
Optimal Construction of Matrix Product
Operators and Tree Tensor Network Operators

Student: Hazar Çakır
Supervisor: Prof. Dr. Christian B. Mendl

Advisor: M.Sc. Richard Milbradt
TUM School of Computation, Information and Technology

Technical University of Munich
Munich Germany

hazar.cakir@tum.de
christian.mendl@tum.de

r.milbradt@tum.de

April 12, 2024

Abstract

In the dynamic field of quantum computing, efficient construction of Ma-
trix Product Operators (MPOs) and Tree Tensor Network Operators (TTNOs)
plays a pivotal role in understanding complex quantum systems. This project
embarks on an approach by applying bipartite graph theory to optimize the
construction of MPOs and extending this methodology to TTNOs, a domain
where such an application is unprecedented. Initially, the study meticulously
reevaluates an existing algorithm for constructing MPOs through bipartite
graphs, confirming its validity and efficiency. The transition to TTNOs un-
veiled significant challenges, necessitating considerable modifications to the
algorithm. Despite these obstacles, an optimal construction for TTNOs was
achieved, marking a significant advancement in the field. The report details
the methodological evolution, from theoretical underpinnings to practical
implementation, and underscores a new algorithm to create optimal TTNOs.

1

1 Introduction
The study of Quantum Computing brings together principles from quantum

physics, computer science, and mathematics to improve our understanding of quan-
tum systems. This field is instrumental for developing technologies in quantum
computing, cryptography, and the simulation of quantum phenomena. Key to these
advancements are Matrix Product Operators (MPOs) and Tree Tensor Network
Operators (TTNOs), which are tools for efficiently representing quantum states and
operations. While MPOs are well-studied for their application in one-dimensional
quantum systems, extending similar methodologies to TTNOs, which are appli-
cable to higher-dimensional systems, remains challenging due to their increased
complexity.

This project focuses on the application of bipartite graph theory for construct-
ing MPOs and TTNOs. Bipartite graph theory offers a framework for efficiently
determining quantum system interactions i.e. virtual bonds, which is promising
for developing algorithms that construct tensor network operators with optimal
efficiency. Initially, the project involved a detailed analysis and implementation of a
known bipartite graph algorithm for MPO construction, to validate its effectiveness.
This is also involving a study of fermionic algebra for the chemical analysis of
Hamiltonians to understand real life implementations of the MPO construction.

The next phase is the adaptation of this algorithm for TTNOs. TTNOs are a
more general case compared to MPOs, which lacks the linear relation. For that
reason, faced substantial challenges that required significant modifications to the
original algorithm migrating linear approaches to the tree like structure. Surpris-
ingly enough, it is realized that after all the modifications, the final algorithm
doesn’t include the bipartite theory.

The objectives of this project were to assess the efficiency of the bipartite graph
algorithm in constructing MPOs and to explore the feasibility of extending this
approach to TTNOs. Despite encountering theoretical and practical challenges,
the project successfully modified and updated the algorithm for optimal TTNO
construction. This introduction provides an overview of the project’s background,
motivation, challenges, and objectives. It sets the stage for the detailed account that
follows, covering the literature review, methodology, implementation, and results,
culminating in a discussion of the project’s contributions to the literature.

The research conducted was part of a guided research project under the super-
vision of Prof. Mendl and M.Sc. Milbradt . It represents a critical component of
my curriculum, providing a unique opportunity to apply theoretical knowledge to

2

a complex, real-world problem. This project not only allowed me to deepen my
understanding of quantum information science but also to contribute to the field by
extending existing methodologies to new applications. The process and outcomes
of this research are detailed in this report, which serves as the final report for the
project.

2 Related Work
In the initial phase of this guided research project, a detailed analysis and im-

plementation were undertaken based on the methodologies outlined in "A General
Automatic Method for Optimal Construction of Matrix Product Operators Using
Bipartite Graph Theory" by Ren et al. (2020) [1]. This seminal paper provides
both a comprehensive description of the algorithm and a theoretical justification
for its ability to determine optimal bond dimensions across a broad spectrum of
scenarios. Contrary to the assertions made by Ren et al., our investigations revealed
that there are certain edge cases where the algorithm does not perform as expected,
indicating limitations in its universal applicability.

Furthermore, the paper by Ren et al. is notable not only for its theoretical
contributions but also for its practical applications, showcasing three distinct real-
world implementations related to the construction of Hamiltonians from various
systems. Within the scope of this project, the focus was narrowed to the ab initio
electronic Hamiltonian system. The complexities and theoretical underpinnings
of this specific system are explained in the subsequent section of this report. A
foundational understanding of fermionic algebra is imperative for engaging with
this domain, a requirement met through the insights provided by "Matrix Product
Operators, Matrix Product States, and ab initio Density Matrix Renormalization
Group algorithms" by Chan et al . (2016) [2]. This work significantly contributed to
our comprehension of electronic systems and their interplay with tensor networks,
laying the groundwork for the applied aspects of our research.

