
Simplifying Sim-to-Real Transfer in Autonomous Driving:
Coupling Autoware with the CommonRoad Motion Planning Framework

Gerald Würsching, Tobias Mascetta, Yuanfei Lin, and Matthias Althoff

Abstract— Validating motion planning algorithms for au-
tonomous vehicles on a real system is essential to improve
their safety in the real world. Open-source initiatives, such as
Autoware, provide a deployable software stack for real vehicles.
However, such driving stacks have a high entry barrier, so that
integrating new algorithms is tedious. Especially new research
results are thus mostly evaluated only in simulation, e.g., within
the CommonRoad benchmark suite. To address this problem,
we present CR2AW, a publicly available interface between the
CommonRoad framework and Autoware. CR2AW significantly
simplifies the sim-to-real transfer of motion planning research,
by allowing users to easily integrate their CommonRoad
planning modules into Autoware. Our experiments both in
simulation and on our research vehicle showcase the usefulness
of CR2AW.

I. INTRODUCTION

©2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

To ensure robustness and safety of motion planning al-
gorithms for automated vehicles, both extensive testing in
simulation and validation on real systems are required. Real-
world evaluations allow developers to analyze the perfor-
mance of algorithms in a closed-loop setting embedded in the
full software stack and thus identify problems that can not
be captured in simulation. However, conducting real-world
experiments is especially challenging for research groups,
as the setup of a fully operational driving stack is time-
consuming. Hence, to date, most car manufacturers validate
their software on real systems, while the number of real-
world experiments conducted within research remains scarce.
Recent advances in open-source driving stacks have made
real vehicle experiments more accessible to the research
community [1], nevertheless, the transfer of research algo-
rithms from simulation to full driving stacks remains cum-
bersome. Aiming to ease the sim-to-real transfer in motion
planning research, we introduce the first publicly available
interface between the CommonRoad benchmark suite [2] and
Autoware [3], two widely used open-source frameworks for
simulation and real-world evaluation, respectively (Fig. 1).

A. Related Work

1) CommonRoad Framework: CommonRoad facilitates
the benchmarking of motion planning algorithms by offering
a wide range of open-source toolboxes, easily configurable
vehicle models, and cost functions. These toolboxes are capa-
ble of, e.g., checking the drivability of planned motions [4],
conducting reachability analysis [5], [6], and measuring the
criticality of traffic scenarios [7]. CommonRoad provides a

All authors are with the School of Computation, Information and Tech-
nology at the Technical University of Munich, 85748 Garching, Germany.

{gerald.wuersching, tobias.mascetta, yuanfei.lin,
althoff}@tum.de

(a) Real vehicle view and RVIZ visualization of the driving stack.
ego vehicle parked vehicle moving vehicle

planned trajectory reference path

(b) Corresponding scenario in CommonRoad with planner output.

Fig. 1: Real-world scenario with two surrounding vehicles: We use CR2AW
to integrate a motion planner using the CommonRoad format into the
Autoware driving stack and run it on a real test vehicle.

vast collection of traffic scenarios, both interactive and non-
interactive, partially generated from real datasets. Further-
more, CommonRoad offers converters for various scenario
and map formats [8]–[10] and interfaces between different
platforms [11], [12]. In particular, safety-critical scenar-
ios can be generated automatically using real-world maps
and sophisticated traffic simulators [9], [13]. The diversity
of scenarios accelerates the development of learning-based
frameworks for motion planning, as demonstrated in [14]–
[16]. With its comprehensive and versatile framework, Com-
monRoad has gained significant popularity in the research
community to evaluate and showcase motion planners for
automated vehicles [17]–[28]. However, none of these works
have so far been integrated with other software and hardware
components for validation in a real-world environment.

2) Open-Source Driving Stacks: Despite the rich history
of research on autonomous vehicles [29]–[33], only a few
studies have made their source code publicly accessible or
available under an open license. Driving stacks are realized
either as modular systems or through end-to-end learning
approaches [1]. However, the latter often lack interpretability
and safety guarantees. To date, the most established open-
source, modular driving stacks for real-world vehicles are
Autoware and Apollo1. Both Autoware and Apollo provide
software development kits that facilitate the validation of al-

1https://github.com/ApolloAuto/apollo

https://github.com/ApolloAuto/apollo


gorithms using real demonstrators [34]–[37]. As Autoware is
a) becoming increasingly popular, b) offers a more modular
framework and a larger ecosystem than Apollo [38], and c)
has more users compared to newer open-source platforms
such as Pylot [39] and AVstack [40], we choose Autoware
as the middleware for this work.

B. Summarizing Assessment

Both CommonRoad and Autoware facilitate researchers
and practitioners with means of evaluating motion planning
algorithms. CommonRoad enables testing algorithms on a
vast array of benchmark scenarios and ensures reproducibil-
ity of research results. Due to its low entry barrier, the
platform allows users to implement and test motion planners
in a rapid prototyping fashion. However, influences arising
from other components, e.g., perception or control, are not
considered. Autoware, in contrast, provides a full driving
stack, which is directly deployable on a real vehicle. Yet, the
entire software stack is highly complex, and thus, not directly
suited for developing algorithms for research. Integrating
algorithms directly into the existing stack is time-consuming
and requires a certain level of proficiency with Autoware.

