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Abstract

Laser-based powder bed fusion of metals (PBF-LB/M) commonly utilizes Gaussian-shaped laser
beams characterized by a high intensity at the center. However, this type of profile leads to lo-
calized high temperatures and temperature gradients. When the laser power is increased beyond
a certain threshold, the temperature inside the melt pool can reach the boiling point, causing ex-
cessive metal evaporation, hydrodynamic instabilities, and undesired effects such as keyholing.
On the other hand, ring-shaped laser beams generate a more uniform temperature distribution but
tend to produce shallower, wider, and shorter melt pools with reduced resolution compared to the
Gaussian profiles. The deep, narrow, and elongated melt pools generated by the Gaussian shapes
still have advantages for increased precision in the PBF-LB/M processes. This contribution uses
numerical optimization to generate a new laser beam shape that also leads to a deep, narrow, and
elongated melt pool, similar to a Gaussian-shaped beam, while maintaining a lower and more uni-
form temperature distribution inside the melt pool. The resulting optimized laser profile lowers the
maximum laser intensity by 40 % without decreasing the total laser power compared to the Gaus-
sian profile. The more uniform distribution of temperature with a peak value of just above 3 000 ◦C
indicates a conduction dominated process with less hydrodynamic and minimal evaporative effects.
This is expected to reduce the associated defects and improve the process stability.

Keywords: Laser beam shaping, Beam shape optimization, Gaussian-shaped laser, Metal additive
manufacturing, Powder bed fusion of metals

1. Introduction

Laser-based powder bed fusion of metals (PBF-LB/M) commonly employs Gaussian-shaped laser
beams. This type of profile, as it focuses the heat input onto a small area, leads to localized high
temperatures and temperature gradients. Increasing the laser power beyond a certain threshold to
scan at a higher speed can result in excessive metal evaporation when the temperature inside the
melt pool reaches the boiling point. This, in turn, causes hydrodynamic instabilities, leading to
undesired effects such as keyholing [1, 2].

In recent years, advancements in laser optics have enabled the modulation of laser beam inten-
sity profiles, primarily into other symmetric profiles such as ring-shaped [3, 4] and top-hat profiles
[5]. Some methods even offer non-symmetric profiles [6]. These alternative profiles have demon-
strated promising results in achieving more stable melt pools and expanding the process window.
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Studies indicate that ring-shaped laser beams reduce defects such as spatter, keyhole porosity, and
denudation zone width [7, 4]. In [8], the authors report an increase in power and speed by 43 %
with similar geometric parameters of the melt track for ring-shaped profiles compared to Gaussian
beam profiles.

While ring-shaped profiles generate more uniform temperature distributions, they produce rel-
atively shallower, wider, and shorter melt pools with reduced resolution (large laser spot size) com-
pared to Gaussian profiles [4]. The deep, narrow, and long melt pools generated by the Gaussian
shapes still have advantages for increased precision during the PBF-LB/M process. Hence, the re-
search question arises: How must a laser intensity profile be shaped to produce a melt pool similar
in shape to the one resulting from a Gaussian-shaped laser but with a more homogeneous temper-
ature distribution, ensuring a stable melt pool even at high laser powers? Iteratively redistributing
the intensity distribution to determine such laser profiles using the experiments is time-consuming
and may become impossible due to the large number of parameters that determine the shape of the
laser. In this context, numerical methods offer a solution by not only predicting the temperature
distributions for specific laser shapes but also the inverse – determining the laser shapes from a
given temperature profiles or melt pool shapes.

In [9], the authors develop a computer-based laser beam shape optimization framework for
PBF-LB/M. This framework utilizes adjoint-based optimization technique to attempt to find laser
shapes (laser intensity distributions) that lead to a temperature distribution or melt pool that is as
close as possible to a given target (desired temperature or melt pool). The current contribution uses
this framework to determine a laser profile that generates a more uniform temperature distribution
within a melt pool whose shape is comparable to that of a Gaussian beam.

