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Abstract

The fast-growing popularity of ride-haling has invoked concerns regarding its nega-
tive impacts especially pertaining to sustainability. Pooling of hailed rides is dubbed
as a potential solution. However, as of today, the rate of ride-pooling requests and
matching success are still very low. The influencing factors of willingness to pool
have been extensively researched, but the same cannot be said about pooling suc-
cess. Moreover, there is only a little knowledge on how a pandemic such as COVID-
19 could affect the mentioned factors.

This thesis took the trip-level statistical modelling approach to investigate the most
influential factors to willingness to pool and materialisation of pooling request us-
ing the ride-hailing scene of Chicago as a case study. Taking notes from past studies’
limitations, this thesis considered a wide range of potential factors including exoge-
nous ones such as weather and crime rate. This thesis also proposed a methodology
which enable working with large-sized trip data without risking loss of information
to aggregation and sampling. Two statistical selection methods—Backward Step-
wise Elimination and Lasso Regression—were utilised and compared.

At the end of this study, the potential driving factors to pooling decision and success
in both non-pandemic and pandemic contexts were identified. The results showed
that while trip impedance, temporal attributes, and weather possibly remain influ-
ential for both outcomes, the magnitude and direction of effects could change de-
pending on the pandemic context. This thesis also discovered that post-outbreak,
pandemic-related variables may pose the biggest impacts on willingness to pool and
pooling success. Other findings include the potential effects of additional taxing on
certain parts of the city, while built environment, spatiodemographic attributes, and
crime rate may pose little to no impact.
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Chapter 1

Introduction

This writing begins by introducing the thesis starting from the the existing problems,
needs, and research gaps which invoke the undertaking of this thesis. The recent
development in the shared mobility and its relevance to the global transportation
challenges is discussed below. Furthermore, subsequent research questions are elab-
orated along with the contributions of this thesis, research framework, and thesis
structure.

1.1 Problem Statement

In this era of increasingly pressing climate issues, the transportation sector has been
under the spotlight as it is responsible for 16.2% and 27.6% of global greenhouse
gas (GHG) emission [1] and energy consumption [2] respectively. Out of all the
energy consumed globally for transport, the United States massively takes up 25%
with more than 60% of it dedicated for road passenger travels [3]. This issue is
exacerbated by the ever-growing motorisation which places the United State’s road
passenger-kilometres as the second highest in the world with a steady continuous
growth [4].

The recent advancements of information and communication technologies (ICT) have
accelerated the growth of shared mobility—a concept in which travelers could gain
access to a shared vehicle for a short term ([5]). The global shared mobility scene has
seen a growth over the years and is expected to keep climbing ([6], [7]). The same
also applies in the United States ([8], [9]). Shared mobility encompasses various
kinds of vehicles and business models, however, ride-hailing—in which a passen-
ger is driven to their destination with a car—is the most dominant in the United
States ([10]). A company which offers this ride-hailing service is often referred to as
a Transportation Network Provider (TNP).

The tendency of American cities to form decentralised sprawls [11] has resulted in
car dependency [12] which promotes the vast adoption of ride-hailing. However,
from the point of view of sustainability, there has been mixed opinions regarding the
impacts of ride-hailing on the environment. The debate is centred around whether
ride-hailing decreases or rather increases the circulation of cars on the streets, and,
thereby, the subsequent consequences. These positive and negative potentials of
ride-hailing will be elaborated on later parts of this thesis.

Despite the above dilemma, pooling hailed rides potentially minimise the negative
impacts of ride-hailing [13]–[15]. Pooling refers to grouping ride-hailing requests
which are similar or have coinciding routes and subsequently carry them out in one
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trip. However, although the option to pool is readily provided by TNPs in many
cities, the data from US cities show that the users’ willingness to pool [16], and hence,
the average ride-hailing occupancy rate [17], are still very low. This is despite the fact
that about 50% of ride-hailing trips are feasible for pooling [14].

1.2 Needs

A survey in the US estimated only around 20% of ride-hailing users would opt for
pooling [16], out of which around 15% would be successfully matched and materi-
alised [17]. Considering the major impact the US road transportation scene imposes
on the global emission and fuel consumption, it is necessary to increase the pooling
rate by understanding the underlying reasons. Therefore, the factors which influ-
ence people’s willingness to pool as well as the success of the pool request need to
be identified. Moreover, the recent COVID-19 pandemic has shown how such occur-
rence could drastically change people’s social perceptions and behaviours [18]. As
COVID-19-like pandemics are predicted to occur more frequently in the future [19],
it is hence vital to investigate whether such pandemic affects the mentioned pooling
influence factors.

In recent years, more governments started to adopt the open government data phi-
losophy in order to promote transparency and participatory governance [20], [21].
For example, as a part of this initiative, the City of Chicago releases the records of
each individual TNP trip within the city starting from November 2018. However, as
hundreds of thousands of trips are conducted daily in a city, the sheer size of such
raw dataset could pose challenges. Since such a dataset is highly valuable for trans-
portation researches, there needs to be a systematic methodology which is proficient
in handling, processing, and analysing large trip data.

1.3 Research Gap

To identify the research gaps that exist in the literature, this thesis looked into past
studies which explored similar themes. Although many authors have delved into
the factors behind willingness to pool, the driving factors of pooling success have
been much less researched. Most past studies also made the assessment at an ag-
gregated level rather than at individual trip level, as they may have been hindered
by the large size of the trip data. Moreover, the possible effects of exogenous factors
such as public holidays, weather, and crime rate have not been considered by many.
Additionally, there has been very limited research on ride-pooling in a pandemic
context.

1.4 Objectives and Research Questions

This thesis strives to help promoting pooling which has the potential to alleviate
the drawbacks of ride-hailing. With higher rate of pooling, the ride-hailing industry
could be made more environmentally sensitive and economically efficient for all par-
ties. Thus, this thesis sees the necessity to investigate what contributes to people’s
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willingness to pool and pooling success in order to be able to enhance the pooling
rate. Consequently, the objectives of this thesis could be identified as follows:

1. To establish a systematic procedure to handle, analyse, and build statistical
models employing large-sized trip data

2. To build models for the willingness to pool and pooling success involving the
trip attributes and various exogenous factors before and after the COVID-19
outbreak

3. To identify the most influential factors affecting rider’s willingness to pool and
pooling success before and after the COVID-19 outbreak

4. To make a comparison between the influencing factors before and after the
COVID-19 outbreak to deduce if such pandemic could shift people’s motiva-
tion towards ride-pooling and its success

Ultimately, this thesis strives to answer the following research questions:

• What are the factors influencing people’s willingness to pool in non-pandemic
and pandemic contexts?

• What are the factors influencing the success of pooling in non-pandemic and
pandemic contexts?

• What are the efforts that could be done to encourage ride-hailers to pool and
to enhance ride-pooling success?

1.5 Contributions

The work within this thesis could yield several theoretical, methodological, and
practical contributions:

• Theoretical contributions:

1. Review of the impacts and the factors behind ride-hailing

2. Synthesis of the benefits of ride-pooling

3. Potential future research

• Methodological contributions:

1. Systematic procedure for handling, processing, and modelling with large
data

2. Comparison and reviews of the Stepwise and Lasso selection techniques

• Practical contributions:

1. Identification of the main factors affecting people’s willingness to pool
and pooling success

2. Identification of the main factors affecting people’s willingness to pool
and pooling success in the context of pandemic

The theoretical and methodological contributions of this thesis would be especially
beneficial in future researches involving ride-hailing and/or large-sized data. Whereas,
the practical contributions are valuable inputs for TNPs and authorities to enhance



4 Chapter 1. Introduction

ride-pooling matching rate, incentivise ride-pooling, as well as to establish strategies
in response to COVID-19-like pandemic.

1.6 Research Framework and Report Structure

This thesis report is structured systematically and elaborates the research in seven
chapters:

• Chapter 1 identifies the existing concerns pertaining to ride-hailing industry
and the needs that shaped the objectives of this thesis

• Chapter 2 delves into the literature to provide more details on the impacts of
ride-hailing and ride-pooling along with the previous works and theories that
laid the foundation of this thesis’ methodologies

• Chapter 3 introduces the study area Chicago and its ride-hailing scene before
and after the COVID-19 outbreak

• Chapter 4 elaborates on the systematic methodologies in handling and mod-
elling large-sized trip data

• In Chapter 5 and 6, the results are presented and discussed

• Chapter 7 concludes the research in relation to the research questions and dis-
cusses the limitations of this study
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Chapter 2

Literature Review

This chapter delves into the literature on the topic of ride-hailing and ride-pooling
to provide more context on the thesis’s motivation, to outline the theories behind
this thesis’s methodologies, and to explore previous works on this theme.

2.1 Ride-Hailing

This section aims to provide further understanding on the concept of ride-hailing,
as well as elaborate on the impacts. This hence brings forth the discussions on the
benefits of pooling.

2.1.1 Ride-Hailing as a Part of Shared Mobility

The shared mobility concept is a part of the bigger sharing economy philosophy,
which, in its essence, aims to share underutilised assets in the interests of efficiency
and sustainability [22]. Often, this definition coincides with other ideas such as the
access economy, community-based economy, collaborative economy, and collabora-
tive consumption [23]. In the realm of shared mobility, these assets correspond to
transportation vehicles or any means of passenger or goods mobility.

Its broad nature and rapid development have caused discrepancies of terminologies
and classifications within the field of shared mobility. Notwithstanding, Shaheen et
al. [24] classified shared mobility into three main groups: sharing of a vehicle or
device, sharing of a passenger ride, and sharing of a delivery ride. See Figure (2.1)
below for the full classification tree. On top of these modes, some authors would
also include conventional mass public transport [25] or other mobility assets such as
parking spots [26]–[28] under the umbrella of shared mobility.

Ride-hailing is often synonymous with ride-sourcing, on-demand rides, app-based
rides, Transportation Network Companies (TNCs), or Transportation Network Providers
(TNPs). More often than not, the term ’ride-sharing’ is also used to describe ride-
hailing. However, this is technically incorrect as ride-sharing trips should carry
more than one passenger [17]. Fundamentally, ride-hailing is described as a mo-
bility service in which a passenger is connected to a community driver through an
online platform to be picked up from their current location and driven to their desti-
nation using a private car. Grouping of ride-hailing requests into one trip is defined
as ride-pooling or ride-splitting. Emphasis is put on its on-demand nature, in which
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FIGURE 2.1: Classification of shared mobility business models.
Adopted from Shaheen et al. [24]

the trip is initiated by the request of the passengers and not of the driver’s initiative.
This sets apart ride-splitting from car-pooling.

2.1.2 The Growth of Ride-hailing

The concept of sharing a car ride has existed since the World War II era as a response
to vehicle shortage [29]. However, the idea was revolutionised by the integration of
GPS and online payments technologies in smartphones which birthed today’s ride-
hailing services. Carma (previously Avego, gocarma.com) was one of the pioneers
in the modern ride-hailing [29], however today’s global market is dominated by
companies such as Didi (web.didiglobal.com), Uber (uber.com), Lyft (lyft.com), and
Grab (grab.com) [30], [31]. In the United States, Uber and Lyft are the main players
in the market [32], [33].

The ride-hailing market is one of the fastest-growing, with the global market value
rising from 1 billion USD to 61 billion USD in a span of a decade [32]. Another
source even appraised the ride-hailing market to worth 113 billion USD in 2020 and
it is expected to climb with a CAGR of 8.75-20% to reach 220 billion USD in 2025
[32], [33]. This rapid growth is also reflected by the ridership. Uber, one of the
biggest TNPs worldwide, reached 111 millions of monthly active users in 2019 after
only launching its beta programme in 2011, equating to roughly 1.9 billion trips
per calendar quarter [34]. Figure 2.2 illustrates the growth of the number of trips
undertaken by Uber over a span of 3 years prior to COVID-19 pandemic.

http://www.gocarma.com
http://web.didiglobal.com
http://www.uber.com
http://www.lyft.com
http://www.grab.com
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FIGURE 2.2: The quarterly number of trips of Uber period 2016-2019.
Source: Dean [34]

2.1.3 The Factors Behind Ride-hailing Use

Many surveys agree that ride-hailing is mostly popular among the younger, more
educated working population [17], [35]–[44]. The skewed age distribution is often
regarded as a product of digital divide—the different adeptness in technology—
between younger and older generations [43]. The literature is not as unanimous
regarding the typical income level. Although some studies associated ride-hailing
more with higher-earners [17], [36]–[40], [43], [45], past findings showed that low-
earners use ride-hailing more than middle-earners [39], [41], [46]. Qiao & Yeh re-
vealed that this distribution across different income levels could depend on the trip
purpose [46]. Gender distributions also vary across studies and may be influenced
by overall safety and cultural aspects pertaining to gender roles [42].

The relationship between vehicle ownership and ride-hailing is also complicated
as evidences showed that car-less households generate relatively more ride-hailing
trips [39], [40], [45], [47], but most users do own or have access to private vehicles
[17], [37], [38]. Ride-hailing users also tend to lead a more mobile and/or multi-
modal lifestyle as a study found more users own public transit subscription or pass
compared to taxi frequenters [43]. Studies also highlighted the significance of attitu-
dinal factors towards ride-hailing use [48], as well as the perceptions of ride-hailing’s
safety and ease of use [37].

Temporally, the highest number of trips occur in the evening/at night and/or during
the weekends [41], [43], [44]. This is in line with the top ride-hailing trip purpose,
that is going to or from social/recreational events [35], [39], [42], [44]. Spatially,
ride-hailing trips are highly concentrated in urban areas [39], [45]. More specifically,
going to or from residential, commercial, and central business district/downtown
mixed used locations [41].

