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Abstract

As Georg Christoph Lichtenberg said, ”Die Erschütterung der Luft wird erst Schall, wo
ein Ohr ist”, meaning the vibration of air becomes sound only where there is an ear.
Vibrations are a part of everyday life. They play an important role in the perception
of comfort and, if strong enough, can lead to noise pollution. The question is how the
propagation and properties of vibrations can be influenced or even engineered so that our
ears perceive only an acceptable amount of sound.

Before engineering, it is necessary to understand the underlying mathematical equa-
tions and modeling techniques. Vibrations can propagate almost indefinitely through
the air, rather than being confined by fixed boundaries. Steady-state linear acoustics
in open systems are described by the Helmholtz equation and are therefore referred to
as unbounded Helmholtz problems. In addition to analytical approaches for solving
linear acoustic problems, numerical methods are required for complex tasks. Standard
numerical methods, such as the finite element method, reach their limits for these problems.

Despite significant technical advances in recent years, solving unbounded Helmholtz
problems is still challenging in terms of computational time, memory, and accuracy.
Infinite elements are an approach to represent mathematical spaces of infinite extent. In
this dissertation, a new spectral stochastic infinite element method is developed that not
only solves unbounded problems but also allows efficient computation of solutions with
uncertain input parameters. It remains a challenge to determine normal modes of open
coupled mechanical-acoustic systems. To solve this problem, contour integral methods
are used for fast and accurate solutions.

Acoustic metamaterials are an emerging trend that allows the manipulation of prop-
agating waves in unprecedented ways. The design of metamaterials is usually based on
infinite periodic meta-atoms modeled in the reciprocal space. Meta-atoms are acoustic
elements with a special set of acoustic properties. The underlying assumptions lack preci-
sion when it comes to experimental validation and realistic application being inherently
finite. Besides imperfections, diffraction at the edges of finite metamaterials and near-field
interactions between meta-atoms are responsible for the deviation from the predicted
solution at idealized infinite periodicity. This dissertation addresses this problem by
characterizing the metamaterial using normal modes of finite arrays of meta-atoms and
identifying those with a high-quality factor. This technique is used to design a metamate-
rial for an industrial application that outperforms state-of-the-art solutions. Furthermore,
inhomogeneous pressure distributions in finite metamaterials demonstrate the need for
further insight into the fundamental effects that cause interactions between meta-atoms.
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Abstract

In this dissertation, the interaction of degenerate modes in the strong coupling regime
is studied, and the near-field coupling is exploited to engineer the sound attenuation
properties of coupled meta-atoms.

In this dissertation, another idea to improve sound attenuation makes use of bound
states in the continuum. Bound states in the continuum originate in the field of quantum
mechanics. When transferred to the field of acoustics, they manifest in modes with a
high-quality factor, leading to Fano resonances when coupled into the continuous spectrum.
This makes them ideal for application in acoustic devices. However, accurate prediction of
bound states is challenging due to realistic losses and missing field data. This dissertation
presents a theoretical model based on a non-Hermitian Hamiltonian and a technique for
accurately predicting the missing field data. This is a groundbreaking step in facilitating
the future application of high-quality factor Fano resonances in acoustics.

This dissertation presents results that advance the state-of-the-art in the analysis of
open acoustic systems with application to acoustic metamaterials. The focus is on normal
modes, industrial applications of metamaterials, and tuning meta-atoms by coupling.
In addition, the research results lead to a breakthrough in the analysis and possible
application of high-quality Fano resonances based on bound states coupling into the
continuous spectrum. Various measurements validate the numerical predictions to make
the results more meaningful. Connecting the results of this work to Lichtenberg’s opening
statement, seminal findings are presented that can be used to manipulate the propagation
and properties of vibrations so that our ears perceive only engineered comfortable sound.
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Zusammenfassung

”Die Erschütterung der Luft wird erst Schall, wo ein Ohr ist”, sagte einst der deutsche
Phyisker Georg Christoph Lichtenberg. Schwingungen in Form von Vibrationen sind ein
alltägliches Phänomen. Sie spielen eine wichtige Rolle für das Wohlbefinden, können
beruhigend wirken, aber auch störenden Lärm verursachen. Es stellt sich die Frage,
wie die Ausbreitung von Vibrationen und deren Eigenschaften beeinflusst oder gestaltet
werden können, damit unser Ohr nur ein akzeptables Maß an Schall wahrnimmt.

Um über die Manipulation von Vibrationen nachdenken zu können, ist es notwendig,
die entsprechenden mathematischen Gleichungen und Modellierungsmethoden zu ken-
nen und zu verstehen. In der linearen Akustik beschreibt die Helmholtz-Gleichung, die
auf der Wellengleichung basiert, eingeschwungene Systeme im Frequenzbereich. Zur
Lösung akustischer Probleme sind neben der analytischen Modellierung auch numerische
Methoden erforderlich. Vibrationen können sich in der Luft nahezu ins Unendliche
ausbreiten. Konventionelle Finite-Elemente-Methoden stoßen an ihre Grenzen, da die
Schallabstrahlung ins Unendliche zu Problemen bei der räumlichen Diskretisierung und
damit beim Speicherbedarf führt.

Die Lösung der Helmholtz-Gleichung in unbegrenzten Gebieten bleibt trotz der enormen
technischen Fortschritte der letzten Jahre eine Herausforderung hinsichtlich Rechenzeit,
Speicherbedarf und Genauigkeit. Es gibt spezielle Methoden, wie z. B. die Infinite-
Elemente-Methode, die die unendliche Ausdehnung mathematischer Gebiete modellieren
können. Im Rahmen dieser Dissertation wird eine neuartige spektral-stochastische
Infinite-Elemente-Methode entwickelt, die nicht nur die Helmholtz-Gleichung in un-
begrenzten Gebieten lösen kann, sondern auch eine effiziente Berechnung bei unsicheren
Eingangsparametern ermöglicht. Die Berechnung der Eigenfrequenzen von Fluid-Struktur-
Kopplungsproblemen stellt eine weitere Herausforderung dar, die mit Hilfe von Konturin-
tegralverfahren angegangen und gelöst wird.

Ein Trend, der die Beeinflussung fortschreitender Wellen in bisher nicht gekanntem
Ausmaß ermöglicht, sind akustische Metamaterialien. Akustische Metamaterialien beste-
hen meist aus periodisch angeordneten Metaatomen. Metaatome sind Grundbausteine, die
über definierte akustische Eigenschaften verfügen. Sie werden im reziproken Raum mod-
elliert. Dabei wird angenommen, dass die akustischen Metamaterialien eine unendliche
Ausdehnung haben und die Metaatome perfekt periodisch angeordnet sind. Dieser Ansatz
weist jedoch einige Ungenauigkeiten bei der Modellierung realistischer, endlicher Systeme
und ihrer experimentellen Validierung auf. Neben Imperfektionen sind auch Beugungsef-
fekte an den Rändern sowie lokale Kopplungseffekte zwischen den einzelnen Metaatomen
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Zusammenfassung

nicht zu vernachlässigen. Die vorliegende Dissertation befasst sich mit diesen Problemen.
Zur Charakterisierung eines Metamaterials werden die Eigenwerte und die zugehörigen
Außenraummoden endlicher periodischer Anordnungen von Metaatomen bestimmt. Ein
substanzielles Orientierungskriterium sind die Gütefaktoren der Außenraummoden, um
diese nach ihrer Relevanz einordnen zu können. Dieser Ansatz wird genutzt, um ein
Metamaterial für industrielle Anwendungen zu entwickeln, das den bisher bekannten Lö-
sungen zur Schalldämpfung deutlich überlegen ist. Ein erhebliches Potenzial zur weiteren
Verbesserung der Leistungsfähigkeit von Metamaterialien liegt darüber hinaus in der
Wechselwirkung zwischen den Metaatomen. Ein Teil der Dissertation ist der Untersuchung
der Wechselwirkung stark gekoppelter entarteter Moden gewidmet. Es wird gezeigt, dass
die akustischen Eigenschaften zweier Metaatome in hohem Maße durch Nahfeldkopplung
manipuliert werden können.

Ein weiteres Potenzial zur Verbesserung der Leistungsfähigkeit von Metamaterialien liegt
in der Implementierung von gebundenen Zuständen. Gebundene Zustände haben ihren
Ursprung in der Quantenmechanik. Diese Zustände können auch für akustische Wellen
nachgewiesen werden, was sich in Form von Fano-Resonanzen äußert. Fano-Resonanzen
entstehen, wenn Moden mit hohem Gütefaktor in das kontinuierliche Spektrum einkoppeln.
Moden mit solch hohen Gütefaktoren wären zum Beispiel für den Einsatz in akustischen
Filtern prädestiniert. Eine genaue Vorhersagetechnik fehlt jedoch noch, da die aus den
Moden resultierenden Fano-Resonanzen sehr empfindlich auf Störungen und Verluste
reagieren. In dieser Dissertation wird ein theoretisches Vorhersagemodell auf der Basis
eines nicht-hermiteschen Hamiltonoperators entwickelt. Zusätzlich wird eine Technik
vorgestellt, mit der die genauen Schalldruckdaten der gebundenen Zustände ausgewertet
werden können. Die Möglichkeit, gebundene Zustände genau zu analysieren, ist ein
großer Schritt für die technische Anwendung von akustischen Fano-Resonanzen mit hohem
Gütefaktor.

Die Ergebnisse dieser Dissertation erweitern den Stand der Technik bei der Berech-
nung und Auslegung von akustischen Metamaterialien. Der Schwerpunkt liegt dabei auf
der Berechnung von Außenraummoden, der industriellen Umsetzbarkeit von Metamaterial
und der Feinabstimmung von Metaatomen durch Nahfeldkopplung. Darüber hinaus
führen die Forschungsergebnisse zu einem Durchbruch bei der Analyse und möglichen
Anwendung von Fano-Resonanzen, die auf der Wechselwirkung zwischen gebundenen
Zuständen und dem kontinuierlichen Spektrum beruhen. Die Ergebnisse der Berechnungen
werden durch experimentelle Untersuchungen bestätigt. In Anlehnung an Lichtenbergs
einleitende Aussage kann festgestellt werden, dass die Erkenntnisse dieser Dissertation
dazu genutzt werden können, die Ausbreitung und Eigenschaften akustischer Wellen so
zu beeinflussen, dass nur angenehme Töne unser Ohr erreichen.
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1 Introduction

1.1 Problem formulation and motivation

Sound is a familiar concept. We are constantly exposed to it in our lives, from quiet
sounds like chewing and talking, to loud sounds like mowing the lawn or passing traffic,
to extremely noisy sounds like explosions. But what is sound? And how is it that we
perceive it in so many different ways?

Vibrations in gases, liquids, and solids are converted to sound when they impinge on a
receiver, such as the human ear. Mathematically, sound can be described as the wavelike
propagation of small perturbations in physical quantities, such as sound pressure, and is
part of the field of acoustics. A distinction is made between linear and nonlinear acoustics,
where the amplitude of the sound determines the difference. The amplitude depends on
the compression of the medium as the sound wave propagates. The upper limit for linear
acoustics in air is an amplitude of about 177 dB [1]. In the context of this dissertation,
the main focus is on linear acoustics.

The surrounding medium strongly influences the propagation of sound waves. Sound
propagation in gases or liquids allows only longitudinal waves due to negligible viscous
forces and is governed by the acoustic wave equation. In contrast, solids allow longitudinal
and solenoidal or transverse waves that are governed by the Navier-Lamé equation [2].
Mechanical-acoustic interaction is represented by strong or weak coupling [3,4]. In the
first case, the mutual interaction is considered and the governing equations of the fluid
and the solid are solved simultaneously. The second case uses the simplification that
the fluid loads acting on the structure are negligible, allowing the systems to be solved
iteratively.

Another influencing factor is the extent of the domain. Sound waves in closed fluid
domains describing a system in a steady-state must satisfy the Helmholtz equation, which
can be completely closed by Dirichlet, Neumann, or Robin boundary conditions [5]. Those
systems are called interior Helmholtz problems. In contrast, the underlying domains of
unbounded or exterior Helmholtz problems are assumed to be so large that the influence
of the outer boundaries can be neglected. Therefore, they are modeled by an infinite
domain. Thus, sound waves must satisfy the Helmholtz equation and, additionally, the
Sommerfeld radiation condition (SRC) [6, 7].

Infinite domains lead to problems with established numerical approaches, i.e. the finite
element method (FEM) [5, 8–11]. A popular technique for solving unbounded Helmholtz
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problems is the boundary element method (BEM) [12–15]. It is based on the Kirchhoff-
Helmholtz integral, where Green’s function is a fundamental solution established to solve
the Helmholtz operator and implicitly satisfies the SRC. Nevertheless, a side effect of the
BEM for unbounded domains is irregular frequencies [16]. In addition, the BEM leads to
frequency-dependent dense system matrices. Another approach to solving unbounded
Helmholtz problems is to use the FEM combined with an artificially truncated domain.
Because the domain truncation must mimic an infinite domain, special treatment of the
outer boundaries is required. Three possible methods are artificial absorbing boundary
condition [17–19], perfectly matched layers (PMLs) [20–25], and infinite elements [26–28].
A comprehensive review of all three methods can be found in the literature [29–31].

Unbounded Helmholtz problems are typically modeled with deterministic input data.
In reality, however, input data such as geometric parameters and material properties
are never deterministic, but follow a statistical distribution depending on manufacturing
tolerances, imperfections, etc. Uncertainty quantification (UQ) methods are mathematical
tools for incorporating stochastic input data into systems and determining corresponding
output data [32].

Sound in fluid domains is composed of incident and scattered pressure. Sound sources,
such as a vibrating diaphragm in a loudspeaker, generate incident pressure. The pressure
field distribution follows the Helmholtz equation, and therefore, the transfer paths depend
on the sources and objects within or bounding the fluid domain. One question remains:
how can it be subject to manipulation and even designed engineering?

Acoustic metamaterials (AMMs) are an emerging trend that allows the design of acoustic
fields. A comprehensive review can be found in the literature [33–42]. AMMs defy the ca-
pabilities of conventional materials by exhibiting material parameters not found in nature.
Their design is usually based on the assumption of an arrangement of perfectly periodic
meta-atoms and is, therefore, modeled in reciprocal space. However, the uncertainties in
the system, the interaction between the meta-atoms, and the diffraction at the corners of
the AMM structure cannot be described.

In addition, mechanisms derived from quantum mechanical theorems can be used to
enhance field manipulation. Bound states in the continuum are one such mechanism,
leading to high-quality (Q) factor modes when slightly perturbed. These modes manifest
in the form of Fano resonances upon coupling into the continuous spectrum. However,
they are highly sensitive to variations in geometric parameters and highly attenuated by
thermo-viscous losses, which poses a challenge in their application to acoustic devices
such as acoustic filters and sensors. See the literature for a comprehensive review [43–47].

The development of new techniques for sound field engineering of open systems is the main
goal of this dissertation. Therefore, a new method is developed to account for uncertainties
in unbounded domains. Normal modes of open systems are further investigated for this
purpose. In addition, an acoustic metamaterial for automotive applications is designed
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based on these methods. Fundamental effects between meta-atoms and their potential
for metamaterial tuning are also investigated. The last and most important part of this
dissertation is the engineering of high-Q Fano resonances in open acoustic systems.

1.2 State-of-the-art

A comprehensive literature review is provided on the topics of the dissertation.

1.2.1 Open systems

Computational solution techniques for exterior Helmholtz problems can be divided into
two categories: surface-based methods and domain-based methods. The BEM [12–15] falls
in the category of surface-based methods. By discretizing only the surface of the radiator
and the surfaces of the scattering objects, the number of degrees of freedom is reduced
compared to domain-based methods. However, system matrices are usually neither
Hermitian nor positive definite [5]. Domain-based methods such as the FEM [5, 8–11],
on the other hand, require artificial truncation of the domain and special treatment
of the outer boundary to satisfy the SRC. Absorbing boundary conditions [17–19] and
PMLs [20–25] rely on artificial dissipation, while the infinite element method (IFEM)
relies on elements whose interpolation functions implicitly satisfy the SRC [6,7].

Infinite element method

Infinite elements for exterior Helmholtz problems were first proposed by Zienkiewicz
and Bettess [48]. Since then, either unconjugated or conjugated formulations have been
used for infinite elements [49]. The unconjugated formulation is a traditional Bubnov-
Galerkin method and is typically used for the Burnett [27], Bettess elements [28], and
Bettess elements with adjusted decay rate [50, 51]. The unconjugated formulation re-
sults in symmetric system matrices. However, they are frequency-dependent due to the
oscillatory term in the radial interpolation function. The conjugated formulation is a
Petrov-Galerkin method, where the radial interpolation function is a complex conjugate
of the test function and was proposed by Gerdes [52]. The Astley-Leis formulation is
based on the wave-envelope element method, which is also a Petrov-Galerkin method with
an additional geometric weight [26,53–56]. Astley-Leis elements fit the general framework
proposed by Leis [57]. In general, there are four types of infinite elements: separable-
unconjugated, separable-conjugated, mapped-unconjugated, and mapped-conjugated.
The underlying truncated finite element domain is either circular/spherical [54, 55] or
elliptical/spheroidal [27,56,58–61]. The neighboring infinite elements are based on the
discretized form of the finite element domain. A comprehensive review of infinite elements
can be found in literature [49, 62–64].

Astley and Coyette [60] compare the performance of unconjugated Burnett and con-
jugated Astley-Leis elements for spheroidal domains. At high frequencies and aspect
ratios, both formulations reach their limits. Astley [62] evaluates the accuracy of both
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the unconjugated Burnett formulation and the conjugated Astley-Leis formulation. The
unconjugated elements outperform the conjugated elements in the near field, while the con-
jugated elements provide improved performance in the far field, consistent with Gerdes [49]
and Shirron [65]. The condition number of the system matrices strongly depends on
the radial order of the infinite element. Both formulations become ill-conditioned for
large radial orders. Astley et al. [55] also investigate the influence of the radial order
on accuracy and matrix conditioning. Accuracy is improved up to a radial order of 11.
For an order greater than 10, the ill-conditioning predominates. Astley and Coyette [66]
show the influence of the choice of polynomials as radial basis on the condition number
of infinite element schemes. The Bettess-Burnett formulation, the conjugated Burnett
formulation, and the Astley-Leis formulation are compared. The ill-conditioning of the
conjugated formulations can be circumvented by choosing a shifted Legendre radial basis.

Dreyer and von Estorff [67] and von Estorff et al. [68] introduce Jacobi polynomials
as radial interpolation functions, leading to low-conditioned system matrices and im-
proved performance with iterative solvers. In addition, Dreyer et al. [69] show that
the improved Astley-Leis elements with Jacobi radial basis outperform the traditional
wave-envelope elements in almost all simulations. Rui-liang and Hong-zhen [70] present a
new ellipsoidal infinite element that is superior in accuracy to other elements in the cases
of the dilating sphere and the oscillating sphere. Coyette and Van den Nieuwenhof [71]
introduce a conjugated IFEM for half-space acoustic problems. The influence of the
distance of infinite elements to a scattering object is investigated by Huang et al. [72].
Infinite elements are also formulated for domains with fluid flow [73,74] and formulated
in the time domain [75–77]. Hardy space infinite elements have been an emerging trend
in recent years [78–81]. They are particularly suitable for the calculation of resonances
because they preserve the eigenvalue structure of the problem, unlike classical infinite
elements and boundary elements [78].

Within the scope of this dissertation, Astely-Leis infinite elements are used. They
result in frequency-independent system matrices that are well suited for open-system
analysis.

Normal modes

The modal analysis of an open system solves an eigenvalue problem (EVP) and provides
eigenvalues and corresponding modes. In contrast to closed systems, the eigenvalues are
mostly complex-valued. The corresponding modes are orthogonal and linearly indepen-
dent. They represent the distribution of the pressure field corresponding to an eigenvalue
and are, thus, the mode shapes of the fluid. Modal methods are more challenging for
open systems than for closed ones because the infinite domain assumption can affect the
sparsity and symmetry of the system matrices. The frequency independence of the system
matrices is a fundamental condition for the calculation of frequency independent normal
modes. Conjugated Astley-Leis infinite elements are therefore a suitable method.
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Marburg [82] computes the solution to a one-dimensional duct problem with fully absorb-
ing ends. A quadratic EVP is solved based on a state-space formulation. The system
response is constructed by superposition of normal modes and its convergence is studied.
Another paper by Marburg et al. [83] evaluates the quadratic EVP of two-dimensional
open systems using conjugated Astley-Leis infinite elements. The authors propose a
formulation to solve the rank deficiency of the hypermatrices. In a third paper by
Marburg [84], a mode ranking is established, confirming that only a few modes remain
necessary for the determination of sound power based on modal superposition. Tisseur
and Meerbergen [85] survey the quadratic EVP. Retka et al. [86] solve a quadratic EVP
for a three-dimensional unbounded long slender hollow object. Conjugated Astley-Leis
elements are used in combination with an iterative Arnoldi eigenvalue solver. Selected
weakly damped normal modes are computed. Retka and Marburg [87] calculate the
modes of an open system with flow. They use the Galbrun equation in combination with
conjugated Astley-Leis elements. Van Ophem et al. [76] present a novel method enabling
model order reduction of a fully-coupled, exterior vibro-acoustic model for time domain
simulations. In addition, van Ophem et al. [88] use a Krylov-based model order reduction
technique to solve an exterior vibro-acoustic problem. Since the stability of the full model
is preserved, a model-based state estimator in the form of a Kalman filter is applied. A
finite and infinite element approach is used in both works.

Contour integral methods (CIMs) [89–93] are based on the transformation of a non-
linear EVP into a generalized EVP of reduced dimensions. The advantage of these
methods is that the most important computations can be performed in parallel. Baydoun
et al. [94] investigate the radiation damping in fully coupled sandwich structures by
analyzing the eigenvalues of the system. In addition, Baydoun et al. [95] use a subspace
iteration eigensolver based on Cauchy integrals to determine the eigenvalues of a musical
bell in an unbounded domain. The numerical framework of the two articles by Baydoun
et al. is based on a FEM-BEM formulation.

A special feature of the open system is that trapped modes can coexist with the continuous
spectrum [96–101]. Hein et al. [100] use Hardy space infinite elements based on the work
of Hohage and Nannen [78] and Nannen and Schädle [79] to analyze the eigenfrequencies
of an open waveguide.

In this dissertation, normal modes are used to calculate local resonances of meta-atoms.

1.2.2 Uncertainty quantification

Probabilistic UQ methods are used to capture the random nature of model parameters
or system responses [32]. Thus, input data, such as the excitation of a solid body as an
acoustic source, is not represented by a constant value, but by a probability distribution.
The type of distribution has to be determined in advance by experiments in order to
obtain a realistic representation. The Karhunen-Loève expansion and the Polynomial
Chaos expansion are two possible spectral methods for uncertainty quantification [102].
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The Karhunen-Loève representation of a stochastic process can be seen as a bi-orthogonal
decomposition based on the eigenfunctions obtained by analyzing its correlation func-
tion [103, 104]. While the Karhunen-Loève expansion requires the correlation function to
be known, polynomial chaos expansions do not depend on the correlation function. They
are Fourier-like expansions based on orthogonal polynomials. Stochastic quantities are
parameterized and represented by a spectral expansion. There are several approaches to
solving the stochastic problem. Galerkin methods, for example, are based on a weighted
residual formalism, so they affect the underlying system of equations. Non-intrusive
methods are designed to solve the stochastic problem without the need to adjust the
infinite element formulation. Compared to orthogonal projection, non-intrusive collocation
methods are efficient in terms of computational cost and accuracy [105,106].

Ghanem and Spanos [107] first introduced the spectral stochastic FEM. Over the past
three decades, extensive work has been published on the application of spectral methods
to stochastic finite elements [108–112]. There are also several publications on acoustic
metamaterials and uncertainty quantification [113–116]. Henneberg et al. [117] demon-
strate the need for uncertainty quantification for AMMs in industrial applications. Al
Ba’ba’a et al. [118] use polynomial chaos to represent inconsistencies in the unit cell
parameters of a metamaterial. The influence on how they change the target band gap
width, the frequency range, and the confidence level with which it is guaranteed is
investigated. Atzrodt et al. [119] investigate the influence of parameter uncertainties
on the stop band behavior of a vibro-acoustic metamaterial plate. Santoro et al. [120]
develop a computational framework for uncertain locally resonant metamaterial structures.

As part of this dissertation, polynomial chaos expansions are used in combination with
the non-intrusive collocation method to represent uncertain input data in open systems.

1.2.3 Acoustic metamaterials

AMMs are artificial structures consisting of an array of meta-atoms [121, 122]. Due to
their exotic behavior, they can be used to control or manipulate the propagation of sound
and elastic waves [34,40–42]. Acoustic meta-atoms are mostly based on local resonances.
This leads to, for example, a negative effective mass density [123–125], negative bulk
modulus [126] or negative refractive index [127].

There are two main approaches to modeling AMMs. The first is to assume perfect
periodicity of the meta-atoms. Periodic meta-atoms are called sonic or phononic crys-
tals [128–132]. These periodic structures lead to band gaps, also called stop bands
that prohibit wave propagation in particular frequency bands [133–135]. AMMs can be
represented in reciprocal space and only a unit cell with periodic Floquet-Bloch boundary
conditions needs to be modeled [136, 137]. Furthermore, simply the contours of the
irreducible Brillouin zone (IBZ) need to be calculated to obtain the band structures [138].
These band structures are also called dispersion curves. The shape of the Brillouin zone
depends on the group symmetry of the structure. Maurin et al. [139] investigate the
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probability that the band gap extremum is located on the contour of the IBZ. Nojima and
Kamakura [140] introduce spatial anisotropy into the unit cell. Due to the asymmetry
of the atomic configurations, the entire first Brillouin zone must be rendered. King
and Cox [141] study acoustic band gaps in periodically and quasiperiodically modulated
waveguides. Laude et al. [142] show the existence of evanescent Bloch waves in phononic
crystals. Romero-García et al. [143] show the existence of evanescent Bloch waves in
phononic crystals with point defects. Furthermore Romero-García et al. [144] demonstrate
evanescent modes in sonic crystals with point defects. The second approach is to fully
model the AMM structure. For example, aperiodic arrays and edge diffraction can be
represented [145]. Various types of metamaterials exist. Their working principle is based
on, for example, space-coiling resonators [146–151], membrane-type or plate-type struc-
tures [152–156], honeycomb-like structures [157–159], and porous structures [160]. Among
other things, they can be used for acoustic cloaking [161], acoustic lenses [162–165], and
acoustic metagratings [166, 167]. Acoustic metamaterials also have applications in the
aerospace [168] and automotive industries [169–173].

Thermo-viscous losses, c.f. [174], can significantly affect the performance of metama-
terials, particular for structures with narrow geometry features [121, 175, 176] which is
why they are extensively studied in this context [177,178]. Recent advances in artificial
intelligence and deep learning algorithms facilitate the design of AMMs [179–181]. Another
development in AMMs is the analysis of coupling between meta-atoms. Meta-atoms are
typically spaced less than their operating wavelength, so interactions such as longitudinal
coupling [182], also known as pressure coupling, and transverse coupling occur [183].
Since it is not only the transmission or reflection spectra that are of interest, Song et
al. [184] investigate the gain of the sound pressure level in a metamaterial cavity. Topology
protected states are demonstrated and studied [185–187].

An essential feature of AMMs to achieve perfect absorption is impedance matching [188–
191]. AMMs based on Fano resonances are an emerging trend [192, 193]. Fano resonances
are narrowband features that are based on destructive interference. Although Fano reso-
nances have narrowband characteristics, broadband capabilities can be achieved [194–196].
A comprehensive overview of AMMs can be found in the following literature [35, 39, 168].

This dissertation includes the development of novel AMMs. It also addresses the analysis
of the interaction of meta-atoms.

1.2.4 Bound states in the continuum

In linear acoustics, the continuous spectrum of an open system is spanned by propa-
gating waves that radiate to infinity. Propagating waves are solutions corresponding to
complex-valued eigenfrequencies greater than or equal to the cut-off frequency of the
system. The continuous spectrum and localized solutions to discrete eigenvalues comprise
the entire frequency spectrum of the open system. Localized solutions belonging to
discrete eigenvalues outside the continuous spectrum are called bounded states, which are
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perfectly confined waves. These evanescent waves are completely decoupled from open
propagation channels and thus cannot radiate away. Localized solutions in the continuous
spectrum are called trapped modes and result, for example, from the evanescent nature of
transverse modes in waveguides. They tend to couple to the open propagation channels
and become leaky resonances. For a certain configuration of geometrical parameters,
the leaky modes become confined states, better known as (embedded) trapped modes
or, more commonly, as bound states in the continuum (BICs). BICs are invisible to
extended states in the first propagation channel. Therefore, they can’t be excited by
them. Embedded trapped modes can be found only for a certain configuration of the
geometrical parameters of the system. They are a result of modal coupling via a common
continuum, i.e., the interaction of modes of the same symmetry. As a consequence
of the interaction, avoided crossings are observed. This is a characteristic feature of
the strong coupling regime [197–201]. Mathematically, the discrete eigenvalues of the
BIC can be described by a purely real-valued eigenfrequency. BICs were first estab-
lished by Neumann and Wigner [202], whereas the transfer to acoustics was made by
Ursell [203]. By variation of geometrical parameters, BICs become quasi-BICs (QBICs).
QBICs are high-Q modes that manifest as Fano resonances when coupled into the prop-
agating spectrum. See Miroshnichenko et al. [204] for a detailed review of Fano resonances.

In recent years, groundbreaking work has been done on symmetry-protected BICs [99,100,
205–207], Fabry-Pérot BICs [101,208,209], and Friedrich-Wintgen BICs [101,210–212].
In addition, extensive studies have been conducted on a variety of BIC configurations
and BIC tuning [46,197,213–221]. Topologically protected BICs [222] and corner states
as BICs [223] are also comprehensively investigated. Topological Fano resonances are
investigated by Zangeneh-Nejad and Fleury [224]. A persistent problem is the sensitivity
of the Fano resonances, since small perturbations can lead to strong attenuation of the
Fano peak. Huang et al. [225] introduce an analytical framework to construct BICs in
an open acoustic resonator. The work is based on the approach published by Maksimov
et al. [226] and allows to design BICs at the next level. The achievable Q-factor is a
major advantage of BICs. It has been pushed to new limits in recent years [227, 228] and
lays the foundation for the future design of high-performance acoustic sensors. Huang et
al. [229] demonstrate a Friedrich-Wintgen QBIC that leads to an emission enhancement
of a sound source by nearly two orders of magnitude. Recent studies have suggested that
acoustodynamic devices can be used for quantum computing [230–233]. The application
of mechanical BIC-induced high-Q Fano resonances (e.g., Yu et al. [234]) open a new way
of phonon trapping in micromechanical structures. Deriy et al. [235] demonstrate a BIC
in a compact solid resonator with a rotational symmetry placed in a gas or nonviscous
fluid.

For a comprehensive review of BICs, see Hsu et al. [43], Pagneux [44], Joseph [45],
Sadreev [46], and Huang et al. [47].

A technique for the design and accurate prediction of stable high-Q Fano resonances is
developed in this dissertation.
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1.3 Contribution of this dissertation

The following research questions arise from the current state-of-the-art. They form the
basis of this dissertation:

1. How to model uncertainties in unbounded domains?

2. How to compute normal modes of mechanical-acoustic coupled problems in un-
bounded domains?

3. How to tune acoustic metamaterials using coupling?

4. How to reduce tire noise by applying acoustic metamaterials?

5. How to accurately predict high-Q Fano resonances?

These questions are the subject of five publications that form the basis of this dissertation.
Reprints of these peer-reviewed publications are included in the appendix. This disser-
tation contributes to the ongoing research in the field of numerical analysis of exterior
Helmholtz problems and in the field of noise control using AMMs. Furthermore, this
dissertation allows a significant advancement in the state-of-the-art application of high-Q
Fano resonances.

Publication AP1

F. Kronowetter, L. Moheit, M. Eser, K. K. Sepahvand, and S. Marburg. Spectral
Stochastic Infinite Element Method in Vibroacoustics. In: Journal of Theoretical and
Computational Acoustics, 2020, 28(02), p. 2050009.

Imperfections, inhomogeneities, and manufacturing tolerances are examples of uncertain
input data and have become an integral part of today’s numerical models. Uncertainty
quantification is a tool for representing uncertain input data in a system. A novel method
based on stochastic finite elements is demonstrated that solves exterior Helmholtz prob-
lems in the case of multipole excitation and uncertain input data. A spectral stochastic
infinite element formulation is obtained from the probabilistic generalized polynomial
chaos expansion of the uncertain data. The non-intrusive collocation method is chosen
as the solution technique. The performance of the method is demonstrated for two
two-dimensional examples. First, an open convertible is analyzed in the half-space domain.
The sound propagation from a vibrating windshield as the sound source to the driver’s
ear is simulated for uncertain impedance data. Second, the normal modes of a single
meta-atom are computed. The influence of uncertain geometry parameters on the cavity
modes is shown. In addition, the influence of uncertain input data on the dispersion
curves of AMMs is investigated. Thus, the spectral stochastic IFEM is well suited for
modeling parameter uncertainties in unbounded domains.
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Publication AP2

F. Kronowetter, S. K. Baydoun, M. Eser, L. Moheit, and S. Marburg. A Benchmark
Study on Eigenfrequencies of Fluid-Loaded Structures. In: Journal of Theoretical and
Computational Acoustics, 2020, 28(02), p. 2050013.

The determination of normal modes of open systems for Helmholtz problems can be
accurately solved using a state-space formulation despite the rank deficiency of the hy-
permatrices. However, if a solid is added to the fluid domain and strong coupling is
assumed, the matrix condition will cause the normal mode prediction to fail. A contour
integral method based on resolvent moment is demonstrated to solve the quadratic EVP
of an unbounded vibro-acoustic problem. Finite elements are used for the solid and fluid
domain, whereas conjugated Astley-Leis elements are applied for the complementary
domain. Normal modes of a hollow sphere submerged in water are calculated. The
numerical results are compared with an analytical solution, with those obtained by bound-
ary element discretizations, and with those obtained by finite element discretizations in
conjunction with perfectly matched layers. Extensive parameter studies are performed
to evaluate the performance of the method. Additionally, a Rayleigh-Ritz procedure
with second-order Krylov subspaces is used to compute the normal modes. The contour
integral method achieves significantly smaller residuals of the computed eigenpairs. It is
found, that a coupled FEM-IFEM formulation combined with contour integral methods
based on resolvent moments is an adequate tool for predicting normal modes of coupled
mechanical-acoustic problems in unbounded domains.

Publication AP3

F. Kronowetter, L. Pretsch, Y. K. Chiang, A. Melnikov, S. Sepehrirahnama, S. Oberst, D.
A. Powell, and S. Marburg. Sound attenuation enhancement of acoustic meta-atoms via
coupling. In: The Journal of the Acoustical Society of America, 2023, 154(2), pp. 842-851.

Acoustic metamaterials are often modeled in reciprocal space, which allows for com-
putationally efficient and accurate band gap predictions. Under realistic conditions,
however, the assumption of a perfect and infinitely periodic assembly of meta-atoms does
not hold. Diffraction at the edges of a finite periodic AMM and interactions between
acoustic meta-atoms are neglected in this approach. Their influence on the performance of
the AMM proved to be particularly important. A new approach is introduced to demon-
strate the importance of coupling between acoustic meta-atoms. Extensive numerical
studies of different configurations of a pair of resonators show that the coupling can lead to
degenerate modes at periodic distances between the resonators. Furthermore, the influence
of parameters like distance and relative orientation of the resonators on the coupling is
analyzed. It is shown how coupling can be used to tune the sound attenuation properties
in simulation and experiment. In summary, it is shown that coupling parameters such as
distance, orientation, and radiation loss provide additional degrees of freedom for tuning
acoustic meta-atoms.
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Publication AP4

F. Kronowetter, P. Wagner, J. Kolodi, I. Brabandt, T. Neumeyer, N. Rümmler, and S.
Marburg. Novel compound material and metamaterial wheelhouse liners for tire noise
reduction. In: Mechanical Systems and Signal Processing, 2023, 200, p. 110548.

The European Union has decided to counteract the increase in traffic noise with stricter
regulations. This means a reduction of the pass-by noise of vehicles of 4 dB(A) by 2026.
The lightweight construction of automobiles worsens the noise, vibration, and harshness
(NVH) performance. Thus, new technologies must be developed to meet the regulations.
This paper addresses the design of two novel wheelhouse liners to improve the acoustic
attenuation properties in the frequency range of interest. One design consists of porous
layers and a microperforated panel, and the other is made of AMM. The two designs
differ in how they work. The porous liner targets broadband sound attenuation, while the
AMM liner targets a specific frequency of interest. The porous liner is the subject of both
analytical and numerical modeling. Since the AMM liner is based on local resonances, the
normal modes of the system are calculated and the resonances are identified. Simulated
results are validated experimentally by impedance tube, Alpha cabin, and full vehicle
measurements. Both types of liners are designed for mass production. They exceed the
current state-of-the-art. As a result, tire noise can be significantly reduced by installing
AMM liners.

Publication AP5

F. Kronowetter, M. Maeder, Y. K. Chiang, L. Huang, J. D. Schmid, S. Oberst, D. A. Powell,
and S. Marburg. Realistic prediction and engineering of high-Q modes to implement sta-
ble Fano resonances in acoustic devices. In: Nature Communications, 2023, 14(1), p. 6847.

QBICs are high-Q modes that are susceptible to geometric perturbations and visco-
thermal losses. When coupled into the continuous spectrum, these high-Q modes manifest
as Fano resonances, such as in the reflection spectrum. Accurately predicting stable Fano
resonances is, therefore, challenging. Furthermore, it is not known where and when the
maximum pressure enhancement occurs in real applications. A Friedrich-Wintgen BIC
in an open acoustic cavity is demonstrated in theory and experiment. In addition, the
pressure field inside the cavity is mapped using laser Doppler vibrometry, providing the
missing field enhancement data. This is also the first visual evidence that an acoustic
Friedrich-Wintgen BIC exists. Based on the acquired data, a Fourier transform field
decomposition allows the design of a symmetry-reduced BIC. An approximately threefold
increase in pressure field is achieved compared to the original cavity. This demonstrates a
technique for accurately predicting high-Q Fano resonances under realistic conditions.
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2 Methods

This section introduces the theoretical background of linear acoustics. Fundamental
equations, the FEM, and the IFEM for vibro-acoustic problems are explained. In addition,
the spectral stochastic IFEM is introduced. After clarifying the equations and methods,
EVPs of unbounded Helmholtz domains, i.e. normal modes, are discussed. The effective
non-Hermitian Hamiltonian for open systems is also presented. Additionally, modeling of
acoustically effective materials and experimental techniques are introduced.

2.1 Governing equations in acoustics

There are two spatial reference systems in continuum mechanics, the Lagrangian and the
Eulerian. For fluids, in the Lagrangian frame of reference, an observer follows a control
volume containing identical fluid particles along a trajectory and measures its physical
quantities. However, it has limitations for large deformations. Such deformations are
typical for problems in the field of fluid mechanics. The Eulerian frame of reference is
based on an observer measuring physical quantities on a control volume at a fixed location
and therefore has no problems dealing with large deformations. Reynold’s transport
theorem defines the rate of change of a scalar or vector quantity represented by •(x, t)
within a volume Ω(t)

D

Dt

∫

Ω(t)
• dx =

∫

Ω(t)

(
∂

∂t
• + • ∇ · v

)
dx (2.1)

It consists of a local derivative and a convective term and is used to derive the balance
equations, i.e. the balance of mass and momentum [5,236–238]

1. balance of mass:
ρ̇+ ρ∇ · v = 0. (2.2)

2. balance of momentum:
ρv̇ + ρ(v · ∇)v + ∇p = 0. (2.3)

The pressure is denoted by p(x, t), the density by ρ(x, t) and the velocity by v(x, t).
Eqs. (2.2) and (2.3) are nonlinear due to the convective term. The conservation of
mass and momentum is an underdetermined system of equations that can be closed by
adding a constitutive equation relating pressure and density [5, 236–239]. This system
of equations is called the Euler equations. They are a special case of the Navier-Stokes
equations assuming compressible, inviscid, adiabatic fluids. Neither heat transfer nor
viscous dissipation is possible with these formulations.

13



2 Methods

2.1.1 Wave equation

The Helmholtz decomposition says that the fluid velocity can be described by the
superposition of a curl-free scalar potential ϕ and a divergence-free vector potential
ψ [237]

v = ∇ϕ+ ∇×ψ. (2.4)

Equation (2.4) consists of an irrotational part and a purely solenoidal part. The irrota-
tional part also describes the compressible part, while the solenoidal part represents the
incompressible part. The proof can be found by inserting Eq. (2.4) into Eq. (2.2), where
∇ · (∇×ψ) = 0, since the divergence of a curl of a vector potential is zero. Since only
irrotational vector fields ∇×v = ∇×∇ϕ = 0 have a potential, e.g. homogeneous, inviscid
flow, the velocity can be described by v = ∇ϕ. The propagation of longitudinal waves
characterizes irrotational vector fields, while transverse waves are forbidden in inviscid
fluids. Under the assumption of only small perturbations, we can describe all physical
quantities in terms of a static part and an oscillatory term

ρ(x, t) = ρ0(x, t) + ρ̃(x, t), (2.5)
p(x, t) = p0(x, t) + p̃(x, t), (2.6)
v(x, t) = v0(x, t) + ṽ(x, t) = ṽ(x, t), (2.7)

where ρ̃ the density perturbation, ṽ the sound particle velocity, and p̃(x, t) the sound
pressure which is a measure of pressure fluctuations around the static pressure p0. Since
we are talking about static pressure, which means the fluid is at rest, the velocity of the
fluid is assumed to be zero v0(x, t) = 0. Hence, we can linearize and simplify Eqs. (2.2)
and (2.3), add a constitutive relation, e.g. p̃(x, t) = c2f ρ̃(x, t) [237], and summarize them
in the homogeneous wave equation

∆p̃(x, t) =
1

c2f

∂2p̃(x, t)

∂t2
, x ∈ Ωf ⊂ Rd , d = 1, 2, 3, (2.8)

with cf being the speed of sound in the fluid domain Ωf . The wave equation is a
hyperbolic partial differential equation. It depends on space and time. Boundary and
initial conditions are required to find a unique solution to the partial differential equation.