The exploration then expanded to include the construction of Tree Tensor Net-
work Operators (TTNOs), marking the second focus of the project. In this endeavor,
"State Diagrams to Determine Tree Tensor Network Operators" by Milbradt et al.
(2023) [3] from our chair served as a pivotal reference. Despite its methodological
departure from the bipartite graph theory and its suboptimal approach to forming
TTNOs, the paper provided a crucial starting point. It offered a novel blueprint
for representing the tree structure of TTNOs through state diagrams. This concep-
tual framework, albeit distinct from the bipartite algorithm’s domain, enabled the

3

development of a new algorithmic approach grounded in bipartite graph theory.
Leveraging the state diagram structure, the project embarked on constructing an
innovative method for TTNOs, utilizing existing implementations as a foundation.

These foundational texts have guided the initial stages of our exploration, setting
a theoretical and practical framework within which our project was positioned.
Through the critical examination and application of these sources, our research
endeavors to build upon the established knowledge base, addressing gaps and
extending the methodology to new contexts.

3 Physical Model
Within the domain of quantum chemistry, the ab initio electronic Hamiltonian

system is a pivotal construct for the quantum mechanical description of electron
interactions in molecules. This Hamiltonian, devoid of empirical parameters,
adheres to the principles derived from first principles or fundamental quantum
mechanics. The mathematical form of the electronic Hamiltonian, Ĥ , is presented
as follows:

Ĥ =
∑

pq
tpqa

†
paq +

1
2
∑

pqrs
vpqrsa

†
pa

†
qaras (1)

In order to understand the equation, we should first be familiar with the fermionic
algebra:

a =
(

0 1
0 0

)

, a† =
(

0 0
1 0

)

• a†p: Creation operator that add an electron to the quantum states p.
• ap: Annihilation operator that remove an electron from the quantum state p.
Mastering all the details of the field of the fermionic algebra exceeds the scope

of this guided research, however some level of understanding is required to under-
stand the given Hamiltonian. In this regard we can simplify the Hamiltonian with
explaining the two types of interactions in it:

∑

pq
tpqa

†
paq

4

It represents the one-body interactions. This term sums over all pairs of quan-
tum states p and q. The tpq coefficients are known as one-electron integrals and they
typically represent the kinetic energy of electrons moving in the field of the nuclei,
as well as the potential energy from the attraction between the electrons and the
fixed nuclei. The operator a†p is the creation operator which adds an electron to the
quantum state p, and aq is the annihilation operator that removes an electron from
the quantum state q. This term captures the behavior of single electrons within the
molecular system.

1
2
∑

pqrs
vpqrsa

†
pa

†
qaras

It represents the two-body interactions, specifically the electron-electron re-
pulsion. Here, the summation is extended over all quadruples of quantum states
p,q,r, and s. The vpqrs coefficients are two-electron integrals and they describe the
repulsion energy between pairs of electrons located in states p and q. The factor of
1
2
is used to compensate for the double counting of electron pair interactions since

the repulsion between two specific electrons is counted once when the electrons
are in states p and q and again in states r and s. The sequence of creation and
annihilation operators a†pa†qaras follows the fermionic anticommutation rules and
ensures that the Pauli exclusion principle is obeyed, allowing the correct description
of the antisymmetry of the wave function under the exchange of any two electrons.

As it can be seen, with higher number of sites, the number of terms are increasing
vastly. The computational analyses conducted by by Chan et al . (2016) [2]
and Nakatani and Chan (2013) [4] show that the complexity of determining the
optimal bond dimensions for the Hamiltonian’s representation via the Density
Matrix Renormalization Group (DMRG) method scales as O(M3K3) + O(M2K4)
after extensive mathematical derivations and mathematical manipulations which is
excluded in this report. The main motivation of the automated algorithms using
bipartite graph theory is to calculate optimal bond dimensions with a more efficient
way and guaranteeing to reach to the optimal bond dimensions.

4 Methodology
The research is divided into two main sections as Bipartite Graph Algorithm

for MPOs and adaptation of this algorithm to TTNOs. In this section, they will be
explained:

5

4.1 Bipartite Graph Algorithm for MPOs
The algorithm from Ren et al. (2020) [1] has already been well-documented,
complete with pseudocode. Therefore, this report will not reiterate those details.
Instead, our work focused on replicating the existing algorithm to test its reliability.
As anticipated, the algorithm was successful in determining the optimal bond di-
mensions for most cases. However, our findings indicate that the bipartite graph
algorithm does not account for certain exceptional cases, suggesting that it is not
entirely comprehensive.

In this section, we will provide a brief outline of the algorithm and discuss a
specific case where the algorithm fails to perform as expected.

4.1.1 Bipartite Algorithm

To understand how the algorithm works, first we need to understand how we struc-
ture the terms. Each term represented as a chain of operators where each local
operator is applied on a site. Let’s say we have k terms and n sites. One important
feature is edges between two sites. The number of edges determines the virtual
bond dimension between MPO sites and the goal of the algorithm is to minimize
these edges for each site-to-site connection as much as possible. In the beginning,
we will have k parallel chains and have k edges between each n − 1 connections.

Algorithm does a sweep from one end to the other and through that, optimizes
bond connections between sites locally. In our implementation we iterate from left
to right and will follow this order throughout this section. We will call left chains
as Ũ chains and right chains as Ṽ chains. For each edge, we do following specific
steps:

1. Create non-redundant operator sets for Ũ and Ṽ values called as U and V .
These sets are formed as removing the duplicated operators in left and right
chain. This is practically combining those chains into one chain.