Moreover, when people hail a ride rather than driving, it is mainly caused by people
avoiding drinking under influence as well as the cost and/or difficulties of parking
[36], [39], [47]. Meanwhile, people choose ride-hailing over public transit due to
ride-hailing being quicker, more reliable, and public transit not being available at the
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time of the trip [35], [36], [39]. This naturally brings up a comparison between ride-
hailing and conventional taxi. However, ride-hailing was observed and perceived to
have shorter and more consistent wait times [35], [44], an attribute that was found
to be highly valued by consumers along with the real-time arrival information [49],
[50]. Ride-hailing being cheaper, easier to request and pay for, as well as having
more transparent fare are also driving factors [38], [44]. The superior popularity of
ride-hailing over conventional taxis were further supported as taxi became highly
substituted by ride-hailing [37], [46], [51]–[53].

2.1.4 The Impacts of Ride-hailing

With the pervasiveness of ride-hailing, comes questions about its impacts. By pro-
viding access to and from less-connected areas, ride-hailing could connect the lower-
income groups to more opportunities and activities [46], [54], [55]. It also poten-
tially improves people’s quality of life through increasing the mobility of people
with physical and cognitive disabilities [47], [56]. Other benefits include the reduc-
tion of parking requirement [17], [57] and accommodation of late-night trips which
may be unsafe or poorly-served by public transit [35], [58]. However, despite of-
ten marketed as a sustainable transport mode, many questions the macro impacts of
ride-hailing, especially pertaining to its implications on the environment.

Theoretically, ride-hailing has the ability to alleviate auto-dependency [35], and in
turn, reduce private vehicle ownership and circulation which is key for an efficient
transportation system [59]. However, as previously stated, the gathered evidences
have yielded mixed conclusions. Some studies associated regular ride-hailing usage
with owning fewer cars [58], [60]. However, the causality in terms of which begets
what is unclear. While a handful of respondents in [17], [36], [51] claimed dispos-
ing or foregoing car ownership in response to ride-hailing, the dominant portions
reported no change in their attitudes towards owning a car. There are also cases of
people acquiring new vehicles to take up a full-time job as a ride-hailing driver [61]–
[63], even causing nett increase in vehicle ownership [64].

Concerns arose as some evidences showed that ride-hailing pulls people away from
public transit and active modes (walking, cycling, etc.). 14%-37% survey respon-
dents reported they would have taken public transit for their trips had ride-haling
not been available [37], [51], [58], [65]. Meanwhile, 10%-24% ride-hailing trips would
have been made by walking or cycling [47]. Further investigations discovered that
ride-hailing could both be substitutive and complementary [35] to public transit de-
pending on the specific modes [36], trip purpose, and target population [46]. Some
surveys have also shown 8% - 22% of induced travel effect—that is trips that would
not be conducted had ride-hailing not been available [17], [35], [36], [39].

Another drawback of ride-hailing pertains to deadheading—the kilometers driven
without passenger onboard, mostly to reach the pickup location. In US cities, the
magnitude estimations range greatly from 43% to 82% of the total distance driven
[17], [66], [67], potentially constituting to distance weighted passenger occupancy of
only 0.8 [17] or less. Due to deadheading, non-pooled hailed ride was approximated
to be 47% more polluting than private vehicle trip [68].

When coupled, the above factors may lead to increased vehicle kilometres/miles
travelled (VKT/VMT) of 83.5% [17] to 90% [38]. In the case of the US, research
suggested that ride-hailing was responsible for 7.8 millions of daily VMT in the year
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2017 [69]. This is supported by evidences of increased traffic delay (congestion) in
relation to ride-hailing operations [61], [70].

2.1.5 The Benefits of Pooling

Pooling of ride-hailing potentially alleviates the disadvantages of ride-hailing elab-
orated above. Although the detours in pooling could increase the rider’s travel dis-
tance by 20%-35% [71], empirical evidences showed that drivers could have saved
22%-35% of VKT compared to the case should these trips were conducted separately
[71], [72]. Even considering trips which substituted public transit or active modes,
ride-pooling trips in Hangzhou, China yielded nett decrease of 58,124 VKT daily
[73]. In terms of emissions, studies showed pooling alleviating 15%-33% of ride-
hailing GHG yields [14], [74]. In another case study from Chengdu, this reduction
amounted to 10.601g of CO, 0.691g of NOx, and 1.424g of HC per trip [72]. 7.7%-15%
decrease of fuel consumption were also quoted by a few studies [14], [75].

In a study, ride-pooling frequenters were also associated with higher level of private
vehicle disposals compared to non-pooled ride-hailing users [44]. This supports
Chen et al’s [14] claim of 30% reduction of total vehicle count in the streets through
pooling which in turn could improve the average velocity of the traffic network,
especially during congested situation [76].

In the United States, TNCs and authorities have started to incentivise ride-pooling
[13], [77]. Aside from reducing the operational costs [14], passenger demand could
be better served even by smaller fleet size [13]. Riders hence also benefit from re-
duced cost per mile [78], while reduction in congestion lessens the burden of road
construction and maintenance for the authorities [77].

These studies [74], [79]–[81] ultimately highlighted the importance of trip-matching
algorithm optimisation in order to maximise the above advantages.

2.2 Researches on Willingness to Pool and Pooling Success

In literature, factors associated with ride-pooling adoption (i.e., willingness to pool)
have been extensively explored. However, researches on what drives the pooling
success have been very limited.

Many conducted a stated preference (SP) study through questionnaires and anal-
ysed the descriptive statistics to obtain individual-level factors associated with will-
ingness to ride-pool. Examples include Kostorz et al.’s study in Hamburg [82], Mo-
hamed et al. in London [44], and Wang et al. in China [83]. The factors investigated
in this kind of approach is generally limited to individual socioeconomic/demographic
attributes, temporal variables of the trip, and the trip purpose.

On top of analysing survey statistics, Gehrke et al. [84] also developed trip-level sta-
tistical models differentiated by trip purposes to find variables which have signifi-
cance towards willingness to pool. The methodology consisted of Binomial Logistic
Regression (BLR) supported with Backward Stepwise Elimination. This study was
carried out in Boston pre-COVID-19 pandemic and suggested to study ride-pooling
adoption across multiple time periods and/or contexts.
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Likewise, BLR method was also adopted by Wang et al. [85] in a study in China
to build a trip-level model for request matching success for ride-pooling between
two studied cities. The authors, however, stated that future studies should consider
more potential factors, especially pandemic-related variables when including post-
outbreak datapoints.

Meanwhile, BLR approach was employed by Taiebat et al. [86] as a mean of ex-
ploratory analysis before building Machine Learning (ML) models based on Ad-
aBoosting, Gradient Boosting, and Random Forest methods to predict willingness
to pool and pooling success. These methods enable computation of the predictive
power and effect direction of each predictor. This study, however, only utilised a
small subset of the available ride-hailing trip data from Chicago [86].

Note that the above three studies utilised BLR to model willingness to pool and
pool success at a trip level, as the model outcomes are binaries. For aggregated
outcomes, linear statistical models such as Multivariate Linear Regression (MLR)
with Ordinary Least Squares (OLS) estimations has been used. Examples include Li
et al. [87] who spatially aggregated and modelled ride-pool pickup/dropoff counts.

Similar practice was carried out by Dean & Kockelman [88] who aggregated the ride-
pooling trips of Chicago into count of trips authorised for pooling and its ratio over
all ride-hailing trips per census tract. On top of MLR with OLS, these authors also
conducted Spatial Autoregressive (SAR) model and Spatial Error (SE) model to in-
vestigate the spatial dependence of the dependent variable. To incorporate temporal
variations into the model, Linear Panel Models were developed instead.

Zwick [89] also aggregated the ride-pooling requests in Hamburg per census tract
and compared MLR with OLS method with Spatial Durbin Error (SDE) model and
Geographically Weighted Regression (GWR) method. Meanwhile, Hou et al. [90] es-
tablished bins based on the origin-destination (OD) tract pairs, temporal attributes,
and whether the OD involves an airport. The ratio of trips authorised for pooling
over all ride-hailing trips was then computed for each bin and became the depen-
dent variable in an MLR and an XGBoost models.

Other researches which employed GWR—or its modification, Geographically and
Temporally Weighted Regression (GTWR)—include Chen et al [91], Du et al. [92],
and Chen et al. [93] who aggregated the willingness-to-pool trips (either as counts
or ratios) spatially.

Machine Learning methods were employed by Abkarian et al. [94] (Random Forest
Regression (RFR), Extra Trees Regression (ETR), and XGBoost) and Xu et al. [95]
(RFR) who both aggregated the willingess-to-pool trips per OD pair. This was done
to reveal the possible non-linear pattern, threshold effects, and variable importance
of each predictor.

On the other hand, Romeo et al. [96] created hierarchical clusters of census tracts
based on their socioeconomic/demographic attributes using the Ward’s method.
Analysis of Variance (ANOVA) was then executed to observe significant difference
in the proportion of willingness-to-pool trips and the proportion of successfully
pooled trips between the clusters [96].

Wang et al. [97] took a different approach and used Structural Equation Modelling
(SEM) to assess the influence of attitudes in ride-pooling behaviour. Whereas, Abkar-
ian et al. [98] specifically studied the impact of taxing policy on the count and ratio
of trips authorised for pooling using the Interrupted Time Series (ITS) technique.
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Table 2.1 summarises the mentioned researches. It lists the main methodology, the
focus area (willingness to pool (’WTP’) or pooling success (’Pool’)), the analysis level
(trip level or aggregated), and the possible factors considered. Note that the trip
impedance includes the trip costs, distance, and duration.

This table shows how researches on pooling success is relatively rare. Many of the
studies in Table 2.1 could also expand the list of factors integrated in the analysis,
especially with weather-related variables which were found in Gehrke et al. [84] to
have significance towards user’s decision to pool. Many also aggregated the data,
which risked information loss. Moreover, the impacts of COVID-19 on ride-pooling
factors are under-researched.
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2.3 Statistical Modelling

Maria [99] defined a model as "a representation of the construction and working
of some system of interest", which is built "usually based on analogies" and "with
a specific goal" according to Chamizo [100]. Statistical modelling hence deals with
emulating the generation of observed data through the use of mathematical repre-
sentations, probability distributions, and various statistical analysis & assumptions.

2.3.1 Binomial (Binary) Logistic Regression

Binomial logistic regression is a statistical modelling technique which falls under
the Generalised Linear Models (GLM) family. This logistic regression predicts the
probability of an observation to be one of two categories, i.e., the dependent variable
is a binary. This method is derived from the sigmoid probability function below:

P(y = 1) =
1

1 + e−(β0+β1x1+β2x2+...+βnxn)
(2.1)

P(y = 1) = the probability of an event occurring
xn = predictor variables
β0 = intercept
β(1..n) = regression coefficient of x(1..n)

Considering that the probability of an event not occurring P(y = 0) = 1− P(y = 1)
and applying log transformation yields the following:

ln
P(y = 1)

1− P(y = 1)
= ln(odds) = logit(P) = β0 + β1x1 + β2x2 + ... + βnxn (2.2)

The probability of an event occurring over the probability of the otherwise is com-
monly known as odds. The above equation enables the assumption that log odds of
event y has linear relationships with predictor variables x(1...n). Therefore the coeffi-
cients β(1...n) could be interpreted as the change in the log odds of y with every unit
increase of predictors x(1...n).

To reiterate, binomial logistic regression has the following requirements and as-
sumptions:

• The dependent variable is dichotomous

• There needs to be independence of observations

• All of the categorical variables (including the dependent one) need to have
mutually exclusive and exhaustive categories

• Assumes linearity between the continuous predictors and the logit transfor-
mations

• Multicollinearity should not exist among the predictor/independent variables

• Homoscedasticity is not required
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• Significant outliers, high leverage points, and influential points should not ex-
ist among the data

• Due to the use of Maximum Likelihood Estimation (MLE) to estimate the co-
efficients (see section 2.3.1), the literature suggests minimum data size of 20-50
observations per predictor variable [101], [102].

Coefficient Estimation

The coefficients in the logistic regression is estimated by the probability framework
Maximum Likelihood Estimation (MLE). Suppose a model parameter vector β and
known observations X, the likelihood L(β|X) is the conditional probability of ob-
serving X given a specific probability distribution and β values. In other words,
L(β|X) measures how well the observations support the validity of β values. There-
fore, the goal of MLE is to find values of β which maximises L(β|X).

In the context of binomial logistic regression, β should be such that:

• for observations with y = 1, the product of all probability P(x) should be as
near to 1 as possible

• for observations with y = 0, the product of all probability P(x) should be as
near to 0 as possible, i.e., 1− P(x) should be as close to 1 as possible.

Therefore, across all observations, with xi being the feature vector of the ith sample,
this conditional probability translates to:

L(β) = ∏
s
(P(xi)

yi ∗ (1− P(xi))
1−yi) (2.3)

As probability function could also be expressed as:

P(xi) =
1

1 + e−βxi
(2.4)

and multiplication of exponentials could be unstable, transformation into the fol-
lowing log-likelihood is widely preferred:

l(β) =
n

∑
i=1

yiβxi − ln(1 + eβxi) (2.5)

Some methods to maximise the log-likelihood in Equation 2.5 include:

• Newton-Raphson method [103]

• Bisection method [104]

• Fixed-point interaction [105]

Model Selection and Assessment

The term bias-variance tradeoff was coined by Geman et al. [106] to describe the
dilemma in statistical modelling in which a tradeoff needs to be made between the
accuracy and the precision of the model’s prediction. Figure 2.3 depicts how square
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of bias error—the inverse of accuracy—decreases with model complexity, whereas
the variance–the inverse of precision—behaves the opposite. Therefore, an ideal
model is one that minimises the sum of these two errors, i.e., the Mean Squared
Error (MSE). By doing so, one avoids underfitting or overfitting the model.

