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Abstract

During themaster thesis, BayesianAdditive Regression Tree (BART), BayesianCausal Forest(BCF),

and Double Machine Learning(DML) are applied to solve American Causal Inference Conference

2022 Data Challenge. Bayesian Causal Forest(BCF) is a variant of the Bayesian Additive regres-

sion tree (BART) model. The R language is used for all implementations. For evaluation of the

performances of these three models, Root Mean Squared Error(RMSE), uncertainty interval cov-

erage, uncertainty interval width, and absolute bias are employed as metrics. Root Mean Squared

Error(RMSE) and uncertainty interval coverage are emphasized among the four metrics since

they are highlighted by the Data Challenge host. The evaluations show that the three models

all have a good performance regarding Root Mean Square Error(RMSE) and the two BART-based

models have much better performances than Double Machine Learning(DML) in terms of uncer-

tainty interval coverage. Within BART-basedmodels, Bayesian Causal Forest(BCF) outperformed

Bayesian Additive Regression Tree(BART). Moreover, the two BART-based models outperformed

Double Machine Learning(DML) signi�cantly concerning the subgroup estimands, which is cru-

cial for dealing with treatment e�ect heterogeneity.
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1 Introduction

American Causal Inference Conference 2022 Data Challenge was held by the Society for Causal

Inference. It is an annual causal inference competition, and a team at Mathematica led by Mariel

Finucane and Dan Thal was running the most recent competition. The Mathematica team has

generated thousands of datasets resembling policy assessments and integrated hidden causal re-

lationships. Participants will compete to identify the best state-of-the-art methods for measuring

these impacts and assessing which social policies are making a di�erence to the individuals and

communities they serve. The annual Data Challenge provides an opportunity to compare causal

inferencemethods across di�erent data generation processes (DGPs) and theywill propose a chal-

lenging problem each year. The emphasis of the 2022 Data Challenge was on the time-varying

property of the given datasets.

Bayesian addition tree (BART) and double machine learning are the two dominant baseline

models among all submissions to the American Causal Inference Conference 2022 Data Chal-

lenge. We use three causal inference models in the thesis: Bayesian Addition Regression Tree

(BART), Bayesian Causal Forest (BCF), and Double Machine Learning. Based on the root mean

squared error (RMSE) results, they all performed well in providing us with estimates of sample

average treatment e�ects on the treated (SATT). Furthermore, the Bayesian causal forest outper-

formed the other two models. Considering the submission results of Mathematica’s American

Causal Inference Conference 2022 Data Challenge, my implementation results are still among

the top-performing methods.
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2 Problem Setting and Related Work

Causal inference is about counterfactual predictions. The causal inference model predicts what

would happen to the same unit if faced with a counterfactual situation. Most causal inference

statisticians de�ne a causal e�ect as a comparison of what happens in two ormore di�erent states.

One is fact and the other is counterfactual.

De�nition 1 〈unit [21]〉

A unit is the atomic research object in the treatment e�ect study [21].

De�nition 2 〈Treatment [21]〉

Treatment refers to the action that applies to a unit [21].

De�nition 3 〈Potential Outcome〉

We de�ne the causal e�ect of treatment via potential outcomes. For a binary treatment Z 2 {0, 1},

we de�ne potential outcomes Yi(1) and Yi(0) corresponding to the the ith unit [19].

1. Yi(1) = Y (Z = 1) is the outcome if the ith unit is under treatment.

2. Yi(0) = Y (Z = 0) is the outcome if the ith unit is under control.

The fundamental problemwith causal inference is that we can only observe one of the potential

outcomes for each unit, and the other outcome is counterfactual. Therefore, only one of Yi(1)

and Yi(0) can be observed at a time [19]. We can build causal inference models to predict the

unobserved potential outcomes Yi(1) or Yi(0) and infer the causal e�ects.

2.1 Data

Since 2016, the American Causal Inference Conference (ACIC) has hosted a data challenge in

which teams compete to estimate causal impacts on simulated datasets based on real-world data



from �elds such as health care or education [20]. The competition provides a ground for state-

of-art causal inference methods that have the potential to revolutionize program evaluation [20].

The ACIC 2022 Data Challenge is designed to help understand which methods provide the most

accurate and sophisticated estimates of policy e�ectiveness. The challenge’s organizing com-

mittee designed the datasets to re�ect data from evaluations of large-scale U.S. healthcare system

interventions aimed at reducing Medicare expenditures [20]. The outcome of interest in the chal-

lenge is Medicare spending.

The ACIC 2022 Data Challenge consists of 200 realizations of 17 data generating processes

(DGPs), with each realization producing a new sample of practices. Mathematica conceals the

data generation processes (DGPs), and we have no idea which datasets share a common DGP.

It is frequently unclear whether there is measured (or unmeasured) confounding in a real-world

observational study.

We have 3400 datasets in total, with each dataset containing 500 practices. Practices decide

whether or not to participate in the intervention. This means that in a treated practice, all patients

are treated, while in an untreated practice, all patients are untreated. The data has a longitudinal

structure, with patients being observed annually over time. Despite the fact that patients enter

and exit the sample throughout the four-year observation period, all primary care practices are

observed for the entire four-year period. The �rst two years are a baseline period during which

no intervention is provided. The intervention is then initiated in treated practices at the start of

Year 3. They will continue to receive the intervention until the end of Year 4.

The variables that are shared by 3400 datasets are described below:

id.practice: Practice identi�er; Range from 1 to 500 in each dataset

Z: Treatment variable; Indicator for whether practice is in the treatment group (Z = 1) or control

group (Z = 0)

year: Observation year; range from 1 to 4

post: Indicator for whether the intervention has begun for treated practices. post = 1 in Years 3

and 4, post = 0 in Years 1 and 2.

Y: Outcome variable (monthly Medicare expenditures for patients, in a year).
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X1, X2, X3, X4, X5: Unordered categorical and binary practice-level covariates used to de�ne

subgroup SATT estimands.

X6, X7, X8, X9 : Additional practice-level covariates.

V1, V2, V3, V4, V5: Continuous, unordered categorical, and binary patient-level covariates

n_patients: the number of patients in each practice at a certain year

Each of the 3400 datasets has an id.practice value ranging from 1 to 500. Id.practice value i

corresponds to a year between 1 and 4 and treatment status Zi. We have the outcome Yt and the

number of patients n_patientst,i at year t. Table 2.1 depicts these relationships.

id.practice Z year Y n_patients · · ·
... ... ... ... ... ...

i Zi

1 Y1 n_patients1,i · · ·
2 Y2 n_patients2,i · · ·
3 Y3 n_patients3,i · · ·
4 Y4 n_patients4,i · · ·

... ... ... ... ... ...

Table 2.1 Table to show the data block of id.practice i in one of the 3400 datasets.

2.2 Assumptions

Assumption 1 〈Stable Unit Treatment Value Assumption (SUVTA) [21]〉

The potential outcomes for any unit do not vary with the treatment assigned to other units [21]. Also,

there are no di�erent forms or versions of each level of treatment with di�erent potential outcomes

for di�erent entities [21].

Assumption 2 〈Ignorability〉

The data generating processes are free of unmeasured confounding. In the longitudinal context, this

means there are no unobserved covariates that relate to both treatment assignment and to the change

in the untreated potential outcome Yit(0) from the period before the intervention (Years 1 and 2) to

5



the intervention period (Years 3 and 4). However, that ignorability does not preclude confounding by

trends in the observed outcomes during the period before the intervention, Yi2 � Yi1.

zi ? (Yt,i(1), Yt,i(0)) | xi, for t 2 {3, 4}.

zi ? Yt1,i(0)� Yt0,i(0) | xi, for t1 2 {3, 4}, t0 2 {1, 2}.
(2.1)

Assumption 3 〈Positivity/Overlap〉

For all i such that zi = 1, we assume overlap for the treatment group:

0 < P(zi = 1 | xi) < 1.

2.3 Estimands

The data challenge’s targeted estimands are sample average treatment e�ects on the treated

(SATTs). In total, we need to calculate 15 SATT statistics for each dataset: one overall SATT,

two year-speci�c SATTs, and 12 conditional SATTs de�ned by the 2+3+2+3+2 levels of the cate-

gorical variablesX1,X2, . . . ,X5. To clearly de�ne SATTs, we will �rst go over the de�nitions of

causal e�ects ATE and ATT. The causal e�ect is the comparison between the potential outcomes

under treatment and under control for the same unit or a common set of units [21].

De�nition 4 〈Average Treatment E�ect (ATE) [19]〉

Individual treatment e�ects are calculated from the di�erence between the outcome with treatment

and the outcome without treatment. The Average Treatment E�ect(ATE) is the expected treatment

e�ect across every unit in the population. We calculate the ATE by taking the average of all individual

treatment e�ects.

ATE = E[Y (Z = 1)� Y (Z = 0)]. (2.2)

De�nition 5 〈Average Treatment e�ect on the Treated group (ATT) [19]〉

The Average Treatment E�ect on the treated group(ATT) is the expected treatment e�ect across every

unit in the population which is exposed to treatment. We calculate the ATT by taking the average of

all individual treatment e�ects which are under treatment.

ATT = E[Y (Z = 1) | Z = 1]� E[Y (Z = 0) | Z = 1]. (2.3)

6



Corollary 1

Under Assumptions 1- 3, we have:

E[Yi(1)� Yi(0) | Xi = x] = E[Yi | Xi = x, Zi = 1]� E[Yi | Xi = x, Zi = 0]. (2.4)

Proof. Under Assumption 1 and 2,

LHS of Equation 2.4 = E[Yi(1) | Xi = x]� E[Yi(0) | Xi = x]

= E[Yi(1) | Xi = x, Zi = 1]� E[Yi(0) | Xi = x, Zi = 0]

= E[Yi | Xi = x, Zi = 1]� E[Yi | Xi = x, Zi = 0]

= RHS of Equation 2.4.

(2.5)

Corollary 1 is very important. It gives us the foundation for calculating SATTs in the empirical

setting. In each dataset, for each practice, we only have a unique Zi value, so we do not know

the value of LHS of Equation 2.4. However, we could compute the RHS via modeling

In order to calculate SATTs, we also need to take the variable n.patients into consideration. It

serves as a weighting variable to de�ne SATTs. With the notation of Nt:

Nt =
X

i:Zi=1

n_patientst,i, (2.6)

where n_patientst,i denotes the number of patients in the ith practice at year t, we have the

following de�nitions.

De�nition 6 〈The overall SATT〉

The overall SATT corresponding to all observations on the treated group across year3 and year4 is

given as follows:

SATToverall =
1

P4
t=3 Nt

4X

t=3

X

i:Zi=1

n_patientst,i(Yt,i(1)� Yt,i(0)). (2.7)
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De�nition 7 〈SATT by year〉

The yearly SATT corresponding to all observations on the treated group across the year3 or year4 is

given as follows:

SATTyearly =
1

Nt

X

i:Zi=1

n_patientst,i(Yt,i(1)� Yt,i(0)). (2.8)

De�nition 8 〈SATT for subgroup S〉

The subgroup SATT corresponding to all observations on the treated group and subgroup S across

year 3 and year 4 is given as follows. For example, the subgroup S could be {i 2 [1, 500] | X2 = A}.

SATTsubgroup =
1

P4
t=3 Nt(S)

4X

t=3

X

i:Zi=1,i2S

n_patientst,i(Yt,i(1)� Yt,i(0)). (2.9)

Here, Nt(S) =
P

i:zi=1,i2S n_patientst,i

In addition to SATTs, we must calculate the corresponding 90% uncertainty intervals in the

2022 ACIC Data Challenge. Because the Bayesian Additive Regression Tree (BART) and Bayesian

Causal Forest (BCF) models are based on Bayesian statistics, the SATTs calculated from these

two models are based on the posterior distribution. The uncertainty intervals are then known as

credible intervals. The following is the de�nition:

De�nition 9 〈Credible interval〉

Let ✓ be a random variable, then a credible interval of size 1� ↵ is an interval (a, b) such that:

P(a  ✓  b | x) = 1� ↵. (2.10)

However, the double machine learning model is not based on Bayesian statistics and the cor-

responding derived uncertainty intervals are referred to as con�dence intervals.

2.4 Evaluation Metrics

To evaluate the implementation results, we primarily use root mean squared error (RMSE) and

uncertainty interval coverage. Mathematica’s presentation at ACIC 2022 also emphasizes these

two metrics. In addition, we investigate bias and uncertainty interval width in Section 6.1.
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De�nition 10 〈Root Mean Square Error (RMSE) [19]〉

Root Mean Square Error(RMSE) is a standard way to measure a model’s error in predicting quanti-

tative data. It is the standard deviation of the prediction errors.

RMSE =

vuut
nX

i=1

(ŷi � yi)2

n
. (2.11)

Here, n: number of observations; ŷi: predicted value, yi: observed value

De�nition 11 〈Uncertainty interval coverage rate〉

Assume y1, y2, . . . , yn are the ground-truth values of a statistic, and [a1, b1], . . . , [an, bn] are their

corresponding uncertainty interval calculated through modelling, then the uncertainty interval cov-

erage rate is:

ci_coverage =
1

n

nX

i=1

1{yi 2 [ai, bi]}. (2.12)

2.5 Propensity Score

De�nition 12 〈propensity score [19]〉

The propensity score is the conditional probability that a unit could be assigned to the treated group

based on the observed covariates [19].

e(x) := P(Zi = 1 | Xi = x). (2.13)

Nowacki et al. summarized a conclusion in a published article that adding propensity scores

to pure prediction models does not improve predictive performance [16]. However, as suggested

by Hahn et al., it is a common practice to include the propensity score as a covariate in a causal

inference model [8].

De�nition 13 〈propensity score as an additional covariate〉

The mathematical model to predict outcomes with propensity score e(x) is given as follows:

Yi = g(Xi, Zi, e(Xi)) + ✏i, ✏i ⇠ N (0, �2) i.i.d. (2.14)

In Equation 2.14, a Bayesian non-parametric prior of g(·) provides modelling �exibility, while

the propensity score covariate provides the anchor for robustness [21].

9



In the implementation of the BARTmodel and double machine learning for the 2022 ACIC Data

Challenge, we add propensity score e(x) as an additional covariate. By de�nition, the propensity

score e(x) is part of the Bayesian Causal Forest (BCF) model.

As a result, it is necessary to consider a baseline model to estimate propensity score e(x) for

all observations (X, y). Since the treatment variable in the problem setting of the 2022 ACIC

Data Challenge is a binary variable, it is possible to implement any binary classi�cation model

to estimate propensity scores e(x), such as the Logit model and the Prohit model. In our imple-

mentations, we use the BART Classi�cation model to estimate propensity score e(x) to get more

precise predictions.
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11

3 Bayesian Additive Regression Tree (BART)

A decision tree is a �owchart-like structure that consists of a root node, branches, branch nodes,

and leaf nodes. Predictor space is a p-dimensional space comprising all possible values of the p

covariates {x1, x2, . . . , xp} that describe the observations we have. A decision tree divides the

predictor space into multiple distinct and non-overlapping regions {R1, R2, . . . , Rn} and a new

observation xwill be assigned to one of the regions {R1, R2, . . . , Rn} based on its corresponding

values of the p covariates. A decision tree could also be mathematically expressed as a function

g(·) that de�nes binary split rules {xk 2 A} vs {xk /2 A} which induce partition over predictor

space. When evaluating the value of a decision tree T , give the input value x, one would take

x and move down the tree T until reaching one of the leaf nodes. BART is a Bayesian method

using sums of regression trees. Regression trees are decision trees where the target variables can

take continuous values instead of the class labels in the leaf nodes.

Figure 3.1 An example of decision tree

In Figure 3.1, assuming that there are p predictors, the decision tree divides the covariate space

into �ve distinct regions {R1, R2, R3, R4, R5}, where R1 = {x = (x1, x2, x3, ..., xp) | x1 <

0.4, x2 < 0.8} and so on. Therefore it could be expressed as a function g(x) =
P5

l=1 µl1(x 2 Rl),

where µl is the mean of all outcome values yi which are assigned at leaf node l.



The partition of covariate space which corresponds to the decision tree in Figure 3.1 is illus-

trated in Figure 3.2.

Figure 3.2 Illustration of partition of covariate space

Bayesian Additive regression tree (BART) is a Bayesian non-parametric model for causal infer-

ence which is �rst introduced by Chipman et al. [4]. It is a sum-of-trees model for approximating

an unknown function f(·). Each tree in the model acts as a weak learner and explains only part

of the result due to regularization. Considering the common regression framework:

y = f(x) + ✏, ✏ ⇠ N (0, �2), (3.1)

we could de�ne the BART model as below:

y =
mX

j=1

gj(x; (Tj, µj)) + ✏, ✏ ⇠ N (0, �2), (3.2)

where:

m: the total number of regression trees,

Tj : the jth binary regression tree,

µj : represents leaf nodes of the jth binary regression tree, assuming that the number of leaf

nodes is Lj , then the vector of leaf node means µj = (µj1, . . . , µjLj),

gj : function mapping each leaf node to the set of predictors x = {x1, . . . , xp}.

12



The pair (Tj, µj) de�nes the structure of the jth tree. We can deduce from the de�nitions

above that f(x) = E[y | x] is the sum of all the leaf nodes assigned to x by a series of functions

{g1, . . . , gm}. In equation 3.2, the number of trees m is a hyperparameter that should be pre-

speci�ed before the experiment, while ✓ := {(T1, µ1), . . . , (Tm, µm), �} is the set of parameters

to be determined during the experiment. Compared to ordinary decision tree models, BART is a

Bayesian model based on Bayes’ Theorem. Hence, building the BART model requires two steps:

Step 1: Specify the prior distribution for all the parameters in set ✓.

Step 2: Draw posterior distributions using Gibbs sampler and Metropolis-Hastings algorithm.

We will show the details of the two steps in the following part.

3.1 Prior Specification

To construct priors for the parameter set ✓, it is trivial to make independence assumptions. Here,

it is assumed that all the trees in the model are independent, i.e. Ti ? Tj , and all the leaf nodes

within the same tree and between trees are also independent of each other. As a result, we could

decompose the prior distribution of the parameters:

p((T1, µ1), . . . , (Tm, µm), �) = [
mY

j=1

p(Tj, µj)]p(�
2)

= [
mY

j=1

p(Tj)p(µj | Tj)]p(�
2)

= [
mY

j=1

p(Tj)[

LjY

i=1

p(µji | Tj)]]p(�
2)).

(3.3)

3.1.1 The Leaf Node Prior

We assume the normal distribution for each single leaf node, i.e. µji | Tj ⇠ N (µµ, �2
µ). The

prior of f(x) followsN (mµµ,m�2
µ). The hyperparameter µµ, �µ are set by solving the following

equations:

ymax = mµµ + k
p
m�µ,

ymin = mµµ � k
p
m�µ,

(3.4)
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where ymax, ymin are derived from the observation data, k is a hyperparameter which could be

tuned [21].

In software implementations, it used linear transformations to set µµ be zero. In the follow-

ing sections, we also assume µµ to be zero for the sake of simplicity in posterior calculations.

Therefore, we could refer to the leaf node prior as:

µj | Tj ⇠ N (0, ⌧ILj), (3.5)

where ⌧ denotes the variance of the kth leaf node µjk conditioning on Tj after the linear trans-

formation and could be computed via the following equation:

⌧ :=
max(y)�min(y)

2k
p
m

. (3.6)

3.1.2 Error Variance Prior

The prior distribution for �2 is set to be inverse Gamma distribution with hyperparameter ⌫ and

�:

�2 ⇠ InvGamma(⌫/2, ⌫�/2). (3.7)

� is chosen based on �̂, which is the residual standard deviation of simple linear regression Y =

X� + ✏, such that:

P (� < �̂) = q. (3.8)

Here, the hyperparameter pair (⌫, q) should be chosen before the experiment.

3.1.3 Tree Prior

The prior distribution of the trees consists of two parts:

1. A prior on the shape of tree Tj .

2. A prior for the splitting rules {xb  hb} for each branch node of the tree, where xb is a

predictor variable(part of x) and hb is chosen from available values at the branch node by

the discrete uniform distribution [21].

For the �rst part, we should think about a function that limits the depth of trees so that each

tree is only a weak learner. A node at depth d is a a branch(non-leaf node) with prior probability

14



↵
(1+d)� , with Dn = 1 indicating that the nth node at depth d(n) is branch. Here, n is the node

index in the tree, and d(n) = blog2(n)c. Thus, Dn = 1 has the following probability:

P(Dn = 1) =
↵

(1 + d)�
, 0 < ↵ < 1, � > 0. (3.9)

The hyperparameter pair (↵, �) is pre-selected to make the decision tree shallow. The hyper-

parameter setting will be further explained in Section 3.5.1. Assuming that there are p predictor

variables and the probability to select each predictor is equal to 1/p, the prior probability for the

entire tree Tj could be expressed as:

P(Tj) =
Y

�

P(Dn = 1)P(split on predictor i)P(select the kth value of predictor j to split)

⇥
Y

µ

[1� P(Dn = 1)]

=
Y

�

↵

(1 + d)�
⇥ 1

p
⇥ P(select the kth value of predictor j to split)

⇥
Y

µ

[1� ↵

(1 + d)�
],

(3.10)

where � is the set of branch node indices and µ is the set of leaf node indices.