2.1.2 Helmholtz equation

The system response of a forced oscillation consists of a homogeneous and a particular
solution. After the transient response subsides, the steady-state is reached. Mathemati-
cally, the homogeneous solution tends to zero, or in other words, the initial conditions
decay. What remains is a time-harmonic (periodic) oscillation with constant amplitude
and frequency. This steady-state is also called the frequency domain. The transformation
of the wave equation into the frequency domain will be shown for the one-dimensional
case by means of the following steps as an example:
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2.1 Governing equations in acoustics

1. perform a Fourier transform with respect to x: p̂(x, t) =
∞∫

−∞
p̃(x, t)e−ikx dx, where

k = ω/cf is the wavenumber and ω is the angular frequency, resulting in a homoge-
neous second order ordinary differential equation with constant coefficients, since
the spatial derivative has vanished,

2. solve the differential equation by using an exponential function and perform an
inverse Fourier transform to get the form of d’Alembert’s solution to the wave
equation (one dimensional) p(x, t) = f(x−cf t)+g(x+cf t) representing perturbations
propagating in positive (f) and negative (g) x-direction with the speed cf . This is
the general solution to the one-dimensional wave equation.

Since a superposition of propagating perturbations solves the wave equation, propagating
waves correspond to a general solution. Plane waves are a simple solution to the wave
equation that can be applied to multidimensional problems. They can be described
using Euler’s identity eix = cos (x) + i sinx and the time convention in a complex
manner [5, 236–239]

p̃(x, t) = p+ cos (±(ωt− kx)) = ℜ
{
p+e

±i(ωt−kx)

}
= ℜ

{
p(x)e±iωt

}
, (2.9)

with p+ being the pressure amplitude of a plane wave propagating in positive x-direction
and p(x) being the complex-valued pressure amplitude. From here on, for simplicity,
the complex-valued sound pressure will be denoted by p = p. The negative sign in front
of the kx term represents wave propagation in positive x-direction and vice versa. The
choice of the sign ±i(ωt − kx) can be chosen arbitrarily, since cos (x) = cos (−x) and
ℜ{eix} = ℜ{e−ix}.

Inserting the formulation in Eq. (2.9) into Eq. (2.8) is a method of separation of
variables and leads to a purely space-dependent formulation of the wave equation, which
yields the Helmholtz equation. The Helmholtz equation is an elliptic partial differential
equation and its homogeneous form reads as

∆p(x) + k2p(x) = 0 , x ∈ Ωf ⊂ Rd , d = 1, 2, 3. (2.10)

From here on, we consider only time-harmonic problems. Therefore, the complex-valued
pressure amplitude is solely space-dependent.

Interior Helmholtz problems

The size of the fluid domain is a crucial criterion for the complexity of the acoustic
problem. We distinguish between interior and exterior Helmholtz problems. For interior
Helmholtz problems, the Helmholtz equation can be closed by specific boundary conditions
to obtain the solution to acoustic problems within a fully bounded domain of finite extent.
For a better understanding of boundary conditions to a bounded acoustic domain, the
impedance Z(x) = p(x)/v(x) = Y −1(x) with Y (x) being the admittance and v(x) = ṽ(x)
is introduced. Impedance is generally a complex number with a real part called resistance
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and an imaginary part called reactance. It can be interpreted as the resistance of a fluid
element to oscillation due to pressure fluctuations. Three main boundary conditions (BCs)
are commonly used for interior Helmholtz problems:

1. Dirichlet BC:
p(x) = p0(x) , x ∈ Γf ⊂ Rd−1, (2.11)

2. Neumann BC:

∇p(x)·n(x) =
∂p

∂n
(x) = ±iωρ0v(x)·n(x) = ±iωρ0vf , x ∈ Γf ⊂ Rd−1, (2.12)

3. Robin BC:
vf (x) − vs(x) = Y (x)p(x) , x ∈ Γf ⊂ Rd−1. (2.13)

The Dirichlet BC or essential BC prescribes an explicit value of the sound pressure at the
boundary. In contrast, the Neumann BC or natural BC establishes a relation between
the complex-valued sound pressure and the particle velocity of the fluid. The Neumann
boundary condition can be derived by taking the normal components of the linearized
steady-state expression of the Euler equation, i.e. Eq. (2.3). Two special cases are sound
hard and sound soft BCs. The sound hard BC describes a boundary where the normal
component of the fluid particle velocity vf (x) is equal to the normal component of the
structural particle velocity vs(x), both being zero. Thus, the impedance is infinite, and
the admittance is zero at a rigid boundary. There is no phase change with respect to
sound hard boundaries. The opposite is true for the sound soft boundary condition, where
impedance is zero and admittance is infinite. The phase change is π. Since boundaries
are never completely sound hard or sound soft, the Robin BC is a mixed formulation of
Dirichlet and Neumann data. This BC type includes phase change and absorption for
coupled adjacent structures.

Exterior Helmholtz problems

Interior Helmholtz problems are limited to completely bounded fluid domains, such as
a closed room. But what about an open window? In this case, the surrounding fluid is
assumed to be infinite and thus falls into the category of exterior Helmholtz problems.
Unbounded fluid domains must satisfy free field conditions, such as no wave reflection
from the boundary at infinity, and the pressure must decay to zero at infinity.

In contrast, unbounded or exterior Helmholtz problems are problems with a fluid domain
of infinite extension or problems with a negligible influence of the environment. Additional
free field conditions must be satisfied, which is ensured by the SRC [7,238,240,241]

lim
|x|→∞

|x|α
(
∂p

∂|x| ± ikp

)
= 0, (2.14)

where |x| is the radial coordinate and α = (d − 1)/2 for two- and three-dimensional
problems (d = 2, 3). In the one-dimensional case, there is no pressure decay. Depending on
the sign of the time convention, the sign before the term ikp is different. The Sommerfeld
radiation condition, written in Bachmann-Landau notation, consists of three parts:
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2.1 Governing equations in acoustics

1. p(|x|) is a solution to the Helmholtz equation,

2. decay condition:
p(|x|) = O(|x|−α) , |x| → ∞, (2.15)

3. radiation condition:
(
∂p

∂|x| − ikp

)
= o(|x|−α) , |x| → ∞. (2.16)

The decay condition assures that p(|x|) has an asymptotic upper bound |x|−α. The
radiation condition characterizes the directional character of the stationary solution in the
far field. Only outgoing waves, i.e. waves that propagate away from their corresponding
source, are allowed, and it is ensured that p and v are in phase in the direction of the
propagation of the wave in the infinite limit. The decay condition is automatically satisfied
by any function that satisfies both the Helmholtz equation and the radiation condition.
The radiation condition decays faster than the decay condition. For an exact formulation
of the decay rates, see Hubert and Palencia [241].

2.1.3 Navier-Lamé equation

Unlike fluids, solids counteract not only changes in volume but also changes in shape due
to elastic resistance. The solid domain is denoted by Ωs. Three equations form the basis
for the description of elastic solids. The kinematic equation, which relates strain fields to
displacements; the balance equation, which requires the stresses and body forces to be in
equilibrium; and the constitutive equation, which relates strains to stresses. In the case
of a linear elastic material, strains are linearly related to stresses and can be expressed by
Hooke’s law [242]. Assuming an isotropic material, the stress-strain relationship can be
expressed using the Lamé parameters

λL =
νE

(1 + ν)(1 − ν)
, (2.17)

and

µL = G =
E

2(1 + ν)
, (2.18)

where the Young’s modulus is denoted E, the shear modulus is denoted G, and ν is
Poisson’s ratio. Thus, the time-dependent Navier-Lamé equation reads as [243]

µL∇·∇u(x, t)+(λL+µL)∇(∇·u(x, t))+fV (x, t) = ρ
∂2u(x, t)

∂t2
, x ∈ Ωs ⊂ Rd, (2.19)

where u(x, t) is the time-dependent displacement field, ρ is the material’s mass density,
and fV (x, t) are the body forces.
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Waves in solid bodies

The displacement field can be decomposed into an irrotational part and a solenoidal part.
Applying the Helmholtz decomposition, see Eq. (2.4) yields

u(x, t) = ∇ϕ(x, t) + ∇×ψ(x, t). (2.20)

Inserting Eq. (2.20) into Eq. (2.19) and omitting body forces results in

∇
(
ρ
∂2ϕ(x, t)

∂t2
− (λL + µL)∆ϕ(x, t)

)
+ ∇×

(
ρ
∂2ψ(x, t)

∂t2
− µL∆ψ(x, t)

)
= 0. (2.21)

By setting both brackets to zero and assuming time-harmonic oscillations, the elastody-
namic wave equations for longutidunal waves (∇× u(x, t) = 0) and transversal waves
(∇ · u(x, t) = 0) with their corresponding wave velocities are obtained [2].

Time-harmonic elastodynamics

Due to symmetry, the Cauchy stress tensor [σ] can be written in Voigt notation [244]

[σ] =



σxx σxy σxz
σyx σyy σyz
σzx σzy σzz


 =



σ11 σ12 σ13
σ21 σ22 σ23
σ31 σ32 σ33


 →




σ11
σ22
σ33
σ23
σ13
σ12




=




σ1
σ2
σ3
σ4
σ5
σ6




= σ. (2.22)

The differential operator B has the definition

B =




∂
∂x 0 0 0 ∂

∂z
∂
∂y

0 ∂
∂y 0 ∂

∂z 0 ∂
∂x

0 0 ∂
∂z

∂
∂y

∂
∂x 0




T

. (2.23)

Therefore, the divergence of the Cauchy stress tensor can be written in terms of

∇ · [σ] = BTσ. (2.24)

Hooke’s law maps the mechanical strain tensor [ϵ] to the Cauchy stress tensor via tensor
contraction of the forth order elasticity tensor [c]

[σ] = [c] : [ϵ]. (2.25)

Assuming only small deformations to occur, the linear strain tensor can be written in
displacement formulation [ϵ] = Bu. Thus the Navier-Lamé equation can be reformulated

BT [c]Bu(x, t) − ρ
∂2u(x, t)

∂t2
= fV (x, t) (2.26)

Due to the assumption of time-harmonic oscillations, the displacement can be expressed

as u(x, t) = ℜ
{
u(x)e±iωt

}
. Inserting this approach into Eq. (2.26) results in

BT [c]Bu(x) + ρω2u(x) = fV (x). (2.27)
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2.2 Numerical methods

2.2 Numerical methods

In some cases, an analytical solution of the Helmholtz equation exists, but most solutions
depend on numerical methods. The numerical solution of partial differential equations is
based on a discrete formulation of the problem. In this formulation, the physical quantities
are described only at specific discrete points in the entire domain. The most common
numerical methods in linear acoustics are the FEM and the BEM. A more detailed insight
into the methods can be found in literature [5, 8–11]. In this dissertation, the focus is on
the FEM.

2.2.1 Finite element method

The continuous domain is divided into a finite number of elements that span a grid or
mesh that approximates the continuous shape of the domain. The physical quantities are
evaluated at the mesh nodes and interpolated within each element. Each node contains
degrees of freedom in the system of equations. To derive the FEM, a variational form of
the Helmholtz equation is formulated.

Weak formulation

For this purpose, the Helmholtz equation Eq. (2.10) is multiplied by a weight/test function
χ(x) ∈ C∞

0 (Ωf ) ⊂ H1
0, which is the space of functions C∞(Ωf ) with compact support

and integrated over the domain Ωf

∫

Ωf

χ(x)[∆p(x) + k2p(x)] dΩf (x) = 0. (2.28)

Applying Green’s first identity
∫

S
θ(∇ζ · n) dS =

∫

V
[θ∆ζ + ∇θ · ∇ζ] dV (2.29)

to the weak formulation of the Helmholtz equation leads to
∫

Ωf

χ(x)[∆p(x) + k2p(x)] dΩf (x) =

∫

Γ
χ(x)(∇p(x) · n(x)) dΓ(x) −

∫

Ωf

∇χ(x) · ∇p(x) dΩf (x)+

∫

Ωf

k2χ(x)p(x) dΩf (x) = 0. (2.30)

Considering the directional derivative at the boundary Γ ∇p(x) ·n(x) = ∂p
∂n(x) results in

∫

Γ
χ(x)

∂p(x)

∂n(x)
dΓ(x)−

∫

Ωf

∇χ(x) · ∇p(x) dΩf (x) +

∫

Ωf

k2χ(x)p(x) dΩf (x) = 0. (2.31)
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Using ∂p(x)
∂n(x) = a · vf (x), with a = sk and s = iρ0c

sk

∫

Γ
χ(x)vf (x) dΓ(x)−

∫

Ωf

∇χ(x)·∇p(x) dΩf (x)+

∫

Ωf

k2χ(x)p(x) dΩf (x) = 0. (2.32)

In a next step, the Robin BC is incorporated replacing vf (x) by vs(x) and Y (x)

sk

∫

Γ
χ(x)vs(x) dΓ(x) + sk

∫

Γ
χ(x)Y (x)p(x) dΓ(x)−

∫

Ωf

∇χ(x) · ∇p(x) dΩf (x) +

∫

Ωf

k2χ(x)p(x) dΩf (x) = 0. (2.33)

This is the weak form of the Helmholtz equation. It is called the weak form because of
the reduced continuity requirement for the physical variable, e.g. the sound pressure. The
second-order differentiability requirement of the Laplace operator is weakened by shifting
a first-order differentiability requirement from the physical quantity to the test function.
Equation (2.33) is the basis for the finite element formulation.

Discretization and matrix form

Since Eq. (2.33) is still formulated in terms of continuous quantities, a discretization
procedure for the physical quantities is introduced, the Galerkin scheme. This weighted
residual technique is essentially a method of undetermined coefficients with unknown
basis coefficients, which generates a system of N equations. The basis functions ϕ

i
span

the approximation space X1
0 ⊂ H1

0. The physical quantities are approximated by

p(x) =

N∑

j=1

ϕj(x)pj = ϕT (x)p, (2.34)

vs(x) =
N∑

k=1

ϕk(x)vsk = ϕ
T

(x)vs, (2.35)

Y (x) =

Ñ∑

l=1

ϕ̃l(x)Yl = ϕ̃T (x)Y , (2.36)

with N = N = Ñ and ϕ = ϕ = ϕ̃. The physical quantities in Eqs. (2.34) to (2.36) are
approximated, discrete values, have no spatial dependence anymore, and are a solution
satisfying Eq. (2.33). A Bubnov-Galerkin method is used, which means that the same
function is used as the basis and the test function

χ(x) =

N∑

i=1

ϕ
i
(x), (2.37)
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with N = N and ϕ = ϕ. The L2 inner product is defined, stating that the residual is
orthogonal to the test function

⟨χ(x),∆p(x) + k2p(x)⟩ = 0. (2.38)

The inner product statement is quite powerful since it states that the approximated
solution is an a-orthogonal projection of the real solution onto the approximation space,
and thus the best fit in terms of the energy norm. Applying these formulations to
Eq. (2.33) leads to the discretized form of the Helmholtz equation’s weak form

sk

∫

Γ

[
N∑

i=1

ϕi(x)

]{
N∑

k=1

ϕk(x)vsk +

[
N∑

l=1

ϕl(x)Yl

][
N∑

j=1

ϕj(x)pj

]}
dΓ(x)

−
∫

Ωf

{
∇
[

N∑

i=1

ϕi(x)

]
· ∇
[

N∑

j=1

ϕj(x)pj

]
− k2

[
N∑

i=1

ϕi(x)

][
N∑

j=1

ϕj(x)pj

]}
dΩf (x) = 0,

(2.39)

with the mass matrix M:

mij =

∫

Ωf

ϕi(x)ϕj(x) dΩf (x), (2.40)

the stiffness matrix K:

kij =

∫

Ωf

∇ϕi(x) · ∇ϕj(x) dΩf (x), (2.41)

the damping matrix D:

dij = ρ0c

∫

Γ
ϕi(x)

[
ϕT(x)Y

]
ϕj(x) dΓ(x), (2.42)

and the boundary mass matrix Θ:

θik =

∫

Γ
ϕi(x)ϕk(x) dΓ(x). (2.43)

The system can now be written in matrix form
(
K− ikD− k2M

)
p = skΘvs = f . (2.44)

Equation (2.44) is a discrete formulation of the continuous weak form. Thus, the physical
quantities are approximated by interpolation functions with local support. However, two
problems remain to be solved. First, the interpolation functions are space-dependent, and
the integration domains are based on finite elements. Therefore, it is quite complicated
to perform the integration in the physical space. Second, the integration itself is a
continuous-space operation.
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Isoparametric concept

The first problem is solved by introducing the isoparametric concept. According to this
concept, a standard element geometry is defined in the parameter space. A mapping
between this parameter space and the real space is defined. Thus, the integration
takes place in the parameter space ξ. This is shown in Fig. 2.1 for a two-dimensional
quadrilateral element with four nodes. From here on, the matrix computation is explained

x2

x1

n1(x
1
1, x

1
2)

n2(x
2
1, x

2
2)

n3(x
3
1, x

3
2)

n4(x
4
1, x

4
2)

ξ2

ξ1

n1(−1,−1) n2(1,−1)

n3(1, 1)n4(−1, 1)

Figure 2.1: Isoparametric concept. A two-dimensional element with four nodes in the real
space and in the parameter space is presented.

for two-dimensional problems. However, it can easily be extended to the third dimension.
The Cartesian nodal coordinates are denoted x and the shape functions in the parameter
space are defined by

x(ξ) = ϕT(ξ)x. (2.45)

The nodal discrectization for the element shown in Fig. 2.1 reads as

[
x1
x2

]

(ξ)

=

[
ϕ1 0 ϕ2 0 ϕ3 0 ϕ4 0
0 ϕ1 0 ϕ2 0 ϕ3 0 ϕ4

]

(ξ)




x11
x12
x21
x22
...
x42



. (2.46)

The nodal coordinates are now defined in the parameter space. Thus, the partial and
total derivatives can also be formulated in parameter space. Therefore, the chain rule is
applied

∂•
∂x1

=
∂•
∂ξ1

∂ξ1
∂x1

+
∂•
∂ξ2

∂ξ2
∂x1

. (2.47)

Equation (2.47) can also be expressed in matrix form
[

∂•
∂x1
∂•
∂x2

]
=

[
∂ξ1
∂x1

∂ξ2
∂x1

∂ξ1
∂x2

∂ξ2
∂x2

][
∂•
∂ξ1
∂•
∂ξ2

]
→

[
∂•
∂ξ1
∂•
∂ξ2

]
=

[
∂x1
∂ξ1

∂x2
∂ξ1

∂x1
∂ξ2

∂x2
∂ξ2

][
∂•
∂x1
∂•
∂x2

]
. (2.48)

22



2.2 Numerical methods

Hence, a transformation from real to parameter space is defined. It is called the Jacobian
matrix

J =
∂x

∂ξ
=

[
∂x1
∂ξ1

∂x2
∂ξ1

∂x1
∂ξ2

∂x2
∂ξ2

]
=

[
∂ϕ1

∂ξ1
∂ϕ2

∂ξ1
∂ϕ3

∂ξ1
∂ϕ4

∂ξ1
∂ϕ1

∂ξ2
∂ϕ2

∂ξ2
∂ϕ3

∂ξ2
∂ϕ4

∂ξ2

]



x11 x12
x21 x22
x31 x32
x41 x42


 . (2.49)

Equation (2.49) is purely dependent on ξ with the input of the nodal coordinates in real
space. Total derivatives can be expressed as

dxi =
∂xi
∂ξ1

dξ1 +
∂xi
∂ξ2

dξ2. (2.50)

Thereupon, the area of a domain is defined by the cross product

dΩ = |dΩ| = |dx1 × dx2| =

∣∣∣∣
(
∂x1
∂ξ1

dξ1 +
∂x1
∂ξ2

dξ2

)
×
(
∂x2
∂ξ1

dξ1 +
∂x2
∂ξ2

dξ2

)∣∣∣∣ =

(
∂x1
∂ξ1

∂x2
∂ξ2

− ∂x1
∂ξ2

∂x2
∂ξ1

)
|dξ1 × dξ2| = det(J)dξ1dξ2. (2.51)

The Jacobian J is defined by det(J). It contains information about the transformation
behavior. The Jacobian must be greater than zero for FEMs to avoid negative volumes.
To determine all the integrands, the interpolation functions are defined. The choice of
interpolation functions is critical for matrix conditioning. Since FEMs integrate element-
wise, the interpolation function has local support. In this dissertation, the focus is
on Lagrangian interpolants. Lagrangian bases must satisfy the orthogonality condition
ϕi(ξj) = δij , which is called the orthogonality condition. The approximation space
XN

0 ⊂ PN is the space of all polynomials of degree ≤ N . Hence, the Lagrange polynomial
in the parameter space is defined by

LN−1
k (ξ) =

N∏

j=1
j ̸=k

ξ − ξ
j

ξ
k − ξ

j
. (2.52)

The interpolation function passes through n = N nodes with coordinates ξj , j = 1, . . . , n
of which node k evaluates unity. The solution to the first problem is now closed.

Numerical integration

The continuous integrals need to be discretized to solve the second problem. Therefore,
the Gauss-Legendre quadrature is used. It is a method to approximate integrals over a
functional multiplied by a weighted summation

∫ b

a
f(ξ)w(ξ) dξ ≃

n∑

i=0

αif(ξi). (2.53)
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In contrast to the normal Gauss quadrature, the Gauss-Legendre quadrature has the
advantage that w(ξ) = 1 and the upper and lower bounds are bounded by a = −1 and
b = 1. This makes this method ideal for integration on the unit element in the parameter
space. Legendre polynomials are orthogonal in [−1, 1] regarding the weight w(ξ) = 1

⟨PN (ξ),PM (ξ)⟩ :=

∫ 1

−1
PN (ξ)PM (ξ) dξ = 0 , N ̸= M. (2.54)

A general polynomial P(ξ) of order ≤ 2N + 1 can be described using long division
P(ξ) = Q(ξ)PN+1(ξ) + R(ξ), with the order of Q(ξ) and R(ξ) being ≤ N . Since
⟨Q(ξ)PN+1(ξ)⟩ !

= 0, the Gaussian quadrature estimate of the integral of P(ξ) of order up
to 2N + 1 is exact if the nodes are roots of the Legendre polynomial of order N + 1.

Coupled mechanical-acoustic system

Let Ωs be a solid body bounded by Γ and surrounded by a fluid domain Ωf , see Fig. 2.2.
The kinetic condition and the kinematic condition must be considered at the solid-fluid

Γf

Ωf

Ωs ΓΩs

Figure 2.2: Coupled mechanical-acoustic system. A coupled mechanical-acoustic system is
presented, where Ωs is the solid domain bounded by the solid-fluid interface Γ, Ωf

is the fluid domain with the outer boundary Γf .

interface. The first condition relates the Cauchy stress tensor at the interface to the
pressure exerted by the fluid

σ(x) · n(x) = −p(x) · n(x) , on Γ. (2.55)

This is the action-reaction principle. It can also be called pressure-force coupling. The
second condition ensures that the fluid and solid are in contact without friction

n(x) · (vs(x) − vf (x)) = 0 , on Γ. (2.56)

where vs is the velocity of the solid and vf is the acoustic particle velocity. The kinematic
condition is also called slippery condition or continuity of velocities. The relationship
between the normal components of the acoustic particle velocity and the sound pressure
is the linear Euler equation

n(x) · ρ0
∂vf (x, t)

∂t
= −∇p(x, t) · n(x). (2.57)
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2.2 Numerical methods

This, combined with the assumption vs = ∂u
∂t , and the time-harmonic assumption, leads

to a kinematic coupling condition that omits time dependence:

∂p(x)

∂n(x)
= ρ0ω

2n(x) · u(x). (2.58)

In a first step, the weak formulation of the Helmholtz equation, see Eq. (2.31), is
reformulated using the kinematic coupling condition (Eq. (2.58))
∫

Γ
χ(x)

∂p(x)

∂n(x)
dΓ(x) −

∫

Ωf

∇χ(x) · ∇p(x) dΩf (x) +

∫

Ωf

k2χ(x)p(x) dΩf (x) =

∫

Γ
χ(x)ρ0ω

2n(x) · u(x) dΓ(x) −
∫

Ωf

∇χ(x) · ∇p(x) dΩf (x)+

∫

Ωf

k2χ(x)p(x) dΩf (x) = 0.

(2.59)

The discretized form of Eq. (2.59) is similar to Eq. (2.39) except for the coupling term

ρ0ω
2

∫

Γ

[
N∑

i=1

ϕi(x)

]
· n(x) ·

[
N ′∑

n=1

ϕn(x)un

]
dΓ(x). (2.60)

In a next step, the weak formulation of the Navier-Lamé equation is derived
∫

Ωs

χ(x) ·BT [c]Bu(x) + ρω2u(x)] dΩs(x) =

∫

Ωs

χ(x) · (ρω2u(x)) dΩs(x) +

∫

Ωs

χ(x) · [BT [c]Bu(x)] dΩs(x) =

∫

Ωs

χ(x) · fV dΩs(x).

(2.61)

Applying Green’s first identity or the general divergence theorem
∫

Ω
χ∇ · σ dΩ =

∫

Γ
χ(σ · n(x)) dΓ −

∫

Ω
σ · ∇χdΩ (2.62)

to Eq. (2.61) results in
∫

Ωs

χ(x) · (ρω2u(x))dΩs(x) −
∫

Ωs

(Bχ(x))T [c]Bu(x) dΩs(x)

+

∫

Γ
χ(x) · (σ · n(x)) dΓ(x) =

∫

Ωs

χ(x) · fV dΩs(x).

(2.63)

Considering σ · n(x) = −p(x) · n(x), the kinetic coupling boundary condition can be
included ∫

Γ
χ(x) · (σ · n(x)) dΓ(x) = −

∫

Γ
χ(x) · n(x) · p(x) dΓ(x). (2.64)
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The discretized form of the Navier-Lamé equation’s weak form applying a Bubnov-Galerkin
scheme reads as

∫

Ωs

[
N ′∑

m=1

ϕm(x)

]
·
{
ρω2

[
N ′∑

n=1

ϕn(x)un

]}
dΩs(x) −

∫

Ωs

BT
m[c]Bn dΩs(x)

+

∫

Γ

[
N ′∑

m=1

ϕm(x)

]
· n(x) ·

[
N∑

j=1

ϕj(x)pj

]
dΓ(x) =

∫

Ωs

[
N ′∑

m=1

ϕm(x)

]
· fV dΩs(x),

(2.65)

where the number of degrees of freedom is denoted by N ′ and

Bm =




∂ϕm

∂x 0 0 0 ∂ϕm

∂z
∂ϕm

∂y

0 ∂ϕm

∂y 0 ∂ϕm

∂z 0 ∂ϕm

∂x

0 0 ∂ϕm

∂z
∂ϕm

∂y
∂ϕm

∂x 0




T

. (2.66)

The coupled mechanical-acoustic system has the form
{[
Ks R
0 1

ρ0
K

]
− iω

[
Ds 0
0 1

cfρ0
D

]
− ω2

[
Ms 0
−RT 1

c2fρ0
M

]}(
u
p

)
=

(
fs
0

)
, (2.67)

with the mass matrix of the solid domain Ms:

mmn,s = ρ

∫

Ωs

ϕm(x)ϕn(x) dΩs(x), (2.68)

and the stiffness matrix of the solid domain Ks:

kmn,s =

∫

Ωs

BT
m[c]Bn dΩs(x). (2.69)

The damping matrix depends on the damping model used, e.g. Rayleigh damping. It can
be found in the literature [243]. The right hand side is expressed by fs:

fm,s =

∫

Ωs

ϕm(x) · fV dΩs(x). (2.70)

The coupling at the solid-fluid interface is determined by the following matrix R

Rmj =

∫

Γ



ϕmϕjnx
ϕmϕjny
ϕmϕjnz


 dΓ. (2.71)

2.2.2 Infinite element method

A mapped wave envelope or conjugated Astley-Leis infinite element formulation is used in
this dissertation [54,55]. Finite element discretization is used in the artificially truncated
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2.2 Numerical methods

domain, while infinite elements are used in the complementary domain to mimic the
unboundedness of the system. Infinite element basis functions satisfy the SRC through an
advanced radial interpolation scheme. These radial interpolation functions have a wave-
like characteristic. The conjugated Astley-Leis formulation is based on a Petrov-Galerkin
method that uses complex conjugates of the radial interpolation (or basis) functions with
an additional geometric factor as the weight functions. Therefore, all wave-like terms
in the formulation are eliminated by the use of complex conjugates. All time-harmonic,
wave-like terms are eliminated. This results in frequency-independent system matrices in
the complementary domain.

Problem statement

The derivation for two- and three-dimensional infinite elements is similar except for
geometric weight and decay factors. The fluid domain is divided into a near-field Ωf and
a far-field region Ωc. These regions are separated by Γc, see Fig. 2.3. In Ωf and Ωc the

Γ∞Γc

Ωf

Ωs

Ωc

ΓΩs

Figure 2.3: Exterior Helmholtz problem. A coupled mechanical-acoustic system is presented,
where Ωs is the solid domain bounded by the solid-fluid interface Γ, Ωf is the
truncated fluid domain with the outer boundary Γc, and Ωc is the complementary
domain with the outer boundary at infinity Γ∞.

Helmholtz equation must be satisfied. Furthermore, two boundary conditions need to be
fulfilled. The continuity of velocites at the solid-fluid interface Γ [3]

n(x) · a(x) +
1

ρ0
∇p(x) · n(x) = 0, (2.72)

and the plane wave damper boundary condition on Γ∞

∇p(x) · n(x) + ikp(x) = 0. (2.73)
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The weak formulation is derived starting from Eq. (2.30) and incorporating the boundary
conditions

∫

Γ
W (x, ω)(ρ0n(x) · a(x)) dΓ(x) +

∫

Γ∞
W (x, ω)(ikp(x)) dΓ(x)+

∫

Ω
∇W (x, ω) · ∇p(x) dΩ(x) − k2

∫

Ω
W (x, ω)p(x) dΩ(x) = 0, (2.74)

with W (x) being the frequency-dependent weight functions.

Asymptotic form

An infinite number of outwardly propagating solutions exist in unbounded domains.
The pressure can thus be expressed as a multipole expansion in spherical coordinates
(r, θ, ϕ) [245] by

p(x, ω) = e−ikr
∞∑

n=1

Gn(θ, ϕ, ω)

rn
, (2.75)

where Gn(θ, ϕ, ω) is a directivity function. The Atkinson-Wilcox theorem can be inter-
preted in terms of near-field and far-field contributions. The far field is dominated by
the leading term, while the remaining terms contribute to the near field. The asymptotic
form of the far-field contribution is given [246] by

p(x, ω) = e−ikrG1(θ, ϕ, ω)

r
+ O

(
1

r2

)
, r → ∞. (2.76)

Eq. (2.76) is valid for three-dimensional problems. In the case of two-dimensional problems,
the decay factor changes from 1/r to

√
1/r [247].

Mapping

For the sake of simplicity, the mapping is explained for two-dimensional problems. Marques
and Owen [248] provide the mapping functions for infinite elements. Figure 2.4 shows a
two-dimensional infinite element with four radial nodes in the physical and isoparametric
space.

Nodes one and two are base nodes that originate from the boundary of the discretized
finite element domain Γc. The infinite element extends radially, defined by the direction
from source points to the corresponding base nodes. It is convenient to define the source
points in a single location, such as the center of the fluid domain. The distance from the
center to the base nodes is denoted ri = ai. Mapping nodes, nodes one through four, are
used to transform the physical element to the parent domain. Furthermore, the nodal
degrees of freedom are defined at variable nodes. Often variable nodes coincide with
mapping nodes. The mapping is defined by

x =

4∑

i=1

Mi(s, t)xi (2.77)
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y

x

4

2

1 3

r2

a2 = r2

r1 a1 = r1

s
t

(a) Physical element.

t

s

2

1 3

4

(b) Parent element.

Figure 2.4: IFEM mapping. Topology of a two-dimensional infinite element with four radial
nodes in the physical space and in the isoparametric space.

where Mi(s, t) are the mapping functions

M1(s, t) = −(1 − t)s

(s− 1)
, M2(s, t) = −(1 + t)s

(s− 1)

M3(s, t) = −(1 − t)(1 + s)

2(s− 1)
, M4(s, t) = −(1 + t)(1 + s)

2(s− 1)
.

(2.78)

The relation between the radial distance r and the mapped coordinate s along each side
of the element has the form

s = 1 − 2ai
r

, i = 1, 2. (2.79)

Thus, the base nodes with r = ai are mapped to s = −1, the mapping nodes three and
four with r = 2ai are mapped to s = 0, and s → 1 is mapped to r → ∞. The variable
nodes must be chosen carefully to keep the radial expansion of the infinite elements within
reasonable limits. The interpolation of ai along the inner edge results in

a(t) =
∑

i

Si(t)aj , (2.80)

where Si(t) are one-dimensional shape functions over the base of the parent element.

The choice of basis and weight functions

The interpolation functions are described for three-dimensional problems in the s− t− v
coordinate system, where s is the radial coordinate. The base nodes are repeated m
times in the radial direction, depending on the radial order m. The radial interpolation
functions are based on the Atkinson-Wilcox theorem truncated after m terms. Thus, the
basis function is defined as

ψl(s, t, v, ω) =
1 − s

2
Si(t, v)Sm

j (s)e−ikµ(s,t,v). (2.81)
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The phase component reads as µ(s, t, v) = r − ai = a(t, v)1+s
1−s . Based on the mapping

point i and located at the j-th radial point, it defines the interpolation for node l on a
radial edge. Sm

j (s) is either a Lagrange polynomial, a Legendre polynomial, or a Jacobian
polynomial of order m. The exponential term represents a radial wave-like factor that
equals e−ik(r−a). All m radial nodes are evenly distributed between −1 and 0 regarding
the parent element. The radial order must be m ≥ 3 to avoid improper conditions [55].
Since 2ai/r = 1 − s, polynomial terms in s are equivalent to ascending powers in a/r.
Thus, the radial interpolation scheme satisfies the SRC for m ≥ 1 and is equivalent to the
Atkinson-Wilcox theorem

ψl(s, t, v, ω) ∼
{
α1

r
+
α2

r2
+ . . .+

αm

rm

}
e−ik(r−a). (2.82)

The interpolation polynomial is asymptotically correct with the factor a
r = 1−s

2 or
√

a
r =

√
1−s
2 for two-dimensional problems. Elements of order m can therefore accurately

represent multipole fields of order m− 1.

The weight functions W (s, t, ω) for the conjugated Astley-Leis formulation are the
complex conjugates of the basis function ψl(s, t, ω) with an additional geometric factor
D(s)

W (s, t, v, ω) = D(s)
1 − s

2
Si(t, v)Sm

j (s)eikµ(s,t,v). (2.83)

The geometric factor is D(s) = ((1 − s)/2)2 for three-dimensional infinite elements and
can be adjusted for two-dimensional problems. Summarizing, both the basis and weight
functions behave like a multipole series

ψ(r, ω) ∼
(
a

R

)n

e−ik(r−a), W (r, ω) ∼
(
a

R

)n+2

eik(r−a), n = 1, . . . ,m. (2.84)

Matrix form

The presence of complex conjugates in the basis and weight functions ensures frequency-
independent system matrices. The matrix form can be formulated by rewriting the
interpolation functions Pl(s, t, v) = 1−s

2 Si(t, v)Sm
j (s). The matrix expressions in the

infinite element domain are given by
the mass matrix Mc:

mij =
1

c2f

∫

Ωc

{
DPiPj(1 −∇µ · ∇µ)

}
dΩc, (2.85)

the stiffness matrix Kc:

kij =

∫

Ωc

{
(Pi∇D +D∇Pi) · ∇Pj

}
dΩc, (2.86)
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and the damping matrix Dc:

cij =
1

cf

∫

Ωc

{
DPi∇µ · ∇Pj − PiPj∇D · ∇µ−DPj∇Pi · ∇µ

}
dΩc. (2.87)

The fully coupled mechanical-acoustic hypermatrix system reads as






Ks R 0
0 K Kfc

0 Kcf Kc


− iω



Ds 0 0
0 1

cf
D Dfc

0 Dcf Dc


− ω2



Ms 0 0
−RT 1

c2f
M M fc

0 M cf M c










u
p
pc




=



fs
0
0


 .

(2.88)

The coupling matrices containing shared nodes at Γc are denoted by •fc and •cf , respec-
tively. All matrices specified with • are normalized to the fluid density ρ0.

2.2.3 Spectral stochastic infinite element method

Simulations typically deal with deterministic input data that correspond to a reference or
mean value. Under realistic conditions, however, the input data is subject to uncertainties.
The uncertain input data can be parameterized by a set of independent random variables
ξ = {ξ1, . . . , ξN}, where ξi(θ) are vectorial quantities in the size of the number of elements
in the sample space i = 1, . . . , Ns. One method for solving problems with uncertain
input data is the Monte Carlo method. This method provides an exact solution, but the
problem must be solved for each realization of the input data. Therefore, the method
requires considerable computational power [249].

Spectral expansions

Spectral methods, on the other hand, are more efficient and advanced, but more compli-
cated to use. Spectral expansions are based on Fourier-like expansions of a random process
in L2, which are convergent with respect to the norm associated with the corresponding
inner product. The polynomial chaos expansion, first introduced by Wiener [250], is
restricted to Hermite polynomials spanning the orthogonal basis. The choice of polynomi-
als for the expansion depends on the nature of the distribution of the uncertain input
data [102]. A more sophisticated model is generalized polynomial chaos (gPC) [251], which
is not restricted to Hermite polynomials or Gaussian distributed input data. The gPC
allows all kinds of orthogonal polynomials from the Askey scheme [252]. The gPC is accu-
rate to the mean of the data. For numerical calculations, the infinite series representation
of a uncertain variable X must be truncated

X(ξ) =

∞∑

i=0

xiΦi(ξ) =

P∑

i=0

xiΦi(ξ) + ϵ(N, p), (2.89)
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with the approximation error ϵ(N, p). Depending on the number of random variables N
and the highest order p of the polynomials Φ, the number of deterministic coefficients xi
in the truncated expansion (Eq. (2.89)) is defined as follows

P + 1 =
(N + p)!

N !p!
. (2.90)

Collocation method

A system of equations with spectral expansions of the uncertain input data can be solved
using either intrusive or non-intrusive methods. In this dissertation, only the non-intrusive
methods are studied, where the system of equations can be treated as a black box. The
collocation method is a non-intrusive method that requires solving the system of equations
only at certain specially selected collocation points [253–255]. The collocation points are
defined by the roots of the polynomial of order p+ 1, sorted by the region with the highest
probability, and the required number of points is determined [106]. The deterministic
spectral modes are denoted xi and the particular solutions of the system of equations
Xp(cpi) for the corresponding collocation points cpi.




Φ0(cp
0) Φ1(cp

0) · · · ΦP (cp0)
Φ0(cp

1) Φ1(cp
1) · · · ΦP (cp1)

...
...

. . .
...

Φ0(cp
Q) Φ1(cp

Q) · · · ΦP (cpQ)








x0
x1
...
xP





=





Xp(cp0)
Xp(cp1)

...
Xp(cpQ)





(2.91)

In the case of multiple random variables ξ, there are many possible combinations of roots.
Thus, the number of collocation points is higher than required Q > P and the system of
equations (Eq. (2.91)) is overdetermined. Optimal points are selected points that capture
regions of high probability [256]. In the case of standard normally distributed variables,
the origin is the region with the highest probability. If the roots do not contain the
value zero, it must be added. Thus, the collocation points are sorted according to the L2

criterion. The mean value represents the region with the highest probability. Collocation
points in the outer region do not contribute significantly to the solution. For other types
of distributions, least squares minimization can be applied and the region of the highest
probability is adjusted to the mean of the distribution.

Matrix form

The matrix form of an open system, c.f. Eq. (2.88), depending on random variables ξ can
be written as follows {

K(ξ) − iωD(ξ) − ω2M(ξ)
}
p(ξ) = f(ξ). (2.92)

The hypermatrices of Eq. (2.88) are the matrices K, D and M . The uncertain hyper-
matrices can then be represented via gPC expansions, such as the uncertain stiffness
hypermatrix

K(ξ) ≈
P∑

i=0

kiΦi(ξ) = K
T
Φ(ξ). (2.93)
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The deterministic matrix coefficients are denoty by ki. Using gPC expansions to represent
the uncertain hypermatrices results in the spectral stochastic IFEM

{
K

T
Φ(ξ) − iωD

T
Φ(ξ) − ω2M

T
Φ(ξ)

}
pTΦ(ξ) = f

T
Φ(ξ). (2.94)

All gPC expansions are assumed to have the same orthogonal basis type Φ(ξ) for simplicity.
The solution of Eq. (2.94) gives an estimate of the unknown deterministic coefficient vector
pT , where the entries are called spectral modes of the sound pressure. The realizations at
the collocation points can be treated as deterministic inputs to the system of equations
to generate partial solutions

ppi (cpi) =
f
T
Φ(cpi)

K
T
Φ(cpi) − iωC

T
Φ(cpi) − ω2M

T
Φ(cpi)

. (2.95)

Similar to Eq. (2.91), the spectral modes can then be calculated from the partial solutions
and the coefficient matrix

p = Φ−1(cpi)p
p
i (cpi). (2.96)

With the final solution
p(ξ) = pTΦ(ξ). (2.97)

Setting the right hand side of Eq. (2.94) to zero leads to a spectral stochastic formulation
of the quadratic EVP

Q
T

(λ)Φ(ξ) =
{
K

T
Φ(ξ)+

[
λ
T
Φ(ξ)

]
D

T
Φ(ξ)+

[
λ
T
Φ(ξ)

]2
M

T
Φ(ξ)

}[
vTΦ(ξ)

]
. (2.98)

The uncertain complex-valued eigenvalues ω̄(ξ) are represented by λ(ξ) = −iω̄(ξ), with
the corresponding gPC expansion λ(ξ) = λ

T
Φ(ξ). The uncertain fluid-loaded structural

modes are represented by v(ξ) = vTΦ(ξ).

