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ABSTRACT
As 5G is currently being rolled out, security considerations for
this critical infrastructure are getting more into focus. Hereby, the
security investigation of the 5G core as the central element plays a
pivotal role. The structure of the core is based on a Service-Based
Architecture (SBA) consisting of Network Functions (NFs). These
NFs communicate via REST/HTTP2 interfaces, that can be secured
using Transport Layer Security (TLS) for encryption. However, this
enhanced security is not enforced by standardization, but up to
the system operator to decide. Therefore, in this work we derive
recommendations on when to use TLS. For that, we investigate
the overhead of TLS in a simulation, based on the open-source
frameworks Open5GS and UERANSIM. To measure a user-relevant
overhead, we look into 5G’s UE registration and Packet Data Unit
(PDU) session establishment procedures. By testing 14 of the most
relevant cipher suites, our results show, that TLS adds no more than
1 % of time overhead in a running system. Further, we show cipher
suites using ECDSA keys to be faster than the ones using RSA keys.
Surprisingly, TLS 1.3 shows a larger performance overhead than its
predecessor TLS 1.2. We demonstrate CPU and memory overhead
of TLS to be insignificant in the context of the 5G core.

CCS CONCEPTS
• Networks → Network measurement; Mobile and wireless secu-
rity; • Security and privacy → Security protocols; Distributed
systems security; Domain-specific security and privacy architec-
tures.
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1 INTRODUCTION
Wireless communication enables a multitude of communication in-
frastructures and business models and has become essential for our
modern society. The current version, 5G, marks the fifth generation
of mobile communication networks and is considered critical infras-
tructure next to water, heat, and electricity. Therefore, protecting
this critical infrastructure and all its parts is vital [6, 10].

Compared to its predecessor, 4G, 5G provides not only larger
bandwidths and higher connection speeds, but also introduces new
features and architectural changes. New features, like network slic-
ing and multi-access edge computing, open up new possibilities,
but at the same time also new potential security risks. The virtu-
alization, which enables network slicing, increases security and
isolation between functionalities but offers new attack vectors as
well [3]. Especially control systems of critical infrastructure can be
valuable targets, increasing the severity of small misconfigurations,
e.g., an ineffective firewall rule [21].

The largest architectural changes in 5G targeted the core, which
became a small network of core network functions itself. The 5G
Core (5GC) network is often physically secluded. However, a suc-
cessful attack on the 5GCwould have far more severe consequences,
than an attack on a base station (gNB). For example, if a single gNB
is attacked and out of service, all users in a certain, small area
suffer a service outage. Since the core network connects a large
number of gNBs, a service outage in the 5GC leads to users in a
large area, typically on a national level, experiencing disruptions in
network connectivity. In addition to such Denial-of-Service (DoS)
attacks, the core network contains a large amount of security criti-
cal and privacy-sensitive data in form of secret keys, billing data
and user identities. These need to be protected against interception
and eavesdropping.

Therefore, mechanisms affecting the 5GC security need to be
carefully investigated. The 5GC network consists of multiple Net-
work Functions (NFs), which communicate with each other via
REST/HTTP2 interfaces. NFs are exchanging messages to control
user access, user mobility, quality of service management, and slic-
ing, to name a few of the most important tasks of the 5GC [5].
According to the governing security standard by the 3rd Genera-
tion Partnership Project (3GPP) TS 33.501, these communications
should be secured by adding Transport Layer Security (TLS) as a
security layer [2].

Surprisingly, while network operators can use TLS in their 5GC
setups, they are not required to do so by standardisation. Therefore,
in this work we investigate the application of TLS and, in particular,
measure its overhead on the 5GC communication performance. The
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overhead of TLS can be use-case-specific, as previous studies have
shown for MQTT [22] and Session Initiation Protocol (SIP) [24].
Thus, measuring this overhead in a 5G-specific scenario is vital
for deciding when to use TLS and which of its options. From these
measurements, we derive recommendations for the use of TLS in
the 5GC, to provide the most security with the least performance
overhead.

In detail, the contributions of this work are:
(C1) We quantify the user-relevant overhead introduced by TLS

during User Equipment (UE) registration and a consecutive
Packet Data Unit (PDU) session establishment procedure.
This is the time an end-user has to wait before they can send
or receive data.

(C2) We quantify the memory and average CPU utilisations of
the 5GC during the same procedures.

(C3) We quantify performance differences between networks us-
ing plain-text connections and TLS versions 1.2 and 1.3.

(C4) We compare 14 cipher suites in total. Eight for TLS 1.2 and
six for 1.3, allowing an in-depth comparison between TLS
1.2 and 1.3.

(C5) We measure and analyse the expected performance overhead
of TLS between the worst case scenario of a freshly restarted
system and in a running system.

The remainder of this work is structured as follows: Section 2 gives
an overview of the 5GC while Section 3 introduces TLS. Section 4
details the experimental setup and Section 5 analyses the measure-
ment results. Finally, Section 6 discusses related work and Section
7 concludes this work.

2 OVERVIEW OF 5G SYSTEM AND CORE
A 5G network consists of three domains, the User Equipment (UE),
the Radio Access Network (RAN), and the 5G Core (5GC). The UE
is the user endpoint, e.g. a smartphone, or any device relying on
cellular connectivity. It is connected to the RAN via the gNB as
a radio base station. The RAN is connected to the 5GC, which es-
tablishes a connection to a Data Network (DN), for example, the
internet. The communication between UE, RAN and 5GC uses dif-
ferent sets of protocols to exchange information and can be divided
into three groups based on their purpose: User plane (u-plane) com-
munication for user data, control plane (c-plane) for signalling, and
management plane (m-plane) for management of components.

In this work, we focus on the c-plane, since the majority of 5GC
components communicate on the c-plane.

2.1 5G Core C-plane Architecture and Protocols
5G introduced the Service Based Architecture (SBA) for the c-plane
in the core. The SBA is based on REST/HTTP2 and allows compo-
nents to interact with each other based on standardized interfaces
and protocols well-known from internet applications. This allows
for modular and dynamic procedures, enabling better scalability
and geographic redundancies. The NFs have dedicated areas of
responsibility following the microservice architecture model. [5].

According to 3GPP TS 23.501, there are different modes of SBAs
in the core [1]. Out of these, we use direct communications with
the Network Repository Function (NRF) in this work. Therefore,
each NF has to register at a central service registry called the NRF,

which acts as a database of all running NFs. Additionally, each
time a NF initially wants to interact with another NF, the NRF has
to be queried to discover the connection details of the other NF.
Afterwards, the NFs can directly communicate with each other.
Consequently, we do not use the Service Communication Proxy
(SCP), which would act as a central communication hub between
the NFs. In that case, the NFs never directly communicate with each
other, but with the SCP instead.

2.2 5G Core Security Protocols and
Configuration

The 5GC leverages multiple protocols to ensure authentication and
authorization across NFs. This is necessary as the SBA enables
rapid provisioning and de-provisioning of individual NFs, requiring
the security protocols to adapt. Authentication is the process of
validating the identity of a NF, while authorizationmeans validating
if a given NF is allowed to execute a certain action.

To ensure authentication between two NFs, 5G relies on the TLS
protocol.