3.1.4 Summary of Prior Specification

Probability model:

yi | {(Tj, µj)}mj=1, � ⇠ N (
mX

j=1

gj(xi;Tj, µj), �
2).

15



The priors for BART could be summarized as:

p((T1, µ1), . . . , (Tm, µm), �) = [
mY

j=1

p(Tj)p(µj | Tj)]p(�
2),

µj | Tj ⇠ N (~0, ⌧ILj),

P(Tj) =
Y

�

P(Dn = 1)P(split on predictor i)

⇥ P(select the kth value of predictor j to split)

⇥
Y

µ

[1� P(Dn = 1)],

�2 ⇠ InvGamma(⌫/2, ⌫�/2).

3.2 Posterior Draw

Following Bayes’ Theorem, the posterior distribution is given below:

p({(Tj, µj)}mj=1, � | y) / p(y | {(Tj, µj)}mj=1, �, X)p({(Tj, µj)}mj=1, �). (3.11)

It is tricky to derive the posterior draws of tree structures, leaf node means, and the error vari-

ance. Chipman et al.developed a strategy that used Metropolis-Hastings within a Gibbs sampler

to obtain posterior draws [4]. It is called the MCMC Back�tting algorithm [4]. Gibbs sampling is

the primary structure used to derive posterior distributions.

De�nition 14 〈Gibbs Sampler [5]〉

The process in a Gibbs Sampler is described as follows:

⌅ Initialize x(0) = (x1, . . . , xD) ⇠ q(x)

⌅ For iteration i = 1, 2, . . . do

⇧ x(i)
1 ⇠ p(X1 = x1 | X2 = x(i�1)

2 , X3 = x(i�1)
3 , . . . , XD = x(i�1)

D )

⇧ x(i)
2 ⇠ p(X1 = x1 | X1 = x(i�1)

1 , X3 = x(i�1)
3 , . . . , XD = x(i�1)

D )
...

⇧ x(i)
D ⇠ p(XD = xD | X1 = x(i�1)

1 , X2 = x(i�1)
2 , . . . , XD�1 = x(i�1)

D�1 )
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Let pair (T�j, µ�j) denotes {(Ti, µi)}mi=1 \ (Tj, µj) ,then we could make one posterior draw of

{(Tj, µj)}mj=1 by the following procedure:

Procedure 3.1: Posterior draw of {(Tj, µj)}mj=1 and �
1 Sample T1, µ1 | (T�1, µ�1),�, y
2 Sample T2, µ2 | (T�2, µ�2),�, y

3
...

4 Sample Tm, µm | (T�m, µ�m),�, y
5 Sample � | {(Tj , µj)}mj=1, y

De�nition 15 〈Partial residual of observations [4]〉

The jth partial residual of the ith observation in the BART model is de�ned as:

rji = yi �
X

h 6=j

gh(xi;Th, µh). (3.12)

The general form of the j-th partial residual in the BART model is de�ned as:

rj = y �
X

h 6=j

gh(x;Th, µh). (3.13)

Since

rji = [yi �
mX

h=1

gj(xi;Tj, µj)] + gj(xi;Tj, µj), (3.14)

then rji could also be written as:

rji = gj(xi;Tj, µj) + ✏i, ✏i ⇠ N (0, �2). (3.15)

Hence, the likelihood of rji conditional on (Tj, µj), � is:

p(rji | (Tj, µj), �) ⇠ N (gj(xi;Tj, µj), �
2). (3.16)
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Wecould replace (T�i, µ�i), �, ywith ri in Procedure 3.1 to derive posterior draw of {Tj, µj}mj=1.

Therefore, the posterior draw of a single regression tree (Tj, µj) could be written as: p(Tj, µj |

rj, �). It can also be further decomposed using Bayes’ Theorem.

p(Tj, µj | rj, �) / p(µj | Tj, rj, �)p(Tj | rj, �). (3.17)

Following the notation of ri and the decomposition stated above, Procedure 3.1 could be modi�ed

to the following procedure. Compared with Procedure 3.1, the following procedure based on

partial residuals ri allows the Metropolis-Hastings algorithm to be used to draw posterior trees

from conditional distributions.

Procedure 3.2: Posterior draw of {(Tj, µj)}mj=1 and �
1 Compute r1
2 Sample T1 | r1,�
3 Sample µ1 | T1, r1,�
4 Compute r2
5 Sample T2 | r2,�
6 Sample µ2 | T2, r2,�

7
...

8 Compute rm
9 Sample Tm | rm,�

10 Sample µm | Tm, rm,�
11 Sample � | {(Tj , µj)}mj=1, y

3.2.1 Posterior Draw of Tree

To propose a new tree from the old tree, an additional algorithm must be used. Chipman et al.

used the Metropolis-Hastings algorithm to generate a candidate tree [4].

De�nition 16 〈Metropolis-Hastings algorithm [5]〉

The process in the Metropolis-Hastings algorithm is described as follows:

⌅ Start from an initial state y(0) and t = 0

⌅ For iteration t = 0, 1, · · · do

⇧ Sample y⇤ from a proposal distribution q(y⇤ | y(t))
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⇧ Compute the acceptance probability ↵, de�ned as:

↵(y⇤, y(t)) = min{1, p(y
⇤)q(y(t) | y⇤))

p(y(t))q(y⇤ | y(t))} (3.18)

⇧ Sample U ⇠ U(0, 1)

⇧ If U  ↵, then:

y(t+1)  y⇤ (3.19)

⇧ Else:

y(t+1)  y(t) (3.20)

There are four possible ways to generate a candidate tree T ⇤ from current tree Tj :

1. Grow: Randomly chooses a leaf node of current tree Tj and splits it further into left and

right children;

2. Prune: Randomly chooses a branch node(non-leaf node) where both the children are leaf

nodes and prunes the two leaf nodes to make the branch node a leaf node;

3. Change: Randomly chooses a branch node(non-leaf node) and changes its splitting rule;

4. Swap: Randomly chooses a parent-child pair which are both branch nodes and swap their

splitting rules;

However, Pratola et al. demonstrated that only grow and prune proposals are necessary for

generating tree candidates [17]. Typically, only these two proposals are implemented in BART

models by software packages. The probabilities of modifying the current tree Tj with grow pro-

posal or prune proposal are pre-speci�ed.

Pgrow(Tj) = 0.5 Pprune(Tj) = 0.5 (3.21)

If we sample ⇠ from a Bernoulli distribution with p = 0.5, then ⇠ = 1 indicates that we will

choose a grow proposal, otherwise we will choose a prune proposal. Let us now consider how

to use the Metropolis-Hastings algorithm(De�nition 16) to generate a new tree structure. Since

the prune proposal is simply an inverse operation of grow proposal, the details for calculating

acceptance probability ↵ are nearly the same. We will go over the details of grow proposal. Since
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p(Tj | rj, �) / p(rj | Tj, �)p(Tj), and p(Tj) represents the prior distribution of tree Tj , then the

acceptance probability is:

↵(T ⇤, Tj) = min{1, p(r
⇤ | T ⇤, �)p(T ⇤)q(Tj | T ⇤)

p(rj | Tj, �)p(Tj)q(T ⇤ | Tj)
}. (3.22)

Thus, the procedure for generating a single tree Tj in Procedure 3.2 is described below:

Procedure 3.3 Generate a single tree Tj

• Sample w ⇠ Bernoulli(p = 0.5)

• If w = 1, then: run grow proposal

• Else: run prune proposal

• Calculate acceptance probability ↵:

↵(T ⇤, Tj) = min{1, p(r
⇤ | T ⇤, �)p(T ⇤)q(Tj | T ⇤)

p(rj | Tj, �)p(Tj)q(T ⇤ | Tj)
} (3.23)

• Sample U ⇠ U(0, 1)

• if U  ↵, then: Tj+1  T ⇤

• Else: Tj+1  Tj

Here, we only consider one iteration in the Metropolis-Hastings algorithm since it is inside a

Gibbs sampler. Thus, the only thing left to derive the posterior draw of Tj is to calculate ↵. Fig-

ure 3.3 and 3.4 visualize the current tree Tj and candidate tree T ⇤ in a grow proposal respectively.

In Equation 3.23, p(Tj) and p(T ⇤) are prior distributions of trees which are pre-de�ned in Sec-

tion 3.1. q(T ⇤ | Tj) is the transition probability from Tj to T ⇤ with a grow proposal, while

q(Tj | T ⇤) represents the transition probability from T ⇤ toTj with a prune proposal. The follow-

ing three steps determine the transition probability q(Tj | T ⇤):

1. Randomly choose a leaf node and turn it into a branch node.

2. Randomly choose a predictor xj for the splitting rule.

3. Randomly choose a cuto� point bj from the observation values of xj to split at.
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Figure 3.3 Current tree Tj in a grow proposal

Figure 3.4 Candidate tree T ⇤ in a grow proposal

Thus, q(T ⇤ | Tj) for a grow proposal is calculated as follows:

q(T ⇤ | Tj) = Pgrow(Tj)⇥ P (Selecting a leaf node h)

⇥ P (Selecting a predictor variable xj)⇥ P (Selecting the kth observed value of xj)

= 0.5⇥ 1

L
⇥ 1

numberofavailablepredictorstospliton

⇥ 1

number of available observed values of xj as cuto� point
,

(3.24)

where L is the number of leaf nodes in the tree Tj .
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To make a prune proposal, we simply choose a branch node whose children are all leaf nodes

at random and remove these two child nodes. Thus, q(T ⇤ | Tj) is calculated as follows:

q(Tj | T ⇤) = Pprune(T
⇤)⇥ P (Selecting a branch node whose children are all leaf nodes)

= 0.5⇥ 1

number of branch nodes whose children are all leaf nodes
.

(3.25)

Thus, the only way to derive ↵(T ⇤, Tj) is to get p(rj | Tj, �) since p(r⇤ | T ⇤, �) could be

calculated in the same way. It is simple to deduce from De�nition 15 that for a single observation

i, p(rji | Tj, µj, �) ⇠ N(gj(xi;Tj, µj), �2), We will show p(rj | Tj, µj, �) in a multivariate normal

distribution form later. Then, using Bayes’ Theorem and integration, we can derive p(rj | Tj, �)

as follows:

p(rj | Tj, �) =

Z
p(rj, µj | Tj, �)dµj

=

Z
p(rj | µj, Tj, �)p(µj | Tj)dµj,

(3.26)

where p(µj | Tj) is the prior distribution and has been speci�ed in Section 3.1.

gj is an indicator function that maps one observation x to the a single leaf node h. We assume

that tree Tj has Lj leaf nodes and that there are n observations. Consider the predictor matrix

X = (x1, x2, . . . , xn)t with all the observations included, thus the dimensions of X is n ⇥ p. gj

maps matrix X to vector Wj with dimensions n ⇥ 1, and Wj is de�ned with the help of basis

matrix X̂j with dimensions n⇥ Lj :

De�nition 17 〈helper matrices [5]〉

In order to clearly derive the posterior distribution formulas in the following parts, two helpermatrices

are de�ned as follows:

X̂j :=

2

6666664

1(x1 2 Rj1) 1(x1 2 Rj2) · · · 1(x1 2 RjLj)

1(x2 2 Rj1) 1(x2 2 Rj2) · · · 1(x2 2 RjLj)
...

... . . . ...

1(xn 2 Rj1) 1(xn 2 Rj2) · · · 1(xn 2 RjLj)

3

7777775
, (3.27)
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Wj :=

2

6666664

µj11(x1 2 Rj1) + µj21(x1 2 Rj2) + · · ·+ µj11(x1 2 RjLj)

µj11(x2 2 Rj1) + µj21(x2 2 Rj2) + · · ·+ µjLj1(x2 2 RjLj)
...

µj11(xn 2 Rj1) + µj11(xn 2 Rj2) + · · ·+ µj11(xn 2 RjLj)

3

7777775

=X̂j ⇥ µj

=

2

6666664

1(x1 2 Rj1) 1(x1 2 Rj2) · · · 1(x1 2 RjLj)

1(x2 2 Rj1) 1(x2 2 Rj2) · · · 1(x2 2 RjLj)
...

... . . . ...

1(xn 2 Rj1) 1(xn 2 Rj2) · · · 1(xn 2 RjLj)

3

7777775
⇥

2

6666664

µj1

µj2

...

µjLj

3

7777775
,

(3.28)

where, Rjh represents a partition of the covariate space corresponding to leaf node h in tree Tj , µjh

de�nes the leaf node mean corresponding to leaf node h in tree Tj , and Lj is the total number of leaf

nodes in tree Tj .

Assuming the independence of distinct observations, with the notation that rj = (rj1, rj2, . . . , rjn)T

is a n⇥1 vector and µj = (µj1, µj2, . . . , µjLj)
T is aLj⇥1 vector, we could express p(rj | Tj, µj, �)

in a multivariate normal distribution form:

rj | Tj, µj, � ⇠ N(X̂jµj, �
2In), (3.29)

p(rj | Tj, µj, �) = (2⇡)�n/2 det(�2In)
�1/2exp{� 1

2�2
(rj � X̂jµj)

T (rj � X̂jµj)}. (3.30)

In the BART model discussed above, the concrete form of p(rj | Tj, �) could be derived in the

following theorem.

Theorem 1

The distribution of partial residual rj conditional on (Tj, �) is:

rj | Tj, � ⇠ N (~0, �2In + ⌧X̂jX̂
T
j ). (3.31)
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Proof.

p(rj | Tj, �) =

Z
p(rj | Tj, µj, �)p(µj | Tj)dµj

= (2⇡)�(n+Lj)/2 det(�2In)
�1/2 det(⌧Lj)

�1/2

⇥
Z

exp{�1

2
[(rj � X̂jµj)

T (�2In)
�1(rj � X̂jµj)]} exp{�

1

2
⇥ µT

j (⌧ILj)
�1µj}dµj

= (2⇡)�(n+Lj)/2 det(�2In)
�1/2 det(⌧Lj)

�1/2

⇥
Z

exp{�1

2
[(rj � X̂jµj)

T (�2In)
�1(rj � X̂jµj) + µT

j (⌧ILj)
�1µj]}dµj

= (2⇡)�(n+Lj)/2 det(�2In)
�1/2 det(⌧Lj)

�1/2 exp{�
rTj rj
2�2

}

⇥
Z

exp{�1

2
[µT

j (�
�2X̂T

j X̂j + ⌧�1ILj)µj � 2rTj (�
2In)

�1X̂jµj]}dµj.

With the following de�nitions of extra variables:

B :=��2X̂T
j X̂j + ⌧�1ILj ,

a :=��2B�1X̂T
j rj],

c :=� ��4rjTX̂jB
�1X̂T

j rj,

yields

p(rj | Tj, �) = (2⇡)�(n+Lj)/2 det(�2In)
�1/2 det(⌧Lj)

�1/2 exp{�
rTj rj
2�2

} exp{� c

2
}

⇥
Z

exp{�1

2
[(µj � a)TB(µj � a)]}dµj.

(3.32)

According to the properties of multivariate Gaussian integral,

Z
exp{�1

2
[(µj � a)TB(µj � a)]}dµj = (2⇡)Lj/2 det(B�1)1/2. (3.33)
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Thus,

p(rj | Tj, �) = (2⇡)�(n+Lj)/2 det(�2In)
�1/2 det(⌧Lj)

�1/2

⇥ exp{�
rTj rj
2�2
� c

2
}⇥ (2⇡)Lj/2det(B�1)1/2

= (2⇡)�n/2 det(�2In)
�1/2det(⌧Lj)

�1/2

⇥ exp{�1

2
rTj [�

�2In � ��4X̂jB
�1X̂T

j ]rj}⇥ det(B�1)1/2.

Applying Woodbury matrix inverse formula, yields:

p(rj | Tj, �) = (2⇡)�n/2 det(�2In)
�1/2det(⌧Lj)

�1/2 det([��2X̂T
j X̂j + ⌧�1ILj ]

�1)1/2

⇥ exp{�1

2
rTj [�

2In + ⌧X̂jX̂
T
j ]

�1rj}.

Using properties of determinant, yields:

p(rj | Tj, �) = (2⇡)�n/2 det(�2In + ⌧X̂jX̂
T
j )

�1/2 ⇥ exp{�1

2
rTj [�

2In + ⌧X̂jX̂
T
j ]

�1rj}.

(3.34)

Thus, p(rj | Tj, �) follows the form of a multivariate normal distribution and we could say:

rj | Tj, � ⇠ N (~0, �2In + ⌧X̂jX̂
T
j ). (3.35)

3.2.2 Posterior Draw of Leaf Node Means

De�nition 18

In order to simplify the notations in the derivation of the following theorem, a helper matrix ⇥ and

a helper variable r̃j are de�ned as follows:

⇥ = (⌧�1ILj + ��2X̂T
j X̂j)

�1, (3.36)

r̃j = ��2X̂T
j rj. (3.37)
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Theorem 2

In the BART probability model, the posterior distribution of µj is as follows:

µj | rj, Tj, � ⇠ N (⇥r̃j,⇥). (3.38)

Proof. According to Procedure 3.2, to derive the posterior draw of leaf node means is to calculate

p(µj | rj, Tj, �) and sample from this posterior distribution. Thus, using Bayes’ Theorem,

p(µj | rj, Tj, �) / p(rj | µj, Tj, �)⇥ p(µj | Tj). (3.39)

p(µj | Tj) is a prior distribution and has been pre-speci�ed in Section 3.1. From Equation 3.30,

rj | µj, Tj, � ⇠ N (rj � X̂jµj, �2In), thus,

p(µj | rj, Tj, �) /p(rj | µj, Tj, �)p(µj | Tj)

/ exp{�1

2
[(rj � X̂jµj)

T (�2In)
�1(rj � X̂jµj) + µT

j (⌧
2ILj)

�1µj]}.

By multiple matrix operations, yields:

p(µj | rj, Tj, �) / exp{�1

2
[(µj �⇥r̃j)

T⇥�1(µj �⇥r̃j)]}.

(3.40)

Because a normal prior is conjugate to a normal likelihood with known variance, µj | rj, Tj, �

also follows a multivariate normal distribution. As a result of the preceding derivations, we can

obtain that µj | rj, Tj, � ⇠ N (⇥r̃j,⇥).

3.2.3 Posterior Draw of Error Variance

According to Procedure 3.2, to derive the posterior draw of error variance, one must calculate

p(�2 | {(Tj, µj)}mj=1, y) and sample from this posterior distribution. Using Bayes’ Theorem,

p(�2 | {(Tj, µj)}mj=1, y) / p(y | {(Tj, µj)}mj=1, �)p(�). (3.41)

�2 ⇠ InvGamma(⌫/2, ⌫�/2) is pre-speci�ed in Section 3.1.
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Theorem 3

In the BART probability model, the posterior distribution of �2 is as follows:

�2 | {(Tj, µj)}mj=1, y ⇠ InvGamma(
⌫ + n

2
,
1

2
[yi �

mX

j=1

gj(xi;Tj, µj) + ⌫�]). (3.42)

Proof. According to the de�nition of the BART model, for a single observation k, we have:

yk | {(Tj, µj)}mj=1, � ⇠ N (
mX

j=1

gj(xk;Tj, µj), �
2). (3.43)

Thus, assuming the independence of distinct observations, y = (y1, y2, . . . , yn)T conditioning on

({(Tj, µj)}mj=1, �) yields:

y | {(Tj, µj)}mj=1, � ⇠ N (~g, �2In), (3.44)

where ~g := (
Pm

j=1 gj(x1;Tj, µj),
Pm

j=1 gj(x2;Tj, µj), . . . ,
Pm

j=1 gj(xn;Tj, µj))t Thus,

p(�2 | {(Tj, µj)}mj=1, y) /p(y | {(Tj, µj)}mj=1, �)p(�)

/(�2)�n/2 exp{� 1

2�2

nX

i=1

[yi �
mX

j=1

gj(xi;Tj, µj)]}⇥ (�2)�⌫/2�1 exp{�⌫�/2
�2

}

/(�2)�(⌫+n)/2�1 exp{� 1

2�2

nX

i=1

[yi �
mX

j=1

gj(xi;Tj, µj)]�
⌫�/2

�2
}

/(�2)�(⌫+n)/2�1 exp{� 1

2�2

nX

i=1

[yi �
mX

j=1

gj(xi;Tj, µj) + ⌫�]}.

(3.45)

Hence,

�2 | {Ti, µi}mi=1, y ⇠ InvGamma(
⌫ + n

2
,
1

2
[yi �

mX

j=1

gj(xi;Tj, µj) + ⌫�]). (3.46)

3.3 Summary of BART Model

The details for calculating a posterior draw of {(Tj, µj)}mj=1, � are now completed. The MCMC

Back�tting algorithm is summarized below to sample iter.max posterior draws:
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Algorithm 1:Metropolis-Hasting within Gibbs sampler for BART model
Input: n observations {xi, yi}ni=1, hyperparameter set (⌫, q, k,↵, �), number of MCMC

iterations iter.max, number of treesm.