2.3 Normal modes

The mechanical-acoustic EVP is obtained by setting the right-hand side of Eq. (2.88) to
zero

(K − iω̄D − ω̄2M)v = (K + λD + λ2M)v = 0. (2.99)

The matrices K, D, and M represent the hypermatrices of Eq. (2.88). The complex-
valued eigenvalues are denoted by ω̄ or their corresponding substitutes λ = −iω̄. The
fluid-loaded structural modes are represented by v. Marburg et al. [83] introduce the
concept of normal modes to unbounded problems in linear acoustics. The approach is
based on the state-space linearization proposed by Ruge [257]. The linearized EVP is
defined by the hypermatrix system

{[
M 0
0 −K

]
+ ik

[
0 M
M D

]}[
−ikp
p

]
=

[
0
0

]
. (2.100)

This approach results in a generalized EVP that is twice as large.
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2.3.1 Second-order Krylov subspace methods

The FEM-IFEM formulation given in Eq. (2.99) explicitly depends quadratically on the
complex eigenfrequency ω̄ and hence poses a quadratic EVP. The quadratic EVP can
be projected onto a second-order Krylov subspace using a stable model order reduction
scheme, see van Ophem et al. [76]. The reduced EVP is transformed into a general EVP.
The general EVP is then solved using conventional methods. The orthonormal basis of the
projection subspace is generated using a second-order Arnoldi (SOAR) algorithm [258].
The Ritz eigenpairs of a reduced-order quadratic EVP are good approximations of the
eigenpairs of the original quadratic EVP [259]. An unsplit orthonormal projection basis
V is generated using the SOAR algorithm. An arbitrary initialization vector with random
values between 0 and 1 is chosen to generate the projection basis. The EVP of reduced
dimension q then reads as [259]

(Kq − iω̄Dq − ω̄2Mq)vq = 0, (2.101)

with the reduced system matrices given as

Kq = V TKV , Dq = V TDV , Mq = V T
1 MV1 , vq = V Tv. (2.102)

Only a part of the unsplit projection basis with entries corresponding to the degrees of
freedom of the structural and the acoustic finite element domain (V1) is considered for
the projection of the mass matrix. Thus, the actual zero-block of the mass matrix of the
complementary domain M c is taken into account, as suggested by van Ophem et al. [76].
Fully populated, dense system matrices of the reduced system result from the projection
process. Thus, the reduced quadratic EVP can be solved efficiently, and the resulting
eigenvectors of reduced dimensions can be re-projected to the original size to evaluate the
relative residuals of the approximate eigenpair solution.

2.3.2 Contour integral methods

Typically, CIMs are used to solve nonlinear EVPs. For example, the nonlinear EVP posed
by an unbounded mechanical-acoustic problem using a FEM-BEM formulation. However,
quadratic EVPs can also be solved with CIMs. CIMs essentially work by transforming a
nonlinear EVP into a generalized EVP of reduced dimension. The latter has identical
eigenvalues within a predefined region in the complex plane, see Fig. 2.5.

The advantage of CIMs is that key computations can be performed on distributed
parallel computers. The block Sakurai Sugiura method (block SS) [89] can be used for
solving mechanical-acoustic EVPs. The block SS is a contour integral method based on
resolvent moments. It essentially transforms the nonlinear EVP into a generalized EVP
with block Hankel matrices containing moments of the resolvent of the system matrix.
Using an ellipse defined by a predefined frequency range and aspect ratio as the contour
for the CIM is often useful. The contour is also divided into contour points for integration.
Since slightly damped complex-valued eigenfrequencies are usually associated with small
imaginary parts, this choice of parameters allows a more accurate projection via the CIM
than a circular contour. The number of source vectors and the order of the moment
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γ
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Figure 2.5: Elliptic domain. Elliptic contour enclosing the complex domain in which the
eigenvalues of interest are to be found.

matrices are the parameters used for block SS. Since the contour of the ellipse and both
parameters are critical to the accuracy of the block SS, they must be chosen carefully.
Sakurai et al. [260] recommend an appropriate choice of parameters.

2.4 Effective non-Hermitian Hamiltonian for open systems

The Hamiltonian goes back to Hamiltonian mechanics [261] and is typically used in
classical physics and quantum physics. One of the key postulates of quantum mechanics
is the hermiticity of a Hamiltonian [262]. This postulate, which leads to theoretical
formulations based on Hermitian Hamiltonians, requires that a closed system has real
eigenenergies [263]. In many situations, only a limited subspace of a system is of interest.
Energy can be exchanged between the subsystem and its environment. A theoretical
framework for the description of open systems is the non-Hermitian theory [264]. The
entire Hilbert space is divided into subspaces. One subspace is formed by the eigenfunctions
of the localized solutions and another subspace is spanned by the eigenfunctions of the
scattering channels. Thus, matching the wave functions of discrete and continuous spectra
is a problem in the exact description of open systems. Feshbach’s [265] solution was to
project the entire Hilbert space onto the discrete eigenstates of the system. This leads to
the approach of the effective non-Hermitian Hamiltonian [266–270]

Heff = HR −
∞∑

p=1

∑

C

ikpWCpW
†
Cp. (2.103)

The Hermitian Hamiltonian of the closed system is denoted by HR. The coupling of the
localized states to the scattering channel C is described by the coupling matrix WCp and
the symbol † stands for Hermitian transpose. This simple form is widely used in scattering
theory. The real parts of the complex-valued eigenfrequencies of Heff correspond to the
resonance frequencies, while their imaginary parts correspond to the half-resonant line
widths [266,267]. Maksimov et al. [226] state that the effective non-Hermitian Hamiltonian
method is analogous to the coupled-mode theory [271,272], except that it neglects the
radiation shifts caused by a finite lower band edge and the dispersive properties of
the waveguides. Therefore, the effective non-Hermitian Hamiltonian approach can be
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described as an advanced form of coupled-mode theory. The effective non-Hermitian
Hamiltonian application to open acoustic resonators with Neumann boundary conditions
has been extensively studied and developed in recent years [46,213,225,226].

Open duct-cavity system

Steady-state solutions for closed cavities and waveguides with Neumann boundary con-
ditions can be derived analytically [273–276]. For convenience, we describe an open
two-dimensional duct-cavity system, shown in Fig. 2.6. The eigenfrequencies of a closed

y

x

Lx

Ly d

Figure 2.6: Duct-cavity system. Schematic drawing of a coupled two-dimensional waveguide-
resonator system.

rectangular cavity with Neumann boundary conditions are given by

λm,n =
cf
2π

√√√√
(

(m− 1)

Lx

)2

+

(
(n− 1)

Ly

)2

, m, n = 1, 2, 3, . . . , (2.104)

where the resonant frequency is λm,n, the speed of sound in air is cf , and Lx and Ly

are the width and the height of the cavity, respectively. The corresponding modes ψ are
defined by

ψm,n =

√
(2 − δ1m)(2 − δ1n)

LxLy
cos

(
π(m− 1)(2x+ Lx)

2Lx

)
cos

(
π(n− 1)(2y + Ly)

2Ly

)
,

(2.105)
where δ1n and δ1m are the Kronecker deltas. The Neumann waveguide can be decomposed
into symmetric and anti-symmetric modes. Symmetric modes are symmetric about the
x-axis, i.e. plane waves can always propagate. The possible wavenumbers for transverse
or anti-symmetric modes are defined by

ky =
(p− 1)π

h
, p = 1, 2, 3, . . . (2.106)

To make the conclusion as general as possible, the height of the waveguide is set to h = 1
(unitless). Thus, all dimensions are measured in terms of the height of the waveguide.
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2.4 Effective non-Hermitian Hamiltonian for open systems

The resonator’s center is set as the origin, and the left and right waveguides are attached
along the x-axis. Thus, the waveguide spans from y = −1/2 to y = +1/2. The transverse
modes ϕ have the form

ϕp(y) =
√

(2 − δ1p) cos

(
π(p− 1)(2y + 1)

2

)
. (2.107)

The propagating solutions in the waveguide are given by

ψp(x, y) =
1√

4πkp
e±ikpxϕp(y). (2.108)

The wavenumber of the pth channel of the waveguide is denoted by kp. Thus the dispersion
relation is defined by

k2p = k2 −
(

(p− 1)π

h

)2

. (2.109)

Transverse modes are propagating modes if ky > ((p− 1)π)/h, i.e. the anti-symmetric
threshold is at k = π/h. Thus, transverse modes are evanescent waves if the wavenumber
is below the threshold [44].

The entries for the coupling matrix are evaluated as overlapping integrals between
transverse waveguide modes and the cavity modes on the waveguide–cavity interface [213,
226,268]

Wm,n;p =

∫ 1
2

− 1
2

ψm,n(x = −Lx

2
, y)ϕp(y)dy. (2.110)

The eigenvalues of the effective Hamiltonian can be computed knowing the coupling
matrix. The BIC manifests itself as a purely real-valued eigenvalue. The eigenfunction of
any BIC can be decomposed as

ψBIC =
∑

m,n

am,nψm,n(x, y). (2.111)

The unknown constants am,n can be obtained by solving the effective Hamiltonian’s
EVP [213, 226]. The BIC is perfectly decoupled from the continuum. Therefore, its
eigenfunction must follow

∫ 1
2

− 1
2

ψBIC(x = ±Lx

2
, y)dy = 0. (2.112)

Since mainly two modes interact in the vicinity of a BIC, it is reasonable to truncate the
effective Hamiltonian to a 2x2 matrix. Two strongly coupled degenerate modes forming a
Friedrich-Wintgen BIC are thus well explained by the two-level effective non-Hermitian
Hamiltonian [46,209,225,277]

Heff =

[
λm,n 0

0 λn,m

]
− ikp

[
W 2

m,n Wm,nWn,m

Wn,mWm,n W 2
n,m

]
. (2.113)
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The two-level Hamiltonian depends on the wavenumber kp and is therefore linked to the
eigenvalue via the dispersion relation, see Eq. (2.109). Possible solution techniques are
presented by Sadreev [277] as well as by Wiersig and Jörg [278]. Equation (2.113) has a
real-valued eigenvalue at the point of degeneracy by varying a control parameter, where
the eigenvector contains only two non-zero entries. Thus, the BIC solution can be written
as a linear superposition in a two-level approximation at the point of degeneracy. The
lowest case of degenerate modes symmetric about the x-axis in a closed cavity corresponds
to m = 1, n = 3 and m = 3, n = 1. Only the first scattering channel with the wavenumber
k1 is open at the frequency of interest. Propagation channels with p > 1 are further
assumed to be closed. The entries of the coupling matrix then read as

W1,3;p=1 =
∑

C=L,R

WC
1,3;p=1 =

1

π

√
2Ly

Lx

[
sin

(
π(Ly + 1)

Ly

)
− sin

(
π(Ly − 1)

Ly

)]
, (2.114)

W3,1;p=1 =
∑

C=L,R

WC
3,1;p=1 = 2

√
2

LxLy
. (2.115)

The eigenfunction of this Friedrich-Wintgen BIC can be approximated by a superposition
of the two eigenmodes of the closed resonator fulfilling Eq. (2.112)

ψBIC ≈ a1,3ψ1,3(x, y) + a3,1ψ3,1(x, y). (2.116)

The coefficients are defined by [213]

a1,3 =
W3,1;p=1√

W 2
1,3;p=1 +W 2

3,1;p=1

, (2.117)

a3,1 = − W1,3;p=1√
W 2

1,3;p=1 +W 2
3,1;p=1

. (2.118)

2.5 Modeling of acoustically effective materials

The NVH performance of a system is primarily a function of the mass and stiffness of the
materials used. Noise reduction techniques that rely on increased mass and stiffness are
not always a viable option. This is especially true when lightweight design criteria are
targeted.

2.5.1 Porous materials

Porous materials are lightweight and increase sound attenuation. However, their sound
attenuation properties are related to their thickness. Therefore, they are effective sound
absorbers at higher frequencies. They can be modeled using semi-empirical models. Among
other models, the five-parameter Johnson-Champoux-Allard (JCA) model [279–281]
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2.5 Modeling of acoustically effective materials

effectively describes the characteristics of acoustic propagation in porous materials. The
equivalent dynamic density is given by the following equation

ρp =
ρ0α∞
ϕ

(
1 +

ϕσ

iωρ0α∞

(
1 + i

4ωρ0ηα
2
∞

(σϕΛ)2

) 1
2

)
(2.119)

and the equivalent bulk modulus by

Kp =
γp0
ϕ

(
γ − (γ − 1)

(
1 +

8η

iωPrΛ′2ρ0

(
1 + i

ωPrρ0Λ
′2

16η

) 1
2

)−1
)−1

. (2.120)

We define ϕ, α∞, σ,Λ,Λ′,Pr, γ, and p0 as open porosity, high-frequency limit of the
tortuosity, static air-flow resistivity, viscous characteristic length, thermal characteristic
length, Prandtl number, specific heat ratio of air at room temperature, and ambient
pressure, respectively. The characteristic impedance and wavenumber of the equivalent
fluid modeling the porous material depend on the square root of the dynamic density and
bulk modulus

Zc =
√
ρpKp , kp = ω

√
ρp
Kp

. (2.121)

2.5.2 Microperforated panels

Microperforated panels (MPPs) are another approach to increasing sound attenuation. An
MPP can be thought of as an assembly of small tubes connected to a cavity. Each tube and
enclosed air cavity acts as an individual Helmholtz resonator. Thus, an MPP can be viewed
as a large number of Helmholtz resonators with a common air volume. The advantage of
MPPs is that they can be connected in a variety of ways. This makes them adaptable to
a wide range of acoustic problems [282–285]. However, MPPs have limitations. These
include narrowband absorption, aperture size, and the quarter-wavelength dependence of
the cavity required for maximum absorption. One way to overcome these limitations is to
combine MPPs and porous materials. In comparison to conventional porous materials,
the composite structure has a broadband absorption shifted to a lower frequency [286–291].

The viscous boundary layer thickness is approximately that of the orifices, resulting
in high viscous losses and absorption. The oscillating air in the neck acts as a mass and
the cavity as a spring, making the resonator a harmonic oscillator. An analytical model
is proposed by Maa [292–294]

ZMPP = r + iωm. (2.122)

The acoustic resistance is denoted by r and the acoustic mass reactance is denoted by m

r =
32ηt

ρ0c0σd2
kr , kr =

(
1 +

k2n
32

) 1
2

+

√
2

8
kn
d

t
, kn =

d

2

√
ωρ

η
=
d

2

√
ω

µ
,

m =
tρkm
σ

, km = 1 +
(

9 +
k2

2

)− 1
2

+ 0.85
d

t
,

(2.123)
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with η, σ, ρ, ω, d, t being the dynamic viscosity of air, perforation ratio, density of air,
angular frequency, diameter of the orifice and thickness of the MPP layer, respectively.
Using the standing wave approach, the acoustic impedance of the cavity of length x can
be derived as

ZD = −iρcf cot(kx), (2.124)

where cf is the speed of sound in air and k is the wavenumber. The collective impedance
is then given by the following equation, which consists of a resistance term R = r and a
reactance term X

Z = ZMPP + ZD = R+X = r + i(ωm− ρcf cot(k0x)). (2.125)

Long-wavelength sound waves in small structures can be approximated by assuming
uniform pressure throughout the structures. Thus, small acoustic structures can be
analyzed using lumped components [295]. Acoustic elements have mechanical and electrical
analogues [296]. Therefore, acoustic elements can be analyzed based on equivalent electric
circuits, i.e. an electric circuit consisting of a resistor, an inductor, and a capacitor (RLC).
The equivalent RLC series circuit is shown in Fig. 2.7 for a better understanding of the
terminology. The reactance term consists of an inductive part XL that dominates at

2p

v

ρ0c0

r m

ZD

MPP

Figure 2.7: RLC series circuit. Equivalent circuit for the MPP absorber with air layer.

higher frequencies and a capacitive part XC that dominates at lower frequencies

X = XL +XC = iωL+
1

iωC
. (2.126)

Regarding a series circuit the resonance corresponds to a minimized impedance. Therefore,
the reactance is set to zero ωL− 1/ωC = 0. The resonant frequency of the system can
then be extracted from the circuit formulation [293,297,298]. Sound absorption under a
normal incident wave is defined by [284,299]

α = 1 −
∣∣∣∣
Z − 1

Z + 1

∣∣∣∣
2

=
4Re(Z)

(1 + Re(Z))2 + (Im(Z))2
. (2.127)
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2.5.3 Composite materials

The absorption of a single-layer MPP supported by an air-filled cavity is dominated
by its resonant frequency. The system can be tuned by filling the hollow space with a
porous material. Thus, the surface impedance is obtained by using the transfer matrix
method [300,301]

TMPP =

[
1 ZMPP

0 1

]
, Tp =

[
cos(kpxp) iZc sin(kpxp)

i sin(kpxp)/Zc cos(kpxp)

]
(2.128)

leading to

T = TMPPTP =

[
T11 T12
T21 T22

]
,

[
ps
vs

]
=

[
T11 T12
T21 T22

] [
pw
vw

]

Zs =
T11
T21

= ZMPP − iZc cot(kpxp).

(2.129)

The individual transfer matrix for a porous layer is denoted by Tp, the thickness of the
porous layer is denoted by xp, the pressure and velocity at the impinged surface of the
MPP are denoted by ps, vs, and the pressure and velocity at the rigid wall behind the
porous layer are denoted by pw, vw = 0. The transfer matrix method can also be used to
calculate an MPP with air cavity. Therefore, ZMPP must be multiplied by the impedance
of air, and all porous material properties must be replaced by those of air. The absorption
coefficient is therefore similar to Eq. (2.127) [299,302]

α =
4Re(Zs)

ρ0c0(
1 + Re(Zs)

ρ0c0

)2
+
(
Im(Zs)
ρ0c0

)2 . (2.130)

2.5.4 Acoustic metamaterials

Scattering from a spherical particle is described by Mie theory [303] in electromagnetism,
which is transferred to Rayleigh scattering in acoustics [304]. Bragg scattering [303,305]
describes the scattering of multiple periodic particles. AMMs are typically periodic
structures smaller than the wavelength of their operating frequency.

Periodic structures can be classified into space groups, Bravais lattices, and crystal
systems [306, 307]. An infinite number of lattice points with corresponding lattice
translation vectors can represent a periodic structure. The lattice translation vectors
connect two points in the lattice and depend on the basis vectors of the corresponding
Bravais lattices and hence on symmetry groups [139]. The translation vectors of the
direct lattice span a unit. The smallest units spanned by the lattice vectors are called
unit cells. The Wigner-Seitz cell is a special primitive unit cell with a lattice point in
the center [138]. Each direct lattice has a unique reciprocal lattice, where the reciprocal
lattice vectors are perpendicular to a surface spanned by two direct lattice vectors [308].

A lattice associated with the crystal in Fourier space is called a reciprocal lattice. The
magnitude of a reciprocal lattice vector is proportional to 2π divided by the spacing
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between the sides of the unit cell. Therefore, a reciprocal lattice vector is a grating
vector, and thus, the diffraction pattern of a periodic structure is a map of its reciprocal
lattice [138]. The underlying mathematical model is called the Bloch theorem, which
describes the solution of the Schrödinger equation over a periodic structure [137]. In
acoustics, the Bloch theorem reads as

p(x+ t) = p(x)eikt, (2.131)

where p(x) has the period of the lattice. The plane wave-like term can be interpreted
as changes in the phase of a wave between a plane and its neighboring plane along the
direction of translation. Bragg’s law states that constructive interference occurs when the
path difference is an integer multiple n of the wavelength λ [138]

2d sinβ = nλ. (2.132)

The spacing between two lattice planes is denoted by d and the glancing angle is denoted
by β. The Bragg condition is equivalent to the Laue condition in the reciprocal space

|k| sinϕ =
πn

d
, (2.133)

with the Bloch wave vector |k| = 2π/λ. A Wigner-Seitz cell constructed in the reciprocal
lattice is called a Brillouin zone. Due to reciprocity and the fact that a reciprocal lattice
uniquely defines a direct lattice, knowing the solution of the Helmholtz equation within
the first Brillouin zone also defines the solutions in the entire lattice. Using the symmetry
of the lattice, the Brillouin zone can be further reduced to the IBZ. The contour of the IBZ
plays a major role in the computation of dispersion curves or band diagrams, which show
the eigenvalues of the system in dependence on the Bloch wave vector. Thus, the reciprocal
space is also called k-space. Band diagrams represent eigenvalues evaluated around the
perimeter of the IBZ. The reciprocal lattice vectors cover all possible directions of wave
propagation in the system, carry spatial information, and show dispersion information
due to the interaction between the wave and the periodic structure. However, we lack
information about the points inside the IBZ, but since the extremes always occur at the
key points of symmetry, it is sufficient to compute the perimeters.

Lattice asymmetry, finite-periodicity, aperiodic arrangements, and edge diffraction
distort the results of a perfectly infinite-periodic k-space approach. Another approach
is to compute the normal modes of the entire structure. This way, all effects can be
mathematically reproduced, and more realistic results can be obtained.

2.6 Experimental techniques

In addition to theoretical and numerical modeling, the experimental validation of math-
ematical models is an essential part of the scientific process. Because it is difficult to
accurately model an experimental setup, ISO standards exist to characterize a system
within certain limits. Specific quantities are used to describe a system. These quantities
are then used to compare the mathematical prediction with the experimental results.
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Two important acoustic quantities are the intensity I(x) and the sound power P . The
intensity of the time-harmonic waves is defined by [237,274]

I(x) =
1

2
ℜ
{
p(x)v(x)

}
. (2.134)

Eq. (2.134) is simplified for plane waves and thus in phase propagation of pressure and
particle velocity p(x) = ρ0cv(x) as

I(x) =
1

2ρ0c
ℜ
{
p(x)p∗(x)

}
. (2.135)

Sound power is defined as the intensity integrated over a surface

P =

∫

S
I(x) dS. (2.136)

2.6.1 Impedance tube

Normal incidence material characterization can be performed using a Kundt’s tube.
Kundt’s tube is better known as an impedance tube, which only allows plane wave
propagation within a certain frequency range. The complex-valued reflection coefficient r,
the absorption α, and the complex-valued surface impedance Zs of a material or structure
under normal incidence can be determined using the standard ISO 10534-2:2023 [309]. A
sketch of an impedance tube is shown in Fig. 2.8.

x

Mic. 1 Mic. 2

lm x2x1

pi

pr

Speaker Sample

Figure 2.8: Impedance tube. A sketch of an impedance tube with two microphones attached.
The system is excited by the loudspeaker, which produces a plane wave pi. The
sample is positioned at the right end of the tube, with its inward-facing surface
defining x = 0. The reflected sound pressure is denoted by pr.

A loudspeaker is used to generate a plane wave and the sound pressure is measured
with two microphones at the locations x1 and x2. The coordinates x1 and x2 are defined
by x = l +m and x = l, respectively. The cut-on frequencies are defined by the geometry
of the tube [274]. The upper and lower frequency limits are defined by the distance of the
microphones [309]. The complex-valued sound pressures at the microphone positions are
then given by

p1(ω) = pi(x1, ω) + pr(x1, ω) = pi(0, ω)eikx1 + pr(0, ω)e−ikx1 (2.137)
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and
p2(ω) = pi(x2, ω) + pr(x2, ω) = pi(0, ω)eikx2 + pr(0, ω)e−ikx2 . (2.138)

The reflected sound pressure can also be expressed as pr(x, ω) = pi(x, ω)r [237, 274]. The
transfer function between microphone one and microphone two can then be formulated as

H12 =
p2(ω)

p1(ω)
=
e−ikx2 + re−ikx2

eikx1 + reikx1
. (2.139)

In addition, the transfer functions of the incident and reflected waves between microphone
one and microphone two are given by

Hi =
pi(x2, ω)

pi(x1, ω)
= e−ikm (2.140)

and
Hr =

pr(x2, ω)

pi(xr, ω)
= eikm. (2.141)

Consequently, the complex-valued reflection coefficient r can be calculated

r =
pr(0, ω)e−ikx1

pi(0, ω)eikx1
=
H12 −Hi

Hr −H12
· ei2k(m+l). (2.142)

Based on r, the complex-valued impedance of the surface can be determined as

Zs = Z0
1 + r

1 − r
, (2.143)

where Z0 = ρ0c0 is the characteristic acoustic impedance of the fluid medium. The
absorption then reads as

α = 1 − |r|2. (2.144)

2.6.2 Transmission tube

In addition to the reflected spectrum, the transmission of a system is of interest. Therefore,
normal incidence transmission loss measurements can be performed. A perfectly anechoic
termination is required to accurately determine the transmission loss. Since this is
difficult to achieve, the sample must be measured under two different conditions. The
most common method is the two-load method [310–314]. It is standardized in ASTM
E2611-19 [315]. Figure 2.9 shows a sketch of a transmission tube. The four microphones
in combination with the transfer matrix method are used to obtain the complex-valued
transmission coefficient t. A detailed discussion of the methods used can be found in the
literature [316–320]. The wave decomposition yields

pi = i
p(x1)e

ikx2 − p(x2)e
ikx1

2 sin k(x1 − x2)
, (2.145)

pr = i
p(x2)e

−ikx2 − p(x1)e
−ikx1

2 sin k(x1 − x2)
, (2.146)
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Speaker Sample Termination

Figure 2.9: Transmission tube. A sketch of a transmission tube with four microphones
attached. The system is excited by the loudspeaker, which produces a plane wave
pi. The sample of thickness d is positioned in the center of the tube. The surface
facing the loudspeaker defines x = 0. The reflected sound pressure is denoted by pr,
the transmitted sound pressure is pt, and the reflected sound pressure behind the
sample is pR. The two-load method uses two different conditions to determine the
transmission loss, such as a sound hard, a sound soft, or an absorbing boundary.

pt = i
p(x3)e

ikx4 − p(x4)e
ikx3

2 sin k(x3 − x4)
, (2.147)

pR = i
p(x4)e

−ikx3 − p(x3)e
−ikx4

2 sin k(x3 − x4)
. (2.148)

The evaluation of the pressure and velocity at the surface of the sample leads to the
following results [321]

p(0) = pi + pr , v(0) =
pi − pr
ρ0c0

, (2.149)

p(d) = pte
−ikd + pRe

ikd , v(d) =
pte

−ikd − pRe
ikd

ρ0c0
. (2.150)

The two-port approach, derived from the theory of electrical circuits [322], relates the
pressures and velocities at x = 0 and x = d using the transfer matrix method. The
two-load method, with terminations a and b, results in a four-pole matrix [323–325]

[
pa(0)pb(0)
va(0)vb(0)

]
=

[
T11T12
T21T22

] [
pa(d)pb(d)
va(d)vb(d)

]
, T =

[
T11T12
T21T22

]
. (2.151)

Reciprocity requires that detT = 1 and T11 = T22 holds for symmetric samples. The
matrix entries are defined as

T11 =
p(d)v(d) + p(0)v(0)

p(0)v(d) + p(d)v(0)
, T12 =

p(0)2 − p(d)2

p(0)v(d) + p(d)v(0)
,

T21 =
v(0)2 − v(d)2

p(0)v(d) + p(d)v(0)
, T22 =

p(d)v(d) + p(0)v(0)

p(0)v(d) + p(d)v(0)
.

(2.152)

For an anechoic termination the transmission coefficient t is calculated by inserting
p(0) = 1 − r, v(0) = (1 − r)/(ρ0c0), p(d) = te−ikd, and p(d) = te−ikd/(ρ0c0) into
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Eq. (2.151) for a = b

t =
pt
pi

=
2eikd

T11 + T12
ρ0c0

+ ρ0c0T21 + T22
. (2.153)

The transmission loss LP in dB can be calculated by [326]

LP = 10 log10

( |pi|2
|pt|2

)
= 10 log10

(
1

|t|2
)

=

= 20 log10

(
1

|t|

)
= 10 log10

(
Pi

PT

)
= 10 log10

(
1

T

)
,

(2.154)

where Pi is the incident sound power, PT is the transmitted sound power, and T = |t|2 is
the transmission.

2.6.3 Laser Doppler Vibrometer

Laser Doppler vibrometry is classically used to measure the surface velocity of a vibrating
body. The mechanism of operation is based on the Doppler shift of the laser. This is caused
by an oscillating reflector. However, Laser Doppler Vibrometer (LDV) measurements
can also be used to detect changes in the refractive index of air [327]. This is called
refracto-vibrometry and is used to visualize the sound pressure fields. Figure 2.10 shows
the setup for a sound field visualization inside a cavity.

LDV

Sample
Rigid wall

Reflector GlassCavity

Laser beam

Figure 2.10: LDV setup. A sketch of a setup for sound field visualization. The setup consists
of an air cavity that can be excited by a loudspeaker. The cavity has two glass
sidewalls to ensure viable laser transmission. The laser is reflected from a coated
rigid wall.

The laser beam of the scanning LDV passes through a transparent sample and is
reflected by a rigid wall. The wall is coated with a highly reflective film. The surface
vibration of the rigid wall must also be measured to ensure the required stiffness. It is
necessary to ensure that the surface velocities are much smaller than the signal from the
scanning LDV. This means that sound pressure changes will dominate the measurement.
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The glass walls of the sample should be made of highly transmissive glass to reduce
reflections. The thickness of the glass must be such that the glass walls can be considered
rigid. Thus, the resonances of the cavity will not interfere with the resonances of the
glass. The glass is bonded to the sample and the sample is hermetically sealed.The
density variation slightly shifts the phase of the emitted monochromatic laser light due
to the propagation of sound waves inside the cavity. The superposition of the reflected
and emitted laser light produces a speckle pattern on the photodetector. This allows
measurement of the corresponding pressure wave frequency and refractive index change.

Gladstone and Dale [328] established a relation between the refractive index n and the
density ρ for several fluids. The relationship can be expressed in terms of the refractive
index n and total pressure p = p0 + p̃ in the case of air using p/p0 = (ρ/ρ0)

γ , where γ is
the ratio of specific heats, and a first-order Taylor series approximation as follows

n = (n0 − 1)

(
1 +

p̃

p0

) 1
γ ∼= n0 +

n0 − 1

γp0
p̃. (2.155)

For simplification, p̃ is expressed as p. The refractive index of air determines the phase
of light passing through a sound field [329]. The phase depends on the refractive index
n, which can be related to the sound pressure. Therefore, the phase of light can also be
related to the sound pressure. The velocity of the LDV being proportional to the dynamic
phase of the light can hence be expressed as [330–334]

v(ω) = ω
1

γp0

n0 − 1

n0

∫

L
p(l, ω)dl. (2.156)

The sound pressure field inside the cavity can be reconstructed without perturbing the
pressure field using Eq. (2.156).
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3 Major Findings of Attached
Publications

The main results and novelty of the attached publications are summarized with respect
to the state-of-the-art and the research questions.
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3 Major Findings of Attached Publications

Publication AP1

F. Kronowetter, L. Moheit, M. Eser, K. K. Sepahvand, and S. Marburg. Spectral
Stochastic Infinite Element Method in Vibroacoustics. In: Journal of Theoretical and
Computational Acoustics, 2020, 28(02), p. 2050009.

How can we model uncertainties in unbounded domains? The first research
question arose from previous works in Steffen Marburg’s group [335–337]. In [AP1], a
FEM-IFEM framework has been developed to solve unbounded Helmholtz problems. The
infinite elements in the complementary domain are based on the conjugated Astley-Leis
formulation [54,55]. The underlying Petrov-Galerkin method uses complex conjugates of
the radial interpolation functions with an additional geometric factor as weight functions,
resulting in frequency-independent system matrices. The performance of the code has
been investigated for two-dimensional problems. It has also been extended to half-space
problems [71,338,339]. The code has been validated against an analytical solution to a
radiation problem with multipole excitations [340].

Furthermore, a UQ framework has been implemented to address the influence of uncer-
tain input data on the system response. Using the non-intrusive collocation method,
the matrix system is a black-box model, while the UQ is modeled within a stochastic
framework. There are several publications on probabilistic UQ using stochastic finite
elements [108, 109, 111]. Previous works in Steffen Marburg’s group deal with UQ in
acoustics [110, 112]. [AP1] presents the spectral stochastic IFEM for discretizing the
complementary domain.

The example of an open convertible with uncertain parameters is investigated. The
structural particle velocity at the window-fluid interface is assumed to be uncertain. A
log-normal distribution is chosen. To cover the effects of reflections in the cabin, the seat
cushion admittance is assumed to depend on a standard normally distributed random
variable. It is shown that the influence of the polynomial order, as well as the size of the
sample space, have a significant impact on the performance of the method. The results of
the gPC expansions with a polynomial of order 9 are in agreement with the Monte Carlo
simulations.

A second example presents uncertain dispersion curves of infinite-periodic C-shaped
meta-atoms based on gPC expansions of the uncertain input data. The radius and
aperture width are chosen as uncertain input data. The standard deviation corresponds
to the manufacturing tolerances of the additive manufacturing technique used. It is shown
that the first band gap is slightly affected by uncertain input data, while the second
band gap almost disappears. Thus, the attenuation characteristics of sonic crystals are
significantly affected by uncertain input data such as manufacturing tolerances.
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In a third example the influence of uncertain input data on normal modes of a single
C-shaped meta-atom is studied. Since the C-shaped meta-atom does not meet the strict
symmetry requirements of the IBZ, the eigenvalues evaluated around the perimeter of the
IBZ may lack information. Thus, normal modes give accurate results of local resonances
while neglecting Bragg scattering, i.e. in the case of a single meta-atom. Local resonances
typically dominate the transmission loss curve over Bragg band gaps [129]. This supports
the normal mode approach. The results of [AP1] show that small deviations in radius
and aperture width from the optimal configuration have a large effect on the frequency
shift of the resonances.

How to solve time-harmonic problems and compute normal modes of exterior Helmholtz
problems with uncertain input data has not been shown before this work. The accuracy
of the UQ framework and the importance of considering uncertain data in the modeling
of AMMs are discussed. This work lays the mathematical foundation for the design and
analysis of future acoustic meta-atoms.

Author contributions. Felix Kronowetter, Lennart Moheit, Kian K. Sepahvand, and
Steffen Marburg conceived the project. Felix Kronowetter and Lennart Moheit imple-
mented and validated the code. Felix Kronowetter performed the analysis. All authors
discussed the results. Felix Kronowetter prepared the paper with contributions from all
authors. Lennart Moheit, Martin Eser, Kian K. Sepahvand, and Steffen Marburg edited
the paper.
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3 Major Findings of Attached Publications

Publication AP2

F. Kronowetter, S. K. Baydoun, M. Eser, L. Moheit, and S. Marburg. A Benchmark
Study on Eigenfrequencies of Fluid-Loaded Structures. In: Journal of Theoretical and
Computational Acoustics, 2020, 28(02), p. 2050013.

How to compute normal modes of mechanical-acoustic coupled problems
in unbounded domains? The second research question arose based on the results
of [AP1] using state-space linearization, see Ruge [257], to compute the normal modes
of the system. A well-known reference problem with an existing analytical solution, i.e.
a vibrating submerged spherical shell [341], is chosen for the study. Strong coupling
conditions are assumed. This problem has been included in preliminary studies using
boundary elements [342–344]. In AP2, as a first attempt, a state space linearization
proposed in previous works of the group [83,84,86,336] is applied to solve the FEM-IFEM
based EVP of the reference problem. The quadratic EVP is linearized and solved in a
state-space. The result is a generalized EVP that is twice as large. The problem with
this approach is that the solver leads to incorrect eigenfrequencies.

Thereupon, [AP2] addresses this problem. Two additional remedial techniques are
compared. First, a stable model order reduction technique is used. The stability of the
original system is preserved and accurate results are obtained, while only a fraction of
the original system’s degrees of freedom are required. Therefore, the quadratic EVP is
projected onto a second-order Krylov subspace. The reduced EVP is then transformed
into a general EVP. The orthonormal basis of the projection subspace is generated by
means of a SOAR algorithm [258]. A second-order Krylov subspace approach is used in
this paper for the generation of a state-of-the-art reference solution.

Second, the Cauchy integral formula is used. CIMs have recently been used to solve
FEM-BEM based nonlinear EVPs [89–91] and mechanical-acoustic EVPs [343,345]. Based
on the work of Baydoun and Marburg [94], the block SS [89] is used to solve FEM-IFEM
and FEM-BEM based mechanical-acoustic EVPs. The choice of parameters for the
method is in accordance with the recommendations of Sakurai et al. [260].

In [AP2], the time-harmonic solutions as well as the solutions to the EVP of a sub-
merged spherical shell are computed using FEM-PML, FEM-BEM, and FEM-IFEM.
Their accuracy and performance is compared. In particular, the accuracy of CIM is
compared to the solution of the same FEM-IFEM EVP by a Rayleigh-Ritz procedure with
second-order Krylov subspaces. The CIM requires a similar numerical effort. However, the
CIM achieves relative residuals that are several orders of magnitude smaller. In addition,
the eigenfrequencies obtained by FEM-IFEM, FEM-PML and FEM-BEM are compared
with each other and it is found that they agree well.

[AP2] demonstrates the accuracy of CIMs for solving quadratic EVPs of mechanical-
acoustic coupled unbounded Helmholtz problems based on FEM-IFEM discretization.
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The ability to limit the scope of the problem to a predefined region in the complex plane
is the advantage of CIMs. CIMs also allow problem parallelization at multiple levels.
For example, the evaluation of matrix-vector products, the computation of each contour
point, and even the evaluation of multiple elliptical contours over a large frequency range
can be performed in parallel. As a result, CIMs are accurate and recommended for the
solution of mechanical-acoustic coupled problems with FEM-IFEM discretization.

Author contributions. Felix Kronowetter, Martin Eser, Suhaib Koji Baydoun, and
Steffen Marburg conceived the project. Felix Kronowetter, Martin Eser, and Suhaib Koji
Baydoun implemented the code, performed the analysis, and discussed the results. Felix
Kronowetter prepared the paper with contributions from all authors. Lennart Moheit,
Martin Eser, Suhaib Koji Baydoun, and Steffen Marburg edited the paper.
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3 Major Findings of Attached Publications

Publication AP3

F. Kronowetter, L. Pretsch, Y. K. Chiang, A. Melnikov, S. Sepehrirahnama, S. Oberst, D.
A. Powell, and S. Marburg. Sound attenuation enhancement of acoustic meta-atoms via
coupling. In: The Journal of the Acoustical Society of America, 2023, 154(2), pp. 842-851.

The results of [AP1] and [AP2] form the basis for a more detailed study of the nor-
mal modes of meta-atoms in unbounded domains. In addition, the works of Elford et
al. [129] and Moheit et al. [337] suggest that there is some interaction between meta-atoms.
The distance between meta-atoms is typically smaller than their operating wavelength.
Therefore, interactions such as longitudinal near-field coupling [182] and transverse cou-
pling occur [183]. In the case of fluid acoustics, there is only pressure coupling. Since the
interaction could be used to further improve, e.g., sound attenuation, the question arises:
How to tune acoustic metamaterials using coupling?

In [AP3], the cavity resonant modes of two C-shaped resonators are analyzed in an
unbounded domain as a function of variable geometrical parameters. The cavity resonant
modes are those with the highest Q-factor.

First, the distance between the resonators is studied. It is shown that symmetric and an-
tisymmetric modes cross at periodic distances equal to half the resonant wavelength. The
crossing points of the real and imaginary parts are shifted with respect to each other by
about a quarter wavelength. Based on modal analysis, the highest attenuation of a normal
incident sound wave is expected at the points of degenerate modes. The time-harmonic
analyses show that at every other degeneracy point with the dominant symmetric mode,
there are dips in the transmitted sound power. It is found that modal degeneracy is a
prerequisite for particularly high transmission minima and thus for increased local energy
trapping.

Second, the relative orientation of the C-shapes’ apertures is studied. Coupling in-
troduces the possibility of tuning via the relative arrangement of the resonators, i.e.
distance and orientation. The degeneracy of the modes can be shifted to arbitrary dis-
tances by changing their orientation. In addition, the relative orientation affects the
width of the degeneracy regions. Thus, the coupling strength depends on the relative
orientation and the distance. Transmission dips occur at modal crossings, but only where
the symmetric mode dominates. Good agreement with the numerical data is obtained
from experiments performed in a two-dimensional parallel plate waveguide. Accordingly,
these two parameters provide additional degrees of freedom to tune the response of the
metamaterial without changing the components. Surprisingly, the attenuation maxima
do not occur at the apertures facing the normal incident wave. Instead, they occur
at a particular orientation. For example, the configuration used in [AP3] leads to an
attenuation maximum at a twist angle of 70 deg.

Third, the influence of a detuned resonator is analyzed. The modes no longer cross
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in the real part but in the imaginary part. The state of degenerate modes is not realizable
except for the first crossing. Thus, it is found that detuning weakens the coupling of modes
and leads to poorer sound attenuation compared to identical resonators. In addition,
the aperture size of the detuned resonator is increased, resulting in increased radiation
loss. As a result, modal crossings are restored and degenerate modes are obtained. The
increased radiation loss counteracts the anti-crossings. The increased radiation loss also
stabilizes the system against detuning and increases coupling.

The influence of the relative arrangement of the resonators on the interaction and,
thus, on the AMM response provides additional degrees of freedom for tuning AMMs.
The transmission efficiency of the coupled meta-atoms can be significantly manipulated
by changing the twist angle. Thus, the results obtained in [AP3] open up new possibilities
for more efficient and versatile AMMs for noise control. In addition, increased aperture
widths and distances corresponding to modal degeneracy can be used to achieve stronger
coupling and, for example, mitigate the effects of manufacturing inaccuracies. In summary,
the results of [AP3] contribute to the advancement of the design and tuning of advanced
and high-performance AMMs.