That means, without activated TLS there is no inter-NF authenti-
cation. To verify a connected peer is authentic, the NFs rely on the
proven possession of a certificate and the corresponding private
key signed by the mutually trusted Certificate Authority (CA). In
addition, 5G employs the OAuth2.0 protocols for authorization to
enable the NRF to limit the actions each NF can trigger. Since these
tokens need to be transmitted, an attacker is able to impersonate
individual NFs if they are intercepted and not protected by TLS or
other means.

TLS has seen widespread adoption for web-based services and
is therefore well understood. In practice, there are two modes.
For most web-based uses, only one party is authenticated, as the
client wants to ensure it is connected to the right server and not a
malicious party. The 5GC relies on a mode referred to as Mutual
TLS (mTLS), where both server and client NFs mutually authen-
ticate each other. The TLS identification is based on certificates,
which are digital objects containing a public key and a set of pa-
rameters. The authentication of a NF can now be done by either
checking the certificate’s hash against known values or, more com-
monly, validating against a chain of trust. For this reason, one or
more entities are accepted as trust anchors, in the context of TLS
named CAs. These can then sign certificates to indicate that anyone
trusting the CA can also trust this certificate. For security reasons,
the CAs do rarely use their primary key pair for signatures, but use
a second key, signed by their primary key pair. These certificates
based on the secondary keys are called intermediate certificates.
To verify if a communication partner is trustworthy, the chain of
certificates needs to be traced back to one of the trusted CAs.

The authorization in the 5G core is enforced by the NRF using
the OAuth 2.0 protocol. Before a NF can contact another NF, it has
to request authorization from the NRF, which provides a signed
JSON Web Token (JWT) enabling communication [2]. Since this
mechanism is not implemented in most open source 5G networks,
we are unable to quantify the impact of this on the connections,
but expect it to be minimal, as any NF should always maintain a
TLS tunnel to the NRF.
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2.3 UE Registration Procedure
To investigate the communication overhead of TLS on the UE side,
Figure 1 shows an exemplary UE registration procedure as a signal
flow diagram. The UE registration request, marked with blue-solid
lines, is the first sub-procedure that is necessary for a user to con-
nect to the network. It involves the UE, the gNB, and multiple NFs
in the 5GC. At the start, the UE establishes a radio connection with
the gNB, and a logical connection directly with the Access and
Mobility Management Function (AMF). The AMF handles user reg-
istrations, de-registrations, and user mobility, while including other
NFs when their services are needed. In the beginning, the AMF
requires the UE to send its identity. This identity sub-procedure
is marked in black in Figure 1. Afterwards, the AMF forwards the
identity to the Authentication Server Function (AUSF), which is
used for authentication and authorisation of UEs. The AUSF queries
the Unified Data Management (UDM), which manages the stored
UE data in the 5GC. The database itself is another NF called Uni-
fied Data Repository (UDR), which only communicates with the
UDM. To keep the figure simpler, the UDR is not shown. The AMF
forwards the authentication challenge from the AUSF to the UE
which replies using an answer based on the key stored on the SIM
card. The AMF then informs the AUSF of the authentication result.
The AUSF provides the keys required for security establishment
to the relevant components. Afterwards, the Authentication and
Key Agreement (AKA) procedure, shown in Figure 1 as red-dashed
lines, is concluded. Using the key material, encryption and integrity
protection is established between the UE and the AMF (logical link),
as well as between the UE and the gNB. This part of the registration
is called the Security-Mode Command (SMC) sub-procedure and
is marked as green-dashed. Afterwards, the AMF interacts with
the UDM, Policy Control Function (PCF), and Session Management
Function (SMF) to enable data routing and charging functionali-
ties. The PCF controls the policies of the network, such that each
user gets the connection parameters they subscribed to. The SMF
handles session management and configures the User Plane Func-
tion (UPF), which is responsible for handling u-plane traffic. Figure
1 displays this u-plane configuration as two orange-dashed lines.
After the UPF is configured, the AMF concludes the registration
procedure by confirming its success to UE, UDM, and PCF.

As mentioned before, each NF has to register at the NRF and
query it for discovery information of the other NFs. Therefore, after
a system reboot, a noticeable overhead is expected for the first UE
registration procedure. This is especially true, if TLS is activated
since each of these initial connections needs an additional TLS
handshake.

2.4 PDU Session Establishment Procedure
Figure 2 shows an exemplary Packet Data Unit (PDU) session es-
tablishment procedure as a signal flow diagram. After the UE is
registered at the core network, it can send a PDU session estab-
lishment request. This starts the session establishment procedure,
which includes AMF, SMF, UPF, PCF, and UDM. The initial request
is sent by the UE to the AMF, which extends it to the SMF. The SMF
retrieves relevant UE information from the UDM. After obtaining
the data, the SMF updates the AMF with a response. This PDU

gNB AMF AUSF UDM PCF SMFUE UPF

Figure 1: UE registration procedure in 5G. Blue solid: Reg-
istration request, black solid: identity subprocedure, red-
dashed: AKA subprocedure, green-dashed: SMC subpro-
cedure, orange-dashed: u-plane configuration.

gNB AMF UDM PCFSMFUE UPF DN

Figure 2: PDU session establishment procedure in
5G. Green-dotted: PDU session authentication, orange-
dashed: policy association establishment, black-solid:
PDU session establishment, blue-solid: data transfer.

session authentication and authorization is marked with green-
dotted lines in Figure 2. The orange-dashed lines mark the policy
association establishment, which involves the PCF. Then, the SMF
configures the UPF and thereby establishes a session for the UE.
Figure 2 displays the session establishment as black-solid lines.
After the session is established, the SMF informs the UE via AMF
and gNB. As soon as the PDU session is successfully established,
the UE can send and receive u-plane data from the DN, e.g. the
internet. The u-plane traffic physically passes through the gNB and
is forwarded to the DN by the UPF. Figure 2 marks this u-plane
data transfer in blue.

3 TRANSPORT SECURITY IN THE 5G CORE
In TS 33.501 the 3GPP states, that "TLS shall be used for transport
protection [between NFs] within a PLMN [Public Land Mobile Net-
work] unless network security is provided by other means". This
is detailed further: "In case interfaces are trusted (e.g. physically
protected), there is no need to use cryptographic protection" [2].
For small networks, this requirement could be satisfied by using
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(b) TLS 1.3

Figure 3: Simplified handshake procedures for both TLS ver-
sions.

dedicated hardware switches and packet filters. In larger, more dy-
namic and roaming-enabled networks, this is not easily achievable.
One solution might be the usage of a Virtual Private Network (VPN)
based on IPsec. While IPSec could in theory provide secure links
between a pair of NFs, the configuration overhead is significant.
The performance of IPsec has been shown to be comparable to
TLS [15] when using identical ciphers. In IPsec each pair of NFs
(e.g. AMF and NRF) has to be configured separately, resulting in an
exponentially increasing number of point-to-point links. This is not
the case with TLS due to the usage of certificates. In larger, carrier-
sized networks, frequently commissioned and decommissioned
components are expected, making the point-to-point configura-
tion impractical. In contrast, TLS is used throughout the web for
more than 80% of websites, which required secure certificate man-
agement protocols such as the Automatic Certificate Management
Environment (ACME). Let’s Encrypt serves as CA for a large part
of websites and managed to provide three million certificates per
day fully automatic through ACME in 2023 [11]. We therefore ex-
cluded IPSec from consideration to focus on the more suitable TLS
based solution, which therefore is expected to be more prevalent in
real-world networks.