Output: Posterior draws of
Pm

j=1 gj(xi;T
(t)
j , µ(t)

j ) and �(t), for t = 1, 2, . . . , iter.max.

1 /* Step 1: Initialization at t = 0 */

2 for j = 1 tom do

3 Initialize T (0)
j with a single leaf node

4 Sample µ(0)
j | T (0)

j from prior distribution

5 end for

6 Sample (�2)(0) | {(T (0)
j , µ(0)

j )}mj=1, y

7 /* Step 2: Posterior draws */

8 for t = 1 to iter.max do

9 for j = 1 tom do

10 Set rji  yi �
P

h 6=j gh(xi;Th, µh)

11 Sample ⇠ ⇠ Bernoulli(p = 0.5), ⇠ =

8
><

>:

1! a grow proposal

0! a prune proposal

12 Sample T (t)
j | rj, �(t�1), T (t�1)

j from Metropolis-Hasting algorithm according to a

grow/prune proposal

13 Sample µ(t)
j | rj, T (t)

j , �(t�1) ⇠ N(⇥r̃j,⇥)

14 end for

15 Sample (�2)(t) | {(T (t)
j , µ(t)

j )}mj=1, y ⇠ IG(⌫+n
2 , 12 [yi �

Pm
j=1 gj(xi;T

(t)
j , µ(t)

j ) + ⌫�])

16 end for

3.4 BART Model for Classification

What has been discussed until now is the BART model for regression with continuous outcomes.

According to Chipman et al., BART could also be used for classi�cation with binary outcomes [4].

It could be extended to include classi�cation using the Logit model or Prohit models. The Logit

and Prohit link function could map probability p 2 (0, 1) to the real axis(�1,+1).
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De�nition 19 〈BART for classi�cation [4]〉

The concrete expression of the BART model used for classi�cation is given as follows:

P(yi = 1 | xi, {Tj, µ_j}mj=1) = u(
mX

j=1

gj(xi;Tj, µj)), (3.47)

where u(↵) = 1
1+exp(�↵) or u = �, the cumulative distribution function of a standard normal

distribution.

Then, let us consider the case when u = �.

P(yi = 1 | xi, {Tj, µj}mj=1) = �(
mX

j=1

gj(xi;Tj, µj)). (3.48)

Considering a latent variable Z , which satis�es:

8
><

>:

yi = 1{Zi > 0},

Zi ⇠ N (�, 1), =) Zi = �+ ✏i, ✏i ⇠ N (0, 1).

(3.49)

Thus, by symmetry of standard normal cdf,

P(yi = 1 | xi, {Tj, µj}mj=1) = P(Zi > 0 | xi, {Tj, µj}mj=1)

= P(�+ ✏i > 0 | xi, {Tj, µj}mj=1)

= P(✏i > �� | xi, {Tj, µj}mj=1)

= P(✏i  � | xi, {Tj, µj}mj=1)

= �(�).

(3.50)

According to De�nition 19, we could choose the value � as:

� =
mX

j=1

gj(xi;Tj, µj). (3.51)

Thus,

Zi ⇠ N (
mX

j=1

gj(xi;Tj, µj), 1). (3.52)
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Meanwhile, 8
><

>:

Zi > 0 if yi = 1,

Zi < 0 if yi = 0.

(3.53)

The preceding discussions provide us with the intuition to de�ne Zi conditioning on yi.

De�nition 20 〈latent variable Z [3]〉

We introduce latent variable Z with the following form in the procedure of the BART model for

classi�cation.

Zi | yi = 1 ⇠ max{N (
mX

j=1

gj(xi;Tj, µj), 1), 0},

Zi | yi = 0 ⇠ min{N (
mX

j=1

gj(xi;Tj, µj), 1), 0}.
(3.54)

As a result, in the procedure of the BART model for binary outcomes, we could use latent vari-

ableZ instead of y as continuous outcomes. We draw a newZi based on the current
Pm

j=1 gj(xi;Tj, µj)

in each MCMC iteration, and then the new Zi is used to update
Pm

j=1 gj(xi;Tj, µj).

In terms of the BART model’s prior distribution speci�cation, the independence assumptions

and hyperparameters are the same as in the BART model for continuous outcomes, except for

error variance �2. The parameter � is not included in the BART model for classi�cation due to

De�nition 19. The procedure in Gibbs sampler is nearly identical to Algorithm 1. As a result,

the Metropolis-Hastings within Gibbs Sampler for BART with Probit link is summarized below,

along with de�nitions of ⇥ and r̃j in De�nition 18.
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Algorithm 2:Metropolis-Hasting within Gibbs sampler for BART model with binary outcomes
Input: n observations {xi, yi}ni=1, , hyperparameter set (k,↵, �), number of MCMC

iterations iter.max, number of treesm.

Output: Posterior draws of
Pm

j=1 gj(xi;T
(t)
j , µ(t)

j ) and �(t), for t = 1, 2, . . . , iter.max.

1 /* Step 1: Initialization at t = 0 */

2 for j = 1 tom do

3 Initialize T (0)
j with a single leaf node

4 Sample µ(0)
j | T (0)

j from prior distribution

5 end for

6 /* Step 2: Posterior draws */

7 for t = 1 to iter.max do

8 Sample Zi | yi, {T (t�1)
j , µ(t�1)

j }mj=1 ⇠8
><

>:

max{N (
Pm

j=1 gj(xi;T
(t�1)
j , µ(t�1)

j ), 1), 0} if yk = 1

min{N (
Pm

j=1 gj(xi;T
(t�1)
j , µ(t�1)

j ), 1), 0} if yk = 0

for j = 1 tom do

9 Set rji  zi �
P

h 6=j gh(xi;Th, µh)

10 Sample ⇠ ⇠ Bernoulli(p = 0.5), ⇠ =

8
><

>:

1! a grow proposal

0! a prune proposal

11 Sample T (t)
j | rj, �(t�1), T (t�1)

j from Metropolis-Hasting algorithm according to a

grow/prune proposal

12 Sample µ(t)
j | rj, T (t)

j , �(t�1) ⇠ N (⇥r̃j,⇥)

13 end for

14 end for

3.5 BART implementation

3.5.1 Hyperparameter Setting

3.5.1.1 Hyperparameters for Tree Size

We know from Section 3.1 that the probability of a node at depth d being a branch node is ↵(1 +

d)�� ; thus, with the default setting ↵ = 0.95, � = 2 we can get the table of tree size and its

corresponding probability.
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tree size 1 2 3 4 5
probability 0.05 0.55 0.28 0.09 0.03

Table 3.1 Table to show the distribution of tree size.

Thus, it is likely to have trees of size 2 or 3. This means that the default setting for ↵ and �

prefers small trees.

3.5.1.2 Hyperparameters for Error Variance

As a rule of thumb, we have three realizations of a hyperparameter pair (v, q) to choose from.

Each of the choices leads to a di�erent probability distribution of � and thus results in di�erent

�tting results. (10, 0.75) leads to conservative �tting, (3, 0.9) leads to default �tting and (3, 0.99)

results in aggressive �tting. We use the default setting (v, q) = (3, 0.9) in our implementations.

3.5.1.3 Summary of Hyperparameter Setting

Cross Validation is a common method for �ne-tuning hyperparameters. We try several times

with di�erent settings of (⌫, q, k,↵, �), and their di�erences are slight. A number of articles have

mentioned that the default settings for the BART prior are e�ective and that BART models are

easy to use. As a result, they rarely require hyperparameter tuning. For hyperparameter m,

increasing the number of trees usually makes a di�erence for m < 200. However, for large m,

the di�erence is marginal, and the computing power and time consumption are excessive.

3.5.2 Inference Statistics

In posterior inference for the BART model, we discard the �rst 500 iterations and used the next

1000 iterations for posterior inference as the default setting. Let us assume that the posterior

draws of f(xi) are {f̂1(xi), f̂2(xi) . . . , f̂1000(xi)}, where f̂k is the sum of trees in one iteration

and xi denotes the ith observation, i.e. as described in Algorithm 1,

f̂k(xi) =
mX

j=1

gj(xi;T
(500+k)
j , µ(500+k)

j ). (3.55)
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Thus, the posterior mean of f(xi) is given by f̃(xi):

f̃(xi) =
1

1000

1000X

k=1

f̂k. (3.56)

Furthermore, we are able to derive credible intervals from posterior draws. We consider the fol-

lowing two approaches to creating credible intervals. Method.1was �rst proposed by Chipman

et al. while we also design Method.2 ourselves [4].

Method.1 Directly use quantiles:

To get a (1 � ↵)% credible interval is to calculate the upper ↵/2 and lower ↵/2 quantiles

of {f̂1(xi), f̂2(xi), . . . , f̂1000(xi)}.

Method.2 Add stochastic error:

From each posterior draw, we could also get �(500+k) and then draw posterior ŷk by adding

a stochastic error which is sampled from a normal distribution, i.e.

ŷk = f̂ ⇤ k(xi) + ✏̂

=
mX

j=1

gj(xi;T
(500+k)
j , µ(500+k)

j ) + ✏̂, ✏̂ ⇠ N (0, �(500+k)),
(3.57)

where xi denotes the ith observation. Then we can construct a (1� ↵)% credible interval

by calculate the upper ↵/2 and lower ↵/2 quantiles of {ŷ1, ŷ2 . . . , ŷ1000}

3.5.3 Posterior Inference for Propensity Score

Although the propensity score could be computed by any classi�cation algorithm in principle,

we estimate the true propensity score ei using Prohit BART for more robust results with the

following model.

ei = �(
mX

h=1

gh(x̃i;Th, µh)) + ✏i, ✏i ⇠ N (0, 1), (3.58)

where� denotes the cdf of standard normal distribution and the covariates x̃i to estimate propen-

sity score ei may be di�erent from covariates xi to estimate outcome variable Yi.

According to the o�cial website of the 2022 ACIC Data Challenge, treatment status can be

a function of practice-level covariates X and pre-treatment outcomes. Furthermore, because

we choose to work on a practice-level track, we discard patient-level covariates V and added
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the number of patients in each practice in the pre-treatment stage. Because the organization

committee, Mathematica, emphasizes the di�erence in outcomes Y between years 1 and 2, it is

included as an additional covariate.

There are several R packages available to implement the BART model, and we use the "BART"

package(Sparapani et al. [6]) for our implementations. The "BART" package includes functions

for the BART model that produce both continuous and binary results. It is convenient to select

data for training and testing. We use BART::pbart to model propensity scores with the previ-

ously mentioned covariates. It is worth noting that the function’s output values are not predicted

propensity scores êi. We need an additional logistic function to convert the posterior draws of a

sum of trees
Pm

j=1 gj(xi;Tj, µj) to range (0, 1). The procedure is outlined below.

Algorithm 3: BART to estimate propensity score using R package
Input: 3400 datasets and number of treesm.

Output: Estimated propensity scores for each dataset.

1 for i = 1 to 3400 do

2 Read ith dataset

3 Construct dataframe dfpscore with practice-level covariates X , pre-treatment outcomes

Y1 and Y2, number of patients in pre-treatment stage size1 and size2, di�erence of

year1 outcome and year2 outcome diff

4 Convert categorical variables to factors

5 Use BayesTree::makeind to dummy-encode factors

6 Run BART::pbart with treatment status Z as response variable for training data,

dfpscore as training data as predictors for training data

7 Convert BART::pbart outputs to probabilities with a logistic function

8 Average the probabilities across iterations to get estimated propensity scores

9 Save the ith dataset with estimated propensity scores

10 end for

3.5.4 Posterior Inference for SATTs

In this subsection, we will demonstrate how to estimate SATToverall. We use the following model

to �t outcomes Y in year 3 and year 4.

Yk = fk(x, Z, ê(x̃)) + ✏k k 2 year3, year4 (3.59)
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Where x denotes selected predictor covariates except treatment status, Z denotes treatment sta-

tus, ê(x) denotes the estimated propensity score which is obtained in Algorithm 5.

With regard to variable selection, for k = year3, we select the practice-level covariates X ,

estimated propensity score ê, treatment status variable Z , pre-treatment outcomes Y1 and Y2,

number of patients in pre-treatment stage size1 and size2, the di�erence of year1 outcome and

year2 outcome diff . While for k = year4, we select the same covariates as for year3 together

with the year 3 outcome Y n_patients3. It is important to note that we add estimated propensity

score as an additional covariate for both year 3 and year 4 to increase the robustness of the model.

Moreover, to reduce the number of covariates, we performed the variable selection algorithms

proposed by Bleich et al. [1]. Unfortunately, no signi�cant results were obtained. The selected

variables varied too much across di�erent datasets and the prediction results were bad with the

selected variables. As a result, they were not used in my implementations.

Since

SATToverall =
1

P4
t=3 Nt

4X

t=3

X

i:Zi=1

n_patientst,i(Yt,i(1)� Yt,i(0)), (3.60)

with i as the practice id, I built two BART models respectively with R package "BART". I build

one BART model with the selected predictors and Y3,i as the response variable with, and then

predicted Y3,i(1) and Y3,i(0). I used Y4,i as the response variable with the selected predictors

to build another BART model and then predicted Y4,i(1) and Y4,i(0) in the same way. The pre-

dicted values of these two BART models are also used to compute annual SATTs and subgroup

SATTs. I tried both Method.1 and Method.2 in Section 3.5.2 to construct credible intervals.

The processes are summarized below.
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Algorithm 4: BART to calculate SATTs using R package with Method.1 to construct credible

intervals
Input: 3400 datasets and number of treesm.

Output: Estimated SATToverall, SATTyearly and SATTsubgroup and their corresponding

credible intervals for each dataset.

1 Initialize record dataset which is used to save estimated SATTs and the upper and lower

bounds of credible intervals

2 Initialize count = 0 which remembers the index to write the estimations in the record

dataset

3 for i = 1 to 3400

4 Read ith dataset

5 Read the record dataset

6 Read the estimated propensity score ê saved in Algorithm 5

7 Construct dataframe dfyear3 which consists of the practice-level covariates X ,

treatment status variable Z , estimated propensity score ê, pre-treatment outcomes Y1

and Y2, number of patients in pre-treatment stage size1 and size2, di�erence of year1

outcome and year2 outcome diff and estimated propensity score ê

8 Construct dataframe dfyear4 which consists of the practice-level covariates X ,

treatment status variable Z , estimated propensity score ê, pre-treatment outcomes Y1

and Y2, number of patients in pre-treatment stage size1 and size2, di�erence of year1

outcome and year2 outcome diff , year3 outcomes Y3 and estimated propensity score

ê

9 Convert categorical variables in dataframes dfyear3 and dfyear4 to factors

10 Use BayesTree::makeind to dummy-encode factors in dataframes dfyear3 and dfyear4

11 Select rows in dataframe dfyear3 with Z = 1 and save it as df target
year3

12 Change the column of Z in df target
year3 to (0, 0, . . . , 0)t and save it as ďf target

year3

13 Select rows in dataframe dfyear4 with Z = 1 and save it as df target
year4

14 Change the column of Z in df target
year4 to (0, 0, . . . , 0)t and save it as ďf target

year4

15 Run BART::wbart with Y3 as response variable for training data, dfyear3 as predictors

for training data, rbind(df target
year3 , ďf

target
year3 ) as predictors for test data

16 Run BART::wbart with Y4 as response variable for training data, dfyear4 as predictors

for training data, rbind(df target
year4 , ďf

target
year4 ) as predictors for test data
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Algorithm 4: BART to calculate SATTs using R package with Method.1 to construct credible

intervals

17 Initialize 15 numeric vectors each with length 1000 for sattoverall, sattyear3, sattyear4

and 12 subgroup SATTs

18 Use predictions from the two BART models and the number of patients of

corresponding practice in year 3 n_patientsyear3 and year 4 n_patientsyear4 to

calculate SATTs in 1000 posterior draws and save them in the 15 numeric vectors

19 Average each of 15 numeric vectors to get the �nal estimation for

sattoverall, sattyear3, sattyear4 and 12 subgroup SATTs and save it to the record dataset

20 Construct credible intervals for 15 SATTs with 0.05 and 0.95 quantiles of their

corresponding numeric vectors as lower and upper bounds and save them to the

record dataset

21 Update count count+ 15

22 end for
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Algorithm 5: BART to calculate SATTs using R package with Method.2 to construct credible

intervals
Input: 3400 datasets and number of treesm.

Output: Estimated SATToverall, SATTyearly and SATTsubgroup and their corresponding

credible intervals for each dataset.

1 Initialize record dataset which is used to save estimated SATTs and the upper and lower

bounds of credible intervals

2 Initialize count = 0 which remembers the index to write the estimations in the record

dataset

3 Set num_samples = 10 which re�ects number of posterior Yi sampled from each

posterior draw N(
Pm

k=1 gk(xi;T
(t)
k , µ(t)

k ), �(t)), t 2 {1, 2, . . . , 1000}

4 for i = 1 to 3400

5 Read ith dataset

6 Read the record dataset

7 Read the estimated propensity score ê saved in Algorithm 5

8 Construct dataframe dfyear3 which consists of the practice-level covariates X ,

treatment status variable Z , estimated propensity score ê, pre-treatment outcomes Y1

and Y2, number of patients in pre-treatment stage size1 and size2, di�erence of year1

outcome and year2 outcome diff and estimated propensity score ê

9 Construct dataframe dfyear4 which consists of the practice-level covariates X ,

treatment status variable Z , estimated propensity score ê, pre-treatment outcomes Y1

and Y2, number of patients in pre-treatment stage size1 and size2, di�erence of year1

outcome and year2 outcome diff , year3 outcomes Y3 and estimated propensity score

ê

10 Convert categorical variables in dataframes dfyear3 and dfyear4 to factors

11 Use BayesTree::makeind to dummy-encode factors in dataframes dfyear3 and dfyear4

12 Select rows in dataframe dfyear3 with Z = 1 and save it as df target
year3

13 Change the column of Z in df target
year3 to (0, 0, . . . , 0)t and save it as ďf target

year3

14 Select rows in dataframe dfyear4 with Z = 1 and save it as df target
year4

15 Change the column of Z in df target
year4 to (0, 0, . . . , 0)t and save it as ďf target

year4

16 Run BART::wbart with Y3 as response variable for training data, dfyear3 as predictors

for training data, rbind(df target
year3 , ďf

target
year3 ) as predictors for test data
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Algorithm 5: BART to calculate SATTs using R package with Method.2 to construct credible

intervals

17 for j = 1 to 1000

18 Run BART::wbart with Y4 as response variable for training data, dfyear4 as

predictors for training data, rbind(df target
year4 , ďf

target
year4 ) as predictors for test data

19 Initialize 15 numeric vectors each with length (1000⇥ num_samples) for

sattoverall, sattyear3, sattyear4 and 12 subgroup SATTs

20 Extract the posterior �(j)
year3, �

(j)
year4 and

Pm
k=1 gk(xi;T

(j)
k,year3, µ

(j)
k,year3),

Pm
k=1 gk(xi;T

(j)
k,year4, µ

(j)
k,year4) in the jth posterior

draw for the two BART models respectively

21 Sample num_samples Yi3 from N(
Pm

k=1 gk(xi;T
(j)
k,year3, µ

(j)
k,year3), �

(j)
year3)

22 Sample num_samples Yi4 from N(
Pm

k=1 gk(xi;T
(j)
k,year4, µ

(j)
k,year4), �

(j)
year4)

23 Use sampled num_samples (Yi3, Yi4) and the number of patients in

corresponding practice n_patientsyear3, n_patientsyear4 to calculate

sattoverall, sattyear3, sattyear4 and 12 subgroup SATTs, then save them to 15

numeric vectors
24 end for

25 Use predictions from the two BART models and the number of patients of

corresponding practice in year 3 n_patientsyear3 and year 4 n_patientsyear4 to

calculate SATTs in 1000 posterior draws and save them in the 15 numeric vectors

26 Average each of 15 numeric vectors to get the �nal estimation for

sattoverall, sattyear3, sattyear4 and 12 subgroup SATTs and save it to the record dataset

27 Construct credible intervals for 15 SATTs with 0.05 and 0.95 quantiles of their

corresponding numeric vectors as lower and upper bounds and save them to the

record dataset

28 Update count count+ 15

29 end for
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4 Bayesian Causal Forest(BCF)

4.1 Regularization-induced confounding(RIC)

Consider a true model with X = (x1, x2, . . . , , xn)t, y = (y1, y2, . . . , yn)t,

yi = h(xi)� Zi + ✏i, ✏i ⇠ N (0, 0.62) i.i.d.

xi1, xi2 ⇠ N (0, 1) i.i.d.

h(xi) =

8
><

>:

1 if xi1 < xi2,

�1 if xi1 � xi2.

P(Zi = 1 | xi1, xi2) = �(h(xi)).

(4.1)

This example demonstrates the so-called "targeted selection phenomenon". In real life, doctors

treat patients who they think need it. If the expected outcome without treatment is large, the

probability of treatment increases or decreases. In model 4.1, E[yi | Zi = 0, xi] = h(xi), thus,

P(Zi = 1 | xi1, xi2) = �(E[yi | Zi = 0, xi])

=

8
><

>:

�(1) = 0.84, if xi1 < xi2,

�(�1) = 0.16, if xi1 � xi2.