The paper is organized as follows. Section 2 briefly outlines the optimization method and
presents the model parameters used in this article. In Section 2.1, the numerical model employed
to compute the temperature from the laser beam shape is introduced. Section 2.2 describes the
formulation of the loss functional, and Section 2.3 discusses the gradient computation using the
adjoint-state method. The results of the numerical optimization are presented in Section 3. Sec-
tion 4 summarizes the paper.

2. Methods

The optimization framework presented in [9] computes a laser beam shape corresponding to a de-
sired temperature. It first parameterizes the laser shape by a discrete set of parameters (“tuning
knobs”) that the algorithm can optimize. It then defines a loss functional that measures the quality
of a laser beam shape by numerically simulating the resulting temperature in the part and compar-
ing it to the user-defined target temperature. The further these two temperature fields are apart, the
higher the loss functional value. Finally, the numerical optimization chooses an initial laser shape
and iteratively improves it by minimizing the loss functional using the gradient-based L-BFGS-B
algorithm [10] from the SciPy library [11]. At each iteration, this algorithm evaluates the loss
functional and its gradient to compute an updated laser beam shape (a new parameter set).

2.1. Temperature computation: forward problem

To tailor the laser beam profile, the spatial intensity distribution, denoted by u, needs to be parametrized
using a finite set of variables β , which serve as design parameters for the optimization. By employ-
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ing various parametrizations, the laser shape can be constrained to a different set of shapes. For
instance, axisymmetric laser shapes can be achieved by superimposing a given number of Gaussian
functions, as demonstrated in [9]. In this study, to enable the laser profile to adopt any shape, the
intensity is parametrized using 2 400 piecewise “hat” functions as follows:

u(β̂ ) = ∑
i

Ni(x,y) β̂i, (1)

where Ni represents the ith shape function formed by a tensor product of two piecewise “hat”
functions along x and y directions, and β̂i corresponds to the coefficient associated with it.

The temperature is computed from the laser intensity profile using the steady-state convection-
diffusion equation with non-linear coefficients. The model assumes a laser traveling over a bare
metal plate with a constant intensity profile. It is assumed that the temperature near the laser
evolves to a steady state. Hence, the stationary form of the heat equation is considered as follows:

v · c∇T −∇ · (k∇T ) = 0 onΩ (2)
k∇T ·n = αu(β ) onΓNL (3)
k∇T ·n = 0 onΓN0 (4)

T (0) = T0 onΓD. (5)

In this PDE (also called the forward problem), T and ∇T represent the temperature and its
gradient inside the computational domain Ω, while v denotes the laser velocity. The non-linear
coefficients c(T ) and k(T ) are the temperature-dependent thermal capacity and heat conductivity,
respectively. The Neumann and Dirichlet boundary conditions are applied on ΓN = ΓNL ∪ ΓN0

(top, bottom, and right boundaries of the domain shown in Figure 1) and ΓD (left boundary of the
domain shown in Figure 1, with T0=20°C), where ΓN ∪ΓD = ∂Ω, such that ΓN ∩ΓD = /0. The laser
intensity is applied as a Neumann boundary condition on the top boundary of the domain (ΓNL)
with a constant absorptivity factor α . Moreover, c(T ) is augmented with a latent heat of fusion
term, following [12, 13]:

c(T ) = ρcs(T )+ρL f ′pc(T ). (6)

Here, ρ represents the material density, cs(T ) is the specific capacity, L is the latent heat of melting,
and fpc(T ) is a phase function that regularizes the transition between the solid (value zero) and the
liquid state (value one). Its temperature derivative is denoted as f ′pc(T ).