Author contributions. Felix Kronowetter, Steffen Marburg, Sebastian Oberst, and
David A. Powell conceived the project. Felix Kronowetter and Lisa Pretsch performed
the analysis and discussed the results. Yan Kei Chiang designed the experiment and
performed measurements to obtain the transmission coefficients. Felix Kronowetter and
Yan Kei Chiang evaluated the experimental data. All authors discussed the results. Felix
Kronowetter prepared the paper with contributions from all authors. Anton Melnikov,
Shahrokh Sepehrirahnama, Steffen Marburg, Sebastian Oberst, and David A. Powell
edited the paper.
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3 Major Findings of Attached Publications

Publication AP4

F. Kronowetter, P. Wagner, J. Kolodi, I. Brabandt, T. Neumeyer, N. Rümmler, and S.
Marburg. Novel compound material and metamaterial wheelhouse liners for tire noise
reduction. In: Mechanical Systems and Signal Processing, 2023, 200, p. 110548.

[AP1], [AP2], and [AP3] show the numerical framework, the design procedure, and
the adjusting screws for performance tuning in the design of AMMs. The next step
is to apply AMMs in a real-world environment and demonstrate their superiority over
state-of-the-art NVH solutions through standardized measurements. Since the European
Union has decided to address the increasing exposure to traffic noise by strengthening
United Nations Economic Commission for Europe (UN/ECE) Regulations Nos. 51 and
117, the pass-by noise of vehicles in the lowest power class must be reduced by 4 dB(A)
by 2026. In the future, there will be a growing interest in electric vehicles. Engine noise
will decrease and tires will become a more dominant noise source regarding pass-by noise
and cabin noise. A project has therefore been launched in cooperation with the industry
to find an answer to the question: How to reduce tire noise by applying acoustic
metamaterials?

In [AP4], the focus is on composites and AMMs. As possible approaches to noise
reduction are discussed, one question remains: Where to place the materials? The
wheelhouse of a vehicle provides a large area for installing acoustic liners. Since modern
wheelhouse liners are made of compressed nonwovens or even plastics, there is a huge
potential to improve sound absorption and take advantage of surfaces with untapped
acoustic potential. Therefore, the influence of a composite wheelhouse liner and an AMM
wheelhouse liner on both the pass-by noise and the cabin noise is investigated in AP4. The
pass-by noise of a reference car is measured and the frequencies leading to noise maxima
are identified. In a first step, a completely new process for manufacturing sound-absorbing
nonwoven components is developed. The composite liner consists of a fiberglass polyester
bi-component material with an integrated MPP layer. The acoustic properties of the
composite liner are measured in an Alpha Cabin and are in good agreement with the
predictions of the mathematical model. The composite liner is measured and compared to
a currently installed liner, called the reference liner. The sound pressure level is measured
in relation to the pass-by standard. In addition, microphones are installed at the driver’s
seat and at the rear seat. The composite liner slightly outperforms the reference liner in
almost all frequency bands, with the main effect being on interior noise.

The next step is to perform frequency response measurements with special volume
sources. In this way, the effect of the liner can be studied in more detail. Based on the
previous findings of the panel contributions, a new AMM is designed to mitigate the main
frequencies affected by the liner. The absorption of the AMM liner is validated via Alpha
Cabin measurements. Full-vehicle measurements show that the AMM liner outperforms
the composite liner over the whole frequency range.
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[AP4] examines the use of composite liners and AMM wheelhouse liners to reduce
pass-by noise and cabin noise. Although the AMM liner clearly outperforms both the
state-of-the-art liner and the composite liner, the effect of the liner on overall vehicle
noise is dominated by other components. Thus, AMMs provide noise reduction but must
be applied on a larger scale to have a significant effect on pass-by noise.

Author contributions. Felix Kronowetter, Steffen Marburg, Thomas Neumeyer, Ines
Brabandt, and Norbert Rümmler conceived the project. Felix Kronowetter designed the
geometries and performed the analysis. Juri Kolodi fabricated the porous materials and
the composite liner. Felix Kronowetter, Juri Kolodi, Ines Brabandt, and Philipp Wagner
conducted the experiments and evaluated the experimental data. All authors discussed
the results. Felix Kronowetter prepared the paper with contributions from all authors.
Steffen Marburg, Juri Kolodi, Thomas Neumeyer, Philipp Wagner, and Norbert Rümmler
edited the paper.
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3 Major Findings of Attached Publications

Publication AP5

F. Kronowetter, M. Maeder, Y. K. Chiang, L. Huang, J. D. Schmid, S. Oberst, D. A. Powell,
and S. Marburg. Realistic prediction and engineering of high-Q modes to implement sta-
ble Fano resonances in acoustic devices. In: Nature Communications, 2023, 14(1), p. 6847.

[AP3] successfully demonstrates tunable meta-atoms. The working principle of acoustic
meta-atoms is usually based on local resonances whose energy localization properties
are characterized by the Q-factor. Theoretically, BICs have an infinite Q-factor. Small
changes in the geometric parameters degrade the BICs into QBICs, which couple into
extended states and manifest themselves in the form of high-Q Fano resonances. These
high-Q Fano resonances are significantly affected by thermo-viscous losses. This results
in attenuated Fano peaks and an extreme reduction of the Q-factor. In addition, the
geometry must be manufactured accurately. Even small deviations have a significant
effect on the Fano peak, which can even collapse [346]. Designing a BIC-induced mode
with a high Q-factor remains a challenge [227, 228]. This poses the research question:
How to accurately predict high-Q Fano resonances?

In [AP5] a BIC associated with the Friedrich-Wintgen full destructive interference of
degenerate modes of the same symmetry in an open channel-cavity system is demonstrated
in theory and experiment. The BIC formation is well explained by the two-level effective
non-Hermitian Hamiltonian [46, 213, 225, 226], that can be described as an advanced form
of coupled-mode theory [271,272]. The BIC configuration is obtained by evaluating the
natural frequencies of the system as a function of the geometric parameters. Since BICs
are localized solutions they cannot be excited by extended states in the first propagation
channel.

Three cavities with different cavity lengths are designed. They represent the BIC and two
QBICs. Transmission tube measurements are performed to obtain the transmission spec-
tra. The measurement results are compared with numerical simulations that accurately
predict the ghost of the Fano resonance, see Guevara et al. [346], which corresponds to
the BIC. The Fano peaks induced by the QBICs are also accurately predicted. The trans-
mission spectra are significantly affected by thermo-viscous losses, resulting in attenuated
Fano peaks and an extreme reduction of the Q-factor, as expected.

This raises the question: What is the pressure field of a QBIC under realistic con-
ditions? LDV measurements are performed on specially designed samples that allow laser
transmission, suppress additional reflections from the glass, and are rigid with respect
to structural vibrations. This technique allows the cavity pressure field to be visualized
without disturbing it. In [AP5] a high-Q mode induced by an acoustic QBIC is visualized
for the first time. As a result, this work provides direct evidence for an acoustic BIC. The
measured pressure field data provides information on the pressure field amplification.

This raises another question: Where and when does the maximum field enhancement
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occur? For a given QBIC configuration, the pressure fields are measured at multiple
frequencies and the configuration with the peak pressure enhancement is identified. For
further analysis of the excited mode, the pressure field is decomposed using a Fast Fourier
Transform. Higher-order modes that are excited simultaneously as the BIC mode are
identified. In order to suppress these modes, the concept of a symmetry-reduced cavity
proposed by Huang et al. [225,228] is applied. Therefore, the cavity is gradually reduced by
the use of each of the symmetry axes. Numerical predictions of the cavity reflection spectra
are verified by impedance tube measurements. The configuration with the maximum pres-
sure enhancement is determined by mapping the pressure fields of the fully reduced cavity
with different lengths. The fully reduced cavity results in the highest pressure increase of
the Friedrich-Wintgen BICs studied, by a factor of about three compared to the full cavity.

When large field enhancement occurs in real acoustic devices, taking into account thermo-
viscous losses, has not been shown before this work. LDV measurements are a promising
technique for obtaining the missing field enhancement data. [AP5] is a fundamental con-
tribution to the study of BICs. This study enables the design of high-Q Fano resonances
under realistic conditions. The results open up completely new possibilities in this field of
research, such as the application of BICs to high-intensity sound sources, acoustic devices,
and nonlinear acoustics.

Author contributions. Felix Kronowetter, Steffen Marburg, Sebastian Oberst, and
David A. Powell conceived the project. Felix Kronowetter, Yan Kei Chiang, Lujun Huang,
and David A. Powell designed the geometry and modeled the physics behind it. Felix
Kronowetter and Marcus Maeder made samples and performed measurements to obtain
the transmission spectra and the visualization of the BIC. David Anthony Powell and
Yan Kei Chiang advised the modeling and experimental process. Johannes D. Schmid
implemented and uploaded the BIC application. All authors discussed the results. Felix
Kronowetter prepared the paper with contributions from all authors. Marcus Maeder,
Steffen Marburg, Sebastian Oberst, and David A. Powell edited the paper.
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4 Discussion

The novelty of the dissertation’s findings with respect to the state-of-the-art is discussed.
The scientific impact is outlined by addressing the research questions posed.
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4 Discussion

This dissertation presents results that advance the state-of-the-art in analyzing open acous-
tic systems. The choice of discretization method for open systems is critical to accuracy
and solvability. Harari and Hughes [347] examine the cost-effectiveness of the BEM and
FEM with Dirichlet-to-Neumann conditions for interior and exterior Helmholtz problems.
In terms of general applicability, robustness and mathematical structure, and overall
flexibility, they find the FEM to be quite attractive for further development. Shirron
and Babuška [247] study the performance of approximate BCs and infinite elements for
plane wave scattering. The accuracy of the approximate BCs decreases with increasing
frequency. At higher frequencies, their accuracy is several orders of magnitude lower than
that of the IFEM. In [AP1], a FEM-IFEM formulation is used which has proven to be
quite efficient and accurate in solving time-harmonic problems and computing normal
modes for a variety of open acoustic systems [335–337].

However, it has not been shown how to model open systems with uncertain input data
using the IFEM. Probabilistic UQ with stochastic finite elements is the subject of several
publications [108,109,111]. UQ in acoustics has also been addressed in previous works
in Steffen Marburg’s group [110,112]. [AP1] is a follow-up to other recent publications
on open acoustic systems with uncertain input data. A new method for open acoustic
systems with epistemic uncertainties using BEM is proposed by Chen et al. [348]. A
hybrid perturbation approach with both random and interval variables for open acoustic
systems is discussed in another paper by Chen et al. [349]. Two new interval analysis
methods for open acoustic systems are proposed by Wang and Qiu [350].

Research on AMMs and UQ are combined in some publications. He et al. [113] demon-
strate an uncertainty model based on the change of variable perturbation stochastic
FEM to predict the probability density functions of physical responses of AMMs with
random parameters. Pan et al. [114] evaluate uncertainty effects on band gap behavior of
circuitry-integrated piezoelectric metamaterial using order-reduced analysis. Henneberg
et al. [117] show the need to consider uncertainties in phononic crystals. This statement
begs the question: How are the dispersion curves of infinite-periodic sonic crystals affected
by uncertain input data? [AP1] addresses this question by presenting uncertain dispersion
curves of infinite-periodic C-shaped meta-atoms based on gPC expansions of the uncertain
parameters.

Moheit et al. [337] analyze normal modes of finite periodic sonic crystals and their
influence on the transmission. This work led to a second question: How are normal
modes affected by manufacturing tolerances? [AP1] answers this question by studying
the influence of uncertain input data on normal modes of a single C-shaped meta-atom.
The results of [AP1] show that small deviations in radius and aperture width from the
optimal configuration have a large effect on the frequency shift of the resonances.

However, the spectral stochastic IFEM has certain limitations. The radial order of
the infinite elements must be adapted to the characteristics of the scattering object
according to the Atkinson-Wilcox theorem [245]. At higher radial orders the system
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matrices become ill-conditioned [62]. Furthermore, [AP1] shows that the influence of the
polynomial order of the gPC has a significant impact on the performance of the spectral
stochastic IFEM. So does the size of the sample space. Another point of discussion is the
normal mode approach to AMM modeling. Comparing the calculation of normal modes
for the characterization of AMMs with the k-space approach using periodic boundary
conditions reveals several drawbacks. While the normal mode approach provides a more
realistic prediction, it takes longer to compute. In addition, the size of the system
matrices depends on the degrees of freedom of the system and, thus, on the order of
the interpolation polynomials and the size of the mesh. So does the number of modes.
Spurious modes are an artifact of the complementary domain discretization. Therefore,
an additional criterion is needed to classify and sort the modes.

In [AP2] state-space linearization [83, 84, 86, 257, 336] is used to to compute the nor-
mal modes of an FEM-IFEM discretized open system. The quadratic EVP is linearized
and solved in a state-space. The result is a generalized EVP that is twice as large. How-
ever, for mechanical-acoustic problems in open systems, this method leads to incorrect
eigenfrequencies.

Another method for solving unbounded vibroacoustic problems in the time domain
is presented by Van Ophem et al. [76]. Conjugated Astley-Leis infinite elements are also
used to account for the SRC. The quadratic EVP is projected onto a second-order Krylov
subspace, resulting in a reduced EVP, which is then transformed into a general EVP. A
SOAR algorithm [258] generates the orthonormal basis of the projection subspace. Bai
and Su [259] have shown, that the Ritz eigenpairs of a reduced-order quadratic EVP are
good approximations of the eigenpairs of the original quadratic EVP. Thus, by solving
an EVP of significantly reduced dimension, the eigenpairs of the original system can be
obtained. The proposed method uses only a fraction of the degrees of freedom of the
original system. Thus, the stability of the original system is maintained and accurate
results are obtained.

Several publications deal with nonlinear mechanical-acoustic EVPs based on a boundary
element discretization. In a series of papers, Peters et al. [342, 351] used a frequency
approximation of the BEM matrices. The resulting polynomial EVP was solved by
symmetric linearization. The Krylov subspace model order reduction addresses the
computational complexity associated with EVP inflation. Polynomial frequency approxi-
mations quickly deteriorate when dealing with complex eigenvalues other than those on
the real axis. El-Guide et al. [352] approximate the boundary element system matrices
within a contour in the complex plane by a highly accurate rational approximation using
the Cauchy integral formula. CIMs are also used by many researchers to derive subspace
projection methods for nonlinear EVPs [89–91] and in particular for mechanical-acoustic
EVPs [343,345].

[AP2] solves a mechanical-acoustic EVP based on a FEM-IFEM formulation using a
Rayleigh-Ritz procedure with second-order Krylov subspaces as well as a CIM based
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4 Discussion

on resolvent moments. The numerical results are compared with the known analytical
solution of the problem. Both methods require a similar numerical effort. However,
the CIM achieves relative residuals that are several orders of magnitude smaller. An
appropriate choice of the contour is crucial to obtain small relative residuals. The degree
of the resolvent moments should be large enough so that the dimension of the resulting
subspace is greater than the number of expected eigenvalues. In addition, a sufficiently
accurate radial discretization of the infinite elements is critical to capture the modes of
interest.

The numerical results are also compared with those of a FEM-BEM formulation and a
FEM-PML formulation, showing good agreement throughout. The CIM is suitable for
computing normal modes of FEM-IFEM based mechanical-acoustic problems. However,
approximate prior knowledge of the eigenvalues of interest is required to define a tight
contour that encloses them. This allows an accurate projection with only a few contour
points. A larger contour will result in less accurate results and increased computation time.

[AP1] and [AP2] demonstrate numerical methods for solving EVPs of open acoustic
systems. The works of Moheit et al. [337] and Elford et al. [129] indicate inhomogeneous
pressure distributions within a finite-periodic array of meta-atoms. This leads to the two
questions: How do meta-atoms interact? What parameters affect the interaction?

Acoustic coupling plays an important role in analyzing organ pipes [353–355]. Strutt [356]
shows that two pipes sound in unison when they are close together, even if their eigen-
frequencies differ slightly. Johansson and Kleiner [357] study the coupling effects of
two Helmholtz resonators and argue that the coupling mechanisms of organ pipes and
Helmholtz resonators are similar. Thus, Helmholtz resonators provide a good approxima-
tion for more complex organ pipes, despite their different operating principles. The local
resonances of Helmholtz resonators can be coupled by bringing them close together. The
coupling of organ pipes and the transfer to local resonances of Helmholtz resonators raise
the question: Do these results hold for meta-atoms?

In recent years, several publications have addressed the coupling of acoustic resonators in
waveguides [182,358–360]. In addition, the interaction of local resonances within an AMM
unit cell in the subwavelength regime has been demonstrated [361–364]. Yang et al. [365]
demonstrate how strong coupling can affect the performance of an AMM superlens. Dong
et al. [366] study the application of multiple coupled Helmholtz resonators to acoustic
gratings.

Coupling and near-field interaction in electromagnetic metamaterials have also been
investigated [367–370]. Liu et al. [371] note that the coupling between electromagnetic
metamaterial elements can have a significant impact on the behavior of the material as a
whole. Keiser et al. [372] and Liu et al. [371] conclude that near-field interactions must
be considered, especially for closely spaced arrays. Powell et al. [373] demonstrate that
relative orientation and separation affect the near-field interaction between split-ring res-
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onators and that the metamaterial response can be tuned. In a subsequent paper, Powell
et al. [374] analyze the (anti-) crossing behavior of the symmetric and antisymmetric
modes of a pair of split-ring resonators based on the model proposed by Yakovlev and
Hanson [375]. A similar study on split-ring resonators is conducted by Liu et al [376].
Thus, the tunable coupling of split-ring resonators leads to metamaterial tuning. As they
are the electromagnetic counterparts of Helmholtz resonators [377], the following question
arises: How can the results be applied to AMMs?

In [AP3] all the above questions are answered by analyzing the interaction between
two meta-atoms in an open system. Geometrical parameters are identified that influence
the interaction between two cavity resonant modes and, thus, the coupling between the
two meta-atoms. It is found that the coupling parameters provide additional degrees
of freedom for tuning AMMs. The analysis of systems with more than three or four
meta-atoms is certainly difficult since the identification of the relevant modes and their
identification through the parameter space requires additional algorithms. The results
found in [AP3] incidentally provide the basis for the future design of exceptional points
in an open acoustic system [264,378,379].

Since the numerical modeling of open systems and its application to the study of AMMs is
demonstrated in [AP1], [AP2], and [AP3], a new question arises: Is it possible to translate
academic research into a manufacturable, low-cost AMM product that meets industry
standards?

The European Union has decided to reduce the pass-by noise of vehicles in the low-
est power class by 4 dB(A) by 2026. In the future, there will be an increased interest
in noise propagation in electric vehicles [380–382]. Electrification of the powertrain
reduces engine noise. As a result, tires become a more dominant noise source. Tire noise
contributes to pass-by noise and also contributes to interior noise as it propagates through
the structure of the vehicle. That’s why a project has been launched in cooperation with
the industry. The aim is to reduce tire noise.

Tire noise consists of texture impact, tread impact, air pumping, tube resonance,
Helmholtz resonance, horn effect, and tire cavity resonance [383]. The low frequency
cavity resonances have been intensively studied by the scientific community in recent
years [384–390]. As well as the overall performance of the tire and its optimization as an
acoustic source [383,391–393]. Lafont et al. [394] perform a numerical study of the tire
radiation and identify the contact patch as the main contributor in the 800 Hz to 2000 Hz
range. The main noise source is identified, but how can it be attenuated?

Traditional NVH manipulation techniques rely on increasing mass or stiffness. They are,
therefore, inapplicable as they contradict the lightweight design of the vehicle. Another
well-known approach to increasing sound attenuation is the installation of sound-absorbing
materials. Porous materials are broadband absorbers for higher frequencies, while MPPs
are narrowband absorbers. By combining these two absorbers into a composite absorber,
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4 Discussion

broadband absorption shifted to a lower frequency range can be achieved. In recent
years, various composite structures have been intensively studied [286–291]. Recent
innovative approaches propose the application of AMMs in vehicles, e.g. for structural
noise mitigation [169,171,172] or rubber resonant metamaterials in tires [170]. All of the
above approaches use solid structures. When activated, these structures convert energy
at their natural frequencies.

[AP4] links to the question of reducing both pass-by and cabin noise with an AMM
wheelhouse liner. The designed liner outperforms state-of-the-art solutions. This state-
ment is supported by several measurements. Two problems remain. First, the AMM liner,
although simple in design, is more expensive to manufacture than the state-of-the-art
integrated compressed nonwoven liners. Second, the AMM liner is subject to contamina-
tion. This results in reduced sound attenuation. Applying a membrane layer over the
AMM could be a possible remedy. The future goal is to develop a commercially viable
process to begin manufacturing.

This dissertation introduces numerical methods in [AP1] and [AP2], demonstrates tunable
meta-atoms in [AP3], and presents AMMs in an industrial application in [AP4]. AMMs
usually rely on energy localization, e.g. local resonances in acoustics. Local resonances are
characterized by the Q-factor. The higher the Q-factor the higher the energy localization.
BICs have a theoretically infinite Q-factor, are perfectly localized modes, and are thus
predestined for energy localization. Liu et al. [395] demonstrate high-Q QBICs with
Q-factors up to 18511 in all-dielectric metasurfaces. Duan et al. [396] obtain a QBIC with
an ultra-high Q-factor of about 4.1×107 in a one-dimensional photonic crystal nanobeam.

In contrast to the two optical systems mentioned above, thermal and viscous boundary
layers in acoustic systems induce relatively large intrinsic losses. This prevents ultra-high
Q-factors in experiments. As a result, increasing the Q-factor based on QBICs has
been a hot topic in the field of acoustics in recent years [228, 229]. Q-factors of up to
1041 with a pressure amplification ratio of 50 have been obtained [227]. QBICs couple
into the continuous spectrum leading to high-Q Fano resonances in the reflection and
transmission spectra. The higher the Q-factor, the more dominant the losses and the
more unpredictable the Fano resonances. Two questions remain: How to predict stable
high-Q Fano resonances? When does the maximum pressure enhancement occur? [AP5]
answers both of these questions by providing direct access to the pressure values of a
Friedrich-Wintgen BIC.

A new technique is presented to map the sound pressure field of a QBIC. This technique
uses an LDV to ensure that measuring does not interfere with the pressurized field. This
is the first visual proof of an acoustic QBIC. Accurate mapping of the pressure field
gives us a better understanding of real QBICs, including losses of all types and field
enhancement data that allow further analysis of the excited modes. It also shows how to
analyze the pressure field using overlap integrals, which allows for a design with improved
field enhancement properties.
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[AP5] demonstrates how to accurately predict the large field enhancement when thermo-
viscous losses are accounted for in real acoustic devices. This research helps facilitate
the use of BICs in acoustic lasers [397] or ultra-narrow band filtering, for example. The
presented mapping method is time-consuming compared to impedance tube measurements
that provide reflection and transmission spectra. Accurate sizing of the sample is required.
In order not to interfere with the laser beam, it is also necessary to know the natural
frequencies of the sample and transparent walls. The whole setup can be quite costly.

Summarizing the results of the dissertation, the numerical tools to simulate open acoustic
systems are developed, AMMs are analyzed and designed using normal modes, coupling
turns out to be a parameter for AMM tuning, and BICs are studied to allow engineering
of high-Q Fano resonances in open acoustic systems. By again connecting the results to
Lichtenberg’s opening statement, groundbreaking findings are presented that can be used
to manipulate the propagation of sound in unprecedented ways.
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A novel method to solve exterior Helmholtz problems in the case of multipole excitation and random
input data is developed. The infinite element method is applied to compute the sound pressure field
in the exterior fluid domain. The consideration of random input data leads to a stochastic infinite
element formulation. The generalized polynomial chaos expansion of the random data results in
the spectral stochastic infinite element method. As a solution technique, the non-intrusive collo-
cation method is chosen. The performance of the spectral stochastic infinite element method is
demonstrated for a time-harmonic problem and an eigenfrequency study.
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1. Introduction

The Helmholtz equation describes wave propagation in linear time-harmonic acoustics. The

sound pressure acts as the major field variable. Many problems of acoustics deal with radi-

ation or scattering into an infinite domain. Such cases are denoted an unbounded problem

or an exterior Helmholtz problem. To assure the correct decay of the sound pressure at

infinity, the non-reflecting Sommerfeld radiation condition has to be fulfilled. Numerous

computational solution techniques have been developed for exterior Helmholtz problems

over the last decades. They may be categorized into surface and domain-based methods.
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This is an Open Access article published by World Scientific Publishing Company. It is distributed under
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reproduction in any medium, provided the original work is properly cited.
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Surface-based numerical schemes, e.g. the boundary element method (BEM),1–3 solve

the problem just by a surface representation in combination with analytical solutions of the

Helmholtz equation, inherently incorporating the Sommerfeld radiation condition. Hence,

only the surface of the radiator has to be discretized. This results in fewer degrees of freedom

compared to a fully discretized domain. However, BEM system matrices are usually neither

Hermitian nor positive definite.2

Among the domain-based methods, the finite element method (FEM) is very popular.4–6

However, FEM requires special treatments to fulfill the Sommerfeld condition. Well-studied

approaches are known as absorbing or non-reflecting boundary conditions, either locally

formulated7 or globally,8 and the so-called perfectly matched layer (PML) approaches.9

Yet another approach is utilizing the so-called infinite elements. In the infinite finite

element method (IFEM), the exterior domain is discretized by elements approximating the

wave decay at infinity according to the Sommerfeld condition. Among the different meth-

ods, it has become popular to distinguish between either the conjugated or the uncon-

jugated approaches in combination with either the Bettess–Burnett or the Astley–Leis

elements.10,11 Unconjugated formulations are usually applied to the Bettess–Burnett ele-

ments.12,13 They utilize a standard Bubnov–Galerkin discretization scheme leading to a

symmetric coefficient matrix and spatially oscillatory terms in the integral formulation.

Conjugated formulations are usually applied to Astley–Leis elements.14 They use a Petrov–

Galerkin discretization scheme in which the test functions appear to be the conjugate com-

plex basis functions of the radial approximation. This results in a cancellation of oscillatory

terms and thus, in static system matrices but comes at the cost of unsymmetric coefficient

matrices.

It is one advantage of conjugated Astley–Leis elements that a quadratic eigenvalue prob-

lem can be formulated, linearized and solved.16–18 By utilizing the orthogonality of the

modes, modal superposition techniques can be applied for the solution of the harmonic

problem.19,20 The accuracy and the possibility to determine frequency independent nor-

mal modes account for the main motivation of the authors to use infinite elements for

this study. The IFE formulation is combined with a probabilistic uncertainty quantification

(UQ) method.

Such probabilistic UQ methods are used to capture randomness in model parameters.

They are based on the parameterization of random input data using a set of independent

random variables. The set of random variables follows a probability law, that is not nec-

essarily the same as that of the random input data itself. Sampling techniques, e.g. the

Monte Carlo (MC) method, rely on solving the system of equations for any realization of

the input data leading to unique solutions of the model. The accuracy of the estimated

solution depends on the number of samples. The convergence rate of MC methods which is

usually measured with respect to the standard deviation behaves as ∼M− 1
2 , whereM is the

number of realizations.21 In particular for complex finite element models, such a low con-

vergence rate does hardly allow an efficient UQ if a couple of uncertain parameters or even

random fields are taken into account. In contrast to MC methods, spectral decomposition

methods are more complicated to implement but often much more efficient.
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Spectral methods are chosen in this paper to represent the uncertainties. Possible spec-

tral methods are the Karhunen–Loève expansion and Polynomial Chaos (PC) expansions.

The Karhunen–Loève representation of a stochastic process can be understood as a bi-

orthogonal decomposition based on the eigenfunctions obtained through the analysis of its

correlation function.22 Whereas the correlation function has to be known for the Karhunen–

Loève expansion, PC expansions do not depend on the correlation function. PC expansions

are Fourier-like expansions using orthogonal polynomials as basis. Stochastic quantities

are thus parametrized and represented by a spectral expansion. Multiple approaches exist

to solve the stochastic problem. Among them, there are intrusive methods, e.g. Galerkin

methods, which are based on a weighted residual formalism. Hence, they modify the IFE

system of equations and the code needs to be adapted. Non-intrusive methods are designed

to solve the stochastic problem without the need of an adaptation of the infinite element

formulation. Compared to the orthogonal projection, non-intrusive collocation methods are

efficient with respect to the computational costs and they come with a good accuracy.23

In this paper, a non-intrusive, spectral approach of stochastic quantities is applied and the

infinite element system is extended to a spectral stochastic infinite element method. The

procedure is similar to the derivation of stochastic finite elements (SFEs), first introduced

by Ghanem and Spanos.24 Extensive papers on the application of spectral methods to SFEs

were published over the last three decades, see for example Ghanem and Kruger,25 Ngah

and Young,26 Sepahvand et al.27 In a non-intrusive approach, the infinite element system

serves as a black-box model, while the UQ is modeled within a stochastic framework.

While the authors are aware of much literature on probabilistic UQ using stochastic finite

elements in structural mechanics and fluid dynamics, applications to the wave equation and

acoustics seems rather limited so far. Among the latter, two papers were published by the

authors.28,29

A special remark is given to the actual works on uncertainties in metamaterials, since

a test case in this paper deals with uncertain meta-atoms — the term meta-atom will be

explained throughout the paper — used for an uncertain eigenfrequency study. A study on

the influence of uncertainties due to manufacturing tolerances and material defects on the

performance of metamaterials are found in Ref. 30. A particular version of the stochastic

finite element method (SFEM) is applied for the stochastic treatment. The influence of

uncertain material parameters on band-gaps, eigenfrequencies and transfer functions of a

formation of meta-atoms is analyzed. Similar studies were conducted in Refs. 31 and 32,

whereby ideal periodicity in the formation of the meta-atoms is assumed in the three papers

previously mentioned papers on metamaterials. Pan et al.33 discuss the effects of uncertain-

ties in the geometry on the formation of band-gaps of piezoelectric-acoustic metamateri-

als. Another piece of work on the influence of uncertain stiffness and damping parameters

on the properties of acoustic metamaterials was published by Sepahvand and Marburg.34

They use the spectral stochastic finite element method (SSFEM) in combination with the

non-intrusive collocation method as a solution technique for the stochastic problem. A non-

intrusive approach similar to the one herein was recently published in the work of Henneberg

et al.,35 where the effect of uncertainties on dispersion curves was investigated.
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In the remainder of this paper, the theory of infinite elements and spectral methods

including the non-intrusive collocation method are combined and the spectral stochastic

infinite element method (SSIFEM) is established. Further on, the method is validated by

numerical examples for time-harmonic problems and applied to test cases.

2. Mathematical Models

2.1. Infinite element method

Time-harmonic problems describe the state of a system when the initial conditions have

decayed. In linear acoustics, steady state problems with a time-harmonic excitation are

covered by the Helmholtz equation (1).

Δp(x) + k2p(x) = 0, x ∈ ΩF ⊂ Rd, d = 2. (1)

The steady solution is formulated as p̃(x, t) = �{p(x)e−iωt}, with p̃(x, t) being the

sound pressure and p the time-harmonic sound pressure. The wavenumber is denoted by

k = ω
cf
, the speed of sound cf and the circular frequency ω = 2πf . In this paper, just

two-dimensional problems are considered. Exterior or unbounded Helmholtz problems are

defined by a fluid domain of infinite extension. The unbounded fluid domain ΩF is divided

by the interface Γc into a finite element domain Ωf and an exterior domain Ωe. The finite

element domain is of circular shape and the exterior domain is represented by elements of

infinite extension. Similar to the finite element method, the infinite element method is used

to solve the Helmholtz equation and leads to frequency independent system matrices. The

concept of infinite elements is based on a special radial interpolation scheme. The value

of unity of the radial coordinate in the isoparametric space represents infinity in the real

space. All formulations in this chapter are given for two-dimensional infinite elements, but

can easily be extended to the third dimension and be looked up in Refs. 11, 14 and 15. The

discretization of the infinite domain is based on a Petrov–Galerkin scheme. Basis functions

ψt(x, ω) are chosen such that the Sommerfeld radiation condition36 is implicitly fulfilled.

The asymptotic decay of the sound pressure to zero with an increasing distance from a

source is assured by ψt(x, ω) ∼ 1√
r
.

The hypermatrix system for a coupled FE-IFE problem reads as

{[
Kf Kfe

Kef Ke

]
− iω

[
Df Dfe

Def De

]
− ω2

[
M f M fe

M ef M e

]}(
p

pe

)
= f . (2)

The index e symbolizes quantities of the infinite element domain. The matrices

Kf ,Cf ,M f are finite element matrices of the fluid domain with contributions of the exte-

rior domain due to the coupling nodes. Degrees of freedom of the coupling nodes are shared

by the finite element matrices and the infinite element matrices. The corresponding cou-

pling matrices are denoted by Kfe,Cfe,M fe and switched indices vice versa. The sound

pressure of the infinite domain is described as pe.
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Additionally to full-space exterior Helmholtz problems, we deal with half-space prob-

lems. Half-space exterior Helmholtz problems are more common in boundary element for-

mulations.37–39 An advantageous property of the half-space representation is the reduction

of degrees of freedom, hence less computational power is needed. Coyette and Van den

Nieuwenhof40 study the behavior of conjugated infinite elements for half-space domains

bounded by an admittance plane. Results of their studies are the influence of the span of

the admittance boundary condition — the span of the admittance plane — and the size

of the finite element domain surrounding the acoustic source. Interpreting the results leads

to the following conclusions. First, a specific admittance has to be constrained not only

along the finite element boundary but also on the infinite element boundary. Second, the

extension of the inner finite element domain and the resolution of the mesh have a signif-

icant influence on the quality of the solution. The same holds for the radial order of the

infinite elements. Third, an impedance plane with a zero admittance boundary condition

shows an excellent agreement of the simulated solution with the exact solution.

2.2. Uncertainty quantification

Spectral random expansions are an optimal representation of random variables, fields or

processes in the sense of L2-norm, where the functional dependence of the solution on

the set of random variables ξ = {ξ1, . . . , ξN} is constructed. The random variable ξi(θ)

denotes a vectorial quantity in the size of the number of elements θ in the sample space.

The PC expansion41 is a functional representation of uncertain parameters to span the

orthogonal basis having finite variance. A more generalized form of the PC expansion,

the so-called as the Wiener–Askey PC or generalized Polynomial Chaos (gPC), was intro-

duced to cover all types of data distributions. Here, the vector of random variables (ξ)

can be arbitrary and the variables do not need to be Gaussian. Instead of being restricted

to Hermite polynomials, the gPC allows different kinds of orthogonal polynomials from

the Askey-scheme, cf. Ref. 42 for more details. For computational applications, the num-

ber of random variables ξ = {ξ1, . . . , ξN} has to be finite as well as the spectral expan-

sion itself. Hence, the infinite series for the representation of a random variable X is

truncated as

X(·, ξ) =
P∑

i=0

xi(·)Φi(ξ) + ε(N, p), P =
(N + p)!

N !p!
− 1. (3)

The number of deterministic coefficients xi of the truncated expansion depends on

the number of random variables N and the highest order p of the polynomials {Φ}. The
error ε(N, p) vanishes for limp→∞〈ε2(N, p)〉. Accordingly, the gPC functionals of the output

depend on all random input variables and are sorted in the order of the functionals.

For the identification of the deterministic coefficients in the gPC, two types of methods

are common, i.e. intrusive and non-intrusive methods. Intrusive methods, mostly Galerkin

methods, are based on a weighted residual formalism leading to systems of governing equa-

tions for the spectral coefficients of the solution. The deterministic solver has to be adapted,
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hence they are called intrusive. On the other side, non-intrusive methods work without any

modification of the original deterministic code. They rely on a certain set of realizations of

the random input to construct the random output. Thus, the code can be treated as black-

box. Non-intrusive methods are for example the non-intrusive Spectral Projection (NISP),

that is based on a projection of the random output onto a stochastic finite-dimensional

Lebesgue subspace. Computational solution techniques employ sampling-based methods

where deterministic integration approaches using quadrature schemes, sparse grid methods

and least squares minimization are used. In this paper, the collocation method based on an

interpolation scheme is applied. In contrast to the NISP method, the approximation space

is not pre-defined by a certain subspace, but its size depends on the number of collocation

points (cp) used. The system of equations is solved at the selected collocation points leading

to partial solutions X∗ of the problem, i.e.

⎡
⎢⎢⎢⎢⎢⎢⎣

Φ0(cp
0) Φ1(cp

0) · · · ΦP (cp
0)

Φ0(cp
1) Φ1(cp

1) · · · ΦP (cp
1)

...
...

. . .
...

Φ0(cp
P ) Φ1(cp

P ) · · · ΦP (cp
P )

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x0(·)
x1(·)
...

xP (·)

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

X∗(·, cp0)

X∗(·, cp1)

...

X∗(·, cpP )

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

. (4)

As shown, the size of cp equals at least the number of spectral modes Ncp = 0, 1, . . . , P .

This restriction is chosen such that the coefficient matrix is at least square.43 In general,

collocation methods show an oscillatory convergence behavior for randomly chosen collo-

cation points.23 It has been proven that the right choice of collocation points can achieve

approximately the same accuracy as Galerkin methods. This is obtained, when the colloca-

tion points are chosen as the roots of a polynomial of one order higher p+1 than the order

of the polynomial expansion p.44–47 This procedure is similar to the Gaussian quadrature

for the numerical evaluation of integrals. The requirement is imposed such that the residual

at the collocation points is equal to zero. Thereby, the residual in the random dimension

is minimized. Since there are many possible combination of the roots in case of multiple

random variables ξ, the number of collocation points is higher than required and leads to

an over-determined system of equations (4). This means an extension of the number of

collocation points from cpP to cpP ∗
, with P < P ∗, whereas the number of spectral modes

remains constant. Therefore, a selection of optimal points is needed. Optimal points are

selected points that capture regions of high probability.48 Hosder et al.23 studied the influ-

ence of the number of collocation points and the polynomial order on the accuracy of the

solution and on the computational power. According to that, it can be computationally

more efficient to double the number of collocation points, i.e. Ñcp = 2Ncp, than to increase

the polynomial order. The accuracy of the solution is hereby sustained. A further increase

of collocation points does not give a significant improvement in accuracy though. The over-

determined system is then solved by the least squares method. By solving Eq. (4), the spec-

tral modes are obtained. They are the deterministic coefficients for the gPC of the random

output.
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2.3. Spectral stochastic infinite element method

FEM as well as infinite element methods are designed to solve deterministic problems.

Adding random variables to the finite element method is an extension of the deterministic

finite element approach to the stochastic framework. This leads to the stochastic finite ele-

ment method. Considering exterior Helmholtz problems combined with the infinite element

formulation and adding a dependency on random variables results in the stochastic infinite

element method (SIFEM). This is shown for the hypermatrix system equation (2), in the

compact form of

{K − iωC − ω2M}p = f , (5)

in which K,C,M denote the hypermatrices for stiffness, damping and mass, p the solution

vector and f is the loading term. The stochastic infinite element formulation of the system

is then represented as

{K(·, ξ)− iωC(·, ξ)− ω2M(·, ξ)}p(·, ξ) = f(·, ξ). (6)

System matrices and vectors in this form depend on the vector of random variables.

Multiple methods and approaches are known to solve the system of equations. For further

information see Stefanou.21 Pseudo random methods like the MC simulation are the most

accurate methods, but the whole system of equations has to be solved for each realiza-

tion which may end up in high computational costs. Applying spectral approaches to the

stochastic infinite element system results in the spectral stochastic infinite element method,

in analogy to the spectral stochastic finite element method introduced in the publication

by Ghanem and Spanos.24 Random quantities are thus represented by the gPC expansions,

e.g. for the stiffness hypermatrix, one can write

K(·, ξ) ≈
P∑

i=0

ki(·)Φi(ξ) = K
T
(·)Φ(ξ), (7)

with ki being deterministic matrix coefficients. The same procedure is applied for all random

matrices and responses. Substituting the gPC expansions into Eq. (6) leads to the spectral

stochastic infinite element formulation of the system as

{KT
(·)Φ(ξ)− iωC

T
(·)Φ(ξ)− ω2M

T
(·)Φ(ξ)}pT (·)Φ(ξ) = f

T
(·)Φ(ξ). (8)

For the sake of simplification, it is assumed that all gPC expansions have the same

orthogonal basis type Φ(ξ). The solution of the spectral stochastic infinite element system

of equations in Eq. (8) gives an estimation of the unknown deterministic coefficient vector

pT (·). The entries of this vector are denoted spectral modes of the sound pressure. The

realizations at the collocation points can be treated as deterministic input data to the

system of equations to generate partial solutions

p∗
i (·, cpi) =

f
T
(·)Φ(cpi)

K
T
(·)Φ(cpi)− iωC

T
(·)Φ(cpi)− ω2M

T
(·)Φ(cpi)

. (9)
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For the calculation of the partial solution, the infinite element hypermatrix system of

equations in Eq. (2) is not modified but just evaluated for variable input data. All system

matrices and vectors are deterministic. The spectral modes can subsequently be calculated

using the partial solutions and the coefficient matrix, similar to Eq. (4)

p(·) = Φ−1(cpi)p
∗
i (·, cpi). (10)

Thus, the final solution is given as

p(·, ξ) = pT (·)Φ(ξ). (11)

Clearly, the solution can be evaluated at specific spatial points, e.g. xe, i.e.

p∗
i (xe, cpi) =

f
T
(xe)Φ(cpi)

K
T
(xe)Φ(cpi)− iωC

T
(xe)Φ(cpi)− ω2M

T
(xe)Φ(cpi)

, (12)

with the spectral modes given by

pe(xe) = Φ−1(cpi)p
∗
ie(xe, cpi). (13)

This contribution subsequently follows other recent publications on exterior acoustic

problems with uncertainties. Chen et al.49 proposed a new method for exterior acous-

tic problems with epistemic uncertainties using the BEM. A further publication by Chen

et al.50 discussed a hybrid perturbation approach with both random and interval variables

for exterior acoustic problems. Wang et al.51 suggested two new interval analysis methods

for unbounded problems. In contrast, the SSIFEM uses infinite elements for the exterior

domain and covers aleatoric uncertainties. Hence, the method offers a broad application area

and efficient computation of the uncertain model. Moheit et al.52 used infinite elements for

the analysis of finite periodic sonic crystals. The authors computed the normal modes as

well as the insertion losses of different geometries. Furthermore, Melnikov et al.53 applied

finite periodic meta-atoms for the noise reduction of machines. Since the noise excited by

the machine is based on process parameters and underlies certain fluctuations, uncertainties

should be considered for a more accurate analysis. Consecutive studies on both topics could

imply the identification of random input parameters and the application of the SSIFEM.