C. Contributions

The complementary capabilities of CommonRoad and
Autoware show the gap between rapid prototyping and real-
world experiments in motion planning research. We address
precisely this issue: we present CR2AW, the first open-
source interface between the CommonRoad framework and
Autoware. In particular, CR2AW

• significantly simplifies the integration of planning algo-
rithms running in the CommonRoad environment into
a full driving stack;

• is designed in a modular fashion with algorithm-
agnostic interfaces to effortlessly exchange and compare
different planning algorithms;

• integrates seamlessly a wide range of publicly available
CommonRoad tools into Autoware, thus making novel
features such as a reachability analyzer [6] or a critical-
ity evaluator [7] available in Autoware;

• allows users to automatically generate motion planning
benchmarks in the CommonRoad format from data
collected in real test drives.

The remainder of this paper is structured as follows: We
introduce necessary preliminaries in Sec. II and provide an
overview of our interface including its implementation details
in Sec. III. In Sec. IV, we showcase our interface both
in simulation and on a real test vehicle. Finally, we draw
conclusions in Sec. V.

II. PRELIMINARIES

A. CommonRoad Scenario Format

A CommonRoad scenario consists of an environment
model and one or several planning problems (see Fig. 2).

obstacles
initial
state

regulatory
elements

goal
region

future
movement

Fig. 2: Illustration of a CommonRoad scenario where the predicted move-
ments of dynamic obstacles are represented by trajectories.

Perception

Dynamic Object

Traffic Light

Obstacle Segmentation

Planning

Mission

Scenario

Lane Parking
Control

Sensing Map Vehicle Interface

Localization

AD API

Fig. 3: Architecture of the components and modules in Autoware2.

1) Environment Model: CommonRoad provides a detailed
representation of the driving environment as a temporal
sequence with a fixed step size ∆t. This includes obstacles,
road networks, and regulatory elements. Obstacles are char-
acterized by their role, type, shape, and current state. For
dynamic obstacles, a prediction of their future movement is
specified, which can be provided as a trajectory; alternatives
such as sets and probability density functions are also
supported. The road network is constructed using a set of
lanelets [41], which are modeled with left and right boundary
polylines and a driving direction. A lanelet can reference reg-
ulatory elements, such as stop lines, traffic signs, and traffic
lights, which are defined by their signal state, direction, and
switching cycle. Notably, Autoware employs the Lanelet2
map format [42], which extends and generalizes the lanelets
as described in [41]. Given that CommonRoad emphasizes
motion planning while maintaining full compatibility with
Lanelet2, we use the CommonRoad map format in this work.

2) Motion Planning: Motion planning problems for the
ego vehicle consist of an initial state and a goal region.
The goal region contains a set of desired states, which
typically constrain the ego vehicle to reach certain positions,
orientations, and velocities within a specified time.

B. Autoware.Universe

In this work, we adapt the Autoware.Universe framework
illustrated in Fig. 3, which is built on ROS2 [43]. This frame-
work provides all essential functionalities for autonomous
driving, including perception, planning, and control, all

2Source: https://github.com/autowarefoundation/autoware

https://github.com/autowarefoundation/autoware


CR2AW

CommonRoad
Planning
Modules

Map

Localization

Perception

Control

API

HD map

initial pose

ego veh. state

objects

traffic signals

Planning
Validator

planned
trajectory

planned route

user inputs operation states

Fig. 4: Overview of the inputs and outputs of the CR2AW interface.

structured modularly. Moreover, Autoware.Universe includes
an API, enabling external operation of the vehicle outside
the autonomous driving system. Communication between
these modules is facilitated through, the subscriber-publisher
and request-response messaging patterns [43, Sec. III.C],
utilizing predefined topics and services for efficient data
exchange and coordination.

III. COMMONROAD-AUTOWARE INTERFACE

We first describe the design goals of our CommonRoad-
Autoware (CR2AW) interface in Sec. III-A. Next, we provide
an overview of the integration of CR2AW into Autoware in
Sec. III-B and highlight implementation details in Sec III-C.

A. Design Goals

In order to simplify the transfer of algorithms to a full
driving stack, we base our implementation on the following
design goals:
D1. Ease of use: To lower the entry barrier for real-world

experiments, our interface manages all communication
with the software stack, such that users are not required
to re-implement their code.

D2. Modularity: To retain the modular architecture of
Autoware, CR2AW integrates directly into the existing
modules and does not define new interfaces.

D3. Extensibility: To facilitate benchmarking and com-
parisons of planners, CR2AW allows users to easily
exchange and compose planning algorithms.

B. Overview

In Fig. 4 we illustrate how our interface is integrated into
the full driving stack of Autoware. The relevant Autoware
modules with their inputs and outputs to CR2AW are shown.
Following design goal D2, we utilize the existing interfaces
as defined by Autoware for all inputs and outputs in CR2AW.