FIGURE 2.3: Illustration of the bias-variance dilemma.
Source: Doroudi [107]

In this sense, the following metrics are commonly referred to in logistic regression
model selection and performance assessment:

1. Akaike Information Criterion (AIC) [108]
The term information criterion refers to selection methods which are derived
from likelihood functions. The AIC yields relative scores of model quality esti-
mate which could be used to compare the model candidates of the same model
class. It is defined as:

AIC = −2 ln L + 2k (2.6)

L = likelihood
k = number of model predictors

The likelihood acts as a measure fit, and hence, the minimum AIC is desired.
As shown, AIC penalises for any addition of predictor variable by a factor
of 2. Therefore, given two model candidates with the same level of fit, AIC
would side with the simpler one. However, as sample size grows, AIC tends
to expand its choice of models and pick more complex model to reach the most
optimum error [109]. For small-sample studies, the corrected version of AIC
(AICc) also exists [110].

2. Bayesian Information Criterion (BIC) [111]
It is given as:

BIC = −2 ln L + k ln n (2.7)

L = the likelihood
k = the number of model predictors
n = the number of observations
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At large sample size, BIC imposes much larger penalty for an additional pre-
dictor compared to AIC.

3. Pseudo-R2

The physical definition of the log-likelihood-based pseudo-R2 is debated as
some sees it analogously to ordinary least square-R2 metric which quantifies
the proportion of explained variance in linear regression. However, many see
pseudo-R2 more as a measure of goodness-of-fit or association between the
predicted and real values [112]–[114]. Among the many proposed Pseudo-R2,
two of the most common are:

• McFadden’s Pseudo-R2 (a.k.a. ρ2) [115]

R2
MF = 1− ln Lc

ln L0
(2.8)

• Maddala/Cox & Snell’s Pseudo-R2 [116], [117]

R2
C&S = 1− e(−

2.(ln Lc−ln L0)
n ) (2.9)

4. Out-of-Sample Accuracy
A simple accuracy calculation could be done by determining the rate of cor-
rectly classified occurrences over the total prediction. An out-of-sample ap-
proach is a more pragmatic and unbiased practice which randomly separate
the dataset into train and test sets. 70:30 to 80:20 train-test split proportions are
commonly used and mostly adequate [118]–[120].

5. Confusion Matrix
A confusion matrix is useful in the case of imbalance data to show whether the
minority class is also well-classified [121]. This matrix maps out the prediction
values of a model and the actual values in the format shown in Table 2.2.

TABLE 2.2: Confusion matrix for binary classification

Predicted Class

Positive Negative

Actual Class
Positive True Positive (TP) False Negative (FN)

Negative False Positive (FP) True Negative (TN)

From this matrix, several metrics can be derived:

• Precision
The ratio of correctly identified positives over the total predicted posi-
tives.

TRP =
TP

TP + FP
(2.10)

• True Positive Rate (TPR)
Also known as sensitivity or recall. A ratio between correctly identified
positives over the total observed positives.

TRP =
TP

TP + FN
(2.11)
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• True Negative Rate (TNR)
Also known as specificity. A ratio between correctly identified negatives
over the total observed negatives.

TNP =
TN

FP + TN
(2.12)

• False Positive Rate (FPR)
The ratio of negatives which are falsely identified as positives over the
total observed negatives.

• Area Under the Curve (AUC) of Receiver Operator Characteristics (ROC)
ROC graph plots the TPR against the FPR across all possible cutoff values
(i.e., the threshold between classifying an event as positive or negative) as
shown in Figure 2.4. The AUC of this graph represents the ability of the
model to differentiate the classes. The theoretical best is a vertical graph
(i.e., AUC = 1) where a change in the cutoff does not change the sensitivity
of the model. Meanwhile, AUC = 0.5 signifies no predictive power and a
lower value means that the model performs worse than random chance.

FIGURE 2.4: An example of four ROC curves. Source: Huang & Ling
[122]

2.3.2 Collinearity

The term collinearity describes when the independent variables are correlated to
each other. A high amount of collinearity may result in the inflation of the regres-
sion coefficients’ variance which ultimately misleads the identification of relevant
predictors [123]. The prevalent practices to detect collinearity include:

1. Correlation Matrix
This matrix simply maps the bivariate correlation between each variable pair.
The correlation test depends on the types of the variable pair in question:

• Correlation between two continuous variables
Both Pearson and Spearman correlation coefficients measure the bivariate
correlation in the scale of -1 to +1 with the sign indicates a negative/positive
relationship while the correlation strength is indicated by the absolute
number. The main difference lies on the fact that Pearson expect a linear
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relationship while Spearman works with a monotonic relationship but
not necessarily linear. For normally distributed variables, Pearson and
Spearman have similar expected coefficient values [124].

• Correlation between two categorical variables
The chi-square (χ2) test of independence evaluates the χ2 statistics between
groups in a contingency table of a pair of categorical variables. The null
hypothesis states that there is significant difference between the two tested
groups. Therefore, a significant p-value (i.e., equal or less than alpha
value) means that there is in fact no significant difference and the two
variables are correlated.

• Correlation between a continuous and a categorical variable
The point-biserial test is a Pearson-like correlation test between a continu-
ous and a dichotomous variable. In the case of categorical variables with
more than two categories, the variable could be artificially dichotomised
through the use of dummy variables.

2. Variance Inflation Factor (VIF)
Essentially, this metric estimates the degree of variance inflation of a regression
coefficient due to multicollinearity in the model. This is done by regressing
each predictor against other predictors to obtain the R2 statistics. The VIF value
is then calculated as follows:

VIFi =
1

1− R2
i

(2.13)

Another measure of multicollinearity, Generalised VIF (GVIF), was introduced
by Fox & Monette which is suited for when categorical variables are involved
[125]. Suppose a regression model of:

Y = β0 + X1β1 + X2β2 + ε (2.14)

Y = a vector of observations
X1 = a vector which contains related r indicator variables (e.g., each categories
of a categorical variable)
X2 = a vector which contains the remaining predictors, excluding the constant
ε = a vector of unobserved error

Thus, GVIF is calculated as follows:

GVIF =
det(R11)det(R22)

det(R)
(2.15)

R11 = the correlation matrix of X1
R22 = the correlation matrix of X2
R = the correlation matrix for all variables, excluding the constant

The measure (GVIF)(1/(2∗D f )) with D f being the variable’s degree of freedom
is recommended as these values remain comparable should the predictor vari-
ables in question have varying dimensions. The square of (GVIF)(1/(2∗D f )) is
analogous to the regular GVIF/VIF.
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2.3.3 Variable Selection

Variable selection is a process of selecting only a subset of the predictor variables to
be included in a model. Cassotti & Grisoni [126] identified the purposes of variable
selection to be:

• Improving the interpretability through simpler models

• Disregarding insignificant effects, hence reducing noise

• Improving the model’s predictive ability

• Speeding up the model’s processing time

The following selection algorithms are frequently used in research:

1. Stepwise Regression
Stepwise regression is an iterative process which tests different combinations
of predictors until there is no significant improvement in the set performance
criterion (usually AIC or BIC). There are different procedures of stepwise re-
gression:

• Forward Stepwise Selection
This process begins with a null model (a model of only an intercept) and
adds one variable at each iteration. The variable which produces the most
significant improvement compared to the previous iteration is carried for-
ward to the next iteration. The process stops when an addition of variable
no longer significantly improves the model.

• Backward Stepwise Selection (a.k.a Backward Elimination)
This process begins with the full model Mp (a model containing all of the
predictors p in consideration) and removes the least significant variable
at each iteration to produce Mp−1, Mp−2....M0. The AIC/BIC values of all
M0....Mp are compared and one model is selected.

• Bidirectional Stepwise Selection
This combines both forward and backward selection. Starting with a null
model, at each iteration, after adding a significant variable, another vari-
able that is no longer significant is removed.

Examples of stepwise methods usage for logistic regression: [127]–[129]

2. Lasso Regression
Least Absolute Shrinkage and Selection Operator (Lasso or LASSO) is a regu-
larisation method—it penalises a model for having too many variables and re-
moves the less contributive variables by shrinking their regression coefficients
to zero. When applied to a logistic regression, Lasso adds a penalty term to the
likelihood function as such:

L + λ ∑ |βi| (2.16)

L = the likelihood function in Equation 2.3
βi = the regression coefficient vector
λ = the shrinkage parameter

A rise in λ increases the bias while decreases the variance of the model (see the
subsection 2.3.1 on bias-variance tradeoff). The optimum λ is typically found
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through cross-validation (CV) minimising the total MSE [130], [131]. However,
the one standard error λ—the value which yields higher regularisation yet still
lies within one standard error of the minimum cross-validated MSE—is also
often preferred [132]. Minimising the penalised likelihood in Equation 2.16
shrinks the coefficients which contribute to increasing L (i.e., the ones that
contribute most to the error) to zero. One of the advantages of using Lasso
penalisation is its ability to deal with multicollinearity [133]. However, the
significance of its coefficient estimates could not be simply computed [134].

Examples of penalised logistic regression using Lasso technique: [133], [135],
[136]
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Chapter 3

Study Area

Chicago, Illinois is the third-most populous city in the United States with the popu-
lation of 2,696,561 as per 2021 census [137]. Having a sprawling urban form, the city
has a wide suburban area [11]. This, coupled with Chicago’s mainly radial trans-
portation network (see Figure 3.1), means that there’s a large part of Chicago where
traveling with public transit is not always convenient. About 47.6% of Chicago resi-
dents commute by driving, while only 29% take the public transit or walk [137]. The
city’s rising transportation emission despite the decreasing population density is a
further evidence of Chicago’s car dependency [138].

FIGURE 3.1: Map of Chicago’s census tracts, Downtown Zone, and
public transport network

This is also reflected in Chicago’s ride-hailing scene which saw an average of 9.2 mil-
lions ride-hailing trips monthly right before the COVID-19 outbreak [139]. Despite
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a drop in number at the start of the pandemic, it has been making a recovery slowly
since (see Figure 3.2).

FIGURE 3.2: The total monthly ride-hailing trips over the last few
years in Chicago. The red dashed line marks the beginning of

COVID-19 pandemic in Chicago. Source: City of Chicago [139]

3.1 Taxes Related to Ride-hailing

In the effort to battle congestion, the city has imposed Ground Transportation Tax
(GTT) which also applies to ride-hailing trips. See Table 3.1 for the values as of Jan-
uary 2018 and as of January 2020 (current). Note that the city imposes a much higher
fee for trips to and from Special Zones which include airports. There is also another
additional tax for the so-called Downtown Zone (refer to the highlighted areas in
Figure 3.1) which applies on weekdays 6AM - 10PM. Moreover, a tax reduction was
granted for shared trips to incentivise more ride-pooling. The listed fees also include
the $0.02 TNP Administration Fee and $0.10 TNP Accessibility Fund Fee.

TABLE 3.1: Taxation of ride-hailing trips in Chicago.
Source: City of Chicago [140], [141]

As of 2019

As of 2020

Trip without Trip with
Downtown Downtown

Zone Surcharge Zone Surcharge

N
on

-P
oo

le
d

Regular Trip $0.60 $1.25 $3.00

Trip to/from Special Zone $5.60 $6.25 $8.00

Trip with Wheelchair
Accessible Vehicle
(WAV)

Not Differentiated $0.55 $0.55

Po
ol

ed

Regular Trip $0.60 $0.65 $1.25

Trip to/from Special Zone $5.60 $5.65 $6.25

Trip with Wheelchair
Accessible Vehicle
(WAV)

Not Differentiated $0.55 $0.55
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3.2 Chicago’s Ride-hailing Scene during the COVID-19 Pan-
demic

The very first case of COVID-19 in Chicago was recorded on the 4th of March 2020
[142]. Since then, Chicago went through multiple levels of restrictions before allevi-
ating most of them at the end of February 2022. The Figure 3.3 below summarises
Chicago’s COVID-19 timeline based on the Orders issued by the City of Chicago
[143] and the State of Illinois [144].

FIGURE 3.3: COVID-19 timeline in Chicago. Source: City of Chicago
[143], State of Illinois [144]

Due to the pandemic, the main TNPs in Chicago, Uber and Lyft, suspended the ride-
pooling services in the United States from March 2020 [145]. Lyft reintroduced the
service in July 2021 for Chicago [146], while Uber only followed suit in February
2022 [147].
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Chapter 4

Methodology

Due to the large size, the data that is involved in this study were always stored and
processed in subsets. This was to make sure that no knowledge was lost and all of
the available information could be put to use without requiring high-performance
computer. The methodological workflow of this thesis is illustrated by Figure 4.1. In
this thesis, ’WTP trips’ refer to the trips which were authorised for pooling regard-
less if it was successfully matched or not, while ’pooled trips’ refer to the ones that
were successfully pooled.

4.1 Data Collection

The data that were employed in this thesis consisted of the main ride-hailing trip
data and the exogenous factors data (e.g., demographic, spatial, weather, and pan-
demic progression) which were sourced from multiple open platforms. The data
were split into two study periods: pre-outbreak (January 2019 - December 2019) and
post-outbreak after the pooling services returned (August 2021 - November 2022).
This section outlines the sources of each type of data.