2. Preserve connectivity between U and V sets. Connect nodes from U and V
sets with regard to previous connections before combination done in step 1.

3. Apply Bipartite Algorithm to find required vertices with minimum vertex
cover and extract edges to form a maximum matching.

4. Form new U values using determined bonds in step 3
For more detailed explanation, please check Ren et al. (2020) [1]. For the local

sites, Figure 1 indicates the state after step 3.

6

Figure 1: The vertices represent the non-redundant operators in the L- and R- block.
The edges represent the interactions with a nonzero pre-factor. The vertices in blue
form a minimum vertex cover. The edges in red form a maximum matching

4.1.2 Problematic Fully-Connected Case

Even though there exist a scientific proof in Ren et al. (2020) [1] that the algorithm
is complete, we observed a case where the algorithm fails to cover which includes
a fully connected edge. Let’s first understand the problematic approach of the
algorithm.

The bipartite algorithm combines edges from only one side of the bond, picking
U and V vertices. So it is either connected on the left or on the right. To understand
it better, let’s investigate Figure 1. In this diagram, algorithm picks Û1, V̂2, Û4.Picking Û1 means combining vertices 11, 12 ,and 13 on the left side. For V̂2 wecombine 22 and 32 on the right hand. However, this approach fails when we need
to combine both sides, i.e. fully connected sites.

Let’s analyze the Hamiltonian

H =
4
∑

j=1
ℎj = X1Y1 +X1Y2 +X2Y1 +X2Y2

Here in the Figure 2, we can see what the algorithm proposes as a solution
and what is actually optimal bond configuration. For MPOs, some kind of post-

7

processing is required to further optimise the bond connections. We’ve dealt it in
the TTNO case in our own Combine-and-Match algorithm.

Figure 2: a) The initial configuration of the chains. b) The result of the bipartite-
graph algorithm. c) Actual optimal solution.

4.2 Combine-and-Match Algorithm for TTNOs
In this section, we propose a new algorithm to construct the most optimal TTNOs,
called "Combine-and-Match Algorithm". This algorithm is constructed upon the
State Diagram representation by Milbradt et al. (2023) [3]. The same state diagram
implementation is followed for the state diagrams during this paper. In the figure 3,
we can see the representation for the hamiltonian, single terms and compound state
diagram formed in the beginning of the algorithm.

4.2.1 Compound State Diagram Representation

Let’s investigate further the representation with figure 3. Figure a shows the tree
structure of the Hamiltonian. Numbers represent the sites and edges are the bonds
between sites i.e. virtual bonds. Here one can see all terms somewhat combined
over the sites with colors. The goal of the optimization is to minimize virtual bond
dimensions between sites.

In the figure b we can see how the single terms constructed as state diagrams.
This structure is not used in the current algorithm but it is good to show how terms
in the Hamiltonian could represented individually. The important thing is the
notation on the state diagrams. We call Hyperedge the square nodes in the state
diagram which represents the sites and represented as nodes in the tree structure.
On the other hand, we call Vertex the black dots in the state diagram corresponds

8

a)

b)

c)

1

52

6 73 4

8

XX

Y Y Y ZZ

X YX X

X

Y

X X

X

Y

Y

X

Y Z Z

X

X

X

Y Y

X X

Z Z

Y X

X

·

Figure 3: a) Tree structure for a given TTNO, where the Hamiltonian is Htoy =
∑4

j=1 ℎj = Y2X3X4 +X1Y2Y6 +X1Y2Z5 +Z5X7X8. Each single site operator in
the same term is given the same color and identity operators are not shown. We
choose node 1 as the root of the tree structure. b) Single paths state diagrams for
each term. c) Compound state diagram formed before the Combine-and-Match
algorithm.

9

to virtual bonds and represented as edges in the tree structure. After this point, we
call vertices and hyperedges correspondingly.

We apply Combine-and-Match algorithm to the compound state diagram that
can be seen in figure c. This is the most straightforward composition of the Hamilto-
nian. Here we have maximum number of virtual bonds possible as you can see the
number of vertices in the diagram. The algorithm traverses through this compound
state diagram and optimises virtual bond dimensions one-by-one via minimizing
the number of vertices between hyperedges. While optimising each vertex site,
compound state diagram is also updated. In the end, we will have one of the state
diagrams with optimal virtual bond dimensions.

4.2.2 Algorithm

Figure 4: a) Tree is traversed in BFS manner but double passing each level. The
order of the traverse is first the 1. level (orange), than the second level (green) and
finally the third level (pink). For each layer, we process each vertex site twice. For
example in the first layer, firstly vertices are processed in the red numbering order,
then blue. b) For each vertex site, we split tree in two parts. Red part is U-subtree
and blue part is V-subtree. c) Another example cut for the bond between site 5 and
6.