2.2. Loss function definition

The Gaussian-shaped laser beam, when used at high laser power, generates a deep, narrow, and
elongated melt pool where the temperature inside reaches the boiling point. This excessive heating
indicates significant evaporation, which is not included in the mathematical model but may cause
defects in reality. The temperature profile obtained from solving the heat conduction model (us-
ing Equations (2) to (5)) for the Gaussian-shaped laser beam (as shown in Figure 1(b)) exhibits
maximum values well above the boiling point of steel (as seen in Figure 3(a)). Although this is an
unphysical result due to the model limitations, it signifies overheating and subsequent evaporation
within the melt pool.
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The objective of this optimization is to determine a laser beam shape that generates a melt pool
similar in shape to the one resulting from a Gaussian profile while limiting the maximum temper-
ature to the boiling point. The boiling point of the material considered in this article (AISI 316L
stainless steel) is assumed to be 2 800 ◦C. Outside the melt pool, the target temperature is approx-
imated. Therefore, the optimization problem and the loss functional is formulated as follows:

minimize
u

J(T (β )) =
1
2
(
∫

Ω

γ · (T (β )−Tappr)
2dΩ+

∫
Ω

φ · (T (β )−2800)2dΩ), (7)

subject to constraints Eq. 2 to 5.

Here, Tappr (shown in Figure 1(a)) is the temperature computed from the Gaussian-shaped laser of
diameter (D4σ ) 200 µm and power 400 W, illustrated in Figure 1(b). The laser beam at this power
is expected to generate significant evaporation within the melt pool, leading to the keyhole effect.
The activation function γ selectively activates the first term in the loss functional outside the melt
pool M (see Figure 1(a)). It is defined as:

γ(x,y,z) =

{
0, if (x,y,z) ∈ M
1, otherwise.

(8)

Similarly, φ activates the penalization of temperatures above 2 800 ◦C. It is defined as:

φ(T ) =

{
1, if T > 2800
0, otherwise.

(9)

In Equation (8), the first term aims to achieve the melt pool shown in Figure 1(a). The second term
constrains the maximum temperature to be less than the boiling point of stainless steel to prevent
overheating and evaporation.
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Figure 1: (a) Target (desired) temperature and melt pool, (b) Gaussian-shaped laser beam that is
used to generate (a).
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2.3. Gradient computation: adjoint problem

To compute the gradient using the adjoint-state method, an additional field called the adjoint field,
denoted as λ , is introduced. It is computed by solving the following adjoint-state equation (also
called the adjoint problem), given by:

v · (c+ c′T )∇λ +∇ · (k+ k′T )∇λ = fad j onΩ (10)
v · (c+ c′T )nλ +(k+ k′T )∇λ ·n = 0 onΓN (11)

λ (0) = 0 onΓD, (12)

where c′ =
dc
dT

and k′ =
dk
dT

. (13)

Here, the coefficients c,c′,k, and k′ are dependent on the temperature T , the solution to the forward
problem. In eq. (10), fad j is the adjoint source term and is computed by taking the derivative of
the loss functional with respect to the temperature:

fad j = γ · (T (β )−Tappr)+φ(T ) · (T (β )−2800). (14)

Finally, the gradient of the loss functional with respect to the laser intensity parameters is
calculated using the following equation:

∂J

∂ β̂i
=

∫
ΓNL

λNi dΓNL . (15)

Here, ∂J/∂ β̂i is the gradient of the loss functional with respect to ith coefficient ûi. More details
about the adjoint-state method and the gradient computation for laser beam shape optimization in
PBF-LB/M can be found in [9].

2.4. Model parameters

For all numerical studies, a domain of size 1 400×700×300 µm is considered. The domain size
is chosen to be sufficiently larger than the target melt pool shapes to minimize the influence of the
boundaries on the results. A laser velocity of 800 mm/s is considered. Hexahedral finite elements
with multi-level hp-refinement from [14] are used for all simulations. The material used for the
model is AISI 316L stainless steel. The material and model properties are given in Table 1.