4.1.1 Ride-hailing Trips

This data was obtained from the Chicago Data Portala, which is a part of the city’s
Open Data initiatives. The Transportation Network Providers [139] dataset com-
prises of the records of trips conducted by ride-hailing companies dating as early as
November 2018. The overall data consists of 293,304,308 individual trips at the time
of download. The information contained in the dataset includes the trip attributes,
timestamps of the trips, and the approximate locations of the pickup and dropoff.

For privacy protection reasons, the locations are only precise to the level of corre-
sponding census tract or community area. These information may also be empty for
locations outside the city’s border. For the purpose of this study, only the records
that had both the pickup and dropoff census tract information were considered (i.e.,
intra-city trips). Moreover, the timestamps, fare and tip are rounded.

adata.cityofchicago.org
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FIGURE 4.1: Methodological framework
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4.1.2 Demographic Data

This thesis gathered the information regarding Chicago’s population number, em-
ployment, age, income, and vehicle ownership from the American Community Sur-
vey carried out by the US Census Bureau [137].

4.1.3 Spatial Data

Land Use Information

The zoning information of Chicago was obtained from the Chicago Data Portal in the
form of a polygon shapefile [148]. Based on the zoning and land use ordinance in the
Municipal Code of Chicago [149], this thesis classified land uses into nine categories:

• Residential (code R)

• Business (code B)

• Commercial (code C)

• Downtown (code D)

• Manufacturing (code M)

• Planned Manufacturing (code PMD)

• Planned Development (code PD)

• Transportation (code T)

• Parks and Open Spaces (code POS)

Boundaries and Point Locations

The following datasets were obtained from Chicago Data Portal.

1. Boundaries:

• Individual census tracts [150]

• Chicago’s central business district (CBD)

2. Point Locations:

• Public transit stops including buses, intracity ’L’ trains, and ’Metra’ com-
muter trains [151]–[153]

• Locations of each crime reported within Chicago during the observation
periods [154]. Pre- and post-COVID-19 outbreak periods were differenti-
ated.

4.1.4 Weather Data

The daily average temperature, average wind speed, and total precipitation for each
day over the study period were gathered from a weather reporter website [155].
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4.1.5 Public Holidays in Chicago

Dates of Chicago’s public holidays were sourced from Chicago’s official publication
[156] and historical public holidays website [157].

4.1.6 Pandemic Progression

The daily rolling averages of COVID-19 cases, hospitalisations, and deaths, along
with the cumulative number of complete vaccination series associated with Chicago
residents were sourced from Chicago Data Portal [142], [158]

4.2 Data Preparation

4.2.1 Outlier Identification and Data Filtering

The univariate distribution of each variable was visualised from a sample dataset
to identify outliers. Subsequently, the outliers were filtered out to ensure a robust
dataset which contained the information that was sought for by this study.

4.2.2 Preparation of Spatial Data

The spatial data and any information related to each census tract were processed
and prepared using the software QGIS.

1. Tract Characteristics
Geographical characteristics of each census tract including its area and its cen-
troid distance to the central business district’s centroid were computed.

2. Land Use Information
The percentage area of each type within each census tract were calculated. Sub-
sequently, the tract’s prevailing land use were derived along with the tract’s
Entropy Index (Equation 4.1) which described the land use mix in the scale of 0
to 1.

Land Use Entropy = −(
k

∑
j=i

Pj ln(Pj))/ ln(k) (4.1)

Pj = the percentage area of land use j
k = the total number of land use types

3. Public Transit Access
The measure of access to public transit was defined by taking the number of
public transit stops per unit area of each census tract.

4. Crime Rate
The crime rate at each census tract were measured by counting the crime point
locations that fell within each tract and taking the monthly average.

5. Downtown Zone Boundary
The boundary to the specially-taxed zone was created in QGIS based on the
given map description by the City of Chicago [141].



4.3. Exploratory Analysis 29

4.2.3 Consolidation of Data

The data preparation process included consolidating the trip data with the spa-
tial/spatiodemographic information at the pickup and dropoff tracts of the trip as
well as the temporally-varying data (e.g., weather and COVID-19 conditions) at the
day of the trip.

4.2.4 Data Normalisation

Several spatial variables such as population and public transit stops were standard-
ised to per unit area. Units were also converted to metric system. Moreover, to en-
sure that all of the continuous variables (and the associated regression coefficients)
were in comparable scales, the values were normalised using the standard score
method. However, as the data were stored in subsets, the weighted mean and the
weighted standard deviation of each variable were utilised. Thus, for a certain vari-
able:

x̄ =
∑N

i=1(wixi)

∑N
i=1 wi

(4.2)

σ̄ =

√√√√∑N
i=1 wi(xi − x̄)2

(M−1)
M ∑N

i=1 wi
(4.3)

z =
X− x̄

σ̄
(4.4)

x̄ = weighted mean
xi = the mean value subset i
wi = the weight (i.e., the number of observations) of subset i
N = total number of subsets i
σ̄ = weighted standard deviation
M = the number of non-zero weights
z = normalised score
X = raw score

4.3 Exploratory Analysis

4.3.1 Spatial and Temporal Variations

The spatial distribution of pickup rates, dropoff rates, spatiodemographic measures,
land use entropy, public transit access, and crime rate were visualised in QGIS to
identify any pattern. Similarly, the temporal variations of daily trips (both WTP
and pooled trips) were plotted along with variables related to weather and COVID-
19 pandemic. However, due to time constraint, the results of temporal variation
analysis are not presented in this report.
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4.3.2 Multivariate Distributions

As the data were stored in subsets, in order to achieve distributions involving the
whole dataset, intermediary tables were generated to store summarised informa-
tion from each subset. Subsequently, various charts were produced from these in-
termediary tables. This procedure was done automatically using the programming
language Python 3.10.4 with the Integrated Development Environment (IDE) Spyder
5.4.0. Trips which began or ended on a Special Zone were isolated and analysed
separately to investigate whether differing patterns exist.

4.3.3 Correlation Analysis

As the variable set in this study involved both continuous and categorical data types,
three different correlation matrices were produced:

1. Pearson’s correlation test between continuous variables
This study opted for Pearson’s test instead of Spearman’s due to the simulta-
neous use of Point Biserial test which is a Pearson-like test for a continuous-
dichotomous variable pair. Thus, using Pearson’s enabled comparability of
the correlation coefficients. The test was done using the function corr() from
the Pandas library of Python.

2. Chi-square (χ2) test of independence between categorical variables
The test was conducted by generating contingency tables between each pair
of categorical variables through the use of crosstab() function from the Pandas
library. Afterwards, the chi2_contingency() function from the library Scipy was
employed to compute the χ2 statistic and the p-value between each pair. The
p-value matrix was then assessed.

3. Point biserial test between categorical and continuous variables
Prior to applying the test, all of the non-dichotomous categorical variables
were artificially dichotomised through the use of dummy variables. The func-
tion pointbiserialr() from the Scipy library was utilised to compute the correla-
tion coefficient between each dichotomous-continuous variable pair.

4.4 Model Building and Assessment

The aim of this procedure was to obtain logistic models which sufficiently classify:

• whether a trip with its features would be authorised for pooling or not –>
’WTP’ models

• whether a trip with its features that was already authorised for pooling would
be successfully pooled or not –> ’Pool’ models

This thesis proposes a methodology in which N subsets of data are fitted to a bi-
nary logistic function separately. This would result in the generation of N candidate
models which may involve different combinations of variables and varying coeffi-
cient values. The variance and the significance of these coefficients across the whole
set of candidate models lay the foundation to the final variables selection, and hence,



4.4. Model Building and Assessment 31

the development of the final model. The whole modelling workflow is further de-
tailed by Figure 4.2 below. This model building procedure was conducted separately
on the pre-outbreak dataset and the post-outbreak dataset.

4.4.1 Random Subsampling

The trip data was initially obtained and stored in M subsets according to its times-
tamps. The processed data were then reorganised by splitting each subset into N
equal portions without replacements. Each portion was randomly assigned to one
of the new N subsets which would be utilised for modelling. This made sure that
each new subset was representative of the whole dataset. The value N was depen-
dent on the original dataset size, as the number of observations within each subset
was kept approximately constant at one million. This constant sample size ensured
that each model approximation in this study had a similar level of reliability [159].
Exception was the input data for the post-outbreak ’Pool’ models where subsam-
pling was not done, as the total observations of WTP trips during the post-outbreak
period was significantly smaller.

4.4.2 Generation of Candidate Models

This thesis utilised and compared two variable selection techniques:

1. Backward Stepwise Selection
When there is a certain degree of collinearity, the effect of one predictor may
only be significant in the presence of another variable. Therefore, this study
opted for backward elimination technique as recommended by Mantel [160]
as it begins by considering the effects of all predictors simultaneously. Despite
being a faster procedure, forward selection (also bidirectional selection) tends
to exclude said correlated predictors altogether and miss to capture potentially
significant effects [160].

The procedure was performed by integrating the functions glm() and step()
from the stats package of the statistical programming language R. The input
sample was first split into 80% training data and 20% test data. The glm() func-
tion took input of the full logistic formula (Equation 2.2), the training data, and
the parameter family set to "binomial" to return a glm object of the full model.
The glm object was fed into the step() function along with the parameters di-
rection set as "backward" and k as log of observation number to signify using
BIC as selection criterion. BIC was used rather than AIC for stricter penalty.
The remaining 20% of data was then used to test the performance of the fitted
model (see Section 4.4.4).

2. Lasso Regression
Similarly, 80% of the input sample was used to train the model, while 20%
was used to test the candidate model. The package glmnet in R was utilised.
The value of λ was calculated using the function cv.glmnet() which conducted
k-fold cross validation to return the optimum λ value (lambda.min) and the one-
standard-error λ (lambda.1se). To yield higher regularisation and avoid over-
fitting on a certain input sample, the lambda.1se was utilised to fit the model.
This was done with the function glmnet() by setting the parameters alpha to 1
to signify Lasso method and family to "binomial".
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FIGURE 4.2: Modelling workflow
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4.4.3 Pre-selection of Variables

Stepwise regression method is susceptible to collinearity problems as it exacerbates
the effects [161]. As a consequence, collinearity was addressed prior to using this
technique. Based on the correlation matrices between the variables, the predictor
variables were pre-selected to only involve those with low degrees of collinearity.

For correlations between continuous-continuous and continuous-categorical vari-
able pairs, this thesis adopted the correlation coefficient threshold of |r| > 0.7 for
variable removal based on previous studies [123], [162], [163]. Taking notes from
Gehrke et al. [84], when two variables were highly correlated, the one which has
higher absolute coefficient correlation to the dependent variable of interest was kept.

In the case of correlations between categorical variables, as the relative strengths
could not be measured, pre-selection was done based on domain knowledge.

4.4.4 Candidate Models and Variables Assessment

Multicollinearity

Each candidate model was subjected to multicollinearity test using the GVIF method.
As mentioned in Section 2.3.2, the square of (GVIF)(1/(2∗D f )) is analogous to the
regular VIF. Based on the literature [164]–[166], this thesis regarded variables with
multicollinearity values greater than 5 to be potentially problematic. In such case,
the corresponding full model composition would be amended.

Stability and Variance of the Coefficients

For each set of candidate models, the regression coefficients were plotted to show
the mean, maximum, and minimum values across all N subsets. Thus, the variance
of each variable and the stability of its value sign (positive or negative) could be
observed. In the case of sign switching, the corresponding full model composition
would be amended.

Proportion of Appearances and Significance of the Coefficients

This thesis assessed the proportion of times each variable was involved across the N
candidate models. Furthermore, for candidate model sets generated through step-
wise selection, the proportions at which the coefficient estimates were statistically
significant were also investigated. Through these, the degree of importance of each
predictor could be visualised.

Goodness-of-fit and Predictive Performance

The performance of each candidate model was also monitored through:

• McFadden’s Pseudo-R2

The value ranging from 0.2 to 0.4 is generally regarded as excellent fit [167].
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• Out-of-Sample Accuracy

• Out-of-Sample AUC of ROC
In general the value of 0.7 - 0.8 indicates acceptable performance, while a
greater value would be considered excellent [168].

4.4.5 Final Models Building and Assessment

Final Variables Selection

The final models would ideally consist of predictors which were stable and exhibit
small variance. Appearance and relatively high significance of greater than 50%
were also set as a selection criteria.

Final Models Assessment

The final models were re-fitted using regular binomial logistic regression (without
penalisation) with the respective N subsets as inputs. Again, each subset was split
80:20 for training and testing respectively. The multicollinearity within the final
models along with the out-of-sample predictive performance and goodness-of-fit
across the corresponding dataset would be re-assessed as per Section 4.4.4.
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Chapter 5

Results and Discussion

This section presents and discusses the results obtained from each step of the method-
ology elaborated in Chapter 4.

5.1 Data Collection and Data Preparation

The data were collected from open-sources as previously explained. The following
charts give a brief descriptions of the trip data during the pre-outbreak and post-
outbreak period. Table 5.1 shows the total and average monthly trips while Figure
5.1 and 5.2 show the proportions of WTP trips and pooled trips.

TABLE 5.1: Ride-hailing trips within the two study periods

Period Total Ride-hailing Trips Average Trips per Month

Pre-outbreak (01/2019-12/2019) 111,850,744 9,320,895

Post-outbreak (08/2021-11/2022) 86,953,825 5,796,922

FIGURE 5.1: Pre-outbreak proportions of ride-hailing trips

A drastic drop in the proportions of trips authorised for pooling (WTP trips) among
all of the ride-hailing trips between pre-outbreak and post-outbreak periods can be
observed in these charts. Although more modest, there was also a drop in the pro-
portion of successfully pooled trips among all of the trips authorised for pooling.
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FIGURE 5.2: Post-outbreak proportions of ride-hailing trips

5.1.1 Outlier Identification and Data Filtering

Figure 5.3 and 5.4 plot the distributions of the trip attributes from a randomly sam-
pled trip dataset.