As previously mentioned, the algorithm operates by navigating through the com-
pound state diagram, with the objective of optimizing the virtual bond dimensions.
This is achieved by minimizing the number of vertices intersected by hyperedges.
The navigation follows a Breadth-first search (BFS) strategy, initiating from the
root and proceeding through the legs, which are the vertex sites, of the tree. We call
processing of a vertex site as Cut site, as it is like we are cutting tree through the
vertex site. A distinctive aspect of our approach is the dual traversal over each level:
rather than processing each vertex site consecutively, the algorithm completes a

10

full pass through all vertex sites at a given level before embarking on a second pass.
The traversal order is visually depicted in Figure 4 a), providing a clear illustration
of the process.

Algorithm 1 Combine-and-Match Algorithm
Require: ℎamiltonian, ref_tree
Ensure: compound_state_diagram
1: state_diagrams← GET_STATE_DIAGRAMS(ℎamiltonian, ref_tree)
2: compound_state_diagram← GET_STATE_DIAGRAM_COMPOUND(state_diagrams)
3: Initialize queue
4: for each child of the root in ref_tree do
5: Enqueue (root, cℎild) pair into queue
6: end for
7: while queue is not empty do
8: level_size← size of queue
9: for each (parent, current_node) pair in queue do
10: local_ℎyperedges ← COPY of hyperedges of current_node from

compound_state_diagram
11: COMBINE_U(local_ℎyperedges, parent)
12: end for
13: for each item in level_size do
14: Dequeue (parent, current_node) pair from queue
15: local_vs ← COPY of hyperedges of parent from

compound_state_diagram
16: COMBINE_V(local_vs, current_node, parent)
17: for each child of current_node in ref_tree do
18: Enqueue (current_node, cℎild) pair into queue
19: end for
20: end for
21: end while
22: return compound_state_diagram

Through the algorithm, we split the tree in two parts: U-subtrees and V-subtrees.
The naming U and V follows the bipartite algorithm discussed in the previous sec-
tion. U-subtree is the subtree of a graph, including all children nodes and sub
tree structure for a given node or lower node of a given Cut site. V-subtree is the
remaining part of the tree after extracting the U-subtree. In the figure 4 parts b and
c, a partition to U-subtree and V-subtree for the vertex site 1-2 and site 5-6 can be
seen respectively.

11

The algorithm consist of two parts which corresponds: Combining U-subtrees
and Combining V-subtrees. In the first pass of a level, we check and combine
U-subtrees and for the second iteration, we focus on the V-subtrees. While combin-
ing U or V subtrees, the connections in the Cut site are handled, i.e. unnecessary
vertices can be removed, new vertices can be introduced or connections of vertices
can be altered. After passing a cut site twice, it is guaranteed that corresponding
site is optimised and has optimal (minimal) bond dimensions.

The details of the algorithm can be seen in pseudocode of Algorithm 1. It
can be summarised as iterating the tree BFS manner and apply Combine U and
Combine V functions for cuts.

4.2.3 Combining U-subtrees

During the first iteration of a level in the tree, we go through each U-subtree
and combine exact same subtrees. After the first iteration, we will end up with the
unique U-subtrees. In the figure 5, the order of traverse and the resulting U-subtrees
are shown.

Figure 5: The traverse of U-subtrees for the first, second and third level. The
resulting red dotted subtrees are unique set of subtrees

Let’s further investigate how the Combination of U-subtrees is actually done.
First we will go through the psuedocode Algorithm 2 and give some applied ex-
amples with a simple case. For this purpose we will use example compound state
diagram given in Figure 3 and we will cut through site 1-2 and form U-subtrees.
The application of this simple case is shown in the figure 6

Goal of the U-subtree combination is to detect exact same subtrees and combine
them. The condition of equivalence is to have same local operations (e.g X, Y, Z or
I) for all of the hyperedges corresponds to the same level. To detect equal subtrees,
one have to go through each site and compare local operators of two subtrees. If all

12

of the local operations are the same, we can mark those two subtrees equal.
The Combine-and-Match algorithm employs a sophisticated and efficient tech-

nique to identify identical subtrees within the compound state diagram. Each
hyperedge within the diagram is assigned a hash value, which acts as its identifier
for the subtree below it. This hash is computed by integrating the hashes of the
child nodes with the associated local operator. Consequently, if two hyperedges
share identical hash values for their children and the same local operator, they will
also have matching hash values. For leaf nodes, the hash is derived solely from the
local operator. As the compound state diagram is constructed, these hash values
are systematically calculated and linked to their respective hyperedges. Therefore,
to determine the equivalence of two subtrees, one can simply compare the hash
values of their hyperedges.

After finding two equivalent subtrees, we combine those. Combination process
is simple, we remove the second subtree from the compound state diagram and
combine vertices of the subtrees in the cut site. Let’s follow the psuedocode 2 and
call the first hyperedges of the subtrees as element1 and element2, then we call
vertices connected to those hyperedges in the cut site as keep_vertex and del_vertex,
respectively. Also let us call the site below the cut site as child_site and above
the cut site as parent_site. In the cut site, we are going to remove del_vertex,
however we need to connect the hyperedges in the parent_site that are connected
with the del_vertex, to the keep_vertex. This is practically combining those two
vertices together. In the end, keep_vertex will be connected to all of the hyperedges
previously keep_vertex and del_vertex connected.