(4.2)

In this case, patients with xi1 < xi2 are �ve times more likely to receive treatment owing to their

better outcomes when not treated. Hahn et al. �rst introduced the concept of a phenomenon

called "regularization-induced confounding" (RIC) [8]. The regularization-induced confounding

phenomenon is consistently produced by targeted selection.

De�nition 21 〈Regularization induced confounding (RIC) [8]〉

The regularization-induced confounding occurs when the following conditions are ful�lled:



1. h(xi) := E[yi | Zi = 0, xi] is complex.

2. e(xi) := P(Zi = 1 | xi) looks like h(xi), then misattributing h(xi) to treatment e�ect can

result in a similar overall �t with a much simpler response surface, which may be favored by

a regularization prior.

In De�nition 21, since e(xi) := P(Zi = 1 | xi) looks like h(xi), h(xi) could be approximated

by a tree that splits at Zi. Given the prior speci�cation in the BART model, which prefers small

trees and penalizes the total number of splits, the BART model would rather split on Zi than xi.

This is referred to as "confusing confounding" for treatment e�ects. As a result, when only the

BART model is used, it is likely to have a higher bias.

A simple solution to solve regularization-induced confounding (RIC) is to add propensity score

as an additional covariate. Adding propensity score as an additional covariate makes it simple to

deconfound. Section 2.5 discussed using a classi�cation model to estimate propensity score e(xi).

Assuming that the estimated propensity score is ê(xi), the new BART model with propensity

score is:

yi = f(xi, ê(xi), zi) + ✏i, ✏i ⇠ N (0, �2). (4.3)

4.2 Bayesian Causal Forest(BCF)

Hahn et al. �rst proposed the Bayesian Causal Forest (BCF), which is a variant of the BART

model [8]. BCF is speci�cally designed for estimating treatment e�ects. The BART model lacks

a direct mechanism for regularizing the treatment e�ect function. Hahn et al. also proposed the

following model to reparameterize the BART model [8]:

yi = h(xi, ê(xi)) + ⌧(xi)zi + ✏i, ✏i ⇠ N (0, �2). (4.4)

Thus,

⌧(xi) = E[yi | xi, zi = 1]� E[yi | xi, zi = 0]. (4.5)

Let ⌧(xi) denote the treatment e�ect function. BCF model consists of two sequential BART mod-

els, one for modelling h(·) and the other for modelling ⌧(·). Hence, we could apply stricter BART

prior on ⌧(·) by changing the hyperparameters set (m,↵, �) to have fewer trees and smaller sizes

of trees. As a result, the BCF model is more robust than the BART model.
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De�nition 22 〈Bayesian Causal Forest(BCF) model [8]〉

In more detail, the BCF could be expressed as

yi =
LX

l=1

ul(xi, ê(xi);Tl, µl) +
KX

k=1

vk(xi;Sk,!k) + ✏i, ✏i ⇠ N (0, �2), (4.6)

where ul is the function that assigns µlj 2 µj to (xi, ê(xi)) ,{T1, T2, . . . , TL} denotes L trees for

modelling h(xi, ê(xi)). {µ1, µ2, . . . , µL} denotes the mean vectors of the corresponding leaf nodes.

vk is the function that assigns !kj 2 !k to xi, {S1, S2, . . . , SK} denotesK trees for modelling ⌧(xi),

and their corresponding leaf node mean vectors are {!1,!2, . . . ,!K}.

In the BCF model, E[yi | xi, ê(xi)] is approximated by sum of L+K trees.

De�nition 23 〈Total residuals [10]〉

The total residual in the BCF model is de�ned as follows:

ri := yi �
LX

l=1

ul(xi, ê(xi);Tl, µl)�
KX

j=1

vj(xi;Sk,!k). (4.7)

De�nition 24 〈Prognostic residual [10]〉

The prognostic residual in the BCF model is de�ned as follows:

p := yi �
LX

l=1

ul(xi, ê(xi);Tl, µl). (4.8)

De�nition 25 〈Treatment residual [10]〉

The treatment residual in the BCF model is de�ned as follows:

tr := yi �
KX

j=1

vj(xi;Sj,!j). (4.9)

In accordance with Algorithm 6, the update steps for tree Tl, Sj also depend on partial resid-

uals.
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De�nition 26 〈Partial residual [10]〉

The partial residuals corresponding to the prognostic term or the treatment term in the BCF model

are de�ned as follows:

r[T ]
li := ri + ul(xi, ê(xi);Tl, µl),

r[S]ji := ri + vj(xi;Sj,!j).
(4.10)

The partial residuals de�ned in De�nition 26 have the same form as the partial residuals de�ned

in De�nition 15 due to Equation 3.14.

The BCF model could be decomposed into two sequential BART models. It is obvious that

ri ⇠ N (0, �2), and thus

r[T ]
li ⇠ N (ul(xi, ê(xi);Tl, µl), �

2),

r[S]ji ⇠ N (vj(xi;Sj,!j), �
2).

(4.11)

Recalling the partial residual in Section 3.2,

rji ⇠ N (gj(xi;Tj, µj), �
2). (4.12)

They share a similar form and could thus be used to generate posterior draws in the same way.

In addition, the mathematical details to derive p(r[T ]
li | Tl, �), p(µl | r[T ]

li , Tl, �), p(r
[S]
ji | Sj, �),

p(µj | r[S]ji , Sj, �) is the same as described in Section 3.2. We refer h(·) as the prognostic term,

⌧(·) as the treatment term. No published article clearly shows the procedure and algorithm for

the vanilla BCF model. We summarize the procedure and algorithm for the vanilla BCF model

based on contents from Krantsevich et al. and Caron et al. [10, 11]. The procedure for the BCF is

summarized as follows:

Step.1 Update prognostic term:

We �rst initialize L trees for modelling h(·) with a single leaf node. The covariate space

included the estimated propensity score ê(xi). The prior speci�cation follows the same as

what has been discussed in Section 3.1, including regularization in tree size, independence

assumption of distinct observations, and leaf nodes. The partial residuals updating, on the

other hand, is quite di�erent. In this case, the partial residual depends on the total residual.
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For each tree l 2 {1, 2, . . . , L}, r[T ]
l is computed. After one loop through trees, the total

residual must be updated. For each tree, we sequentially update the following terms:

⇧ Tl | r[T ]
li , �, T prev

l

⇧ µl | r[T ]
li , Tl, �

After one iteration of L trees, we update the total residual ri and sample new �.

Step.2 Update treatment term:

Then, for modelling ⌧(·), we then initializeK trees. For each tree j 2 {1, 2, . . . , K}, r[S]j is

computed. The main di�erence is that we have stricter prior regularization. The residuals

updating are updated in the same order as in Step.1. K tends to be much smaller than L.

⇧ Sk | r[S]ji , �, S
prev
k

⇧ ! | r[S]ji , Sk, �

After one iteration of K trees, we update the total residual ri and sample new �.

Following the notations in De�nition 18, we de�ne ⇥1, ⇥2, r̃Tl and r̃[S]j in posterior draws of

the BCF for two sequential BART models.

De�nition 27 〈matrix⇥ and vector r̃j in two sequential BARTmodels of BCF separately〉

With basis matrix de�nition in De�nition 17, we could easily de�ne basis matrics X̂l and X̄j , which

correspond to the prognostic term and the treatment term respectively.

Following the de�nition of⇥ and r̃j in De�nition 18, we could get⇥1 and r̃
[T ]
l ,⇥2 and r̃

[S]
j for the two

sequential BART models within the BCF model. We denote the covariates used to predict prognostic

term as x.

⌅ For the lth tree in the posterior draws of prognostic term,

⇥1 = (⌧�1
1 IWl

+ ��2X̂ t
l X̂l)

�1, (4.13)

r̃[T ]
l = ��2X̂ t

l r
[T ]
l , (4.14)
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where the lth tree has Wl leaf nodes, {Rl1, Rl2, . . . , RlWl
} is the partition of covariate space

by the lth decision tree, µl | Tl ⇠ N (~0, ⌧1IWl
) in the prior speci�cation, and:

X̂l =

2

6666664

1(x1 2 Rl1) 1(x1 2 Rl2) · · · 1(x1 2 RlWl
)

1(x2 2 Rl1) 1(x2 2 Rl2) · · · 1(x2 2 RlWl
)

...
... . . . ...

1(xn 2 Rl1) 1(xn 2 Rl2) · · · 1(xn 2 RlWl
)

3

7777775
. (4.15)

Although X̄j is in a similar form as X̂l, its covariates to predict treatment term may be di�erent

from x and we denote them as x̃.

⌅ For the jth tree in the posterior draws of treatment term,

⇥2 = (⌧�1
2 IDj + ��2X̄ t

jX̄j)
�1, (4.16)

r̃[S]j = ��2X̄ t
jr

[S]
j , (4.17)

where the jth tree has Dj leaf nodes, {Gj1, Gj2, . . . , GjDj} is the partition of covariate space

by the jth decision tree, !j | Sj ⇠ N (~0, ⌧2IDj) in the prior speci�cation, and:

X̄j =

2

6666664

1(x̃1 2 Gj1) 1(x̃1 2 Gj2) · · · 1(x̃1 2 GjDj)

1(x̃2 2 Gj1) 1(x̃2 2 Gj2) · · · 1(x̃2 2 GjDj)
...

... . . . ...

1(x̃n 2 Gj1) 1(x̃n 2 Gj2) · · · 1(x̃n 2 GjDj)

3

7777775
. (4.18)
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4.3 Summary of BCF Model

Algorithm 6: Bayesian Causal Forest(BCF)
Input: n observations {xi, ê(xi), yi}ni=1, and hyperparameter set (⌫, q, k1,↵1, �1) for

modelling prognostic term, (⌫, q, k2,↵2, �2) for modelling treatment term, number

of MCMC iterations iter.max, number of trees K and L.

Output: Posterior draws of [
PL

l=1 ul(xi, ê(xi);T
(t)
l , µ(t)

l ) +
PK

j=1 vj(xi;S
(t)
j ,!(t)

j )], for

t = 1, 2, . . . , iter.max.

1 /* Step 1: Initialization at t = 0 */

2 for l = 1 to L do

3 Initialize T (0)
l with a single leaf node

4 Sample µ(0)
l | T (0)

l from prior distribution

5 end for

6 for j = 1 to K do

7 Initialize S(0)
j with a single leaf node

8 Sample !(0)
j | S(0)

j from prior distribution

9 end for

10 Sample (�2)(0) | {(T (0)
l , µ(0)

l )}Ll=1, {(S
(0)
j ,!(0)

j )}Kj=1, y

11 Initialize ri  yi �
PL

l=1 ul(xi, ê(xi);T
(0)
l , µ(0)

l )�
PK

j=1 vj(xi;S
(0)
j ,!(0)

j )

12 /* Step 2: Posterior draws of prognostic term */

13 for t = 1 to iter.max do

14 for l = 1 to L do

15 Set r[T ]
li  ri + ul(xi, ê(xi);Tl, µl)

16 Sample T (t)
l | r[T ]

l , �(t�1), T (t�1)
l from Metropolis-Hasting algorithm

17 Sample µ(t)
l | r[T ]

l , T (t)
l , �(t�1) ⇠ N(⇥1r̃

[T ]
l ,⇥1)

18 end for

19 Update ri  yi �
PL

l=1 ul(xi, ê(xi);T
(t)
l , µ(t)

l )�
PK

j=1 vj(xi;S
(t�1)
j ,!(t�1)

j )

20 Sample (�2)(t) | {(T (t)
l , µ(t)

l )}Ll=1, {(S
(t�1)
j ,!(t�1)

j )}Kj=1, y ⇠

InvGamma(⌫+n
2 , 12 [yi �

PL
l=1 ul(xi, ê(xi);T

(t)
l , µ(t)

l )�
PK

j=1 vj(xi;S
(t�1)
j ,!(t�1)

j )])

21 end for
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Algorithm 6: Bayesian Causal Forest(BCF)

22 /* Step 3: Posterior draws of treatment term */

23 for t = 1 to iter.max do

24 for j = 1 to K do

25 Set r[S]ji  ri + vj(xi;Sj,!j)

26 Sample S(t)
j | r[S]j , �(t), S(t�1)

j from Metropolis-Hasting algorithm

27 Sample !(t)
j | r[S]j , S(t)

j , �(t) ⇠ N(⇥2r̃
[S]
j ,⇥2)

28 end for

29 Update ri  yi �
PL

l=1 ul(xi, ê(xi);T
(t)
l , µ(t)

l )�
PK

j=1 vj(xi;S
(t)
j ,!(t)

j )

30 Sample (�2)(t) | {(T (t)
l , µ(t)

l )}Ll=1, {(S
(t)
j ,!(t)

j )}Kj=1, y ⇠

IG(⌫+n
2 , 12 [yi �

PL
l=1 ul(xi, ê(xi);T

(t)
l , µ(t)

l )�
PK

j=1 vj(xi;S
(t)
j ,!(t)

j )])

31 end for

Due to the modi�cations discussed above, BCF outperforms BART and other tree-based models

in CATE estimations when compared to BART. SATTs are the target estimands of the 2022 ACIC

data challenge. Because SATTs are calculated using estimated ⌧(·), thus BCF model is more likely

to have better predictions for the targeted estimands.

4.4 BCF Implementation

Bayesian causal forest(BCF) consists of two sequential BART models. For our BCF implementa-

tions, we use the R package "bcf," whichwaswritten byHahn et al. [7]. Let us recall the expression

of the BCF model:

yi = h([xi ê(x̃i)]) + ⌧(wi)zi + ✏i

=
LX

l=1

ul(xi, ê(x̃i);Tl, µl) +
KX

k=1

vk(xi;Sk,!k) + ✏i, ✏i ⇠ N (0, �2).
(4.19)

Equation 4.19 di�ers slightly from De�nition 22 of the BCF model proposed by Hahn et al., since

wi may di�er from xi in implementations [8]. Moreover, according to Section 3.5.3, the predictor

covariates x̃i used to estimate propensity score ê are also di�erent from xi.
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4.4.1 Hyperparameters Tuning

The tuning situation for hyperparameters is similar to that of the BART model. For the BART

used to estimate h(·), we simply use the default settings of hyperparameters for the BARTmodel.

However, for the BART model used to estimate ⌧(·), Caron et al. proposed that it uses a smaller

number of trees in the ensemble by settingK = 50 [11]. It also prefers smaller tree sizes for each

tree by changing the hyperparameters to control tree depth (⌫, �) from (0.95, 2) to (0.25, 3). The

reasoning for changing the hyperparameter settings of BART to estimate ⌧(·) is to improve its

ability to detect weak heterogeneous patterns. Similarly to the BART implementations, the �rst

500 iterations were discarded and the next 1000 iterations were used for posterior inference.

4.4.2 Inference Statistics

Let us assume that the posterior draws of ⌧(wi) to be {⌧̂1(wi), ⌧̂2(wi), . . . , ⌧̂1000(wi)}, where ⌧̂k is

the sum of trees of the latter BART model in one iteration, i.e. as described in Algorithm 6,

⌧̂k(wi) =
KX

j=1

vj(wi;S
(0)
j ,!(0)

j ), (4.20)

where xi denotes the ith practice in year3 or year4. Hence, the posterior mean ⌧̃(wi) of ⌧(wi) is

given by 1
1000

P1000
t=1 ⌧̂t. Let us denote the posterior mean of ⌧(wi) as ⌧̃(wi). Like Method.2 in

Section 3.5.2, to get a (1�↵)% credible interval for ⌧̃(wi) is to calculate the upper ↵/2 and lower

↵/2 quantiles of {⌧̂1(wi), ⌧̂2(wi), . . . , ⌧̂1000(wi)}.

4.4.3 Posterior Inference for SATTs

In the BCF model, the estimated propensity score is part of the input data. We choose the esti-

mated propensity score modelled by BART using Algorithm 5. Unlike processes in Algorithm 6,

we do not need to take treated practices and construct test data to predict Yt,1(1), Yt,i(0), t 2

{3, 4} before running BART. After obtaining the posterior draws of ⌧(·), we could directly select

the practice id for which Zi = 1. Overall SATT could thus be re-expressed as:

SATToverall =
1

P4
t=3 Nt

4X

t=3

X

i:Zi=1

n_patientst,i⌧̃(wi). (4.21)
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Like the implementations in the BART model, we implement the BCF for year 3 and year 4 re-

spectively. The variable selections are nearly identical to those found in BART implementa-

tions. The design matrix in R package "bcf" consists of selected covariates except for estimated

propensin_patientsty score ê(x̃) and treatment status Z . In a BCF model, the design matrix for

h(·) and ⌧(·)must be speci�ed separately. With the same notations of covariates in Section 3.5.4,

the design matrix for h(·) denoted as x_moderate is (X, Y1, Y2, size1, size2, diff) for year3 and

(X, Y1, Y2, Y3, size1, size2, diff) for year4. The design matrix for ⌧(·) is denoted as x_control

and we set x_control = X , where X denotes the practice-level covariates. The regularization

prior for ⌧(·) selects a much smaller number of trees and a much smaller tree size, resulting in

a much smaller number of splitting rules across the trees. That is why, to estimate ⌧(·), we only

use a subset of covariates X . Section 4.4.2 describes how to construct con�dence intervals for

⌧̃(wi), i : Zi = 1.

4.4.4 Summary of BCF Implementation

The process to implement BCF in the R package to estimate SATTs is summarized as follows.
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Algorithm 7: BCF to calculate SATTs using R package
Input: 3400 datasets and number of trees K and L

Output: Estimated SATToverall, SATTyearly and SATTsubgroup and their corresponding

credible intervals for each dataset.

1 Initialize record dataset which is used to save estimated SATTs and the upper and lower

bounds of credible intervals Initialize count = 0 which remembers the index to write the

estimations in the record dataset for i = 1 to 3400

2 Read ith dataset Read the record dataset Read the estimated propensity score ê saved

in Construct dataframe dfyear3 which consists of the practice-level covariates X ,

treatment status variable Z , estimated propensity score ê, pre-treatment outcomes Y1

and Y2, number of patients in pre-treatment stage size1 and size2, di�erence of year1

outcome and year2 outcome diff and estimated propensity score ê

3 Construct dataframe dfyear4 which consists of the practice-level covariates X ,

treatment status variable Z , estimated propensity score ê, pre-treatment outcomes Y1

and Y2, number of patients in pre-treatment stage size1 and size2, di�erence of year1

outcome and year2 outcome diff , year3 outcomes Y3 and estimated propensity score

ê

4 Convert categorical variables in dataframes dfyear3 and dfyear4 to factors

5 Use BayesTree::makeind to dummy-encode factors in dataframes dfyear3 and dfyear4

6 Convert dataframes dfyear3, dfyear4 to matrices X_moderateyear3, X_moderateyear4

7 Select the id.pratice of rows in dataframe dfyear3 with Z = 1 and save it as

treated_index

8 Run bcf::bcf (Y3, Z , x_controlyear3, x_moderateyear3 = X , ê, nburn=500, nsim=1000,

ntreecontrol =K, ntreemoderate =L)

9 Run bcf::bcf (Y4, Z , x_controlyear4, x_moderateyear4 = X , ê, nburn=500, nsim=1000,

ntreecontrol =K, ntreemoderate =L)

10 Initialize 15 numeric vectors each with length 1000 for sattoverall, sattyear3, sattyear4

and 12 subgroup SATTs
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Algorithm 7: BCF to calculate SATTs using R package

11 Select posterior draws of ⌧(·) from the two BCF models with row index treated_index

and save them as matrices ⌧̂ targetyear3 , ⌧̂
target
year4

12 Use matrices ⌧̂ targetyear3 , ⌧̂
target
year4 and the number of patients in corresponding practice at

year 3 n_patientsyear3 and year 4 n_patientsyear4 to calculate SATTs in 1000

posterior draws and save them in the 15 numeric vectors

13 Average each of 15 numeric vectors to get the �nal estimation for sattoverall, sattyear3,

sattyear4 and 12 subgroup SATTs and save it to the record dataset

14 Construct credible intervals for 15 SATTs with 0.05 and 0.95 quantiles of their

corresponding numeric vectors as lower and upper bounds and save them to the

record dataset

15 Update count count+ 15

16 end for
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5 Double Machine Learning

Machine learning methods were designed for prediction, but standard machine learning methods

are biased estimators for treatment e�ects. Since mean squared error(MSE) equals bias squared

plus variance, to minimize MSE, we trade o� variance for bias. Another problem is that consis-

tent machine learning methods converge more slowly than 1/
p
n [18]. Furthermore, standard

machine learning methods do not provide con�dence intervals for the treatment estimates. As

a result, using machine learning methods for causal inference is tricky and this is why we need

double machine learning for causal inference. The following are the primary goals of the double

machine learning model:

• Eliminate the bias,

• Achieve
p
n-consistency,

• Construct valid con�dence intervals for estimators [18].