FIGURE 5.3: Boxplots of trip attributes

Based on these results, the data filtering was applied so that the trip dataset should
only include:

• datapoints which have both the pickup and dropoff census tract information

• trips whose distance lies between 0.5 - 20 miles (0.8 - 32 km)

• trips whose duration lies between 60 - 3600 seconds (1 - 60 minutes)

• trips whose fare were at most $30 and additional charges at most $10

Consequently, 67,194,023 pre-outbreak ride-hailing trips (out of which 11,211,594 are
WTP) and 39,420,596 post-outbreak trips (out of which 355,513 are WTP) remained.
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FIGURE 5.4: Density plots of trip attributes

5.2 Exploratory Analysis

This section presents the results of the exploratory analysis that was conducted on
the prepared data.

5.2.1 Descriptive Statistics of the Variables

The variable descriptions could be found in Appendix A. Meanwhile, the complete
table of the variables’ descriptive statistics could be found in Appendix B. This de-
scriptive statistic table compares the variables’ statistics between the two study pe-
riods.

5.2.2 Spatial Variations

Figure 5.5 shows the spatial distribution of the trip pickups. It can be observed
how the closer the tract to the central CBD/downtown area, the higher the pickup
frequency. This persisted even after the COVID-19 outbreak, albeit at much lower
magnitude. There is no significant difference between pickup and dropoff distri-
bution. Meanwhile, Figure 5.6 shows the distribution of some spatiodemographic
characteristics of Chicago.

From these figures, initial speculations were drawn regarding possible relationships
between WTP or pooled trip probabilities and the corresponding tracts’ character-
istics. For example, it can be observed how pickup rates are higher at areas with
higher income level, hinting on possible income’s effect on WTP or pooling odds.
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FIGURE 5.5: Average monthly pickup count of a) pre-outbreak WTP
trips, b) post-outbreak WTP trips, c) pre-outbreak pooled trips, and

d) post-outbreak pooled trips

FIGURE 5.6: Spatial variation of a) population density, b) income
level, c) public transit access, and d) crime rate in Chicago
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5.2.3 Multivariate Distributions

During this analysis, the trips beginning or ending at a Special Zone were isolated
to analyse separately. Pre-outbreak and post-outbreak data are also compared be-
low. Distributions pertaining to demand proportions and fare rate variations are
discussed below, while more of the results could be found in the Appendix C.

WTP Trip Proportion over Different Days of the Week

Figure 5.7 reiterates the mentioned finding about the big drop between the WTP
proportions before and after the outbreak. Additionally, it also shows how across
all week, there is similar proportion of WTP trips, while it is generally lower for
"Special Zone" trips. Note that ’wtp_ptg’ in the figures refers to proportion of WTP
trips while ’no_wtp_ptg’ refers to the proportion of non-WTP trips.

(A) Pre-outbreak regular trips (B) Pre-outbreak "Special Zone" trips

(C) Post-outbreak regular trips (D) Post-outbreak "Special Zone" trips

FIGURE 5.7: Variations of WTP trip proportion over different days of
the week

Pooled Trip Proportion over Different Days of the Week

Similarly, Figure 5.8 reiterates the mentioned finding about the considerable drop
of pooled trip proportion before and after the outbreak. However, it doesn’t show
a significant difference between regular trips and "Special Zone" trips. Note that
’pool_ptg’ in the figure refers to proportion of pooled trips among WTP trips while
’no_pool_ptg’ refers to the proportion of non-pooled trips among WTP trips.
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(A) Pre-outbreak regular trips (B) Pre-outbreak "Special Zone" trips

(C) Post-outbreak regular trips (D) Post-outbreak "Special Zone" trips

FIGURE 5.8: Variations of pooled trip proportion over different days
of the week

Hourly Demand over Different Days of the Week

It can be observed in all cases in Figure 5.9 and 5.10 how during the weekdays, the
demand peaks in the morning around 8AM and again in the early evening at around
5 - 6PM. Meanwhile, on the weekend, the demand peaks at midnight (12AM). The
peaks seem to be less defined for "Special Zone" trips, indicating a more evenly
distributed hourly demand for these trips. This pattern persists even in the post-
outbreak dataset.

The distributions are differentiated by trip type. ’Wtp’ refers to trips authorised for
pooling, ’no_wtp’ refers to trips not authorised for pooling, ’pool’ refers to trips suc-
cessfully pooled, while ’no_pool’ refers to unsuccessfully pooled WTP trips. Note
that the y-axis indicates the proportion out of the total trips in the corresponding
day.



5.2. Exploratory Analysis 41

(A) Pre-outbreak regular trips

(B) Pre-outbreak "Special Zone" trips

FIGURE 5.9: Variations of hourly demand of different trip types dif-
ferentiated by days of the week (pre-outbreak)
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(A) Post-outbreak regular trips

(B) Post-outbreak "Special Zone" trips

FIGURE 5.10: Variations of hourly demand of different trip types dif-
ferentiated by days of the week (post-outbreak)
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Hourly Fare Rate over Different Days of the Week

Figure 5.11 and 5.12 show an evidence of surge pricing during peak hours. Overall,
pooled trips have cheaper fare rate compared to non-pooled trips. The cheaper rate
only applies if the pooling is successful. Compared to pre-outbreak, the fare rate is
higher post-outbreak and the hourly pattern is not as predictable. There is no sig-
nificant difference between regular fare rate and the "Special Zone" fare rate which
shows that "Special Zone" taxing is only applied through additional charges.

As before, the distributions are differentiated by trip type. ’Wtp’ refers to trips au-
thorised for pooling, ’no_wtp’ refers to trips not authorised for pooling, ’pool’ refers
to trips successfully pooled, while ’no_pool’ refers to unsuccessfully pooled WTP
trips. Note that it plots the average fare per kilometer on the y-axis.

(A) Pre-outbreak regular trips

(B) Pre-outbreak "Special Zone" trips

FIGURE 5.11: Variations of hourly fare rate of different trip types dif-
ferentiated by days of the week (pre-outbreak)
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(A) Post-outbreak regular trips

(B) Post-outbreak "Special Zone" trips

FIGURE 5.12: Variations of hourly fare rate of different trip types dif-
ferentiated by days of the week (post-outbreak)

5.2.4 Correlation Analysis

The complete descriptions of variables could be found in Appendix A. Note that
some variables are only valid for post-outbreak dataset, such as the ones relating to
the pandemic and the newly instated Downtown Zone taxing.

Correlation Matrices between Continuous Variables

Figure 5.13 plots the strength of relationship between each continuous variables in
terms of Pearson’s coefficient. Red indicates negative, while blue indicates positive
correlation. For better visibility, these matrices are also presented in the Appendix
D.
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(A) Pre-outbreak Variables

(B) Post-outbreak Variables

FIGURE 5.13: Pearson’s coefficient between continuous variables
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Correlation Matrices between Continuous and Categorical Variables

Similarly, Figure 5.14 shows the correlation strengths between the continuous and
categorical variables. Attention was especially given to variables that have stronger
correlations to the dependent variables wtp and pool. For better visibility, these ma-
trices are also presented in the Appendix D.

(A) Pre-outbreak Variables

(B) Post-outbreak Variables

FIGURE 5.14: Point biserial (Pearson’s) coefficients between continu-
ous and categorical variables
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Correlation Matrices between Categorical Variables

Unlike the above matrices, Figure 5.15 plots the dependence between each categor-
ical variables based on the p-value of the Chi-square test. Dark blue indicates inde-
pendence while light blue the otherwise.

(A) Pre-outbreak Variables (B) Post-outbreak Variables

FIGURE 5.15: Dependence between categorical variables

5.3 Model Building and Assessment

5.3.1 Pre-selection of Variables

Based on the correlation matrices presented above, the candidate model variables
were pre-selected as per the method outlined in Section 4.4.3. Table 5.2 lists the re-
maining variables. Note that in both periods, the variable candidates for ’WTP’ and
’Pool’ models were identical. At this stage, it was also decided that LU_entropy_..∗

and LU_prevail_..* were better descriptors for each tract’s land use compared to the
percentages of each land use type due to the collinearity the latter imposed. Simi-
larly, the variable dow which indicated the day of the week of the trip was aggregated
to the variable weekday instead.

∗referring to both ’pu’ and ’du’
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TABLE 5.2: Pre-selected candidate variables

Period

Pre-outbreak Post-outbreak

Pre-selected Variables

add_charges LU_entropy_do tip add_charges hum_avg temp_avg

area_do LU_entropy_pu tod area_do income_pc_do tip

area_pu LU_prevail_do trip_kms area_pu income_pc_pu tod

dist_CBD_do LU_prevail_pu user_age_ptg_pu covid_case_rate LU_entropy_do total_pay

dist_CBD_pu ppt_avg veh_0_ptg_do covid_death_rate LU_entropy_pu trip_kms

fare_per_km PT_avg_do veh_0_ptg_pu covid_vac_cml LU_prevail_do veh_0_ptg_do

holiday PT_avg_pu weekday crimes_avg_do LU_prevail_pu veh_0_ptg_pu

hum_avg special_do wind_avg crimes_avg_pu ppt_avg weekday

income_pc_do special_pu worker_dens_do dist_CBD_do PT_avg_do wind_avg

income_pc_pu temp_avg worker_dens_pu dist_CBD_pu PT_avg_pu worker_dens_do

fare_per_km special_do worker_dens_pu

holiday special_pu

5.3.2 Generation of Candidate Models

This section presents the summaries of 8 sets of candidate models in total:

1. Pre-outbreak ’WTP’ models generated through Stepwise selection

2. Pre-outbreak ’WTP’ models generated through Lasso selection

3. Post-outbreak ’WTP’ models generated through Stepwise selection

4. Post-outbreak ’WTP’ models generated through Lasso selection

5. Pre-outbreak ’Pool’ models generated through Stepwise selection

6. Pre-outbreak ’Pool’ models generated through Lasso selection

7. Post-outbreak ’Pool’ models generated through Stepwise selection

8. Post-outbreak ’Pool’ models generated through Lasso selection

Each of the model sets presented below have gone through an iterative process of
assessments and amendments such that the signs of the coefficients are stable, no
multicollinearity equating to VIF > 5 is present, and have satisfactory fit and predic-
tive performance.

To reiterate, removal of variables from a Stepwise model set was credit to the pre-
selection and the Stepwise elimination procedure itself. On the other hand, while
pre-selection was not conducted on a Lasso set, removal of variables was due to
elimination by Lasso regression (forcing the coefficients to be zero) and manual re-
moval when multicollinearity were found in the resulting model candidates.

Note that for sets generated through Stepwise selection, the variable’s importance
was measured by the proportion of significance—the proportions at which the co-
efficient has high significance, moderate significance, low significance, and non-
significance/does not appear in the model at all across the whole N subsets. Mean-
while, for the reason mentioned in Section 2.3.3, for sets generated through Lasso
selection, the proportion of appearance—the proportion of times the variable is in-
volved across the whole N subsets–was assessed to measure the variable’s impor-
tance.
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Candidate ’WTP’ Models

In these models, the dependent variable is the binary variable wtp, i.e., the willing-
ness to pool. The input data corresponded to all ride-hailing trips conducted in the
respective study periods.

• Pre-outbreak Models
For the following model sets, N equals to 60 subsets. The generated model candi-
dates for pre-outbreak ’WTP’ models using Stepwise selection are summarised by
Figure 5.16 and 5.17.

FIGURE 5.16: Variance of coefficients (pre-outbreak ’WTP’ with Step-
wise)

FIGURE 5.17: Proportion of significance (pre-outbreak ’WTP’ with
Stepwise)

The generated model candidates for pre-outbreak ’WTP’ models using Lasso regres-
sion are summarised by Figure 5.18 and 5.19.

In the Stepwise model sets, the variables crimes_avg_..∗ and pop_dens_..* were al-
ready removed in the pre-selection step, while LU_entropy_pu and ppt_avg were
eliminated by the Stepwise procedure. This was justified, as these variables were

∗referring to both ’pu’ and ’do’
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FIGURE 5.18: Variance of coefficients (pre-outbreak ’WTP’ with
Lasso)

FIGURE 5.19: Proportion of appearance (pre-outbreak ’WTP’ with
Lasso)

also found to be removed (zero coefficient) or negligible in the Lasso regression re-
sult. For the most part, both the Stepwise and Lasso model sets agree with each
other. The variables trip_mins, fare, and total_pay were removed from both sets due
to multicollinearity, while LU_prevail_..∗ were removed due to sign instability.

• Post-outbreak Models

For the following two sets of models, the number N equals to 35 subsets. The gener-
ated model candidates for post-outbreak ’WTP’ models using Stepwise selection are
summarised by Figure 5.20 and 5.21.

∗referring to both ’pu’ and ’do’
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FIGURE 5.20: Variance of coefficients (post-outbreak ’WTP’ with
Stepwise)

FIGURE 5.21: Proportion of significance (post-outbreak ’WTP’ with
Stepwise)

The generated model candidates for post-outbreak ’WTP’ models using Lasso re-
gression are summarised by Figure 5.22 and 5.23.

As before, most of the variables that were eliminated in the Stepwise procedure
also ended up eliminated in the Lasso procedure due to coefficient shrinkage to
zero/negligible or removed due to multicollinearity. Exceptions were for the vari-
ables downtown_..∗ which were pre-eliminated in the Stepwise procedure, as well as
the variable holiday.

