
SCHOOL OF COMPUTATION, INFORMATION
AND TECHNOLOGY - INFORMATICS

TECHNICAL UNIVERSITY OF MUNICH

Bachelor’s Thesis in Informatics

Implementation of Verlet Lists for 3-Body
Interactions in AutoPas

Alexander Haberl

SCHOOL OF COMPUTATION, INFORMATION
AND TECHNOLOGY - INFORMATICS

TECHNICAL UNIVERSITY OF MUNICH

Bachelor’s Thesis in Informatics

Implementation of Verlet Lists for 3-Body
Interactions in AutoPas

Implementierung von Verlet Listen für 3-Körper
Wechselwirkungen in AutoPas

Author: Alexander Haberl

Supervisor: Univ.-Prof. Dr. Hans-Joachim Bungartz

Advisor: Markus Mühlhäußer, M.Sc.; Fabio Gratl, M.Sc

Date: 15.04.2024

I confirm that this bachelor’s thesis is my own work and I have documented all sources and
material used.

Munich, 15.04.2024 Alexander Haberl

Acknowledgments

I want to thank Professor Hans-Joachim Bungartz and the Chair of Scientific Computing
for providing this thesis topic.
My gratitude also extends to my advisors Markus and Fabio for their support throughout
this bachelor thesis, as they have helped me with both practical and theoretical questions.
Our weekly meetings also helped me to keep thinking more critically about the findings
made during the writing of this thesis.
I give thanks to the Leibniz Rechen Zentrum for access to the CoolMUC-2 cluster which
was used for the simulations that are the basis of the evaluation in this thesis. Additional
thanks to Fabio for running some simulations on the HSUper cluster.
My family has been a great help throughout this thesis, so I want to thank them for their
general support during this time.

vii

viii

Abstract

2-Body molecular dynamics simulations do not always capture the correct qualitative
changes to a system. In such cases, we need higher accuracy, which can be achieved by also
considering 3-body interactions. To this end, we extend the molecular simulations library
AutoPas with an implementation of Verlet lists that can handle 3-body interactions.

We consider three different approaches to iterate over all triplets in the force calculation
step. The first uses 2-body neighbor lists and iterates over all pairs in them. The second
approach intersects the lists of neighboring particles to obtain all mutual neighbors. Lastly,
we save 3-body neighbor lists which contain all pairs of particles close enough for force
calculation, which we can iterate over to find all triplets.
We find that the third approach is the fastest in medium to high-density simulations,

while the first approach outperforms it in low-density scenarios. We also find that the 3-body
neighbor lists take up much more memory than the 2-body neighbor lists, with the average
neighbor list having a length that is proportional to the square of the average 2-body list
length.
We keep both implementations for AutoTuning purposes and to provide a less memory-

intensive solution.

ix

x

Zusammenfassung

Molekulardynamische Simulationen, die nur Zwei-Körper-Wechselwirkungen betrachten,
erfassen nicht immer die korrekten qualitativen Veränderungen eines Systems. In solchen
Fällen ist eine höhere Genauigkeit notwendig, die erreicht werden kann, indem zusätzlich
Drei-Körper-Wechselwirkungen berücksichtigt werden. Zu diesem Zweck erweitern wir die
Bibliothek für molekular Simulationen AutoPas um eine Implementierung von Verlet-Listen,
die Drei-Körper-Wechselwirkungen simulieren kann.

Wir stellen drei verschiedene Ansätze auf, um alle Tripel für die Kraftberechnung abzuar-
beiten. Der erste benutzt Zwei-Körper-Nachbarlisten und iteriert über alle Paare darin. Der
zweite Ansatz bildet die Schnittmenge von Listen benachbarter Partikel, um alle gemein-
samen Nachbarn zu finden. Für den letzten speichern wir Drei-Körper-Nachbarlisten, welche
alle Paare von Partikeln enthalten, die nah genug für die Kraftberechnung sind. Dann
können wir einmal über diese iterieren, um alle Tripel zu erhalten.
Wir finden, dass der dritte Ansatz in Simulationen mit mittlerer bis hoher Dichte am

schnellsten ist, während sich der erste Ansatz besser für Szenarien mit geringer Dichte eignet.
Wir stellen auch fest, dass die Drei-Körper-Nachbarlisten viel mehr Speicher verbrauchen
als die Zwei-Körper-Nachbarlisten, wobei die durchschnittliche Länge der Drei-Körper-
Nachbarlisten proportional zum Quadrat der durchschnittlichen Länge der Zwei-Körper-
Listen ist.

Wir behalten beide Implementierungen für Auto-Tuning-Zwecke bei und um eine weniger
speicherintensive Lösung bereitzustellen.

xi

xii

Contents

Acknowledgments vii

Abstract ix

Zusammenfassung xi

I. Introduction and Background 1

1. Introduction 2

2. Background 3
2.1. N-Body Simulations . 3

2.1.1. Theoretical Basis . 3

2.1.2. Algorithmic Optimizations . 4

2.2. Axilrod Teller Potential . 5

2.3. 3-Body vs 2-Body Interactions . 5

2.4. AutoPas . 6

2.4.1. Linked Cells . 7

2.4.2. Verlet Lists . 8

3. Related Work 10
3.1. LAMMPS . 10

3.2. DL POLY . 10

3.3. HOOMD-blue . 10

4. Implementation 11
4.1. Overview . 11

4.2. Iteration Approach . 11

4.3. Intersection Approach . 14

4.3.1. Problems . 16

4.3.2. Different Approaches for Neighbor List Intersection 16

4.4. 3-Body Neighbor Lists . 17

4.4.1. Algorithm and Implementation . 17

4.4.2. 3-Body Neighbor List Model . 18

4.5. Theoretical Running Time Comparison . 19

4.5.1. Running Time of IterateTriwise . 19

4.5.2. Running Time of RebuildNeighborLists 20

xiii

5. Evaluation 22
5.1. Test Environment . 22
5.2. Comparison of Running Time . 23

5.2.1. Total Running Time . 23
5.2.2. List Rebuilding . 24
5.2.3. IterateTriwise . 25

5.3. Traversal Improvements . 27
5.3.1. PairListIteration Traversal Improvements 27
5.3.2. ListIntersection Traversal Improvements 28

5.4. Parallel Speedup and Efficiency . 29
5.5. Memory Usage . 32
5.6. Comparison of Traversals for Different Scenarios 33

5.6.1. Comparison for Various Densities . 33
5.6.2. Comparison for Gaussian Distribution 35

6. Conclusion 36

Bibliography 39

Part I.

Introduction and Background

1

1. Introduction

Molecular dynamics simulations are a powerful tool in many different sciences, such as
chemistry [1], biology [2], and physics [3]. They can be used to validate experimental findings,
as well as extend these into scenarios for which physical experiments may be unsuited, due
to for example very high pressure, temperature, or tiny substance volumes. The ability to
visualize these simulations at a particle level may also grant new insights into the physical
or chemical processes happening at an atomic or molecular level.

Molecular dynamics simulations became more widely used with the ever-increasing com-
putational power offered by new CPUs and GPUs. But with higher computational power
come higher requirements, such as bigger particle simulations or more accurate and thus
computationally expensive simulations. To meet these challenges and demands there exist
many different simulators which implement different algorithms and approaches to molecular
simulations. However, there does not exist one optimal algorithm for all simulations [4],
meaning that we can waste a lot of time and energy if we choose badly.

This is where AutoPas wants to simplify things for domain scientists, or others, new to
molecular dynamics simulations by choosing the algorithm based on how well it performs
in the current simulation scenario. This automatic algorithm selection is a special case of
auto-tuning and it removes the need to have in-depth knowledge of the many simulation
algorithms with their advantages and disadvantages.

At the moment AutoPas already has a wide selection of algorithms for 2-body simulations,
which are introduced in [5]. Since the restriction to 2-body interactions is sometimes not
accurate enough for the topic of the simulation [6], we are starting to adapt these algorithms
to support 3-body interactions as well. This leads to the goal of this thesis, adapting the
Verlet list algorithm for 3-body interactions.

In this thesis, we give an introduction to the theory behind N-Body simulations, as well as
some algorithmic optimizations to it, and introduce the basics of AutoPas in Chapter 2. We
give an overview of other established molecular dynamics simulators in Chapter 3. Then we
introduce our three approaches and implementations of the 3-body neighbor identification
algorithms in Chapter 4 and evaluate them based on runtime, parallel efficiency, and memory
consumption in Chapter 5.

2

2. Background

2.1. N-Body Simulations

2.1.1. Theoretical Basis

N-Body simulations deal with a system of many particles that all interact with one another.
We employ these simulations to get an understanding of the changes that occur in the system
over time. To this end the simulation advances in discrete time steps of length δt for which
every body’s position x⃗ and velocity v are updated. The interactions between all N bodies
can be described by the equations of motion [7]:

Fi = miai, or Fi =
∂U

∂x
(2.1)

ai =
∂vi
∂t

(2.2)

F is the force acting on a body, m is its mass, a is its acceleration, v is its velocity, and
U is the potential of the system. If we know the potential of the system, we can derive
the acceleration and from there the velocity of bodies with these equations. A popular
algorithm used for simulation is the velocity Verlet algorithm in Equation 2.3. This version
was adapted from [7]:

vi(t+
1

2
δt) = vi(t) +

1

2
δtFi(t)/mi (2.3a)

xi(t+ δt) = xi + δtvi(t+
1

2
δt) (2.3b)

vi(t+ δt) = vi(t+
1

2
δt) +

1

2
δtFi(t+ δt)/mi (2.3c)

Here we make a force calculation for every time step and update the velocity and position
of all particles accordingly. The only thing we are missing now is how to compute the total
potential of the system U . It can be written as a sum of potentials between all possible
constellations of bodies [7].

