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Abstract

This cumulative dissertation presents a robust framework to generate
analysis-ready Finite Element (FE) models from arbitrarily complex solid geome-
tries in STereoLithography (STL) format. Using the concept of embedded bound-
ary methods, these models are tailored to efficiently solve structural problems
on unfitted discretizations. The open-source program Quadrature for Embed-
ded Solids – QuESo combines all developments into a seamless interface be-
tween Computer-Aided Design (CAD) and FE software. In the proposed work-
flow, QuESo reads the STL file from CAD and outputs a list of integration points
that represent the geometrical domain within a simple computational grid. As
a result, the communication between QuESo and the FE program is essentially
limited to a set of active elements with customized integration points.

Special attention is given to the construction of highly efficient quadrature
rules, which extend the scope of application beyond linear and nonlinear static
examples to efficient transient simulations, including explicit dynamic analyses.
A point elimination strategy with non-negative moment fitting quadrature deals
with emerging cut domains. This results in at most n = (p+1)3 integration points
per element, which all lie within the physical domain and feature strictly positive
integration weights. In addition, the group-wise evaluation of interior/uncut el-
ements yields nearly optimal quadrature rules for higher-continuous basis func-
tions, e.g., B-Splines or NURBS, such that n decreases significantly below (p+1)3.
The second core development is a robust geometry kernel that efficiently pro-
cesses arbitrarily complex models. This includes a mesh intersection algorithm,
which drastically simplifies the assembly of the moment fitting equations, and
a scheme for element classification that delivers robust results even for severely
flawed geometries. All algorithms are successfully applied to nearly 5000 STLs
of varying complexity. Finally, a novel sensitivity analysis paves the way for the
integration of shape optimization strategies into the simulation process of em-
bedded methods. Tracking potentially large shape updates by an Eulerian de-
scription avoids mesh distortion problems, which pose major challenges when
using boundary-fitted discretizations.

In summary, the proposed developments drastically facilitate the model con-
version process from CAD to FEM while guaranteeing a high-quality discretiza-
tion. Moreover, all studied examples can straightforwardly be solved with higher-
order and higher-continuous B-Spline bases.

https://github.com/manuelmessmer/QuESo
https://github.com/manuelmessmer/QuESo




Kurzfassung

Die vorliegende kumulative Dissertation stellt ein robustes Framework vor,
um aus beliebig komplexen Festkörpergeometrien im STL-Format brauchba-
re Finite-Elemente (FE) Modelle zu erzeugen. Diese sind darauf zugeschnitten,
Strukturprobleme auf nicht angepassten Diskretisierungen unter der Verwen-
dung von eingebetteten Randmethoden effizient zu lösen. Das Open-Source-
Programm Quadrature for Embedded Solids – QuESo vereint sämtliche Entwick-
lungen zu einer nahtlosen Schnittstelle zwischen Computer-Aided Design (CAD)
und FE-Software. Im vorgeschlagenen Arbeitsablauf liest QuESo die STL-Dateien
aus dem CAD ein und berechnet eine Liste von Integrationspunkten, die den
geometrischen Bereich innerhalb eines einfachen Berechnungsgitters darstellen.
Die Kommunikation zwischen QuESo und der FE-Software beschränkt sich da-
her im Wesentlichen auf eine Reihe aktiver Elemente mit angepassten Integrati-
onspunkten.

