satuRn and DTUrtle increase recall with an increased number of cells in

each group. In unbalanced data, recall is generally lower than in balanced data. However, the number of

groups does not influence the recall, except for seven groups. In this analysis, I have focused on the tools

that detect DTU events in bulk and single-cell data. There are more single-cell-only tools that should be

investigated in the future, like MARVEL [205], scQUNIT [206], SpliZ [207] and BRIE2 [208]. A limitation

of DTUrtle and satuRn is that they can only compare two groups simultaneously. When comparing more

groups in the unbalanced dataset, I combined the results from the pairwise comparisons for each combi-

nation of cell types. This can limit the findings of cell-type-specific DTU events. Moreover, more conditions

should be considered in future simulations, such as library size (per cell), batch effects, and dropout rate,

as well as with and without annotation.

6.8 Summary of the thesis

In this dissertation, I utilized co-expression analysis to build condition-specific gene-level networks. Through

this network analysis, I identified potential miRNA and snoRNA biomarkers for the Tg4-42 Alzheimer’s dis-

ease mouse model. I employed a differential co-expression network approach to detect small RNA pairs

with shifting correlations, suggesting potential targets specific to Alzheimer’s disease. To further explore

the role of small RNAs in Alzheimer’s disease, I conducted gene-set enrichment analysis. I used a small

RNA interactors database to determine the potential functions of these dysregulated small RNAs. Notably,

four out of five miRNAs with high centrality in the network are already linked to the molecular mechanisms

of Alzheimer’s disease. This suggests that the identified snoRNAs with high centralities may play a role

in the disease’s pathogenesis. Additionally, pathway enrichment analysis of snoRNA interactors revealed

their involvement in Glycosaminoglycan biosynthesis, supporting the significance of these snoRNAs since

Glycosaminoglycan is known to contribute to amyloid fibril formation.

In the second publication, I introduced Spycone. Spycone is a splice-aware time-course network enricher.

Spycone addresses a gap in time-series analysis in alternative splicing and systems biology. This novel

algorithm can identify genes that undergo isoform switches over a time series, outperforming the existing

tool TSIS. Spycone offers downstream analysis such as clustering, functional enrichment, and network

enrichment analysis, enabling a comprehensive examination of changes in alternative splicing patterns

under different biological conditions. Spycone will be adapted for comparative analysis in pairwise condi-

tions in future developments. I analyzed a time course transcriptomics dataset after SARS-Cov-2 infection

as a use case. Clusters of genes are identified according to the patterns of total isoform usage over
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Figure 6.2 DTU analysis benchmark in simulated single-cell data.

A. Precision and recall plots for balanced data with different number of cells per group (i.e. cell type). B.

Precision and recall plots for unbalanced data with different number of groups compared. Source: own

work
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time. These clusters are involved in the mitogen-activated protein kinase (MAPK) pathway, TLR 7/8 path-

way, and pentose phosphate pathway. These pathways are known to be associated with SARS-Cov-2

infection. Furthermore, Spycone detected pathways that have yet to be characterized by association with

SARS-Cov-2. These include kinesins, signaling by NTRKs, AXIN degradation, Hedgehog signaling, and

5-phosphoribosyl 1-diphosphate biosynthesis. In addition, network enrichment analysis with the DOMINO

algorithm identified gene candidates affected by isoform switch events.

6.9 Outlook on sequencing technology

This thesis is grounded in short-read sequencing technologies. A notable limitation of these technologies

is their inadequate detection of repetitive sequences, which are prevalent in intronic regions. However,

detecting changes in these intronic regions is crucial for accurate splicing analysis. In contrast, long-

read sequencing technologies like PacBio and Oxford Nanopore offer much longer reads, revolutionizing

transcriptomics [209]. For example, PacBio’s HiFi reads average around 1000 bp, aligning more closely

with the average length of human transcripts than the 150 bp average of short-read technologies like

Illumina.

Long-read sequencing offers several advantages for transcriptome analysis. It simplifies aligning and

reconstructing original transcripts, as it can map reads spanning entire transcripts directly to the genome

or assemble them into full-length transcripts. This is particularly beneficial for alternative splicing analysis,

where short-read technologies struggle to differentiate between isoforms. Long-read sequencing data can

also be adapted in the Spycone framework in the future. Long-read sequencing also enables the study of

genes with highly repetitive regions, like transposable elements or introns, which are challenging to detect

with short-read sequencing.

Furthermore, long-read sequencing is advantageous for studying complex genomes, such as those of

viruses, by resolving structural variants and other genomic complexities. However, it has limitations. For

instance, polymerase limitations in PacBio sequencing can affect read length and accuracy. Additionally,

long-read sequencing tends to be more error-prone than short-read sequencing. Not to mention, the

cost of long-read sequencing per sample is higher than that of short-read. Despite these challenges,

advancements in sequencing technology and bioinformatics are making long-read sequencing a more

prevalent choice for transcriptome analysis.

6.10 Outlook on splicing analysis

Splicing analysis can be broadly categorized into event-based and exon-/isoform-based analysis, as dis-

cussed in the introduction section. Event-based tools identify alternative splicing events and quantify the

features (exon or splice site) with PSI values. Isoform-based tools rely on alignments of the sequencing

reads to the reference transcriptome and quantifying the expression of the transcripts. Each approach

provides a different view of the transcriptome; combining them will give us a fuller understanding of the im-

pact of alternative splicing. Alternative splicing events found by event-based tools can be used to quantify

transcripts that incorporate these events. Alternatively, detected splicing events can be cross-validated in

the quantified transcript expression to check for consistency.