1) Inputs: The map module provides a high-definition
(HD) map in the Lanelet2 format. To obtain the initial
state of the ego vehicle and update its current state for re-
planning, we subscribe to the corresponding inputs from the
localization module. The information about the dynamically
changing environment is obtained from the perception mod-
ule. We subscribe to both static and dynamic objects with

CR2AW

ScenarioHandler

TrajectoryPlannerInterface

PlanningProblemHandler

EgoVehicleHandler

Composition Generalization

1

ExamplePlanner

ROS2 Node

1

1

1

1

AbstractHandler

APIHandler 1

DataGenerationHandler 1

AbstractInterface

RoutePlannerInterface

VelocityPlannerInterface

Fig. 5: Architecture of the CR2AW interface shown as a UML class diagram.

their predictions as well as the signal state of surrounding
traffic lights. Additionally, we subscribe to inputs originating
from the API (cf. Sec. II-B), e.g., user inputs (such as setting
a goal pose) and the operation state of the overall software.

2) Outputs: Each output of CR2AW is a computed route
through the road network and the trajectory of the ego
vehicle. Each trajectory is published periodically of a fixed
frequency and first checked by the planning validation
module of Autoware before being forwarded to the control
module. Moreover, we return required information to the API
module, e.g., the operation state of our planning module.

3) Planning Modules: The motion planning modules are
encapsulated in CR2AW in which the planning problem is
represented in the CommonRoad format (cf. Sec. II-A.2). An
established approach for autonomous vehicles is to structure
the planning task hierarchically into three levels, which
differ in terms of how the planning problem is abstracted
[44]: (global) route planning, (high-level) behavior planning
and (low-level) trajectory planning. In CR2AW we follow a
similar structure and provide abstract interfaces for planners
at all three levels (cf. Sec. III-C).

C. Implementation Details

We now present the architecture of CR2AW (see Fig. 5)
and highlight implementation details of its core modules.
The class CR2AW serves as the main class of our interface
and is implemented as a PYTHON ROS2 node such that
it can communicate with other nodes via subscribers and
publishers. We choose PYTHON to offer convenient proto-
typing capabilities to users (see D1), yet, our interface is
also directly compatible with C++ code.

The core modules within CR2AW are grouped into two
types of classes with distinct roles each, following the
separation of concerns principle [45]. Handler classes are
responsible for processing the input stream from other Au-
toware modules and converting the required information to
CommonRoad. Interface classes solely operate within the
CommonRoad environment. With this structure, we decou-
ple the CommonRoad part from Autoware, which realizes



Algorithm 1 Overview of core functionality of CR2AW
Input: initial pose, goal pose, ego vehicle state, user input, objects O, traffic signals T, mapping mO, mapping mT ▷ cf. Fig. 4
Output: planned trajectory, planned route, operation states (AW topics) ▷ cf. Fig. 4

1: CommonRoad scenario S ← LOADCONVERTEDMAP(HD map) ▷ cf. [9, Sec. III-C]
2: if APIHANDLER.GET LOCALIZATION STATE() == INITIALIZED then
3: planning problem P ← PLANNINGPROBLEMHANDLER.GENERATE(initial pose, goal pose) ▷ cf. Tab. I (a)
4: ego vehicle E ← EGOVEHICLEHANDLER.INITIALIZE(initial pose) ▷ cf. Tab. I (a)
5: route, reference path ← ROUTEPLANNERINTERFACE.PLAN(S, P )
6: ROUTEPLANNERINTERFACE.PUBLISH(route)
7: APIHANDLER.SET ROUTING STATE(SET)
8: reference trajectory ← VELOCITYPLANNERINTERFACE.PLAN(reference path, user input.max velocity)
9: data generator D ← DATAGENERATIONHANDLER.START RECORDING()

10: goal reached ← False
11: while not goal reached do
12: S ← UPDATESCENARIO(S,O,T,mO,mT) ▷ cf. Alg. 2
13: E ← UPDATEEGOVEHICLE(E, ego vehicle state) ▷ cf. Tab. I (a)
14: trajplanned ← TRAJECTORYPLANNERINTERFACE.PLAN(S, E, reference trajectory)
15: TRAJECTORYPLANNERINTERFACE.PUBLISH(trajplanned) ▷ cf. Tab. I (c)
16: goal reached ← PLANNINGPROBLEMHANDLER.CHECK GOAL(E)
17: end while
18: APIHANDLER.SET ROUTING STATE(ARRIVED)
19: DATAGENERATIONHANDLER.STOP RECORDING AND SAVE DATA()
20: end if

our design goal D1. For both types of classes we define
abstract classes which implement all required methods and
attributes, such that new modules can easily be added via
inheritance, conforming to design goal D3 (e.g., see class
ExamplePlanner in Fig. 5). CR2AW consists of the fol-
lowing main modules:

• ScenarioHandler: processes map and perception
inputs, creates and updates the CommonRoad scenario;

• PlanningProblemHandler: creates the Common-
Road planning problem;

• EgoVehicleHandler: processes localization infor-
mation, updates the ego vehicle state for re-planning;

• APIHandler: manages communication with the API,
receives user inputs and operation states;

• DataGenerationHandler: automatically generates
benchmark scenarios and stores planning results;

• RoutePlannerInterface: general interface for a
high-level planner to compute a route and reference path
through the lanelet network;

• VelocityPlannerInterface: general interface
to compute a velocity profile for the reference path;

• TrajectoryPlannerInterface: general inter-
face for a low-level trajectory planner, which computes
a feasible trajectory for the controller to execute.