Ein besonderes Augenmerk gilt der Konstruktion hocheffizienter Quadra-
turregeln, wodurch sich der Anwendungsbereich über lineare und nichtlineare
statische Beispiele hinaus auf transiente Simulationen, einschließlich expliziter
dynamischer Analysen, erweitert. Eine Punkteliminierungsstrategie mit nicht-
negativer Momenten-Anpassungs-Quadratur befasst sich mit den entstehenden
geschnittenen Bereichen. Dies führt zu höchstens n = (p+1)3 Integrationspunk-
ten pro Element, welche allesamt innerhalb des physikalischen Bereichs liegen
und positive Integrationsgewichte aufweisen. Darüber hinaus liefert die grup-
penweise Auswertung der inneren (nicht geschnittenen) Elemente nahezu op-
timale Quadraturregeln für stetige Basisfunktionen höherer Ordnung, z.B. B-
Splines oder NURBS, so dass n deutlich unter (p +1)3 abnimmt. Die zweite zen-
trale Entwicklung ist ein robuster Geometriekern, der die effiziente Verarbeitung
beliebig komplexer Modelle ermöglicht. Dazu gehören ein Algorithmus zur Netz-
verschneidung, der die Momentenberechnung erheblich vereinfacht, sowie ein
Elementklassifizierungsverfahren, das selbst bei stark fehlerbehafteten Geome-
trien robuste Ergebnisse liefert. Alle Algorithmen werden erfolgreich auf fast 5000
STLs unterschiedlicher Komplexität angewendet. Schließlich ebnet eine neuarti-
ge Sensitivitätsanalyse den Weg für die Integration von Formoptimierungsstra-
tegien in den Simulationsprozess von eingebetteten Methoden. Die dadurch er-
möglichte Eulersche Betrachtungsweise der potenziell großen Formaktualisie-
rungen vermeidet Netzverzerrungsprobleme, die eine große Herausforderung
bei Lagrangeschen Diskretisierungen darstellen.

Zusammenfassend lässt sich festhalten, dass die vorgestellten Entwicklungen
den Prozess der Modellkonvertierung von CAD zu FEM erheblich vereinfachen
und gleichzeitig eine hohe Diskretisierungsqualität gewährleisten. Zudem kön-
nen alle untersuchten Beispiele problemlos mit B-Spline-Basen höherer Ord-
nung und höherer Stetigkeit gelöst werden.

https://github.com/manuelmessmer/QuESo
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CHAPTER 1

Introduction

The following sections discuss the motivation behind this thesis, state the
overarching research aim and the specific intermediate objectives, and provide a
brief document outline.

1.1 Motivation

The development process for parts, assemblies, or entire structures in mod-
ern engineering departments classically comprises a design and analysis stage.
This is seldom a linear procedure but requires several iterations, where the cur-
rent design is optimized in an iterative loop. As a result, the geometric and
structural models must be exchanged multiple times between the designer and
the simulation engineer. Over the decades, the two disciplines have developed
largely independently of each other and produced individual software packages
with inherently different model descriptions. The probably most important con-
cepts for the design and analysis of structures are Computer-Aided Design (CAD)
and the Finite Element Method (FEM). However, while CAD aims at an accurate,
flexible, and adaptable representation of the geometry, the FEM’s main objective
is to capture physical phenomena. Modern CAD models are usually described
by B-Splines or Non-Uniform Rational B-Splines (NURBS), which enable param-
eterized free-form geometries. The traditional FEM, on the other hand, relies
on discrete geometrical descriptions, so-called meshes. Therefore, in order to
perform structural analysis using FEM, a mesh must first be derived from the
NURBS-based CAD model. A study estimates that this model conversion, also
called meshing, costs 80% of the time of the overall engineering process [1].

Hughes et al. [2] introduced the concept of Isogeometric Analysis (IGA) as an
approach to eliminate this often tedious, error-prone, and labor-intensive mesh-
ing step from the outset. The fundamental difference between standard FEM and
IGA is the use of different shape functions. While FEM traditionally uses low-
order polynomials, IGA exploits the CAD’s native B-Spline and NURBS, which
are usually characterized by higher polynomial degrees and higher continuities.
The main intention is to perform Finite Element Analysis (FEA) directly on the
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NURBS-based CAD geometries, potentially bridging the gap between design and
analysis. Due to these features, IGA was expected to have the following two ad-
vantages, among others.

(A.1) The elimination of the need for model conversion from CAD to FEA or its
considerable facilitation.

(A.2) The numerical exploitation of the higher polynomial orders and continu-
ities of NURBS and B-Splines.