U =
∑
i

∑
j>i

u2(x⃗i, x⃗j) +
∑
i

∑
j>i

∑
k>j

u3(x⃗i, x⃗j , x⃗k) + . . . (2.4)

The um are m-body potentials that act between sets of m bodies. From this, we can get
the total force acting on a specific body i by derivation, which results in the sum of the
forces derived from the potentials between i and all constellations of other bodies, which
is shown in Equation 2.5. The forces Fi,j,k are the forces that the pair of bodies j and k
enact on body i. Computing the potential exactly is very computationally expensive so we
approximate it instead by stopping the calculation after some term and do not consider

3

2. Background

higher-order potentials. We can categorize simulations by the highest degree of potential
they consider in the force calculation. Most commonly used are 2-body interactions which
only consider forces between pairs of bodies. This thesis is focused on interactions of degree
three where we also consider interactions between triplets of bodies.

Fi =
∑
j ̸=i

Fi,j +
∑
j ̸=i

∑
k>j,k ̸=i

Fi,j,k + . . . (2.5)

2.1.2. Algorithmic Optimizations

Even with this simplification, we are still left with the computationally intensive task of
computing these potentials for all pairs or triplets of particles. This approach would require
O(N2) or O(N3) potential computations. So we introduce another tool to reduce the number
of needed computations further.

There exist so-called short-range potentials which quickly converge to zero the further
apart particles are. If we use these potentials we can introduce a cutoff radius rcut. We
then simply consider the forces induced by bodies outside this radius to be zero. For our
purposes, all three bodies of the triplet have to be in each other’s cutoff sphere for the triplet
to be considered. This is visualized in Figure 2.1 b). This allows us to significantly reduce
the number of potential calculations necessary since we only have to consider bodies inside
the cutoff sphere.

We can express the average number of bodies in the cutoff sphere as M = ρ∗ 4
3πr

3
cut where

ρ is the density of bodies. Thus the total number of potential calculations is in O(N ∗M)
for the 2-body case and O(N ∗M2) for the 3-body case. Since M depends on the density it
in turn depends on the total number of particles N , which is why we still keep this factor
in the big O notation, but under normal circumstances M is much smaller than N . In the
2-body case, we get all particle pairs by considering a base particle and all particles in its
cutoff sphere. In the 3-body case, we then have to consider all pairs in a base particle’s sphere.

Another optimization that is frequently employed is making use of Newton’s third law of
motion. This law states that any force has an equally strong opposing force [8]. Equation 2.6
shows how this law is used for 2- and 3-body interactions to compute one force out of the
others. This saves us one potential calculation for every pair or triplet of bodies, but it also
makes parallelization more difficult as we are updating the forces for groups of particles
instead of single particles. We will refer to this optimization as Newton3 in this thesis.

2-Body interactions: Fi,j = −Fj,i (2.6)

3-Body interactions: Fi,j,k = −(Fk,i,j + Fj,i,k) (2.7)

This leaves us with the main challenge of N-body simulations, which is to find close
neighboring bodies in an efficient and parallelizable way. In this thesis, we will be focusing
on single atoms as the bodies in the simulation, which we will refer to as particles from here
on out.

4

2.2. Axilrod Teller Potential

2.2. Axilrod Teller Potential

The Axilrod Teller potential is a short-range 3-body potential that approximates a part
of the van der Waals attraction between atoms and is used in conjunction with 2-body
potentials to boost the overall accuracy of the simulation. The van der Waals attraction
is approximated through a quantum mechanical theory called the perturbation theory [9].
The resulting 3-body potential is given in Equation 2.8.

U(x⃗i, x⃗j , x⃗k) = µ
3 cos γi cos γj cos γk + 1

r3ijr
3
jkr

3
ki

[9] (2.8)

Here rij denotes the length of the vector from particle i to j which is given by |r⃗ij | = |x⃗j− x⃗i|.
Using the equality of Equation 2.9 where ϕ is the angle between vectors a⃗ and b⃗ we can rewrite
the Axilrod Teller potential to match Equation 2.10, avoiding the expensive computation of
the cosine function:

cosϕ =
a⃗ · b⃗
|⃗a||⃗b|

[10], p.6 (2.9)

U(x⃗i, x⃗j , x⃗k) = µ
3(r⃗ij · r⃗ik)(r⃗ji · r⃗jk)(r⃗ki · r⃗kj) + r2ijr

2
jkr

2
ki

r5ijr
5
jkr

5
ki

(2.10)

2.3. 3-Body vs 2-Body Interactions

3-Body interactions are a lot more computationally expensive as compared to 2-body inter-
actions. The reason for this is twofold. Firstly, 3-body potentials are more computationally
expensive, as their evaluation requires more floating point operations than 2-body potentials.
Secondly, as we consider all triplets of particles, we have more potentials to compute. This
number grows linearly in the density of particles and the volume of the cutoff sphere in the
2-body case but quadratically in the 3-body case.

Many applications of N-body simulations work fine with 2-body interactions, but others
need the higher accuracy that 3-body interactions provide. This is the case when the
qualitative outcome of the simulation changes between 2-body and 3-body interactions.
Ströker discusses that it is necessary to consider 3-body and even higher-order interactions
to describe the behavior of materials over large temperature and pressure ranges with high
accuracy [6].

Another difference between 3-body and 2-body interactions can be observed in the choice
of cutoff criterion. In particular, there is no choice in the 2-body case, as there only exists one
distance that could be used. For 3-body interactions on the other hand multiple possibilities
have been considered and used:

1. at least two distances have to be less than rcut for a triplet to contribute to the overall
potential [11]. As shown in Figure 2.1 a), the two black distances are less than the
cutoff, while the red distance is larger than the cutoff.

5

2. Background

2. all three distances have to be less than rcut for the triplet to be considered [12]. As
shown in Figure 2.1 b), the third particle has to be inside the intersection of the cutoff
spheres of the other two particles. The red border marks the overlap of all three cutoff
spheres in which all particles must lie to form an eligible triplet.

3. the sum of distances of the particles to their center of mass has to be less than rcut [13].
As shown in Figure 2.1 c), the sum of r1, r2, and r3 has to be less than the cutoff. The
center of mass is shown by the small red dot.

These cutoff criteria get more restrictive in the number of triplets they consider. The current
standard in AutoPas is the second criterion, which we will therefore be using.

a) Pair cutoff b) Triplet cutoff c) Center of Mass cutoff

r1

r2 r3

Figure 2.1.: Visualizing the three cutoff criteria for 3-body interactions.

2.4. AutoPas

AutoPas is a library for N-body simulations that has the goal of finding the best algorithm for
the current situation in a simulation through the use of auto-tuning. This should remove the
need for domain experts to also know the simulation side of molecular dynamics to be able to
select optimal algorithms for the simulation [5]. Additionally, this can make simulations of
rapidly changing systems faster, since there does not exist any one best-performing algorithm
for all possible situations. So having the ability to adapt the algorithm mid-simulation can
be profitable [14], [15].

AutoPas requires users to implement the particles they want to simulate and the functor
that can be used to calculate forces between pairs or triplets of particles. Given these
two, AutoPas handles the force calculation and auto-tuning itself. For this, it has different
containers which act as storage for the particles. These containers are built in a Verlet-like
manner, meaning they keep a valid state for several iterations before they have to be rebuilt
in some way. The different containers make the particles accessible for the different traversals
in a way that is practical for that traversal. The 3-body traversals implement one function
iterateTriwise() which enumerates all particle triplets eligible for force calculation and
calls the user’s force functor to compute all forces in a single time step. So the traversals

6

2.4. AutoPas

constitute the neighbor identification algorithms used in the simulation. The LogicHandler
is responsible for the validity of containers, issuing a rebuild if necessary. Lastly, AutoPas
has an AutoTuner which takes care of the container and traversal selection.

AutoPas is designed in a way that allows the user to split the entire simulation domain
into different subdomains that can be taken care of on different compute nodes. For this we
have to duplicate particles near the border and have them available to both subdomains, oth-
erwise, we would lose cross-domain interactions. These duplicated particles are called Halo
particles in their non-native subdomain. Halo particles only serve as interaction partners, but
never get force updates themselves [5]. This avoids doing the force calculations on them twice.

A single time step of the simulation can be divided into two phases. In the first, we
update particle positions or movement from the forces computed and exchange Halo particles
between multiple subdomains if applicable. This is left up to the user of AutoPas to do in
every iteration. We also check the validity of the underlying container, triggering a rebuild
if necessary. This is done by AutoPas and only has to be triggered by the user. The second
phase is the force calculation in which the iterateTriwise() method is called.

We now introduce the two main containers that form the basis of this Thesis, and on
which the neighbor identification algorithms work.

2.4.1. Linked Cells

The Linked Cells [16] approach divides the entire simulation domain into a grid of cubes
with side lengths rcut. This way the cutoff sphere of a particle in a particular cell will be fully
contained in the cube made up of the neighboring cells. We majorly cut down the number
of distance calculations necessary to find all triplets akin to the potential calculations as
in Subsection 2.1.2. We again reduce the number of distance calculations from O(N3) to
O(N ∗M2) in the 3-body case, where M = ρ ∗ r3cut.

In AutoPas every grid cell has a list of all the particles inside it. This means that we can
design parallel algorithms working on entire cells, which take advantage of the regular grid
structure to avoid data races when accessing cells. This will then also guarantee that there
exist no data races on the level of single particles during the traversal. A disadvantage of this
basic implementation of Linked Cells is that the approximation of the cutoff sphere via a cube
is not great, so we end up doing many superfluous distance calculations. This is visualized
in Figure 2.4 on the left as a two-dimensional example. To judge how many superfluous
distance calculations are made we can compare the hit rate of different approaches which is
the ratio of actual force calculations over the total amount of distance calculations made in
one iteration. This way a higher hit rate means less unnecessary distance computations.

There is already one 3-body Linked Cells traversal implemented in AutoPas. It is the
lcc01 traversal. This traversal has a base step in which it takes a cell as its base cell for
which it does force updates. The base step consists of three steps to find all triplets of
close particles for the force calculation, which are visualized in Figure 2.2. First, it finds all
triplets in the base cell itself, marked in blue. Then it has to consider triplets that span two
cells, so it pairs the base cell and every surrounding cell up to look for triplets, one such

7

2. Background

pair is given by the blue base cell and the red cell. Lastly, it also has to consider triplets
that span three cells, so it looks for triplets in all triplets of cells, where one is the blue base
cell and the other two are neighboring cells from the surrounding cells, marked orange.

Since every base step only updates the forces of particles in the base cell, we can run
multiple base steps in parallel without having to worry about data races on force updates.