The planner interface classes correspond to the hierarchi-
cal structure mentioned in Sec. III-B.3, such that users can
integrate planning algorithms of different abstraction levels
with CR2AW. Next, we describe the core working procedure
of CR2AW, which is also summarized in Alg. 1.

1) Initializing and creating the planning problem: We
initially load the converted map in the CommonRoad format,
which consists of the lanelet network and regulatory elements
(line 1). To automatically convert the original Lanelet2 map
to CommonRoad and verify correctness of the converted

Algorithm 2 UPDATESCENARIO

Input: previous scenario S, list objects O, list traffic signals T,
mapping mO, mapping mT

Output: updated scenario S
1: time step ∆t ← S.time step
2: for each object o in O do
3: trajo ← RESAMPLEPREDICTION(o,∆t) ▷ see [12]
4: Autoware-ID idaw ← o.object id
5: if idaw in mO then
6: Commonroad-ID idcr ← mO[idaw]
7: S .UPDATEOBSTACLE(o, trajo , idcr)
8: else
9: CommonRoad-ID idcr ←GENERATEID(S)

10: mO.ADD(idaw , idcr)
11: S .ADDOBSTACLE(o, trajo , idcr)
12: end if
13: end for
14: S,mO ← REMOVEOBSTACLES()
15: for each traffic signal t in T do
16: Autoware-ID idaw ← t.traffic signal id
17: CommonRoad-ID idcr ← mT[idaw]
18: S .UPDATETRAFFICLIGHT(idcr , t.color, t.shape)
19: end for
20: return S

map, we use [9, Sec. III-C] and [46]. Our interface receives
the initial pose from the localization module and a desired
goal pose from the user input, which are used to construct
the CommonRoad planning problem (lines 2-3). Then we
initialize the state of the ego vehicle (line 4) using the
received initial state. To convert the message types from
Autoware to CommonRoad types, we use Tab. I (a).

2) Generating a route: Next, we generate a route and
a reference path for the created planning problem in
the lanelet network using a high-level planner in the
RoutePlannerInterface (see line 5). If a valid



route is found, we publish the route (line 6) and the
APIHandler informs the other modules by setting the
routing state accordingly (see line 7). Afterwards, a ve-
locity profile is computed for the reference path by the
VelocityPlannerInterface, considering a velocity
limit which can be set by the user via the API (see line 8).

3) Running the planning loop: Starting in line 11 of
Alg. 1, we run the planning loop, which is called periodically
with a fixed planning frequency using a ROS timer. At
the beginning of each loop (lines 12-13), we update the
CommonRoad scenario and the ego vehicle with the inputs
from the perception and localization module (cf. Fig. 4).

The procedure for updating the CommonRoad scenario
is described in Alg. 2, which includes updating the state of
objects and traffic lights. We iterate over the list of incoming
objects O (line 2): First, we resample their predicted trajec-
tory to match the time step of the CommonRoad scenario
(line 3), similar to [12, Sec. 3.3]. To uniquely assign an in-
coming object to an existing CommonRoad object, we store
a mapping mO of the Autoware-ID to the CommonRoad-ID
for each object. If the object already exists in the scenario, we
update its state, shape and predicted trajectory using the type
conversions in Tab. I (b)-(c) (see lines 5-7). If the object ID is
new, we create a new obstacle in the CommonRoad scenario
using the same type of conversion and store the ID in our
mapping mO (lines 9-11). Finally, we remove all obstacles
from the scenario and from mO which are not present in the
tracked objects O. Similarly, we keep track of a mapping
mT of the corresponding traffic light IDs in Autoware and
CommonRoad. This mapping is generated during the initial
conversion of the HD map (cf. line 1, Alg. 1). We update
the state (consisting of the color and shape) of each traffic
light t in the input list T (see line 16-19) using the type
conversions in Tab. I (d).

After updating the scenario, we run the trajectory planner
(see line 14, Alg. 1). The output trajectory trajplanned is
converted to the corresponding Autoware type by converting
each planned state in the state list using Tab. I (c). Finally,
we check if the goal is reached (see line 16). If yes, we
exit the planning loop and set the routing state to ARRIVED
in line 18. We note that it is also possible to have multiple
goals along a global route. In this case, if the ego vehicle
has reached the first goal (line 16), we use the next goal in
the list and resume the planning loop in line 11.

4) Generating benchmark data: The DataGeneration
Handler is a separate entity that subscribes to the same
topics shown in Fig. 4. Thus, it handles the collection of
data to the CommonRoad format in parallel to the other
modules described in Fig. 5. CR2AW triggers the start of
the data recording once the planning problem is computed
(see line 8) and stops the recording once the goal is reached
(see line 17). CR2AW supports the automatic generation
of CommonRoad benchmark scenarios, including the road
network, the planning problem, the reference trajectory, and
dynamic obstacles. Additionally, we store data for evaluation
purposes, such as the planned and measured states of the ego
vehicle over time.

TABLE I: TYPE CONVERSIONS BETWEEN AUTOWARE AND COMMON-
ROAD.