∗referring to both ’pu’ and ’du’
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FIGURE 5.22: Variance of coefficients (post-outbreak ’WTP’ with
Lasso)

FIGURE 5.23: Proportion of appearance (post-outbreak ’WTP’ with
Lasso)

Candidate ’Pool’ Models

In these models, the dependent variable is the binary variable pool, i.e., the success
of a pooling request. The input data corresponded to all ride-hailing trips that were
authorised for pooling conducted in the respective study periods.

• Pre-outbreak Models

The generated candidate model for pre-outbreak ’Pool’ models using Stepwise se-
lection are summarised by Figure 5.24 and 5.25. The number of subsets N is equal to
10 for these models.

The generated model candidates for pre-outbreak ’Pool’ models using Lasso regres-
sion are summarised by Figure 5.26 and 5.27.

In the case of pre-outbreak ’Pool’ model sets, all of the variables that are not present
in the Stepwise set as a result of pre-selection, Stepwise elimination, or removal due
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FIGURE 5.24: Variance of coefficients (pre-outbreak ’Pool’ with Step-
wise)

FIGURE 5.25: Proportion of significance (pre-outbreak ’Pool’ with
Stepwise)

to multicollinearity/instability were found to also be eliminated or had low appear-
ance in the Lasso set.

The variables pop_dens_..∗, trip_mins, fare, and total_pay were removed in both sets
due to multicollinearity. The variables LU_prevail_..* were removed from both sets
due to instability.

∗referring to both ’pu’ and ’du’
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FIGURE 5.26: Variance of coefficients (pre-outbreak ’Pool’ with Lasso)

FIGURE 5.27: Proportion of appearance (pre-outbreak ’Pool’ with
Lasso)

Post-outbreak Models

The generated model candidates for post-outbreak ’Pool’ models using Stepwise
selection are summarised by Figure 5.28 and 5.29. Note that due to mach smaller
dataset of ’WTP’ trips post-outbreak (less than one million trips), the subset size N
for the post-outbreak ’Pool’ models is equal to 1.
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FIGURE 5.28: Variance of coefficients (post-outbreak ’Pool’ with Step-
wise)

FIGURE 5.29: Proportion of significance (post-outbreak ’Pool’ with
Stepwise)

The generated model candidates for post-outbreak ’Pool’ models using Lasso regres-
sion are summarised by Figure 5.30 and 5.31.

FIGURE 5.30: Variance of coefficients (post-outbreak ’Pool’ with
Lasso)

Again, the removal of variables from one model set were mostly justified as the same
variables were also eliminated on the other set due to Stepwise or Lasso elimination.
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FIGURE 5.31: Proportion of appearance (post-outbreak ’Pool’ with
Lasso)

Except for the variables downtown_..∗ which were pre-eliminated from the Stepwise
set due to high correlation with other variables. Unfortunately, the importance of
these variables could not be assessed with the post-outbreak ’Pool’ model only hav-
ing one input data subset.

5.3.3 Final Models Building and Assessment

Based on the results of the previous section, final candidate variables were selected
for each model. The requirements include non-negligible stable coefficients and
more than 50% proportion of high significance (p-value < 0.01) or more than 50%
appearance rate. Subsequently, the following models were re-fitted to the binomial
logistic function (without penalty) using the respective dataset. Note that the per-
formance measures listed are the minimum across the whole dataset, while the VIF
values are the maximum.

Final ’WTP’ Models

• Pre-outbreak Model (Stepwise Selection)

The model formula for pre-outbreak ’WTP’ model obtained through Stepwise pro-
cedure is as follows:

wtp ∼add_charges + f are_per_km + income_pc_do + income_pc_pu + special_do+
special_pu + temp_avg + tip + tod + trip_kms + weekday + wind_avg

Figure 5.32, Figure 5.33, Table 5.3, and Table 5.4 show the assessment results of the
above logistic model across the 60 subsets of pre-outbreak ride-hailing trips.

This model suggests that:

• The odds of riders willing to pool is decreased with increasing additional charge,
fare rate, income level of pickup and dropoff tracts, temperature, tip, and trip
distance

∗referring to both ’pu’ and ’du’
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FIGURE 5.32: Variance of coefficients of the final pre-outbreak ’WTP’
model (Stepwise)

FIGURE 5.33: Proportion of significance in the final pre-outbreak
’WTP’ model (Stepwise)

TABLE 5.3: Performance and goodness-of-fit of the final pre-outbreak
’WTP’ (Stepwise) model

Model Accuracy
Pseudo-R2

AUC ROCMcFadden McFadden (Adj)

Pre-outbreak
0.92996 0.51162 0.51158 0.93306’WTP’ (Stepwise)

• The odds of riders willing to pool is increased with each increase in average
wind speed of that day

• Having the pickup or dropoff location within the Special Zones increases the
odds of WTP compared to when the pickup or dropoff location is within a
regular area

• Compared to the afternoon (1PM - 7PM), having the trip in the morning (12AM
- 5AM), before noon (6AM - 12PM), or night (8PM - 11PM) decreases the odd
of riders willing to pool

• The trip occurring on the weekday has higher odds of riders willing to pool in
comparison to the weekend
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TABLE 5.4: Multicollinearity of the variables in the final pre-outbreak
’WTP’ (Stepwise) model

VIF/Square of (GV IF)(1/(2∗D f ))

add_charges fare_per_km income_pc_pu income_pc_do special_do special_pu

1.5482 1.9827 1.1031 1.0926 1.0177 1.0182

temp_avg tip tod trip_kms weekday wind_avg

1.0488 1.0050 1.0327 1.4036 1.0572 1.0461

• The highest effect on the odds of WTP is imposed by the trip occurring in the
morning, followed by the trip occurring in the night, and the trip destination
being within the Special Zones

• All of the above effects are significant

This model also has excellent predictive performance, indicated by the high out-
of-sample prediction accuracy and AUC of ROC. The fit is also excellent with both
McFadden and Adjusted McFadden pseudo-R2 being higher than 0.2. There is also
a low level of multicollinearity among the variables.

• Pre-outbreak Model (Lasso Selection)

The following is the model formula for pre-outbreak ’WTP’ obtained through Lasso
procedure:

wtp ∼add_charges + f are_per_km + holiday + income_pc_do + income_pc_pu+
special_do + temp_avg + tip + tod + trip_kms + weekday + wind_avg

The logistic model above was assessed against the whole pre-outbreak ride-hailing
dataset (N = 60 subsets) and yielded the results shown in Figure 5.34, Figure 5.35,
Table 5.5, and Table 5.6.

FIGURE 5.34: Variance of coefficients of the final pre-outbreak ’WTP’
model (Lasso)

This model suggests that:
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FIGURE 5.35: Proportion of significance of the final pre-outbreak
’WTP’ model (Lasso)

TABLE 5.5: Performance and goodness-of-fit of the final pre-outbreak
’WTP’ (Lasso) model

Model Accuracy
Pseudo-R2

AUC ROCMcFadden McFadden (Adj)

Pre-outbrak
0.92994 0.51154 0.51150 0.93305’WTP’ (Lasso)

• The odds of riders willing to pool decreases with increasing additional charges,
fare rate, income level of the pickup or dropoff tracts, average temperature of
the day, tip, and trip distance

• The odds of riders willing to pool increases with increasing average wind
speed of the day

• In comparison to non-holiday dates, the odds of riders willing to pool de-
creases on holiday dates. This effect is more than 80% of the times statistically
significant under 5% margin of error

• The odds of riders willing to pool is higher when the destination is within the
Special Zones compared to when the destination is within a non-Special Zone

• In comparison to the afternoon, having the trip in the morning, before noon,
or night decreases the odds of riders willing to pool

• Compared to weekend, the odds of riders willing to pool is increased when
the trip is on a weekday

TABLE 5.6: Multicollinearity of the variables in the final pre-outbreak
’WTP’ (Lasso) model

VIF/Square of (GV IF)(1/(2∗D f ))

add_charges fare_per_km holiday income_pc_pu income_pc_do special_do

1.5481 1.9829 1.0298 1.0862 1.0924 1.0177

temp_avg tip tod trip_kms weekday wind_avg

1.0601 1.0050 1.0338 1.4034 1.0735 1.0461
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• The highest effect on the odds of WTP is imposed by the trip occurring in the
morning, followed by the trip occurring in the night, and the trip destination
being within the Special Zones

• Except for the effect of public holidays, all of the above effects are highly sig-
nificant

This model has excellent predictive performance and fit with the high out-of-sample
accuracy and AUC of ROC, as well as both pseudo-R2s passing 0.2. The multi-
collinearity level between the variables is also low.

• Post-outbreak Model (Stepwise Selection)

The model formula for post-outbreak ’WTP’ model obtained through Stepwise pro-
cedure is as follows:

wtp ∼add_charges + covid_death_rate + covid_vac_cml + f are_per_km+

hum_avg + temp_avg + tod + weekday + wind_avg

Figure 5.36, Figure 5.37, Table 5.7, and Table 5.8 show the assessment results of the
above logistic model.

FIGURE 5.36: Variance of coefficients of the final post-outbreak ’WTP’
model (Stepwise)

TABLE 5.7: Performance and goodness-of-fit of the final post-
outbreak ’WTP’ (Stepwise) model

Model Accuracy
Pseudo-R2

AUC ROCMcFadden McFadden (Adj)

Post-outbreak
0.99119 0.35505 0.35479 0.93554’WTP’ (Stepwise)

This model suggests that:

• The increase in additional charges, fare rate, and average wind speed of the
day decreases the odds of riders willing to pool
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FIGURE 5.37: Proportion of significance of the final post-outbreak
’WTP’ model (Stepwise)

TABLE 5.8: Multicollinearity of the variables in the final post-
outbreak ’WTP’ (Stepwise) model

VIF/Square of (GV IF)(1/(2∗D f ))

add_charges covid_death_rate covid_vac_cml fare_per_km hum_avg

1.0440 1.3056 1.8251 1.0239 1.0971

temp_avg tod weekday wind_avg

1.9294 1.0203 1.0805 1.2169

• The increase in the COVID-19 death rate or cumulative vaccination increases
the odds of WTP

• The increase in average humidity or average temperature of the day increases
the odds of WTP

• In comparison to the afternoon, trip conducted before noon increases the odds
of riders willing to pool. This effect, however, has a lower significance propor-
tion. It is significant under the threshold of p-value < 0.05 only lightly above
50% across the whole data subsets

• In comparison to the afternoon, trip conducted in the morning or night de-
creases the WTP odds, although the former has lower significance proportion

• In comparison to weekend, the trip conducted on a weekday yields higher
odds of WTP

• COVID-19 cumulative vaccination has a dominating effect compared to other
variables

• Most of the effects above are statistically highly significant

The predictive performance and fit of this model is excellent, while the multicollinear-
ity level among the variables are generally low as it stays below 5.



62 Chapter 5. Results and Discussion

• Post-outbreak Model (Lasso Selection)

The following is the model formula for post-outbreak ’WTP’ obtained through Lasso
procedure:

wtp ∼add_charges + covid_death_rate + covid_vac_cml + downtown_pu+
downtown_do + f are_per_km + holiday + hum_avg+
temp_avg + tod + weekday

The logistic model above was assessed against the whole post-outbreak ride-hailing
dataset and yielded the results shown in Figure 5.38, Figure 5.39, Table 5.9, and Table
5.10.

FIGURE 5.38: Variance of coefficients of the final post-outbreak ’WTP’
model (Lasso)

FIGURE 5.39: Proportion of significance of the final post-outbreak
’WTP’ model (Lasso)

The above results suggest that:

• The odds of WTP decreases with the increase of additional charges, fare rate,
or average wind speed
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TABLE 5.9: Performance and goodness-of-fit of the final post-
outbreak ’WTP’ (Lasso) model

Model Accuracy
Pseudo-R2

AUC ROCMcFadden McFadden (Adj)

Post-outbreak
0.99124 0.35647 0.35614 0.93585WTP (Lasso)

TABLE 5.10: Multicollinearity of the variables in the final post-
outbreak ’WTP’ (Lasso) model

VIF/Square of (GV IF)(1/(2∗D f ))

add_charges covid_death_rate covid_vac_cml downtown_do downtown_pu fare_per_km

1.0438 1.3204 1.8260 1.0348 1.0685 1.0977

holiday hum_avg temp_avg tod weekday wind_avg

1.0394 1.0975 1.9297 1.0252 1.0959 1.2189

• The odds of WTP increases with the increase in COVID-19 death rate or cumu-
lative vaccination

• The odds of riders willing to pool also increases should the average humidity
or the temperature of the day rises

• When the trip begins or ends within the Downtown Zone, the odds of WTP is
higher compared to when it begins or ends outside of Downtown Zone

• In comparison to non-holiday dates, a trip conducted during a holiday de-
creases the odds of WTP. This effect, however, has lower significance propor-
tion where it is significant under the threshold of p-value < 0.05 only slightly
more than 50% across the data subsets

• In contrast to the afternoon, a trip conducted before noon increases the odds
of WTP. However, this effect has low significance proportion

• In contrast to the afternoon, a trip conducted in the morning or night decreases
the odds of WTP

• In contrast to the weekend, the odds of riders willing to pool increases should
the trip is conducted on a weekday

• COVID-19 cumulative vaccination has a dominating effect compared to other
variables

• Most of the effects above are statistically highly significant.

As before, this model yields excellent fit and predictive performance as indicated by
pseudo-R2 higher than 0.2 and high out-of-sample prediction accuracy and AUC of
ROC. The multicollinearity between the variables is also within the threshold of VIF
< 5.