3. Results

3.1. Validation

An infinite element formulation is self-implemented and validated against an analytical solu-

tion to a radiation problem in order to assure convergence and stability of the simulations.

A pulsating two-dimensional sphere represents the acoustic source. The analytical solution

is given by Eq. (14) and provided by Möser54

p(r, φ) = −iρ0c

N∑

n=0

Vn
H

(2)
n (k0r)

H
(2)′
n (k0b)

cos(nφ). (14)
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A radial velocity or structural particle velocity is preset at the surface of a cylindrical

body. It is assumed that the emitted waves are not effected by any kind of reflection. Hence,

the propagation of the waves is not disturbed and the Hankel function of the second kind can

be applied, i.e. The code is validated for full-space and half-space problems with multipole

excitations. A mesh study is also conducted to evaluate the quality and performance of the

mathematical grid. Results of the validation and mesh study are not shown in this paper,

but the most efficient combination of the parameters are used subsequently.

3.2. Convertible

The SSIFEM is applied to a two-dimensional convertible with an open roof in the first test

case. The car can be considered as a complex system, consisting of mass-spring-damper

subsystems, with corresponding eigenfrequencies. Vibrations are generated for example by

the engine or can be introduced in the system by the unevenness of the road and thus

non-constant values. The frequency range of the vibrations is chosen such that it matches

the eigenfrequencies of the interior of the car and of the front window. The influence of

the vibrating front window on the sound pressure at the ear of the driver is simulated for

frequencies from f = 20 [Hz] to f = 500 [Hz] in steps of 1 [Hz]. This frequency range is chosen

referring to Pfeffer and Harrer.55 Therefore, the structural particle velocity at the window-

fluid interface is considered to be random. Rather arbitrarily, a log-normal distribution

is chosen. Hence, the random structural particle velocity depends on the standard normal

distributed random variable ξ1 resulting in vs(ξ1). To cover the effects of the reflections in the

interior on the acoustic sound pressure field, a frequency dependent admittance boundary

condition is defined at the interior. The values of the admittance boundary conditions of

the interior and of the seat cushion are calculated from measured absorption coefficients

α = 1− |r|2. The complex reflection coefficient r is defined as56

r =
Zs − Zf

Zs + Zf
, (15)

with Zs being the impedance of the solid and Zf = ρfcf being the impedance of the fluid.

Reformulating Eq. (15) leads to the dimensionless admittance of the solid

|Ỹs| =
1− r

1 + r
=

1−
√

(1− α)

1 +
√

(1 + α)
. (16)

This formulation lacks information about the phase angle.57 Additionally, the admit-

tance of the seat cushion is assumed to be random and approximated by a normal dis-

tribution. The random admittance of the seat cushion depends on the standard normally

distributed random variable ξ2 resulting in Y (ξ2), with Y = 1
Zf

|Ỹs|. Absorption coefficients

are frequency dependent, so are the corresponding admittances. An interpolation scheme is

implemented. It approximates the absorption coefficients throughout the whole frequency

range based on the measured data. A preceding sensitivity analysis by the authors has

shown, that the structural particle velocity as well as the seat cushion are the dominant
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parameters. Modest changes in the air density or in the speed of sound lead to slight changes

of the output of the system compared to the dominant parameters. The complexity of the

model and the computational power needed increase considerably with additional random

input parameters. Hence, we focus on the dominant parameters and assume all others to be

deterministic. A realistic representation of the sound pressure field of an open convertible

is assured using the infinite element method.

For simplification, the road underneath the car is represented by a fully reflecting bound-

ary. Thus, it can be considered as a half-space problem. The geometry of the convertible

car is simplified to keep the computational costs low. The mesh is chosen considering the

results of the previous mesh study. A quadratic, triangular mesh is used in the finite element

domain. The finite element domain is defined by a semicircle enclosing the convertible. To

minimize the computational costs, the radius of the semicircle of the finite element domain

is kept small. For a convertible of an approximate total length of 5 meters, the radius is set

to r = 3 [m]. The mesh size in the FE-domain is defined by Ne = 10 elements per wave-

length. For the infinite element domain, Lagrange polynomials are selected for the radial

discretization with a radial order of m = 6.

In the case of the convertible, 2000 identical realizations of the random variables ξ1
and ξ2 for the input of the MC simulations and for the spectral expansion of the output

are used. The random input data and the corresponding distributions are shown in Fig. 1.

The probability density functions (PDFs) are displayed for a better understanding and the

actual data are shown by the red points. The choice of identical realizations enables the

comparison of the results of both simulation techniques and the evaluation of the error at

the exact same points. The system responses are evaluated at an assumed position of the

driver’s ear and shown for f = 500 [Hz].

The results from the MC simulations with 2000 samples and the gPC expansion are

shown in Fig. 2. The highest accuracy is achieved in the region of the highest probability

for both, the gPC expansion using polynomials of order 3 and 9. Whereas the gPC of order

(a) (b)

Fig. 1. Distributions of the random input data of the convertible. (a) Random structural particle velocity
and (b) random boundary admittance.
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Fig. 2. System response for MC and gPC (3rd and 9th-order) at f = 500 [Hz].

(a) (b)

Fig. 3. Pointwise relative error evaluated at f = 500 [Hz]. (a) Pointwise relative error of the 3rd-order gPC
and (b) pointwise relative error of the 9th-order gPC.

3 produces higher deviations from the MC reference solutions with an increasing sample

space, the gPC of order 9 is stable. A corresponding pointwise relative error is defined by

e1 = ||ε||L2 =
|pMC−pgPC|

|pMC| and shown in Fig. 3 for f = 500 [Hz], to explain the behavior of

the expansions. By using 20 collocation points, the gPC of order 3 produces a maximum

error of e1 = 0.0450. The gPC of order 9 leads to a maximum error of e1 = 6.4 · 10−8.

Since the higher-order expansion needs 110 collocation points, the computational time more

than quintupled. Depending on the requirements of the simulation, the polynomial order

has to be chosen with care, in particular with respect to the dimension of the sample space.

The further results of the convertible are all produced by applying the gPC of order 9 with

100 000 realizations for the random variables. One important feature of the gPC consists in

its mean value accuracy. This is presented in Fig. 4(a). The mean values μ of the system

responses using the gPC and MC methods are identical. The gPC expansion converges in the
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(a) (b)

Fig. 4. System response — sound pressure field — for f = 20 [Hz] to f = 500 [Hz] evaluated at the ear of
the driver and the sound pressure field for f = 500 [Hz]. (a) System response for MC and gPC (3rd and
9th-order) and (b) sound pressure field of the convertible.

(a) (b)

Fig. 5. PDF and variance of the sound pressure evaluated at the ear of the driver at f = 500 [Hz].
(a) Probability density function of the 9th-order gPC and of the MC method and (b) variance of the
9th-order gPC and of the MC method.

mean-square sense with respect to its truncation. Hence, the mean value represents a deter-

ministic value for the system response function. Furthermore, the first spectral mode exactly

fits the deterministic solution. The gray area represents all possible outcomes, bounded by

the maximum and minimum values of the system response. The deterministic sound pres-

sure field of the convertible for f = 500 [Hz] is shown in Fig. 4(b). The PDF of the system

response for f = 500 [Hz] is displayed in Fig. 5(a). The PDF shows good accordance to

the reference solution, so does the variance, with some deviations at certain frequencies

though. An explanation lies in the mathematical formulation of the spectral expansions.

They are mean value accurate but lose accuracy for higher-order stochastic moments. It

should be mentioned, that both the PDF and variance reference solutions are based on

2000 realizations. The reference solutions converge for a larger number of realizations. Since

this becomes quite time consuming and the mean value accuracy is yet proven, it is not

presented in this paper.

3.3. Meta-atom

The second test case deals with an uncertain modal analysis of an acoustic meta-atom.

Let us denote an acoustic meta-atom as the body inside a unit cell of a periodic structure.
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Fig. 6. C-shaped sonic crystal with random radius r(ξj) and size of the aperture A(ξi).

Since the eigenfrequencies of the unit cell are of importance for the behavior of the acoustic

metamaterial, they have to be identified accurately. Several solution techniques exist and

are common in current literature. However, they include several assumptions, restrictions

and problems, e.g. infinite periodicity and symmetry restrictions depending on the space

group. In contrast, the meta-atom is analyzed completely decoupled from its surroundings

in this paper. The geometry of the meta-atom is extracted from Melnikov et al.58 and Elford

et al.59 and shown in Fig. 6.

This kind of meta-atom, also called c-shaped meta-atom, does not fulfill the strict sym-

metry requirements in the unit cell as, for example, sonic crystals do. As a consequence,

the irreducible Brillouin zone and the corresponding reduced wave vectors combined with

Floquet–Bloch boundary conditions, which are applied for the computation of dispersion

curves, change. Thus, the eigenfrequency study is of more complex nature. Therefore, the

SSIFEM is chosen here. The specific properties of the meta-atom are highly sensitive to

a slight change in geometry or material parameters. Hence, the deviations from the ideal

computer model due to manufacturing tolerances or material inhomogeneities are of inter-

est. This is why UQ is applied. Here, we assume the radius of the cavity and the size of

the aperture to be random quantities. For simplification, both random input variables are

supposed to be normally distributed. Since normally distributed data do not have a lower

or upper limit by definition, we define artificial limitation criteria. Hence, the random input

data follow a pseudo normal distribution. The random input data is shown in Fig. 7. The

eigenvalue problem

Q̃
T
(λ, ·)Φ(ξ) = λ2M̃

T
(·)Φ(ξ) + λC̃

T
(·)Φ(ξ) + K̃

T
(·)Φ(ξ), (17)

has to be solved, in order to obtain the eigenfrequencies. The relevant eigenfrequencies can

be identified by looking at its mode shapes. The frequencies of interest are those, for which

the acoustic energy is focused in the cavity. For simplification and to meet the requirements

of the definition of the quality factor, the eigenfrequencies are transferred from the imaginary

part to the real part. Similarly, the damping constants are treated in a reciprocal way. The

imaginary part of the corresponding eigenfrequencies is extremely small, leading to a high

dissipative quality factor q =
�{feig}
2�{feig} .

60 The corresponding modes are also known as cavity

modes.
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(a) (b)

Fig. 7. Random input data of the meta-atom test case. (a) Random radius of the c-shaped sonic crystal and
(b) random size of the aperture of the c-shaped sonic crystal.

Fig. 8. The first four cavity modes of the c-shaped sonic crystal.

The first four cavity modes are displayed in Fig. 8. The random eigenfrequencies for

the first and fourth cavity modes are presented in Fig. 9. For the first cavity mode, the

maximum eigenfrequency is f
(1)
max = 1.2109·103 [Hz] and the minimum eigenfrequency f

(1)
min =

1.1659 · 103 [Hz]. This leads to a variation in the region of Δf (1) ≈ 50 [Hz]. The maximum

frequency of the fourth cavity mode is f
(4)
max = 1.1341 · 104 [Hz] and the minimum frequency

f
(4)
min = 1.1027 · 104 [Hz], with a Δf (4) ≈ 314 [Hz]. Considering the high sensitivity of the

design, small variations of the input radius and the size of the aperture lead to significant

changes in the effective area of the meta-atom.

Additionally, the band-gaps of an infinite periodic c-shaped configuration are presented

in Fig. 10 to show the effects of uncertainties on band-gaps. The lattice constant is chosen as

0.015 [m] and the standard deviation of the random radius and aperture are selected accord-

ing to the common tolerances of 3D printing techniques of approximately ±0.2 [mm]. The

minimal, mean and maximum values of the stochastic analysis are represented by blue, black
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(a) (b)

Fig. 9. Random output data of the meta-atom test case. (a) Random eigenfrequency belonging to the first
cavity mode and (b) random eigenfrequency belonging to the fourth cavity mode.

Fig. 10. Uncertain dispersion curves shown for the Γ → X direction of the reduced wave vector with high-
lighted first and second band-gap. The reference band-gaps are the solutions of a deterministic configuration.

and red lines. Furthermore, the area representing the possible outcome of eigenfrequencies

is colored in gray. The deterministic configuration of c-shaped meta-atoms with physical

parameters based on the mean values of the random data is plotted as a reference solution.

The random parameters show significant influence on the first band-gap. The influence on

the second band-gap is even stronger since it is tremendously narrowed. Thus, uncertain

input parameters should be considered when simulating periodic structures, since in certain

parameter configurations band-gaps can vanish. It has to be mentioned, that the contour

of the irreducible Brillouin zone might not lead to a global maximum in the eigenvalues of

the system. Hence, the dispersion curves shall not be discussed in more detail. In future

application, a combination of infinite elements and Floquet–Bloch boundary conditions with

random input parameters features a more realistic method for the analysis of finite periodic

structures with negligible boundary effects.
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4. Conclusion and Outlook

The spectral stochastic infinite element method turns out to be a profound approach for

unbounded Helmholtz problems with uncertain input data. It is shown, that the influence of

the polynomial order as well as the size of the sample space have a significant influence on the

performance of the method using the test case of an open convertible. A future application

of the SSIFEM is the modeling of metamaterials, which might be used in periodically

structured sound barriers. Since metamaterials are predominantly produced via 3D printing,

the imprecision of the manufacturing process leads to a high deviation of the real model from

the computer model. Fortunately, the SSIFEM method covers all physical effects without

any simplifications. In particular, it models accurately the manufacturing tolerances and

other sources of uncertainties. Both, half-space and full-space formulations are accessible

and can be combined with Floquet–Bloch conditions, if boundary effects of the structure

can be neglected. In the scope of this contribution, the importance of the incorporation of

uncertainties in this case is emphasized. In summary, the SSIFEM has a high potential in

the calculation and prediction of the behavior of metamaterials.
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In this paper, a coupled finite/infinite element method is applied for computing eigenfrequencies of
structures in exterior acoustic domains. The underlying quadratic eigenvalue problem is addressed
by a contour integral method based on resolvent moments. The numerical framework is applied
to an academic example of a hollow sphere submerged in water. Comparisons of the computed
eigenfrequencies to those obtained by boundary element discretizations as well as finite element
discretizations in conjunction with perfectly matched layers verify the proposed numerical frame-
work. Furthermore, extensive parameter studies are carried out illustrating the performance of the
method with regard to both projection and discretization parameters. Finally, we point out that
the proposed method achieves significantly smaller residuals of the computed eigenpairs than the
Rayleigh Ritz procedure with second-order Krylov subspaces.

Keywords: Infinite element method (IFEM); nonlinear eigenvalue problems (NLEVPs); fluid-
structure interaction (FSI).

1. Introduction

Frequency-wise response analyses of large-scale vibro-acoustic problems are associated

with a significant computational effort and hence, several numerical techniques have been

developed in this regard. Projective model order reduction techniques have been success-

fully applied to accelerate the solution of frequency dependent structural-acoustic systems

∗Corresponding author.

This is an Open Access article published by World Scientific Publishing Company. It is distributed under
the terms of the Creative Commons Attribution 4.0 (CC BY) License which permits use, distribution and
reproduction in any medium, provided the original work is properly cited.
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using perfectly matched layers (PML),1 infinite element methods (IFEM)2,3 and boundary

element methods (BEM).4 Typically, the respective projectors are computed by an a priori

sampling of the frequency range. More recently, a strategy for an optimal choice of frequency

samples has been developed based on a greedy algorithm.5

Alternatively, when the basis vectors for the projection are chosen as the (orthogonal)

modes of the system, this procedure is known as modal superposition technique. Modal

superposition has been well established for purely structural and interior acoustic problems

for decades. However, in the case of vibro-acoustic problems in unbounded domains, modal

analysis requires the solution of the underlying nonlinear eigenvalue problem (EVP). While

the solution of nonlinear EVPs arising from FEM-BEM discretizations has attracted growing

attention in recent years,4,6,7 to the best of our knowledge, there are just a few publications,

e.g. van Ophem,3 available that address structural-acoustic discretizations with FEM and

IFEM. Purely acoustic problems utilizing modal methods and FEM-IFEM formulations

have been developed by the author (SM) in recent 15 years, see, for example, Refs. 8–11.

Therein, the arising quadratic EVP is linearized and solved in a state-space resulting in

a twice as large generalized EVP. Alternative approaches address the direct solution of

a quadratic EVP.12–14 These methods prevent the doubling of degrees of freedom of the

state-space representation of the EVP, hence allowing for a computationally more efficient

solution of the quadratic EVP. However, for exterior acoustic problems, it is often unclear

how to distinguish between relevant and irrelevant eigenvalues — corresponding to so-called

spurious modes.9,11 In the context of large-scale EVP, one is typically interested in a small

subset of all eigenvalues and vectors, which precludes application of the aforementioned

methods. Therefore, in this paper, we apply a projection method based on contour inte-

gration for computing eigenfrequencies of structural-acoustic systems in a predefined region

in the complex plane. An adaption of a second-order Krylov subspace method serves as a

reference solution scheme. The underlying second-order Krylov subspace method for a fully

coupled FEM-IFEM model was initially proposed by van Ophem.3

Fluid-loaded structural modes play a decisive role in the design of acoustic metama-

terials since they indicate band gap-like behavior.15 A common numerical method for the

calculation of band gaps is based on Floquet–Bloch boundary conditions but limited by

the strict definition of symmetry groups and infinite periodic structures.16 Most applicable

metamaterials are designed as finite structures though. Thus, we propose a new technique

for the solution of acoustic-structure coupled EVPs, based on an FEM-IFEM approach,

that can also be extended via Floquet–Bloch boundary conditions, e.g. for sound barriers.

Sound barriers can be treated as infinite structures in longitudinal direction and as exterior

problems in transverse direction, see, for example, Refs. 17 and 18.

This paper is organized as follows: In a first step, the mathematical background of the

acoustic-structure coupled FEM-IFEM approach is outlined. The acoustic-structure inter-

action is implemented such that a full coupling in two directions is established. We chose the

Astley–Leis formulation for the infinite elements. This formulation results in frequency inde-

pendent system matrices.8 In a next step, the steady state solutions of a time-harmonically

excited submerged shell are computed and compared to the analytical ones to verify the
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coupling scheme. Furthermore, the eigenfrequencies of the shell and their corresponding

fluid-loaded structural modes are determined. The accuracy of our numerical results is

assessed by comparing them to analytical expressions. Three studies on the performance

and accuracy of the contour integration method are conducted. Additionally, the contour

integral method is compared to a second-order Krylov subspace method and to COMSOL.

In the final step, possible applications are discussed.

2. Mathematical Background

2.1. Exterior Helmholtz problems

In linear acoustics, we distinguish between interior and exterior problems. The sound pres-

sure field p(xxx) for time-harmonic excitation is governed by the Helmholtz equation. Interior

Helmholtz problems describe a fluid domain Ωf that is fully closed by boundaries at a finite

distance. In contrast, problems with a fluid domain of infinite extension or problems with a

negligible influence of their surroundings are denoted as unbounded or exterior Helmholtz

problems. An additional radiation criterion has to be fulfilled, i.e. the Sommerfeld radiation

condition.19 This condition applies to the sound pressure field solution and encompasses

three parts, i.e.20

(1) p(xxx) is a solution of the Helmholtz equation,

(2) p(xxx) decays with the order O(rα) with α = (d − 1)/2 where d represents the spatial

dimension being 2 for planar problems and 3 for three-dimensional problems, and

(3) an additional decay condition often written as

lim
r→∞

ra
(
∂p

∂r
− ikp

)
= 0 (2.1)

specifying how the sound pressure is decaying at infinity.

The wavenumber is denoted by k and the radial co-ordinate for two and three-

dimensional problems is denoted by r. A schematic of an exterior Helmholtz problem is

shown in Fig. 1(a). A solid scatterer Ωs is surrounded by a fluid domain Ωf of infinite

extension, marked by the outer boundary Γ∞. No other sound sources are present. To

describe the behavior of the solid body under excitation, the Navier–Lamé equations for

linear elasticity21 as well as an additional damping model are applied. In this paper, we

consider a full coupling between the solid and the fluid. Therefore, two coupling conditions

are defined at the interface Γ between the solid and the fluid subdomains.22 The first con-

dition, called the kinetic coupling condition, establishes a relation between the solid stress

tensor σσσ and the sound pressure p on Γ as

σ · n = −pn, on Γ. (2.2)

The second condition known as kinematic coupling condition assures that the normal com-

ponents of the mechanical surface velocity of the solid body vs and of the acoustic velocity
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(a) (b)

Fig. 1. Exterior Helmholtz problem shown for the general definition and for the infinite element for-
mulation. (a) Exterior Helmholtz problem and (b) exterior Helmholtz problem for the infinite element
formulation.

of the fluid vf concur as

n · (vs − vf ) = 0, on Γ. (2.3)

In Eqs. (2.2) and (2.3), nnn = (nx ny nz)
T is the surface normal vector pointing from the

surface of the scatterer into the fluid domain. Special numerical solution techniques need

to be applied due to the mathematical domain of infinite extension. Here, we focus on

domain-based methods and more precisely on the IFEM.

2.2. Infinite element method

The infinite element formulation is derived in what follows. For this purpose, recall the

schematic in Fig. 1(b). The fluid domain is split up in a domain Ωf that is discretized by

a conventional FEM and an (unbounded) exterior domain Ωe. These two subdomains are

separated by the interface Γe. The exterior domain is discretized by the IFEM, which is

an extension of the FEM. The basis functions of infinite elements fulfill the Sommerfeld

radiation condition due to an advanced radial interpolation scheme. These elements are

characterized by their infinite extent in radial direction. Hence, the exterior domain does

not need to be truncated as in other approaches such as approximate boundary conditions

(ABCs).23 The mapped wave-envelope formulation also known as conjugated Astley–Leis

formulation24–26 is implemented in an in-house code. The in-house code is validated for

purely fluid time-harmonic problems with multipole excitation.27 As it will be shown later in

the results of the academic example, the numerical results match the analytical ones for fully

coupled problems. The conjugated Astley–Leis formulation is based on a Petrov–Galerkin

method, which uses complex conjugates of the radial interpolation (or basis) functions as

weight functions. These radial interpolation functions φj ∼ e±ikμ(x), with μ(x) being the

phase component, have a wavelike characteristic. Hence, the use of complex conjugates
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(a) (b)

Fig. 2. Topology of a two-dimensional infinite element with five radial nodes — m = 5 — in the physical
and isoparametric space. (a) Ten-noded physical element and (b) twelve-noded parent element.

cancels out all wavelike terms in the formulation as φiφj ∼ e−ikμ(x)e+ikμ(x) = 1.28 Since all

time-harmonic, wavelike terms are eliminated, frequency independent system matrices are

obtained.

Figure 2 shows a two-dimensional, 10-noded infinite element in the physical space and its

corresponding 12-noded parent element. The interpolation function for the element depicted

in Fig. 2 is given as25

Pl(s, t) =
1

2
Si(s)(1− t)Lm

j (t) (2.4)

with (s, t) being the co-ordinates in the isoparametric space, Si(s) the interpolation function

in transversal direction and Lm
j is a Lagrange polynomial used as interpolation function in

radial direction. For example, the interpolation function for node number two, in the case

of linear transversal interpolation S2 =
1
2(1− s), can be written as

P2(s, t) =
1

2
(1− s)

1

2
(1− t) · t(4t+ 3)(2t + 1)

1

3
(4t+ 1). (2.5)

The influence of the nodes at (−1, 1) and (1, 1) in the isoparametric space is covered

by the term 1
2(1 − t). This proves the non-truncating character of the infinite elements.

Due to the mapping to the parent element t ∼ 1
r , Eq. (2.5) can be re-written as a series of

multipole terms similar to the Atkinson–Wilcox theorem.29 The fifth-order infinite element

accurately models radiating sources up to an acoustic hexadecapole.

2.3. The structural-acoustic matrix form and eigenvalue problem

The governing equation of an elastic solid is the Navier–Lamé equation. After applying a

finite element discretization, the matrix form is written as

(Ks − iωDs − ω2Ms)u = fs. (2.6)

The terms Ks and Ms denote the stiffness and mass matrices of the solid domain. The dis-

placement vector is denoted by u and the solid is subject to external forces fs. Additionally,

Rayleigh damping30 is considered, resulting in the structural damping matrix Ds.
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The combined acoustic FEM-IFEM system of equations reads as

{[
Kf Kfe

Kef Ke

]
− iω

[
Df Dfe

Def De

]
− ω2

[
Mf Mfe

Mef Me

]}(
pf

pe

)
= f , (2.7)

where we distinguish among the matrices of the finite element domain Ωf denoted by

subscript •f , the coupling matrices by •fe or •ef , and the matrices of the exterior, i.e.

infinite element domain Ωe by •e. The same applies to the sound pressure. The entries

of the coupling matrices relate the degrees of freedom of the nodes that are shared

by the conventional and the exterior fluid domain on their interface Γe cf. Fig. 1(b).

An exact formulation of the FEM-IFEM coupling can be found in the publications by

Astley et al.24,25

The damping matrix Df and the mass matrix Me, are null matrices. The former has

zero entries due to the assumption of an inviscid fluid and the latter in consequence

of a circular or spherical domain leading to vanishing entries in the exterior domain

for Me.
25

Equations (2.6) and (2.7) are mutually coupled by virtue of the coupling conditions

Eqs. (2.2) and (2.3), leading to the fully coupled acoustic-structure system as

⎧
⎪⎨
⎪⎩

⎡
⎢⎣
Ks R 0

0 K̃f K̃fe

0 K̃ef K̃e

⎤
⎥⎦− iω

⎡
⎢⎣
Ds 0 0

0 D̃f D̃fe

0 D̃ef D̃e

⎤
⎥⎦− ω2

⎡
⎢⎣

Ms 0 0

−RT M̃f M̃fe

0 M̃ef M̃e

⎤
⎥⎦

⎫
⎪⎬
⎪⎭

⎛
⎜⎝

u

pf

pe

⎞
⎟⎠

=

⎛
⎜⎝
fs

0

0

⎞
⎟⎠. (2.8)

Matrix R — with R = Rsf and RT = Rfs — establishes the coupling between the solid

and the fluid with contributions from the common nodes at the interface Γ. This matrix is

defined as

Rij =

∫

Γ

⎛
⎜⎝
NiNjnx

NiNjny

NiNjnz

⎞
⎟⎠dΓ, (2.9)

where Ni, Nj are the weight and basis functions.

All matrices indicated with •̃ are normalized by the fluid density, i.e. •̃ = •
ρ0
. The sparsity

pattern of the fully coupled system matrices is shown in Fig. 3. Note that structural damping

is neglected in the remainder of the paper, and hence, the corresponding entries vanish in

Fig. 3. Only radiation damping31 is (inherently) considered by fulfilling the Sommerfeld

condition.
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Fig. 3. (Color online) System matrices for the coupled FEM-IFEM formulation. The areas framed by the red
lines correspond to the matrices in the solid domain, the ones framed by the green lines indicate the coupling
matrices and the matrices of the fluid part are framed by black lines. The number of non-zero entries in each
matrix is denoted by nz.

By setting the right-hand side to zero, we obtain a structural-acoustic EVP based on a

FEM-IFEM formulation, that reads as

(K− iω̄D− ω̄2M)v = (K+ λD+ λ2M)v = 0. (2.10)

The fluid-loaded structural modes are denoted by vvv and the complex eigenvalues by ω̄ or

by its corresponding substitutes λ = −iω̄. The EVP depends quadratically on the complex

eigenfrequency ω̄. This EVP is very similar to the one set up and solved in Refs. 8, 10 and

11 and nearly identical to the one analyzed by van Ophem.3

2.4. Contour integral methods

Various approaches have been suggested to solve nonlinear structural-acoustic EVPs in the

last years. In a series of papers, Peters et al.6,32 employed a frequency approximation of

the BEM matrices and solved the resultant polynomial EVP via symmetric linearization.

The computational effort associated with the inflation of the EVP has been addressed by

means of Krylov subspace model order reduction. However, when dealing with complex

eigenvalues, polynomial frequency approximations quickly deteriorate apart from the real

axis. As a remedy, El-Guide et al.33 employed a rational approximation method based on

Cauchy integral representations of frequency dependent matrices.

Besides, the Cauchy integral formula has also been exploited by many researchers to

derive subspace projection methods for nonlinear EVPs. These methods, which are typically

termed contour integral methods (CIMs),34–36 essentially work by transforming a nonlinear

EVP to a generalized EVP of reduced dimension. The latter exhibits identical eigenvalues

inside a pre-defined region in the complex plane. CIMs are advantageous, because the main

computational operations can be executed on distributed parallel computers. Several varia-

tions of the contour integral method have been applied for the solution of structural-acoustic

EVPs.4,7
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In this paper, we will use the block Sakurai Sugiura method (block SS)34 for solving

both types of structural-acoustic EVPs — FEM-IFEM and FEM-BEM. The eigensolution

with FEM-BEM is obtained by an in-house code that is described in a recent publication of

the group.31 We note that the focus of our contribution is not the further development of

contour integral methods but rather its application for computing structural-acoustic modes

with IFEM. Regarding the choice of parameters, we follow the recommendations given in

the publication by Sakurai et al.37

2.5. Second-order Krylov subspace methods

Compared to the nonlinear EVP from the FEM-BEM formulation, the resulting quadratic

EVP from the FEM-IFEM formulation as stated in Eq. (2.10) depends explicitly in

quadratic manner on the complex eigenfrequency ω̄. The corresponding system matrices

are frequency independent and hence constant.

Van Ophem3 proposed a stable model-order reduction scheme for fully coupled exterior

structural-acoustic EVPs using a comparable infinite element formulation as used by the

authors of this paper. The reduction scheme is based on projecting the original quadratic

EVP to a second-order Krylov subspace. The reduced EVP is transformed into a general

EVP and then solved with conventional methods. An efficient second-order Arnoldi (SOAR)

algorithm38 is used to generate the orthonormal basis of the projection subspace. Bai and

Su13 have shown, that the Ritz eigenpairs of a reduced-order quadratic EVP are good

approximations of the eigenpairs of the original quadratic EVP. Hence, the eigenpairs of

the original system can be obtained by solving a EVP of significantly reduced dimension.

A similar second-order Krylov subspace approach is chosen in this paper in order to

generate a state-of-the-art reference solution for the comparison to the proposed CIM. The

reduced second-order system of Eq. (2.10) is generated in the same manner as proposed by

van Ophem,3 i.e. using the SOAR algorithm in order to generate an unsplit orthonormal

projection basis V. An arbitrary initialization vector with random values between 0 and 1

is chosen for the generation of the projection basis. The EVP of reduced dimension q then

states as13

(Kq − iω̄Dq − ω̄2Mq)vq = 0, (2.11)

with the reduced system matrices given as

Kq = VTKV, Dq = VTDV, Mq = VT
1 MV1 and vq = VTv. (2.12)

Note that only a part of the unsplit projection basis with entries corresponding to the

degrees of freedom of the structural and the acoustic FEM domain — V1 — are taken

into account for the projection of the mass matrix. By this, one accounts for the actual

zero-block of the mass matrix of the IFEM domain Me, as proposed by van Ophem.3 The

projection process leads to fully-populated, dense system matrices of the reduced system.

The reduced quadratic EVP is solved efficiently with the open-access MATLAB function

quadeig .14 This MATLAB function provides the full solution of a dense quadratic EVP. The
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resulting eigenvectors of reduced dimension are re-projected to the original size in order to

allow for the evaluation of the relative residuals of the approximate eigenpair solution.

3. The Benchmark Problem: Spherical Shell in Water

3.1. Problem description

We consider a three-dimensional hollow steel sphere with a vacuum inside. The sphere is

submerged in water. A sketch of the sphere is displayed in Fig. 4. The extension of the

surrounding water is assumed to be several orders of magnitude larger than the dimensions

of the sphere. Hence, the acoustic sub-problem can be regarded as an exterior Helmholtz

problem. In the case of a harmonic response analysis, the structure is excited by an external

force F = 1N that is applied to the spherical shell. The excitation force leads to vibrations

of the sphere that in turn excite the fluid and generate acoustic waves. The wall thickness

t of the hollow sphere is kept small, so membrane stresses dominate over flexural stresses

for lower-order modes and hence, we apply the strong coupling conditions in the upcoming

simulations. Therefore, the generated acoustic waves result in a surface pressure load on

the vibrating structure that is not negligible. Again, structural damping is neglected. The

analytical expression for the eigenfrequencies as well as the time-harmonic solutions can be

found in the book by Junger and Feit.39 This problem is particularly well suited for bench-

marking, since it has been extensively studied in the past.5–7 The geometrical parameters

of the sphere and the material properties of steel and water are given in Table 1.

3.2. Time-harmonic solution

Before proceeding with the actual modal analysis, the FEM-IFEM formulation is verified

in this subsection by comparing the time-harmonic solution to an analytical expression.

The time-harmonic solutions of the sound pressure p and of the normal displacement u are

given as39

p(r, α) =
F

4πr2

∑

n=0

(2n + 1)zn
Zn + zn

Pn(cos(α)), (3.1)

Fig. 4. Two-dimensional cross section of the three-dimensional reference problem.
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Table 1. Geometry of the sphere and properties
of steel and water.

Radius of the sphere R 5m

Shell thickness t 0.05m

Density of steel ρs 7860 kg/m3

Young’s modulus E 210GPa

Poisson’s ratio ν 0.3

Density of water ρ0 1000 kg/m3

Speed of sound c0 1500m/s

and

u(r, α) =
1

iω

F

4πr2

∑

n=0

2n+ 1

Zn + zn
Pn(cos(α)), (3.2)

respectively. Both are given as a sum over the mode numbers n and expressed in terms of the

specific acoustic impedance zn, the vacuo modal impedance Zn and Legendre polynomials

Pn(cos(α)). The Legendre polynomials are evaluated at the position described by the angle

of attack α with respect to the point of excitation of the shell. For the exact formulation

of all terms, the reader is referred to the book by Junger and Feit.39 The solid domain and

the acoustic field are discretized using quadratic shell elements for the former and quadratic

tetrahedral elements in combination with infinite elements with the radial order of five for

the latter. The outer radius of the fluid domain Γe is set to 20m. This leads to 68529 degrees

of freedom for the coupled FEM-IFEM system for six elements per wavelength in the fluid

domain at a frequency of 100Hz. We are interested in solving the system of equations in

the frequency range from 1 to 85Hz with frequency steps of Δf = 1Hz. The absolute

displacement and sound pressure values are given in Fig. 5 based on both, the analytical

expression and the presented FEM-IFEM formulation. The numerical results show good

agreement with the analytical solution.

Fig. 5. (Color online) Absolute displacement and sound pressure for the analytical solution (blue line) and
the solution obtained by the coupled FEM-IFEM formulation (red dashed line) evaluated at the point of
excitation.
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3.3. Eigenfrequency study

Based on previous analyses,6 three different eigenfrequencies are expected with multiplici-

ties of 5, 7 and 9, respectively, i.e. five eigenvalues associated with quadrupole modes, seven

eigenvalues associated with octupole modes and nine eigenvalues associated with hexade-

capole modes. We use an ellipse as contour for the CIM solving the quadratic EVP. The

contour of the ellipse is defined by a predefined frequency range and an aspect ratio. More-

over, it is divided into contour points for the integration. Since we expect small imaginary

parts of the complex eigenfrequencies, this choice of parameters enables a more accurate

projection via the CIM than a circular contour. The parameters used for the block SS are

denoted by K and L, where the latter stands for the number of source vectors and the

former one indicates the order of the moment matrices. As the contour of the ellipse and

the parameters K and L are crucial concerning the accuracy of the block SS, they have to

be chosen with care. The contour points (outlined as blue points) of the ellipses of all three

test cases of study one, as well as the computed complex eigenfrequencies (all marked by

red points) of the quadratic EVP are shown for 24 contour points in Fig. 6. Infinite elements

with a radial order of 5 have been used in order to accurately capture the hexadecapole

modes as shown in Eq. (2.5). In a first study, the influence of the shape of the ellipse and

the number of contour points on the stability of the eigenfrequencies and on the relative

residual — explained later — are investigated for different test cases.

In test case one, the ellipse is divided into 12, 24, 36 and 48 contour points in a frequency

range from 50 to 85Hz and has an aspect ratio of 0.1, with K = 5 and L = 16. The

imaginary part of the first five eigenfrequencies around 55Hz is quite big compared to the

others. Hence, an aspect ratio smaller than 0.1 is not practicable for this frequency range,

since the imaginary parts are beyond the contour of the ellipse. Figure 7 shows the real and

imaginary parts of the 21 eigenfrequencies found. All four configurations of contour points

lead to the same eigenfrequencies, merely minor fluctuations with a maximum relative error

(a) (b) (c)

Fig. 6. (Color online) Different elliptical contours in the complex plane for the configurations of all three test
cases of the first study are shown. Each ellipse is represented by 24 contour points (blue points), respectively.
The eigenfrequenies are represented by the red points. (a) Test Case One (fl = 50Hz, fu = 85Hz, aspect ratio
of 0.1). (b) Test Case Two (fl = 35Hz, fu = 85Hz, aspect ratio of 0.05). (c) Test Case Three (fl = 35Hz,
fu = 100Hz, aspect ratio of 0.05).
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Fig. 7. Real and imaginary parts of the complex eigenfrequencies ω̄ for test case one (fl = 50Hz, fu = 85Hz,
aspect ratio of 0.1, K = 5, L = 16). The results are obtained by using 12, 24, 36 and 48 contour points,
respectively.

Fig. 8. Relative residuals for test case one (fl = 50Hz, fu = 85Hz, aspect ratio of 0.1, K = 5, L = 16),
using 12, 24, 36 and 48 contour points, respectively.

of ≈ 1% at mode number 11 from the analytical solution occur in the imaginary parts.

A more significant impact appears in the relative residual shown in Fig. 8. The relative

residual of an eigenpair (ω̄,v) is defined as

εrel =
‖(KKK − iω̄DDD − ω̄2MMM)vvv‖2

‖vvv‖2
. (3.3)

Very accurate results are achieved with 24, 36 and 48 contour points with relative residuals

of εrel ≈ 1 · 10−11, whereas the numerical results of the 12 point configuration lead to values

greater than 1 · 10−7.

In the second test case, the same ellipse and contour points are used. The lower end of

the frequency range is changed from 50 to 35Hz and the aspect ratio is set to 0.05, though.

The eigenfrequencies are similar to the ones computed in test case one and shown in Fig. 9.

However, the relative residuals change significantly. This is presented in Fig. 10.
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Fig. 9. Real and imaginary parts of the complex eigenfrequencies ω̄ for test case two (fl = 35Hz, fu = 85Hz,
aspect ratio of 0.05, K = 5, L = 16). The results are obtained by using 12, 24, 36 and 48 contour points,
respectively.

Fig. 10. Relative residuals for test case two (fl = 35Hz, fu = 85Hz, aspect ratio of 0.05, K = 5, L = 16),
using 12, 24, 36 and 48 contour points, respectively.

The 12 contour point configuration shifts from values greater than 1 · 10−7 to values

greater than ≈ 1 · 10−5. Furthermore, the relative residuals of the 24 and 36 point config-

urations increase. Solely, the version with 48 contour points does not change compared to

test case one.

In the last test case of the first study, the upper limit of the frequency range is set to

100Hz. The remaining parameters are similar to the second test case. As it can be seen in

Fig. 11, the eigenfrequencies are stable, except mode number 14 and 18 corresponding to

hexadecapole modes. Mode number 14 has a maximum error of ≈ 200%. This fact alone

indicates that the choice of 12 contour point for the parameter configuration of test case

three is not recommended. Additionally, the corresponding relative residuals displayed in

Fig. 12 increase. The residuals corresponding to the 36 and 48 point configurations are

generally one order of magnitude larger compared to the other two test cases. An increase

of two orders of magnitude compared to test case one occurs for the choice of 12 contour

points, while the 24 point residuals even are four orders of magnitude higher.
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Fig. 11. Real and imaginary parts of the complex eigenfrequencies ω̄ for the third test case (fl = 35Hz,
fu = 100Hz, aspect ratio of 0.05, K = 5, L = 16). The results are obtained by using 12, 24, 36 and 48
contour points, respectively.

Fig. 12. Relative residuals for test case three (fl = 35Hz, fu = 100Hz, aspect ratio of 0.05, K = 5, L = 16),
using 12, 24, 36 and 48 contour points, respectively.

Table 2. Computational time in computational time units [CTU] and sum over the relative residuals per
test case — the subscript of C denotes the number of the case — presented for all four configurations
of contour points (CPs).

Study 1 t[CTU] (C1) t[CTU] (C2) t[CTU] (C3)
P

εrel (C1)
P

εrel (C2)
P

εrel (C3)

12 CP 650 657 742 1.452 · 10−04 0.002 0.015

24 CP 1349 1303 1371 2.451 · 10−10 7.147 · 10−09 2.172 · 10−06

36 CP 1957 1965 2012 1.368 · 10−10 1.545 · 10−09 2.070 · 10−08

48 CP 2636 2616 2626 1.216 · 10−10 5.609 · 10−10 8.759 · 10−9

The results of study one in terms of the computational time and the sum over the

relative residuals per test case and for all four configurations of contour points are shown in

Table 2. Based on these results, all configurations with 12 contour points as well as test case

three with 24 points turn out to be the least accurate. Particularly, test case three has the

lowest accuracy but needs the most computational time. The second test case is a little less
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accurate than the first one. Nevertheless, both need approximately the same computational

time. In nearly every configuration, test case one turns out to be the best, since it achieves

an accuracy of 2.541 ·10−10 at only 1349CTU and 24 contour points, highlighted in Table 2.