Figure 2.2.: Base step of the lcc01 traversal, blue=Base Cell, red=single Cell in triplet search,
orange=pair of touching cells for triplet search, inspired by [5].

2.4.2. Verlet Lists

Verlet lists, first mentioned in [17], are a data structure that stores close pairs of particles, for
which a force calculation has to be computed. Specifically, it stores for every particle a list of
particles nearby, often called neighbors, which are in a cutoff sphere around the particle. This
way we only have to traverse these lists to get all interacting particle pairs in an iteration.
The building of such lists is quite expensive. Naively it takes O(N2) distance calculations
which can be reduced to O(N ∗M) with the help of Linked Cells which were discussed in
Subsection 2.4.1. To compensate for this costly rebuilding step Verlet lists do not use the
force cutoff radius for the cutoff sphere but add a small additional radius to it which is called
the Verlet skin rskin [17]. This allows us to rebuild the neighbor lists every couple of itera-
tions when there is a chance for a particle to have crossed the entirety of the Verlet skin region.

Typically the skin radius is set between 0.05 ∗ rcut and 0.2 ∗ rcut [18]. There is a clear
tradeoff for bigger skin radii. The larger rskin becomes the less often we have to rebuild the
Verlet lists. On the other hand, we increase the amount of superfluous distance calculations
during a single iteration, as all particles in the skin still do not contribute towards the forces.
For 2-body interactions and these skin radii the number of unnecessary calculations lies
between 13.6% and 42.1% [18].

Figure 2.3 shows how Verlet lists are implemented in AutoPas. On the left is a global
hash table that stores the neighbor list of every particle. The neighbor lists themselves then
contain pointers to the neighboring particles, avoiding needless duplication of particles, since
particles appear in multiple neighbor lists. Verlet lists are built on top of Linked Cells in

8

2.4. AutoPas

AutoPas, so the actual particles are stored in the Linked Cells container and the Verlet list
container only works on pointers to these particles. The neighbor lists themselves are built
with the help of Linked Cells traversals.

With this, we can already see what advantages and disadvantages Verlet lists have. They
possess a higher hit rate than the previously discussed Linked Cells. The right half of
Figure 2.4 shows the area, in which particles contribute to the force calculation, and the
area, where particles are considered for the neighbor identification algorithm, for Verlet
lists. The ratio of these areas is much higher for Verlet lists than for Linked Cells. As a
downside, Verlet lists require significantly more memory to store all of the neighbor lists and
they introduce a layer of indirection when accessing particles for force calculations. At the
same time, we do not preserve any spatial information of where which particle lies in our
simulation domain since we are using a hash map to access the particles and their neighbor
lists. This can make the design of parallel algorithms much harder.

Pointer 1

Pointer 3

Pointer 4

Pointer 6

...

Pointer 18

Pointer 20

Pointer 21

Pointer 24

Pointer 27

Pointer 14

Pointer 17

Pointer 20

Pointer 23

Pointer 24

Pointer 11

Pointer 16

Pointer 21

Pointer 26

Pointer 27

Pointer 8

Pointer 11

Pointer 13

Pointer 16

Pointer 20

Figure 2.3.: Global Verlet list, Hashmap with particle pointers as keys, storing lists of particle
pointers as values.

Figure 2.4.: Visualizing the area of superfluous distance calculations (blue) and area of force
calculations (red) for Linked Cells (left) and Verlet lists (right), shows that
Verlet lists do less superfluous distance calculations, resulting in a higher hit
rate.

9

3. Related Work

3.1. LAMMPS

LAMMPS1 is a popular molecular dynamics simulator designed to run on large parallel
systems with many compute nodes through the use of domain decomposition [19]. It has a
variety of both CPU and GPU accelerators for high-performance simulations. LAMMPS
also provides a wide variety of other features including many different potentials and model
options to choose from. It also supports 3-body interactions2 and implements the Axilrod
Teller potential as well as other 3-body potentials. The neighbor identification algorithms of
LAMMPS exclusively use Verlet lists. The approach used to compute all triplet interactions
in the 3-body case iterates over all particles and for each it iterates over the neighbor list
in a double for loop to enumerate all pairs of neighbors of the particle. The ListIteration
approach we implemented works the same way and is introduced in Section 4.2.

3.2. DL POLY

DL POLY3 is a molecular dynamics simulator designed for high-performance computers that
is based on Linked Cells [20]. To provide an efficient implementation it again implements
domain decomposition and uses MPI for communication between CPUs. In contrast to
AutoPas DL POLY does not implement shared memory parallelization. It is written in
Fortran and implements some 3-body potentials, such as the Tersoff potential [21] and
valence angle potentials4. It even implements 4-body interactions for the valence angle
potentials. The many-body potentials are also computed via Linked Cells.

3.3. HOOMD-blue

HOOMD-blue5 is specialized in doing nano- and colloidal-scale molecular dynamics simula-
tions and implements a Python interface [22]. A primary focus of HOOMD-blue is GPU
acceleration with the use of CUDA. It uses Verlet lists for nano-scale simulations and also im-
plements some 3-body potentials6, such as the Rev-Cross potential described by Ciarella and
Ellenbroek in [23]. To iterate all particle triplets they use the same approach as LAMMPS. It
also implements domain decomposition to run simulations on multiple CPUs or GPUs at once.

1https://www.lammps.org/index.html
2LAMMPS doc for 3-body potential commands: https://docs.lammps.org/pairs.html
3https://www.scd.stfc.ac.uk/Pages/DL POLY.aspx
4DL POLY user manual: https://www.ehu.eus/sgi/ARCHIVOS/dlpoly man.pdf
5https://glotzerlab.engin.umich.edu/hoomd-blue/
6HOOMD-blue many-body potentials:
https://hoomd-blue.readthedocs.io/en/latest/module-md-many body.html

10

https://www.lammps.org/index.html
https://docs.lammps.org/pairs.html
https://www.scd.stfc.ac.uk/Pages/DL_POLY.aspx
https://www.ehu.eus/sgi/ARCHIVOS/dlpoly_man.pdf
https://glotzerlab.engin.umich.edu/hoomd-blue/
https://hoomd-blue.readthedocs.io/en/latest/module-md-many_body.html
https://hoomd-blue.readthedocs.io/en/latest/module-md-many_body.html

4. Implementation

4.1. Overview

This thesis contributes multiple 3-body traversals for the Verlet List container, which
can be seen in Figure 4.1 and will be explained in the following sections. All of these
traversals are derived from the TriwiseTraversalInterface and implement the central function
traverseParticleTriplets(). This is the function that is called in iterateTriwise() to
compute all particle interactions. We can split the new traversals into two groups. The first
comprises the ListIteration3B, ListIntersectionSorted3B, and ListIntersectionHashing3B
traversals. These use 2-body neighbor lists to find all 3-body interaction triplets. The other
group only contains the PairListIteration3B which uses 3-body neighbor lists that store all
3-body interaction partners.

Our traversals build on the already implemented container in AutoPas, which takes care
of particle management. The main changes we had to make to the container were to add
a rebuildNeighborLists(TriwiseTraversal) function that works with triwise traversals
instead of pairwise ones.

All of the traversals have been implemented to work without Newton3 and only the Lis-
tIteration3B traversal works with Newton3 enabled. All non-Newton3 traversals have been
parallelized using OpenMP, while the Newton3 version is not parallelized. The parallelization
of the Newton3 approach requires extensive use of particle locks to ensure thread safety, for
which there was no time in this project’s scope.

In Figure 4.2 we see the two other necessary contributions we made. For one we created
a new VerletListGeneratorFunctor which can be used with any 3-body traversal to build
3-body neighbor lists. Lastly, we contributed a 2-body Linked Cells traversal which is used
to build neighbor lists for the 3-body traversals working with 2-body neighbor lists.

4.2. Iteration Approach

Our first approach is an adaptation of the 2-body traversal currently used in AutoPas. This
traversal is called the ListIteration traversal in the 2-body case, which iterates once over
every neighbor list to find all pairs of particles. The 3-body version is called ListIteration3B,
but we will focus on the 3-body traversal and call it ListIteration from here on out. For
the 3-body traversal, we use the same neighbor lists as in the 2-body case. We iterate over
all particles and for each we iterate over its neighbor list in a double for-loop instead of a
single for-loop to find all pairs of neighbor particles in the neighbor list. We can then call
the force functor with the particle and both neighbors to execute a force calculation for the

11

4. Implementation

<<interface>>
TriwiseTraversalInterface

traverseParticleTriplets()

ListIntersectionSorted3B

ListIteration3B PairListIteration3B

ListIntersectionHashing3B

Figure 4.1.: Overview of contributed traversals, new traversals in red.

<<interface>>
ParticleContainerInterface

VerletLists

iterateTriwise(TriwiseTraversal)
rebuildNeighborLists()

LinkedCells

VerletListGeneratorFunctor3BC08NeighborListRebuildTraversal

Figure 4.2.: Structural overview of AutoPas containers with our contributions highlighted in
red.

12

4.2. Iteration Approach

Algorithm 1: ListIteration

1 Function iterateTriwise():
2 for i ∈ Particles do
3 for j ∈ i.neighborList do
4 for k > j, k ∈ i.neighborList do
5 AxilrodTeller(i, j, k)

Figure 4.3.: Pseudocode of iterateTriwise() for the ListIteration approach.

particle. The pseudocode is given in Algorithm 1. This algorithm is very simple but also
has a lower hit rate, as many of the pairs in a neighbor list are of particles on different sides
of the cutoff sphere and as such are too far apart to contribute to the force calculation.

For the Newton3 case special care has to be taken when constructing the 2-body neighbor
lists. The functor for building neighbor lists only adds the neighbor relation to one list.
Without the Newton3 optimization the functor is called twice for each particle pair and the
neighbor relation is saved in both lists. With the optimization the functor is called only
once per particle pair, meaning the neighbor relation is saved in only one list. This makes
sure that the neighbor relation is asymmetric in the Newton3 case. So we can simply iterate
over the resulting lists without having to worry if force calculations have already been done
for a pair of neighbors.