64 Chapter 5. Results and Discussion

Final ’Pool’ Models

• Pre-outbreak Models

The final variables for pre-outbreak ’Pool’ model obtained through Stepwise and
Lasso were identical. The model formula is as follows:

pool ∼add_charges + dist_CBD_do + f are_per_km + special_do + temp_avg+
tod + trip_kms + weekday + wind_avg

This logistic model was tested against the WTP trip dataset of the pre-outbreak study
period. The results are presented in Figure 5.40, Figure 5.41, Table 5.11, and Table
5.12.

FIGURE 5.40: Variance of coefficients of the final pre-outbreak ’Pool’
model

FIGURE 5.41: Proportion of significance of the final pre-outbreak
’Pool’ model

This above results suggest that:

• The odds of a pooling request successfully matched increases with each in-
crease in additional charges, trip distance, and the average wind of the day
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TABLE 5.11: Performance and goodness-of-fit of the final pre-
outbreak ’Pool’ model

Model Accuracy
Pseudo-R2

AUC ROCMcFadden McFadden (Adj)

Pre-outbrak
0.78475 0.19009 0.19006 0.79466’Pool’

TABLE 5.12: Multicollinearity of the variables in the final pre-
outbreak ’Pool’ model

VIF/Square of (GV IF)(1/(2∗D f ))

add_charges dist_CBD_do fare_per_km special_do temp_avg

1.2004 1.1507 1.5012 1.0164 1.0595

tod trip_kms weekday wind_avg

1.0327 1.4353 1.0753 1.0532

• The odds of pooling success decreases should the destination’s distance to the
CBD increases

• The odds of pooling success decreases with the rise in fare rate and average
temperature of the day

• Having the destination within the Special Zones decreases the odds of pooling
success compared to when the destination is outside the Special Zones

• Compared to the afternoon, trip with pooling request before noon, in the morn-
ing, or in the night decreases the odds of pooling/matching success

• Relative to the weekend, a pooling request on a weekday decreases the odds
of pooling success

• Among the above effects, the destination within the Special Zones has the
highest magnitude towards the odds of pooling success. It is followed by
morning time of day and before noon

• All of these effects are statistically highly significant

Although lower than other models, the pre-outbreak ’Pool’ model has a satisfactory
fit with the pseudo-R2 measures fall just under 0.2. The out-of-sample accuracy and
AUC of ROC are also acceptable as they stay above 0.7.

• Post-outbreak Model (Stepwise Selection)

Meanwhile, the final post-outbreak ’Pool’ model obtained through Stepwise selec-
tion is as follows:

pool ∼add_charges + covid_case_rate + covid_death_rate + f are_per_km+

holiday + hum_avg + special_do + special_pu + temp_avg + tod+
trip_kms + weekday

After the model above was the re-fitted with the post-outbreak WTP trip dataset, the
results in Figure 5.42, Figure 5.43, Table 5.13, and Table 5.14 were obtained.

This model suggests that:
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FIGURE 5.42: Variance of coefficients of the final post-outbreak ’Pool’
(Stepwise) model

FIGURE 5.43: Proportion of significance of the final post-outbreak
’Pool’ (Stepwise) model

• The odds of pooling success decreases with the increase of additional charges,
COVID-19 case rate, COVID-19 death rate, and fare rate

• The odds of pooling success increases with the increase of trip distance, aver-
age humidity, and average temperature of the day

• In contrast to non-holiday dates, the odds of pooling success decreases during
public holidays

• Having the pickup or dropoff locations within the Special Zones increases the
odds of pooling success compared to when the pickup or dropoff locations are
outside the Special Zones

TABLE 5.13: Performance and goodness-of-fit of the final post-
outbreak ’Pool’ (Stepwise) model

Model Accuracy
Pseudo-R2

AUC ROCMcFadden McFadden (Adj)

Post-outbrak
0.86683 0.51565 0.51550 0.93491’Pool’ (Stepwise)
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TABLE 5.14: Multicollinearity of the variables in the final post-
outbreak ’Pool’ (Stepwise) model

VIF/Square of (GV IF)(1/(2∗D f ))

add_charges covid_case_rate covid_death_rate fare_per_km holiday hum_avg

1.2698 1.7628 1.1268 1.5888 1.0428 1.0971

special_pu special_do temp_avg tod trip_kms weekday

1.0040 1.0034 1.8692 1.0388 1.6582 1.1272

• Compared to the afternoon, requesting for pooling before noon and in the
night decreases the odds of pooling success. Meanwhile, the effect that morn-
ing time of day has on the odds of pooling success is negligible and statistically
insignificant

• Compared to the weekend, requesting for pooling on a weekday increases the
odds of pooling success

• COVID-19 case rate has the highest magnitude of effect, followed by the COVID-
19 death rate

• Aside from the effect of morning time of day, the above effects are statistically
highly significant

This logistic model has an excellent fit and predictive performance. The multi-
collinearity among the predictors is also low.

• Post-outbreak Model (Lasso Selection)

The Lasso technique yielded a similar model formula shown below:

pool ∼add_charges + covid_case_rate + covid_death_rate + downtown_pu+
downtown_do + f are_per_km + holiday + hum_avg + special_do+
special_pu + temp_avg + tod + trip_kms + weekday

The re-fitting results of this logistic model are shown in Figure 5.44, Figure 5.45,
Table 5.15 and Table 5.16.

TABLE 5.15: Performance and goodness-of-fit of the final post-
outbreak ’Pool’ (Lasso) model

Model Accuracy
Pseudo-R2

AUC ROCMcFadden McFadden (Adj)

Post-outbreak
0.86934 0.52025 0.52009 0.93618’Pool’ (Lasso)

TABLE 5.16: Multicollinearity of the variables in the final post-
outbreak ’Pool’ (Lasso) model

VIF/Square of (GV IF)(1/(2∗D f ))

add_charges covid_case_rate covid_death_rate downtown_pu downtown_do fare_per_km holiday

1.2755 1.7626 1.1260 1.1227 1.0994 1.7046 1.0434

hum_avg special_pu special_do temp_avg tod trip_kms weekday

1.0974 1.0070 1.0081 1.8617 1.0491 1.6996 1.1270
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FIGURE 5.44: Variance of coefficients of the final post-outbreak ’Pool’
(Lasso) model

FIGURE 5.45: Proportion of significance of the final post-outbreak
’Pool’ (Lasso) model

The results above suggest that:

• The odds of pooling success decreases with the increase in additional charges,
COVID-19 case rate, COVID-19 death rate, and fare rate

• The odds of pooling success increases with the increase in trip distance, aver-
age humidity, and average temperature of the day

• Having the pickup or dropoff location within the Downtown Zone increases
the odds of pooling success in comparison to if the pickup or dropoff location
is outside the Downtown Zone

• Requesting for pooling during public holidays decreases the odds of pooling
success in comparison to non-holiday dates

• Having the pickup or dropoff location within the Special Zones increases the
odds of pooling success in comparison to if the pickup or dropoff location is
outside the Special Zones

• In comparison to the afternoon, requesting for pooling before noon (6AM -
12PM), in the morning (12AM - 5AM), or in the night (8PM - 11PM) decreases
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the odds of pooling success

• Compared to the weekend, requesting for pooling on a weekday increases the
odds of pooling success

• Among the above effects on pooling success, COVID-19 case rate yields the
biggest magnitude followed by when the trip destination is within the Down-
town Zone

• All of the above effects are statistically significant.

This model yields excellent fit and predictive performance, while the multicollinear-
ity between the predictors is also low.
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Chapter 6

Discussion

Following the presentation of final models in the previous chapter, this chapter dis-
cusses the main factors affecting willingness to pool and pooling success in the two
study periods, lays a comparison between non-pandemic and pandemic periods,
and reviews the variable selection techniques employed in this thesis.

6.1 Influencing Factors

6.1.1 Factors Affecting Willingness to Pool

From the final ’WTP’ models, it could be observed how some effects are repeated in
both Stepwise-selected and Lasso-selected models. These include the effects of addi-
tional charges, fare rate, weekday/weekend, and morning and before noon time of
day compared to the afternoon. Albeit at lower magnitudes, these effects also persist
in the post-outbreak models, indicating that these factors may have high relevance
to willingness to pool.

Outside of pandemic context, whether or not the the pickup or dropoff location are
within the Special Zones seems to possibly play a role in riders’ willingness to pool.
However, during a pandemic, these factors may no longer be relevant. The same
goes to income levels of the pickup and dropoff tracts, tip, and trip distance.

Moreover, in the pre-pandemic models, average temperature has negative coeffi-
cients, while average wind speed has positive coefficients. This indicates that the
odds of willingness-to-pool may increase with colder/"worse" weather in non-pandemic
context. This is intuitive as colder weather is commonly associated with disruptions
of public transportation. People are also generally less willing to spend time out-
doors during "bad" weather which may lead to raise in the demand for door-to-door
transportation such as ride-hailing. In this scenario, being open for pooling would
rise the chance of getting a ride. On the other hand, these weather-related effects are
reversed in the post-outbreak models. This is consistent with the belief during the
COVID-19 pandemic that the spread of the virus was weaker during warm weather.
Moreover, given a pandemic, the vaccination level of the population seems to possi-
bly play the biggest role in riders’ willingness to pool.
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6.1.2 Factors Affecting Pooling Success

Looking at the ’Pool’ models, the effects of fare rate and trip distance are common in
all models. This indicates that a decrease in fare rate and an increase in trip distance
may rise the odds of pooling success regardless of a pandemic. Likewise, outside of
afternoon times, the odds of pooling success may decrease. These effects persist in
both non-pandemic or pandemic context.

In contrast to the pre-outbreak model, however, the effect of additional charges flips
and gains in magnitude in the post-outbreak models, meaning that this factor may
become more influential to pooling success given a pandemic.

Similarly, the effects of weekday and average temperature also reverse. The latter is
consistent with the previous finding mentioned in Section 6.1.1 that "bad" weather
may encourage willingess-to-pool and hence subsequently increase the chance of
pooling success. The effect of wind speed, however, is present in the pre-outbreak
model but may not be relevant in the post-outbreak context, while average humidity
may only be relevant in the post-outbreak models.

Interestingly, in normal times, having the destination outside of Special Zones may
increase the odds of pooling success, while it is the otherwise in pandemic times.
Moreover, the effects of holiday and the pickup tract being a Special Zone may be
present in post-outbreak context but not in the pre-outbreak. Finally, both the post-
outbreak Stepwise-selected model and Lasso-selected model agree that the case rate
may have the most dominating influence towards pooling success given a pandemic.

6.1.3 Pandemic’s Relevance in Willingness to Pool and Pooling Success

As highlighted in the Section 6.1.1 and 6.1.1, there are discrepancies between the
found influencing factors in non-pandemic and pandemic context. This suggests
that a pandemic-like situation does alter riders behaviour towards ride-pooling and
alter the factors to pooling success. Not to mention that in both ’WTP’ and ’Pool’
model sets, pandemic-related measures may have dominating influence towards
willingness to pool or pooling success given a pandemic.

6.1.4 The Impacts of Downtown Zone Taxing in Willingness to Pool and
Pooling Success

The recently instated Downtown Zone taxing (refer to Section 3.1) was also discov-
ered through this research to potentially have impacts on willingness to pool and
pooling success. This is based on the fact that the pickup or dropoff location within
the Downtown Zone mostly have significant coefficients in the Lasso-selected post-
outbreak ’WTP’ and ’Pool’ models. The positive coefficients mean that the odds of
WTP and pooling success may increases when the trip starts or ends in the Down-
town Zone.
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6.2 Variable Selection Methodology Review

This section outlines the pros and contras of the Backward Elimination (Stepwise)
and Lasso variable selection methods and compares the experiences of utilising the
two techniques in this thesis.

Automated methods such as Stepwise selection is beneficial when one is faced with
a large number of candidate predictors. However, some of the known drawbacks of
Stepwise regression include invalid p-value as well as biased coefficient estimations,
confidence intervals, and R2 [161]. Moreover, as Stepwise does not consider all of the
possible combinations of variables, it may not pick the best one [169]. In some cases,
it may even leave out actual good predictors, leading to poor out-of-sample fit [170].
Efforts have been done in this thesis to mitigate these drawbacks of Stepwise by
conducting the selection procedure over multiple separate sample sets, having the
selected variables re-fitted with regular MLE, and validating with out-of-sample test
sets. However, Stepwise’s tendency to exacerbate collinearity problems necessitated
a manual pre-selection of variables which itself may impose subjective biases.

The Lasso technique is more robust against the variance inflating issue of multi-
collinearity. This suggests that pre-elimination of correlated variables is not neces-
sary. However, when faced with a pair of highly correlated variables, Lasso arbi-
trarily chooses to keep one and eliminate the other. This may lead to less intuitive
variables being chosen. Moreover, due to the shrinkage that Lasso introduces, the
resulting coefficients are biased towards zero and could not be inferred as the true
magnitude of the variable’s effect. Other disadvantages of Lasso include generally
unstable estimates which may lead to different sets of chosen variables given differ-
ent dataset. For the above reasons, this thesis utilised Lasso over separate training
sets and only for variable selection.