Thus, more accurate results are achieved, when the contour of the ellipse is minimized in

its extent with respect to the sought eigenvalues.

Additionally, the relative error

ei =
|ω̄i

a − ω̄i|
|ω̄i

a|
(3.4)

of the numerically obtained eigenvalues is defined as a function of the absolute values of

the analytical eigenfrequencies and the computed ones. In Eq. (3.4), ω̄i
a and ω̄i denote the

analytical and computed eigenfrequencies, respectively. The relative error for each eigenfre-

quency i is displayed in Fig. 13. The relative errors of all configurations of study one follow

a similar pattern. The errors of the eigenfrequencies of the hexadecapole modes of ≈ 1.28%

can be reduced by a mesh refinement. For comparison only, the errors of the eigenfrequen-

cies of the octupole modes are ≈ 0.17%. For study one, a mesh with an outer radius of 15m

at six elements per wavelength is applied. The reason for the relatively high errors ≈ 1.66%

of the first five eigenfrequencies is discussed later in this paper.

In a second study, the influence of the parameter K on the stability of the eigenfrequen-

cies and on the relative residual are evaluated. Based on the results of the first study, the

configuration of test case one with 24 contour points, as well as the same mesh is chosen

here. The parameter K is varied from 2, 3, 4, . . . to 10. Concerning the eigenfrequencies, all

nine configurations lead to the exact same results. The relative residuals show a different

behavior, though. As it can be seen in Fig. 14, the results for K = 2 are about one order

of magnitude larger than the others, which are all in a similar area. Hence, the choice of

Fig. 13. The relative error of the individual eigenfrequencies with respect to the analytical solution is shown
for all cases of study one. The subscript of C denotes the number of the test case of study one and the
superscript stands for the number of contour points used.
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Fig. 14. Relative residuals for the second study with degree of moments K varying from K = 2 to K = 10.

Fig. 15. (Color online) The average relative error of the quadrupole, the octupole and hexadecapole modes
plotted as a function of the extent of the FE discretization in radial direction are depicted as a blue, red
and yellow lines, respectively.

K = 2 is not recommended, whereas all other choices of K are suitable for this analysis.

In a third study, the influence of the extent of the finite element discretization in radial

direction on the accuracy of the solution is shown in Fig. 15. For this purpose, the average

relative error is defined as

e =
1

N

N∑

n=1

en, (3.5)

where N are either the amount of quadrupole, octupole or hexadecapole modes. The aver-

age relative error for each group of modes is shown in Fig. 15. The average relative error

associated to the hexadecapole modes remains unaffected by the extent of the finite element
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fluid domain. The eigenfrequencies corresponding to the quadrupole and octupole modes

exhibit convergence with an increasing radius of Γe.

In a final study, the performance of the CIM is compared to a second-order Krylov

subspace method. The parameter configuration for the CIM is based on the results of the

previous studies. For the reference solution via the second-order Krylov subspace method,

a real-valued expansion point of 67Hz is defined for the generation of the projection basis

using the SOAR algorithm. The expansion point is chosen such that it lies within in the

middle of the frequency range of sought eigenvalues. A reduced dimension of q = 320 is

chosen. At this order, all 21 eigenvalues can be found using quadeig. Any further increase

in the reduced order does not lead to an improvement of the results.

Additionally, a reference solution using COMSOL Multiphysics is generated. COMSOL

offers the computation of normal modes applying a perfectly matched layer at the outer

boundary of the fluid domain. All three meshes for the finite element domains are identical.

The radius of the fluid domain is set to 15m. The finite element domain of the fluid is

discretized using second-order Lagrange elements with a mesh size of 15 elements per wave-

length. Eight-noded shell elements are selected for the discretization of the solid domain.

The FEM-IFEM results in matrices with 311426 degrees of freedom. Examples of the mode

shapes of the shell visualized via COMSOL are displayed in Fig. 16.

Furthermore, the eigenfrequencies and corresponding mode shapes of a steel shell sur-

rounded by air are computed. Although, the real parts of the eigenfrequencies signifi-

cantly increase, the imaginary parts of the quadrupole and octupole modes decrease, cf.

Table 3. The mode shapes of the shell submerged in air are shown in Fig. 17. All three

considered mode shapes do not change compared to the ones of the shell submerged in

water.

The eigenfrequencies of the steel shell in a vacuum are discussed in the publication by

Zheng et al.7 The real parts of the vacuo eigenfrequencies of the sphere are similar to those

in air. Hence, the air has a minor influence on the eigenfrequencies. The imaginary parts

are solely existent for air but vanishing for vacuum. Based on the mode shapes remain-

ing the same for air and water, it can be concluded that they are identical to the vacuo

modes.

Fig. 16. A quadrupole mode is shown on the left, an octupole mode in the middle and a hexadecapole mode
on the right. All three are visualized via COMSOL.
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Fig. 17. A quadrupole mode is shown on the left, an octupole mode in the middle and a hexadecapole
mode on the right. The fluid medium is changed from water to air, cf. Fig. 16. All three are visualized via
COMSOL.

The analytical as well as the numerical eigenfrequencies are presented in Table 3. The

different signs in the imaginary part of the FEM-IFEM formulation are due to the harmonic

time dependency chosen.8

The relative errors of the eigenfrequencies computed using the CIM, the second-order

Krylov subspace method and COMSOL are shown in Fig. 18.

Table 3. Analytical and numerical solutions of the quadratic EVP.

Quadrupole Octupole Hexadecapole

Analytical 56.0770 − 1.9267i [Hz] 70.5598 − 0.2987i [Hz] 80.5737 − 0.0294i [Hz]

CIM 55.7423 + 1.1113i [Hz] 70.2286 + 0.2639i [Hz] 80.3822 + 0.0344i [Hz]
55.7111 + 1.1081i [Hz] 70.2292 + 0.2663i [Hz] 80.2849 + 0.0355i [Hz]
55.6851 + 1.1046i [Hz] 70.2532 + 0.2744i [Hz] 80.2998 + 0.0281i [Hz]
55.6528 + 1.0929i [Hz] 70.2972 + 0.2752i [Hz] 80.3143 + 0.0280i [Hz]
55.6636 + 1.0942i [Hz] 70.2906 + 0.2761i [Hz] 80.3359 + 0.0328i [Hz]

70.2835 + 0.2771i [Hz] 80.3228 + 0.0352i [Hz]
70.2860 + 0.2749i [Hz] 80.3288 + 0.0342i [Hz]

80.3281 + 0.0330i [Hz]
80.3261 + 0.0339i [Hz]

Second Ord. Krylov 55.6612 + 0.9055i [Hz] 70.1376 + 0.1823i [Hz] 80.4208 + 0.0299i [Hz]
55.5896 + 0.7343i [Hz] 70.4211 + 0.1501i [Hz] 80.4767 + 0.0286i [Hz]
55.5125 + 0.9608i [Hz] 70.4185 + 0.2091i [Hz] 80.5730 + 0.0360i [Hz]
55.3004 + 0.8779i [Hz] 70.3142 + 0.1313i [Hz] 80.5714 + 0.0090i [Hz]
55.3183 + 0.8139i [Hz] 70.2285 + 0.1515i [Hz] 80.5241 + 0.0449i [Hz]

70.2335 + 0.1982i [Hz] 80.5025 + 0.0187i [Hz]
70.2549 + 0.1884i [Hz] 80.5440 + 0.0203i [Hz]

80.5156 + 0.0225i [Hz]
80.5335 + 0.0123i [Hz]

COMSOL PML 56.3321 + 1.0755i [Hz] 70.6765 + 0.2850i [Hz] 80.8634 + 0.0431i [Hz]
56.3353 + 1.0757i [Hz] 70.6984 + 0.2855i [Hz] 80.8659 + 0.0431i [Hz]
56.3369 + 1.0758i [Hz] 70.7114 + 0.2858i [Hz] 80.8685 + 0.0431i [Hz]
56.3375 + 1.0758i [Hz] 70.7139 + 0.2858i [Hz] 80.9061 + 0.0433i [Hz]
56.3423 + 1.0761i [Hz] 70.7266 + 0.2861i [Hz] 80.9180 + 0.0433i [Hz]

70.7294 + 0.2862i [Hz] 80.9227 + 0.0433i [Hz]
70.7307 + 0.2862i [Hz] 80.9326 + 0.0434i [Hz]

80.9479 + 0.0434i [Hz]
80.9555 + 0.0434i [Hz]
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Table 3. (Continued)

Quadrupole Octupole Hexadecapole

Peters et al. 55.84 − 1.18i [Hz] 70.48 − 0.31i [Hz] 80.59 − 0.042i [Hz]

Air 120.8577 + 0.0576i [Hz] 143.2180 + 0.1078i [Hz] 152.2708 + 0.0631i [Hz]
120.8656 + 0.0507i [Hz] 143.2224 + 0.0906i [Hz] 152.3099 + 0.0708i [Hz]
120.8705 + 0.0528i [Hz] 143.2969 + 0.0915i [Hz] 152.3388 + 0.0685i [Hz]
120.8732 + 0.0512i [Hz] 143.3150 + 0.1003i [Hz] 152.3766 + 0.0651i [Hz]
120.8848 + 0.0529i [Hz] 143.3431 + 0.0968i [Hz] 152.3971 + 0.0625i [Hz]

143.3791 + 0.0924i [Hz] 152.4851 + 0.0673i [Hz]
143.4104 + 0.0976i [Hz] 152.5065 + 0.0632i [Hz]

152.5399 + 0.0664i [Hz]
152.6995 + 0.0648i [Hz]

Fig. 18. Relative error of the individual eigenfrequencies computed employing the CIM, the second-order
Krylov subspace method and COMSOL.

The performance of the CIM and COMSOL is about the same, with relative errors of

maximum 0.47% for the eigenfrequencies of octupole and a maximum of 0.36% for those of

the hexadecapole modes. The influence of the mesh refinement can be observed compared

to Fig. 13 concerning the error decrease of the eigenfrequencies of the hexadecapole modes.

However, the relative error associated with the second-order Krylov subspace method is

higher for the eigenfrequencies of the octupole modes, with a maximum of 0.91%. The

relative error of the hexadecapole modes is smallest, with a maximum of 0.2%, though. All

eigenfrequencies show good accordance with respect to the analytical results, except for

the imaginary parts of the complex eigenfrequencies belonging to the quadrupole modes.

Particularly, the second-order Krylov subspace method gives results with a maximum error

of ≈ 5%.

Additionally, a reference solution obtained by a coupled FEM-BEM simulation is pre-

sented to check, whether the FEM-BEM eigenfrequencies of the quadrupole modes also

diverge from the analytical solution. The FEM-BEM reference solution was computed as
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Fig. 19. (Color online) Real and imaginary parts of the complex eigenfrequencies ω̄ obtained by the analytical
expression (blue stars) as well as the results of the FEM-IFEM (red circles) and the FEM-BEM simulations
(yellow crosses).

Fig. 20. (Color online) Relative residuals for results of the CIM (blue) and of the second-order Krylov
subspace method (red).

described in the paper by Zheng et al.7 Both the real and imaginary parts of the eigenfre-

quencies are shown in Fig. 19 for the analytical solutions as well as the solutions obtained

by the CIM based on matrices generated by the FEM-IFEM and the FEM-BEM.

The FEM-BEM results show the same behavior as the FEM-IFEM ones, leading to

a much lower imaginary part for quadrupole modes. Similar results are presented in the

paper by Peters et al.,6 also shown in Table 3. The presumable cause of the variances of

the imaginary parts of the quadrupole modes is the use of eight-noded shell elements that

introduce an error associated with the discretization of the sphere.

Figure 20 shows the relative residuals of the CIM and of the second-order Krylov sub-

space method. The former are in the order of magnitude of ≈ 1 · 10−10, whereas the latter

achieves a minimum of greater-than 1 · 10−4.

4. Conclusion and Outlook

A numerical framework based on a CIM and a FEM-IFEM formulation for modal analysis

of acoustic-structure interaction has been presented and applied to a benchmark problem
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of a submerged spherical shell. The accuracy of the proposed framework has been assessed

based on relative errors in the eigenfrequencies with respect to an analytical expression as

well as based on the relative residuals of the computed eigenpairs.

Extensive studies on the influence of the CIM parameters on the accuracy of the eigen-

solution have been presented. While all eigenvalues of interest have been found regard-

less of the chosen parameters of CIM, an appropriate choice of the contour is crucial to

obtain small relative residuals. In general, the elliptic contour should tightly enclose the

eigenvalues of interest in order to enable an accurate projection with only a few contour

points. The degree of resolvent moments should be large enough such that the dimension

of the resulting subspace is larger than the number of expected eigenvalues. In our test

cases, large values for the degree did not deteriorate the results. Finally, a sufficiently

accurate discretization of the acoustic finite element domain in radial direction is cru-

cial in order to capture the modes of interest. Furthermore, the accuracy of CIM has

been compared to the solution of the same FEM-IFEM EVP by a Rayleigh Ritz pro-

cedure with second-order Krylov subspaces. While requiring a similar numerical effort,

CIM achieves relative residuals that are several orders of magnitudes smaller. Finally, the

eigenfrequencies obtained by FEM-IFEM were compared to those obtained by discretiza-

tions with FEM-BEM as well as FEM in conjunction with PML, showing good agreement

throughout.

The advantage of CIMs lies in its capability to restrict the spectrum of the prob-

lem to a predefined region in the complex plane. Additionally, it admits parallelization

of the problem at multiple levels: The evaluation of matrix vector products, the com-

putations for each contour point, and even evaluations of several elliptic contours cover-

ing a large frequency range can be conducted in parallel. The CIM is a direct method

which solves simultaneously for all eigenvalues of interest. In contrast to that, iterative

schemes such as shift-and-invert methods typically only solve for a single eigenvalue at

time, and hence, are executed sequentially in order to avoid repeated evaluation of the same

eigenvalue.

Possible applications of modal analyses of fluid-loaded structures include the design of

acoustic metamaterials, where the vibration of the structure affects the acoustic behavior.

The performance of most metamaterials are connected to low damped eigenvalues leading

to band gap-like behavior. The fluid-loaded structural modes of meta-atoms and finite

meta-structures can be studied using the FEM-IFEM formulation. For infinite, periodic

metamaterials, this paper approach can be extended by applying Floquet–Bloch boundary

conditions.
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ABSTRACT:
Arrangements of acoustic meta-atoms, better known as acoustic metamaterials, are commonly applied in acoustic

cloaking, for the attenuation of acoustic fields or for acoustic focusing. A precise design of single meta-atoms is

required for these purposes. Understanding the details of their interaction allows improvement of the collective per-

formance of the meta-atoms as a system, for example, in sound attenuation. Destructive interference of their scat-

tered fields, for example, can be mitigated by adjusting the coupling or tuning of individual meta-atoms.

Comprehensive numerical studies of various configurations of a resonator pair show that the coupling can lead to

degenerate modes at periodic distances between the resonators. We show how the resonators’ separation and relative

orientation influence the coupling and thereby tunes the sound attenuation. The simulation results are supported by

experiments using a two-dimensional parallel-plate waveguide. It is shown that coupling parameters like distance,

orientation, detuning, and radiation loss provide additional degrees of freedom for efficient acoustic meta-atom tun-

ing to achieve unprecedented interactions with excellent sound attenuation properties.
VC 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons
Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1121/10.0020570

(Received 17 March 2023; revised 5 June 2023; accepted 20 July 2023; published online 11 August 2023)

[Editor: Nicole Kessissoglou] Pages: 842–851

I. INTRODUCTION

Acoustic metamaterials are artificial structures consist-

ing of an arrangement of meta-atoms that can be used to

control or manipulate the propagation of sound and elastic

waves due to their exotic behavior (Cummer et al., 2016;

Deymier, 2013; Ma and Sheng, 2016; Zangeneh-Nejad and

Fleury, 2019). The operating principle of meta-atoms is

mostly based on local resonances leading to, for example, a

negative effective mass density (Milton and Willis, 2007;

Yao et al., 2008), negative bulk modulus (Fang et al., 2006),

or negative refractive index (Pendry, 2000). Since meta-

atoms are typically arranged close to each other, i.e., less

than their operating wavelength, interaction such as longitu-

dinal near-field coupling (Wang and Laude, 2017) and trans-

verse coupling (Fu et al., 2011) occur. In the context of the

acoustics of a lossless medium, there is only pressure cou-

pling. Such coupling and associated parameters can provide

additional degrees of freedom to tune the system, e.g., to

enhance sound transmission (Yang et al., 2015).

Coupling effects have been applied for the tuning of

electro-magnetic metamaterials (Pendry et al., 2006; Schurig

et al., 2006; Valentine et al., 2009). Keiser et al. (2013)

employed near-field interaction phenomena in the design of

electro-magnetic metamaterials. Coupling between electro-

magnetic metamaterial elements can have a significant

impact on the behavior of the material as a whole (Liu et al.,
2009a). Especially for very closely arranged elements, it is

no longer adequate to solely consider the averaged effect of

the uncoupled resonators. Instead of treating the metamate-

rial as a continuous effective medium, the near-field interac-

tion phenomena have to be considered. These phenomena

give rise to various applications, like frequency tunable and

broad bandwidth metamaterials (Keiser et al., 2013; Liu

et al., 2009a). Powell et al. (2010) investigated the near-field

interaction between split-ring resonators (SRRs) as resonant

structures of a metamaterial. They found that modifications

of the structures’ relative orientation and separation affected

the near-field interaction. Thereby, the metamaterial response

can be tuned. In a subsequent paper, Powell et al. (2011)

a)This paper is part of a special issue on wave phenomena in periodic, near-

periodic, and locally resonant systems.
b)Electronic mail: felix.kronowetter@tum.de

842 J. Acoust. Soc. Am. 154 (2), August 2023 VC Author(s) 2023.
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examined the linear near-field interaction of a pair of SRRs

on the same axis with varying relative angle and observed a

crossing point between the symmetric and antisymmetric

mode in the dispersion curve. The analysis of the (anti-)

crossing behavior is based on the mode coupling model pre-

sented by Yakovlev and Hanson (2000). Studying a similar

system, Liu et al. (2009b) found that with increasing twist

angle the resonant modes converge, pass through an avoided

crossing, and then diverge again. The acoustic counterpart to

SRRs is Helmholtz resonators (Movchan and Guenneau,

2004).

Analogous coupling effects can be found in acoustics,

more precisely, in the analysis of organ pipes. Existing stud-

ies on the interaction of organ pipes contribute useful find-

ings that can be adapted to locally resonant structures. Two

organ pipes sound in unison when close together, even if

their natural frequencies differ slightly (Strutt, 2011).

Fischer et al. (2016) investigated the mutual interaction of a

pair of organ pipes experimentally and analytically. Sawicki

et al. (2018) examined the effect of separation and fre-

quency detuning of two coupled organ pipes on their syn-

chronization behavior. Pikovsky et al. (2001) give a

summary of the nonlinear principle of synchronization with

applications in diverse fields of science, like engineering,

biology, and social behavior. Although synchronization is

based on non-linear effects, analogies can be extracted to

explain the degeneracy of modes. With the aim to understand

the interaction between close organ pipes, Johansson and

Kleiner (2001) investigated the coupling effects of two

Helmholtz resonators. They argue that the coupling mecha-

nisms of organ pipes and Helmholtz resonators resemble each

other. Despite different working principles, simple Helmholtz

resonators thus present a good approximation for more com-

plex organ pipes. Two Helmholtz resonators can be coupled

via the surrounding air by bringing them close together.

Various studies on coupling of acoustic resonators in

waveguides (Al Jahdali and Wu, 2018; Herrero-Dur�a et al.,
2020; Wang and Laude, 2017; Zhou et al., 2018) have been

reported. Recent publications (Cavalieri et al., 2019;

Krasikova et al., 2022; Lee and Iizuka, 2019) apply cou-

pling to acoustic metamaterials, whereby the interaction of

local resonances within a unit cell—in a subwavelength

region—is considered. Cavalieri et al. (2019) demonstrate

that the combination of local resonators of different types

combined with the periodicity of the system can lead to mul-

tiple coupled resonances to achieve broadband acoustic

attenuation. The interaction of local resonances and Bragg

scattering are investigated by Lee and Iizuka (2019).

Krasikova et al. (2023) investigate the strong coupling

between pairs of resonators within a unit cell and their influ-

ence on the dispersion curves and the transmission spectrum.

Additionally, coupling is used for tuning acoustic lenses

(Yang et al., 2015) and metagratings (Dong et al., 2017).

In this article, we investigate coupling of two C-shaped

meta-atoms in a two-dimensional unbounded domain. Since

almost all acoustic metamaterials can be thought of as arrayed

coupled resonators, we refer to them as meta-atoms, even if

we consider only two of them (Belacel et al., 2017; Wu et al.,
2017). Coupling between meta-atoms affects the total perfor-

mance of periodic structures shown by Krasikova et al.
(2023). The modal behavior of the system for varying param-

eters, like distance, orientation, detuning, and radiation losses,

is studied. Fundamental effects are explained for a better

understanding of the coupling mechanisms. We demonstrate

how the sound attenuation of meta-atoms can be improved

and adjusted using orientation and positioning as tunable

parameters. In addition, we detune the resonance frequency

of one of the resonators and present how the detuning affects

the modal behavior. Furthermore, we show how increased

radiation losses can counteract detuning concerning the inter-

action of the eigenfrequencies of the system. The numerical

results are validated by experiments. A two-dimensional par-

allel-plate waveguide (Melnikov et al., 2019) is used for the

evaluation of sound pressure fields of the acoustic meta-

atoms. We demonstrate how coupling affects the performance

of local resonances in terms of sound attenuation and hence,

can provide an improved design of acoustic metamaterials.

II. NUMERICAL MODEL

Figure 1(a) shows the configuration of a pair of two-

dimensional C-shaped Helmholtz resonators (Chalmers

et al., 2009; Elford et al., 2011), within a rectangular acous-

tic domain surrounded by a perfectly matched layer. The

rectangular domain with absorbing boundaries is chosen

such that it resembles the waveguide used for experiments

hereinafter presented. We denote the C-shapes’ inner radius

r ¼ 6 mm, the aperture width w ¼ 4 mm, and the thickness

t ¼ 16 mm. The choice of the geometric dimensions of the

C-shape depends on the following factors: the walls of the

C-shape must be thick enough to be considered sound hard.

We choose a wall thickness of 16 mm based on our experience

from previous measurements. Furthermore, the eigenfrequen-

cies of our system are determined by the dimensions and thus,

the measurable frequency range (1000–2400 Hz) of the wave-

guide used in our experimental setup. The chosen aperture

width of 6 mm is large compared to the expected boundary

layer thickness of dg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2g=qmx

p
� 0.05 mm following the

formulations in the book by Dukhin and Goetz (2002); nev-

ertheless, we consider thermo-viscous losses in our simula-

tions. Thermo-viscous boundary layer losses are significant

for structures with narrow geometry features (Jiang et al.,
2017; Jordaan et al., 2018). The inter-resonator distance is

denoted l and is measured from the exterior of each resona-

tor. Initially, both apertures face Ci with a ¼ 90�. All stud-

ies in this section are conducted as finite element

simulations in COMSOL Multiphysics (COMSOL Inc.,

2021), first in the form of modal analyses, then by the trans-

mission response for harmonic excitation through a plane

wave. The modal analysis of a single C-shape results in the

complex individual eigenfrequency fc ¼ 1960þ 82i Hz.

The real part of the complex eigenfrequencies fc ¼ f þ ic is

the resonant frequency f; the imaginary part c characterizes

the radiation loss (Baydoun and Marburg, 2020;

J. Acoust. Soc. Am. 154 (2), August 2023 Kronowetter et al. 843
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Kronowetter et al., 2020). Furthermore, the symmetric and

antisymmetric cavity resonant modes, exhibiting in- and anti-

phase oscillation of the two resonators, are depicted in Fig. 1(b).

The cavity resonant modes are identified as the two modes with

the highest quality factors (Q ¼ f=2jcj). The corresponding

cavity resonant frequencies will be discussed in the following

section. In addition, we use the integration lines for the transmis-

sion response evaluation at Ci and Co. Their positions are cho-

sen such that they match the experimental microphone

locations.

III. RESULTS

A. Inter-resonator distance

The first influence parameter to be examined is the

distance l between two identical resonators, varied from

l ¼ 2 mm to l ¼ 300 mm. Figures 2(a) and 2(b) show the

real and imaginary parts of the complex eigenfrequencies fc
associated with cavity resonance as a function of l. The real

parts of the eigenfrequencies associated with cavity

resonance oscillate around a reference frequency of

f ¼ 1960 Hz. The oscillation period matches the resonant

wavelength k ¼ 175 mm, similar to the Fabry–P�erot inter-

ference observed by Hein et al. (2012) for duct-cavity sys-

tems. Thus, the two modes cross at periodic distances of

Dl ¼ k=2. The crossing points of real parts [Fig. 2(a)] and

imaginary parts [Fig. 2(b)] are shifted by about a quarter

wavelength. Consequently, the imaginary parts split where

the real parts cross and vice versa. The mode with the

smaller imaginary part c has increased lifetime and domi-

nates the decay process in the time domain, whereas it leads

to a higher sound attenuation in the frequency domain.

FIG. 1. (Color online) (a) Numerical setup. The schematic of the resonator pair geometry and dimensions, specified by inner radius r, aperture width w, wall

thickness t, and inter-resonator distance l in a two-dimensional unbounded fluid domain are shown. Ci and Co define the integration lines for calculating the

transmitted sound power. (b) Cavity resonant modes. The symmetric mode (lower) termed as mode S and antisymmetric mode (upper) termed as mode AS,

where pr denotes the real part of the total pressure normalized to its maximum value.

FIG. 2. (Color online) (a) Real and (b) imaginary parts of the complex eigenfrequencies fc associated with cavity resonance as a function of the inter-

resonator distance l (mm). The dashed black lines indicate the distances of the modal crossings and modal (anti-) crossings. The color bar represents the val-

ues of the transmission efficiency T (-). The white plus sign (lossless) and white cross (including thermo-viscous losses) mark the points where the transmis-

sion efficiencies reach their minima.

844 J. Acoust. Soc. Am. 154 (2), August 2023 Kronowetter et al.
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The phase difference between resonators is DH ¼ 6p
for the antisymmetric mode and zero for the symmetric

mode, independent of the inter-resonator distance.

Based on the modal analysis, the highest attenuation of

an incident sound wave is expected at the crossing points of

in- and anti-phase modes. On the one hand, the dominant

mode—the mode with the lowest imaginary part—has the

highest quality factor just below the degeneracy, which is

the reason for the minimum in the transmission spectrum.

On the other hand, detuning decreases the quality factor of

the dominant mode. We can say that the modal degeneracy

is a prerequisite for particularly high transmission minima

and thus for increased local energy trapping. Figure 2(a)

shows the transmission efficiency T ¼ Po=Pi —where Po is

the total transmitted sound power evaluated at Co and Pi is

the power of the incident wave evaluated at Ci—as a func-

tion of separation l and frequency f of the incident plane

wave, including thermo-viscous losses.

The drops in the transmitted sound power are located

around every second modal crossing point and extend along

the frequency of the descending mode. This means that the

attenuation reaches its maximum where the symmetric

mode dominates. In the regions with dominating antisym-

metric mode, transmitted sound power does not decrease.

Sawicki et al. (2018) show in case of organ pipes that for

zero detuning, the in-phase mode (Dh ¼ 0) corresponds to

enhancement and the anti-phase mode (Dh ¼ p) corresponds

to a cancellation of sound. We can see that the white plus

sign in Fig. 2(a) is shifted from l ¼ 78 mm and f ¼ 1945 Hz

to the white cross at l ¼ 82 mm and f ¼ 1930 Hz just by con-

sidering losses. Hence, losses lead to a frequency and dis-

tance shift of the minimum transmitted sound power and are

considered in the following time harmonic studies.

The reason for the drop in the transmitted sound power at

modal crossing points with the dominant symmetric mode is

the different coupling between the two modes and the incident

plane wave. Modal degeneracy means that any superposition

of the two interacting modes will have the same resonant

dynamic behavior. In the present configuration, the symmetric

mode dominates because both resonators are excited in phase

by a plane wave that is normally incident on them. When the

angle of incidence is changed by 90� with respect to the initial

configuration in Fig. 1(a), there is a slight decrease in the trans-

mitted sound power for the dominant antisymmetric mode.

The coupled modes of the system are always linked. In particu-

lar, the minimum decay of the symmetric mode occurs near

the degeneracy, and also near the maximum decay of the anti-

symmetric mode.

B. Relative orientation

The second influence factor to be examined is the C-

shapes’ relative orientation. It is known to be relevant in

electromagnetic metamaterials, as shown by the findings of

Powell et al. (2011). In addition, earlier research results by

Powell et al. (2010) and Hesmer et al. (2007) suggest that

the relative orientation plays a major role for the coupling of

SRRs. It may therefore also be of importance for the acous-

tic counterpart. Starting with facing apertures for zero twist

angle a ¼ 0�, the two C-shapes are rotated in opposite direc-

tions and reach the configuration in Fig. 1(a) for a ¼ 90�. A

maximum twist angle of a ¼ 180� implies that the two aper-

tures are pointing away from each other.

Figure 3(a) shows the absolute difference between the

cavity resonant frequencies Df ¼ jf1 � f2j in the parameter

plane of inter-resonator distance l and twist angle a.

The dark blue regions indicate the course of the modal

crossings (depicted by the red line) with Df ¼ 0. Regarding

the coupling mechanism, the distance between the apertures

is a relevant parameter. However, there has to be an

FIG. 3. (Color online) (a) Difference between the real parts of the cavity resonant frequencies Df ¼ jf1 � f2j of mode S and AS in the plane of

inter-resonator distance l (mm) and angle a (�). The modal crossings are represented by the dark blue lines with zero frequency difference Df ¼ 0. The black

line indicates a constant inter-aperture distance la starting at the second crossing point for a ¼ 0�. (b) Transmission efficiency T (-) for a plane wave with

f ¼ 1930 Hz in the plane of inter-resonator distance l (mm) and angle a (�). The minimum transmission efficiency is highlighted by the white cross. (a) and

(b) For comparison, the first modal crossing is indicated by red lines in both figures.
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additional effect besides the changing distance between the

apertures. The C-shapes can be regarded as Helmholtz reso-

nators embedded within a cylinder (Melnikov et al., 2019).

Thus, the background scattering of the cylinders also plays a

major role. The impact of the scattering on the interaction

between the resonators is negligible for facing apertures

(a ¼ 0�) and grows with the twist angle, as the apertures

move away from each other. A detailed analysis of the back-

ground scattering exceeds the scope of this work.

As observed in Fig. 2(a), the modal crossings provide

the locations of possible transmission minima, that is attenu-

ation maxima. The transmission efficiency T in the plane of

inter-resonator distance l and twist angle a is shown in

Fig. 3(b). The incident wave has a frequency of

f ¼ 1930 Hz, matching the frequency of the lowest trans-

mission efficiency marked by the white cross in Fig. 2(a).

As a result, transmission dips and modal crossings occur at

the same distances and twist angles. For comparison, the

first modal crossings are indicated by red lines in both plots

in Fig. 3. Like in Fig. 2(a), the transmission dips only occur

where the symmetric mode dominates, because of the rela-

tive orientation of resonators and incident wave.

The dark blue regions with Df ¼ 0 in Fig. 3(a) cover all

considered inter-resonator distances. This means that the modal

crossings can be shifted to arbitrary resonator separations by

varying the relative orientation of the two C-shapes. Independent

of the orientation, the period is maintained. The transmission

results show that the attenuation maxima follow the modal cross-

ings. Thus, the combination of the two parameters, distance and

orientation, offers the possibility of reaching attenuation maxima

for a prescribed distance or lattice constant by adjusting the ori-

entation and vice versa. Surprisingly, the attenuation maxima for

this configuration is not found at a ¼ 90� but at a ¼ 70� and

l ¼ 102 mm. Similar results are observed by additionally varying

the frequency of the incoming wave.

C. Frequency detuning and radiation losses

Another influencing factor is the frequency detuning

D ¼ ðfB � fAÞ=fA. Therefore, we detune the resonance

frequency of one of the C-shaped resonators by adjusting

the geometrical parameters (r, w, t) before coupling them

together. Often associated with synchronization theory

(Pikovsky et al., 2001), frequency detuning is a measure for

the difference between the uncoupled natural frequencies of

two oscillators A and B. In synchronization theory, non-

linear effects can overcome detuning, but for our linear case,

we can still observe degeneracy in certain cases. Detuning

can arise due to fabrication imperfections, for example. In

the following, it is set to D ¼ 3 %. Resonator A remains

unchanged with a constant resonant frequency of fA
¼ 1960 Hz and resonator B is scaled such that fB ¼ 2020 Hz.

Like the case of zero detuning, the complex eigenfre-

quencies and the modal phase differences provide informa-

tion about the coupling mechanism. The real and imaginary

parts of the complex eigenfrequencies fc associated with

cavity resonance for variable resonator separation l are plot-

ted in Figs. 4(a) and 4(b).

Except for the first crossing point of Fig. 2(a), the two

modes no longer cross in the real part. The modal resonant

frequencies still converge every half average wavelength

Dl ¼ �k=2 with �k ¼ ðkA þ kBÞ=2, like in the case of zero

detuning in Fig. 2(a). However, they do not become identi-

cal, but pass through an avoided crossing and then diverge

again. The resulting anti-crossing gap grows with increasing

distance, that is, with decreasing coupling strength. In con-

trast, the imaginary parts of the eigenfrequencies exhibit an

additional modal crossing at the distance of the anti-crossing

in the real part. Thus, they cross-every Dl ¼ �k=4.

The influence of a frequency mismatch on the occur-

rence of degenerate modes can be explained by varying the

detuning at the points of degeneracy for zero detuning.

More precisely, the detuning is varied from D ¼ 615 % at

the distances of the first two points of degeneracy for zero

detuning, previously shown in Fig. 2(a), and furthermore, at

the distance of the second crossing of the imaginary parts in

Fig. 2(b). Figure 5 shows the real and imaginary parts of

the complex eigenfrequencies fc associated with cavity

resonance as a function of the detuning D at l ¼ 84,

120; 174 mm, respectively.

FIG. 4. (Color online) (a) Real and (b) imaginary parts of the complex eigenfrequencies fc associated with cavity resonance as a function of the inter-

resonator distance l (mm) with frequency detuning D ¼ 3 %. The dashed black lines indicate the distances of the modal crossings and modal (anti-) crossings

extracted from Fig. 2(a).
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Looking at the real parts in Figs. 5(a) and 5(e), the

region of degeneracy with identical resonant frequencies is

clearly visible. In this region, one can expect a destructive

interference of the two degenerate modes, which can be

observed, e.g., in the transmission spectrum. Figures 5(c)

and 5(d) show an avoided crossing in the real parts of the

eigenvalues and a point of degeneracy in the imaginary part.

We can state that no degenerate modes can be found

between crossing points in the real part, even for a detuned

system. With decreasing coupling strength, that is, with

increasing distance l from Figs. 5(a)–5(e), the region of

degeneracy becomes smaller. This explains the previous

results for D ¼ 3 % in Fig. 4(a). For very small distances,

the coupling is still strong enough to overcome the fre-

quency mismatch and thus cause degeneracy of the modes.

As the separation increases, a detuning of D ¼ 3 % no lon-

ger lies in the region of degeneracy. The coupling is too

weak to merge the two resonant frequencies, resulting in an

avoided crossing. The larger the inter-resonator distance, the

larger the anti-crossing gap. As observed before, identical

real parts of the eigenfrequencies cause the imaginary parts

in Figs. 5(b) and 5(f) to move apart. The curves of the reso-

nant frequencies in Figs. 5(a) and 5(e) agree with the typical

curve based on synchronization theory (Pikovsky et al.,
2001), even if we do not consider non-linear effects. A simi-

lar behavior is observed in the experimental results for a

pair of organ pipes by Fischer et al. (2016).

Having examined the influence parameters inter-

resonator distance l and frequency detuning D separately,

the final step is their combination. Figure 6 shows the cavity

resonant frequency difference Df ¼ j<ð�x1 � �x2Þj of mode

S and AS as a function of the two variables and we call it the

degeneracy pattern. In the resulting parameter plane, the fre-

quency difference is approximately periodic in l-direction

and nearly symmetric about D¼ 0. The degeneracy of

modes is represented by the dark blue regions (line-shaped

regions in D-direction) with zero frequency difference

Df ¼ 0. These line-shaped regions of degeneracy are

arranged periodically, with the period corresponding to half

the average uncoupled wavelength �k=2. This matches the

period expected from the modal (anti-) crossings of the cav-

ity resonant frequencies for varying separations in Figs. 2(a)

and 4(a). The lines of degeneracy are slightly inclined

towards smaller distances for positive frequency detuning

due to smaller periods for smaller average resonant wave-

lengths. Since this effect accumulates over the distance, it

becomes especially visible for larger separations. The first

region of degeneracy extends over a wide range of detuning.

For the second region, the range becomes smaller and

decreases only weakly afterwards. This decrease in width

with increasing separation, and thus weaker coupling, is in

accordance with the regions of degeneracy in Fig. 5.

If the radiation losses are sufficiently increased for a fixed

detuning, the modal crossing can be restored. In case of the C-

shaped resonators, the radiation losses can be tuned by aper-

ture width. This becomes obvious when comparing the results

for the initial C-shape with wA ¼ 4 mm and an increased

aperture width of wA ¼ 4:25 mm for D ¼ 3 % (see Fig. 7).

FIG. 5. (Color online) Real and imaginary parts of the complex eigenfre-

quencies fc associated with cavity resonance as a function of the frequency

detuning D ½%� at the first and second point of degeneracy obtained from

Fig. 2(a) and at the second crossing point of the imaginary parts in Fig. 2(b).

The gray area marks the range of 63% detuning. (a) real part, l¼ 84 mm, (b)

imaginary part, l¼ 84 mm, (c) real part, l¼ 120 mm, (d) imaginary part,

l¼ 120 mm, (e) real part, l¼ 174 mm, and (f) imaginary part, l¼ 174 mm.

FIG. 6. (Color online) Difference between the real parts of the cavity reso-

nant frequencies Df ¼ j<ð�x1 � �x2Þj½Hz� of mode S and AS in the plane of

inter-resonator distance l (mm) and frequency detuning D ½%�. The degener-

acy pattern shows the degeneracy of modes represented by the dark blue

regions Df ¼ 0.

J. Acoust. Soc. Am. 154 (2), August 2023 Kronowetter et al. 847

https://doi.org/10.1121/10.0020570

 11 Septem
ber 2023 06:48:11



Figures 7(a) and 7(b) show the complex eigenfrequencies f as

a function of the resonator separation l for the case with

increased aperture width, that is, with increased c of about

10%. Compared to Fig. 4(a), the modal crossings in the real

parts are restored, while the imaginary parts approach each

other without crossing at these distances, indicated by the

dashed black lines. The further the losses are increased, the

smoother are the curves in the vicinity of the crossing points.

An illustrative explanation for the counteracting effects

can be given looking at the real parts of the cavity resonant

frequencies in Figs. 2(a), 4(a) and 7(a). The frequency

detuning opens a gap between the uncoupled and coupled

resonant frequencies [see Fig. 4(a)]. However, this gap can

be bridged by a sufficiently high increase in c [see

Fig. 7(a)]. As the coupling increases with the radiation

losses, it can be tuned by aperture width.

D. Experimental validation

To experimentally valid the acoustic performance of

the coupled resonators, the transmission efficiency of two

identical C-shaped meta-atoms was measured in a two-

dimensional parallel-plate waveguide system as shown in

Fig. 8(a).

The meta-atom samples are fabricated using additive

manufacturing (3D printing) with polylactide (PLA). The

two samples are shown in Fig. 8(b). We create an incident

plane wave by using an array of eight loudspeakers. The

FIG. 7. (Color online) (a) Real and (b) imaginary parts of the complex eigenfrequencies fc associated with cavity resonance as a function of the inter-

resonator distance l (mm) with frequency detuning D ¼ 3 %, for a geometry with increased radiation losses increased aperture width wA¼4.25 mm, initially

wA¼4 mm). The dashed black lines indicate the distances of the modal crossings and modal (anti-) crossings extracted from Fig. 2(a).

FIG. 8. (Color online) Experimental setup. (a) C-shaped meta-atoms placed in waveguide. (b) C-shaped meta-atoms.
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incident and transmitted fields are measured along a vertical

straight line by the microphone mounted on a belt system.

The waveguide system is surrounded by absorbing foam to

reduce unwanted reflection from the boundaries. We use

four different orientations a ¼ 30�, 60�, 90�, and 120� to

experimentally demonstrate the sound attenuation of cou-

pled meta-atoms. The sound reduction performance is exam-

ined by the transmission efficiency and compared with the

numerical results (see Fig. 9).

The measured data match the trend of the simulated

data quite well. The minor deviations in the transmission

efficiency are due to inaccuracies in the setup, inaccuracies

of modelling losses, and also modelling the acoustic source.

Our model only covers the acoustic field, and no flow is con-

sidered. We also use a background pressure field in the

COMSOL model, leading to plane wave excitation, while

we use an array of loudspeakers mimicking a plane wave in

the experimental setup. Since we are still able to reproduce

the characteristic of the transmission efficiency in simula-

tion and experiment, we consider the results as validated by

experiment and hence, applicable in a real environment

including all kind of losses. Furthermore, we show that the

transmission efficiency strongly depends on the twist angle

of the C-shapes at a fixed distance l. The configurations of

the C-shapes for the four measured twist angles are pre-

sented on the top left of Fig. 9. We control the level of sound

attenuation of the coupled C-shapes, for instance, by chang-

ing the twist angle from 90�–60� at an excitation frequency

of 1960 Hz. This leads to a decrease in the transmission effi-

ciency from 0.86–0.69. As a result, the measurement results

confirm the simulated data and hence, demonstrate the twist

angle as parameter to control the level of sound attenuation

of the coupled C-shapes.