The Linked Cells traversal used for the building process is called the lcc08 traversal. It
is comprised of a base step, shown in Figure 4.4, which computes all possible interactions
between the cells connected by the arrows. We then iterate over the cells in the order shown,
treating every cell as a base cell once. This way we compute all possible interactions for
every cell. In three dimensions we can color the domain in eight different colors, such that
every color is a set of cells on which the base step can be performed simultaneously, without
leading to race conditions. The traversal is optimized to avoid unnecessary force calculations,
so it stops after the last owned cell, cell 11 in Figure 4.4. This avoids force calculations
solely between Halo cells full of Halo particles. But this can be a problem for the neighbor
lists in the Newton3 case of our 3-body traversal.

Figure 4.4 specifically shows an edge case where this becomes a problem. In the last row of
owned cells, the neighbor relation of particles in the owned Cell 10 to particles in Halo Cell
13 may only be saved in the neighbor lists of particles in Halo Cell 13, because of the functor
for neighbor list building. As the lcc08 traversal stops after this row, the neighbor relations
between Halo particles in Cells 13 and 14 are never computed and saved. Particles of Cell 13
only have neighbor entries for particles of Cell 10, Cell 10 has neighbor entries for particles of
Cell 14 and Cell 14 has no neighbor entries for either Cell 10 or 13. So when iterating over the
neighbor list of any particle we can never get a triplet that contains particles of all three Cells.

A possible fix would be to introduce a policy of saving neighbor relations predominantly

13

4. Implementation

in owned Cells. However, since we use an existing 2-body traversal to construct the neighbor
lists this may have unintended performance implications for the traversal. Instead, we
implemented a Linked Cells traversal for building neighbor lists which also computes neighbor
relations between all Halo Cells. This traversal will be further explained in Subsection 4.3.1.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Figure 4.4.: Base step of the lcc08 traversal, white=Halo Cell, red=Owned Cell, blue=Base
Halo Cell, inspired by [5].

This iteration approach faces the same complications for parallelization in the Newton3
case as all Verlet traversals. Since the global map of neighbor lists does not store any spacial
information about the corresponding particles parallelization would have to rely on locking
the entire particle during the addition of forces to avoid race conditions when updating
the force on a particle. This should render these parallelization schemes quite inefficient.
From Figure 4.5 it becomes clear that the Newton3 optimization is more than twice as fast
in the single-threaded case, but without parallelization, it is slower than the non-Newton3
variant when we use more than three threads. So while a solution for the Newton3 case of
the iteration approach has been implemented it will not be taken into consideration for the
rest of this thesis.

4.3. Intersection Approach

Our second approach is to find triplets of particles by intersecting the 2-body neighbor lists
of two neighboring particles to get their common neighbors. We do this in every iteration
step. The simplified algorithm of this approach is shown in Algorithm 2. We have to be
careful to not call the force functor for a particle triplet twice, so for the triplets (i, j, k) and
(i, k, j). To avoid this we do not intersect the entire neighbor list of i with other neighbor
lists, but only the remainder of the list, after the current particle j.

This algorithm has a higher iteration overhead than the ListIteration traversal, but it
also has a higher hit rate, as particles in the intersection are in both lists and therefore very
close. The only way that such a triplet will not contribute to the force calculation is if one
particle falls into the skin zone of the Verlet cutoff sphere.

14

4.3. Intersection Approach

1 2 4 8 14 28 56
of Threads

0

10

20

30

40

50

se
co

nd
s

without Newton3
with Newton3

Figure 4.5.: Comparison of the median iteration time of the ListIteration approach with
and without Newton3, shows that the parallel version without Newton3 vastly
outperforms the single-threaded implementation with Newton3.

Algorithm 2: ListIntersection

1 Function iterateTriwise():
2 for i ∈ Particles do
3 for j ∈ i.neighborList do
4 intersection ← intersect(i.neighborList, j.neighborList)

5 for k ∈ intersection do
6 AxilrodTeller(i, j, k)

Figure 4.6.: Simplified version of iterateTriwise() for the ListIntersection approach.

15

4. Implementation

4.3.1. Problems

This approach faces similar problems to the Newton3 case of the list iteration approach in
Section 4.2. Since the Linked Cells traversal avoids force calculations between Halo particles,
the neighbor relation between Halo particles is not saved in their neighbor lists. This means
during the traversal when intersecting the neighbor list of an owned particle with one of a
Halo particle other Halo particles will not be found as common neighbors. This results in
the traversal missing 3-body interactions of the type (Owned, Halo, Halo).

As a solution to this, we created a new 2-body Linked Cells traversal solely for neighbor list
building that does not avoid any force calculations between Halo particles. For this reason,
we decided to make this an extra traversal since it can not apply the same Halo-avoiding
optimizations.
The c08 traversal had to be adjusted in two ways. Firstly the iteration had to be extended
to also execute the base step on the last row of cells 13 to 16. In turn we had to add a new
bounds check, so that the base step on the last row of cells does not lead to out-of-bounds
access. Secondly, a check avoiding force calculations between Halo Cells had to be removed
from the cell functor.

4.3.2. Different Approaches for Neighbor List Intersection

Our first approach to the list intersection is the ListIntersectionSorted traversal which uses
std::set intersection()1, to obtain the intersection of two neighbor lists. A prerequisite for
this function is for the given ranges to be sorted by some criterion. We decided to sort the
pointers in the neighbor lists by their address. We sort all neighbor lists once after every
rebuild. After obtaining the intersection of two neighbor lists, we simply iterate over it and
can call the force functor for the two particles and the one from their intersection.

After the first implementation, we went on to optimize the buffer used to store the
intersection, by reusing the same thread-local buffer for all intersections, instead of allocating
a new buffer for every intersection. With this approach, there exists the downside of having
to sort the neighbor lists which may make this traversal slower.

We also tried to avoid the overhead from sorting the neighbor lists. So in a second
approach, we created the ListIntersectionHashing traversal which uses a hash intersect.
We first create a hash set from a neighbor list. Then we can check if any particles of a
neighboring neighbor list are in the hash set and call the force functor for this triplet.

The sorting approach comes with the overhead from sorting the lists, but the hashing
approach leads to less cache efficiency, as it introduces a new degree of indirection through
the hash set. In Figure 4.7 we compare the median iteration time of both approaches and
we conclude that the hash intersection is not worthwhile, as it is about two times slower
than the sorting approach. This means the additional layer of memory indirection is more
impactful than the overhead from sorting.

1std::set intersection() documentation: https://en.cppreference.com/w/cpp/algorithm/set intersection

16

https://en.cppreference.com/w/cpp/algorithm/set_intersection

4.4. 3-Body Neighbor Lists

4 8 14 28 56
#Threads

0

5

10

15

20

25

30

35

40

se
co

nd
s

ListIntersectionSorted
ListIntersectionHashed

Figure 4.7.: Median iterateTriwise() time of ListIntersection sorting and hashing ap-
proach, shows that the hashing approach is about twice as slow as the sorted
approach.

4.4. 3-Body Neighbor Lists

4.4.1. Algorithm and Implementation

As a third approach, we created the PairListIteration traversal which employs 3-body
neighbor lists which already store the pairs of neighbor particles that are eligible for force
calculations. This approach has the same high hit rate as the ListIntersection approach,
with the only superfluous distance calculations being done for pairs where a particle is in
the Verlet skin region.

For this, we created a new functor that creates these lists. This way we can use it in
conjunction with any 3-body traversal to build these pairwise neighbor lists. Afterward, we
only need to iterate over these lists once and call the force functor for the particle and all
pairs in its neighbor list. The pseudocode of this traversal is shown in Algorithm 3.

At the start, we used the existing 3-body Linked Cells traversal lcc01 for neighbor list
building. After profiling it became clear that the rebuilding of neighbor lists is a serious
bottleneck for this traversal. So we switched to a 3-body Verlet list traversal to try and
speed up the neighbor list building. For this, we choose the ListIteration traversal.

One clear downside of this traversal is that it needs more memory than all other solutions
as we store all pairs of potential interaction partners instead of the single particles. When
using a Verlet list traversal instead of a Linked Cells traversal we add the memory cost of
normal Verlet lists on top of that.

17

4. Implementation

Algorithm 3: PairListIteration

1 Function iterateTriwise():
2 for i ∈ Particles do
3 for (j, k) ∈ i.pairwiseNeighborList do
4 AxilrodTeller(i, j, k)

Figure 4.8.: Pseudocode of iterateTriwise() for the PairListIteration approach.

4.4.2. 3-Body Neighbor List Model

We can model the expected length of the 3-body lists given the length of their respective
2-body lists. We can say a pair of particles is in the 3-body list if and only if both particles are
in the respective 2-body list and they are less than rcut + rskin far apart. For simplicity, we
will assume that the particles are uniformly randomly distributed in the cutoff sphere of the
list. We can then use the probability distribution for lengths between two uniformly random
points in a sphere, derived in multiple ways in [24] and [25], and shown in Equation 4.1.
P (s) is the probability that two uniformly random points in a sphere of radius r are exactly
s far apart for 0 ≤ s ≤ 2r.

P (s) = 3
s2

r3
− 9s3

4r4
+

3s5

16r6
(4.1)

Using this probability distribution we can find the probability that two random points
are less than the radius of the sphere far apart.

P (s ≤ r) =

∫ r

0
P (s) ds (4.2)

=

∫ r

0
3
s2

r3
− 9s3

4r4
+

3s5

16r6
ds (4.3)

=

[
s3

r3
− 9s4

16r4
+

s6

32r6

]r
0

(4.4)

=
15

32
≈ 47% (4.5)

With n particles in the 2-body neighbor list, we have n(n− 1)/2 unique particle pairs, of
which every 15 out of 32 should be inside the 3-body neighbor list. This means the 3-body
neighbor lists contain about 47% of all particle pairs of the 2-body neighbor list. So they are
quadratic in size compared to their 2-body counterparts, as one might expect. This means
both the average 3-body list length and memory requirement are bigger than their 2-body
counterpart by a factor that is proportional to the average 2-body list length. This means
that 3-body lists are significantly more expensive than 2-body lists the denser the simulated
particles are because the 2-body lists get longer.