Autoware CommonRoad

(a) Ego Vehicle State
Odometry. State.

pose.pose.position position
pose.pose.orientation orientation
twist.twist.linear.x velocity
twist.twist.angular.z yaw rate

AccellwithCovariance. State.
accel.accel.linear.x acceleration

(b) Objects
PredictedObject. DynamicObstacle.

classification obstacle type
kinematics. initial state.

initial pose.pose.position position
initial pose.pose.orientation orientation
initial twist.twist.linear.x velocity

shape. obstacle shape.
dimensions.x length
dimensions.y width

predicted paths prediction.trajectory

(c) State
TrajectoryPoint. State.

pose.position position
pose.orientation orientation
longitudinal velocity mps velocity
acceleration mps2 acceleration
heading rate rps yaw rate
front wheel angle rad steering angle

(d) Traffic Light States
color TrafficLightState.
RED,AMBER,GREEN RED,YELLOW,GREEN

shape TrafficLightDirection.
LEFT ARROW,RIGHT ARROW LEFT,RIGHT
UP ARROW STRAIGHT
UP LEFT ARROW LEFT STRAIGHT
UP RIGHT ARROW STRAIGHT RIGHT

IV. EXPERIMENTS

We tested the CR2AW interface in simulation and on our
research vehicle EDGAR [37]. In both cases, we used a
map from the Garching Campus of the Technical University
of Munich. Within our interface, we utilized the following
planning modules: As the route planner we used the Com-
monRoad Route Planner3 and as the velocity planner we
used the approach in [47]; As a trajectory planner we used
the CommonRoad Reactive Planner4, which implements the
sampling-based approach of [48]. The planning algorithms
are written in PYTHON with some parts (e.g., collision
checks) written in C++ for performance.

A. Experiment with the Autoware Planning Simulation

We tested our interface within the Autoware Planning
Simulation. Fig. 6 provides an overview over the evaluation.
We manually set up the initial pose and a desired goal pose as
well as one dynamic obstacle in the Autoware planning simu-
lation (Fig. 6a). The corresponding scenario in CommonRoad
is shown in Fig. 6b, where the planning problem, the set of

3https://commonroad.in.tum.de/tools/route-planner
4https://commonroad.in.tum.de/tools/

commonroad-reactive-planner

https://commonroad.in.tum.de/tools/route-planner
https://commonroad.in.tum.de/tools/commonroad-reactive-planner
https://commonroad.in.tum.de/tools/commonroad-reactive-planner


dynamic obstacle
goal

ego vehicle

planned trajectory

(a) Scenario in the Autoware planning simulation.

dynamic obstacle

goal

ego vehicle

planned trajectory

initial state

(b) Corresponding scenario in CommonRoad. Feasible trajectories are
shown in blue and colliding trajectories are shown in red.

footprints of
driven trajectory

(c) Generated benchmark scenario with the footprints of the previously
driven solution trajectory. Please note that the dynamic obstacle is shown
at the initial state.

Fig. 6: Evaluation of CR2AW in the Autoware planning simulation with one
dynamic obstacle.

sampled trajectories as well as the planned trajectory are
visualized. Fig. 6c shows the benchmark scenario generated
by the DataGenerationHandler (cf. Sec. III-C.4). In
addition, we stored the driven trajectory of the ego vehicle,
which can be used for benchmarking or improving the
planner.

Moreover, the DataGenerationHandler stores quan-
titative data about the planned trajectory and simulated states
executed by the controller, which we analyze in Fig. 7.
The data includes the longitudinal position plon, the lateral
position plat, the longitudinal velocity v and the orientation
Θ. The planning simulation added a Gaussian measurement
noise to the simulated states with standard deviations σpos =
0.01 for the position, σθ = 0.001 for the orientation and
σsteer = 0.001 for the steering angle. Since the simulated
measurement noise was relatively low, we observed that
the controller follows the reference states of the planned
trajectory well with only slight deviations. This is also
evident when analyzing the error distributions in Fig. 8.
Please note that we used the default implementation and
parameterization of the controller in Autoware.Universe.

B. Experiment with EDGAR

We integrated CR2AW in our research vehicle EDGAR
and tested it in the urban scenario shown in Fig. 1, where

(a) Longitudinal position plon.

(b) Lateral position plat.

(c) Velocity v.

(d) Orientation θ.

Fig. 7: Planned and simulated states for the scenario in Fig. 6.

(a) Lon. position (b) Lat. position (c) Velocity (d) Orientation

Fig. 8: Box plots of errors between planned and simulated states in Fig. 7.

the ego vehicle was driving on a straight road behind a
slowly moving vehicle; another parked vehicle was alongside
the road. Fig. 1b shows that we could reliably use the
perception input from Autoware to continuously update the
CommonRoad scenario (cf. Sec. III-C), which our planning
algorithm can use to compute the desired trajectory. Again,
we analyze the planned and measured state of the maneuver
in Fig. 9 and the corresponding error distributions in Fig. 10.
We notice that the measured state followed the planned
trajectory well. The longitudinal position error tends to be
negative, i.e., the measured position was slightly behind the
planned position. We attribute this to the low re-planning
frequency of our planner, which we set to 2 Hz for our
experiment. Moreover, the lateral position error and the
orientation error were very small.



(a) Longitudinal position plon.