There are two sources of bias in naive estimators frommachine learning models. One source of

bias is regularization bias. Machine learning algorithms employ regularization to avoid over�t-

ting data with complex functional forms. Regularization reduces estimator variance and prevents

over�tting. However, it also introduces bias and causes a slower convergence rate [18]. Another

source of bias is over�tting. The model over�ts when it models the idiosyncrasies of the partic-

ular sample too closely [18]. This results in poor out-of-sample performance and means that the

model is unable to generalize well to new data. Sometimes the e�orts to regularize fail to prevent

over�tting.

Chernozhukov et al. �rst proposed the double or debiased ML (DML) methods that make use

of Neyman orthogonality and sample-splitting [14]. Double machine learning overcomes these

two sources of bias in naive estimators from machine learning models. It corrects bias caused by

regularization using Neyman orthogonality and bias caused by over�tting using sample-splitting.



5.1 Neyman Orthogonality

De�nition 28 〈Nuisance parameter〉

A nuisance parameter is any unspeci�ed parameter that must be accounted for when hypothesis

testing for the parameters of interest.

De�nition 29 〈Identi�cation condition equation [13]〉

Let us assume that W is the observation data, ✓ is the targeted parameter, ✓0 is the true value of ✓,

⌘ is the nuisance parameter, ⌘0 is the true value of ⌘ [15]. The Identi�cation condition equation for

score function  is:

E[ (W ; ✓0, ⌘0)] = 0. (5.1)

De�nition 30 〈Neyman orthogonality [13]〉

Let us assume that W is the observation data, ✓ is the targeted parameter, ✓0 is the true value of

✓, ⌘ is the nuisance parameter, ⌘0 is the true value of ⌘, and  (·) is the score function [15]. Then

the score function  (·) obeys Neyman orthogonality if the Gateaux derivative of score function  (·)

regarding the nuisance parameter ⌘ is 0 [13, 19]. The mathematical expression is as follows:

@⌘ E[ (W ; ✓0, ⌘0)][⌘ � ⌘0] :=
d

dr
E[ (W ; ✓0, ⌘0 + r(⌘ � ⌘0))] |r=0

= 0.
(5.2)

5.2 Sample-Splitting

Assuming that in total we have N observations, we divide the sample into K folds, each of size

n = N/K . For simplicity, let us assume N/K is an integer. Let us denote the kth fold by Ik and

its complement by Ick, for k 2 {1, 2, · · · , K}.Then, for each fold, we build a machine learning

estimator �̂k and use the observations in Ick to get the �t and estimate the parameters. Cross-

�tting is based on sample splitting and was emphasized by Chernozhukov et al. to allow for

broader use of machine learning models to estimate the nuisance parameters [15, 13, 14].

De�nition 31 〈Cross-�tting [13]〉

Assume that after sample splitting, we haveK partitions of N observations, i.e. {(I1, Ic1), (I2, Ic2),

· · · , (IK , IcK)}, and ⌘0 is true value of nuisance parameter, ✓0 is the true value for the target param-
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eter [15]. For k 2 {1, 2, · · · , K}, ⌘̂k0 is the machine learning estimator for ⌘0 based on observations

in Ick is de�ned as below:

⌘̂k0(I
c
k) = ⌘̂k0((Wi)i/2Ic). (5.3)

Then, we use ⌘̂k0 for the complementary set Ik and get K estimators of ✓0, which is de�ned by

✓̌k0(W ; ⌘̂k0(I
c
k)), and �nally we average the K estimators to get ✓̃0:

✓̃0 :=
1

K

KX

k=1

✓̌k0(W ; ⌘̂k0(I
c
k)). (5.4)

During the cross-�tting process, the most important thing to notice is that the estimator we use

for fold k was �t in Ick. Let us now consider the identi�cation condition E[ (W ; ✓0, ⌘0)] = 0 and

the partition(Ik, Ick) [15, 13, 14]. To get ✓̌k0(W ; ⌘̂k0(I
c
k)) is to solve the following equation which

represents the identi�cation condition:

E[ (W ; ✓̌k0 , ⌘̂
k
0(I

c
k))] =

1

n

X

i2Ik

 (Wi; ✓̌
k
0 , ⌘̂

k
0(I

c
k)).

= 0

(5.5)

De�nition 32 〈A variant of Cross-�tting [13]〉

Using the same notations as in De�nition 31, we could construct another estimator ✓̄0, which is the

solution of the following equation [15, 13, 14]:

1

K

KX

k=1

E[ (W ; ✓̄0, ⌘̂
k
0(I

c
k))] =

1

N

KX

k=1

X

i2Ik

 (Wi; ✓̄0, ⌘̂
k
0(I

c
k))

= 0.

(5.6)

5.3 Model

In terms of double machine learning, there are two classical models for estimating causal e�ects.
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5.3.1 Partially Linear Regression Model

Partially linear regression model is de�ned as follows [15, 13, 14, 21]:

Y = Z✓0 + g0(X) + ⇣, E[⇣ | Z,X] = 0, (5.7)

Z = m0(X) + ⇠, E[⇠ | X] = 0, (5.8)

where Y is the outcome variable, Z is the binary treatment variable,X consists of other predictor

covariates, and ⇣ and ⇠ are stochastic errors [21].

The following is themost common procedure for performing doublemachine learning to estimate

✓0:

Procedure 5.1 Estimate ✓0 via double machine learning

1. Use a machine learning model ĝ0 with covariates X to estimate y and set estimated residuals

Ŵ = Y � ĝ0(X),

2. Use a machine learning model m̂0 with covariates X to estimate y and set estimated residuals

V̂ = Z � m̂0(X),

3. Estimate ✓0 by regressing the residual Ŵ on V̂ and get the estimation ✓̂0 [21].

De�nition 33

The following is the score function for estimating ATE using the Partially Linear Regressionmodel [15,

13, 14]:

 (W ; ✓, ⌘) := (Y � g(X)� ✓(Z �m(X)))(Z �m(X)), (5.9)

where W := (X, Y, Z), the nuisance parameter ⌘ := (g,m), and the true value for the nuisance

parameter is ⌘0 := (g0,m0) [15]. Moreover,

E[Y | X] = g0(X), (5.10)

E[Z | X] = m0(X). (5.11)

Theorem 4

Performing Procedure 5.2 to estimate ✓0 in the Partially Linear Regressionmodel is equivalent to using

the score function in De�nition 33 to solve identi�cation condition equation without sample-splitting

to estimate ✓0.
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Proof. Using the estimation of coe�cients in a simple linear regression model, for Procedure 5.2,

we get:

✓̂0 = (
1

n

nX

i=1

V̂ 2
i )

�1 1

n

nX

i=1

V̂iŴi, (5.12)

wheren is the number of observations. Next, let us consider the identi�cation conditionE[ (W ; ✓0, ⌘̂0)] =

0 with score function in De�nition 33,

E[ (W ; ✓̃0, ⌘̂0)] =
1

n

nX

i=1

[(yi � ĝ0(xi)� ✓̃0(Zi � m̂0(xi)))(Zi � m̂0(xi))]

=
1

n

nX

i=1

(yi � ĝ0(xi))(Zi � m̂0(xi))� ✓̃0
1

n

nX

i=1

(Zi � m̂0(xi))
2,

(5.13)

where, ⌘̂ is the estimation of true nuisance parameter via machine learning methods, ✓̃0 is an

estimator of ✓0. Thus,

E[ (W ; ✓̃0, ⌘̂0)] = 0, (5.14)

() ✓̃0 = [
1

n

nX

i=1

(Zi � m̂0(xi))
2]�1 1

n

nX

i=1

(yi � ĝ0(xi))(Zi � m̂0(xi)). (5.15)

Assuming that we use the same machine learning methods to obtain ĝ0 and m̂0,

✓̂0 = ✓̃0. (5.16)

Corollary 2

The score function  (W ; ✓, ⌘) = (Y � g(X)� ✓(Z �m(X)))(Z �m(X)) [15, 13, 14, 21] used to

estimate ATT satis�es Neyman orthogonality.

Proof. According to De�nition 30, we need to verify the following equation:

d

dr
E[ (W ; ✓0, ⌘0 + r(⌘ � ⌘0))] |r=0= 0. (5.17)

In the score function in De�nition 33, ⌘ = (g,m), let �g, �m be test functions respectively per-

turbing g,m, u. This means that ⌘ � ⌘0 = (�g, �m)
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Thus,

LHS of Equation 5.17 =
d

dr
E[ (W ; ✓0, ⌘0 + r(�g, �m))] |r=0

=
d

dr
E[(Y � g0(X)� r�g � ✓0(Z �m0(X)� r�m))(Z �m0(X)� r�m)] |r=0

=
d

dr
E[(Y � g0(X)� r�g)(Z �m0(X)� r�m)] |r=0 �✓0

⇥ d

dr
E[(Z �m0(X)� r�m)

2] |r=0 .

Di�erentiating under the expectation sign due to dominated converge theorem, yields:

= E[
d

dr
(Y � g0(X)� r�g)(Z �m0(X)� r�m)] |r=0 �✓0

⇥ E[
d

dr
(Z �m0(X)� r�m)

2] |r=0

= E[�(Y � g0(X))�m � (Z �m0(X))�g] |r=0 +E[2r�m�g] |r=0

� ✓0 E[�2(Z �m0(X)� r�m)�m] |r=0

= �E[(Y � g0(X))�m + (Z �m0(X))�g] + 2✓0 E[(Z �m0(X))�m].

Applying Law of Total Expectation and Pulling out known factors of conditional expectation,

yields:

= E[E[(Y � g0(X))�m(X) | X]] + E[E[(Z �m0(X))�g(X) | X]]

� ✓0 E[E[(Z �m0(X))�m(X) | X]]

= E[E[(Y � g0(X)) | X]�m(X)] + E[E[(Z �m0(X)) | X]�g(X)]

� ✓0 E[E[(Z �m0(X)) | X]�m(X)]

= 0.

(5.18)

The last equation holds due to the following facts:

E[Y | X] = g0(X), (5.19)

E[Z | X] = m0(X). (5.20)
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We do not use the Partially Linear Regression model to estimate ATT because it does not allow

it. Chernozhukov et al. demonstrated that the Interactive Regression Model is the best choice for

estimating treatment e�ects through double machine learning [14].

5.3.2 Interactive Regression Model

Interactive regression models have the following form [15, 13, 14]:

Y = g0(Z,X) + ⇣ E[⇣ | Z,X] = 0, (5.21)

Z = m0(X) + ⇠ E[⇠ | X] = 0., (5.22)

where Y is the outcome variable, Z is the binary treatment variable,X consists of other predictor

covariates, and ⇣ and ⇠ are stochastic errors [13]. The visualization of causal relationships is

shown in Figure 5.1.

Figure 5.1 Visualization of causal relationships in Interactive Regression Model

The Interactive Regression Model is the model that we use in implementations of double ma-

chine learning. Our target estimand is the average treatment e�ect for the treated (ATT). Cher-

nozhukov et al. proposed the score function in an interactive regression model to estimate ATT

for the �rst time [14].

De�nition 34

The score function to estimate ATT using the Interactive Regression model is given below [15, 13, 14]:

 (W ; ✓, ⌘) :=
Z(Y � g(0, X))

u
� m(W )(1� Z)(y � g(0, X))

u(1�m(X))
� ✓Z

u
, (5.23)
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whereW := (X, Y, Z), the nuisance parameter ⌘ := (g,m, u), and the true value for nuisance

parameter is ⌘0 := (g0,m0, u0) [15]. Moreover,

u0 := E[Z]. (5.24)

Due to the de�nition of the Interactive Regression Model, we have:

E[Y | Z,X] = g0(Z,X), (5.25)

E[Y | Z = 0, X] = g0(0, X), (5.26)

E[Z | X] = m0(X). (5.27)

De�nition 35 〈Linear score function〉

The score function  (W ; ✓, ⌘) is called linear if it has the form [13]:

 (W ; ✓, ⌘) =  a(W ; ⌘)✓ +  b(W ; ⌘). (5.28)

It is obvious that the score functions in De�nition 33 and De�nition 34 are linear score func-

tions. Furthermore, in the following corollary, we will demonstrate that the score function used

to estimate ATT satis�es Neyman orthogonality.

Corollary 3

The score function  (W ; ✓, ⌘) = Z(Y�g(0,X))
u �m(X)(1�Z)(Y�g(0,X))

u(1�m(X)) �✓Z
u [15, 13, 14] used to estimate

ATT satis�es Neyman orthogonality.

Proof. According to De�nition 30, we need to verify the following equation:

d

dr
E[ (W ; ✓0, ⌘0 + r(⌘ � ⌘0))] |r=0= 0. (5.29)
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In the score function in De�nition 34, ⌘ = (g,m, u), let �g, �m, �u be test functions respectively

perturbing g,m, u. This means that ⌘ � ⌘0 = (�g, �m, �u) Thus,

LHS of Equation 5.29 =
d

dr
E[ (W ; ✓0, ⌘0 + r(�g, �m, �u))] |r=0

=
d

dr
E[

Z(Y � g0(0, X)� r�g(0, X))

u0 + r�u

� (m0(X) + r�m(X))(1� Z)(Y � g0(0, X)� r�g(0, X))

(u0 + r�u)(1�m0(X)� r�m(X))
� ✓0

Z

u0 + r�u
] |r=0

=
d

dr
E[

Y � g0(0, X)� r�g(0, X)

u0 + r�u
⇥ Z �m0(X)� r�m

1�m0(X)� r�m
] |r=0 �✓0 ⇥

d

dr
E[

Z

u0 + r�u
] |r=0 .

Di�erentiating under the expectation sign due to dominated converge theorem, yields:

= E[
d

dr
(
Y � g0(0, X)� r�g(0, X)

u0 + r�u
⇥ Z �m0(X)� r�m

1�m0(X)� r�m
)] |r=0

� ✓0 ⇥ E[
d

dr
(

Z

u0 + r�u
)] |r=0

= E[
Y � g0(0, X)� r�g(0, X)

u0 + r�u

⇥ ��m(1�m0(X)� r�m) + (Z �m0(X)� r�m)�m
(1�m0(X)� r�m)2

] |r=0 +E[
Z �m0(X)� r�m
1�m0(X)� r�m

⇥ ��g(0, X)(u0 + r�u)� (Y � g0(0, X)� r�g)�u
(u0 + r�u)2

] |r=0 �✓0 ⇥ E[
�Z�u

(u0 + r�u)2
] |r=0

= E[
(Y � g0(0, X))�m(Z � 1)

u0(1�m0(X))2
]

+ E[
(Z �m0(X))[�u0�g(0, X)� (Y � g0(0, X))�u]

(1�m0(X))u2
0

]� ✓0 ⇥ E[�
Z�u
u2
0

].

Taking the equation ✓0 = u0
Z ⇥ [Z(Y�g(0,X))

u � m(X)(1�Z)(Y�g(0,X))
u(1�m(X)) ] into account, yields:

= E[
(Y � g0(0, X))�m(Z � 1)

u0(1�m0(X))2
]

+ E[
(Z �m0(X))[�u0�g(0, X)� (Y � g0(0, X))�u]

(1�m0(X))u2
0

]� u0

Z

⇥ [
Z(Y � g(0, X))

u0
� m(X)(1� Z)(Y � g(0, X))

u0(1�m(X))
]⇥ E[�

Z�u
u2
0

]

= E[
(Y � g0(0, X))�m(Z � 1)

u0(1�m0(X))2
]

+ E[
(Z �m0(X))[�u0�g(0, X)� (Y � g0(0, X))�u]

(1�m0(X))u2
0

]

+ E[
(Y � g0(0, X))(Z �m0(X))�u

u2
0(1�m0(X))

].
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Applying Law of total expectation, yields:

LHS of Equation 5.29 = E[
(Y � g0(0, X))�m(Z � 1)

u0(1�m0(X))2
| Z = 0]⇥ P(Z = 0)

+ E[
(Y � g0(0, X))�m(Z � 1)

u0(1�m0(X))2
| Z = 1]⇥ P(Z = 1)

+ E[
(Z �m0(X))[�u0�g(0, X)� (Y � g0(0, X))�u]

(1�m0(X))u2
0

]

+ E[
(Y � g0(0, X))(Z �m0(X))�u

u2
0(1�m0(X))

]

= E[�
(Y � g0(0, X))�m
u0(1�m0(X))2

| Z = 0]⇥ P(Z = 0)

+ E[
(Z �m0(X))[�u0�g(0, X)� (Y � g0(0, X))�u]

(1�m0(X))u2
0

]]

+ E[
(Y � g0(0, X))(Z �m0(X))�u

u2
0(1�m0(X))

].

Applying tower property of conditional expectation, yields:

= E[E[�
(Y � g0(0, X))�m
u0(1�m0(X))2

| X,Z] | Z = 0]⇥ P(Z = 0)

+ E[E[
(Z �m0(X))[�u0�g(0, X)� (Y � g0(0, X))�u]

(1�m0(X))u2
0

| X]]

+ E[E[
(Y � g0(0, X))(Z �m0(X))�u

u2
0(1�m0(X))

| X]].

Considering Equations 5.21 and 5.22, yields:

= E[E[�
(g0(Z,X) + ⇣ � g0(0, X))�m

u0(1�m0(X))2
| X,Z] | Z = 0]⇥ P(Z = 0)

+ E[E[
⇠[�u0�g(0, X)� (Y � g0(0, X))�u]

(1�m0(X))u2
0

| X]] + E[E[
(Y � g0(0, X))⇠�u
u2
0(1�m0(X))

| X]]

Combing the last two terms and cancelling out two conditional expectations regarding Y �

g0(0, X), yields:

= E[E[�
(g0(Z,X) + ⇣ � g0(0, X))�m

u0(1�m0(X))2
| X,Z] | Z = 0]⇥ P(Z = 0)

+ E[E[
�⇠u0�g(0, X)

(1�m0(X))u2
0

| X]]

= E[E[�⇣ | X,Z]
�m(X)

u0(1�m0(X))2
| Z = 0]⇥ P(Z = 0)

+ E[E[⇠ | X]⇥ E[
�u0�g(0, X)

(1�m0(X))u2
0

| X]].
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Thus, due to the de�nition of the Interactive Regression Model, we have:

LHS of Equation 5.29 = 0.

5.4 Double Machine Learning Algorithm

De�nition 31 and De�nition 32 refer to cross-�tting and a variant of cross-�tting respectively.

These two methods, along with the score functions, provide the intuitions for the algorithms de-

scribed below, which were �rst proposed by Chernozhukov et al. [14]. Ik denotes the kth fold

while (Ik, Ick) forms a partition of the dataset. To estimate ATT, we use the Interactive Regression

model and the score function  in De�nition 34. To implement double machine learning in the

Interactive Regression model, the following two procedures explain two ways that correspond to

De�nition 31 and De�nition 32 respectively.

Procedure 5.2 Double machine learning estimation and inference on ATT via Interactive Re-
gression Model and cross-�tting [14]

Step.1 Create K partitions {(I1, Ic1), (I2, Ic2), · · · , (IK , IcK)} from data, each of size n := N/K .

Step.2 Construct K estimators for ATT based on K partitions respectively:

⌅ for k = 1 to K do

⇧ Estimate the true value of nuisance parameter ⌘0 = (g0,m0, u0):

A. Select two machine learning models to �t g0(Z,X),m0(X) based on Ick respec-

tively and get machine learning estimators ĝk0(Ick), m̂k
0(I

c
k).

B. Calculate ûk
0 as:

ûk
0 = E[Zi = 1 | i 2 Ick] =

1

N � n

X

i2Ick

Zi. (5.30)

⇧ Taking machine learning estimators ⌘̂k0 = (ĝk0(I
c
k), m̂

k
0(I

c
k), û

k
0) into the Equa-

tion 5.5 with W = Ick. ✓̌k0 is the root of the following equation:

1

n

X

i2Ik

 (W ; ✓̌k0 , ⌘̂
k
0(I

c
k)) = 0. (5.31)
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⌅ end for

Step.3 Aggregate K estimators to get �nal estimator ✓̃0:

✓̃0 :=
1

K

KX

k=1

✓̌k0 . (5.32)

Procedure 5.3 Another algorithm for Double machine learning estimation and inference on
ATT in the interactive regression model and a variant of cross-�tting [14]

Step.1 Create K partitions {(I1, Ic1), (I2, Ic2), · · · , (IK , IcK)} from data, each of size n := N/K .

Step.2 Construct K estimators for ATT based on K partitions respectively:

⌅ for k = 1 to K do

⇧ Estimate the true value of nuisance parameter ⌘0 = (g0,m0, u0):

A. Select two machine learning models to �t g0(Z,X),m0(X) based on Ick respec-

tively and get machine learning estimators ĝk0(Ick), m̂k
0(I

c
k).