18

4.5. Theoretical Running Time Comparison

Comparing the model to the actual lists, we found that this theoretical model seems to
slightly underestimate the size of lists and thereby the total memory consumption by about
ten percent, as can be seen in Figure 4.9. We think that one factor contributing to this is
that we underestimate the length of longer lists more than we overestimate the length of
shorter lists, because of the quadratic scaling with list length. We also see that the use of
vectors for the neighbor lists means that we have allocated but unused memory, which adds
another factor of around 1.5 to the memory requirement.

0.2 0.4 0.6 0.8 1.0 1.2 1.4
density

0

20

40

60

80

100

To
ta

l S
ize

 in
 M

B

3-body list total size
3-body list total size model
3-body list total capacity

Figure 4.9.: Memory requirement of 3-body neighbor lists, used memory in blue, allocated
memory in green, and the predictions of the model (orange). This shows that
our model underestimates the memory requirement slightly and that the total
capacity is about 1.5 times as much as the used memory.

4.5. Theoretical Running Time Comparison

In this section, we want to compare the theoretical running times of the iteration steps and
neighbor list rebuilds of the different traversals.

4.5.1. Running Time of IterateTriwise

For simplicity, we write the running times T (N) in terms of the mean 2-body neighbor
list length n and assume that every list is of exactly that size. We will denote the number
of particles in the simulation by N . n in some ways depends on N , but akin to M in
Subsection 2.1.2 n is generally much smaller than N .

The ListIteration traversal iterates over all pairs in every list exactly once, therefore its
running time is T (N) = N ∗ n∗(n−1)

2 . For the PairListIteration traversal, we iterate once

19

4. Implementation

over the 3-body neighbor lists making its runtime T (N) = N ∗ z, if z is the average 3-body
list length. We can use our model from Subsection 4.4.2 to approximate this length as
15
32 ∗

n∗(n−1)
2 resulting in a runtime of T (N) ≈ N ∗ n∗(n−1)

4 .

The ListIntersection approaches work a bit differently. They make an intersection and
then iterate over the intersection for every entry in every particle’s neighbor list. This
gives us a runtime of T (N) = N ∗ n ∗ (T (intersect) + i) where T (intersect) is the time
the intersection takes and i is the size of the intersection. In the worst case, i can be as
big as n and the runtime of the intersection depends on the approach. For the sorting
approach, the worst-case running time of the intersect is given by the length of both lists,
so it is 2n. For the hashing approach, the running time is given by the length of the
second list, so it is n, but we have to build the hash set for every particle once, which
takes time n per particle. The final running times are T (N) = N ∗ n ∗ (2n+ n) = N ∗ 3n2

for the sorted version and T (N) = N ∗ [n∗(n+n)+n] = N ∗(2n2+n) for the hashing version.

We see in Table 4.1 that all traversals are in the same complexity class, taking O(N ∗ n2)
time. The fastest traversal is the PairListIteration. The slowest are the ListIntersection
approaches, but they have a higher hit rate than the ListIteration traversal at least. We
also made a worst-case analysis for them for both the size of the intersection, as well as the
runtime of the intersection procedure, so the average case should perform better than this
analysis shows. We also already showed that the hashing approach performs worse than
the sorting approach in Figure 4.7, even though it should have a better runtime, with the
reason most likely being the additional layer of memory indirection incurred by the hashing
approach.

Traversal
Running time

iterateTriwise()

Running time
rebuildNeighborLists()

ListIteration N ∗ n∗(n−1)
2 N ∗M

ListIntersectionSorted N ∗ 3n2 N ∗M +N ∗ (n ∗ log(n))

ListIntersectionHashing N ∗ (2n2 + n) N ∗M

PairListIteration N ∗ n∗(n−1)
4 N ∗M +N ∗ n∗(n−1)

2

Table 4.1.: Theoretical running times of iterateTriwise() and rebuildNeighborLists()

for the different traversals.

4.5.2. Running Time of RebuildNeighborLists

The running times of the rebuild of the ListIteration traversal and the hashing approach for
the ListIntersection approach are the same, given by the runtime of the lcc08 traversal. Its
runtime depends on the average amount of particles per cell M = ρ ∗ r3cut, so something like
T (N) = N ∗M . For the sorted ListIntersection approach we have to sort all lists, which
results in a runtime of T (N) = N ∗M +N ∗ (n ∗ log(n)).

20

4.5. Theoretical Running Time Comparison

The list rebuild time for the PairListIteration traversal depends on the 3-body traver-
sal used to build those lists. In our case, we use the ListIteration traversal, for which
we also have to rebuild the 2-body neighbor lists. This results in a running time of
T (N) = N ∗M +N ∗ n∗(n−1)

2 .

From Table 4.1 we can see that the 3-body neighbor list rebuild takes substantially more
time than the other rebuilds, but since it also has the theoretically fastest iteration step
this difference may be made up over the iterations without a rebuild. If we compare it
to the ListIteration traversal over three iterations, with one list rebuild we get running
times of T (N) = N ∗M + 5

4 ∗ N ∗ n ∗ (n − 1) for the PairListIteration and of T (N) =
N ∗M + 3

2 ∗N ∗ n ∗ (n− 1) for the ListIteration traversal. So the PairListIteration traversal
would come out ahead when looking at multiple iterations.

21

5. Evaluation

5.1. Test Environment

We ran most of our experiments with the different traversals under different conditions on
the CoolMUC-21 of the Leibniz-Rechenzentrum2 (LRZ). We used a single Haswell-based
node with two Intel Xeon E5-2697 v3 cores, giving us 28 physical cores capable of two-way
hyperthreading to run our simulation scenarios. The cores operate at a frequency of 2.6
GHz and have 64 GB of RAM.
We also ran one experiment on a node of the HSUper cluster which provides 2 Intel Xeon
Platinum 8360Y processors, which gives a total of 72 cores that are split over the two
processors and 4 NUMA nodes. Their nominal frequency is 2.4GHz and they also provide
two-way hyperthreading. The node has 256GB of memory available.

We used the exemplary particle simulator, called md-flexible, that comes with AutoPas.
In all the scenarios we run, the force calculation cutoff radius is set to 2.5 with an additional
skin radius of 0.2. We always rebuild the neighbor lists every 10 iterations and simulate 100
iterations in total. The main scenario that we ran for data collection for running times and
parallel efficiency uses the cube closest packing generator of md-flexible. This generator fills
the simulation domain with particles as in the hexagonal closest packing (HCP) of spheres
in a cube. The spacing between particles, which is equivalent to 2r in the HCP, is set to
1.2, which results in a particle density of about 0.83. We ran this scenario, which we call
CubePack at two scales by varying the size of the simulation domain. Their particle numbers
and particle densities are shown in Table 5.1.

In the following sections, we are comparing the raw running times of the different traversals
as well as their parallel efficiency. In Section 5.5 we analyze the memory consumption of
the neighbor lists used by different traversals and in Section 5.6 we look at a few different
scenarios to see if there are significant differences in the performance of a traversal depending
on the simulation conditions. For this, we ran a scenario Uniform, which distributes particles
uniformly randomly in the simulation domain. We fix the number of particles and vary the
domain volume to get scenarios with different particle densities. We also take a look at the
Gauss scenario, which uses a Gaussian distribution to generate particles in the simulation
domain. Here we fix the simulation domain and vary the standard deviation which gives us
differently spread out particles throughout the domain. The particle numbers and particle
densities for these distributions are given in Table 5.1 as ranges, with the exact number
depending on the parameters.

1https://doku.lrz.de/coolmuc-2-11484376.html
2https://www.lrz.de

22

https://doku.lrz.de/coolmuc-2-11484376.html
https://www.lrz.de

5.2. Comparison of Running Time

Scenario name
Owned
Particles

Halo Particles
Domain
Volume

Owned Particle
Density

CubePack M ∼ 1 100 000 ∼ 150 000 1 331 000 ∼ 0.826

CubePack T ∼ 106 000 ∼ 35 000 125 000 ∼ 0.848

Uniform 512,000
[∼ 44 300 to
∼ 82 500]

[681 472 to
4 096 000]

[∼ 0.125 to
∼ 0.75]

Gauss
[317 811 to
606 949]

[38 909 to
51 287]

1 000 000
varies

throughout
domain

Table 5.1.: Statistics of the number of particles, domain volume, and owned particle density
for different scenarios.

5.2. Comparison of Running Time

In this section, we will analyze the differences in running time between the different Verlet
list traversals and the previously implemented Linked Cells traversal lcc01.

5.2.1. Total Running Time

We first look at the total time one iteration of the simulation takes. Here we have to factor
in that the rebuild iterations for Verlet lists will take significantly longer, as we have to
rebuild the lists. Additionally, all prior cache entries will be unusable after a rebuild, as all
neighbor lists have changed, so the iteration over all particle triplets will also take longer.
Therefore we split our measurements into two sets, one made up of the rebuild iterations
and the other of all other iterations. We can then compute the median times of both sets
and get a weighted average of the times, depending on the relative frequency of rebuild
iterations. We call this value the weighted median iteration time and will be using it to
compare the different traversals.

In Figure 5.1a we can see that all Verlet traversals outperform the lcc01 traversal. They
are at least 3.5 times faster, with the fastest being about 9 times faster than the Linked Cells
traversal. This big difference in iteration time comes from the difference in hit rates between
the 3-body Verlet list traversals and the 3-body Linked Cells traversal. In this scenario, the
lcc01 traversal only has a hit rate of 1.5%, while the ListIteration traversal has 30.5% and the
other traversals all have a 66.9% hit rate. The hit rate h is given by h = f

f+d where f is the
number of force calculations and d is the number of unnecessary distance calculations. Since
the number of force calculations is constant for all traversals, we can express the number
of unnecessary distance calculations as d = f 1−h

h . With this, we can calculate that the
Linked Cells traversal makes about 29 times as many unnecessary distance calculations as
the ListIteration traversal and about 133 times as many as the other Verlet traversals. But
since one distance calculation takes less time than one full force calculation and the Linked
Cells traversal has fewer memory indirections when accessing particles it is only 9 times slower.

23

5. Evaluation

In Figure 5.1b we take a closer look at all of the Verlet traversals and compare them
against each other. We can see that the PairListIteration traversal is the fastest with the
ListIteration traversal being a bit slower. Both ListIntersection traversals are even slower
with the hashing approach being much worse.