Two main factors of TLS potentially impact the overall network
performance. At first, the used TLS version might impact perfor-
mance, as TLS 1.3 changed the overall protocol for connection
establishment. TLS 1.3 introduced many changes and remedied
some shortcomings of TLS 1.2. This includes reducing the number
of available cipher suites from over 90 in TLS 1.2 down to five in TLS
1.3 and removing all algorithms deemed unsafe. Partly, this reduc-
tion is based on a decoupling of key exchange and authentication
algorithms from the rest of the cipher suite, removing duplicates.
Furthermore, the handshake was streamlined, lowering the number
of required messages and allowing data to be transmitted before the
handshake is completed. At the same time, any data is encrypted
as soon as the symmetric key is established between server and
client , to prevent leaks from metadata such as certificates or ex-
tension values. Figures 3a and 3b show a simplified version of the
TLS handshake procedures. Additionally, TLS 1.3 implements a
downgrade protection, so that even if the handshake is intercepted
and modified, two TLS 1.3 endpoints will not fall back to earlier
TLS versions. This prevents an attacker from leveraging flaws or

Table 1: Structure of cipher suite names based on an example.

Noun Meaning 1.2 1.3
TLS Keyword ✓ ✓
ECDHE Key exchange algorithm ✓ ✗

ECDSA Authentication algorithm ✓ ✗

WITH Keyword ✓ ✗

AES 128 GCM Cipher algorithm ✓ ✓
SHA256 Message authentication algorithm ✓ ✓

weaker cipher configurations present in previous TLS versions and
ensures that such attempts can be detected. It is based on a bit-
sequence in the handshake-nonce, which itself is protected though
the key derivation. When this sequence is seen by a pair of TLS 1.3
endpoints, they will abort any attempt to establish a session with
an older version.

As a second factor, we consider the cipher suite. Table 1 explains
how the identifiers are structured between TLS 1.2 and TLS 1.3.
Generally, a TLS 1.2 cipher suite defines a number of different al-
gorithms for different use cases. They start with ’TLS’ and contain
(from left to right) the key exchange algorithm, the authentica-
tion algorithm, the keyword ’WITH’, the symmetric cipher, and
the message authentication algorithm. For TLS 1.3, the structure
is similar, but the key exchange and authentication algorithms
are omitted, as they are negotiated independently. Our selected
cipher suites all use Elliptic-curve Diffie-Hellman with Ephemeral
keys (ECDHE) as the key exchange algorithm and either Rivest-
Shamir-Adleman (RSA) or Elliptic Curve Digital Signature Algo-
rithm (ECDSA) for authentication. Additionally, we use Advanced
Encryption Standard (AES) or ChaCha20 as the cipher algorithm
and Secure Hash Algorithm (SHA) with different digest sizes for
message authentication. Cipher algorithms are symmetric encryp-
tion algorithms that are able to effectively and efficiently encrypt
large amounts of data. In contrast to asymmetric algorithms, each
party needs the same key, which is used for both encryption and
decryption. The cipher algorithms also specify the modes used for
integrity protection. In the case of ChaCha20, this is Poly1305, in
the case of AES, both the Galois/Counter Mode (GCM) and Counter
with Cipher block chaining Message authentication code (CCM)
mode are permissible. More information on these crypto primitives
can be found in RFC 8446 and the referenced standards. Both RSA
and ECDSA can be used for authentication through asymmetric
cryptography. Each party stores their public key in their respective
certificate. After the authenticity of the certificate has been proven
through the chain of trust, the authenticity of the public keys has
been proven. Everything signed with the corresponding private key
can now also be accepted as authentic. While both algorithms work
this way, one big difference is the required length of the public keys.
Since ECDSA relies on elliptic curves, a 256-bit key is considered
equally secure to a 3072-bit RSA key (German Federal Office for
Information Security (BSI) TR-02102-1). This reduces the amount
of data required to transmit the certificates by about 90%. In the
following, we differentiate between ECDSA and RSA solely based
on their encryption keys.

Other mechanisms, that could impact performance in real-world
deployments are explicitly excluded from this study.
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Especially with RSA based suites, TLS handshake messages can
become big enough to require multiple frames to transmit. This
packet fragmentation can lead to a higher latency, especially in
unstable network conditions. Since we assume the 5G core compo-
nents to run in a cloud environment or dedicated datacenter with
carefully chosen Maximum Transmission Unit (MTU) values, we
chose to exclude this mechanism, by ensuring no fragmentation
occurs in our test.

In order for a client to verify a certificate has not been invalidated
by issues, mechanisms for certificate revocation such as Certificate
Revocation List (CRL) and Online Certificate Status Protocol (OCSP)
exist. These add additional overhead and are primarily designed
for systems where the client and server are owned by different en-
tities, where simpler mechanisms such as checking the certificates
serial number cannot be implemented. We therefore decided not to
implement any revocation check in our tests.

4 EXPERIMENTAL SETUP
This section provides an overview of the used hardware and soft-
ware, as well as an explanation of the investigated set of procedures.
We chose a completely softwarised setup with the complete system
running on one Virtual Machine (VM). This setup is reasonable,
as one of the goals of introducing Network Function Virtualisa-
tion (NFV) in the core was the ability to move away from hardware
appliances towards more scalable cloud environments. While we
measure the end-to-end delay from the UE’s perspective, our focus
lies on the 5G core network. Therefore, we avoid using a dedicated
UE and a wireless channel, as this would introduce additional noise
to our intended measurements.

4.1 Testbed
In our setup, we use Open 5G System (Open5GS) 2.6.4 [17] as a core
network and UE RAN Simulator (UERANSIM) 3.2.6 [12], emulating
UE and gNB, running on a single machine in parallel. These are
both well-known open-source systems providing a base for our
testbed. To not interfere with the measurement times, the log level
in UERANSIM is set to ”error” to reduce the time for disk writes.
Additionally, the measured times are based on the high-resolution
system clock and measured in microseconds (𝜇s). This enables more
precise measurements compared to the event-based approach of
UERANSIMs timers. UERANSIM is modified to support our time
measurements. The timer starts when the UE sends the registration
request and stops once the UE receives the confirmation of the
successful PDU session establishment.

The Open5GS system was adapted as well for measurements.
Firstly, the configuration file of each NF is modified to support
TLS. To evaluate different TLS options correctly, both client and
server verify the certificates of each other. Like in UERANSIM, the
log level is set to ”error”. Secondly, the files containing the client
and server configurations were modified. For each test, the client
only offers the exact TLS version and cipher suite in the ClientHello
extensions, that is tested in the respective scenario. Additionally, we
fixed the curve for Elliptic Curve (EC) based algorithms to ”P-256”.

Open5GS leverages the widely used OpenSSL as its cryptography
library [23] and initially uses RSA keys with a length of 2048 bit.
To test the cipher suites based on ECDSA, we created ECDSA keys

with a length of 256 bit. To support certificate verification, we acted
as a CA and signed the newly created certificates as explained in
Section 2.2. We also created new RSA certificates with 2048 bit to
avoid any unintended differences, that could interfere with our
evaluation. We kept this value, since it is the most commonly used
RSA configuration for HTTPS, accounting for over 90% of surveyed
web hosts in 2021 [26].