Let’s check Figure 6 for application of Combine_U function. Here cut site is
site 1-2 shown with red dashed line. Each U-subtrees is colored differently in the
part a) as red, green, orange and purple. When we check subtrees, we can detect
that green and orange subtrees are equal, so we are going to combine those two.
The resulting subtree is colored as blue in the part b). In the child_site, we just
basically remove orange subtree from the diagram. In the parent_site, keep_vertex
is connected to the first X, where del_vertex is connected to the second X hyperedge.
So we remove the del_vertex from the cut site and connect keep_vertex with both
of the X hyperedges.

It can be observed that the number of vertices in the cut site is decreased as 1
after the Combine_U operation. As it is stated before, this corresponds to the virtual
bond dimension between sites 1 and 2. So we found a more optimal configuration
for the given Hamiltonian. After applying Combine_V to the same site, we would
reach optimal bond dimensions.

13

Figure 6: a) The compound state diagram before the Combine_U is applied. Each
subtree is colored differently and green and orange U-subtrees should be combined.
b) The resulting diagram after combination of U-subtrees.
Algorithm 2 Combine_U
Require: local_ℎyperedges
1: Initialize combined as an empty set
2: for each pair of hyperedges (element1, element2) in local_ℎyperedges do
3: if elements already combined then
4: Continue to next iteration
5: end if
6: if element1 and element2 combinable then
7: Add j to combined
8: del_vertex← element2.find_vertex(parent)
9: keep_vertex← element1.find_vertex(parent)
10: Erase subtree of element2 from compound state diagram
11: fathers ← del_vertex.get_hyperedges_for_one_node_id(parent)
12: Remove del_vertex from state diagram
13: for each father in fathers do
14: Remove del_vertex from father
15: Add father to keep_vertex
16: end for
17: end if
18: end for

4.2.4 Combining V-subtrees

The algorithm’s second phase focuses on identifying and merging V-subtrees.
While this phase shares a similar objective and methodology with the U-subtrees
segment, it encounters distinct scenarios necessitating meticulous attention. This
section will go over the standard integration of V-subtrees, then examine unique

14

cases, providing a detailed exploration of the strategies employed to manage each
scenario effectively.

Goal of the V-subtree combination is again to detect exact same subtrees and
combine them. The condition of equivalence is same as before, however this time,
we can utilize the resulting updates of the Combine_U function on the diagram, as
combine_V function is applied after finishing the Combine_U optimisations on the
given level. In this regard, it can be realized that, to detect equivalence of V-subtrees,
comparing first hyperedges of the V-subtrees (which are in the parent_site) and
their connected vertices. If two of the hyperedges have same local operator and
connected to the same subtree, then we can mark those V-subtrees as identical.

Figure 7: Red dashed lines are U-subtrees that are already optimised. Here they are
already combined and the current compound state diagram only includes unique
U-subtrees. Blue dashed lines represent V-subtrees. To detect identical V-subtrees,
it is enough to check site 1 and orange dashed connection with U-subtrees. a) Cut
through site 1-2. b) Cut through site 1-5.

Let’s further investigate the proposal with Figure 7 and Figure 8. In the Figure
7, we are looking to the case for the root as the parentsite of the cut site. As it canseen here, the V-subtrees are consist of site 1 hyperedges connected with U-subtrees.
The red dashed U-subtrees have optimised and includes only unique subtrees. As it
is shown in Figure 6, same U-subtrees are combined into same vertex in the cut site.
So for the V-subtrees, only not-unique part is site 1 hyperedges and it is enough
to check local operators on site 1. If two hyperedges have same local operator
and connected to the same vertices, than they can be marked as equal and we can
combine those.

15

Figure 8: Red dashed lines are U-subtrees that are already optimised. Purple dashed
lines are previously optimised V-subtrees. Here they are already combined and the
current compound state diagram only includes unique U-subtrees and V-subtrees
for the upper level. Blue dashed lines represent V-subtrees that currently being
optimised. To detect identical V-subtrees, it is enough to check parent_site and
orange dashed connections with U-subtrees and optimised V-subtrees. a) Cut
through site 2-3. b) Cut through site 2-4. c) Cut through site 5-6.

In the Figure 8, we have more general case with parent_site as an arbitrary
site. Here the V-subtrees are consist of parent_site hyperedges connected with U-
subtrees and already optimised V-subtrees. The red dashed U-subtrees and purple
dashed V-subtrees have optimised and includes only unique subtrees. So the same
situation is valid, only not-unique part is parent_site hyperedges and it is enough
to check local operators on site 1 and their connections with unique parts. If two
hyperedges have same local operator and connected to the same vertices, than they
can be marked as equal and we can combine those.

Figure 9: a) The compound state diagram before the Combine_V is applied. Each V-
subtree is colored differently and green and orange V-subtrees should be combined.
b) The resulting diagram after combination of V-subtrees shown in blue.

16

In the Figure 9, we can see how this comparison is done. In the part a), each
hyperedge is colored differently. And after comparing each hyperedge with each
other, it can be seen that green and orange X hyperedges have same local operation
on the site 1 and connected to the same vertex to their U-subtrees. Then we can
mark those two as identical and should combine those as shown in part b). Lets
investigate how the combination is actually performed.