IV. CONCLUSION

We show that degeneracy of modes for identical C-

shaped Helmholtz resonators occurs at periodic distances

with either the symmetric or antisymmetric mode dominating.

By introducing detuning, we demonstrate that modal degener-

acy depends on the level of detuning and on the coupling

strength. Modal degeneracy can still occur for weak enough

FIG. 9. (Color online) Experimental and numerical transmission efficiencies for six different frequencies evaluated at the twist angels of the resonators

a ¼ 30�, 60�, 90�, and 120� and an inter-resonator distance of 60 mm. The configurations of the C-shapes in C-shapes in dependence of the twist angles are

presented on the top left.
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detuning at certain specific distances between the resonators

and, moreover, leads to the highest sound attenuation.

This region of degeneracy has similarities to Arnold

tongues in non-linear synchronization theory. The degener-

acy of modes holds within a certain range of frequency

detuning—the region of degeneracy. Its scope narrows with

increasing inter-resonator distance, that is, decreasing cou-

pling strength. At the edge of the region of degeneracy, the

phase differences converge to DH ¼ 6p=2. For varying dis-

tances, detuning values outside the degeneracy region lead

to periodic avoided modal crossings of the real parts of the

eigenfrequencies. The imaginary parts of the eigenfrequen-

cies cross at the location of the avoided crossings of the real

parts. At the distances of these (avoided) crossings, also the

phase differences cross. This indicates an interchange in the

nature of the two modes.

For C-shaped resonators, the radiation losses can be

tuned by aperture width and counteract the effect of detun-

ing. The combined effect of distance and detuning becomes

visible in the degeneracy pattern. It consists of line-shaped

regions of degeneracy, which are periodic in distance–direc-

tion and symmetric about zero detuning.

Furthermore, coupling induces the possibility of tuning

via the resonators’ relative arrangement, that is, distance

and orientation. Starting with facing apertures, the two reso-

nators were twisted in opposite directions. Thereby, the

degeneracy of modes can be shifted to arbitrary distances,

while the period is maintained. The location of the crossing

points depends on the inter-aperture distance and is addition-

ally influenced by background scattering effects. Moreover, the

relative orientation affects the width of the regions of degener-

acy. This means that the coupling strength depends on relative

orientation and distance. Accordingly, these two influence

parameters offer additional degrees of freedom for tuning the

metamaterial response with unchanged components.

We also use coupled mode theory as an analytical

approach to determine the coupling coefficient, but do not

present it throughout the manuscript. The reason for this is

that any asymmetry depends on the off diagonal terms,

which makes the eigenvalue problem quite complicated.

Determining the coupling coefficients using analytical mod-

els could be the subject of future research.

Experiments in a two-dimensional parallel-plate waveguide

were conducted, showing good agreement and hence, validating

the numerical results. In addition to their validation, the pre-

sented findings provide a base for further research, in particular,

concerning the application to acoustic metamaterials.

The impact of the resonators’ relative arrangement on

the interaction and hence, the metamaterial response, pro-

vides additional degrees of freedom for the design of meta-

materials. Since we can significantly manipulate the

transmission efficiency of the coupled meta-atoms by

changing the twist angle, our results offer new possibilities

for more efficient and versatile metamaterials for noise con-

trol. In addition, our findings help drive progress in the

design of advanced and high-performance metamaterials for

a wide range of applications besides sound barriers.
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A B S T R A C T

Traffic noise has increased in recent years and hence the European Union has regulated
the noise emission norm more strictly. New technologies have to be developed to reach
the future regulations. Automotive lightweight construction deteriorate the noise, vibrations
and harshness performance, though. The airborne and structure-borne noise emitted by tires
contribute significantly to the entire noise spectrum of the vehicle. Our goal is to develop a
new wheelhouse liner that improves the acoustic attenuation properties in the frequency range
of 800Hz to 4000Hz. We pursue the strategy of adapting two different approaches. First, we
design a compound material consisting of porous layers and a microperforated panel. This
approach combines the effect of a porous absorber and local resonators. Thus, broadband
noise attenuation is achieved. The starting frequency of the absorbing band is shifted towards
lower frequencies than conventional porous absorbers due to the effect of local resonances.
Second, we construct an acoustic metamaterial based on resonant cavities. In comparison to
the first approach, the material does not produce broadband absorption but targets a particular
frequency of interest. Both approaches are first simulated and then experimentally evaluated
by impedance tube, Alpha Cabin and full vehicle measurements. The chosen design concepts
are developed for mass production and hence a trade-off between being cost-efficient and
manufacturable while improving the acoustic attenuation. We demonstrate two new types of
wheelhouse liners for vehicles outperforming state-of-the-art solutions made from compressed
nonwoven materials

1. Introduction

Increasing traffic in Europe and particularly on German roads comes hand in hand with increased noise exposure. Therefore,
the European Union decided to counteract increasing noise exposure by tightening regulation No. 51 and No. 117 of the Economic
Commission for Europe of the United Nations (UN/ECE), respectively. In the EU, four different power classes are described, which
are distinguished by the power-to-mass ratio. From July 2026, a limit of 68 dB will apply to all new registrations in the lowest power
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class (≤ 120 kW/1000 kg – this is around 90% of all vehicles – current limit 72 dB), which means a reduction in pass-by noise of 4 dB
(enormous feat).

Due to the electrification of the drive train, the noise emitted from the engine is reduced. Hence, the tires become a dominant
sound source, contributing to the pass-by noise and also to the interior cabin noise via transmission path through the structure of
the car. Tire noise is composed of texture impact, tread impact, air pumping, pipe resonance, Helmholtz resonance, horn effect,
and tire cavity resonance [1]. The low frequency cavity resonances have intensively been investigated by the scientific community
in recent years [2–8]. So is the total performance of the tire and its optimization as acoustic source [1,9–11]. Lafont et al. [12]
investigate tire radiation numerically. They identify the contact patch as a principal contributor from 800Hz to 2000Hz.

Weight reduction of vehicles typically leads to impaired noise, vibration and harshness (NVH) performance. This is due to the
fact, that the NVH performance is mainly dependent on mass and stiffness. To satisfy the demands of reduced pass-by noise and
of reduced cabin noise, classic noise reduction techniques — relying on increased mass and stiffness — are not applicable, since
they are contradictory to the lightweight construction of the vehicle. Particularly noise propagation in electric vehicles will be of
increased future interest [13–15].

Installing sound absorbing materials is another well known approach to increase sound attenuation. Porous materials, for
example, are great absorbers for higher frequencies. They can be modeled by semi-empirical models, e.g. the five-parameter
Johnson–Champoux–Allard (JCA) model [16–18], that effectively describes the characteristics of acoustic propagation in porous
materials. Furthermore, the application of microperforated panels (MPPs) is a basic procedure to reduce noise in room acoustics.
The theory to predict the acoustic properties of MPPs was first proposed by Maa [19–21]. MPPs can be considered an assembly
of periodically arranged Helmholtz resonators with thin apertures, that are connected by a cavity behind them. The advantage of
MPPs is that they can be connected in various ways and hence are adaptable to a variety of acoustic problems [22–25]. However,
MPPs are narrow-band absorbers limited by the dimensions of the aperture and the quarter-wavelength dependence of the cavity,
necessary for maximum absorptions. A composite structure consisting of MPPs and porous materials can be chosen to overcome these
limitations. Thereby, broadband absorption shifted towards a lower frequency range can be achieved, compared to conventional
porous materials. Various composite structures have been intensively studied in recent years [26–31].

A novel approach called acoustic metamaterials (AMMs) is breaking the laws of classic noise reduction techniques, and hence
the dependency on mass and stiffness [32–36]. AMMs mostly consist of periodically arranged meta-atoms [37] based on local
resonances leading to, for example, a negative effective mass density [38–40], bulk modulus [41] or refractive index [42]. If we
exemplary consider structural metamaterials based on microslits [43] or more complex shaped meta-atoms [44], thermo-viscous
losses play a major role due to small openings and narrow channels. Losses are intensively studied since they can significantly effect
the metamaterial performance [45–47].

The transfer of AMMs to vehicles is latterly studied by multiple research groups. Sangiuliano et al. [48] apply AMMs for structural
noise mitigation in vehicles. Therefore, they place 3D printed resonant structures onto the wheelhouse of a hatchback vehicle. They
address the first acoustic tire resonance in the low-frequency domain at 230Hz. In a recent work by Sangiuliano et al. [49], the
authors investigate a resonant metamaterial tire solution and its influence on the low-frequency structure-borne tire-road noise. Liao
et al. [50] target the low-frequency cabin noise at 20Hz to 100Hz with AMM plates placed in the tail door producing stop-bands at
35Hz. Chang et al. [51] apply AMMs to suppress the noise transfer through vehicle body panels. They target a frequency range of
500Hz to 900Hz with periodic vibration damping unit cells. All of the above mentioned approaches use solid structures harvesting
energy when they are activated in their natural frequencies.

The wheelhouses of a vehicle offer large areas for the attachment of acoustically effective liners. State-of-the-art wheelhouse
liners are made of compressed nonwoven materials or even plastic material. There is a huge potential to improve sound absorption
at the material level and to utilize surfaces with untapped acoustic potential. We investigate the influence of a compound material
wheelhouse liner consisting of porous layers and a microperforated panel as well as an acoustic metamaterial wheelhouse liner
on the pass-by noise as well as on the cabin noise. The metamaterial approach differs from the aforementioned ones by relying
on resonances in the fluid field and neglecting structural vibrations. Most metamaterials achieve outstanding sound attenuation
properties in laboratory conditions. Here, we face complex wave fields, high influence of thermo-viscous losses due to the small
dimensions and several restrictions given by production guidelines. The task is quite demanding, since the designs needed to be
realizable, manufacturable, low-cost and the acoustic performance needs to be maintained in built-in condition. First, we present
the baseline problem. In the second step, we introduce the modeling approaches in Section 3. In the third step, the material properties
are studied and we explain the manufacturing process, in Section 4. We then discuss the results and evaluate the measurement data
extracted from full vehicle measurements. Finally, we conclude the discussed results.

2. Baseline problem

The pass-by noise of vehicles in Europe is governed by regulation No. 51 and No. 117 of the Economic Commission for Europe
of the United Nations (UN/ECE). To get a better understanding of the baseline problem, we present the spectrum of the pass-by
noise of an upper premium class hatchback vehicle. The vehicle is equipped with Continental ContiWinterContact 225/55 R17 tires.
Fig. 1 displays the pass-by noise measurement set-up for outdoor measurements as well as the corresponding noise spectrum.

Fig. 1(a) shows the pass-by noise measurement set-up regarding to regulation No. 51 (UN/ECE). The vehicle is passing a
measurement track of 20m (from 𝐴 to 𝐵) at a predefined speed 𝑣 = 50 km∕h. The microphones are positioned at 10m distance
from point 𝐴, at 7.5m distance from the middle of the road and at a height of 1.2m. Multiple outdoor measurements are conducted
in different driving maneuvers. For that purpose, we increase the vehicle speed in 10 km∕h steps from 40 to 80 km∕h. Fig. 1(b) shows
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Fig. 1. Measurement set-up regarding to regulation No. 51 (UN/ECE) and Pass-by noise of the vehicle over the frequency in third octave bands. The shaded
regions colored red depict the third octave bands where the highest L𝑝 is measured.

the averaged sound pressure level (L𝑝) measured at two microphones — their position is defined by the pass-by norm — with respect
to third octave bands from 125Hz to 10 000Hz. We can identify the frequency range around 800Hz to 1250Hz being the one with
the highest L𝑝 measured. Particularly, the L𝑝 reaches its maximum around 1250Hz and hence represents the most problematic noise.
The goal of this work is to design a wheelhouse liner that reduces the pass-by noise of the vehicle. Therefore, the focus of our study
is on the influence of the wheelhouse liners on the pass-by noise, besides we additionally investigate the influence on the cabin
noise.

3. Theory

We investigate two approaches to enhance sound absorption of the wheelhouse liner. First, we combine a microperforated panel
with a custom-built porous layer. This leads to broad-band wave attenuation. Second, a meta-structure is designed to target the
dominant frequency.

3.1. MPP

An MPP can be considered an assembly of small tubes connected to a cavity. Each perforation hole with enclosed air cavity acts
as individual Helmholtz resonator. Under normal incidence, an MPP can be regarded as a large number of Helmholtz resonators
with shared air volume. Due to thin necks, the thickness of the viscous boundary layer is approximately that of the hole orifices.
This results in high viscous losses and hence high absorption. Representing the resonator as harmonic oscillator, the oscillating air
in the neck acts as mass and the cavity as spring. The complex surface impedance of the MPP is given by Maa [19–21]

𝑍𝑀𝑃𝑃 = 𝑟 + i𝜔𝑚 (1)
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Fig. 2. Equivalent circuit for the MPP absorber with air layer.

with 𝑟 being the acoustic resistance and 𝑚 the acoustic mass reactance
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and 𝜂, 𝜎, 𝜌0, 𝜔, 𝑑, 𝑡 being the dynamic viscosity of air, percentage perforation, density of air, circular viscosity, diameter of the tube
and thickness of the MPP layer, respectively. The acoustic impedance of the cavity of length 𝑥 can be derived using the standing
wave approach [52] as

𝑍𝐷 = −i𝜌0𝑐0 cot(𝑘0𝑥) (3)

with 𝑐0 being the speed of sound in air. The equivalent RLC series circuit shown in Fig. 2 gives the assembled impedance as

𝑍 = 𝑍𝑀𝑃𝑃 +𝑍𝐷 = 𝑟 + i𝜔𝑚 − i𝜌0𝑐0 cot(𝑘0𝑥). (4)

The resonance frequency of the system can be extracted from the circuit formulation 𝑓 = 1
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√
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4

inducing a maximum velocity at the MPP layer. The absorption of a single layer MPP backed by a cavity filled with air is dominated
by its resonant frequency. Since we aim at broadband absorption we tune the system by filling the cavity with porous media. We
develop our own porous material meeting the demands given by available space, weight, material safety data sheet, costs and
absorption properties. The acoustic impedance is modeled by using the five parameter, semi-empirical Johnson–Champoux–Allard
equivalent fluid model [16–18] leading to the equivalent dynamic density
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and the equivalent bulk modulus
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We denote 𝛾, 𝜙, 𝛼∞, 𝜎,Pr, 𝛬, 𝛬′, and 𝑝0 the specific heat ratio of air at room temperature, porosity, tortuosity, flow resistivity, Prandtl
number, viscous characteristic length, the thermal characteristic length and the ambient pressure, respectively. The characteristic
impedance and the wavenumber are calculated using the square root of the dynamic density and bulk modulus:
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We obtain the surface impedance by using the transfer matrix method [53,54]

𝑇𝑀𝑃𝑃 =
[
1 𝑍𝑀𝑃𝑃
0 1

]
, 𝑇𝑃 =

[
cos(𝑘𝑝𝑥𝑝) i𝑍𝑐 sin(𝑘𝑝𝑥𝑝)

i sin(𝑘𝑝𝑥𝑝)∕𝑍𝑐 cos(𝑘𝑝𝑥𝑝)

]
(8)

leading to

𝑇 = 𝑇𝑀𝑃𝑃 𝑇𝑃 =
[
𝑇11 𝑇12
𝑇21 𝑇22

]
,

[
𝑝𝑠
𝑣𝑠

]
=
[
𝑇11 𝑇12
𝑇21 𝑇22

] [
𝑝𝑤
𝑣𝑤

]

𝑍𝑠 =
𝑇11
𝑇21

= 𝑍𝑀𝑃𝑃 − i𝑍𝑐 cot(𝑘𝑝𝑥𝑝).
(9)
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Fig. 3. Drawing of the resonant cavity and the visualized sound pressure level at 1250Hz.

We denote 𝑥𝑝 the thickness of the porous layer, 𝑝𝑠, 𝑢𝑠 the pressure and velocity at the surface of the MPP and 𝑝𝑤, 𝑢𝑤 = 0 the pressure
and velocity at the rigid wall behind the porous layer. The absorption coefficient is defined by the well-known formula

𝛼 =
4Re(𝑍𝑠)

𝜌0𝑐0(
1 + Re(𝑍𝑠)

𝜌0𝑐0

)2
+
(
Im(𝑍𝑠)
𝜌0𝑐0

)2 . (10)

3.2. Metamaterial

As a second concept we choose an acoustic metamaterial targeting one particular frequency of interest. Here, we choose a
frequency of 1250Hz regarding maximum L𝑝 of Fig. 1(a). A more detailed explanation can be found subsequently in Section 5,
where we additionally analyze the surface contribution. Due to the restricted space in the wheelhouse we need a subwavelength
structure with good sound attenuation properties. This is realized by periodically arranged local resonators leading to band-gaps
in the frequency spectrum. Therefore, we design a mixture of a Helmholtz resonator and quarter wave resonator. The goal is to
achieve sound attenuation by absorption and not just changing the directivity. On these grounds, we build two different models.
We use COMSOL Multiphysics to simulate the resonant cavity and hence predict its eigenfrequencies as well as the transmission
spectrum. The first model analyzes the transmission coefficient of our cavity and the second one works like a digital twin of an
impedance tube providing its reflection coefficient and absorption coefficient in the presence of thermo-viscous losses. We end up
with designing a U-shaped quarter-wave resonator with a short neck and a large opening to increase the amount of affected fluid.
To obtain metamaterial properties, we apply periodic boundary conditions. A schematic as well as the sound pressure level inside
of the resonant cavity excited at 1250Hz are shown in Fig. 3.

Fig. 3(a) displays the geometry of the resonant cavity. The dimensions L𝑥, L𝑦 and L𝑧 are set to 50mm, 22mm and 10mm,
respectively. The neck of the cavity is highlighted by the red lines and has a thickness of 2mm in 𝑦-direction. Fig. 3(b) shows
the distribution of the sound pressure level inside the cavity at resonance. It is similar to the distribution of the total thermo-viscous
power dissipation density. Hence, most energy gets dissipated in the last section of the cavity. We additionally computed the complex
reflection factor with and without losses as well as the absorption coefficient from 1150 to 1350Hz. This is presented in Fig. 4.

Fig. 4(a) shows the real and imaginary parts (ℜ and ℑ) of the complex reflection factor. Here we differ two cases, one without
losses (𝑟) and a second one in the presence of thermo-viscous losses (𝑟𝑙). We can see that including losses leads to a significant
reduction of the dip in the real part and observe a smoothed course of the imaginary part over the frequency. Furthermore, the
incorporation of losses leads to a downward shift regarding the resonance frequency. The real part of 𝑟𝑙 is always positive and the
imaginary part bounded by ±0.5. This leads to almost perfect absorption and is depicted in Fig. 4(b). Thus, we conclude that the
sound energy is absorbed at the target frequency.

4. Development of a production process and analysis of the process structure property relationships

For the production of sound-absorbing nonwoven components, a process has been developed which is described in more detail
in the following chapter. In addition, the dependence of the sound absorption coefficient of nonwoven materials on the processing
method is explained.

4.1. Process structure property relationships

For the study of the sound absorption coefficient 𝛼, the thickness of a fiberglass polyester (PES) bi-component (PES-bico/GF)
nonwoven is varied between 3mm, 6mm and 7.5mm. Furthermore, different mass per unit area configurations — 1080 g∕m2,
1200 g∕m2 and 1500 g∕m2 — are investigated. This results in a test matrix of three thicknesses and basis weights. Fig. 5(a) shows the
sound absorption properties as a function of frequency for three different thicknesses at a mass per unit area of 1200 g∕m2.
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Fig. 4. Simulated complex reflection factors (with and without losses) and absorption coefficient from 1150 to 1350Hz.

Fig. 5. Absorption coefficient over frequency for varying thickness and mass per unit area.

With increasing thickness, the sound absorption almost doubles from 3mm to 7.5mm. This effect is particularly noticeable above
a frequency of 1000Hz. The explanation can be found by looking at the microstructure. For a better understanding, we investigated
the nonwovens by using a scanning electron microscope (SEM). The corresponding pictures are presented in Fig. 6.

We can see that the fibers are tightly compressed and quite dense, regarding a thickness of 3mm. Thus, the incoming sound wave
is only slightly attenuated by the material. Increased thickness from 3mm to 7.5mm leads to increased porosity of the material by
up to 80%. As a result, the surface area of the material also increases and thus allows sound to be trapped and dissipated in the
structure.

The sound absorption coefficient as a function of frequency for varying mass per unit area at a constant thickness of 3mm is shown
in Fig. 5(b). It can be observed that the sound absorption coefficient does not increase in the same way over the entire frequency
range as the mass per unit area increases. Basically, the sound absorption can be divided into two ranges. At low frequencies up to
1000Hz to 3000Hz, a mainly density-dominated region can be identified. In this region, the material with the highest mass per unit
area usually comes along with the highest absorption coefficient. In the low frequency domain, sound absorption is dominated by
high density and volume and hence mass. Here we face an exception to the rule, because the blue curve (1080 g∕m2) has a higher
absorption coefficient than the red curve (1200 g∕m2), see Fig. 5(b). We assume that since we enforce higher density by compressing
the nonwoven, we also change the porosity and other material properties. Above about 1000Hz to 3000Hz, high porosity becomes
more and more advantageous for sound absorption. This region is called transition region, where the dominant parameter switches
from density to porosity. At higher frequencies from 3000Hz upwards, we observe a porosity-dominated region. Higher frequency
sound waves with short wavelengths are strongly affected by dissipation inside porous materials with pore sizes in dimensions of
μm to mm. Fig. 7 provides an explanation for the poor performance of the 1500 g∕m2 in the frequency region over 3000Hz.

Due to the high degree of compression, the nonwoven only forms tiny pores and hence is quite dense. In the porosity-dominated
region, a higher density has a negative effect on the absorption coefficient. This is exactly what we see in the red colored region in
Fig. 5(b).
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Fig. 6. SEM pictures of the nonwoven at different thicknesses and constant mass per unit area. The width of the frames are 1100 μm.

Fig. 7. SEM pictures of the nonwoven at different mass per unit area and at constant thickness 3mm. The width of the frames are 1100 μm.

We now consider the sound absorption coefficient as a function of porosity and density. Fig. 8(a) shows this relationship at the
third octave of 1000Hz. It can be seen that there is a reciprocal influence of the two parameters. As the density increases from
0.2 g∕cm3 to 0.55 g∕cm3, the sound absorption coefficient decreases from ≈ 0.45 to ≈ 0.19. By increasing the porosity from 55 ± 3 %
to 86 ± 1 %, the sound absorption coefficient doubles from ≈ 0.23 to ≈ 0.45.

Fig. 8(b) shows the absorption coefficient over the density and porosity at the third octave band of 3150Hz. We observe identical
dependencies as in Fig. 8(a), but for higher values of the absorption coefficient. As the density increases from 0.2 g∕cm3 to 0.55 g∕cm3,
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Fig. 8. Absorption coefficient over density and porosity for a frequency of 1000Hz 8(a) and 3150Hz 8(b).

Fig. 9. Absorption coefficient over density and porosity for a frequency of 1000Hz and 3150Hz and constant thickness of 3mm in Fig. 9(a). Absorption coefficient
over air permeability in Fig. 9(b).

the sound absorption coefficient decreases from ≈ 0.92 to ≈ 0.5. By increasing the porosity from 55 ± 3 % to 86 ± 1 %, the sound
absorption coefficient doubles again from ≈ 0.47 to ≈ 0.92.

For a better understanding of the results, we vary the density over constant thickness. This is displayed in Fig. 9(a).
It can be seen that the density exhibits different influence on the sound absorption coefficient for the two third octave bands

studied, 1000Hz and 3150Hz. For the former band, increased density leads to increased absorption and increased porosity to
decreased absorption. Regarding the latter third octave, both parameters behave in a reciprocal way. Hence, increased density
leads to decreased absorption and increased porosity to increased absorption. Those findings conform with the graphs and colored
regions in Fig. 5(b).

The air permeability (Fig. 9(b)) has a maximum sound absorption coefficient at around 250mm s−1 to 300mm s−1 for both
frequencies considered. Above an air permeability of 300mm s−1, transmission dominates and hence leads to reduced sound
absorption.

4.2. Processing

We develop a manufacturing process for the production of a sound absorbing nonwoven material with an integrated MPP
layer. The process has to fulfill financial, economical and ecological requirements specified by the car manufacturer and safety
regulations. Additional specifications for the wheelhouse liner include a maximum weight of ≈5 kg (dependent on the model of
the vehicle) and a maximum cost of e15 per liner. We hence decide to use cost-effective processes such as thermal pressing and
thermal forming, which are suitable for high volume production. Besides, we use a low-cost base material, such as the standard
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Fig. 10. Segments of the CM wheelhouse liner.

thermoplastic PES with low processing temperatures, to even further reduce costs. In a first step, we manufacture the MPP layer.
We cut a polyester/polypropelene (PES/PP) nonwoven to the target dimensions. Then, the scrim is thermally consolidated at 180 °C
in a double belt press to form a foil of 1 ± 0.04 mm thickness. In this process, the PP fiber melts due to its low melting point
and forms a compact matrix around the PES fibers. In the another pass through the double belt press, a bipolar compound film is
laminated onto the surface of the PES/PP film at 140 °C to assure adhesion needed in the second step of the process. The material
is perforated by a CO2 laser, cutting thin holes (diameter <1mm) to obtain the MPP layer. In a second step, we assemble the MPP
and the PES-bico/GF nonwoven. The MPP and the PES-bico/GF nonwoven are arranged in form of the computed assembly and
pre-tempered for further processing.

The semi-finished product is preheated for 10min in a convection oven at 180 °C, hence the PES-bico-fiber and the two-pole
compound film are above their melting temperature of 110 °C. At this point, the material is placed in the isotherm heated mold and
pressed to the target thickness of 15mm. As soon as the formed part has cooled down to the mold temperature, the mold is opened
and the consolidated part is demolded.

Segments of the fiberglass PES-bico wheelhouse liner with built-in MPP layer (CM) are presented in Fig. 10.
Each wheelhouse liner consists of multiple segments (see Figs. 10(a) and 10(b)), such that the available space is maximally

covered.

5. Validation and design modifications

In this section, the manufactured prototypes are measured and compared to the simulated data. We conduct Alpha Cabin
measurements as well as full vehicle measurements. The wheelhouse liners are placed in an Alpha Cabin (https://www.autoneum.
com/de/alpha-cabin-ii/) and excited by a sound source emitting white noise. We measure the sound pressures at four microphones
in the diffuse wave field and average the acquired data. Since we know the acoustic characteristics of the empty cabin, the absorption
coefficient can be determined by calculating the difference of the measurement data with and without liners. The subsequent
measurements are conducted in an indoor measuring facility on a chassis dynamometer. Therefore, we are able to eliminate the
influence of wind-induced noise at higher speeds. The focus of our study is on the influence of the wheelhouse liners on the pass-by
noise, besides we additionally investigate the noise inside the cabin. Thus, we measure at the driver’s seat, the rear seat and a
microphone positioned at 7.5m distance and 1.2m height, regarding to regulation No. 51 (UN/ECE). Since winter tires lead to
a more intensive rolling noise compared to summer tires, we use that feature to increase the significance of the measurements.
Therefore, we equip the vehicle with Continental ContiWinterContact 225/55 R17 tires.

5.1. Fiberglass PES-bico material with MPP

In a first step the fiberglass PES-bico material with built-in MPP layer (CM) is measured in the Alpha Cabin. The design and its
layers are optimized in multiple iteration steps to reach maximum absorption over a wide frequency range starting at the lowest
frequency of interest, i.e. 800Hz. We use an in-house code based on the theory by Maa and the five-parameter JCA model to compute
the absorption coefficient of the CM. With the parameters being known, we set-up a COMSOL model to extract the complex surface
impedance of our material. We assume infinite periodicity to reduce the computational costs. In order to find the best set-up of
the CM within the restrictions set by the limited space, we run an optimization loop. Therefore, we apply a gradient-based method
to find the minimum of our objective function, which is defined by Eq. (10). We hence solve a nonlinear optimization problem
with upper and lower bounds for the design variables, i.e. the thickness of the arrangement of the layers. For this purpose, we use
the MATLAB based function fmincon. The result of the optimized configuration is shown in Fig. 11. The solid blue curve indicates
the measurement data, the dashed red curve the simulated one and the dotted black curve the target line to be beaten. It can be
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Fig. 11. Absorption coefficient of the CM.

Fig. 12. L𝑝 of the full vehicle measurements with the initial wheelhouse liner (blue) and the CM liner (red) over the frequency in third octave bands.

seen, that the absorption coefficient reaches a value of 𝛼 ≈ 0.6 at 800Hz, complying with the defined specifications. The absorption
coefficient increases with higher frequencies reaching a level of 𝛼 ≈ 1. Therefore, it is really close to the ideal value.

In a next step, the prototypes are placed in the wheelhouses and mounted to a car. Multiple measurements are conducted in
different driving maneuvers. The analysis of the pass-by measurement is based on the ISO 362-3:2016 standard. In addition to
that, we use the UN ECE R51.03 supplement number 4 for indoor measurements of the pass-by noise. The effect of the modified
wheelhouse liners is evaluated via simulated pass-by measurements at constant driving speeds from 40 up to 80 km∕h. The position of
the microphones is 7.5m distance and 1.2m height, which is required by the pass-by norm. The results of the spectra at the driver’s
seat, at the rear seat and at the pass-by norm microphones are shown with respect to third octave bands in Fig. 12.

We can see an improvement of the sound attenuation of the CM liner compared to the initial one. Particularly the cabin noise
is reduced (Figs. 12(a) and 12(b), whereas the pass-by noise seems to be less affected by the new liner Fig. 12(c). To have a clearer
impression of the noise reduction, we plot the difference between the sound pressure levels of the CM liner and the initial liner in
Fig. 13.

We achieve an improvement of the sound attenuation up to 3 dB compared to the initial liner. It can be seen, that the CM liner
is most effective with regard to the driver’s seat. A slightly lower noise reduction of up to 1.5 dB is measured at the rear seat. The
pass-by noise is reduced up to 1 dB. Hence, we deduce that the wheelhouse liner mainly affects the interior cabin noise. The third
octave bands colored red show the frequency bands, where the CM liner does not outperform the initial liner.
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Fig. 13. Difference 𝛥 in dB(A) of the full vehicle measurements with the initial wheelhouse liner and the CM liner over the frequency in third octave bands.
The shaded regions colored red depict the third octave bands where the CM liner does not outperform the initial liner.

Fig. 14. Schematic of the volume source and its position in the measurement set-up.

As a consequence, frequency response measurements with special volume sources are performed to investigate the impact of the
liners in more detail. Fig. 14 depicts a schematic of the acoustic source in form of a dodecahedron and how it is positioned.

The contribution surfaces are characterized using a modified dodecahedron with integrated loudspeakers [55,56]. Furthermore,
each single loudspeaker (marked by the colored faces) can be controlled separately or grouped to investigate the influence of
each contribution surface. We use a white noise as excitation signal. To achieve as accurate results as possible, we position the
dodecahedron at the wheel hub position. The different contribution surfaces are characterized based on measurements of the
frequency response functions (FRFs) — grouped excitation from loudspeakers to different microphone positions — , shown in Fig. 15.

Fig. 15 shows, regarding to the microphone in 7.5m distance, that the contact area and the tread are the surfaces with main
contribution. This results are consistent with the observations made by Lafont et al. [12]. Nevertheless, the goal of our work is to
design and investigate the influence of the wheelhouse liner. According to that, we focus on the curve marked by the thick blue line,
which is mainly influenced by the wheelhouse liner. We can see that the contribution of the inner side of the wheel mostly gets lost
in the shuffle. Except for two frequency ranges around 800Hz and 1250Hz, where the inner side of the wheel has a greater effect.
Besides, we beforehand identified these two frequency bands as most dominant in the pass-by noise spectrum shown in Fig. 1(b).
We now focus on the two dominant frequency bands in the following sections.
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Fig. 15. Sound pressure level (L𝑝) contributed by different surfaces.

Fig. 16. Absorption coefficient of the optimized AMM.

5.2. Acoustic metamaterial

Based on the previous findings of the panel contributions, we develop a new design incorporating the AMM mentioned earlier
in Section 3.2. The new AMM prototype is realized via additive manufacturing (fused deposition modeling). We design the AMM to
achieve maximum absorption at the higher frequency of 1250Hz, where space is limited and a larger number of resonant structures
can be mounted. Impedance tube as well as Alpha Cabin measurements yield ideal absorption of the AMM at the target frequency
of 1250Hz. This is shown in Fig. 16.

The entire wheelhouse liner is too big compared to the available construction space of the printer. Therefore, we designed AMM
plates that are in the dimension of the cross-section of the printer. Hence, we assemble the plates and attach them to the wheelhouse.
The AMM wheelhouse liners (front-front and rear part) are displayed in Fig. 17.

Fig. 18 shows the resulting absorption coefficients for the front and rear wheelhouse liners.
The front housing consist of two parts — denoted front-front part and rear-front part — to include the damper and the kinematics

of the front axle. It can be seen that the absorption coefficient of the front part of the front liner has more than doubled compared
to the initial state, regarding the frequency band from 630 to 1400Hz. The rear part of the front liner also almost doubled its
absorption coefficient in the frequency band from 800 to 1250Hz. In addition, the rear wheelhouse liner has much better absorption
values (𝛼𝑚𝑎𝑥 ≈ 0.5) than the front parts (𝛼𝑚𝑎𝑥 ≈ 0.3). This is due to the fact, that the front wheelhouse liner consists of two parts and
has less space to install AMM plates, i.e. see Fig. 17(a).

In a last step, the AMM wheelhouse liner is evaluated via full-vehicle measurements. Fig. 19 shows the pressure difference 𝛥 in
dB(A) of the FRFs regarding to the CM wheelhouse liner.

The AMM liner outperforms the CM liner by up to 2 dB. Particularly in the lower frequencies up to 1400Hz for the difference
between the sound pressure levels to the driver’s seat and the rear seat, see Figs. 19(a) and 19(b). The influence on the pass-by
noise is more or less constant up to 2800Hz and leads to a reduction of the sound pressure level of ≈ 0.8 dB.

6. Conclusion

We show that two different design concepts of wheelhouse liners can reduce the cabin noise as well as the pass-by noise of
vehicles. Both concepts are compared to the current state of the art wheelhouse liner (initial wheelhouse liner) on the market.
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Fig. 17. The AMM liner at the front axle is made up of two parts denoted front-front and front-rear. The front-front AMM liner is shown in Fig. 17(a). The
AMM liner at the rear axle consists of a single part. Fig. 17(b) displays the rear wheelhouse liner mounted to the car.

Fig. 18. Absorption coefficients of the initial wheelhouse liner and the AMM one.

We first develop a fiberglass PES bi-component material with built-in MPP layer wheelhouse liner to achieve broadband
attenuation. Alpha Cabin measurements result in an absorption coefficient of ≈ 0.6 at 800Hz and ≈ 1 from 1500Hz upwards. Although
the measured absorption coefficients are quite high and promising, we did not achieve the desired reduction of the sounds pressure
level in full vehicle measurements. Nevertheless, we achieve to outperform the initial wheelhouse liner by up to 3 dB. Therefore,
we conduct further measurements to identify the main contribution surfaces. Two frequency bands are determined, where the
contribution of the inner side of the wheel exhibits a maximum.

Our second concept is based on an AMM that targets one of the two frequency bands of interest. The AMM prototype is realized
via additive manufacturing and placed in the wheelhouse. Alpha cabin measurements show an absorption coefficient of 1 at the
target frequency. Furthermore, the AMM liner outperforms the CM liner by up to 2 dB in full vehicle measurements.

The AMM wheelhouse liner showed great performance in terms of sound attenuation although the design has a sound hard
surface. Thus, a more advanced wheelhouse liner can be designed by combining our AMM design and porous materials.

Another finding is discovered by analyzing the contribution of different sound sources. The effect of the wheelhouse liner with
regard to the total noise of the car is of minor importance. Nevertheless, we identify two frequency ranges where the wheelhouse
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Fig. 19. Difference 𝛥 in dB(A) of the full vehicle measurements with the CM wheelhouse liner and the AMM liner over the frequency in third octave bands.

liner makes a substantial contribution to the pass-by noise as well as the cabin noise of the car. This is due to the contribution ratio
and the absorption properties of the liners. Therefore, the application of AMMs to different areas of the car would be more effective
considering sound attenuation.

The fiberglass PES bi-component material with built-in MPP layer wheelhouse liner is designed such that it retains its sound
absorbing properties despite rain and dirt. However, the AMM liner is subject to dirt leading to reduced sound attenuation. This
could be counteracted by applying a protective membrane layer on top of the AMM. Another approach would be to add a layer of
non-woven material that covers the AMM so that its acoustic properties are also immune to rain and dirt.

We develop a concept for mass production (CM liner) that can be manufactured in the same way as today’s state-of-the-art
wheelhouse liners, so that the assembly of the product and its application to the wheelhouse remain unaffected. The AMM liner is
purely a concept study to outline the acoustic performance and potential of acoustic metamaterials for use in wheelhouse liners.
However, AMM structures could be incorporated into nonwovens by injection molding, making them suitable for mass production.

We demonstrate that the pass-by noise as well as the cabin noise is significantly affected by an AMM liner. Thus, AMMs based
elements are an option for improvement of the NVH performance of vehicles and other machines. The future goal is to develop an
economically advantageous manufacturing process.
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resonances in acoustic devices

Felix Kronowetter 1,2,3 , Marcus Maeder 1, Yan Kei Chiang 2,
Lujun Huang 2, Johannes D. Schmid 1, Sebastian Oberst 3,
David A. Powell 2 & Steffen Marburg1

Quasi-bound states in the continuum (QBICs) coupling into the propagating
spectrummanifest themselves as high-quality factor (Q) modes susceptible to
perturbations. This poses a challenge in predicting stable Fano resonances for
realistic applications. Besides, where and when the maximum field enhance-
ment occurs in real acoustic devices remains elusive. In this work, we theo-
retically predict and experimentally demonstrate the existence of a Friedrich-
Wintgen BIC in an open acoustic cavity. We provide direct evidence for a QBIC
by mapping the pressure field inside the cavity using a Laser Doppler Vib-
rometer (LDV), which provides the missing field enhancement data. Further-
more, we design a symmetry-reduced BIC and achieve field enhancement by a
factor of about three compared to the original cavity. LDVmeasurements are a
promising technique for obtaining high-Q modes’ missing field enhancement
data. The presented results facilitate the future applications of BICs in
acoustics as high-intensity sound sources, filters, and sensors.

Bound states in the continuumwere first established by Neumann and
Wigner1 in the context of an electron that remains in its orbit, although
it has enough energy to overcome the attractive forces and propagate
to infinity. The transfer to acoustics was made by Ursell2 followed by
seminal works on symmetry-protected BICs3–6, Fabry–Pérot BICs7–9,
and Friedrich–Wintgen BICs8,10–12.

In linear acoustics, the continuous spectrum of an open system
is spanned by propagating waves that radiate to infinity, i.e., the
solutions corresponding to complex eigenfrequencies greater than
or equal to the cut-off frequency of the system. Propagating waves
can also be described as extended states with an outgoing energy
flux. Apart from the continuum or several continua, the total fre-
quency spectrum of the open system includes localized solutions
corresponding to discrete eigenvalues. Localized solutions corre-
sponding to discrete eigenvalues outside the continuous spectrum
are called bound states. Bound states are perfectly confined waves

since they are completely decoupled from open propagation chan-
nels and carry no outgoing energy flux, hence they can’t radiate
away. In contrast, localized solutions in the continuum generally
couple to open propagation channels, becoming leaky resonances.
The eigenfrequency of the highly localized quasi-trapped modes is
complex, in which the real part denotes the resonance frequency,
and the imaginary part characterizes the radiation loss13,14. For a
particular configuration of the geometric parameters, the radiation
loss vanishes and the resonances become confined states. These
localized solutions to discrete eigenvalues coexisting with propa-
gating waves are known as embedded trapped modes or, more
commonly BICs. From the mathematical point of view, the discrete
eigenvalues of BICs can be described by purely real eigen-
frequencies. Since BICs are localized solutions, they are invisible to
extended states in the first propagation channel, hence they cannot
be excited by them.
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In recent years, extensive theoretical studies on numerous BIC
configurations and BIC tuning have been conducted15–23. Additionally,
geometrical phase engineering of BICs extending Fano resonances
beyond their conventional limits is investigated17. Furthermore, the
theoretical and experimental demonstration of BIC-induced high
Q-factors24,25 can be applied to the design of novel, high-performance
acoustics sensors. Huang et al.26 demonstrate a Friedrich–Wintgen
quasi-BIC leading to emission enhancement of a sound source by
nearly two orders of magnitude. Recent studies have suggested that
acoustodynamic devices can be used for quantum computing27–30,
where the application of mechanical BIC-induced high-Q Fano reso-
nances (e.g., Yu et al.31) could be of further interest. A comprehensive
review of BICs can be found in Hsu et al.32, Pagneux33, Joseph34, and
Sadreev35.

All aforementioned studies lack information on the exact sound
pressure field inside the resonant cavity leading to BIC formation
under realistic conditions. Here, we demonstrate a BIC induced by
mode interference or Friedrich–Wintgen BIC. The specific design of
the resonator geometry and measurement technique allows us to
measure the transmission spectrum and map the sound pressure field
inside the cavity using laser Doppler vibrometry. This technique leads
to the first visual proof of an acoustic BIC and, most notably, provides
direct access to the pressure distribution inside the cavity. Thus, it is
possible to run a detailed analysis of the sound pressure field and its
contribution to the reflection or transmission spectrum. Our findings
lead to a new type of Friedrich–Wintgen BIC relying on reduced sym-
metry and the principle of mirror sources resulting in a high-Q mode
without exciting unwanted resonances. We further present the first
direct visualization of a Friedrich–Wintgen BIC using laser Doppler
vibrometry as a pressure field mapping technique. We use laser Dop-
pler vibrometry measurements to obtain a complete mapping of the
sound pressure field to better understand BIC formation in the pre-
sence of realistic losses. The reflection and transmission spectra are
obtainedusingmicrophones but donot provide information about the
exact pressure enhancement inside the cavity. The pressure distribu-
tion inside the cavity is needed to develop high-performance acoustic
devices based on BICs, such as acoustic sources and sound lasers.
Because BICs are extremely sensitive, any perturbation of the high-Q
mode, energy extraction, or backscattering from microphones will
degrade the BIC, so we use this technique to avoid any perturbation of

the pressure field. By mapping the sound pressure field of the BIC, we
have direct access to the actual pressure values and thus to the critical
information of when and where the pressure magnitude reaches a
maximum. The interaction between the localized thermo-viscous los-
ses and the concentrated high-intensity fields of the BIC is the key to
determining the achievable Q-factor and pressure field enhancement.
We facilitate the accurate analysis of high-Q modes in the presence of
realistic losses, determine the configuration with maximum pressure
enhancement, and enable the future application of high-Q Fano reso-
nances to acoustic devices.