97



6. Discussion and Outlook

Another outlook is the time series aspects; performing time series analysis in event-based tools is chal-

lenging. There is no event-based method dedicated to time series data. One could independently analyze

each time point and represent the changes over time using PSI values.

The advent of single-cell sequencing technologies gives us a whole new dimension in splicing analy-

sis. Event-based and isoform-based methods for single-cell alternative splicing analysis have developed

rapidly. One approach is to perform a splicing analysis along pseudo-time in single cells. Pseudo-time

inference is a popular method to order single cells according to the developmental state. Investigating

splicing events along the pseudo-time trajectory can bring new insights into the mechanistic view of the

biological condition.

6.11 Outlook on omics analysis

In this dissertation, my approach primarily centered on analyzing transcriptomics data. However, it is

essential to acknowledge that gene expression within our cells is influenced by many factors beyond tran-

scription factors. This includes protein content, epigenetic markers, and other molecular components. Re-

cent advances in omics analysis involve integrating multi-omics data, including proteomics, metabolomics,

epigenomics, and spatial transcriptomics. Transcriptomics is a rapidly evolving field, particularly with the

emergence of next-generation sequencing. It has widespread application in biological and biomedical re-

search. Proteomics is the study of the proteome in a cell, tissue, or organism, but there are still challenges

in understanding how transcriptome data can be mapped to proteome data. The challenges include ge-

nomic mutation, alternative splicing, post-transcriptional and post-translational modification. Some studies

have little evidence that alternative splicing isoforms are found in proteomics [210]. This suggests that

there is still a large gap in understanding the conversion from transcriptome to proteome. In addition,

proteins can be located in multiple compartments in a cell, implying different functions and having multiple

interaction partners [211].

Epigenomics provides several layers of information that can be incorporated, including DNA-protein inter-

action, chromatin modification, chromatin accessibility, and chromosome conformation. Integrating epige-

nomics can provide a better understanding of gene regulatory mechanisms. For example, ATAC-seq mea-

sures the openness of the chromatin regions, and accessible chromatin regions indicate a possibility of

the presence of gene enhancers. Traditionally, chromatin accessibility and transcriptomics are profiled

separately in different cells from the same population. The recent development of technologies allows

simultaneous profiling of both in the same cells [212, 213]; this dramatically improves the robustness in

integrative analysis of RNA-seq and ATAC-seq in single-cells. Simultaneous DNA methylation and tran-

scriptome profiling can also reveal chromatin accessibility through measuring CpG methylation [214].

Spatial transcriptomics is another developing omics layer that allows studying biological systems at a

subcellular level. Traditionally, spatial information is obtained through in-situ visualization, such as FISH

(fluorescence in situ hybridization)-based methods, which use fluorescence-tagged oligonucleotide probes

to bind to single mRNA molecules. For instance, smFISH, developed in 2008, uses fluorescence-tagged

oligonucleotides probes to bind to single mRNA molecules [215]. Recently developed MERFISH+ can

detect many mRNAs (up to 10000 genes) with high accuracy and efficiency [216]. A more direct method
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to capture spatial transcriptome is to dissect the specimens using cryosection and perform RNA-seq.

However, this method requires highly specialized techniques, and the resolution highly depends on the

tissue type. It also suffers from low throughput. A higher throughput method includes spatial labeling and

in situ RNA capture. 10x Visium from 10x Genomics (originally Spatial Transcriptomics that was acquired

by 10x Genomics in 2018) offers spatially barcoded RNA-seq method as well as histological staining and

imaging of the tissue slide [217]. Slide-seq uses a different approach. Instead of spatial labeling on the

tissue slide, the tissue is placed on top of barcoded beads and is then permeabilized to diffuse out the

mRNA for sequencing [218].

Each of the technologies mentioned above is developing at a high speed. More stringent efforts should be

applied to produce more reliable, high-quality, and reproducible data to make these applicable in clinical

settings.
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Abbreviations

RNA Ribonucleic acid

DNA Deoxyribonucleic acid

DTU Differential Transcript Usage

tRNA transfer ribonucleic acid

mRNA messenger ribonucleic acid

rRNA ribosomal ribonucleic acid

miRNA micro ribonucleic acid

snoRNA small nucleolar ribonucleic acid

snRNP small nuclear ribonucleoproteins

snRNA small nuclear ribonucleic acid

ESE Exon splicing enhancers

ISE Intron splicing enhancers

ESS Exon splicing silencers

ISS Intron splicing silencers

RRM RNA-recognition motif

hnRNP heterogeneous nuclear ribonucleoproteins

PTB polypyrimidine-tract-binding protein

UTR Untranslated region

NMD Nonsense-mediated decay

ER endoplasmic reticulum

EST Expressed Sequence Tag

NGS Next-generation sequencing

TGS Third-generation sequencing

ddNTP dideoxyribonucleoside triphosphates

ZMW zero-mode waveguides

CCS circular consensus sequencing

ONT Oxford Nanopore Technologies

ASIC application-specific integrated circuit

SAGE serial analysis of gene expression

CAGE cap analysis of gene expression

UMI unique molecular identifiers

RPKM reads per kilobase per million reads

TPM transcripts per million

TMM trimmed-mean of M-values



6. Abbreviations

RLE relative log-expression

NB negative binomial

DTE differential transcript expression

DGE differentially expressed genes

IS isoform switch

GLM generalized linear models

PCA Principal component analysis

tSNE t-Distributed Stochastic Neighbor Embedding

UMAP Uniform Manifold Approximation and Projection

DSG differentially spliced genes

PCST ast prize-collecting Steiner tree

PPI protein-protein interactions

DDI domain-domain interactions
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