1 2 4 8 14 28 56
of Threads

0

100

200

300

400

500

se
co

nd
s

lcc01
ListIteration
ListIntersectionSorted
ListIntersectionHashed
PairListIteration

(a) Weighted median iteration time of all Ver-
let traversals and the lcc01 traversal in the
CubePack M scenario.

14 28 56
of Threads

0

2

4

6

8

10

12

se
co

nd
s

ListIteration
ListIntersectionSorted
ListIntersectionHashed
PairListIteration

(b) Zoomed-in version of (a) showing
weighted median iteration time of all
Verelt traversals for 14, 28, and 56
threads.

Figure 5.1.: Weighted median of iteration time of Verlet traversals and the lcc01 traversal,
shows that all Verlet traversals outperform the lcc01 traversal, from the Verlet
traversals the PairListIteration traversal is the fastest closely followed by the
ListIteration traversal.

5.2.2. List Rebuilding

We now want to focus specifically on the list rebuilding time, as the different traversals
require slightly different rebuilding steps.

In Figure 5.2 we can observe that the list rebuilding scales very badly with a growing
number of threads. We believe that this is caused by the amount of memory allocation
required during the rebuilding process, as the lists are currently implemented as vectors
that are extended via the push back() operation. This means during the rebuilding process,
there will be multiple memory allocations per list to extend them.

We can also see that the PairListIteration traversal loses out, as it has to build much
bigger lists than the other traversals. The lists have about 14 times the length of the 2-body
lists in this scenario, but the rebuild operation is only about 3 to 4 times slower than in the
2-body list case. This discrepancy is probably because the system calls that allocate more
memory take most of the time for the short list lengths we are dealing with. With the 14

24

5.2. Comparison of Running Time

times increase in length, we require 4 more system calls, as the vectors we use as neighbor
lists grow by doubling their lengths when they are full. The rebuild of the 3-body neighbor
lists also takes longer than the theoretical running time discussed in Subsection 4.5.2, which
was the sum of the running times of the rebuild of the ListIteration traversal and one
iteration of it. We attribute this to the fact that the memory allocations most likely take
more time than the force calculations in a single iteration of the ListIteration traversal.

Of the traversals using 2-body lists, the sorted variant of the ListIntersection traversal is
a bit slower than all others, as this includes the sorting time needed after rebuilding, but the
overall time invested into sorting is less than we initially anticipated. This makes the rebuild
about 1.1 to 1.2 times slower than the rebuilds of the hashing variant and the ListIteration
approach, which both use the same rebuilding method.

14 28 56
of Threads

0

1

2

3

4

5

6

7

8

se
co

nd
s

ListIteration
ListIntersectionSorted
ListIntersectionHashed
PairListIteration

Figure 5.2.: Median list rebuilding times of Verlet traversals for 14, 28, and 56 threads in
the CubePack M scenario, shows that the 3-body list building for the PairLis-
tIteration takes about 3 to 4 times as long as the other rebuilds and that the
sorting overhead for the ListIntersection approach makes it only about 1.1 to
1.2 times slower.

5.2.3. IterateTriwise

This section focuses on the time taken up by traversing all particle triplets. Figure 5.3 shows
that the PairListIteration traversal has a faster iteration time than any other traversal. This
comes from its high hit rate and the fact that the length of the 3-body neighbor lists is about
half the amount of all pairs of particles in the 2-body neighbor lists, all of which are traversed
by the ListIteration traversal. This matches our theoretical findings in Subsection 4.5.1,
although the PairListIteration traversal is not twice as fast but only about 1.5 times as fast
as the ListIteration traversal. This is because only doing the distance calculation takes less

25

5. Evaluation

time than the full force calculation. So while the ListIteration traversal makes twice the
functor calls, half of those only do the faster distance calculation.

Otherwise, the ListIteration traversal is in second place, which mostly comes from the fact
that the ListIntersection traversals have to compute the intersection every iteration step,
which has a higher runtime, as discussed in Subsection 4.5.1. This deficit is not made up for
by the higher hit rate the intersection traversals have. It is also clear that the hash version
of the ListIteration traversal is much worse in this aspect too, leading us to not consider it a
viable option from here on out.

14 28 56
of Threads

0

2

4

6

8

10

12

se
co

nd
s

ListIteration
ListIntersectionSorted
ListIntersectionHashed
PairListIteration

Figure 5.3.: Weighted median iterateTriwise() time of Verlet traversals for 14, 28, and 56
threads in the CubePack M scenario, shows that the PairListIteration traversal
is the fastest, being about 1.5 times faster than the ListIteration traversal.
ListIntersection traversals are slower, with the hashing variant being about
twice as slow as every other traversal.

The lower iterateTriwise() run time of the PairListIteration traversal is enough to
offset its longer list rebuild time over the non-rebuilding time steps. In our experiments, we
find that at around four iterations the PairListIteration traversal takes as much time as the
ListIteration traversal. Any iteration afterward without a rebuild increases the advantage
the PairListIteration traversal has over the ListIteration traversal. This can be seen in
Figure 5.4b which plots the cumulative time of 10 iterations, where the first is a rebuild and
all others are non-rebuild iterations, for single-threaded execution. Figure 5.4a shows the
cumulative time over 100 iterations for single-threaded execution where we can see how the
costly rebuild operation of the PairListIteration traversal every ten iterations is compensated
for in the faster iterateTriwise() time.

26

5.3. Traversal Improvements

0 10 20 30 40 50 60 70 80 90 100
iterations

0

1000

2000

3000

4000

5000

se
co

nd
s

ListIteration
PairListIteration

(a) Cumulative time for one thread over all
100 iterations in the CubePack M sce-
nario for the ListIteration and PairLis-
tIteration traversals, shows that PairLis-
tIteration is faster when looking at many
iterations.

1 2 3 4 5 6 7 8 9 10
iterations

0

100

200

300

400

500

se
co

nd
s

ListIteration
PairListIteration

(b) Zoomed-in version of (a) looking at 10
iterations, where the first is a rebuild it-
eration, shows that the PairListIteration
is slower until iteration four, but faster
afterward.

Figure 5.4.: Cumulative time of consecutive iterations in the CubePack M scenario for the
ListIteration and PairListIteration traversals, shows how the longer rebuild
time of the PairListIteration gets compensated by the faster iterateTriwise()
times over multiple iterations.

5.3. Traversal Improvements

In this section, we evaluate the changes we made to the traversals in an attempt to improve
their running times. We use the improved versions of these traversals for all other measure-
ments.

5.3.1. PairListIteration Traversal Improvements

For the PairListIteration we changed the 3-body traversal used for building the neighbor lists
from a Linked Cells traversal to a Verlet list traversal. In Figure 5.5 we show the different
rebuilding times when using different traversals. We can observe that the ListIteration
traversal is the fastest in building the 3-body neighbor lists. With a lower amount of
threads up to about 14 it achieves a speedup of 2 compared to the lcc01 traversal. The
speedup remains above 1.75 for a higher number of threads. This reduction in rebuilding
time makes the PairListIteration traversal overall faster than the ListIteration traversal.
Since the ListIntersection approach is worse than the ListIteration approach we now use the

27

5. Evaluation

ListIteration traversal to build the 3-body neighbor lists. The bad parallel efficiency of the
list rebuilding is still a problem with the Verlet traversal.

This new rebuilding approach means that we also save 2-body neighbor lists. This memory
requirement will be analyzed in Section 5.5.

4 8 14 28 56
of Threads

0

10

20

30

40

se
co

nd
s

ListIteration
ListIntersectionSorted
lcc01

Figure 5.5.: Median 3-body neighbor list rebuild time when using ListIteration, sorted
ListIntersection approaches and the lcc01 traversal for the CubePack M scenario,
shows that the ListIteration traversal is the fastest option, followed by the
ListIntersection and then the lcc01 traversal.

5.3.2. ListIntersection Traversal Improvements

In the ListIntersection approach, we optimized the intersection buffer’s lifetime to cut
down on the number of memory allocations needed. Figure 5.6 shows the weighted median
iteration time of the first and improved versions, but we can not observe any substan-
tial speedup for the improved version. We still kept the improved version, as it utilizes
the buffer better, but it does not seem to be a critical performance bottleneck of this traversal.

We showed in Subsection 4.5.1 that the intersection in every iteration has more overhead
than the for loops used in the ListIteration and PairListIteration traversals. For the in-
tersection of two lists we also have to first load both from memory, which results in more
non-uniform memory accesses than in the iteration approaches. When comparing the last
level cache misses of the ListIntersectionSorted traversal with those of the ListIteration
traversal we find that the intersection approach has about 4 times as many. We believe that
these are the more critical factors holding back this approach.

28

5.4. Parallel Speedup and Efficiency

324 8 14 16 5628
of Threads

2.5

5.0

7.5

10.0

12.5

15.0

17.5

se
co

nd
s

first version
improved version

Figure 5.6.: Weighted median iteration time of the first and improved version of the ListIn-
tersectionSorted traversal in the CubePack M scenario, shows that the buffer
optimization did not result in noticeable performance gains.

5.4. Parallel Speedup and Efficiency

Now we want to compare the parallel scaling that these traversals have. Since we want to
run particle simulations at a large parallel scale, high parallel efficiency is necessary for the
traversals to excel in these scenarios.

All traversals scale quite badly with hyper-threading which shows that one thread already
uses most of the core’s shareable resources, so hyper-threading is quite poor. It gives the
highest boost to the intersection approach, which we believe is caused by the higher memory
bound this traversal has, because of its more diverse memory accesses.

Figure 5.7 shows the parallel efficiency of all traversals in the smaller CubePack T sce-
nario of about 110 000 particles. We observed that the ListIteration traversal achieves the
overall highest parallel efficiency of all Verlet traversals at 87.5% with 28 threads. The
PairListIteration traversal starts very strong with a parallel efficiency of more than 85%
but slowly drops off and only achieves a parallel efficiency of around 70% for the full 28
threads. This drop-off has to do with the differing parallel efficiency of iterateTriwise()
and the list building. The parallel efficiency of the particle iteration stays above 82%, while
the list rebuilding efficiency drops to 55% for 14 threads and to 42% for 28 threads. This
means that the list rebuilding becomes more pronounced for higher thread numbers. We
can observe this when comparing the time that list rebuilding and triplet iteration take
up of one simulation step. List rebuilding takes up two-thirds of a rebuilding iteration for

29

5. Evaluation

one thread but already takes up 80% of the time for 28 threads. The ListInersectionSorted
traversal has an efficiency of around 80% overall, dropping to 75% for 28 threads.