B. Calculate ûk
0 as:

ûk
0 = E[Zi = 1 | i 2 Ick] =

1

N � n

X

i2Ick

Zi. (5.33)

⇧ Take machine learning estimators ⌘̂k0 = (ĝk0(I
c
k), m̂

k
0(I

c
k), û

k
0) into LHS of Equa-

tion 5.6 with W = Ik, get the linear form  ̄k
a(W ; ⌘̂k0)✓ +  ̄k

b (W ; ⌘̂k0) and record

the coe�cient  ̄k
a(W ; ⌘̂k0),  ̄

k
b (W ; ⌘̂k0) for future use with the following formu-

las:

 ̄k
a(Wi; ⌘̂

k
0) :=

1

n

X

i2Ik

 a(W ; ⌘̂k0), (5.34)

 ̄k
b (Wi; ⌘̂

k
0) :=

1

n

X

i2Ik

 b(W ; ⌘̂k0). (5.35)

⌅ end for
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Step.3 The �nal estimator ✓̃0 is the root of the following equation:

1

K

KX

k=1

[ ̄k
a(W ; ⌘̂k0)⇥ ✓̃0 +  ̄k

b (W ; ⌘̂k0)] = 0. (5.36)

Chernozhukov et al. introduced the theorem below, which provides the theoretical foundation

for double machine learning algorithms to estimate ATT [12]. Meanwhile, the theorem demon-

strates how to construct con�dence intervals.

Theorem 5

Assume that the ATT, ✓0 = E[g0(1, Z)� g0(0, Z) | Z = 1], is the target parameter and we use the

estimator ✓̃0 of ✓0, which is true value of nuisance parameter ⌘0 = (g0,m0, u0) [15]. Moreover, we

de�ne �2, Ĵ0, �̂2 as below [13]:

�2 := E[ 2(W ; ✓0, ⌘0)], (5.37)

Ĵ0 :=
1

N

KX

k=1

X

i2Ik

 a(Wi; ⌘̂
k
0), (5.38)

�̂2 := Ĵ�2
0

1

N

KX

k=1

X

i2Ik

[ (Wi; ✓̃0, ⌘̂
k
0)]

2. (5.39)

Then the estimator ✓̃0 concentrates around ✓0 at a rate of 1/
p
N .It is approximately unbiased and

normally distributed under regularity conditions [14]:

��1
p
N(✓̃0 � ✓0) N(0, 1), (5.40)

and the result continues to hold if �2 is replaced by �̂2. Furthermore, the con�dence interval CI0

based on ✓̃0 has the following asymptotic property [14]:

P(✓0 2 CI0)! (1� ↵), (5.41)

where CI0 := [✓̃0±��1(1�↵/2)�̂/
p
N ] [15]. Thus, CI0 forms an approximate (1�↵) con�dence

interval.

Theorem 5 gives us the theoretical foundation for performing variance estimation and con-

structing uncertainty intervals. The approach below demonstrates how to apply Theorem 5 for
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variance estimation and con�dence interval construction.

Procedure 5.4 Estimate variance and construct con�dence intervals using the Inputs and out-
puts from Procedure 5.2 or Procedure 5.3

Step.1 Variance estimation:

⇧ Compute Ĵ0 = 1
N

PK
k=1

P
i2Ik  a(Wi; ⌘̂k0)

⇧ Compute the asymptotic variance of ✓̃0 by:

�̂2 = Ĵ�2
0

1

N

KX

k=1

X

i2Ik

[ (Wi; ✓̃0, ⌘̂
k
0)]

2. (5.42)

Step.2 Construction of approximate con�dence intervals:

⇧ Set signi�cance level = 1� ↵

⇧ Compute ✓̃0 ���1(1� ↵/2)�̂/
p
N as lower bound of the approximate con�dence

interval

⇧ Compute ✓̃0 +��1(1�↵/2)�̂/
p
N as upper bound of the approximate con�dence

interval

5.5 Modifications of Model in Section 5.4

In the previous section, we used the following model to estimate SATTs:

Yt = g0,t(Z,Xt) + ⇣t, E[⇣t | Z,Xt] = 0, t 2 {year3, year4},

Z = m0(M) + ⇠, E[⇠ | M ] = 0,
(5.43)

where Y is the outcome variable, Z is the binary treatment variable, Xt is a collection of co-

variates used to estimate Yt, M is a collection of covariates used to estimate Z , and ⇣ and ⇠ are

stochastic errors.

In the process of estimating SATToverall in Section 5.4, we used variable id.practice to create

folds and treated year3 data and year4 data with the same id.practice in the same fold. However,
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the process for building machine learning estimators ⌘̂k0(Ick) = (ĝk0(I
c
k), m̂

k
0(I

c
k), û

k
0(I

c
k)) could

be modi�ed. m̂k
0(I

c
k) is modelled from the pre-treatment stage data. Given a id.practice value, it

outputs the same value for both year3 input and year4 input. ûk
0(I

c
k) is a constant that is computed

across year3 data and year4 data.

ûk
0(I

c
k) = E[Zi = 1 | i 2 Ick]

=
1P

i2Ick
(n_patientsyear3[i] + n_patientsyear4[i])

⇥
X

i2Ick

Zi ⇥ (n_patientsyear3[i] + n_patientsyear4[i]).

(5.44)

The modi�cation in the process for estimating SATToverall keeps machine learning estimators

m̂k
0(I

c
k), û

k
0(I

c
k) the same as described in Section 5.4. However, in Section 5.4, we used ĝk,30 (Ick),

ĝk,40 (Ick) to predict the year3 outcome Y3, year4 outcome Y4 separately for each partition (Ik, Ick).

Since we treat the year3 data and the year4 data with the same id.practice value as integrals

to create folds, it is natural to think about using year as an additional covariate in the baseline

model. Following dummy-encoding, year = 0 denotes year3 and year = 1 denotes year4. After

modi�cation, the model to estimate SATToverall changes to the following form :

Yt = g0(Z,Xt, t) + ⇣t E[⇣t | Z,Xt, t] = 0, t 2 {0, 1},

Z = m0(M) + ⇠ E[⇠ | M ] = 0,
(5.45)

where Y is the outcome variable, Z is the binary treatment variable, Xt consists of covariates to

estimate Yt, M consists of covariates to estimate Z , and ⇣ and ⇠ are stochastic errors.

Di�erent from notations in previous models, Y0 denotes the year3 outcome and Y1 denotes the

year4 outcome in Model 5.45. We also implement Model 5.45 to estimate SATToverall and the

results will be shown in the following chapter.
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5.6 DML Implementation

5.6.1 The Processes to Estimate SATToverall, SATTyearly and SATTsubgroup

We use Interactive Regression Model and score function in De�nition 34 to estimate SATTs. Like

the implementations of BART and BCF models in Section 3.5 and Section 4.4, we deal with ATT

in year 3 and year 4 respectively. The model is stated as follows:

Yt = gt0(Z,Xt) + ⇣t, E[⇣t | Z,Xt] = 0, t 2 {year3, year4},

Z = m0(M) + ⇠ E[⇠ | M ] = 0
(5.46)

where Y is the outcome variable, Z is the binary treatment variable, Xt consists of covariates to

estimate Yt, M consists of covariates to estimate Z , and ⇣ and ⇠ are stochastic errors.

The Model 5.46 is slightly di�erent from the Interactive Regression model in Section 5.3.2. The

covariates used to estimate Z may be di�erent from covariates used to estimate Yt. This is the

primary reason that we build double machine learning from scratch rather than using existing

R packages. R includes a well-developed package called "dml" that incorporates many double

machine learning models. However, the same covariates are required to estimate g0(·) andm0(·).

Let us assume that the K-fold sample-splitting is identi�ed as {(I1,t, Ic1,t), (I2,t, Ic2,t), · · · , (IK,t, IcK,t)}

for t 2 {year3, year4} and consider the estimation of SATTyearly. The baseline machine learn-

ingmodels are �exible andwe just choose BARTmodels. SinceZ is a binary variable, an estimator

for m0(·) is the estimated propensity score. We obtained the estimation ê in Section 3.4.3 3.5.3

by treating the entire dataset as training data in the BART model. However, due to cross-�tting

during the estimation of SATTyearly, we implement BARTK times to estimate propensity score

with di�erent training data, where K is the number of folds in sample-splitting. u0 = E[Z] is a

constant and the estimation of u0 in each partition is also a constant via computation of discrete

conditional expectation conditioning on the complementary set in each partition. Estimating

g0,t is similar to estimating m0. For each partition (Ik,t, Ick,t), we use a BART model with Ick,t as

training data and �tted the model with Ik,t. After that, we get one estimator for SATTyearly by

solving the identi�cation condition equation E[ (Wt; ✓t0, ⌘̂
k,t
0 )] = 0. For data from a single year,

variable id.practice could be used to uniquely identify one observation. To create K folds, the

yearly sample-splitting is based on the variable id.practice.
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Considering the estimation of SATToverall, the most di�cult task is to createK folds. In prin-

ciple, we could create one partition to estimate SATToverall by combining (Ik1,year3, I
c
k1,year3)

with (Ik2,year4, I
c
k2,year4) for 1  k1, k2  K . If k1 and k2 are chosen at random, it needs ad-

ditional e�ort. For the sake of simplicity, we use k1 = k2 = k to create the kth partition

(Ik,year3[ Ik,year4, Ick,year3[ Ick,year4). In this case, we also use the variable id.practice as a unique

identi�er to createK folds and the kth fold Ik,t consists of a set of distinct id.practice values. As

a result, year3 data and year4 data with the same id.practice value will be assigned to the same

fold. Hence,

Ik,year3 = Ik,year4, (5.47)

Ick,year3 = Ick,year4 (5.48)

The process to estimate u0 and g0 over the kth partition is the same as that for estimating

SATTyearly. Estimating m0 is another story. Since the covariates W used to estimate m0 only

depend on data from the pre-treatment stage (year1 and year2), whether to estimate SATTyearly

or SATToverall has no e�ect on the estimation result ofm0 as long as the partition of id.practice

is the same.

Figure 5.2 depicts the partition process used to estimate SATTs across year 3 and year 4.

Figure 5.2 Illustration of the partition process to estimate SATToverall

Estimating SATTsubgroup di�ers greatly from estimating SATToverall and SATTyearly. To esti-

mate SATTsubgroup using double machine learning, we make the following two modi�cations:
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1. Trainm0 and g0 without sample-splitting:

In one speci�ed subgroup, the sample size is considerably small. As a result, there may

be not enough samples in the training set and over�tting is likely to occur. Like the pro-

cedure to estimate SATToverall, we use variable id.practice as the identi�er to create K

subgroup folds and combined the kth subgroup fold in year3 with the kth subgroup fold in

year4. For partition (Ik,S, Ick,S) within the subgroup S, we simply utilize the estimation ê

in Section 3.5.3 for m̂k,t
0 without any additional e�orts because they are predicted without

sample-splitting. We should notice that m̂k,year3
0 = m̂k,year4

0 = m̂k
0 if variable id.practice

is used to create subgroup folds. We use (Xt, Z) with outcome Yt to train a BART model

over the entire dataset and predict over the kth subgroup fold Ik,t,S . Hence, ĝk,t0 is created.

ûk,t
0 is a constant via computation of discrete conditional expectation conditioning on the

complementary set Ick,S within subgroup S.

2. Reduce number of folds K:

Given that the score function to estimate ATT on the kth fold Ik with partition (Ik, Ick):

 (W ; ✓̌k0 , ⌘̂
k
0(I

c
k)) =

Z(Y � ĝk0(0, X))

ûk
0

� m̂k
0(M)(1� Z)(Y � ĝk0(0, X))

ûk
0(1� m̂k

0(M))
� ✓̌k0

Z

ûk
0

, (5.49)

where u0 = E[Z], ⌘̂k0(Ick) consists of the machine learning estimators which are modelled

from the complementary set Ick,

ûk
0 = E[Zi = 1 | i 2 Ick]

=
1

N � n

X

i2Ick

Zi.
(5.50)

It is necessary to require ûk
0 > 0 to get a meaningful computation. Since the sample size

for one subgroup is small, if we split them into smaller folds, it is more likely to encounter

a fold with all Zis equal to zero. To avoid meaningless computation, we should reduce the

number of folds K in SATTsubgroup estimation.

For all SATTs estimations, suppose that we useK folds sample-splitting and cross-�tting, with

regard to the kth partition, we obtain an estimator ✓̌k0 for ✓0 by solving identi�cation condition

equation. We adapt Procedure 5.2 in Section 5.4 to estimate SATTs by averaging K estimators

{✓̌10, ✓̌20, . . . , ✓̌K0 }, and then got �nal estimator ✓̃0.
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5.6.2 Details of the Processes in Section 5.6.1

The following subsections explain the processes for estimating SATTyearly, SATToverall and

SATTsubgroup. Since we are handling practice-level data, it is necessary to include the number of

patients in each practice as an additional coe�cient in the equation E[ (W ; ✓0, ⌘̂0)] = 0.

The number of patients in practice i at year t isn_patientst,i, and each dataset has 500 practices.

In this case, we use new notations for t. t = 3 represents year3 and t = 4 represents year4.

5.6.2.1 Estimation of SATTyearly at Year t

Step.1 Estimate SATTyearly over the kth partition (Ik,t, Ick,t) where k 2 {1, 2, . . . , K}:

We create the partition over id.practice and Ik,t denotes the set of distinct id.practice

values in the kth fold at year t. Then:

E[ (W ; ✓0, ⌘̂
k,t
0 )] =

1P
i2Ik,t n_patientst,i

X

i2Ik,t

n_patientst,i⇥

[
Zi(Yt,i � ĝk,t0 (0, xi))

ûk,t
0

� m̂k
0(Mi)(1� Zi)(Yt,i � ĝk,t0 (0, xi))

ûk,t
0 (1� m̂k

0(Mi))
� ✓0

Zi

ûk,t
0

]

=
1P

i2Ik,t n_patientst,i
(�

X

i2Ik,t

n_patientst,i ⇥
Zi

ûk,t
0

⇥ ✓0

+
X

i2Ik,t

n_patientst,i ⇥ [
Zj(Yt,i � ĝk,t0 (0, xi))

ûk,t
0

� m̂k
0(Mi)(1� Zi)(Yt,i � ĝk,t0 (0, xi))

ûk,t
0 (1� m̂k

0(Mi))
])

:=
1P

i2Ik,t n_patientst,i
[ sum,t

a (W ; ⌘̂k,t0 )✓0 +  sum,t
b (W ; ⌘̂k,t0 )],

(5.51)

where:

 sum,t
a (W ; ⌘̂k,t0 ) :=

X

i2Ik,t

 a(Wi; ⌘̂
k,t
0 ), (5.52)

 sum,t
b (W ; ⌘̂k,t0 ) :=

X

i2Ik,t

 b(Wi; ⌘̂
k,t
0 ). (5.53)
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Solve identi�cation condition equation E[ (W ; ✓0, ⌘̂
k,t
0 )] = 0, yields:

✓̌k,t0 = � 
sum,t
b (W ; ⌘̂k,t0 )

 sum,t
a (W ; ⌘̂k,t0 )

=
 sum,t
b (W ; ⌘̂k,t0 )

� sum,t
a (W ; ⌘̂k,t0 )

=

P
i2Ik,t n_patientst,i ⇥ [Zi(Yt,i�ĝk,t0 (0,xi))

ûk,t
0

� m̂k
0(Mi)(1�Zi)(Yt,i�ĝk,t0 (0,xi))

ûk,t
0 (1�m̂k

0(Mi))
]

P
i2Ik,t n_patientst,i ⇥

Zi

ûk,t
0

.

(5.54)

Given that variable id.practice is used to create folds, m̂k
0 is not a�ected by the choice of

year t and distinct t shares the same partition over id.practice.

Step.2 Estimate SATTyearly at year t via cross-�tting:

The�nal estimator forSATTyearly at year t is calculated by averagingK estimators {✓̌1,t0 , ✓̌2,t0 , . . . , ✓̌K,t
0 }.

✓̃t0 =
KX

k=1

✓̌k,t0 . (5.55)

Step.3 Construct (1� ↵)% approximate con�dence interval:

Applying Theorem 5, yields:

Ĵ t
0 =

1
PK

k=1

P
i2Ik,t n_patientst,i

KX

k=1

X

i2Ik,t

n_patientst,i ⇥  a(Wi; ⌘̂
k,t
0 )

=
1

P500
i=1 n_patientst,i

500X

i=1

n_patientst,i ⇥
Zi

ûk
0

,

(5.56)

(�̂t)2 = (Ĵ t
0)

�2 1
PK

k=1

P
i2Ik,t n_patientst,i

KX

k=1

X

i2Ik,t

n_patientst,i ⇥ [ (Wi; ✓̃
t
0, ⌘̂

k,t
0 )]2

= (Ĵ t
0)

�2 1
P500

i=1 n_patientst,i

500X

i=1

n_patientst,i ⇥ [ a(Wi; ⌘̂
k,t
0 )✓̃t0 +  b(Wi; ⌘̂

k,t
0 )]2.

(5.57)

Thus, the (1� ↵)% approximate con�dence interval is give by:

[ ✓̃t0 ���1(1� ↵/2)�̂t/

vuut
500X

i=1

n_patientst,i , ✓̃t0 +��1(1� ↵/2)�̂t/

vuut
500X

i=1

n_patientst,i ].

(5.58)
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5.6.2.2 Estimation of SATToverall

Step.1 Estimate SATToverall over the kth partition (Ik, Ick) where k 2 {1, 2, . . . , K}

We create the partition over id.practice and Ik,t denotes the set of distinct id.practice

values in the kth fold at year t. Since we divide 500 id.practice values to make folds and

each id.practice value corresponds to four-years data. Thus, the partition over id.practice

satis�es (Ik,3, Ick,3) = (Ik,4, Ick,4) = (Ik, Ick). Then:

E[ (W ; ✓0, ⌘̂
k,overall
0 )] =

1
P4

t=3

P
i2Ik,t n_patientst,i

4X

t=3

X

i2Ik,t

n_patientst,i⇥

[
Zi(Yt,i � ĝk,t0 (0, xi))

ûk,overall
0

� m̂k
0(Mi)(1� Zi)(Yt,i � ĝk,t0 (0, xi))

ûk,overall
0 (1� m̂k

0(Mi))
� ✓0

Zi

ûk,overall
0

]

=
1

P4
t=3

P
i2Ik,t n_patientst,i

⇥ (�n_patientst,i ⇥
4X

t=3

X

i2Ik,t

Zi

ûk,overall
0

⇥ ✓0 +
4X

t=3

X

i2Ik,t

n_patientst,i ⇥ [
Zj(Yt,i � ĝk,t0 (0, xi))

ûk,overall
0

� m̂k
0(Mi)(1� Zi)(Yt,i � ĝk,t0 (0, xi))

ûk,overall
0 (1� m̂k

0(Mi))
])

:=
1

P4
t=3

P
i2Ik,t n_patientst,i

[ sum,overall
a (W ; ⌘̂k,overall0 )✓0

+  sum,overall
b (W ; ⌘̂k,overall0 )],

(5.59)

where:

 sum,overall
a (W ; ⌘̂k,overall0 ) :=

4X

t=3

X

i2Ik,t

 a(Wi; ⌘̂
k,overall,t
0 ), (5.60)

 sum,overall
b (W ; ⌘̂k,overall0 ) :=

4X

t=3

X

i2Ik,t

 b(Wi; ⌘̂
k,overall,t
0 ). (5.61)
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Solve identi�cation condition equation E[ (W ; ✓0, ⌘̂
k,overall
0 )] = 0, yields:

✓̌k,overall0 = � 
sum,overall
b (W ; ⌘̂k,overall0 )

 sum,overall
a (W ; ⌘̂k,overall0 )

=
 sum,overall
b (W ; ⌘̂k,overall0 )

� sum,overall
a (W ; ⌘̂k,overall0 )

=

P4
t=3

P
i2Ik,t n_patientst,i ⇥ [Zi(Yt,i�ĝk,t0 (0,xi))

ûk,overall
0

� m̂k
0(Mi)(1�Zi)(Yt,i�ĝk,t0 (0,xi))

ûk,overall
0 (1�m̂k

0(Mi))
]

P4
t=3

P
i2Ik,t n_patientst,i ⇥

Zi

ûk,overall
0

.

(5.62)

Given that variable id.practice is used to create folds, m̂k
0 is not a�ected by the choice of

year t and distinct t shares the same partition over id.practice.

Step.2 Estimate SATToverall via cross-�tting:

The�nal estimator forSATToverall is calculated by averagingK estimators {✓̌1,overall0 , ✓̌2,overall0

, . . . , ✓̌K,overall
0 }.

✓̃overall0 =
KX

k=1

✓̌k,overall0 . (5.63)

Step.3 Construct (1� ↵)% approximate con�dence interval:

Applying Theorem 5, yields:

Ĵoverall
0 =

1
P4

t=3

P500
i=1 n_patientst,i

4X

t=3

KX

k=1

X

i2Ik,t

n_patientst,i ⇥  a(Wi; ⌘̂
k,overall,t
0 )

=
1

P4
t=3

P500
i=1 n_patientst,i

4X

t=3

500X

i=1

n_patientst,i ⇥
Zi

ûk
0

,

(5.64)

(�̂overall)2 = (Ĵoverall
0 )�2 1

P4
t=3

P500
i=1 n_patientst,i

4X

t=3

KX

k=1

X

i2Ik,t

[ (Wi; ✓̃
overall
0 , ⌘̂k,overall,t0 )]2

= (Ĵoverall
0 )�2 1

P4
t=3

P500
i=1 n_patientst,i

4X

t=3

500X

i=1

[ a(Wi; ⌘̂
k,t,overall
0 )✓̃overall0

+  b(Wi; ⌘̂
k,overall,t
0 )]2.