For additional information, we also track the average CPU utilisa-
tion of the Open5GS NFs. The average CPU utilisation provides the
percentage of time the observed process was occupying the CPU
over the time the process was running. Thus, it is a time-averaged
CPU value. Due to our sampling method, the linux utility ps, this
data is tracked with 0.1 granularity [16].

Themachine used for the measurements is a VM running Ubuntu
22.04.3 LTS, with 16 CPU cores of an Intel i9-10900k running at
3.70GHz and 24GB of RAM. Modern processors, as our chosen
i9-10900k, are often equipped with hardware-based accelerators
for AES computation. The corresponding CPU instruction set for
x86-64 is called AES-NI and was first proposed in 2008. Since we
assume the core network runs on commodity server hardware, all
our tests were performed with AES-NI enabled.

4.2 Scenario
The UE registration and PDU session establishment procedures
as described in Sections 2.3 and 2.4 were chosen as a scenario, to
measure the overhead of TLS for users to evaluate the performance
impact of the security protocol. We chose only these procedures,
since they appear the most frequent in a 5G system. We measure
the time between the registration request of the UE and the finished
establishment of the PDU-session. After this point, the user is able
to send and receive data traffic. Therefore, this is the time a user
has to wait after switching on their UE until they are connected to
the internet, or generally a DN.

We distinguish between a freshly started system as a worst-case
scenario, called cold start, and a warm start scenario representing a
running system. In each scenario, one UE is connecting to the core
network. To have a clear separation between cold and warm start,
we define two UEs, one exclusively for each scenario. In addition
to the time, we measure the average CPU utilisation for cold and
warm start. This allows us to investigate the influence of different
TLS options on the core network itself. In detail, we collect the
CPU utilisation for the cold start after the cold start UE is started
and therefore include the complete process of the 5GC starting up.
The warm start measurement is done after the warm start UE has
been started. The CPU utilisation is an averaged value over the
processes’ lifetime, resulting in the warm start overhead always
including the already measured cold start values. Therefore, we
are restricted to a qualitative analysis, which nonetheless provides
interesting trends.

4.3 Methodology
Both the 3GPP as well as national standardization bodies such as the
United States National Institute of Standards and Technology (NIST)
or the BSI publish guidelines on configurations for both TLS 1.2
and TLS 1.3. These guidelines can be seen as industry best prac-
tices and can even be legally required for larger telecommunication
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companies, that are considered critical infrastructure in their ju-
risdiction. They also mitigate possible security flaws in TLS 1.2 by
restricting weak configurations. We therefore base our selection of
cryptography algorithms on these guidelines.

The tested cipher suites and key exchange algorithms were se-
lected as follows:

(1) All standardized ciphers were selected
(2) Algorithms not adhering to 3GPP TS 33.310 Annex E were

excluded
(3) Algorithms not adhering to NIST Special Publication 800-52

(US national authority) were removed
(4) Algorithms not adhering to BSI TR-02102-2 (German na-

tional authority) were eliminated
(5) Recommendations of the three standardization entities filter

the remaining algorithms.
Each cipher suite is tested in 1250 consecutive test runs with

one cold and one warm start each. For the cold start, Open5GS
and UERANSIM both are completely restarted. Only the MongoDB,
which is the base for the UDR to run, is not reset and always con-
tains 200 entries of UEs. Each iteration measures one cold start,
followed by one measurement of a warm start in the already primed
network. Afterwards, for the following measurement pair, the sys-
tem is reset. After 1250 runs, when the cipher suite and/or the TLS
version changes, Open5GS is also rebuilt to account for the change.
Each of these test runs results in a time measurement in 𝜇s, as
well as an average CPU utilisation in % of one core. These values
provide sufficient information about the TLS performance, because
the different test cases can be compared to baseline measurements
without enabled TLS and with each other.

In detail, we measure the time overhead as a percentage by
dividing a result by the baseline measurement result without TLS.
So, for example the overhead of TLS 1.2 in a cold start scenario is
calculated as shown in Equation (1).

𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑 =
𝑇𝐿𝑆1.2𝑐𝑜𝑙𝑑
𝑛𝑜𝑇𝐿𝑆𝑐𝑜𝑙𝑑

− 1 =
𝑇𝐿𝑆1.2𝑐𝑜𝑙𝑑 − 𝑛𝑜𝑇𝐿𝑆𝑐𝑜𝑙𝑑

𝑛𝑜𝑇𝐿𝑆𝑐𝑜𝑙𝑑
(1)

To measure the memory overhead of TLS in the 5GC, we in-
vestigate the number of TLS handshakes in our use-case. We only
consider the handshakes needed for our two investigated proce-
dures. Each of the following NFs has to register at the NRF and can
use TLS: AMF, AUSF, PCF, UDM, UDR, SMF. The AMF needs to
discover the AUSF, the UDM, the PCF, and the SMF and establish
a connection after a TLS handshake. The AUSF also handshakes
with the UDM, which has to handshake with the UDR once. For
the PDU session establishment, one additional handshake between
SMF and UDM is needed. In total, this equals 13 TLS handshakes
which are needed for a freshly booted system.

5 EVALUATION
Table 2 shows the 15 different test cases (including the baseline),
for which the 1250 cold and warm starts were performed each. The
test with deactivated TLS acts as a baseline. Overall, there are 8
test cases with TLS 1.2, 6 with TLS 1.3., out of which 8 are with
ECDSA, and 6 with RSA. All calculations are based on the mean
values, which are marked as white circles in the respective violin
plots. The black line marks the median, which acts as additional

information about the distribution shown in the figures. All plots
display data between the percentiles 2 and 98.

Table 2: Overview of performed test cases.

TLS Cipher Suite Key
None None None
1.2 TLS_ECDHE_ECDSA_WITH_AES_128_CCM ECDSA
1.2 TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 ECDSA
1.2 TLS_ECDHE_ECDSA_WITH_AES_256_CCM ECDSA
1.2 TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 ECDSA
1.2 TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256 ECDSA
1.2 TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 RSA
1.2 TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 RSA
1.2 TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256 RSA
1.3 TLS_AES_128_GCM_SHA256 RSA
1.3 TLS_AES_256_GCM_SHA384 RSA
1.3 TLS_CHACHA20_POLY1305_SHA256 RSA
1.3 TLS_AES_128_GCM_SHA256 ECDSA
1.3 TLS_AES_256_GCM_SHA384 ECDSA
1.3 TLS_CHACHA20_POLY1305_SHA256 ECDSA

5.1 TLS Versions
Figure 4 shows the performance difference between the different
TLS versions (TLS 1.2 and TLS 1.3) and deactivated TLS (No TLS)
for the UE registration procedure. Since AES-CCM was only tested
within TLS 1.2 and ECDSA, it is not considered in this plot, as it
would skew the results. As expected, TLS adds an overhead. This
is especially noticeable for the cold start, while the performance
overhead in a warm start scenario is significantly smaller. Compar-
ing TLS in the cold start scenario, TLS 1.2 adds a mean overhead of
29.06 %, while the overhead of TLS 1.3 is slightly higher at 33.58 %.
For the warm start, TLS 1.2 is 0.64 % slower than No TLS, while
TLS 1.3 is again a bit worse with an overhead of 0.83 %.