Before going into details, first investigate what is done in this function, while
going over the psuedocode Algorithm 3. Here again we are going over a set of
hyperedges (from parent_site of the cut) and try to detect combinable pairs of
V-subtrees. After finding such a pair, we get important hyperedges and vertices for
the combine operation and get the numbers of hyperedges in both V-subtrees in the
parent_site. Using those numbers, we handle combination of V-subtrees in three
different ways.

1. Normal combination: When both V-subtrees have only one hyperedge in
the parent_site i.e. del_vertex and keep_vertex have only one hyperedge
as parent.

2. Generative combination: When just one of the V-subtrees has only one
hyperedge in the parent_site and other one has multiple i.e. one of the
del_vertex and keep_vertex have only one hyperedge as parent and the
other one has multiple. We called this one Generative combination as it
requires creation of new hyperedge(s) in the cℎild_site and new vertex in
the cut_site.

3. Fully-connected combination: When both V-subtrees have multiple hyper-
edges in the parent_site i.e. del_vertex and keep_vertex have more than
one hyperedges as parent. It is called Fully-connected combination as if the
conditions met, it is required to create a fully-connected node in the cut_site.

After the combinations, we call the Combine_V function with updated set of
vertices again if there happened any Generative combination; as generation of new
vertices and hyperedges may cause new possible combinations in V-subtrees. Also
after the creation of a fully-connected vertex, we call the Combine_V function
directly finishing the initial iteration and start over with updated hyperedges. These
recursive calls are required to reach global optimum.

Let’s set a terminology before explaining combination. We follow the same
naming with U-subtrees as we call the first hyperedges of the V-subtrees as element1
and element2, then we call vertices connected to those hyperedges in the cut site as
keep_vertex and del_vertex, respectively; the site below the cut site as child_site and

17

Algorithm 3 Combine_V
Require: local_ℎyperedges
1: Initialize combined as an empty set
2: for each pair of elements (element1, element2) in local_vs do
3: if elements already combined then
4: Continue to next pair
5: end if
6: if element1, element2 is combinable then
7: keep_vertex, del_vertex ← vertices of element1, element2 in cut site
8: d1 ← # hyperedges keep_vertex has in parent site > 1
9: d2 ← # hyperedges del_vertex has in parent site > 1
10: if d1 and d2 then ⊳ Fully-connected combination
11: if del_vertex, keep_vertex can’t create fully connected node then
12: Continue to next pair
13: else
14: Combine vertices, delete duplicates, create a fully connected

node and call Combine_V recursively with updated local_vs
15: return
16: end if
17: end if
18: Add element2 to combined
19: if not (d1 or d2) then ⊳ Normal combination
20: Combine vertices normally, remove element2 hyperedge
21: else ⊳ Generative combination
22: if d1 then
23: Switch element1 and element2
24: end if
25: for each vertex in element2 do
26: if vertex is in cut site then
27: Delete vertex from collection, create new vertex and hyper-

edges. Form new connections corresponding to combination of hyperedges.
28: else
29: Remove hyperedge from vertex
30: end if
31: end for
32: Remove element2 hyperedge from diagram
33: end if
34: end if
35: end for
36: if combined is not empty then
37: Recursively call Combine_V with updated local_vs
38: end if

18

above the cut site as parent_site. Additionally we will call hyperedges connected
to the del_vertex and keep_vertex in the child_site as del_sons and keep_sons re-
spectively.

Normal Combination

This is the most common case for the V-subtree combination. Precondition
for this is that both of the del_vertex and keep_vertex has just one parent hyperedge
in the parent_site.

Combining element1 and element2 is simply removing element2 and combine
del_vertex with keep_vertex. To remove element2 from the compound state dia-
gram, after deleting it, we also should iterate through vertices connected to element2
(except the one in the cut-site) and remove their connection with it. For the cut site,
we are going to remove del_vertex, however we need to connect the hyperedges in
the child_site that are connected with the del_vertex (del_sons), to the keep_vertex).
This is practically combining those two vertices together. In the end, keep_vertex
will be connected to all of the hyperedges previously keep_vertex and del_vertex
connected.

Let’s check Figure 9 again for the application of Combine_V function. Here cut
site is site 1-5 shown with red dashed line. Each V-subtrees is colored differently in
the part a) as red, green, orange and purple. When we check subtrees, we can detect
that green and orange subtrees are equal (as they have the same local operator and
connected to the same vertex), so we are going to combine those two. The resulting
subtree is colored as blue in the part b). In the parent_site, we just basically remove
orange subtree from the diagram. In the child_site, keep_vertex is connected to the
second I, where del_vertex is connected to the first Z hyperedge. So we remove
the del_vertex from the cut site and connect keep_vertex with both of the I and Z
hyperedges.

It can be observed that the number of vertices in the cut site is decreased as
1 after the Combine_V operation. As it is stated before, this corresponds to the
virtual bond dimension between sites 1 and 5. So we found the most optimal bond
dimension for the cut as we optimised U-subtrees and V-subtrees.