(b) Lateral position plat.

(c) Velocity v.

(d) Orientation θ.

Fig. 9: Planned and measured states for the scenario in Fig. 1.

(a) Lon. position (b) Lat. position (c) Velocity (d) Orientation

Fig. 10: Box plot of errors between planned and measured states in Fig. 9.
Please note that the first 20 seconds (stand-still) are not included in the box
plots.

V. CONCLUSIONS

We present CR2AW, a publicly available interface be-
tween CommonRoad and Autoware – two widely used
open-source frameworks for evaluating motion planners in
simulation and real-world settings. CR2AW lowers the entry
barrier for real vehicle tests by significantly simplifying
the integration of planning algorithms into a full driving
stack. Thus, researchers and developers can first evaluate
their planners on a multitude of CommonRoad benchmark
scenarios before directly testing them on a real vehicle with
Autoware using CR2AW. In addition, benchmark scenarios
can be generated from test drives, which allows users to
improve their algorithms afterwards for certain scenarios.
We have demonstrated the capabilities of CR2AW both in
simulation and with our research vehicle EDGAR.

ACKNOWLEDGMENTS

This work was funded by the German Federal Ministry of
Education and Research (BMBF) within the Munich Cluster
for the Future of Mobility in Metropolitan Regions (MCube)
under grant 03ZU1105AA, the German Federal Ministry for
Digital and Transport (BMDV) within the project Coopera-
tive Autonomous Driving with Safety Guarantees (KoSi) and
the European Union, under the Horizon Europe program,
grant 101076165 (i4Driving). Moreover, the authors thank
Gemb Kaljavesi, Florian Pfab, and Rainer Trauth for assist-
ing with the test drives and all students who assisted with
the implementation.

REFERENCES

[1] E. Yurtsever, J. Lambert, A. Carballo, and K. Takeda, “A survey of
autonomous driving: Common practices and emerging technologies,”
IEEE access, vol. 8, pp. 58 443–58 469, 2020.

[2] M. Althoff, M. Koschi, and S. Manzinger, “CommonRoad: Compos-
able benchmarks for motion planning on roads,” in Proc. of the IEEE
Intell. Veh. Symp., 2017, pp. 719–726.

[3] S. Kato, S. Tokunaga, Y. Maruyama, S. Maeda, M. Hirabayashi,
Y. Kitsukawa, A. Monrroy, T. Ando, Y. Fujii, and T. Azumi, “Autoware
on board: Enabling autonomous vehicles with embedded systems,” in
Proc. of the ACM/IEEE Int. Conf. on Cyber-Physical Systems, 2018,
pp. 287–296.

[4] C. Pek, V. Rusinov, S. Manzinger, M. C. Üste, and M. Althoff,
“CommonRoad drivability checker: Simplifying the development and
validation of motion planning algorithms,” in Proc. the IEEE Intell.
Veh. Symp., 2020, pp. 1013–1020.

[5] M. Koschi and M. Althoff, “SPOT: A tool for set-based prediction of
traffic participants,” in Proc. the IEEE Intell. Veh. Symp., 2017, pp.
1686–1693.

[6] E. I. Liu, G. Würsching, M. Klischat, and M. Althoff, “CommonRoad-
Reach: A toolbox for reachability analysis of automated vehicles,” in
Proc. the IEEE Int. Conf. on Intell. Transp. Syst., 2022, pp. 2313–2320.

[7] Y. Lin and M. Althoff, “CommonRoad-CriMe: A toolbox for criticality
measures of autonomous vehicles,” in Proc. the IEEE Intell. Veh.
Symp., 2023, pp. 1–8.

[8] M. Althoff, S. Urban, and M. Koschi, “Automatic conversion of road
networks from OpenDRIVE to lanelets,” in Proc. the IEEE Int. Conf.
on Service Operations and Logistics, and Info., 2018, pp. 157–162.

[9] S. Maierhofer, M. Klischat, and M. Althoff, “Commonroad scenario
designer: An open-source toolbox for map conversion and scenario
creation for autonomous vehicles,” in Proc. the IEEE Int. Conf. on
Intell. Transp. Syst., 2021, pp. 3176–3182.

[10] Y. Lin, M. Ratzel, and M. Althoff, “Automatic traffic scenario con-
version from OpenSCENARIO to CommonRoad,” in Proc. the IEEE
Int. Conf. on Intell. Transp. Syst., 2023.

[11] M. Klischat, O. Dragoi, M. Eissa, and M. Althoff, “Coupling SUMO
with a motion planning framework for automated vehicles,” in SUMO
User Conf., 2019, pp. 1–9.

[12] X. Wang, A.-K. Rettinger, M. T. B. Waez, and M. Althoff, “Cou-
pling Apollo with the CommonRoad motion planning framework,” in
FISITA World Congress, 2020.

[13] M. Klischat, E. I. Liu, F. Holtke, and M. Althoff, “Scenario factory:
Creating safety-critical traffic scenarios for automated vehicles,” in
Proc. the IEEE Int. Conf. on Intell. Transp. Syst., 2020, pp. 1–7.

[14] X. Wang, H. Krasowski, and M. Althoff, “Commonroad-RL: A
configurable reinforcement learning environment for motion planning
of autonomous vehicles,” in Proc. the IEEE Int. Conf. on Intell. Transp.
Syst., 2021, pp. 466–472.