Looking at the case without TLS in detail, the cold start adds
2.77 % of time over the warm start. This is because each NF has to
register at the NRF and query the connection details of its peers.
Therefore, starting the system and initializing the connections be-
tween the NFs adds an overhead, even without TLS. The larger
overhead of TLS versions 1.2 and 1.3 for the cold start is caused by
the TLS handshake in the communication initialization between
the NFs in the 5GC. The added overhead by using TLS and its se-
curity features was expected. What is surprising, however, is the
fact that TLS 1.2 adds less overhead than the newer version TLS
1.3, which is expected to be more efficient. This likely stems from
the fact, that in TLS 1.3 the certificates are encrypted. Contrary
to that, the fact, that TLS 1.3 allows application data to be sent
earlier should improve the overhead. Since TLS 1.2 is still faster, we
conclude, that this performance improvement has less impact than
the additional performance overhead added by the certificate and
header encryption in TLS 1.3.

5.2 Authentication algorithms and keys
Figure 5 displays the difference between using the encryption keys
of the authentication algorithms ECDSA and RSA. The case without
TLS does not have an encryption key and serves as a baseline
comparison. Again, AES-CCM is not considered in this plot, as it
would skew the results. The violins labeled ECDSA and RSA consist
of both TLS versions 1.2 and 1.3. Compared to No TLS, TLS with
RSA adds 34.63 % performance overhead on a cold start and 0.78 %
on a warm start. ECDSA increases the time needed for registration
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Figure 4: UE registration time for different TLS versions.
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Figure 5: UE registration time for different authentication
algorithms.

and session establishment on a cold start by 28.01 % and by 0.70 %
on a warm start. In other words, ECDSA outperforms RSA in both
start scenarios.

Since RSA uses a 2048 bit key, and the used ECDSA key is only
256 bit long, the increased performance overhead is expected. As
mentioned in Section 3, the provided security by a 256 bit ECDSA
key is roughly equal to a 3072 bit RSA key. Figure 5 shows, that
ECDSA already outperforms RSA with a key-lenght of 2048 bit.
Increasing the RSA key length, to achieve the same security, would
further increase the performance overhead. In conclusion, ECDSA
provides both a better performance and higher security.
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Figure 6: Comparison of the cipher suites for UE registra-
tion time in a cold start scenario.

5.3 Cold Start Scenario
The following discusses the cold start scenario in more detail. Figure
6 displays all cipher suites, that were tested for TLS 1.2 and TLS
1.3 for the cold start scenario, sorted by performance overhead. To
provide a clearer overview, Figure 6 does not provide the complete
name of the shown cipher suites, but only the information necessary
to differentiate them, therefore omitting the terms TLS, ECDHE
and SHA. These are either redundant or clearly linked to a specific
cipher suite in terms of our selected cipher suites shown in Table 2.

Figure 6 shows one clear distinction between the cipher suites us-
ing ECDSA and RSA keys. This was anticipated due to the findings
of Section 5.2. However, Figure 6 shows, that the used authentica-
tion algorithm with its key has the most performance impact in the
cold start scenario. Within ECDSA, there is also a trend from cipher
suites using TLS 1.2 to ones using TLS 1.3, performing noticeably
worse. Again, this is an expected trend, as shown in Section 5.1. For
RSA, also a clear difference between TLS 1.2 and 1.3 cipher suites
can be seen.

Regarding the cipher algorithms ChaCha-Poly, AES-CCM, and
AES-GCM, Figure 6 shows some trends. While the main differen-
tiating factors between the cipher suites are the used TLS version
and authentication key, within each of these groups, AES-GCM is
the best-performing cipher algorithm. The most notable difference
exists within TLS 1.2 and ECDSA, where AES-GCM is followed
by ChaCha-Poly, while AES-CCM performs the worst. The larger
performance difference between the two AES variants can be ex-
plained by AES-CCM relying on an additional AES execution for
the integrity code, compared to AES-GCM using the GHASH proce-
dure. [27] ChaCha-Poly performs worse than AES-GCM, because of
the used AES-accelerator. Overall, the mean performance overhead
of AES-GCM is, with one exception, always smaller than that of
ChaCha-Poly.
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Figure 7: Comparison of the cipher suites for UE registra-
tion time in a warm start scenario.

To investigate statistical significance, we performed t-tests with
100.000 permutations and a significance level of 𝑝 = 0.0001. These
show both the difference between TLS 1.2 and 1.3, as well as the
difference between ECDSA and RSA to be significant. Therefore, we
strongly recommend ECDSA since it provides the best performance
in the cold start scenario. Performance-wise, TLS 1.2 is preferred
over version 1.3. The overall differences between the cipher algo-
rithms however are not significant. Even so, when looking only
at TLS 1.2 and ECDSA, AES-GCM performs significantly better
than ChaCha-Poly and both are significant compared to AES-CCM.
Although not being overall significantly better, we recommend
AES-GCM as it is the fastest option. Additionally, the second best
option, ChaCha-Poly, is not yet recognised by many standardisation
organisations, making AES-GCM the more compatible option. In
conclusion, our recommendations lead to the TLS 1.2 cipher suite
TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256.

5.4 Warm Start Scenario
As discussed before, we assume a running system for a large ma-
jority of time. Therefore, Figure 7 displays all cipher suites again,
but this time for the warm start scenario. As in Figure 6, the cipher
names are reduced to the information needed to differentiate them.
However, the ciphers are not sorted by performance, but in the
same manner as in Figure 6. Compared to Figure 6, Figure 7 shows
less variance between the violins. Interestingly, the t-tests still show
the differences between the TLS versions and between ECDSA and
RSA to be significant. Even if they only appear as marginal differ-
ences in the plot, considering many users registering to a running
system, a small difference can lead to a larger performance impact.
Before a final recommendation, Sections 5.5 and 5.6 investigate the
options CPU and memory utilisations.
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Figure 8: Average CPU utilisation for different TLS ver-
sions and keys. The bars for TLS 1.2 and 1.3 contain all
ECDSA and RSA data and vice versa.

5.5 Average CPU Utilisation
To investigate the impact of the two TLS versions on the 5G Core,
Figure 8 shows the average CPU utilisation as defined in Sections
4.1 and 4.2. In Figures 8 and 9, the bars display the mean values and
the vertical black line represents the spread between the 2nd and
98th percentile of the data.

In the bar plot, we observe a similar trend as for the previously
discussed time values: The highest difference lies between cold and
warm start, while ECDSA demands less CPU power than RSA. The
CPU load for a cold start is much higher, because of the connection
initialisations and TLS handshakes. TLS 1.2 needs 0.69 % more CPU
resources than no TLS, which is topped by TLS 1.3 needing 0.85 %
more in a cold start scenario. Similarly, ECDSA outperforms RSA
with an overhead of 0.68 % in a cold start scenario, while for RSA,
the overhead is 0.86 %. The additional load on the system is highest
in the cold start during the TLS handshakes, while the encryption
only leads to a much smaller overhead in a running system. In the
warm start, the CPU utilisation ranges around 0.1 %, which is our
measured granularity. This limits our observations to the fact, that
TLS adds less than 0.1 % of CPU overhead.