Generative Combination

Precondition for this is that one of the del_vertex and keep_vertex has one

19

parent hyperedge in the parent_site and the other one has multiple. This causes
problem because we can not combine del_vertex and keep_vertex directly as it
creates an invalid tree structure. If keep_vertex has more than one hyperedges in
the parent_site, we switch del_vertex and keep_vertex. After this operation, we
will always have keep_vertex having just one parent and del_vertex having multiple
parents.

The solution for that is to modify del_vertex, such that combination is possible.
Process is as follows: We duplicate the del_sons hyperedges (hyperedges that
are connected to the del_vertex in the child_site) in the child_site. These copy
hyperedges are connected to the same vertices except cut site. For the cut site, a
new vertex is created. This new vertex is connected to the all of the hyperedges
that del_vertex connected except del_sons and element1. The copy hyperedges
will be connected to the new vertex in the cut site. Finally, the connections in the
del_vertex to the parent_site will be removed except element1. This new vertex
is basically extracted from the del_vertex. This sub-state allows as to combine
del_vertex and keep_vertex directly as in the Normal Combination.

Figure 10: a) The compound state diagram before the Combine_V is applied.
Each V-subtree is colored differently and green and orange V-subtrees should be
combined. b) The sub-state diagram after the new hyperedge and new vertex is
generated in the cut site. c) The resulting diagram after combination of V-subtrees,
shown in blue.

Let’s check Figure 10 for the application of Combine_V function. Here cut
site is site 1-2 shown with red dashed line. Each V-subtrees is colored differently
in the part a) as red, green and orange. When we check subtrees, we can detect
that green and orange subtrees are equal (as they have the same local operator and
connected to the same vertex on the site 5), so we are going to combine those two.
However as it can be seen, del_vertex has 2 parent hyperedges. So we are going to
duplicate pink I hyperedge and del_vertex as described in the previous paragraph.
Resulting sub-state diagram can be shown in the part b). Purple hyperedge and the
vertex is the copied ones. The copied vertex is connected to the purple hyperedge

20

and parents of the del_vertex except element1. In this state, we can combine ele-
ment1 and element2 normally. The resulting subtree is colored as blue in the part c).

It can be observed that the number of vertices in the cut site stayed same after the
Combine_V operation. Even though we are decreasing the number of hyperedges in
the parent_site, we create a new hyperedge in the child_site. The operation seems
unnecessary but actually experiments showed that these steps are crucial to have
optimal tree after processing each cut through the tree.

Fully-connected Combination

Precondition for this case is that both of the del_vertex and keep_vertex have
multiple parent hyperedge in the parent_site. This causes problem because we can
not combine del_vertex and keep_vertex except the fully connected case. In this
situation, we will investigate the diagram if it is possible to create a fully connected
layer in the cut site. When it is not the case, we will skip combination as it is not
feasible at all to combine.

Fully-connected vertex refers a vertex with multiple parents and multiple chil-
dren. In the previous state diagram representation or in the bipartite graph theory,
we only create vertices with one-to-many connections, i.e one child-multiple parents
or one parent-multiple children. In this case, however, we will create a vertex with
multiple children and parents when it is possible.

The process of detection of the fully connected case as follows: After determin-
ing del_vertex and keep_vertex, we iterate through hyperedges of the both vertices
in the parent_site. For each parent hyperedge of the del_vertex in the parent_site,
there should be a parent hyperedge of keep_vertex, that is combinable and vice
versa. The creation of fully-connected vertex is possible if only this condition is
met. Otherwise, the combination is skipped for these element1 and element2

The creation process is as follows: All hyperedges connected to the del_vertex
on the parent_site will be removed from the compound state diagram with their
connections to the other vertices. Also we remove del_vertex from the diagram and
add del_sons hyperedges to the keep_vertex. This is basically combining del_vertex
and keep_vertex as before. In the and we will have keep_vertex as a fully-connected
vertex.

Let’s check Figure 11 for the application of Combine_V function. Here cut site

21

Figure 11: a) The compound state diagram before the Combine_V is applied. Each
V-subtree is colored differently. b) The resulting diagram after combination of
V-subtrees, and creation of fully-connected vertex, shown in blue.

is site 1-5 shown with red dashed line. Each V-subtrees is colored differently in
the part a) as red, green, orange and purple. When we check subtrees, we can first
detect that red and green subtrees are equal (as they have the same local operator
and connected to the same vertex on the site 1), so we are going to combine those
two. However as it can be seen, both del_vertex and keep_vertex have 2 parent
hyperedges. So we are going to iterate through each parent hyperedges of del_vertex
and keep_vertex and check compatibility as described. It can be seen that yellow
and purple subtrees are also combinable which are parents of vertices in the cut
site. In the part b) , we remove green and purple subtrees as they are connected
to the del_vertex and combine del_vertex and keep_vertex together, which can be
seen in blue color.

It can be observed that the number of vertices in the cut site is again decreased
as 1 after the Combine_V operation. This additional check and combination makes
it possible to find optimal bond dimensions in any cases.

5 Results and Evaluations
As it is stated in the previous sections, Combine-and-Match algorithm has reached
optimum bond dimensions for any case and any tree structure, including having a
leaf node as a root.