Results
Here, we consider a BIC associated with the Friedrich–Wintgen full
destructive interference of degenerate modes of the same symmetry.
Friedrich and Wintgen10 demonstrated the formation of BICs due to
the interference of resonances belonging to different channels. In
contrast to symmetry-protected BICs in waveguides, Friedrich-
Wintgen BICs occur above the cut-off frequency of the first duct
cross-mode (antisymmetric about the duct axis) and close to the point
of modal degeneracy of the closed system. Friedrich-Wintgen BICs
have the special feature that BICs still form, even if the symmetryof the
system is broken8. An open system with a non-Hermitian Hamiltonian
is a prerequisite for the observation of BICs since they are forbidden in
compact systems36,37. We use coupled-mode theory15,23,35,38 to predict
the point of modal degeneracy for a closed cavity. See Supplementary
Information Section 1 for a complete theoretical analysis. By coupling
the cavity to an acoustic waveguide, the localized solutions of the
closed cavity turn into leaky resonances. Hence, we investigate the
complex eigenfrequencies and corresponding modes of a resonant
cavity with open ends. By variation of the geometrical parameters, the
relevant eigenfrequencies and modes are identified, forming a BIC.
The existence of a Friedrich-Wintgen BIC is numerically shown for a
non-rotationally symmetric duct-cavity structurewith open ends, i.e., a
rectangular cavity placed in a tubular waveguide. A schematic illus-
tration of the structure is displayed in Fig. 1a.

We chose this structure since the formed BIC is stable against
asymmetry and isolated in the studied frequency range, i.e., the BIC is
robust even in the presence of manufacturing imperfections and no
further resonance peaks are found. Embedded trapped modes can
only be found for a particular configuration of the geometric

Fig. 1 | BIC in an open acoustic resonator. a Schematic of a resonant cavity
coupled to an acoustic waveguide. The z-axis is perpendicular to the xy-plane. The
length Ly is set to 160mm and the diameter d of the pipe to 40mm. b Avoided
crossing of the real parts of high-Q and low-Q modes for varying length Lx of the
resonant cavity. c Vanishing imaginary part of the BIC, where the BIC mode

dominates the decay process. d–h Interactingmodes of different configurations of
Lx (dM131 (at point 1 in (b)), eM311 (at point 2 in (b)), fM311 (at point 3 in (b)), gM131

(at point 4 in (b))), as well as the mode shape of the BIC (h M331), are shown,
corresponding to the points marked in (b).
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parameters of the system and are a result of modal coupling via a
common continuum, i.e., the interaction of modes of the same sym-
metry. As a consequence of the interaction, avoided crossings are
observed, where the real parts of the eigenfrequencies cross with
modal interchange and a weakly damped resonance dominates the
decay process. This is also called resonance trapping39,40 and is shown
by the blue and orange lines in Fig. 1b, c. The exact mechanism of BIC
formation as well as the complex eigenfrequencies are presented in
Supplementary Information Sections 2 and 3. The thin black dotted
lines are the results of the coupled mode theory for a closed cavity.
Consequently, the crossing point of the black lines is the point of
modal degeneracy and exactly predicts the BIC. We solve a numerical
problem, including thermo-viscous losses, to take dissipation in the
boundary layer into account, leading to a reduced Q-factor (shown in
Supplementary InformationSection 4). Referring to Lyapina et al.15, the
leakymodes are denoted by Mpqr, with p, q, and r being the number of
maxima in the pressure field along the x-, y-, and z-axis, respectively.
ThedistanceLx is variedwith the resultingmodal interchangedepicted
regarding mode M131 in Fig. 1d, becoming mode M311 in Fig. 1e and
mode M311 in Fig. 1f, turning into mode M131 in Fig. 1g, respectively.
Additionally, the BICmodeM331 is shown in Fig. 1h. The BIC is observed
at a frequency of f = 2145Hz with a cavity length of Lx = 160mm.
Excellent agreement is found between the numerically computed
eigenfield profile of the Friedrich–Wintgen BIC and the eigenfield
profile predicted by the analytical solution, see Supplementary Infor-
mation Section 1.

Experimental verification of BIC
To experimentally demonstrate the existence of the predicted BIC, we
manufacture three samples of the resonant cavity with varying
dimensions Lx shown in Fig. 2a.

The samples are fabricated using selective laser sintering to keep
manufacturing tolerances small and avoid asymmetry inour geometry.
Furthermore, the walls are designed to be thick enough to suppress
structural resonances in the frequency range of interest. In experi-
ments, we use an impedance tube to obtain the transmission spec-
trum. Themeasurement setup is depicted in Fig. 2b, where the sample
is integrated into the tube. The diameter of the tube, as well as the

height and depth of the cavity, are kept constant at d = 40 mm,
Ly = 160mm, and Lz = d = 40mm, cf. Fig. 1a. The length of the cavity Lx
is set to 160, 165, and 170mm (left to right in Fig. 2a), respectively.
Hence, we realize a parameter variation in the vicinity of the BIC
configuration.

BICs couple into extended states and become QBICs if the BIC
configuration of the system is disturbed. QBICs are slightly damped
complex resonances that radiate energy and reveal themselves in the
form of Fano resonances. Fano resonances are a well-studied phe-
nomenon in many different fields of physics, e.g., see the detailed
review by Miroshnichenko et al.41. Therefore, the second and third
samples are designed such that QBICs can be measured. Due to the
destructive interference of bound states and continua, the typical
resonance and antiresonance features of the asymmetric Fano reso-
nances can be observed, in the sound transmission spectrum, see
Fig. 2c. In contrast to the BIC, we identify Fano peaks of finite height
and increased width.

The Fano peak widens and a frequency shift toward lower fre-
quencies is observed due to the increased cavity volume as Lx is
increased from the BIC configuration. We can see that the numerical
results coincidewith the experimental ones and also show the expected
behavior. Additionally, the transmission loss (TL) of the system is
plotted over the frequency for all three configurations. The Fano peak
of the transmission spectrum leads to ahigh amplitude in theTL. Similar
to the previously mentioned behavior of the Fano peaks, the TL peaks
broaden and lessen with increasing Lx. Nevertheless, the TL peak of
Lx = 165mm seems to be lower than the one of Lx= 170mm shown in
Fig. 2d. Thermo-viscous losses affect the amplitude of the TL more
strongly the closer we get to the BIC configuration. The measured
Q-factors for Lx= 165 mm and Lx = 170mm are 328 and 302, respec-
tively. In the case of the BIC configuration being restored, the Fano
resonances collapse. This state is described as the ghost of the Fano
resonance by Ladron de Guevara et al.42 and can be identified in Fig. 2c,
d regarding the blue lines, i.e., no Fano peak is present.

Visualization of QBIC
Three continua exist in our duct-cavity structure. The first continuum
is symmetric to the duct axis, with a lower limit defined by the cut-off

Fig. 2 | Transmission spectra of cavities of varying lengths. a Images of three
manufactured samples with different dimensions Lx. b Transmission measurement
set-up. c, d Transmission coefficient as well as the transmission loss in the fre-
quency range 1900–2250Hz. The blue lines represent the results of the

measurement and the numerical simulation of the BIC configuration (Lx = 160mm),
respectively. The orange lines represent the results of Lx = 165mm, and the yellow
lines are the ones of Lx = 170mm.
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frequency of the duct. The second and third continua have lower limits
defined by the cut-off frequencies of the first duct cross-mode and the
first cavity cross-mode (symmetric to the y-axis), respectively. The
shortest side of the cavity is chosen such that it matches the diameter
of the pipe. Therefore, we expect unitary pressure distribution in this
direction. This enables experiments applying refracto-vibrometry to
visualize the sound pressure field of the QBIC. A new sample is man-
ufactured, allowing a laser to pass through the structure. To do so, two
side walls are replaced by high-transmission glass, as shown in Fig. 3a.

We chose the Lx = 170 mm configuration of the previous mea-
surements for the new sample since the Fano peak is the widest. This is
crucial for the measurement, in which we have a single excitation
frequency matching the frequency of the QBIC. Due to the sensitivity
of the QBIC, the gradient of the Fano peak should be as low as possible
to ensure that we find theQBIC. The sample is placed in the impedance
tube set-up.

To conduct the refracto-vibrometry, a laser Doppler scanning
vibrometer PSV-500 from Polytec (Polytec Gmbh, Waldbronn,

Germany) is used tomeasure the changes of the refractive index of the
fluid, which is proportional to the acoustic pressure variation within
the cavity43–46:

vðωÞ=ω 1
γp0

n0 � 1
n0

Z
L
pðl,ωÞdl ð1Þ

where ω is the angular frequency, v is the LDV velocity, p is the sound
pressure, n0 is the refractive index of air at standard atmospheric
pressure, p0 is the static atmospheric pressure, and γ is the specific
heat capacity ratio of air. The basic principle of the LDV is based on the
well-knownDoppler shift. The pressure waves inside the cavity slightly
shift the phase of the emitted monochromatic laser light. The
superimposition of the reflected and emitted laser light produces a
speckle pattern on the photodetector, which allows the measurement
of the corresponding frequency of the pressure waves and the change
in the refractive index. The latter is proportional to the sound pressure
inside the cavity. This makes it possible to visualize the corresponding

Fig. 3 | Experimental set-up for the visualizationof the soundpressurefield. aPrinted samplewithhigh-transmission glassmountedas sidewalls.b Experimental set-up
for the refracto-vibrometry measurements.

Fig. 4 | Sound pressure field visualization. a Visualization of the real part of the
sound pressure field inside the cavity. The red color indicates a pressuremaximum
and the blue color a minimum, respectively. b Absolute value of the measured
pressure field. c Superposition of the four most dominant modes (modes with the

highest FFT coefficients). d Superposition of the next four modes with high coef-
ficients. e Simulation results. The colored scales display the absolute values of the
pressure in Pa, with the pressure being normalized to the incident pressure field.
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pressure distribution. Themeasured pressure distribution of the QBIC
is displayed together with the results of the corresponding finite
element simulations in Fig. 4.

The visualized sound pressure field of the QBIC within the
experimental set-up is presented in Fig. 4a. In addition, we show a
mapping of the absolute values of the pure measurement data in
Fig. 4b for better comparison with the numerical data displayed in
Fig. 4e. We observe that the measurement is in good agreement with
the numerical prediction. As expected, the pressure maxima are
located at both the edges and the center of the cavity. Minor inac-
curacies within the numerical prediction are due to real losses and
uncertainties within the experiments, i.e., imprecise alignment of the
parts or imperfect plane wave excitation. We note only a slight pres-
sure fluctuation in the center, just below the marked node in Fig. 4a.
The position of the LDV for this measurement point is normal inci-
dence to the glass. This results in a lower signal-to-noise ratio, which
leads to higher measurement errors. We obtain a stable image of the
QBIC that is in good agreement with the simulated sound pressure
field. Thus, we present the visual evidence of a QBIC.

The visualized field allows us to further analyze the pressure field.
For this purpose, we apply a fast Fourier transform (FFT) on the BIC
mode, which is the same as applying an overlap integral withmodes of
the closed cavity. The values of the Fourier coefficients indicate the
contribution of themodes.We take the first four dominantmodes that
are degenerate with the (0, 1) mode (for mode indexing, see

Supplementary Information Section 5). Thus, we consequently reas-
semble themodes by conducting an inverse FFT. The result is depicted
in Fig. 4c. By further analyzing the FFT coefficients, we identify the
modes being excited alongside the BICmode. Themodeswith the next
higher FFT coefficients are the modes that are degenerate with the
(1, 1) mode. Figure 4d shows the result of their modal superposition.
Thismode is slightly shifteddue to the incomingwaves from the sound
source and can also be found by conducting a modal analysis. We
observe this mode due to an anti-symmetric excitation because we
place our sound source on one side of the cavity. We, therefore,
deduce, being consistentwith the coupledmode theory15,23,35,38, thatwe
can create a perfect BICmode by eliminating the contribution of other
modes. This is done by applying the principle ofmirror sources, where
we retain the properties of the full cavity but suppress all anti-
symmetric modes, as shown in Fig. 5.

Figure 5a–c shows three schematics of the previously studied
resonant cavities reduced in size by applying the principle of mirror
sources. We cut the geometry in half at a particular axis of symmetry
(marked by the red lines in the schematicsmentioned above). The axis
of symmetryhas to be chosenwith care since theBICmodeneeds tobe
sustained, and all anti-symmetric modes with respect to this axis need
to be suppressed. Figure 5c depicts the schematic of the fully reduced
geometry. We manufacture three additional samples for impedance
tubemeasurements, shown in Fig. 5d. Figure 5e shows the numerically
obtained absorption coefficients of the configurations in Fig 5a–c with

Fig. 5 | Experimental verification of symmetry-reduced BICs. a Schematic of a
resonant cavity similar to that shown in Fig. 1a. The z-axis is perpendicular to the xy-
plane. The length Ly is set to 160mm, and the diameter d of the pipe to 40mm.We
halve the cavity at the axis of symmetry (highlighted in red) based on the principle
ofmirror sources and thus obtain a cavity length of Lx = 85mm, which corresponds
to half the length of the configuration with Lx = 170mm. b Further reduction of the
configuration in a using the principle ofmirror sources once again. c Fully reduced
configuration. d Manufactured samples for configurations b (Lx = 85 mm) and
c (Lx = 85 mm for the top sample and Lx = 77 mm for the bottom sample).
e Absorption coefficient α in the frequency range 1900–2250Hz. The blue line
represents the result of the numerical simulation of the BIC configuration of cwith
Lx = 77 mm. The orange dotted line, the yellow dash-dotted line, and the purple
dashed line represent the numerical results of Lx = 85mm for the configurations

(a–c), respectively. f Absorption coefficient α in the frequency range
1900–2250Hz. The blue and yellow lines represent the results of the numerical
simulation of the BIC configuration of c with Lx = 85mm and Lx = 77mm, respec-
tively. The orange and the purple dashed lines represent the measurement results
of configuration c with Lx = 85mm and Lx = 77mm. g The computed andmeasured
absorption coefficients for configuration b are represented by the blue and orange
dashed lines, respectively. h Sound pressure field of the BICmode inside the cavity
with Lx = 170mm. i Sound pressure field of the BIC mode inside the fully reduced
cavity with Lx = 85mm for configuration (c), framed by the black lines and extra-
polated to the rectangular cavity. j Measured absolute sound pressure inside the
fully reduced cavity with Lx = 67mm excited at 2315Hz. The color scale represents
the absolute pressure in Pa.
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Lx = 85mm and also of the BIC configuration in Fig. 5c determined at
Lx = 77mm. The more we reduce the geometry, the more unwanted
modes are removed. Accordingly, we observe a clear peak in the
absorption spectrum. We perform impedance tube measurements to
validate our observations. The measured absorption coefficients are
presented in Fig. 5f for the fully reduced configuration, see Fig. 5c, and
in Fig. 5g for the configuration shown in Fig. 5b. The measurement
results agree with our prediction. We observe the collapse of the Fano
resonance (yellow and dashed purple lines in Fig. 5f), the sharp peak of
the Fano resonance with no further absorption in the spectrum shown
(blue and dashed red lines), and thus prove the existence of a
Friedrich-Wintgen BIC based on the concept of fully reduced sym-
metry without exciting unwanted modes. Figure 5h shows the unex-
cited QBIC mode for a rectangular cavity with Lx = 170mm. The sound
pressure field of the fully reduced geometry framed by the black lines
is depicted in Fig. 5i. For comparison, we extrapolate the reduced
sound pressure field onto the rectangular cavity. We infer from com-
paring Fig. 5h, i that identical sound pressure distributions are
obtained. Finally, we manage to preserve the BIC mode although the
geometry is reduced significantly and thus present a new type of fully
reduced high-Q mode without exciting unwanted modes.

Pressure enhancement
Impedance tube studies allow us to extract values for reflection
spectra and absorption but not for cavity pressure enhancement. The
missing cavity pressure information is provided by the LDV. The
numerical and experimental procedure to determine the maximum
pressure is presented in detail in Supplementary Information Sec-
tion 6. Figure 5j shows themeasured absolute pressure field inside the
fully reduced cavity with Lx = 67mm excited at 2315 Hz. This config-
uration leads to the maximum pressure enhancement possible for this
structure with a measured peak value of 36.74 Pa. We additionally
measure the sound pressure fields of the fully reduced cavity with
Lx = 64mm and Lx = 70mm to prove the existence of a pressure peak.
The measurements show peak pressures of 26.08 Pa and 32.26 Pa,
respectively. To demonstrate the magnitude of the pressure
enhancement, wemeasure the pressure field inside the full cavity with
Lx = 170mmfor several frequencies. Themaximumpressure is 12.61 Pa.
Thus, the fully reduced cavity leads to the highest pressure enhance-
ment of the investigated Friedrich–Wintgen BIC by a factor of about
three compared to the full cavity.

Finally, we extract the sound pressure field of a QBIC mode. The
sound pressure field inside the cavity gives us accurate information
about the influence of losses and hence the stability and confinement
of themode.We also show that LDVmeasurements are a powerful tool
for predicting the maximum pressure enhancement of high-Qmodes,
can resolve even small deviations fromnumerical predictions, and thus
provide seminal guidance for the application of QBICs. Thus, we pre-
sent the realistic sound pressure field of a stable high-Q mode,
enabling further analysis and its application to acoustic devices.

Discussion
We report the theoretical design, computation, experimental ver-
ification, and visualization of an acoustic Friedrich-Wintgen BIC in an
open rectangular cavity. This is not only the first visual proof of an
acoustic BIC but, above all, enables direct access to the pressure values
inside the cavity. An exact analysis of stable high-Qmodes facilitates its
application to acoustic devices.

For this purpose,we design andmanufacture three versions of the
cavity with varying lengths. One to match the BIC configuration and
two more to broaden and stabilize the Fano peak in the transmission
spectrum. For an accurate prediction of the BIC, thermo-viscous losses
are taken into account, leading to reduced peaks in the sound trans-
mission spectrum. We find that the numerical results match the
experimental ones accurately.

Furthermore, we manufacture a sample with high-transmission
glass side walls to facilitate experiments applying refracto-vibrometry,
andpioneer thedirect visualizationof an acousticQBIC. Consequently,
we have direct access to the pressure information of the high-Qmodes
inside the cavity. Exact mapping of the pressure field gives us a better
understanding of real QBICs, including losses of all kinds, and hence
enables further analyses of the excited modes.

We decompose the pressure field and identify higher-order
modes excited simultaneously with the BIC mode. In addition, we
further adapt the concept of designing BICs proposed byHuang et al.23

and thus reduce the resonant cavity to the smallest possible size. As a
result, we design a new type of BIC relying on fully reduced symmetry.
Hence, we only excite the QBIC mode and suppress all unwanted
modes. We verify our predictions by impedance tube measurements.
Finally, we determine the configuration with maximum pressure
enhancement by mapping the pressure fields of the fully reduced
cavity with varying lengths. The fully reduced cavity leads to the
highest pressure enhancement of the investigated Friedrich–Wintgen
BIC by a factor of about three compared to the full cavity.

Our findings are a fundamental contribution to the study of BICs
and open up entirely newopportunities in thisfield of research. Recent
studies demonstrate an emission enhancement based on acoustic
BICs. Nevertheless, prior to this work, it has not been shown when the
large field enhancement happens if thermo-viscous losses are con-
sidered in real acoustic devices. Mapping the pressure field of the BIC
is a promising technique to obtain the missing data and hence facil-
itates the application of BICs to high-intensity sound sources, acoustic
devices, and nonlinear acoustics.

Methods
Analytical model
The eigenfield profile of the Friedrich-Wintgen BIC can be predicted
from the following equation

ψBIC ðx,yÞ≈ cosθψ31ðx,yÞ+ sinθψ13ðx,yÞ ð2Þ

where

cosθ=
Affiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2 +B2
p , sinθ=

Bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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with δ1
n and δ1

m being the Kronecker delta. See Supplementary Infor-
mation Section 1 for a complete theoretical analysis.

Numerical simulations
All Simulations in this article are performed with the commercial
software COMSOL Multiphysics (Acoustics Module). The speed of
sound and the air density is c0 = 343m/s and ρ0 = 1.2 kg/m3, respec-
tively. We consider the walls of the cavity as well as the walls of the
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waveguide to be rigid and hence apply sound hard boundary condi-
tions. Additionally, we consider thermo-viscous losses in our system.
We apply the no-slip condition for the velocity field and an isothermal
condition for the temperature at thewalls of the cavity. To ensure non-
reflective boundary conditions at the ends of the waveguide, we apply
perfectly matched layers. We perform modal analyses to compute the
eigenvalues and corresponding modes and time-harmonic studies to
predict the transmission or reflection spectrum.

Device fabrication
The ten experimental samples are fabricated by additive manufactur-
ing (3D-printing) using selective laser sintering with a manufacturing
precision of ±0.2mm. The material of choice is polyamide (PA 2200
from EOS).Wemanufacture four samples with high-transmission glass
side walls to facilitate experiments using refracto-vibrometry. The
glass is bonded to the sample and the sample is hermetically sealed.

Measurement
The complex transmission (and reflection) coefficients of the samples
aremeasured using anAED 1200—AcoustiTube transmission tubewith
a diameter of 40mm. The transmission coefficient and the transmis-
sion loss are calculated by applying the two-load method with four
microphones according to the transfermatrixmethod. The absorption
coefficients of the symmetry-reduced cavities are measured using an
AED 1000—AcoustiTube impedance tube with a diameter of 40mm.

Visualization
Weuse refracto-vibrometry to visualize the sound pressure field inside
the cavity. A laser Doppler scanning vibrometer PSV-500 from Polytec
is used to measure the changes in the refraction index of the fluid,
which is proportional to the acoustic pressure variation within the
cavity. Overall, 225 measurement points were sequentially recorded
with a sampling frequency of 50 kHz for a duration of 2ms, while the
measurements were triggered by the sinusoidal sound generator. To
ensure an optimal signal-to-noise ratio, a highly reflective sheet was
placed against the rigid surface behind the sample to improve diffuse
light reflection. Note that LDV is usually used for surface normal
vibrationmeasurements of structures but captures the pressure wave-
induced variation in the refraction index when measured against a
rigid surface. In the case of a low-vibration surface, the velocity mea-
surement from the LDV is dominated by the dynamic phase caused by
the sound pressure fluctuations and the changed refractive index of
the acoustic medium along the traveling path of the light. To ensure
the required rigidity, a single point LDV (Polytec PDV-100) measured
the surface vibration of the rigid surface from the opposite direction.
The surface velocities were found to be orders of magnitude smaller
than the signal of the scanning PSV500, confirming that the acoustic
pressure dominates the measured results. As the LDV works up to
frequencies of 1MHz, the frequency range is not a limiting factor for
pressure field mapping. The size of the structure can be much smaller
than those presented in this article and is only limited by the focal
point of the laser (25 μm). We use such large structures here because
we need to measure the transmission/reflection spectra using an
impedance tube with a diameter of 40mm. Since the Helmholtz
equation is linearly scalable, our results can be transferred to different
frequency ranges.

Data availability
The data used in this study are available in the figshare database under
[https://doi.org/10.6084/m9.figshare.24211515].

Code availability
The codes used in this study are available in the figshare database
under [https://doi.org/10.6084/m9.figshare.24211515]. Additionally,
we host a COMSOL server, where we provide free access to vibro-

acoustic applications: https://apps.vib.ed.tum.de:2037/app-lib. We
particularly created an application to give people an understanding of
BICs and their influence on sound attenuation: https://apps.vib.ed.
tum.de:2037/app/BIC_TL_EF_App_V02_mph?id=0012.
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S 1 Coupled mode theory

We use coupled mode theory [1, 2, 3] to predict the location of the BIC. For simplicity, we consider a reduced
two-dimensional coupled rectangular waveguide-resonator system shown in Fig. S 1.

y

x

Lx

Ly d

Fig. S 1. Schematic drawing of a coupled two-dimensional waveguide-resonator system.

To make the conclusion as general as possible, we set the width of the waveguide d = 1 (unitless), and
the width and height of the resonator are Lx and Ly, respectively. Also, the center of the resonator is set as
the origin, and the left and right waveguides are attached along the x-axis. Thus, the waveguide spans from
y = −1/2 to y = +1/2. The first step is to compute the eigenfrequencies and eigenmodes of a closed resonator.
They eigenfrequencies can be solved analytically with Neumann boundary conditions as follows

ν2m,n

ω2
0

=

(
(m− 1)

Lx

)2

+

(
(n− 1)

Ly

)2

, n,m = 1, 2, 3, . . . (1)

where νm,n is the resonant frequency and ω0 = πc/d, c is the speed of sound in air. We obtain the corresponding
modes ψ by

ψm,n =

√
(2 − δ1m)(2 − δ1n)

LxLy
cos

(
π(m− 1)(2x+ Lx)

2Lx

)
cos

(
π(n− 1)(2y + Ly)

2Ly

)
(2)

1



with δ1n and δ1m being the Kronecker delta. The propagating wave numbers in the waveguide are given by

ν2

ω2
0

=
(k2p
π2

+ (p− 1)2 (3)

with kp being the wavenumber of the pth channel of the waveguide. We obtain the corresponding modes ϕ by

ϕp =
√

(2 − δ1p) cos

(
π(p− 1)(2y + 1)

2

)
eikpx. (4)

Then the coupling matrix elements between eigenmodes of closed resonator and pth propagation channels of
the left/right waveguide can be obtained by

Wm,n;p =

∫ 1
2

− 1
2

ψm,n(x = −Lx

2
, y)ϕp(x = −Lx

2
, y)dy. (5)

After obtaining the coupling matrix, we compute the complex eigenvalues of the effective Hamiltonian [4, 5, 6,
7], where the real parts correspond to the resonance frequencies and the imaginary parts to the half resonance
linewidth. Thus, the search for BICs amounts to finding the zero imaginary part of the eigenvalues. In general,
the eigenfunction of any BIC can be decomposed as

ϕBIC =
∑

m,n

am,nψm,n(x, y). (6)

Since the BIC is perfectly decoupled from the continuum, its eigenfunction must be given by

∫ 1
2

− 1
2

ϕBIC(x = −Lx

2
, y)dy = 0. (7)

When two resonant states approach each other as a function of a certain continuous parameter, interference
causes an avoided crossing of the two states in their energy positions. At the same time, one of the resonance
line widths vanishes exactly at a certain value of the parameter and the other one is boosted to maximum.
This is known as Friedrich-Wintgen BIC [8]. Typically, a pair of eigenmodes Mmn and Mm+2,n−2 (or Mmn and
Mm−2,n+2) is often used to construct Friedrich-Wintgen BICs. The essence of finding Friedrich-Wintgen BICs
is to find two degenerate resonances in a closed resonator with a certain size ratio.

In the present work, we consider the Friedrich-Wintgen BIC in a rectangular resonator embedded in the first
channel p = 1, provided that other channels are closed for ν < 1. There are numerous degeneracies in a closed
rectangular resonator

m2

L2
x

+
n2

L2
y

=
m′2

L2
x

+
n′2

L2
y

. (8)

The lowest case corresponds to m,n = 1, 3 and m′, n′ = 3, 1 for a square resonator Lx = Ly.
After the introduction of the left and right waveguides, these two modes M13 and M31 are strongly coupled

to each other, giving rise to an increase in the destructive interference at a given size ratio. Thus, the resonance
frequencies of two modes experience avoided crossing. At the same time, one of the imaginary parts is sup-
pressed to zero while the other is boosted to maximum. Therefore, the formation of such a BIC can be mainly
attributed to the destructive interference of modes M13 and M31 in a closed resonator. We can approximate the
eigenfunction of this Friedrich-Wintgen BIC as a superposition of the two eigenmodes of the closed resonator,
and its coefficients A and B can be rigorously calculated by

ψBIC(x, y) ≈ Aψ31(x, y) +Bψ13(x, y). (9)

Substituting Eq. (9) in Eq. (7) gives us

A = −W1,3;p=1 = − 1

2π

√
2Ly

Lx

[
sin

(
π(Ly + 1)

Ly

)
− sin

(
π(Ly − 1)

Ly

)]
, (10)

B = W3,1;p=1 =

√
2

LxLy
. (11)
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We can rewrite Eq. (9) as
ψBIC(x, y) ≈ cos θψ31(x, y) + sin θψ13(x, y), (12)

cos θ =
A√

A2 +B2
, sin θ =

B√
A2 +B2

(13)

Excellent agreement is found between the eigenfield profile predicted from Eqs.(8-9) and the numerically calcu-
lated eigenfield profile of Friedrich-Wintgen BIC, see Fig. S 2.

= 0.6691· +0.7432·

Fig. S 2. Eigenfield profile. Decomposition of Friedrich-Wintgen BIC into eigenmodes M31 and M13.
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S 2 BIC formation

We investigate a Friedrich-Wintgen BIC induced by mode interference. Therefore, two modes of the same
symmetry interact, which results in a highly damped mode and one of increased lifetime. In our configuration,
two Friedrich-Wintgen BICs form in a frequency spectrum up to 2300 Hz. The first one at ≈2145 Hz named
BIC 1 and the second one at ≈2277 Hz named BIC 2. Both BICs and the corresponding interacting modes are
displayed in Figs. S S 3 and S 4.
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Fig. S 3. Formation BIC 1. a,b,f,g Interacting modes (2,4,1,3) of the same symmetry for different Lx. c
Mode shape of the BIC. e Mode shape of the highly damped mode. d Avoided crossing of the eigenfrequencies
(real parts) of the interacting modes.
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Fig. S 4. Formation BIC 2.. a,b,f,g Interacting modes (2,4,1,3) of the same symmetry for different Lx. c
Mode shape of the BIC. e Mode shape of the highly damped mode. d Avoided crossing of the eigenfrequencies
(real parts) of the interacting modes.
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S 3 Complex Eigenfrequencies

The solutions to a waveguide symmetric with respect to the duct axis can be composed of symmetric and
antisymmetric solutions [9]. Hence, we can also split the continuum to symmetric and antisymmetric parts. If
we excite the waveguide, e.g., by using a background pressure field in the numerical simulations, the symmetric
modes can be activated. That means, they couple into the propagating spectrum. The eigenvalues for varying
cavity length Lx are shown in Fig. S 5.
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Fig. S 5. Complex eigenfrequencies for varying Lx. a The spectrum of propagating waves dominated
by the pipe is marked by the region colored blue. Cavity resonances are highlighted by the region colored red.
BIC 1 and BIC 2 are marked by the red crosses. b Evolution over Lx of the interacting modes that form BIC
1 & 2.

The blue area is the spectrum of propagating waves dominated by the tube and characterized by high
radiation loss. An example of propagating symmetric modes corresponding to cavity resonances are outlined by
the red area. Other propagating modes are highlighted by colored curves. Increasing the cavity length results in
a lower real part of the eigenfrequencies. Antisymmetric modes cannot radiate away and are therefore localized
or trapped modes. They are purely real eigenfrequencies on the x-axis in Fig. S 5. By varying the distance
Lx, certain modes interact and their eigenfrequencies pass through an avoided crossing. Therefore, one of the
eigenfrequencies has a decreasing imaginary part, becomes purely real and thus a BIC. This is highlighted by
the red crosses for BIC 1 and BIC 2.
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S 4 Thermo-viscous losses

BICs have a theoretically infinite quality factor. In reality, thermo-viscous losses limit the quality factor to a
finite value. We consider losses in our computations. This is done by describing the acoustic boundary layer
as a combination of the viscous and thermal boundary layers. Viscous losses occur due to gradients in the
velocity field, whereas thermal losses are based on a temperature gradient. We apply the no-slip condition for
the velocity field and an isothermal condition for the temperature at the walls of the cavity. Furthermore, we
compare the lossless case to the one with losses. The decrease of the Q-factor is displayed in Fig. S 6.

102 103 104 105 106
0.15

0.16

Q

L
x

[m
]

Fig. S 6. Q-factor. Q-factor of the system with (blue line) and without (orange circles) thermo-viscous losses.

We can see a significant reduction of the Q-factor of the lossless case (blue line) compared to one including
thermo-viscous losses (orange circles). The effect of thermo-viscous losses on the Fano peaks in the transmission
spectra is shown in Fig. S 7.
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Fig. S 7. Transmission spectra with and without losses. a Transmission coefficient in the 1900 - 2250 Hz
frequency range. The solid blue and dashed yellow lines represent the results of Lx = 165 mm with and without
thermo-viscous losses, respectively. The results of Lx = 170 mm are shown by the red and purple lines. b
Transmission loss of Lx = 165 mm and Lx = 170 mm with and without losses. The coloring of the lines is
identical to Fig. S 7a.

Thermo-viscous losses significantly reduce the transmission coefficient due to increased absorption. Never-
theless, the transmission goes to zero at the frequency of the QBIC, see Fig. S 7a. The maxima of the Fano peaks
in the TL also decrease including the losses. We observe a reduction from ≈42 dB to ≈17 dB (Lx = 165 mm)
and from ≈43 dB to ≈24 dB (Lx = 170 mm). The losses have a more significant effect on the amplitude of the
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Fano peak of the TL the closer we are to the BIC configuration. In addition, due to thermo-viscous losses, the
Fano peaks are shifted to lower frequencies by about 2 Hz. To illustrate the effect of losses on pressure field
enhancement, the maximum absolute sound pressure is plotted against cavity length and frequency in Fig. S 8.
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Fig. S 8. Pressure mapping (without losses). Maximum absolute sound pressure inside the rectangular
cavity shown in Fig. S 1. The cavity length is varied from Lx = 157 - 163 mm in 0.1 Hz steps in the frequency
range 2135 - 2160 Hz.

We observe amplified sound pressure up to 160 dB when excited at 1 Pa and narrow Fano peaks near the
BIC. Figs. S 6 to S 8 illustrate the importance of considering thermo-viscous losses in our simulations.
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S 5 Analysis of the measured sound pressure field

We use an FFT to further analyze the sound pressure field inside the cavity and thereby obtain the modal
coefficients shown in Fig. S 9.

−4 −2 0 2 4
−4

−2

0

2

4

0

2,000

4,000

6,000

Fig. S 9. FFT coefficients. Coefficients of the fast Fourier transformation corresponding to modes. The
indices of the abscissa and the ordinate stand for the modal index in x- and y-direction, respectively. The mode
with the indices (0, 0) represents the plane wave.

The four modes with the most dominant Fourier coefficients are the ones that are degenerate with the (0, 1)
mode. Hence, the modes with corresponding mode indices (0,−1), (1, 0), (−1, 0). In other terms, referring
to Lyapina et al. [2], we denote the modes (0, 1), (0,−1) M211 and the modes (1, 0), (−1, 0) M121. A modal
superposition by an inverse FFT gives us the sound pressure field of the BIC mode depicted in Fig. S 10a.

a b c

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

p/pmax

Fig. S 10. Sound pressure fields from modes. a Superposition of the four most dominant modes (modes
with the highest FFT coefficients). b Superposition of the next four modes with high coefficients. c Identical
mode to the one shown in b obtained from modal analysis. The colored scales display the nondimensonalized
pressure, with the pressure being normalized to the maximum pressure of the experiment and the simulation,
respectively.

Fig. S 10b shows the sound pressure field of the superposition of the modes that are degenerate with the
(1, 1) mode, i.e. the (1,−1), (−1, 1), (−1,−1) modes. The modal analysis of the unexcited system gives us a
mode similar the the one in Fig. S 10b, see Fig. S 10c. Therefore, we identify one additional contributing mode
excited by the plane wave.
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S 6 Pressure enhancement

The configuration with the highest pressure field enhancement is determined by parameter studies. Therefore,
we vary the cavity lengths of the configurations depicted in Fig. 1a, Fig. 5a and Fig. 5b. The corresponding
plots are shown in Fig. S 11.
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Fig. S 11. Simulated pressure mappings. a Maximum absolute sound pressure inside the rectangular
cavity shown in Fig. 1a. The cavity length is varied from Lx = 145 - 185 mm in 1 mm and 1 Hz steps in the
frequency range 1900 - 2250 Hz. b Maximum absolute sound pressure inside the reduced cavity presented in
Fig. 5a with cavity length Lx = 67.5 - 92.5 mm in the same frequency range. c Maximum absolute sound
pressure inside the further reduced cavity (Fig. 5b). The white crosses indicate the maxima.

Pressure enhancement can be observed in certain regions around the BIC configurations. We can also see
that the maximum pressure enhancement does not occur directly adjacent to the BIC as it would without losses,
i.e., see Fig. S 8. Thermo-viscous losses shift the maximum enhancement away from the BIC configuration. The
pressure peaks are 5.50 Pa, 9.54 Pa, and 12.89 Pa. It can be said that the more the geometry is reduced and
thus the antisymmetric modes are suppressed, the higher the pressure enhancement. The visualized pressure
fields for the full cavity are shown in Fig. S 12.
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Fig. S 12. Visualized pressure fields of the full cavity. a - f Absolute sound pressure inside the rectangular
cavity shown in Fig. 1a. with Lx = 170 mm excited at 2070 Hz, 2075 Hz, 2077 Hz, 2079 Hz, 2081 Hz, and 2094 Hz,
respectively. All color scales represent the absolute pressure in Pa.

The corresponding maximum pressure values in Figs. S 12a to 12f are 12.04 Pa, 12.61 Pa, 12.44 Pa, 12.02 Pa,
11.32 Pa, and 8.59 Pa, respectively. Therefore, we can say that the maximum pressure enhancement occurs at
2075 Hz. The evolution of the modal field is also demonstrated. The dark blue line representing the pressure
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nodes extends in the y-direction, the more the configuration deviates from the BIC configuration.
We numerically determine the configuration with the highest pressure gain by plotting the maximum absolute

sound pressure inside the cavity as the cavity length is varied in the 1900 - 2400 Hz frequency range and excited
by a plane wave of 1 Pa. This is shown in Fig. S 13 for the fully reduced cavity presented in Fig. 5c.
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Fig. S 13. Simulated pressure mappings. a,b Maximum absolute sound pressure and absorption inside
the cavity shown in Fig. 5c. The cavity length is varied from Lx = 67.5 - 92.5 mm in 1 mm and 1 Hz steps in
the frequency range 1900 - 2400 Hz. c,d Maximum absolute sound pressure and absorption at finer resolution.
The cavity length is varied from Lx = 66 - 68 mm in 0.1 mm and 0.1 Hz steps in the frequency range 2290 -
2330 Hz. The white crosses indicate the maxima.

The BIC is visible as the dark blue dot in the center of the red lines in Figs. S 13a and 13b. Pressure
enhancement can be observed in certain regions around the BIC configurations. The smaller the cavity length,
the higher the frequency of the enhancement and vice versa. It can be seen that the maximum pressure
enhancement and absorption occurs at a cavity length of Lx = 67 mm. We fabricate three additional samples
of the fully reduced cavity (Lx = 64, 67, and 70 mm) to experimentally validate our numerical predictions, see
Fig. S 14.
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Fig. S 14. LDV samples. Printed samples of the fully reduced cavity with high-transmission glass mounted
as side panels.

We then measure the sound pressure field inside the cavity for several frequencies to determine the config-
uration (frequency and cavity length) where the maximum absolute sound pressure is found. The visualized
pressure fields for the fully reduced cavity with Lx = 64 mm, Lx = 67 mm, and Lx = 70 mm are shown in Fig. S
15.
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Fig. S 15. Visualized pressure fields of the fully reduced cavity. a - c Absolute sound pressure inside
the fully reduced cavity shown in Fig. 5c with Lx = 64 mm excited at 2335 Hz, 2345 Hz, and 2353 Hz. d - f
Absolute sound pressure inside the fully reduced cavity with Lx = 67 mm excited at 2310 Hz, 2315 Hz, and
2319 Hz. g - i Absolute sound pressure inside the fully reduced cavity with Lx = 70 mm excited at 2267 Hz,
2272 Hz, and 2277 Hz. All color scales represent the absolute pressure in Pa.

The data are not normalized to the incident pressure field, but the actual pressure values are shown. The
corresponding maximum pressure values in Figs. S 15a to 15i are 25.61 Pa, 26.07 Pa, 24.80 Pa, 36.11 Pa, 36.74 Pa,
33.98 Pa, 31.83 Pa, 32.26 Pa, and 28.12 Pa, respectively. Therefore, we can say that the maximum pressure
enhancement for the cavity with Lx = 64 mm occurs at 2345 Hz and for the cavity with Lx = 70 mm at 2272 Hz.
The maximum pressure enhancement occurs at Lx = 67 mm at 2315 Hz and reaches 36.74 Pa. This is similar
to the results shown in Fig. S 13c.

We compare this maximum pressure value to the sound pressure fields of the fully reduced cavity with
Lx = 64 mm and Lx = 70 mm to prove the existence of a pressure peak. The measurements show peak
pressures of 26.07 and 32.26 Pa, respectively. To demonstrate the magnitude of the pressure enhancement, we
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also compare it to the pressure field inside the full cavity with Lx = 170 mm for several frequencies. The
maximum pressure of the full cavity is 12.61 Pa. Thus, the fully reduced cavity leads to the highest pressure
enhancement of the investigated Friedrich-Wintgen BIC by a factor of about three.
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