[15] S. Khaitan and J. M. Dolan, “State dropout-based curriculum rein-
forcement learning for self-driving at unsignalized intersections,” in
Proc. the IEEE Int. Conf. on Intell. Robots and Sys., 2022, pp. 12 219–
12 224.

[16] E. Meyer, M. Brenner, B. Zhang, M. Schickert, B. Musani, and M. Al-
thoff, “Geometric deep learning for autonomous driving: Unlocking
the power of graph neural networks with CommonRoad-Geometric,”
in Proc. the IEEE Intell. Veh. Symp., 2023, pp. 1–8.

[17] T. Nyberg, C. Pek, L. Dal Col, C. Norén, and J. Tumova, “Risk-aware
motion planning for autonomous vehicles with safety specifications,”
in Proc. the IEEE Intell. Veh. Symp., 2021, pp. 1016–1023.



[18] A. Zanardi, G. Zardini, S. Srinivasan, S. Bolognani, A. Censi,
F. Dörfler, and E. Frazzoli, “Posetal games: Efficiency, existence,
and refinement of equilibria in games with prioritized metrics,” IEEE
Robotics and Automation Letters, vol. 7, no. 2, pp. 1292–1299, 2021.

[19] J. Li, X. Xie, Q. Lin, J. He, and J. M. Dolan, “Motion planning
by search in derivative space and convex optimization with enlarged
solution space,” in Proc. the IEEE Int. Conf. on Intell. Robots and
Sys., 2022, pp. 13 500–13 507.

[20] M. Geisslinger, F. Poszler, and M. Lienkamp, “An ethical trajectory
planning algorithm for autonomous vehicles,” Nature Machine Intell.,
vol. 5, no. 2, pp. 137–144, 2023.

[21] S. Deolasee, Q. Lin, J. Li, and J. M. Dolan, “Spatio-temporal motion
planning for autonomous vehicles with trapezoidal prism corridors
and Bézier curves,” in Proc. of the American Control Conf., 2023, pp.
3207–3214.

[22] R. Trauth, M. Kaufeld, M. Geisslinger, and J. Betz, “Learning and
adapting behavior of autonomous vehicles through inverse reinforce-
ment learning,” in Proc. the IEEE Intell. Veh. Symp., 2023, pp. 1–8.

[23] N. Kochdumper and S. Bak, “Real-time capable decision mak-
ing for autonomous driving using reachable sets,” arXiv preprint
arXiv:2309.12289, 2023.

[24] R. Trauth, K. Moller, and J. Betz, “Toward safer autonomous vehicles:
Occlusion-aware trajectory planning to minimize risky behavior,”
IEEE Open Journal of Intell. Transp. Syst., vol. 4, pp. 929–942, 2023.

[25] M. Geisslinger, R. Trauth, G. Kaljavesi, and M. Lienkamp, “Maximum
acceptable risk as criterion for decision-making in autonomous vehicle
trajectory planning,” IEEE Open Journal of Intell. Transp. Syst., vol. 4,
pp. 570–579, 2023.

[26] S. Sun, J. Chen, J. Sun, C. Yuan, Y. Li, T. Zhang, and M. H. Ang,
“FISS+: Efficient and focused trajectory generation and refinement
using fast iterative search and sampling strategy,” in Proc. of the
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2023, pp.
10 527–10 534.

[27] G. Würsching and M. Althoff, “Sampling-Based Optimal Trajectory
Generation for Autonomous Vehicles Using Reachable Sets,” in Proc.
of the IEEE Int. Conf. on Intell. Transp. Syst., 2021, pp. 828–835.

[28] R. Kensbock, M. Nezami, and G. Schildbach, “Scenario-based
decision-making, planning and control for interaction-aware au-
tonomous driving on highways,” in Proc. the IEEE Intell. Veh. Symp.,
2023, pp. 1–6.

[29] C. Urmson, J. Anhalt, D. Bagnell, C. Baker, R. Bittner, M. Clark,
J. Dolan, D. Duggins, T. Galatali, C. Geyer, et al., “Autonomous
driving in urban environments: Boss and the urban challenge,” Journal
of field Robotics, vol. 25, no. 8, pp. 425–466, 2008.

[30] M. Montemerlo, J. Becker, S. Bhat, H. Dahlkamp, D. Dolgov, S. Et-
tinger, D. Haehnel, T. Hilden, G. Hoffmann, B. Huhnke, et al., “Junior:
The Stanford entry in the urban challenge,” Journal of Field Robotics,
vol. 25, no. 9, pp. 569–597, 2008.

[31] J. Ziegler, P. Bender, M. Schreiber, H. Lategahn, T. Strauss, C. Stiller,
T. Dang, U. Franke, N. Appenrodt, C. G. Keller, et al., “Making
Bertha drive—an autonomous journey on a historic route,” IEEE Intell.
Transp. Syst. magazine, vol. 6, no. 2, pp. 8–20, 2014.

[32] Ö. Ş. Taş, F. Kuhnt, J. M. Zöllner, and C. Stiller, “Functional system
architectures towards fully automated driving,” in Proc. the IEEE
Intell. Veh. Symp., 2016, pp. 304–309.