Regarding significance, both the difference between RSA and
ECDSA and the two TLS versions are significant in the cold start
case. The cipher algorithms are not shown in Figure 8, as their
difference is insignificant. Since time and CPU utilisation show the
same trends, we can conclude, that the increase in UE registration
and PDU session establishment times depend directly on the load
of the NFs in the 5GC.

To investigate, how the CPU utilisation overhead scales for a
varying number of UEs in a running system, we performed an
additional scaling test. Due to our 0.1 % measurement granular-
ity, we used a system with a less powerful CPU for a more de-
tailed investigation. However, it is still a qualitative analysis only
differentiating between no TLS and one cipher suite, that being
TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256. Figure 9
shows the warm start CPU utilisation for 0, 1, 5, 10 and 100 UEs
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Figure 9: Average warm start CPU utilisation for an in-
creasing number of UEs. The plot displays No TLS and
TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256.

that are started simultaneously. Looking at the case without any
UE, we can derive the pure system overhead of TLS. In our test, this
was 0.343 % of one CPU core, which is almost negligible, especially
regarding much more powerful CPUs in real-world deployments.
The average CPU utilisation related to one UE ranges between
0.018 and 0.032 % for a system without TLS and between 0.028 and
0.053 % for our chosen TLS cipher suite. This leads to a difference of
0.005 to 0.035 % per UE for TLS over no TLS. Our data even shows
a trend, that this overhead shrinks for larger numbers of UEs. This
is observed on a less powerful common-use CPU, and we consider
a network operator to have much more powerful hardware in their
5G core. Additionally, in our setup, the whole core runs on one
system. Considering one server per NF, the overhead per server
reduces even more. Therefore, we can conclude, that the running
5GC system can handle a similar amount of users with activated
TLS encryption compared to no encryption at all.

5.6 Network and Memory Analysis
To further analyse the overhead of TLS, we differentiate between
network overhead and memory overhead. The network overhead
consists both of additional packets in a TLS handshake and a per-
packet overhead in the running system. The memory overhead
relates to the certificates of every two connection parties to be
stored in both NFs.

For TLS 1.2, the handshake adds four messages to a typical con-
nection establishment, while TLS 1.3 adds only three. According
to [18], a TLS handshake typically adds 4-7 kB of overhead to the
system. Investigating the network traffic in our setup, we can sup-
port this result. In detail, we measured handshake overheads of
3666 to 5725 Byte. RSA-based cipher suites need 1955 Byte more
for a handshake than ECDSA. This difference stems from the size
of the used keys and the fact, that with certificate chains, multiple
keys must be transmitted. TLS 1.3 needs one message less than
version 1.2, but needs 104 Byte more nonetheless. However, due

to the fact, that TLS 1.3 encrypts the data sooner, that can be ex-
plained, since a 16 Byte Message Authentication Code (MAC) is
added to each message. Therefore, the handshake for TLS 1.3 is
more memory-expensive than for version 1.2, which is caused by
its added security.

In a running system, the overhead of TLS consists of the TLS
record protocol header and the addedMAC. Another potential cause
for an overhead, the padding induced by the cipher algorithms
block size, can be excluded here, since our chosen cipher suites
are all operated in stream modes. The TLS record protocol layer
header consists of 5 unencrypted and 4 encrypted Byte, totaling in
9 Byte. The MAC adds 16 Byte on top, resulting in an overall TLS
overhead of 25 Byte per packet. [18] In our own measurements,
we saw an overhead between 22 Byte for TLS 1.3 and 29 Byte for
TLS 1.2. The remaining packet headers always add an overhead
of 66 Byte, divided into the Ethernet header with 14 Byte, IP with
20 Byte, and TCP with 32 Byte. So, in comparison, TLS adds less
overhead than the remaining protocols of the IP-stack.

Regarding memory consumption, according to [4, 18, 28], the
amount of needed memory per connection ranges between 10 and
840 kB. Therefore, depending on the used TLS library and configura-
tion, the overhead is always below 1MB and for optimised libraries
even less than 100 kB. For the 13 TLS handshakes in our scenario,
we have 26 communication partners. Thus, the overall TLS memory
consumption remains below 26MB in all cases, which is almost
negligible for modern hardware.

5.7 Summary of Performance Overhead
Table 3 shows the performance overhead of all measured factors for
both cold and warm start, except for AES-CCM, due to its strong
bias regarding TLS 1.2 and ECDSA. The system running without
TLS acts as a baseline for all given percentages for cold and warm
start respectively. For the cold start scenario, the time overheads
range between 28.01 and 34.63 %. The largest impact on perfor-
mance comes from the used authentication mechanism, where
ECDSA outperforms RSA and even increases security, as discussed
in Section 5.2. Choosing the cipher algorithm has the lowest impact
and thus the least significance.

In the warm start scenario, the time overhead ranges between
0.64 and 0.83 %. Compared to the cold start, both the absolute values
and the range of the overhead are much smaller. The largest dif-
ference of 0.19 % is between the TLS versions, followed by ECDSA
and RSA.

Regarding CPU utilisation, the TLS versions, keys and cipher
algorithms show the same trends as in the time values. Table 3
displays the absolute overhead of the different TLS options ranging
between 0.68 and 0.86 % in a cold start. The warm start measure-
ments did not show a noticeable overhead due to our measurement
method. A scaling test with multiple warm start UEs revealed a
low influence of TLS on a per-UE basis. Additionally, the non-UE-
related system overhead of TLS was 0.343% on our common-use
CPU. Considering a more powerful real-world deployment, this
overhead is negligible.

The necessary TLS handshakes need 3666 to 5725 Byte to be
transmitted. As discussed before, ECDSA outperforms RSA clearly,
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Table 3: Summary of performance overhead grouped by dif-
ferent factors. The top values are marked green and the bot-
tom red.

Choice Relative Time Absolute CPU
Cold Warm Cold Warm

None - - - -
TLS 1.2 29.06% 0.64% 0.69% < 0.1 %
TLS 1.3 33.58% 0.83% 0.85% < 0.1 %
ECDSA 28.01% 0.70% 0.68% < 0.1 %
RSA 34.63% 0.78% 0.86% < 0.1 %
AES-GCM 31.27% 0.74% 0.76% < 0.1 %
ChaCha-Poly 31.41% 0.75% 0.77% < 0.1 %

while TLS 1.2 needs fewer Byte than version 1.3. In a running sys-
tem, that changes with TLS 1.3 adding 22 and TLS 1.2 adding 29 Byte
per packet consisting of the header and MAC. Regarding storage,
we derived a worst-case maximum of 26MB for our complete 5GC
setup. On commodity hardware this adds some overhead, but on a
dedicated core network server architecture, these factors become
insignificant.

As the TLS tunnels between the 5GC NFs are persistently re-
tained, the impact of TLS on a running 5G system is less than on a
system, that re-configures connections more often. While theoret-
ically, each NF could close the tunnel after a period of inactivity,
this functionality is not part of OpenSSL and would have to be
implemented manually. In cases where this is used and cannot be
disabled, the TLS heartbeat extensions could be used, although they
are explicitly not recommended by some standardization bodies
and have been vulnerable for exploits previously [9].