(5.65)

74



Thus, the (1� ↵)% approximate con�dence interval is given by:

[ ✓̃overall0 � ��1(1� ↵/2)�̂overall/

vuut
4X

t=3

500X

i=1

n_patientst,i , ✓̃overall0

+��1(1� ↵/2)�̂overall/

vuut
4X

t=3

500X

i=1

n_patientst,i ].

(5.66)

5.6.2.3 Estimation of SATTsubgroup with Subgroup S

Let us denote SATTsubgroup with subgroup S as SATT (S)

Step.1 Estimate SATT (S) over the kth partition (Ik,S, Ick,S) where k 2 {1, 2, . . . , K}:

We create the partition over id.practice within subgroup S and Ik,t,S denotes the set of

distinct id.practice values in the kth fold at year t within Subgroup S. Since we split

id.practice values within Subgroup S to create folds and each id.practice value corre-

sponds to four-years data. Thus, the partition over id.practice satis�es (Ik,3,S, Ick,3,S) =

(Ik,4,S, Ick,4,S) = (Ik,S, Ick,S). Then:

E[ (W ; ✓0, ⌘̂
k,S
0 )] =

1
P4

t=3

P
i2Ik,t,S n_patientst,i

4X

t=3

X

i2Ik,t,S

n_patientst,i⇥

[
Zi(Yt,i � ĝk,t0 (0, xi))

ûk,S
0

� m̂k
0(Mi)(1� Zi)(Yt,i � ĝk,t0 (0, xi))

ûk,S
0 (1� m̂k

0(Mi))
� ✓0

Zi

ûk,S
0

]

=
1

P4
t=3

P
i2Ik,t,S n_patientst,i

⇥ (�
4X

t=3

X

i2Ik,t,S

n_patientst,i ⇥
Zi

ûk,S
0

⇥ ✓0

+
4X

t=3

X

i2Ik,t,S

n_patientst,i ⇥ [
Zj(Yt,i � ĝk,t0 (0, xi))

ûk,S
0

� m̂k
0(Mi)(1� Zi)(Yt,i � ĝk,t0 (0, xi))

ûk,S
0 (1� m̂k

0(Mi))
])

:=
1

P4
t=3

P
i2Ik,t,S n_patientst,i

[ sum,S
a (W ; ⌘̂k,S0 )✓0 +  sum

b (W ; ⌘̂k,S0 )],

(5.67)
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where:

 sum,S
a (W ; ⌘̂k,S0 ) :=

4X

t=3

X

i2Ik,t,S

 a(Wi; ⌘̂
k,S,t
0 ), (5.68)

 sum,S
b (W ; ⌘̂k,S0 ) :=

4X

t=3

X

i2Ik,t,S

 b(Wi; ⌘̂
k,S,t
0 ). (5.69)

Solve identi�cation condition equation E[ (W ; ✓0, ⌘̂
k,S
0 )] = 0, yields:

✓̌k0 = � 
sum,S
b (W ; ⌘̂k,S0 )

 sum,S
a (W ; ⌘̂k,S0 )

=
 sum,S
b (W ; ⌘̂k,S0 )

� sum,S
a (W ; ⌘̂k,S0 )

=

P4
t=3

P
i2Ik,t,S n_patientst,i ⇥ [Zi(Yt,i�ĝk,t0 (0,xi))

ûk,S
0

� m̂k
0(Mi)(1�Zi)(Yt,i�ĝk,t0 (0,xi))

ûk,S
0 (1�m̂k

0(Mi))
]

P4
t=3

P
i2Ik,t,S n_patientst,i ⇥

Zi

ûk,S
0

.

(5.70)

Given that variable id.practice is used to create folds, m̂k
0 is not a�ected by the choice of

year t and distinct t shares the same partition over id.practice.

Step.2 Estimate SATT (S) via cross-�tting:

The�nal estimator forSATT (S) is calculated by averagingK estimators {✓̌1,S0 , ✓̌2,S0 , . . . , ✓̌K,S
0 }.

✓̃S0 =
KX

k=1

✓̌k,S0 . (5.71)

Step.3 Construct (1� ↵)% approximate con�dence interval:

Applying Theorem 5, yields:

(Ĵ0)
S =

1
P4

t=3

PK
k=1

P
i2Ik,t,S n_patientst,i

4X

t=3

KX

k=1

X

i2Ik,t,S

n_patientst,i ⇥  a(Wi; ⌘̂
k,S,t
0 )

=
1

P4
t=3

PK
k=1

P
i2Ik,t,S n_patientst,i

4X

t=3

KX

k=1

X

i2Ik,t,S

n_patientst,i ⇥
Zi

ûk,S
0

,

(5.72)
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(�̂S)2 = (ĴS
0 )

�2 1
P4

t=3

PK
k=1

P
i2Ik,t,S n_patientst,i

4X

t=3

KX

k=1

X

i2Ik,t,S

n_patientst,i

⇥ [ (Wi; ✓̃0, ⌘̂
k,S,t
0 )]2

= (ĴS
0 )

�2 1
P4

t=3

PK
k=1

P
i2Ik,t,S n_patientst,i

4X

t=3

KX

k=1

X

i2Ik,t,S

n_patientst,i

⇥ [ a(Wi; ⌘̂
k,S,t
0 )✓̃0 +  b(Wi; ⌘̂

k,S,t
0 )]2.

(5.73)

Thus, the (1� ↵)% approximate con�dence interval is give by:

[ ✓̃S0 � ��1(1� ↵/2)�̂S/

vuut
4X

t=3

KX

k=1

X

i2Ik,t,S

n_patientst,i , ✓̃S0

+��1(1� ↵/2)�̂S/

vuut
4X

t=3

KX

k=1

X

i2Ik,t,S

n_patientst,i ].

(5.74)

The biggest challenge in above the estimations is computing �̂2. We design the following two

solutions.

1. Use two numeric vectors to save ( a(Wi; ⌘̂
k,overall,t
0 ), b(Wi; ⌘̂

k,overall,t
0 )), ( a(Wi; ⌘̂

k,3
0 ), b(Wi; ⌘̂

k,3
0 )),

( a(Wi; ⌘̂
k,4
0 ), b(Wi; ⌘̂

k,4
0 )), ( a(Wi; ⌘̂

k,S,t
0 ), b(Wi; ⌘̂

k,S,t
0 )) respectively for each i 2 Ik,t or

i 2 Ik,t,S over the kth fold at year t;

2. Write custom functions with ✓̃0 as the function input:

⌅ For SATTyearly at year t, de�ne f t
k(x) over each fold:

f t
k(x) =

X

i2Ik,t

[ a(Wi; ⌘̂
k,t
0 )⇥ x+  b(Wi; ⌘̂

k,t
0 )]2 ⇥ n_patientst,i. (5.75)

⌅ For SATToverall, de�ne f overall
k (x) over each fold:

f overall
k (x) =

4X

t=3

X

i2Ik,t

[ a(Wi; ⌘̂
k,overall,t
0 )⇥ x+  b(Wi; ⌘̂

k,overall,t
0 )]2 ⇥ n_patientst,i.

(5.76)

⌅ For SATT (S), de�ne fS
k (x) over each fold:

fS
k (x) =

4X

t=3

X

i2Ik,t,S

[ a(Wi; ⌘̂
k,S,t
0 )⇥ x+  b(Wi; ⌘̂

k,S,t
0 )]2 ⇥ n_patientst,i. (5.77)
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In our implementations, we use the second method to save storage space and make the compu-

tations clear.

5.6.3 Summary of DML Implementations in R

We implement double machine learning in R with the Interactive Regression model to estimate

SATTs andwrote R codes from scratch. In the procedures to estimateSATToverall andSATTyearly,

we selectK = 5. Bach et al. found thatK = 4 orK = 5 performs better thanK = 2 in a variety

of simulations and they made K = 5 the default setting [13]. However, we use K = 3 or K = 2

for estimations of SATTsubgroup to avoid the case that ûk
0 = 0.

The score function de�ned in De�nition 34 only involves g(0, X) to estimate ATT . Conse-

quently, in the implementation of the BART model to estimate ĝk,t0 over the kth partition, we set

Z = 0 in the predictors for test data.
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Algorithm 8: Use Double machine learning to estimate SATToverall and SATTyearly

Input: 3400 datasets and number of folds K = 5, signi�cance level ↵ = 0.05.

Output: Estimated SATToverall, SATTyearly and their corresponding approximate

con�dence intervals for each dataset.

1 Initialize the record dataset which is used to save estimated SATTs and the upper and

lower bounds of con�dence intervals

2 Initialize count = 0 which remembers the index to write the estimations in the record

dataset for i = 1 to 3400

3 Read ith dataset

4 Read the record dataset

5 Construct dataframe dfm0 with practice-level covariatesX , pre-treatment outcomes Y1

and Y2, number of patients in pre-treatment stage size1 and size2, di�erence of year1

outcome and year2 outcome diff

6 Construct dataframe dfyear3 which consists of the practice-level covariates X ,

treatment status variable Z , pre-treatment outcomes Y1 and Y2, number of patients in

pre-treatment stage size1 and size2 and di�erence of year1 outcome and year2

outcome diff

7 Construct dataframe dfyear4 which consists of the practice-level covariates X ,

treatment status variable Z , pre-treatment outcomes Y1 and Y2, number of patients in

pre-treatment stage size1 and size2, di�erence of year1 outcome and year2 outcome

diff and year3 outcomes Y3

8 Convert categorical variables in dataframes dfm0 , dfyear3 and dfyear4 to factors

9 Use BayesTree::makeind to dummy-encode factors in dataframes dfm0 , dfyear3 and

dfyear4

10 /* Create 5 folds with R function caret::createFolds: */

11 cv_folds_train caret :: createFolds(1 : N0, k = 5, list =

TRUE, returnTrain = TRUE

12 Initialize numeric vectors theta_overall, theta_year3 and thetayear4, each with

length K , to save ✓̌k,overall0 , ✓̌k,30 , ✓̌k,40 with k 2 {1, 2, . . . , K}

13 Initialize numeric vectors psi_a_sum_overall, psi_a_sum_year3 and

psi_a_sum_year4, each with length K , to save  sum,overall
a (W ; ⌘̂k,overall0 ),

 sum,3
a (W ; ⌘̂k,30 ),  sum,4

a (W ; ⌘̂k,40 ) with k 2 {1, 2, . . . , K}
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Algorithm 8: Use Double machine learning to estimate SATToverall and SATTyearly

14 Initialize numeric vectors psi_b_sum_overall, psi_b_sum_year3 and

psi_b_sum_year4, each with length K , to save  sum,overall
b (W ; ⌘̂k,overall0 ),

 sum,3
a (W ; ⌘̂k,t0 ),  sum,4

a (W ; ⌘̂k,t0 ) with k 2 {1, 2, . . . , K}

15 Initialize numeric vectors N_overall, N_year3 and N_year4, each with length K

16 Initialize list vectors psi_squared_overall, psi_squared_year3 and

psi_squared_year4, each with length K , to save custom functions f overall
k (x), f 3

k (x),

f 4
k (x) with k 2 {1, 2, . . . , K}

17 for k = 1 to K

18 train_index cv_folds_train[[j]]

19 test_index setdiff(1 : 500, train_index)

20 Change the column of Z in dfyear3[test_index, ] to (0, 0, . . . , 0)t and save it as

df target
year3

21 Change the column of Z in dfyear4[test_index, ] to (0, 0, . . . , 0)t and save it as

df target
year4

22 Run BART::pbart with Z[train_index] as the response variable for training data,

dfm0 [train_index, ] as predictors for training data, predict m̂k
0((dfm0)i) for each

i 2 test_index via a logistic link function and mean of posterior draws and save it

as vector p_score

23 Run BART::wbart with Y3[train_index] as the response variable for training data,

dfyear3[train_index, ] as predictors for training data, df target
year3 as predictors for test

data, predict ĝk,30 (0, (dfyear3 \ Z)i) for each i 2 test_index via mean of posterior

draws and save it as vector g_0_year3

24 Run BART::wbart with Y4[train_index] as the response variable for training data,

dfyear4[train_index, ] as predictors for training data, df target
year4 as predictors for test

data, predict ĝk,40 (0, (dfyear4 \ Z)i) for each i 2 test_index via mean of posterior

draws and save it as vector g_0_year4

25 /* Compute Noverall
k =

P4
t=3

P
i2Ik,t

n_patientst,i for SATToverall: */

26 N_overall[k] sum(n_patientsyear3[test_index] + n_patientsyear4[test_index])
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Algorithm 8: Use Double machine learning to estimate SATToverall and SATTyearly

27 /* Compute N t
k =

P
i2Ik,t

n_patientst,i, t 2 {3, 4} for SATTyearly: */

28 N_year3[k] sum(n_patientsyear3[test_index])

29 N_year4[k] sum(n_patientsyear4[test_index])

30 /* Compute ûk,overall
0 = 1P4

t=3

P
i2Ic

k,t
n_patientst,i

P4
t=3

P
i2Ick,t

Zi ⇥ n_patientst,i: */

31 u_0_overall  

sum(Z[train_index]⇥ n_patientsyear3[train_index] + Z[train_index]⇥

n_patientsyear4[train_index])/sum(n_patientsyear3[train_index] +

n_patientsyear4[train_index])

32 /* Compute ûk,t
0 = 1P

i2Ic
k,t

n_patientst,i

P
i2Ick,t

Zi ⇥ n_patientst,i, t 2 {3, 4}: */

33 u_0_year3 sum(Z[train_index]⇥

n_patientsyear3[train_index])/sum(n_patientsyear3[train_index])

34 u_0_year4 sum(Z[train_index]⇥

n_patientsyear4[train_index])/sum(n_patientsyear4[train_index])

35 /* Compute  sum,overall
a (W ; ⌘̂k,overall0 ) =

P4
t=3

P
i2Ik,t

n_patientst,i ⇥ Zi

ûk,overall
0

: */

36 psi_a_sum_overall[k] sum(Z[test_index]⇥ n_patientsyear3[test_index] +

Z[test_index]⇥ n_patientsyear4[test_index])/u_0_overall

37 /* Compute  sum,t
a (W ; ⌘̂k,t0 ) =

P
i2Ik,t

n_patientst,i ⇥ Zi

ûk,t
0

, t 2 {3, 4}: */

38 psi_a_sum_year3[k] 

sum(Z[test_index]⇥ n_patientsyear3[test_index])/u_0_year3

39 psi_a_sum_year4[k] 

sum(Z[test_index]⇥ n_patientsyear4[test_index])/u_0_year4

40 /* Compute  sum,overall
b (W ; ⌘̂k,overall0 ) =

P4
t=3

P
i2Ik,t

n_patientst,i ⇥ [
Zi(Yt,i�ĝk,t

0 (0,xi))

ûk,overall
0

� m̂k
0 (Mi)(1�Zi)(Yt,i�ĝk,t

0 (0,xi))

ûk,overall
0 (1�m̂k

0 (Mi))
]: */

41 psi_b_sum_overall[k] sum((Y3[test_index]� g_0_year3)⇥ Z[test_index]⇥

n_patientsyear3[test_index])/u_0_overall�sum(p_score⇥(1�Z[test_index])⇥

(Y3[test_index]� g_0_year3)⇥ n_patientsyear3[test_index]/(u_0_overall ⇥

(1� p_score))) + sum((Y4[test_index]� g_0_year4)⇥ Z[test_index]⇥

n_patientsyear4[test_index])/u_0_overall � sum(p_score⇥ (1�

Z[test_index])⇥ (Y4[test_index]� g_0_year4)⇥

n_patientsyear4[test_index]/(u_0_overall ⇥ (1� p_score)))
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Algorithm 8: Use Double machine learning to estimate SATToverall and SATTyearly

43 /* Compute  sum,t
b (W ; ⌘̂k,t0 ) =

P
i2Ik,t

n_patientst,i ⇥ [
Zi(Yt,i�ĝk,t

0 (0,xi))

ûk,t
0

� m̂k
0 (Mi)(1�Zi)(Yt,i�ĝk,t

0 (0,xi))

ûk,t
0 (1�m̂k

0 (Mi))
], t 2 {3, 4}: */

44 psi_b_sum_year3[k] sum((Y3[test_index]� g_0_year3)⇥ Z[test_index]⇥

n_patientsyear3[test_index])/u_0_overall � sum(p_score⇥ (1�

Z[test_index])⇥ (Y3[test_index]� g_0_year3)⇥

n_patientsyear3[test_index]/(u_0_overall ⇥ (1� p_score)))

45 psi_b_sum_year4[k] sum((Y4[test_index]� g_0_year4)⇥ Z[test_index]⇥

n_patientsyear4[test_index])/u_0_overall � sum(p_score⇥ (1�

Z[test_index])⇥ (Y4[test_index]� g_0_year4)⇥

n_patientsyear4[test_index]/(u_0_overall ⇥ (1� p_score)))

46 /* Compute  a(Wi; ⌘̂
k,overall,t
0 ) and  b(Wi; ⌘̂

k,overall,t
0 ), t 2 {3, 4} to prepare for function

foverall
k (x) definition: */

47 psi_a_overall  Z[test_index]/u_0_overall

48 psi_b_overallt3 

(Y3[test_index]� g_0_year3)⇥ Z[test_index]/u_0_overall � p_score⇥ (1�

Z[test_index])⇥ (Y3[test_index]� g_0_year3)/(u_0_overall ⇥ (1� p_score))

49 psi_b_overallt4 

Y4[test_index]� g_0_year4)⇥ Z[test_index]/u_0_overall � p_score⇥ (1�

Z[test_index])⇥ (Y4[test_index]� g_0_year4)/(u_0_overall ⇥ (1� p_score))

50 /* Compute  a(Wi; ⌘̂
k,t
0 ) and  b(Wi; ⌘̂

k,t
0 ) to prepare for function f t

k(x), t 2 {3, 4}

definitions: */

51 psi_a_year3 Z[test_index]/u_0_year3

52 psi_a_year4 Z[test_index]/u_0_year4

53 psi_b_year3 

(Y3[test_index]� g_0_year3)⇥ Z[test_index]/u_0_year3� p_score⇥ (1�

Z[test_index])⇥ (Y3[test_index]� g_0_year3)/(u_0_year3⇥ (1� p_score))

54 psi_b_year4 

Y4[test_index]� g_0_year4)⇥ Z[test_index]/u_0_year4� p_score⇥ (1�

Z[test_index])⇥ (Y4[test_index]� g_0_year4)/(u_0_year4⇥ (1� p_score))
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Algorithm 8: Use Double machine learning to estimate SATToverall and SATTyearly

55 /* Define

foverall
k (x) =

P4
t=3

P
i2Ik,t

[ a(Wi; ⌘̂
k,overall,t
0 )⇥ x+  b(Wi; ⌘̂

k,overall,t
0 )]2 ⇥ n_patientst,i: */

56 psi_squared_overall[[k]] function(x)sum((psi_b_overall_t3�

psi_aoverall ⇥ x)2 ⇥ n_patientsyear3[test_index]) + sum((psi_b_overall_t4�

psi_a_overall ⇥ x)2 ⇥ n_patientsyear4[test_index])

57 /* Define f t
k(x) =

P
i2Ik,t

[ a(Wi; ⌘̂
k,t
0 )⇥ x+  b(Wi; ⌘̂

k,t
0 )]2 ⇥ n_patientst,i, t 2 {3, 4}: */

58 psi_squared_year3[[k]] function(x)sum((psi_b_year3� psi_a_year3⇥

x)2 ⇥ n_patientsyear3[test_index])

59 psi_squared_year4[[k]] function(x)sum((psi_b_year4� psi_a_year4⇥

x)2 ⇥ n_patientsyear4[test_index])

60 /* Compute ✓̌k,overall0 : */

61 thetaoverall[k]¸solve(psiasumoverall[j], psibsumoverall[k])theta_overall[k] 

solve(psi_a_sum_overall[j], psi_b_sum_overall[k])

62 /* Compute ✓̌k,t0 , t 2 {3, 4}: */

63 theta_year3[k] solve(psi_a_sum_year3[j], psi_b_sum_year3[j])

64 theta_year4[k] solve(psi_a_sum_year4[j], psi_b_sum_year4[j])

65 end for

66 /* Save the final estimators ✓̃overall0 , ✓̃30 and ✓̃
4
0 via the weighted mean of K estimators

respectively: */

67 satt_overall  sum(theta_overall ⇥N_overall)/sum(N_overall)

68 satt_year3 sum(theta_year3⇥N_year3)/sum(N_year3)

69 satt_year4 sum(theta_year4⇥N_year4)/sum(N_year4)

70 Initialize psi_squared_sum_overall  0

71 psi_squared_sum_year3 0

72 psi_squared_sum_year4 0
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Algorithm 8: Use Double machine learning to estimate SATToverall and SATTyearly

for k = 1 to K

73 /* Take satt_overall into function psi_squared_overall[[k]] and update the sum across

the folds: */

74 psi_squared_sum_overall  

psi_squared_sum_overall + psi_squared_overall[[k]](satt_overall)

75 /* Take satt_overall into function psi_squared_overall[[k]] and update the sum across

the folds: */

76 psi_squared_sum_overall  

psi_squared_sum_overall + psi_squared_overall[[k]](satt_overall)

77 /* Take satt_year3 into function psi_squared_year3[[k]] and update the sum across the

folds: */

78 psi_squared_sum_year3 

psi_squared_sum_year3 + psi_squared_year3[[k]](satt_year3)

79 /* Take satt_year4 into function psi_squared_year4[[k]] and update the sum across the

folds: */

80 psi_squared_sum_year4 

psi_squared_sum_year4 + psi_squared_year3[[k]](satt_year4)

81 end for

82 /* Compute estimated �̂overall, �̂3 and �̂4 for ✓̃overall0 , ✓̃30 and ✓̃
4
0 respectively: */

83 sigma_overall  
p

sum(N_overall)⇥
p
psi_squared_sum_overall/sum(psi_a_overall)

84 sigma_year3 
p

sum(N_year3)⇥
p
psi_squared_sum_year3/sum(psi_a_year3)

85 sigma_year4 
p

sum(N_year4)⇥
p
psi_squared_sum_year4/sum(psi_a_year4)

86 /* Save estimated SATTs to the record dataset: */

87 df_record$satt[count+ 1] satt_overall

88 df_record$satt[count+ 2] satt_year3

89 df_record$satt[count+ 3] satt_year4
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Algorithm 8: Use Double machine learning to estimate SATToverall and SATTyearly

90 /* Construct approximate (1� ↵)% confidence intervals for SATTs and save the bounds

into the record dataset: */

91 df_record$lower90[count+ 1] 

satt_overall � qnorm(1� alpha/2)⇥ sigma_overall/
p

sum(N_overall)

92 df_record$upper90[count+ 1] 

satt_overall + qnorm(1� alpha/2)⇥ sigma_overall/
p

sum(N_overall)

93 df_record$lower90[count+ 2] 

satt_year3� qnorm(1� alpha/2)⇥ sigma_year3/
p
sum(N_year3)

94 df_record$upper90[count+ 2] 

satt_year3 + qnorm(1� alpha/2)⇥ sigma_year3/
p
sum(N_year3)

95 df_record$lower90[count+ 3] 

satt_year4� qnorm(1� alpha/2)⇥ sigma_year4/
p
sum(N_year4)

96 df_record$upper90[count+ 3] 

satt_year4 + qnorm(1� alpha/2)⇥ sigma_year4/
p
sum(N_year4)

97 Update count count+ 15

98 end for
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Algorithm 9: Use Double machine learning to estimate SATT (S)
Input: 3400 datasets, record dataset and hyperparameter K = 2 or K = 3, ↵ = 0.05.