1 2 4 8 14 28 56
#Threads

0.0

0.2

0.4

0.6

0.8

1.0

fa
ct

or

ListIteration
ListIntersectionSorted
PairListIteration
lcc01

Figure 5.7.: Parallel efficiency with error ranges of traversals from 1 to 56 threads in the
CubePack T scenario, shows all traversals have bad parallel efficiency with
hyperthreading at 56 threads. The lcc01 and ListIteration traversals have over
90% parallel efficiency, with the ListIteration dropping to 87.5% for 28 threads,
while the other Verlet traversals range between 75 and 85% parallel efficiency.

In Figure 5.8 we also take a look at the parallel efficiency in the bigger CubePack M
scenario of about 1.1 million particles. Here we observe a higher parallel efficiency of the
PairListIteration traversal. It is generally about 10% higher than in the smaller scenario. We
believe that this effect comes from better load balancing with higher particle count. Every
thread gets an equally sized subset of all particles to process. Since we completely skip the
computation of forces for Halo particles the number of Halo particles in the subset of a thread
can make a big difference in the work it has to do. This means for bigger scenarios, where
the fraction of Halo particles becomes less when compared to owned particles, the impact of
these Halo particles is reduced. The scaling of the ListIteration and ListIntersectionSorted
traversals is similar to how it was in the smaller scenario.

An effect we do not know the cause of is the dip in parallel efficiency of the PairListItera-
tion for two threads compared to higher thread numbers, which is especially noticeable in
the bigger scenario.

30

5.4. Parallel Speedup and Efficiency

1 2 4 8 14 28 56
#Threads

0.0

0.2

0.4

0.6

0.8

1.0

fa
ct

or

ListIteration
ListIntersectionSorted
PairListIteration
lcc01

Figure 5.8.: Parallel efficiency with error ranges of traversals from 1 to 56 threads in the
CubePack M scenario, shows the lcc01, ListIteration, and PairListIteration
traversal have parallel efficiencies of more than 90% with the list intersection
approach only achieving an 80 to 90% efficiency.

From these observations, we can conclude that for bigger scenarios the PairListIteration
performs best of the Verlet traversals for up to 28 threads. But this trend may not continue
forever, as the parallel efficiency seems to drop off slowly, as the lower parallel efficiency of
the list rebuilding becomes more pronounced. So we ran a scenario on the HSUper cluster
with up to 72 physical cores per node to see if there is a point where the higher parallel
efficiency of the ListIteration traversal will make it a faster traversal for a higher number of
cores. The scenario contains 4 million uniformly randomly distributed particles at a particle
density of 0.5.

In Figure 5.9 we compare the weighted median iteration time of the PairListIteration
traversal against the ListIteration traversal from the HSUper run. Here we can see that the
ListIteration traversal outperforms the PairListIteration traversal for 72 and 144 threads.
There is a noticeable drop in parallel efficiency from 18 to 36 threads, as we now use two
NUMA nodes instead of one. Another drop in parallel efficiency is from 36 to 72 threads
because we are using 2 CPUs for the same domain. This data suggests that the low parallel
efficiency of the neighbor list building does become a problem for the PairListIteration
traversal at high thread numbers.

31

5. Evaluation

9 18 36 72 144
of Threads

0

1

2

3

4

5

6

se
co

nd
s

ListIteration
PairListIteration

Figure 5.9.: Weighted median iteration time for ListIteration and PairListIteration for a
scenario of ∼ 4 000 000 particles at a density of 0.5 with up to 144 threads, shows
that the ListIteration traversal does perform better than the PairListIteration
traversal for 72 and more threads because of its higher parallel efficiency.

5.5. Memory Usage

In this section, we want to take a look at the memory consumption of Verlet lists. For
this, we use a small scenario in which we use uniformly randomly distributed particles.
We vary the density of particles and inspect the influence on memory consumption. We
measured both the used memory and all allocated memory for the neighbor list. Since we
are using vectors as lists the allocated memory will be less than two times the used memory
for neighbor lists.

We already validated our model for the 3-body neighbor lists in Subsection 4.4.2, which
tells us that the 3-body neighbor lists grow quadratically, while the 2-body neighbor lists
grow linearly in the mean length of the 2-body lists. Since the average list length grows
proportional to the particle density the memory consumption scales quadratically with
particle density. In the case of having a high owned particle density of 1.5, we get an average
memory footprint of 47.5 kB per 3-body list, while the average 2-body list only takes up 876
Byte. This means that adding the memory consumption of 2-body neighbor lists on top for
our improvement increases the total memory consumption by 1.8% to 10%, as can be seen
in Figure 5.10. Because of the quadratic scaling of the 3-body lists, the addition of 2-body
lists is more noticeable for shorter list lengths. However, saving 2-body neighbor lists in
addition to the 3-body lists, for the improved neighbor list building of the PairListIteration
traversal, does not add much to the overall memory footprint of the Verlet lists.

32

5.6. Comparison of Traversals for Different Scenarios

With the generally high memory consumption of 3-body neighbor lists the PairListIteration
traversal may need too much memory at higher densities. At a density of 1.5 the average
allocated memory needed for the 3-body neighbor lists is at around 64 kB. With this size, we
will already need 64 GB to save these lists for a million particles. This memory consumption
becomes even more of a problem with even higher densities or larger cutoffs and skin radii.

0.25 0.5 0.75 1 1.25 1.5
Density for owned particles

0

10

20

30

40

50

60

70

Si
ze

 in
 M

B

3-body neighbor lists total size
2-body neighbor lists total size
total size of both neighbor lists

Figure 5.10.: Memory consumption of 3-body and 2-body neighbor lists, as well as their
combined memory consumption for different particle densities, showing that
additionally saving 2-body neighbor lists does not increase the memory footprint
of 3-body neighbor lists by much.

5.6. Comparison of Traversals for Different Scenarios

In this section, we compare the two best-performing traversals ListIteration and PairListIt-
eration on different scenarios to see how they affect their runtime and efficiency. We in one
case want to test the impact that particle density has on the traversals, and we also want to
investigate how the particle distribution affects their running times.

5.6.1. Comparison for Various Densities

We ran simulations of the Uniform scenario which has 512 000 uniformly randomly distributed
particles for different domain volumes, giving us different particle densities to compare. In
Figure 5.11 we see that the ListIteration traversal performs better than the PairListIteration
for low particle densities, below 0.5. We can see that the graphs get a slight upward trend
from 28 to 56 threads, which has to do with the higher hyperthread efficiency that the
PairListIteration traversal has. This leads to a performance gain with hyperthreading when
compared to the ListIteration traversal.

33

5. Evaluation

The PairListIteration seems to have a much worse parallel efficiency for lower particle
densities, as we can see for densities of 0.5 and 0.375 that the PairListIteration is still
faster for 4 Threads, but loses this advantage with higher thread numbers of 8 and 14. The
curve for a particle density of 0.5 is quite different when we compare it to the run on the
HSUper cluster in Figure 5.9 where we also had the same density. There, the ListIteration
traversal only became faster than the PariListIteration at 72 Threads, compared to the 14
in this scenario. We attribute this to the bigger scenario we ran on the HSUper cluster.
There we used around four million particles instead of the 512 000 on the CoolMUC-2.
The PairListIteration has a higher parallel efficiency in bigger scenarios, as we discussed
in Section 5.4. Thus, the difference in parallel efficiency between the ListIteration and
PairListIteration traversal is bigger in the smaller CoolMUC-2 scenario, leading to the
ListIteration outperfoming the PairListIteration earlier.

The general trend with the ListIteration traversal being faster for lower particle densities
could be caused by the short list lengths that arise there. As this means that the lower
iterateTriwise() runtime of the PairListIteration traversal is less noticeable, as the over-
all runtime of the triplet iteration per neighbor list becomes lower. This means that the
PairListIteration can not make up the longer list rebuilding time through the faster iteration
time, leading to it being overtaken by the ListIteration traversal.

4 8 14 28 56
of Threads

0

2

4

6

8

se
co

nd
s

0.125 density
0.25 density
0.375 density
0.5 density
0.75 density

Figure 5.11.: Difference of weighted median iteration time between ListIteration and PairLis-
tIteration for different densities in the Uniform scenario relative to the values
of 0.25 density, positive = PairListIteration is faster, negative = ListIteration is
faster, shows that the ListIteration traversal is faster for some thread numbers
for particle densities of 0.5 or less.

34

5.6. Comparison of Traversals for Different Scenarios

5.6.2. Comparison for Gaussian Distribution

We simulated the Gauss scenario, which has a different distribution of particles, to find out
if the ListIteration traversal would be better suited for different scenarios. In Figure 5.12
we compare the weighted median iteration times of the ListIteration and PairListIteration
traversals again with varying standard deviations. This also leads to varying numbers of
particles for the different simulations. We can see that both traversals achieve very similar
speeds for higher standard deviations. This should be caused by both the smaller simulation
size, as well as the overall lower density of particles.

The Gaussian distribution also leads to a very dense region around the mean of the
distribution. This leads to high memory consumption for the 3-body neighbor lists, this
became so much of a problem that we ran out of memory on the CoolMUC-2, when using a
standard deviation of 30. This shows that the higher memory requirement can become a
problem in a simulation with local regions of highly dense particles.

8 14 28 56
of Threads

0

1

2

3

4

5

6

7

se
co

nd
s

stdDiv=35, particles=658236
stdDiv=40, particles=540236
stdDiv=45, particles=438449
stdDiv=50, particles=356720

Figure 5.12.: Difference of weighted median iteration time between ListIteration and PairLis-
tIteration for the Gauss scenario with different standard deviations, positive
= PairListIteration is faster, negative = ListIteration is faster, showing that
both the ListIteration and PairListIteration traversal are similarly fast for
more than 14 threads and standard deviations of 45 or more, otherwise the
PairListIteration outperforms the ListIteration traversal.