In summary, we recommend using TLS 1.3 over 1.2, since it adds
more security and only performs slightly worse regarding time and
CPU utilisation. ECDSA is recommended over RSA since it per-
forms considerably better in all three categories and provides better
security. We recommend the cipher algorithm AES-GCM, which
performs better than ChaCha-Poly and AES-CCM. In a single ci-
pher suite, this leads to a recommendation of TLS_AES_256_GCM_
SHA384 using an ECDSA key. AES-256 provides doubled key size
for symmetric encryption while adding only insignificant perfor-
mance overhead compared to its AES-128 version.

6 RELATEDWORK
Kotuliak et al. [15] compared the performance of IPsec and a TLS
based VPN solution in the context of interconnected IP Multimedia
Subsystems (IMSs). While they found a small performance advan-
tage from using IPsec, this result might not hold up when using
modern hardware or TLS directly without OpenVPN.

Like this, many other domain-specific performance evaluations
for TLS have been done. This includes cloud environments [20],
general purpose web servers [7], MQTT message brokers [22],
SIP [24], and more. The outcome of these studies varies to a high
degree by use case. It can show significant performance reduction
in the case of SIP or almost no performance degradation in the case
of MQTT, highlighting that there is no one-size-fits-all security
solution.

In [14], Heijligenberg et al. investigate the impact of u-plane
integrity protection in 5G. They conclude that, while there is a
measurable impact on the latency, it should not impact the user
experience outside of latency sensitive cases.

The study most similar to ours has been done by Vasoukolaei et
al. [25], focusing specifically on the registration message between
a NF and the NRF. They identified different metrics by capturing
the traffic and extracting the required information from the dump.
The procedure they chose is only used when a NF is first started
or after a configuration change. The metric we are interested in is
the user-visible end-to-end registration time from starting the UE
until packets can be sent to the selected data network. Our cold
start times therefore include the time required for NF registration,
but also the times of other handshakes between the different com-
ponents. The registration procedure is invoked quite regularly, e.g.
after the airplane mode was used, the connection was lost, or the
periodic registration timer has run out. The end-to-end measure-
ments approach also allows us to test more ciphers with larger
sample sizes.

7 CONCLUSION
In this work, we investigated the impact of TLS on the UE reg-
istration and PDU session establishment procedures in 5G. We
differentiated between no TLS and TLS in versions 1.2 and 1.3. Ad-
ditionally, we looked at the differences between a total of 14 cipher
suites, that we selected carefully from recommendations of stan-
dardization entities like 3GPP, NIST, and BSI. To make statements
about a worst-case overhead of TLS in case of a newly restarted
system and the expected overhead of TLS in a running system, we
performed cold and warm start tests. We found, that TLS adds a
considerable overhead to the UE registration and session establish-
ment time of 28.01-34.63 % in a cold start scenario. However, this
worst-case overhead is expected to rarely happen in a real-world
deployment. In a warm start scenario, the same time overhead of
TLS ranges between 0.64 and 0.83 %. Therefore, the expected time
overhead of TLS for a user’s registration and PDU session estab-
lishment procedures is lower than 1 %. So, even if using TLS in the
5GC is not mandatory, we recommend using it for the additional
security.

We found the CPU overhead, especially in a running system, to
be small and thus insignificant in a large-scale 5G core deployment.
With scaling tests, we showed the CPU overhead per UE to decline
for larger packet counts. While the needed TLS handshakes add
some overhead, they are just executed once at the start of the
system. Similarly, we showed that the TLS memory overhead can be
considered negligible, especially for larger deployments. Therefore,
we consider the overhead of TLS on CPU, memory and network in
a running system as insignificant.

In our work, we found cipher suites using an ECDSA key to
be faster than ones using RSA with similar security properties.
Although TLS 1.2 performs slightly better, we recommend TLS 1.3,
since it adds downgrade protection and additionally encrypts more
data.

In future work, we want to consider the impact of other secu-
rity technologies, such as VPNs based on IPsec or WireGuard and
conduct measurements in real-world mobile networks.
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Table 5: Summary of exclusions (✗) and recommendations
(✓) for TLS 1.2 cipher suites by 3GPP, NIST and BSI.

Exclusion / Recommendation
Cipher Suite 3GPP NIST BSI Result
TLS_DH_anon_WITH_3DES_EDE_CBC_SHA ✗ ✗ ✗ ✗
TLS_DH_anon_WITH_AES_128_CBC_SHA ✗ ✗ ✗ ✗
TLS_DH_anon_WITH_AES_128_CBC_SHA256 ✗ ✗ ✗ ✗
TLS_DH_anon_WITH_AES_128_GCM_SHA256 ✗ ✗ ✗ ✗
TLS_DH_anon_WITH_AES_256_CBC_SHA ✗ ✗ ✗ ✗
TLS_DH_anon_WITH_AES_256_CBC_SHA256 ✗ ✗ ✗ ✗
TLS_DH_anon_WITH_AES_256_GCM_SHA384 ✗ ✗ ✗ ✗
TLS_DH_anon_WITH_RC4_128_MD5 ✗ ✗ ✗ ✗
TLS_DH_DSS_WITH_3DES_EDE_CBC_SHA ✗ ✗ ✗
TLS_DH_DSS_WITH_AES_128_CBC_SHA ✗ ✗
TLS_DH_DSS_WITH_AES_128_CBC_SHA256 ✗
TLS_DH_DSS_WITH_AES_128_GCM_SHA256 ✗
TLS_DH_DSS_WITH_AES_256_CBC_SHA ✗ ✗
TLS_DH_DSS_WITH_AES_256_CBC_SHA256 ✗
TLS_DH_DSS_WITH_AES_256_GCM_SHA384 ✗
TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA ✗ ✗ ✗
TLS_DHE_DSS_WITH_AES_128_CBC_SHA ✗ ✗

TLS_DHE_DSS_WITH_AES_128_CBC_SHA256 ✓1 ✗

TLS_DHE_DSS_WITH_AES_128_GCM_SHA256 ✓ ✓ ✓ ✗2
TLS_DHE_DSS_WITH_AES_256_CBC_SHA ✗ ✗

TLS_DHE_DSS_WITH_AES_256_CBC_SHA256 ✓1 ✗

TLS_DHE_DSS_WITH_AES_256_GCM_SHA384 ✓ ✓ ✓ ✗2
TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA ✗ ✗ ✗
TLS_DHE_RSA_WITH_AES_128_CBC_SHA ✗ ✗