[33] K. Burnett, J. Qian, X. Du, L. Liu, D. J. Yoon, T. Shen, S. Sun,
S. Samavi, M. J. Sorocky, M. Bianchi, et al., “Zeus: A system

description of the two-time winner of the collegiate SAE autodrive
competition,” Journal of Field Robotics, vol. 38, no. 1, pp. 139–166,
2021.

[34] T. Kessler, J. Bernhard, M. Buechel, K. Esterle, P. Hart, D. Malovetz,
M. T. Le, F. Diehl, T. Brunner, and A. Knoll, “Bridging the gap
between open source software and vehicle hardware for autonomous
driving,” in Proc. the IEEE Intell. Veh. Symp., 2019, pp. 1612–1619.

[35] M. Tsukada, T. Oi, A. Ito, M. Hirata, and H. Esaki, “AutoC2X:
Open-source software to realize V2X cooperative perception among
autonomous vehicles,” in Proc. of the IEEE Vehicular Technology
Conf., 2020, pp. 1–6.

[36] Z. Zang, R. Tumu, J. Betz, H. Zheng, and R. Mangharam, “Winning
the 3rd Japan Automotive AI Challenge-autonomous racing with the
Autoware.Auto open source software stack,” in Proc. the IEEE Intell.
Veh. Symp., 2022, pp. 1757–1764.

[37] P. Karle, T. Betz, M. Bosk, F. Fent, N. Gehrke, M. Geisslinger,
L. Gressenbuch, P. Hafemann, S. Huber, M. Hübner, et al., “EDGAR:
An autonomous driving research platform–from feature development
to real-world application,” arXiv preprint arXiv:2309.15492, 2023.

[38] V. M. Raju, V. Gupta, and S. Lomate, “Performance of open au-
tonomous vehicle platforms: Autoware and Apollo,” in Proc. of the
IEEE Int. Conf. for Convergence in Technology, 2019, pp. 1–5.

[39] I. Gog, S. Kalra, P. Schafhalter, M. A. Wright, J. E. Gonzalez, and
I. Stoica, “Pylot: A modular platform for exploring latency-accuracy
tradeoffs in autonomous vehicles,” in Proc. of the IEEE Int. Conf. on
Robotics and Automation, 2021, pp. 8806–8813.

[40] R. S. Hallyburton, S. Zhang, and M. Pajic, “AVstack: An open-
source, reconfigurable platform for autonomous vehicle development,”
in Proc. of the ACM/IEEE Int. Conf. on Cyber-Physical Systems, 2023,
pp. 209–220.

[41] P. Bender, J. Ziegler, and C. Stiller, “Lanelets: Efficient map repre-
sentation for autonomous driving,” in Proc. of the IEEE Intell. Veh.
Symp., 2014, pp. 420–425.

[42] F. Poggenhans, J.-H. Pauls, J. Janosovits, S. Orf, M. Naumann,
F. Kuhnt, and M. Mayr, “Lanelet2: A high-definition map framework
for the future of automated driving,” in Proc. of the IEEE Int. Conf.
on Intell. Transp. Syst., 2018, pp. 1672–1679.

[43] S. Macenski, T. Foote, B. Gerkey, C. Lalancette, and W. Woodall,
“Robot operating system 2: Design, architecture, and uses in the wild,”
Science Robotics, vol. 7, no. 66, 2022.

[44] B. Paden, M. Čáp, S. Z. Yong, D. Yershov, and E. Frazzoli, “A
survey of motion planning and control techniques for self-driving
urban vehicles,” IEEE Transactions on intelligent vehicles, vol. 1,
no. 1, pp. 33–55, 2016.

[45] R. C. Martin, Clean Architecture: A Craftsman’s Guide to Software
Structure and Design. Prentice Hall, 2017.

[46] S. Maierhofer, Y. Ballnath, and M. Althoff, “Map verification and
repairing using formalized map specifications,” in Proc. of the IEEE
Int. Conf. on Intell. Transp. Syst., 2023.

[47] Y. Shimizu, T. Horibe, F. Watanabe, and S. Kato, “Jerk constrained
velocity planning for an autonomous vehicle: Linear programming
approach,” in Proc. of the IEEE Int. Conf. on Robotics and Automation,
2022, pp. 5814–5820.

[48] M. Werling, J. Ziegler, S. Kammel, and S. Thrun, “Optimal trajectory
generation for dynamic street scenarios in a Frenét frame,” in Proc. of
the IEEE Int. Conf. on Robotics and Automation, 2010, pp. 987–993.


	Introduction
	Related Work
	CommonRoad Framework
	Open-Source Driving Stacks

	Summarizing Assessment
	Contributions

	Preliminaries
	CommonRoad Scenario Format
	Environment Model
	Motion Planning

	Autoware.Universe

	CommonRoad-Autoware Interface
	Design Goals
	Overview
	Inputs
	Outputs
	Planning Modules

	Implementation Details
	Initializing and creating the planning problem
	Generating a route
	Running the planning loop
	Generating benchmark data


	Experiments
	Experiment with the Autoware Planning Simulation
	Experiment with EDGAR

	Conclusions
	References