35

6. Conclusion

In this thesis, we introduced and implemented multiple approaches for a 3-body neighbor
identification algorithm based on Verlet lists as traversals in AutoPas. We then compared
their performance in different scenarios as well as their memory requirements.

This has shown that the PairListIteration traversal performed the best out of all approaches
in medium to high-density scenarios. The ListIteration traversal is better suited than it for
very low-density simulations, with a particle density of less than 0.5. We find that both
traversals have an overall high parallel efficiency with the PairListIteration approach having
better parallel efficiency for bigger scenarios. Both traversals have a low parallel efficiency
for the list rebuilding process. This dampens the overall efficiency of the PairListIteration
for high numbers of threads, where the ListIteration can perform better. The intersection
approach did not perform as well as the other approaches, because the intersection of all
lists takes longer than simple iteration and the less predictable memory accesses made by it.

On the aspect of memory, we created a model for the lengths and memory requirement of
3-body neighbor lists based on the lengths of the 2-body lists and validated this model with
measurements from our simulations. We concluded that the model slightly underestimates
the memory consumption by roughly 10%. This model shows that the PairListIteration
approach needs much more memory than the ListIteration approach, which is one of its
disadvantages. Because of our findings, we propose to keep both the ListIteration and
PairListIteration traversal for AutoTuning purposes in AutoPas.

For future work, we think an investigation into parallelized implementations of Newton3
versions of the traversals could be interesting, as in the case of the ListIteration traversal the
Newton3 implementation was much more efficient than the single-threaded version without
Newton3. Another area of future improvement could be made to the structure of the Verlet
lists in AutoPas since their building incurs many memory allocations when growing the
vectors. To circumvent this we can use a buffer of neighbor list vectors to reuse over multiple
rebuilds, we could also use the model of 3-body neighbor list lengths to allocate the likely
neighbor list length from the start, which should avoid a lot of the allocations for vector
resizing. It would also be interesting to see how our implementation of the ListIteration
traversal compares to the approaches of LAMMPS and HOOMD-blue.

36

List of Figures

2.1. 3-Body cutoff criteria . 6
2.2. 3-Body lcc01 base step . 8
2.3. Implementation of Verlet lists in AutoPas 9
2.4. Volume of superfluous distance calculations for Linked Cells and Verlet lists 9

4.1. Overview of contributed traversals . 12
4.2. Structural overview of AutoPas containers 12
4.3. Pseudocode of ListIteration traversal . 13
4.4. 2-Body lcc08 base step . 14
4.5. Median iteration time of ListIteration traversal with and without Newton3 15
4.6. Pseudocode of ListIntersection approach . 15
4.7. Median iterateTriwise() time of ListIntersection approach 17
4.8. Pseudocode of PairListIteration traversal 18
4.9. Modeled memory requirement of 3-body neighbor lists 19

5.1. Iteration times of Verlet and lcc01 traversals 24
5.2. List rebuilding times of all Verlet traversals 25
5.3. iterateTriwise() times for all Verlet traversals 26
5.4. Cumulative iteration time of ListIteration and PairListIteration traversals . 27
5.5. List rebuild times for 3-body neighbor lists of different traversals 28
5.6. Iteration time of first and improved ListIntersectionSorted traversal 29
5.7. Parallel efficiency in the CubePack T scenario 30
5.8. Parallel efficiency in the CubePack M scenario 31
5.9. Iteration times of ListIteration and PairListIteration with up to 144 threads 32
5.10. Memory requirement of 2-body and 3-body neighbor lists 33
5.11. Difference in iteration time of PairListIteration and ListIteration traversal in

different particle densities . 34
5.12. Difference in iteration time of PairListIteration and ListIteration traversal in

Gauss scenario . 35

37

List of Tables

4.1. Theoretical running time comparison of traversals 20

5.1. Scenario comparison . 23

38

Bibliography

[1] Hoi Ling Luk, Johannes Feist, J. Jussi Toppari, and Gerrit Groenhof. Multiscale
molecular dynamics simulations of polaritonic chemistry. Journal of Chemical Theory
and Computation, 13(9):4324–4335, August 2017.

[2] Arieh Warshel. Molecular dynamics simulations of biological reactions. Accounts of
Chemical Research, 35(6):385–395, April 2002.

[3] José Alejandre, Dominic J. Tildesley, and Gustavo A. Chapela. Molecular dynamics
simulation of the orthobaric densities and surface tension of water. The Journal of
Chemical Physics, 102(11):4574–4583, March 1995.

[4] Nikola Plamenov Tchipev. Algorithmic and implementational optimizations of molecular
dynamics simulations for process engineering. PhD thesis, Technische Universität
München, 2020.

[5] Fabio Alexander Gratl, Steffen Seckler, Hans-Joachim Bungartz, and Philipp Neumann.
N ways to simulate short-range particle systems: Automated algorithm selection with
the node-level library autopas. Computer Physics Communications, 273:108262, April
2022.

[6] Philipp Ströker. Bestimmung thermodynamischer eigenschaften von fluiden mit
einer weiterentwickelten molekularen simulationsmethodik und hochgenauen ab initio-
potentialen. 2023.

[7] Michael P Allen et al. Introduction to molecular dynamics simulation. Computational
soft matter: from synthetic polymers to proteins, 23(1):1–28, 2004.

[8] Isaac Newton. Philosophiae naturalis principia mathematica, volume 1. G. Brookman,
1833.

[9] B. M. Axilrod and E. Teller. Interaction of the van der Waals Type Between Three
Atoms. The Journal of Chemical Physics, 11(6):299–300, 06 1943.

[10] Seymour Lipschutz. Linear Algebra 4th ed. McGraw-Hill, 2009.

[11] C.F. Cornwell and L.T. Wille. Parallel molecular dynamics simulations for short-ranged
many-body potentials. Computer Physics Communications, 128(1–2):477–491, June
2000.

[12] Penporn Koanantakool and Katherine Yelick. A computation- and communication-
optimal parallel direct 3-body algorithm. In SC14: International Conference for High
Performance Computing, Networking, Storage and Analysis. IEEE, November 2014.

39

Bibliography

[13] Liam D O’Suilleabhain. Three body approximation to the condensed phase of water.
Master’s thesis, University of California, Berkeley, Berkeley, CA, 2013.

[14] Steffen Seckler, Fabio Gratl, Matthias Heinen, Jadran Vrabec, Hans-Joachim Bungartz,
and Philipp Neumann. Autopas in ls1 mardyn: Massively parallel particle simulations
with node-level auto-tuning. Journal of Computational Science, 50:101296, March 2021.

[15] Fabio Alexander Gratl, Steffen Seckler, Nikola Tchipev, Hans-Joachim Bungartz, and
Philipp Neumann. Autopas: Auto-tuning for particle simulations. In 2019 IEEE
International Parallel and Distributed Processing Symposium Workshops (IPDPSW).
IEEE, May 2019.

[16] Dennis C Rapaport. The art of molecular dynamics simulation. Cambridge university
press, 2004.

[17] Loup Verlet. Computer “experiments” on classical fluids. i. thermodynamical properties
of lennard-jones molecules. Physical Review, 159(1):98–103, July 1967.

[18] Pedro Gonnet. Pairwise verlet lists: Combining cell lists and verlet lists to improve
memory locality and parallelism. Journal of Computational Chemistry, 33(1):76–81,
2012.

[19] Aidan P. Thompson, H. Metin Aktulga, Richard Berger, Dan S. Bolintineanu,
W. Michael Brown, Paul S. Crozier, Pieter J. in ’t Veld, Axel Kohlmeyer, Stan G.
Moore, Trung Dac Nguyen, Ray Shan, Mark J. Stevens, Julien Tranchida, Christian
Trott, and Steven J. Plimpton. Lammps - a flexible simulation tool for particle-based
materials modeling at the atomic, meso, and continuum scales. Computer Physics
Communications, 271:108171, February 2022.

[20] Ilian T. Todorov, William Smith, Kostya Trachenko, and Martin T. Dove. Dl poly 3:
new dimensions in molecular dynamics simulations via massive parallelism. Journal of
Materials Chemistry, 16(20):1911, 2006.

[21] J. Tersoff. Modeling solid-state chemistry: Interatomic potentials for multicomponent
systems. Physical Review B, 39(8):5566–5568, March 1989.

[22] Joshua A. Anderson, Jens Glaser, and Sharon C. Glotzer. Hoomd-blue: A python pack-
age for high-performance molecular dynamics and hard particle monte carlo simulations.
Computational Materials Science, 173:109363, February 2020.

[23] Simone Ciarella and Wouter G. Ellenbroek. Associative bond swaps in molecular
dynamics. 2019.

[24] Shu-Ju Tu and Ephraim Fischbach. A new geometric probability technique for an
n-dimensional sphere and its applications to physics, 2000.

[25] Maurice George Kendall and Patrick Alfred Pierce Moran. Geometrical probability.
1963.

40

	Acknowledgments
	Abstract
	Zusammenfassung
	Introduction and Background
	Introduction
	Background
	N-Body Simulations
	Theoretical Basis
	Algorithmic Optimizations

	Axilrod Teller Potential
	3-Body vs 2-Body Interactions
	AutoPas
	Linked Cells
	Verlet Lists

	Related Work
	LAMMPS
	DL_POLY
	HOOMD-blue

	Implementation
	Overview
	Iteration Approach
	Intersection Approach
	Problems
	Different Approaches for Neighbor List Intersection

	3-Body Neighbor Lists
	Algorithm and Implementation
	3-Body Neighbor List Model

	Theoretical Running Time Comparison
	Running Time of IterateTriwise
	Running Time of RebuildNeighborLists

	Evaluation
	Test Environment
	Comparison of Running Time
	Total Running Time
	List Rebuilding
	IterateTriwise

	Traversal Improvements
	PairListIteration Traversal Improvements
	ListIntersection Traversal Improvements

	Parallel Speedup and Efficiency
	Memory Usage
	Comparison of Traversals for Different Scenarios
	Comparison for Various Densities
	Comparison for Gaussian Distribution

	Conclusion
	Bibliography