TLS_DHE_RSA_WITH_AES_128_CBC_SHA256 ✓1 ✗

TLS_DHE_RSA_WITH_AES_128_CCM ✓ ✓ ✓ ✗2
TLS_DHE_RSA_WITH_AES_128_CCM_8 ✓ ✗ ✗

TLS_DHE_RSA_WITH_AES_128_GCM_SHA256 ✓ ✓ ✓ ✗2
TLS_DHE_RSA_WITH_AES_256_CBC_SHA ✗ ✗

TLS_DHE_RSA_WITH_AES_256_CBC_SHA256 ✓1 ✗

TLS_DHE_RSA_WITH_AES_256_CCM ✓ ✓ ✓ ✗2
TLS_DHE_RSA_WITH_AES_256_CCM_8 ✓ ✗ ✗

TLS_DHE_RSA_WITH_AES_256_GCM_SHA384 ✓ ✓ ✓ ✗2
TLS_DHE_RSA_WITH_CHACHA20_POLY1305_SHA256 ✓ ✗ ✗ ✗
TLS_DH_RSA_WITH_3DES_EDE_CBC_SHA ✗ ✗ ✗
TLS_DH_RSA_WITH_AES_128_CBC_SHA ✗ ✗
TLS_DH_RSA_WITH_AES_128_CBC_SHA256 ✗
TLS_DH_RSA_WITH_AES_128_GCM_SHA256 ✗
TLS_DH_RSA_WITH_AES_256_CBC_SHA ✗ ✗
TLS_DH_RSA_WITH_AES_256_CBC_SHA256 ✗
TLS_DH_RSA_WITH_AES_256_GCM_SHA384 ✗
TLS_ECDH_anon_WITH_3DES_EDE_CBC_SHA ✗ ✗ ✗ ✗
TLS_ECDH_anon_WITH_AES_128_CBC_SHA ✗ ✗ ✗ ✗
TLS_ECDH_anon_WITH_AES_256_CBC_SHA ✗ ✗ ✗ ✗
TLS_ECDH_anon_WITH_NULL_SHA ✗ ✗ ✗ ✗
TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256 ✗
TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256 ✗
TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384 ✗
TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384 ✗
TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA ✗ ✗ ✗
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA ✗ ✗ ✗

TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 ✓1 ✗
TLS_ECDHE_ECDSA_WITH_AES_128_CCM ✓ ✓ ✓ ✓
TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8 ✓ ✗ ✗
TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 ✓ ✓ ✓ ✓
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA ✗ ✗

TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384 ✓1 ✗
TLS_ECDHE_ECDSA_WITH_AES_256_CCM ✓ ✓ ✓ ✓
TLS_ECDHE_ECDSA_WITH_AES_256_CCM_8 ✓ ✗ ✗
TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 ✓ ✓ ✓ ✓

TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256 ✓ ✗ ✗ ✓3
TLS_ECDHE_ECDSA_WITH_NULL_SHA ✗ ✗ ✗
TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA ✗ ✗ ✗
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA ✗ ✗

TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256 ✓1 ✗
TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 ✓ ✓ ✓ ✓
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA ✗ ✗

TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384 ✓1 ✗
TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 ✓ ✓ ✓ ✓

TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256 ✓ ✗ ✗ ✓3
TLS_ECDHE_RSA_WITH_NULL_SHA ✗ ✗ ✗

TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256 ✓1 ✗
TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256 ✗

TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384 ✓1 ✗
TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384 ✗
TLS_NULL_WITH_NULL_NULL ✗ ✗ ✗ ✗
TLS_RSA_WITH_3DES_EDE_CBC_SHA ✗ ✗ ✗
TLS_RSA_WITH_AES_128_CBC_SHA ✗ ✗
TLS_RSA_WITH_AES_128_CBC_SHA256 ✗ ✗
TLS_RSA_WITH_AES_128_CCM ✗ ✗
TLS_RSA_WITH_AES_128_CCM_8 ✗ ✗
TLS_RSA_WITH_AES_128_GCM_SHA256 ✗ ✗
TLS_RSA_WITH_AES_256_CBC_SHA ✗ ✗
TLS_RSA_WITH_AES_256_CBC_SHA256 ✗ ✗
TLS_RSA_WITH_AES_256_CCM ✗ ✗
TLS_RSA_WITH_AES_256_CCM_8 ✗ ✗
TLS_RSA_WITH_AES_256_GCM_SHA384 ✗ ✗
TLS_RSA_WITH_NULL_MD5 ✗ ✗ ✗
TLS_RSA_WITH_NULL_SHA ✗ ✗ ✗
TLS_RSA_WITH_NULL_SHA256 ✗ ✗ ✗
TLS_RSA_WITH_RC4_128_MD5 ✗ ✗ ✗ ✗
TLS_RSA_WITH_RC4_128_SHA ✗ ✗ ✗ ✗

Table 6: Summary of exclusions (✗) and recommendations
(✓) for TLS 1.3 cipher suites by 3GPP, NIST and BSI.

Exclusion / Recommendation
Cipher Suite 3GPP NIST BSI Result
TLS_AES_128_GCM_SHA256 ✓ ✓ ✓ ✓
TLS_AES_256_GCM_SHA384 ✓ ✓ ✓ ✓

TLS_CHACHA20_POLY1305_SHA256 ✓ ✗ ✗ ✓3

TLS_AES_128_CCM_SHA256 ✓ ✓ ✓ ✗4
TLS_AES_128_CCM_8_SHA256 ✓ ✗ ✗

Table 4: List of preferences and exclusion criteria for each
organization as per their relevant publications.

Organization Preferences Exclusion
3GPP • AEAD cipher suites

• PFS cipher suites
• Cipher suites with NULL integrity
• Cipher suites with RC4
• Anonymous cipher suites

NIST • GCM or CCM (not CCM_8) modes
• PFS cipher suites

• Cipher suites not included in recommendation list

BSI • Cipher suites marked as 2029+ • Cipher suites not included in recommendation list

A LIST OF SELECTED CIPHER SUITES
A cipher can either be excluded, neutral, or recommended. These
classifications are based on TS 33.310 Annex E for the 3GPP, Special
Publication 800-52 for the NIST, and TR-02102-2 for the BSI. Both
preference and exclusion criteria were extracted as shown in Table
4. Only preferred ciphers were considered recommended and used
for testing. TLS 1.0 and 1.1 were not considered as per RFC 8996.
The associated data refers to information that is integrity protected
but not encrypted. Perfect Forward Secrecy (PFS) refers to the prop-
erty of a key exchange, that even if long-term key material (such
as the TLS private keys) is recovered, past connections still cannot
be decrypted. This is achieved by negotiating an ephemeral key
for encryption, which is unique for each connection and dropped
after usage. If a Diffie-Hellman based exchange is used, the actual
symmetric key is never transmitted and can therefore not be recov-
ered, even if the long-term keys used for the preliminary tunnel
are known.

A.1 TLS 1.2
The list of available ciphers was extracted from RFCs 5246, 5288,
5289, 6655, 7251, 7905, and 8422. How the criteria map to the indi-
vidual ciphers is shown in Table 5.

A.2 TLS 1.3
The list of available ciphers was extracted from RFC 8446. How the
criteria map to the individual ciphers is shown in Table 6.

Unlike TLS 1.2, where the key exchangemechanismwas encoded
in the cipher suite, TLS 1.3 only allows ECDHE for non Pre-Shared
Keys (PSK) suites. This means that all connections use PFS. The
signature algorithm is negotiated similar to the cipher suite through
the Client- and ServerHello messages.

1Only when Encrypt-then-MAC is enforced
2Excluded due to possible vulnerability to Raccoon Attack [19]
3Although neither NIST nor BSI officially recommends ChaCha20-based algorithms,
they generally fulfill the stated requirements and are proven to be theoretically secure
when used appropriately. [8] [13]
We opted to include them in this test since they are currently the only viable alternative
to AES in TLS.
4Excluded due to runtime errors. Investigation on why is pending.
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