Output: Estimated SATTsubgroup and their corresponding approximate con�dence

intervals for each dataset.

1 Initialize count = 0 which remembers the index to write the estimations in the record

dataset

2 for i = 1 to 3400

3 Read ith dataset

4 Read the record dataset

5 Construct dataframe dfm0 with practice-level covariatesX , pre-treatment outcomes Y1

and Y2, number of patients in pre-treatment stage size1 and size2, di�erence of year1

outcome and year2 outcome diff

6 Construct dataframe dfyear3 which consists of the practice-level covariates X ,

treatment status variable Z , pre-treatment outcomes Y1 and Y2, number of patients in

pre-treatment stage size1 and size2 and di�erence of year1 outcome and year2

outcome diff Construct dataframe dfyear4 which consists of the practice-level

covariates X , treatment status variable Z , pre-treatment outcomes Y1 and Y2,

number of patients in pre-treatment stage size1 and size2, di�erence of year1

outcome and year2 outcome diff and year3 outcomes Y3

7 Convert categorical variables in dataframes dfm0 , dfyear3 and dfyear4 to factors

8 Use BayesTree::makeind to dummy-encode factors in dataframes dfm0 , dfyear3 and

dfyear4

9 Change the column of Z in dfyear3 to (0, 0, . . . , 0)t and save it as df target
year3

10 Change the column of Z in dfyear4 to (0, 0, . . . , 0)t and save it as df target
year4

11 Run BART::pbart with Z as the response variable for training data, dfm0 as predictors

for training data, df target
year3 as predictors for test data, predict m̂k

0((dfm0)i) for each

i 2 {1, 2, . . . , 500} via a logistic link function and mean of posterior draws and save

it as vector pscore

12 Run BART::wbart with Y3 as the response variable for training data, dfyear3 as

predictors for training data, dfyear3 as predictors for test data, predict

ĝk,30 (0, (dfyear3 \ Z)i) for each i 2 {1, 2, . . . , 500} via mean of posterior draws and

save it as vector g_0_year3
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13 Run BART::wbart with Y4 as the response variable for training data, dfyear4 as

predictors for training data, dfyear4 as predictors for test data, predict

ĝk,40 (0, (dfyear4 \ Z)i) for each i 2 {1, 2, . . . , 500} via mean of posterior draws and

save it as vector g_0_year4

14 Extract all id.practice values within Subgroup S and save them in a vector id_S

15 /* Create 5 folds with R function caret::createFolds: */

16 cv_folds_train_S  caret :: createFolds(id_S, k = 5, list =

TRUE, returnTrain = TRUE)

17 Initialize numeric vectors theta_S with length K to save ✓̌k,S0 with k 2 {1, . . . , K}

18 Initialize numeric vectors psi_a_sum_S with length K , to save  sum,S
a (W ; ⌘̂k,S0 ) with

k 2 {1, . . . , K}

19 Initialize numeric vectors psi_b_sum_S with length K , to save  sum,S
b (W ; ⌘̂k,S0 ) with

k 2 {1, . . . , K}

20 Initialize numeric vectors N_S with length K

21 Initialize list vectors psi_squared_S with length K , to save custom functions fS
k (x)

with k 2 {1, . . . , K}

22 for k = 1 to K

23 train_index_S  cv_folds_trainS[[j]]

24 test_index_S  id_S[�train_indexS]

25 p_score_test p_score[test_indexS]

26 g_0_year3_test g_0_year3[test_index_S]

27 g_0_year4_test g_0_year4[test_index_S]

28 /* Compute NS
k =

P4
t=3

P
i2Ik,t,S

n_patientst,i: */

29 N_S[k] sum(n_patientsyear3[test_index_S] + n_patientsyear4[test_index_S])

30 /* Compute ûk,S
0 = 1P4

t=3

P
i2Ic

k,t,S
n_patientst,i

P4
t=3

P
i2Ick,t,S

Zi ⇥ n_patientst,i: */

31 u_0_S  

sum(Z[train_index_S]⇥n_patientsyear3[train_index_S]+Z[train_index_S]⇥

n_patientsyear4[train_index_S])/sum(n_patientsyear3[train_index_S] +

n_patientsyear4[train_index_S])
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32 /* Compute  sum,S
a (W ; ⌘̂k,S0 ) =

P4
t=3

P
i2Ik,t,S

n_patientst,i ⇥ Zi

ûk,S
0

: */

33 psi_a_sum_S[k] sum(Z[test_index_S]⇥ n_patientsyear3[test_index_S] +

Z[test_index_S]⇥ n_patientsyear4[test_index_S])/u_0_S

34 /* Compute  sum,S
b (W ; ⌘̂k,S0 ) =

P4
t=3

P
i2Ik,t,S

n_patientst,i ⇥ [
Zi(Yt,i�ĝk,t

0 (0,xi))

ûk,S
0

� m̂k
0 (Mi)(1�Zi)(Yt,i�ĝk,t

0 (0,xi))

ûk,S
0 (1�m̂k

0 (Mi))
]: */

35 psi_b_sum_S[k] sum((Y3[test_index_S]� g_0_year3_test)⇥

Z[test_index_S]⇥ n_patientsyear3[test_index_S])/u_0_S �

sum(p_score_test⇥ (1� Z[test_index_S])⇥ (Y3[test_index_S]�

g_0_year3_test)⇥ n_patientsyear3[test_index_S]/(u_0_S ⇥ (1�

p_score_test))) + sum((Y4[test_index_S]� g_0_year4_test)⇥

Z[test_index_S]⇥ n_patientsyear4[test_index_S])/u_0_S �

sum(p_score_test⇥ (1� Z[test_index_S])⇥ (Y4[test_index_S]�

g_0_year4_test)⇥n_patientsyear4[test_index_S]/(u_0_S⇥(1�p_score_test)))

36 /* Compute  a(Wi; ⌘̂
k,t,S
0 ) and  b(Wi; ⌘̂

k,t,S
0 ), t 2 {3, 4} to prepare for function fS

k (x)

definition: */

37 psi_a Z[test_index_S]/u_0_S

38 psi_b_year3 (Y3[test_index_S]� g_0_year3_test)⇥

Z[test_index_S]/u_0_S � p_score⇥ (1� Z[test_index_S])⇥

(Y3[test_index_S]� g_0_year3_test)/(u_0_S ⇥ (1� p_score_test))

39 psi_b_year4 Y4[test_index_S]� g_0_year4_test)⇥

Z[test_index_S]/u_0_S � p_score_test⇥ (1� Z[test_index_S])⇥

(Y4[test_index_S]� g_0_year4_test)/(u_0_S ⇥ (1� p_score_test))

40 /* Define fS
k (x) =

P4
t=3

P
i2Ik,S,t

[ a(Wi; ⌘̂
k,S,t
0 )⇥ x+  b(Wi; ⌘̂

k,t,S
0 )]2 ⇥ n_patientst,i: */

41 psi_squared_S[[k]] 

function(x)sum((psi_b_year3� psia⇥ x)2⇥ n_patientsyear3[test_index_S]) +

sum((psi_b_year4� psia ⇥ x)2 ⇥ n_patientsyear4[test_index_S])

42 /* Compute ✓̌k,S0 : */

43 theta_S[k] solve(psi_sum_a_S[k], psi_sum_b_S[k])

44 end for
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45 for k = 1 to K

46 /* Save the final estimator ✓̃S0 via the weighted mean of K estimators: */

47 satt_S  sum(theta_S ⇥N_S)/sum(N_S)

48 Initialize psi_squared_sum_S  0

49 for k = 1 to K

50 /* Take satt_S into function psi_squared_S[[k]] and update the sum across the

folds: */

51 psi_squared_sum_S  psi_squared_sum_S + psi_squared_S[[k]](satt_S)

52 end for

53 /* Take satt_S into function psi_squared_S[[k]] and update the sum across the folds:

*/

54 psi_squared_sum_S  psi_squared_sum_S + psi_squared_S[[k]](satt_S)

55 end for

56 /* Compute estimated �̂S for ✓̃S0 : */

57 sigma_S  
p
(sum(N_S))⇥

p
(psi_squared_sum_S)/sum(psi_a_S)

58 Save satt_S to the record dataset /* Construct approximate (1� ↵)% confidence

intervals for SATTs and save the bounds into the record dataset: */

59 lower90 satt_S � qnorm(1� alpha/2)⇥ sigma_S/
p
(sum(N_S))

60 upper90 satt_S + qnorm(1� alpha/2)⇥ sigma_S/
p

(sum(N_S))

61 Save lower90 and upper90 to the record dataset Update count count+ 15

62 end for
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6 Performance and Evaluation

6.1 Metrics

To assess model performance in estimating treatment e�ects SATTs, we use Root mean square

error (RMSE), absolute bias, uncertainty interval coverage, and uncertainty interval width.

De�nition 36 〈Root mean square error (RMSE) for SATTs〉

SATTi is the ground-truth value of SATT statistics for the ith dataset, and ˆSATT i is an estimation

of this SATT statistics calculated through modelling, then the root mean square error is:

RMSE =

vuut
nX

i=1

( ˆSATT i � SATTi)2

n
. (6.1)

Here, n: number of datasets, ˆSATT i: predicted SATT via modelling in the ith dataset, SATTi:

true SATT in the ith dataset

De�nition 37 〈Uncertainty interval coverage rate for SATTs〉

SATT1, SATT2, . . . , SATTn are the ground-truth values of SATT statistics for n datasets, and

[lower1, upper1], . . . , [lowern, uppern] are their corresponding uncertainty interval calculated through

modelling, then the uncertainty interval coverage is:

ci_coverage =
1

n

nX

i=1

1{SATTi 2 [loweri, upperi]}. (6.2)

De�nition 38 〈Absolute biases for SATTs〉

SATTi is the ground-truth value of SATT statistics for the ith dataset, and ˆSATT i is an estimation

of this SATT statistics calculated through modelling, then the absolute bias for the ith dataset is:

Absolute bias for the ith dataset =| ˆSATT i � SATTi | . (6.3)



Here, ˆSATT i: predicted SATT via modelling in the ith dataset, SATTi: true SATT in the ith dataset

De�nition 39 〈Uncertainty interval widths for SATTs〉

SATTi is the ground-truth value of SATT statistics for the ith dataset, and [loweri, upperi] is its

corresponding uncertainty interval calculated throughmodelling, then the uncertainty interval width

is:

ci_width for the ith dataset = upperi � loweri. (6.4)

The targeted con�dence level for the SATT uncertainty interval estimates is 90 %, which applies

to all of my implementations.

6.2 BART with Methods1 VERSUS BART with Method2

In Section 3.5.2, we described two methods for constructing credible intervals for SATTs. We

implemented both BARTwith Method.1 and BARTwith Method.2 in R and their performances

concerning SATToverall are shown in the table below.

BART with Method.1 BART with Method.2
RMSE 16.8369 16.9078

Uncertainty interval coverage rate 81.41 % 93.62 %
Average uncertainty interval width 43.8814 61.7586

Table 6.1 Table to compare performances of BART with method1 and BART with method2.

From the table, we can see that they have nearly identical RMSEs and considerably high un-

certainty interval coverage rates. However, it is clear that BART with Method.2 results in a

much wider uncertainty interval width. We discard BART with Method.2 and used BART with

Method.1 for further discussions about BART implementation.

6.3 Importance of Propensity Score

When comparing the di�erent performances of BARTwith Method.1 and BARTwithout propen-

sity score concerning SATToverall, BART with Method.1 performs better in terms of RMSE.

Meanwhile, BARTwithout a propensity score has an uncertainty interval coverage rate of roughly

71%, which is much lower than BART with Method.1. We could conclude that propensity score

should be included as an additional covariate in BART model implementations.
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BART with Method.1 BART without propensity score
RMSE 16.8369 17.9955

Uncertainty interval coverage 81.41 % 71.51 %
Average uncertainty interval width 43.8814 39.0253

Table 6.2 Table to compare performances of BART with method1 and BART without propen-
sity score.

6.4 Visualization of BART Performance

Figure 6.1 shows the boxplot of absolute biases of SATToverall, SATTyear3 and SATTyear4 which

are estimated by BART with Method.1.

Figure 6.1 Boxplot of absolute biases of SATTs via BART with Method.1
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Figure 6.2 shows the boxplot of uncertainty interval widths for SATToverall, SATTyear3 and

SATTyear4 which are estimated by BART with Method.1.

Figure 6.2 Boxplot of uncertainty interval widths of SATTs via BART with Method.1

Figure 6.3 shows the scatter plot of estimated SATToverall via BART with Method.1 against

ground-truth SATToverall, where grey vertical lines represent the uncertainty intervals of esti-

mated SATToverall. If the ground-truth SATToverall falls within the uncertainty intervals, the

point is marked with green color. Otherwise, the point is marked with red color.
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Figure 6.3 Scatter plot of estimated SATToverall via BART with Method.1 against ground-
truth SATToverall

6.5 Visualization of BCF Performance

Figure 6.4 shows the boxplot of absolute biases of SATToverall, SATTyear3 and SATTyear4 which

are estimated by BCF.

Figure 6.5 shows the boxplot of uncertainty interval widths for SATToverall, SATTyear3 and

SATTyear4 which are estimated by BCF.

Figure 6.6 shows the scatter plot of estimatedSATToverall via BCF against ground-truthSATToverall,

where grey vertical lines represent the uncertainty intervals of estimated SATToverall. If the

ground-truth SATToverall falls within the uncertainty intervals, the point is marked with green

color. Otherwise, the point is marked with red color.
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Figure 6.4 Boxplot of absolute biases of SATTs via BCF

6.6 DML with Year as an Additional Covariate

As stated in Section 5.5, we also tried the modi�ed DML model, which included the year as an

additional covariate in estimating SATToverall. Their results are shown in the table below.

DML DML with year
RMSE 22.3636 19.2605

Uncertainty interval coverage rate 2.26 % 2.59 %
Average uncertainty interval width 1.0739 1.1153

Table 6.3 Table to compare performances of DML and DML with year.

Concerning SATToverall, they have nearly identical performances of uncertainty interval cov-

erage rates and mean uncertainty interval widths. However, DML with year as an additional

96



Figure 6.5 Boxplot of uncertainty interval widths of SATTs via BCF

covariate results in lower RMSE. It is consistent with how folds for SATToverall are created. We

fold year 3 and year 4 data together if they have the same id.practice value. As a result, it is nat-

ural to consider a model that uses year as an additional covariate to �t data from years 3 and 4.

In the following discussions, we will use the implementation result of DML with year to estimate

SATToverall.
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Figure 6.6 Scatter plot of estimated SATToverall via BCF against ground-truth SATToverall

6.7 Visualization of DML Performance

Figure 6.7 shows the boxplot of absolute biases of SATToverall, SATTyear3 and SATTyear4 which

are estimated by double machine learning.

Figure 6.8 shows the boxplot of uncertainty interval widths for SATToverall, SATTyear3 and

SATTyear4 which are estimated by DML.

Figure 6.9 shows the scatter plot of estimatedSATToverall viaDML against ground-truthSATToverall,

where grey vertical lines represent the uncertainty intervals of estimated SATToverall. If the

ground-truth SATToverall falls within the uncertainty intervals, the point is marked with green

color. Otherwise, the point is marked with red color.
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Figure 6.7 Boxplot of absolute biases of SATTs via double machine learning

6.8 Comparison of BART, BCF, and DML Performances

We draw three bar plots(Figure 6.10, 6.11 and 6.12) for the metrics RMSE, uncertainty interval

coverage rate and average uncertainty interval width separately. Each plot compares the perfor-

mances of BART, BCF, and DML implementations in terms of a speci�c metric.

In terms of RMSE, the performances of BART, BCF, and DML implementations all seem to have

a good �t. Compared with the other two models, the uncertainty interval widths for DML im-

plementation are signi�cantly smaller. This results in a rather low uncertainty interval coverage

rate. The BART model and BCF model are Bayesian methods, and the lower and upper bounds of

uncertainty intervals are the 5% and 95% quantiles of the SATT statistics in posterior draws. Nev-

ertheless, in the DML model, uncertainty intervals are calculated by applying Theroem 5. Com-
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Figure 6.8 Boxplot of uncertainty interval widths of SATTs via double machine learning

pared to BART and BCF implementations, DML implementations result in signi�cantly smaller

uncertainty interval widths. This is why DML performs so poorly regarding uncertainty interval

coverage rate.

BCF is a variant of BART model. As stated in Section 4.3, it tends to outperform the BART model

in treatment e�ects estimation. The performance comparisons con�rmed the statement. The BCF

outperforms the other two model implementations in terms of the given metrics.
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Figure 6.9 Scatter plot of estimated SATToverall via BCF against ground-truth SATToverall

6.9 Heterogeneous Treatment Effects

In treatment e�ects analysis, it is important to investigate e�ect heterogeneity to �nd which

groups are more or less likely to bene�t from treatment. Subgroup analysis is a method for in-

vestigating heterogeneity. We calculate the treatment e�ects for each subgroup and see if they

di�er signi�cantly from one another. Thus, the performances of model implementations con-

cerning SATTsubgroup are also crucial. The 2022 ACIC Data Challenge de�ned 12 subgroups and

we calculate the average sample size for each subgroup by averaging the total number of patients

within each subgroup across 3400 datasets and the whole intervention period. We plot the RMSE

of a speci�c subgroup against the sample size of the subgroup and obtained Figure 6.13. We can

infer from the plot that one model performs better for subgroups with larger sample sizes. BART-
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Figure 6.10 Comparison the performances of BART, BCF, and DML concerning RMSE

based models (BART and BCF) outperform DML concerning estimations of SATTsubgroup. This

means that when dealing with treatment e�ect heterogeneity, we should prioritize BART-based

models over DML.

102



Figure 6.11 Comparison the performances of BART, BCF, and DML concerning uncertainty
interval coverage rate
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Figure 6.12 Comparison the performances of BART, BCF, and DML concerning average un-
certainty interval width
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Figure 6.13 RMSE of 12 subgroups against the sample size of the 12 subgroups
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A Appendix

The following R scripts are attached in the submission folder.

‚ p_score.r: Implementation of Algorithm 5.

‚ bart_method1.r: Implementation of Algorithm 6.

‚ bart_method2.r: Implementation of Algorithm 8.

‚ bcf_test.r: Implementation of Algorithm 12.

‚ dml_test.r: Implementation of Algorithm 14.

‚ dml_time.r: Estimation of SATToverall by double machine learning with year as an

additional covariate.

‚ dml_subgroup.r: Implementation of Algorithm 21

‚ evaluation.r: Functions about metrics RMSE and uncertainty interval coverage rate.
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