Reflecting on the experiences during this thesis, the Backward Stepwise and Lasso
eliminations generally agreed with each other on the variables to keep or eliminate
and both resulted with models with excellent fit. In terms of practicality, Lasso ex-
celled with much faster computation speed and since it did not require prior vari-
able pre-selection (which could also introduce bias). However, the true importance
of the chosen variables by Lasso is a question mark due to the reasons mentioned
above. Moreover, due to coefficient shrinkage bias by Lasso, the Stepwise procedure
could detect variables with sign instability earlier in the process, while such vari-
ables might elude the Lasso elimination process to only be detected in the re-fitting
step. This was similar to the significance level of Lasso-selected variables that—due
to Lasso’s nature—could only be checked after re-fitting with regular MLE.
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Chapter 7

Conclusion

Upon realising the benefits of ride-pooling over regular single ride-hailing, this the-
sis set out to investigate the influencing factors behind people’s willingness to pool
(WTP) and pooling request successfully matched. The ride-hailing industry in the
City of Chicago was taken as a case study, and building on past studies, a wide
range of potential factors were considered. This thesis also considered the recent
COVID-19 pandemic as an opportunity to investigate the impacts of a pandemic on
the mentioned factors. A systematic methodology was established to enable han-
dling, processing, and analysing large-sized ride-hailing trip data integrated with
various exogenous factors. Statistical modelling of willingness to pool and pooling
success at a trip level were carried out involving as much available trip data as possi-
ble to avoid information loss by sampling or aggregating. To identify the most influ-
ential factors, the modelling methodology incorporated two different variable selec-
tion methods: (Backward) Stepwise selection and penalised regression with Lasso.
The final models yielded excellent predictive performance, suggesting the ability to
explain the factors to willingness to pool and pooling success well.

To answer the research questions of this thesis, the main potential factors influenc-
ing rider’s WTP mostly consist of the attributes of the trip itself, i.e., the additional
charges, fare rate, and the temporal details of the trip (the time of day and whether
it is on a weekday or weekend). Aside from these factors, there are discrepancies
between non-pandemic and pandemic context. In the former, the amount of tip,
the trip distance, income level of the pickup and dropoff census tract, and whether
or not the trip begins or ends in a Special Zone possibly play a role in WTP. This
may not be the case in pandemic context where vaccination level of the population
potentially pose the dominating effect. Weather attributes also have potential signif-
icance in rider’s WTP, although the effects may be opposing in non-pandemic and
pandemic context. The final models suggest that other exogenous and demographic
factors such as crime rate, land use, population density, level of vehicle ownership,
and public transit access do not pose significant effects on WTP.

Similarly, the main potential factors influencing pooling success were also identi-
fied. The trip attributes which may remain influential in both pandemic and non-
pandemic scenarios are the fare rate, trip distance, and the time of day of the trip.
The factors which may be present in both scenarios but have opposing effects are
average temperature, weekday, additional charge, and the destination being within
the Special Zones. Meanwhile, case rate potentially has the greatest influence on
pooling success in a pandemic scenario. As in WTP, weather may play some role
in pooling success, but the models suggest that factors such as land use, crime rate,
and other exogenous or demographic variables do not have a part.
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This thesis also concludes that pandemic indeed potentially alters the influence of
various factors on WTP and pooling success. Meanwhile, policies such as special
taxing for downtown areas may contribute to WTP and pooling success.

Based on the above results, to encourage riders to pool and enhance pooling success,
this thesis recommends:

• TNPs as the service providers to optimise the pool matching algorithm. A
review on the literature revealed the role of matching algorithm and its param-
eters play on matching success

• TNPs to optimise the fee structure and the authorities to subsidise for ride-
pooling. This thesis found that lower price encourages WTP. On top of that,
Romeo et al. claimed that ride-pooling decision is price-sensitive [96] and a
survey revealed that one of the top reasons riders opted for not pooling was
that the price was not significantly cheaper than the single-occupant counter-
part [83]

• TNPs to ensure sufficient supply of pooling-suitable vehicles during time
windows where the odds of WTP and pooling success is higher

• TNPs to maximise cleanliness and health measures during and post-pandemic
to alleviate the concerns of virus spread during ride-pooling

• Authorities to implement taxing policies for cars entering certain zones, espe-
cially congested ones. This thesis found that having the origin or destination
within specially-taxed area (Special Zones or Downtown Zone) possibly affect
the odds of WTP and pooling success. This could also push down congestion

7.1 Limitations and Future Work

Ultimately, the methodology proposed in this thesis is advantageous for works in-
volving large-sized data. However, as previously outlined, it is not without a flaw.
Further limitations and the subsequent recommendations for future work are dis-
cussed below.

The Stepwise procedure relied on the correlation coefficients to rule out highly cor-
related variables, however this thesis missed to check the significance of each coef-
ficient. Moreover, this step is prone to error due to subjectivity. This thesis also dis-
covered that should the Spearman’s coefficients were utilised instead of Pearson’s,
the resulting pre-selected variables could vary.

The Lasso technique is less prone to the mentioned issue. However, the nature of
Lasso selection makes the true importance of the resulting variables questionable.
Moreover, both Stepwise and Lasso eliminations treat multiple levels of a categorical
variable as a separate individual predictor and not as a one related unit.

Consequently, for works involving large number of variables, this thesis recom-
mends exploring other variable selection methods such as Principal Component Lo-
gistic Regression (PCLR) or Elastic Net Regression which may perform better than
Lasso depending on the level of multicollinearity [171], [172], as well as Group Lasso
which enables grouped selection of variables [173]. Moreover, this thesis could have
also benefited from larger post-outbreak WTP trip dataset which would have en-
abled assessment of the post-outbreak ’Pool’ models over multiple sample sets.
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Finally, this thesis inherited the limitation of Chicago’s TNP trip dataset where fees
and pickup/dropoff locations are aggregated. The lack of riders’ characteristics in-
formation also meant that socioeconomic/demographic data were at neighbourhood-
level, whereas finer details (e.g., at individual level) of these data could reveal more
knowledge on the effects. Moreover, there was no data on the trip purpose and
waiting time, whereas these factors have been claimed to affect travel decisions [49],
[50], [84]. Lastly, this thesis cannot guarantee the validity of the above results in
other cities.
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Appendix B

Descriptive Statistics

TABLE B.1: Descriptive statistics of the complete variables in two
study periods

Variable
Pre-outbreak Post-outbreak

Min Mean Max Std. Dev. Min Mean Max Std. Dev.

add_charges 0.000 2.449 10.00 0.074 0.000 3.316 10.00 0.324

area_do 0.069 0.783 21.64 0.026 0.069 0.810 21.64 0.033

area_pu 0.069 0.768 21.64 0.021 0.069 0.792 21.64 0.026

covid_case_rate - - - - 5.000 29.28 257.3 36.77

covid_death_rate - - - - 0.000 0.141 1.200 0.228

covid_hospitalised_rate - - - - 0.200 1.424 9.100 1.388

covid_vac_cml - - - - 1432473 1785642 1901146 132498

crimes_avg_do 0.250 76.14 388.3 5.243 0.333 54.18 195.7 2.528

crimes_avg_pu 0.250 70.81 388.3 3.885 0.333 52.30 195.7 2.140

dist_CBD_do 0.495 4.442 26.05 0.197 0.495 4.358 26.05 0.221

dist_CBD_pu 0.495 4.505 26.05 0.189 0.495 4.481 26.05 0.218

fare 0.000 8.549 30.00 0.564 0.000 14.97 30.00 1.954

fare_per_km 0.000 2.022 31.07 0.126 0.000 3.815 31.07 0.502

hum_avg 28.90 69.92 95.40 7.522 32.00 60.88 89.70 5.814

income_pc_do 1629 77542 171616 1319 1629 79611 171616 1600

income_pc_pu 1629 77287 171616 1302 1629 78816 171616 1603

LU_B_ptg_do 0.000 0.071 0.495 0.005 0.000 0.068 0.495 0.005

LU_B_ptg_pu 0.000 0.073 0.495 0.004 0.000 0.071 0.495 0.004

LU_C_ptg_do 0.000 0.043 0.534 0.001 0.000 0.045 0.534 0.002

LU_C_ptg_pu 0.000 0.045 0.534 0.001 0.000 0.046 0.534 0.001

LU_D_ptg_do 0.000 0.180 0.698 0.011 0.000 0.185 0.698 0.010

LU_D_ptg_pu 0.000 0.172 0.698 0.010 0.000 0.177 0.698 0.009

LU_entropy_do 3.E-04 0.673 0.998 0.006 0.000 0.678 0.998 0.006

LU_entropy_pu 3.E-04 0.666 0.998 0.005 0.000 0.672 0.998 0.005

LU_M_ptg_do 0.000 0.029 0.799 0.001 0.000 0.027 0.799 0.001

LU_M_ptg_pu 0.000 0.030 0.799 0.001 0.000 0.028 0.799 0.001

LU_PD_ptg_do 0.000 0.241 1.000 0.011 0.000 0.252 1.000 0.009

LU_PD_ptg_pu 0.000 0.233 1.000 0.009 0.000 0.244 1.000 0.008

LU_PMD_ptg_do 0.000 0.031 0.707 0.001 0.000 0.032 0.707 0.001

LU_PMD_ptg_pu 0.000 0.033 0.707 0.001 0.000 0.033 0.707 0.001

LU_POS_ptg_do 0.000 0.053 0.885 0.003 0.000 0.057 0.885 0.003

LU_POS_ptg_pu 0.000 0.053 0.885 0.002 0.000 0.056 0.885 0.003

LU_R_ptg_do 0.000 0.293 0.977 0.018 0.000 0.269 0.977 0.019

LU_R_ptg_pu 0.000 0.303 0.977 0.016 0.000 0.282 0.977 0.017

LU_T_ptg_do 0.000 6E-04 0.060 0.000 0.000 0.001 0.060 3.E-05

LU_T_ptg_pu 0.000 6E-04 0.060 0.000 0.000 0.000 0.060 3.E-05
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TABLE B.2: Descriptive statistics of the complete variables in two
study periods (continued)

Variable
Pre-outbreak Post-outbreak

Min Mean Max Std. Dev. Min Mean Max Std. Dev.

pop_dens_do 140.2 10050 43029 150.3 140.2 10198 43029 202.1

pop_dens_pu 140.2 10173 43029 125.5 140.2 10294 43029 188.7

ppt_avg 0.000 2.292 58.17 2.765 0.000 2.070 71.88 2.151

PT_avg_do 0.000 5.485 41.25 0.336 0.000 5.401 41.25 0.273

PT_avg_pu 0.000 5.142 41.25 0.251 0.000 5.186 41.25 0.242

temp_avg -26.56 10.24 30.61 10.85 -14.94 13.45 33.00 10.03

tip 0.000 0.460 100.0 0.059 0.000 0.981 200.0 0.128

total_pay 0.000 11.46 130.6 0.657 0.000 19.26 217.5 2.172

trip_kms 0.966 5.729 32.19 0.120 0.966 5.519 32.19 0.133

trip_mins 1.017 14.27 60.00 0.545 1.017 13.14 60.00 0.581

veh_0_ptg_do 0.000 28.80 72.44 0.458 0.000 29.67 72.44 0.457

veh_0_ptg_pu 0.000 28.39 72.44 0.387 0.000 29.32 72.44 0.442

wind_avg 5.950 16.20 42.49 3.110 4.180 16.43 34.92 3.165

worker_dens_do 49.91 6834 31344 116.7 49.91 6978 31344 163.2

worker_dens_pu 49.91 6919 31344 104.9 49.91 7036 31344 158.3
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Appendix C

Multivariate Distributions

C.1 Average Counts of WTP Trips and Non-WTP Trips over
Different Days of the Week

(A) Pre-outbreak regular trips (B) Pre-outbreak "Special Zone" trips

(C) Post-outbreak regular trips (D) Post-outbreak "Special Zone" trips

FIGURE C.1: Variations of average trip counts of WTP and non-WTP
trips over different trip types over different days of the week
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C.2 Average Counts of Pooled Trips and Non-Pooled WTP
Trips over Different Days of the Week

(A) Pre-outbreak regular trips (B) Pre-outbreak "Special Zone" trips

(C) Post-outbreak regular trips (D) Post-outbreak "Special Zone" trips

FIGURE C.2: Variations of average trip counts of pooled and non-
pooled WTP trips over different trip types over different days of the

week
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C.3 Trip Duration over Different Days of the Week

(A) Pre-outbreak regular trips (B) Pre-outbreak "Special Zone" trips

(C) Post-outbreak regular trips (D) Post-outbreak "Special Zone" trips

FIGURE C.3: Variations of trip duration of different trip types over
different days of the week



88 Appendix C. Multivariate Distributions

C.4 Trip Distance over Different Days of the Week

(A) Pre-outbreak regular trips (B) Pre-outbreak "Special Zone" trips

(C) Post-outbreak regular trips (D) Post-outbreak "Special Zone" trips

FIGURE C.4: Variations of trip distance of different trip types over
different days of the week
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C.5 Land Use Entropy of Pickup Tract over Different Days of
the Week

(A) Pre-outbreak regular trips (B) Pre-outbreak "Special Zone" trips

(C) Post-outbreak regular trips (D) Post-outbreak "Special Zone" trips

FIGURE C.5: Variations of land use entropy at the pickup tract of
different trip types over different days of the week
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C.6 Land Use Entropy of Pickup Tract over Different Days of
the Week

(A) Pre-outbreak regular trips (B) Pre-outbreak "Special Zone" trips

(C) Post-outbreak regular trips (D) Post-outbreak "Special Zone" trips

FIGURE C.6: Variations of land use entropy at the dropoff tract of
different trip types over different days of the week
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Appendix D

Correlation Matrices

D.1 Correlation Matrices between Continuous Variables

FIGURE D.1: Pearson’s coefficient between continuous variables (pre-
outbreak)
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FIGURE D.2: Pearson’s coefficient between continuous variables
(post-outbreak)
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