In the Figure 13, we are comparing the virtual bond dimensions that we found
with the optimal bond dimension that can be achieved using singular value decom-
positions. To express the analysis more quantitatively, 300.000 different random

22

Figure 12: Results for the previous algorithm. As it can be seen, it is far from the
optimal most of the cases.

Hamiltonians were generated and the Combine-and-Match algorithm were able
find most optimal bond dimensions for all of the cases.

If we analyse the cases where a leaf node is determined as a root, we still have
optimal bond dimensions for all of the cases; for 300.000 cases . For this specific
setup, previous algorithm was failing and could not find optimal bond dimensions.

6 Discussions and Future Work
Throughout this research, it has been observed that the Combine-and-Match al-
gorithm regularly achieves the theoretical optimum. Yet, it’s important to note
that these outcomes are derived solely from empirical testing. The algorithm was
subjected to a broad array of randomized scenarios and exhibited success across
all instances. To definitively assert the optimality of the algorithm, a thorough
theoretical analysis and proof are essential. Only through such rigorous validation
can we legitimately claim the algorithm’s optimality.

An additional area for application involves extending the Combine-and-Match
algorithm to the initial fermionic scenario. Given that each linear MPO structure
can be conceptualized as a tree-like TTNO structure, this presents an opportunity
to test and analyze the algorithm’s practical implementation in real-world scenarios.

Enhancements to the algorithm could also include the integration of variable
coefficients for individual terms. The current version of the algorithm operates

23

(a) The bond dimension for 10000
random sample Hamiltonians with
30 terms obtained via our algorithm
versus the optimal (minimal) bond
dimension based on singular value
decompositions. A darker colour
represents more of our sample bonds
with the given relation of found to
optimal bond dimension. The blue
line shows y = x.

(b) The number of terms in the
Hamiltonian against the average dif-
ference in bond dimension as ob-
tained via our algorithm compared
to the minimal dimension per bond.

Figure 13: Results for the Combine-and-Match algorithm. As it can be seen, We’ve
reached optimal bond dimensions.

under the assumption that all coefficients are uniformly set to 1. However, as
demonstrated in the linear case of the bipartite algorithm, accommodating term
coefficients is indeed feasible. Extending this capability to Tree Tensor Network
Operators stands as an essential step forward. By successfully implementing this
feature, we could substantiate the claim of having a comprehensive algorithm for
Tree Tensor Network Operations.

7 Conclusions
This study has presented a comprehensive investigation into the construction of
Matrix Product Operators (MPOs) and Tree Tensor Network Operators (TTNOs)
utilizing the principles of bipartite graph theory. Through rigorous analysis, we
have confirmed and extended the findings of Ren et al. (2020), uncovering the
limitations of the previously established algorithm in handling certain edge cases.
Our endeavor to adapt these methodologies to the more complex domain of TTNOs
required significant algorithmic innovation, facilitated by the application of state
diagrams as proposed by Milbradt et al. (2023).

24

The outcomes of this research demonstrate that the developed Combine-and-
Match algorithm is capable of determining the optimal bond dimensions for any
tree structure, independently of Bipartite Graph Theory. Considering that linear
MPO structures can be envisaged as analogous to tree-like TTNO structures, this
achievement also signifies an enhancement over the algorithm proposed by Ren et
al. (2020).

This work’s implications extend beyond the technical accomplishments, poten-
tially influencing a range of applications within quantum chemistry and physics.
The enhanced understanding and optimization of tensor network operators may
contribute to the development of more powerful quantum simulation tools, further-
ing our capacity to probe the subtleties of quantum mechanics and its real-world
applications.

In conclusion, this guided research project not only fulfills an academic pursuit
but also marks a substantive stride towards the advancement of quantum computa-
tional methods. The journey from conceptual understanding to practical application
encapsulates the essence of research in computational science, signifying the itera-
tive nature of discovery and the perpetual quest for improvement and innovation.

References
[1] Jiajun Ren, Weitang Li, Tong Jiang, and Zhigang Shuai. A general automatic

method for optimal construction of matrix product operators using bipartite
graph theory. The Journal of Chemical Physics, 153(8), August 2020.

[2] Garnet Kin-Lic Chan, Anna Keselman, Naoki Nakatani, Zhendong Li, and
Steven R. White. Matrix product operators, matrix product states, and ab initio
density matrix renormalization group algorithms, 2016.

[3] RichardM.Milbradt, QunshengHuang, and Christian B.Mendl. State diagrams
to determine tree tensor network operators, 2024.

[4] Naoki Nakatani and Garnet Kin-Lic Chan. Efficient tree tensor network states
(ttns) for quantum chemistry: Generalizations of the density matrix renormal-
ization group algorithm. The Journal of Chemical Physics, 138(13), April
2013.

25

	Introduction
	Related Work
	Physical Model
	Methodology
	Bipartite Graph Algorithm for MPOs
	Bipartite Algorithm
	Problematic Fully-Connected Case

	Combine-and-Match Algorithm for TTNOs
	Compound State Diagram Representation
	Algorithm
	Combining U-subtrees
	Combining V-subtrees

	Results and Evaluations
	Discussions and Future Work
	Conclusions