Material and Phase change parameters
Laser absorptivity (α) 0.3
Specific heat capacity at 0 ◦C (cs(0◦C)) 472 J/kg◦C
Temperature derivative of cs (c′s) 101.02×10−3 J/kg
Conductivity at 0 ◦C (k(0◦C)) 13.6 W/m◦C
Temperature derivative of k (k′) 15.3×10−3 W/m
Density (ρ) 7 984 kg/m3

Latent heat (L) 2.8×105 J/kg

Table 1: Material and Model parameters.
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3. Results and Discussion

This section presents the numerical results obtained from the optimization. The optimization pro-
cess consisted of a total of 77 L-BFGS-B iterations, resulting in a reduction of the loss value to
0.25 % of its initial value. The termination condition for the optimization was met when the rel-
ative change in the loss functional reached below the threshold of 2.22× 10−9. Each iteration
required approximately 180 s to solve the forward problem with 35 000 unknowns and the adjoint
problem with 110 00 unknowns per finite element computation on a 2.6 GHz Intel Core i7-10750H
machine. Following the optimization, the laser profile was post-processed to remove spurious neg-
ative intensities by replacing them with zero and scaling down the positive intensities to match the
integrated laser power of the original optimization result. Subsequently, the corresponding tem-
perature profile and melt pool for the post-processed laser profile were computed by solving the
forward problem.
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Figure 2: (a) Gaussian-shaped laser beam that is used to generate Figure 1(a), (b) Optimized laser
beam shape.

Figure 2 compares the Gaussian-shaped laser beam in (a), corresponding to the target (desired)
melt pool, to the optimized laser intensity profile in (b). The Gaussian-shaped laser beam has a
power of 400 W with a maximum intensity value of 2.62 MW/cm2. In contrast, the optimized
profile features a distinctive c-shaped intensity distribution with a power of 392 W and a maximum
intensity value of 1.58 MW/cm2, which is 40 % lower than the Gaussian profile. Thus, the profile
is improved without changing the laser power substantially.

Figure 3 illustrates the corresponding temperature distributions and melt pools for the Gaussian-
shaped profile in (a) and the optimized intensity profile in (b). The optimized laser beam generates
a melt pool that closely resembles the target melt pool, achieved through the first term in the
loss functional given in Equation (8). However, the depth is reduced by 18 %, and the volume of
the melt pool is reduced by 11 %, measuring 2.5× 10−6 cm3, compared to the target melt pool
volume of 2.8×10−6 cm3. By incorporating the second term in the loss functional, the optimiza-
tion yielded the intensity distribution that generates a more homogeneous distribution of energy,
thereby restricting the maximum temperature to 3 113 ◦C (see Figure 3(c)). Although this value
slightly exceeds the target temperature of 2 800 ◦C, it is a significant improvement compared to the
Gaussian-shaped laser, which concentrates the energy at the center and raises the temperature to
5 926 ◦C which indicates strong evaporation and melt pool dynamics due to the excessive heat.
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Gaussian-shaped laser and the optimized laser.

4. Conclusion

In this study, we employ the laser beam shape optimization framework presented in [9] to find a
laser profile alternative to the Gaussian-shaped profile, demonstrating the potential of the frame-
work for computing unique laser shapes tailored to specific applications. This alternative produces
a melt pool which is similar in shape, yet exhibits a lower maximum temperature within the melt
pool. The optimization is carried out by formulating a loss functional that aims to generate a
deep, narrow, and elongated melt pool similar to the Gaussian-shaped laser beam. Additionally, to
achieve a more stable melt pool, the loss functional penalizes the temperatures exceeding the boil-
ing point of Stainless steel 316L. To introduce greater flexibility into the laser shape, the intensity
is parametrized using 2 400 piecewise “hat” functions. The resulting optimized laser beam shows a
c-shaped profile, with a 40 % reduction in the maximum intensity compared to the Gaussian shape.
Consequently, this laser profile generates a more uniform temperature distribution within the melt
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pool, with the maximum temperature reaching 3 113 ◦C, in contrast to the 5 926 ◦C maximum tem-
perature produced by the Gaussian-shaped laser. The resulting melt pool has a similar shape to the
melt pool corresponding to the Gaussian-shaped laser beam. However, the melt pool depth and
volume are reduced by 18 % and 11 %, respectively. Future work will investigate the influence of
these laser profiles on the melt pool dynamics at high laser power through experimental studies.
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