Although the differences between FEM and IGA appear marginal at first
glance, the realization of a complete IGA workflow is far more complex than sim-
ply substituting the relevant shape functions. It involves specific IGA element
formulations [3], the treatment of multi-patches [4], the weak imposition of con-
straints [5], the numerical integration of trimmed domains [6], and different pre-
and postprocessing routines [7]. Despite the above challenges, CAD-integrated
simulation tools that utilize the concept of IGA have been successfully imple-
mented. However, the modeling concept used in most CAD environments limits
these workflows to thin-walled, shell-like structures. For them, the CAD program
directly offers the necessary parameterization to explore the advantages (A.1)-
(A.2). By contrast, a CAD-integrated simulation including volumetric geometries
poses further difficulties. The idea of using the unmodified solid CAD model or a
refined version of it as the basis for subsequent structural analyses is simply not
feasible. Modern CAD software relies on the so-called Boundary-Representation
(B-Rep), where the geometry is solely described through its outer skin. Fig. 1.1
illustrates this concept using the example of a simple cylinder with a hole. It
becomes apparent that four faces compose the model. However, no volumet-
ric function space of the interior is provided, which is essential for the structural
analysis.

As mentioned above, the classical approach to tackle this problem is the gen-
eration of a boundary-fitted FE mesh with, e.g., hexahedral or tetrahedral ele-
ments that explicitly describe the geometry. More recent studies propose to de-
rive trivariate IGA-type discretizations by reconstructing the original B-Rep with
multiple volumetric NURBS patches, as in [8, 9]. Nevertheless, since this does
not correspond to the inherent modeling concept of CAD, the necessary chal-
lenge of domain segmentation, i.e., meshing, remains. In addition, the inevitable
occurrence of multiple patches creates coupling surfaces, which usually do not
preserve the continuity properties of the respective splines. Consequently, the
desired advantages (A.1)-(A.2) are only partially given.

Embedded/immersed boundary methods, on the other hand, approach the
model conversion problem totally differently, avoiding the need for a boundary-
fitted mesh altogether. Their main philosophy is to restrict the discretization to
a simple computational mesh, e.g., a regular grid with hexahedral-shaped ele-
ments, which overlaps the entire geometrical domain. Due to this simplification,
the solid’s outer skin inevitably intersects certain elements. Therefore, one of
the main challenges of embedded boundary methods is constructing quadrature
rules that represent the resulting cut domains. Prominent examples of embed-
ded boundary methods are: the Cut Finite Element Method (CutFEM) [10, 11],
the Aggregated Finite Element Method (AgFEM) [12, 13], the Cartesian Grid Fi-
nite Element Method (cg-FEM) [14, 15], and the Finite Cell Method (FCM) [16,
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Fig. 1.1: Computer-aided design boundary representation model of a cylinder
with a hole (taken from Publication I).

17]. As demonstrated in [18], the simplicity of the underlying computational grid
enables the straightforward use of higher-order and higher-continuous bases
and thus fulfills (A.2). However, the extent to which embedded boundary meth-
ods can improve industrial and academic simulation workflows, as envisioned
in (A.1), remains to be seen. We recall that in most development processes,
the initial design provides solely the structure’s outer skin, which is represented
by multiple NURBS and B-Spline patches. A design-through-analysis workflow
must, therefore, be able to deal with this particular model description or at least
with variants of it that standard CAD programs can deliver with reasonable ef-
fort. Regarding embedded boundary methods, the main task for creating an
analysis-ready finite element model is no longer the generation of a boundary-
fitted mesh but the construction of suitable integration rules. These ultimately
represent the potentially complex geometrical domain within the simple compu-
tational grid. However, most existing quadrature methods exhibit one or multi-
ple of the following shortcomings that can limit the fully automated, robust, and
CAD-integrated creation of efficient models.

(S.1) Cut/trimmed elements contain a huge number of integration points.

(S.2) Integration points are located outside the physical domain.

(S.3) Integration weights are negative.

(S.4) The approximation of the geometry is very coarse.

(S.5) The scheme is restricted to implicitly defined geometries, e.g., in the form
of level sets.
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(S.6) Although the scheme can generally be applied to solids explicitly described
in boundary representation,

(a) it is not robust against arbitrarily complex geometries.

(b) it can not handle flawed geometries.

(c) the generation of integration points is slow (significantly slower than
solving the finite element problem).

1.2 Research aim and objectives

This work’s overarching aim is to develop a complete framework for gener-
ating efficient finite element models from arbitrarily complex CAD geometries
that can solve structural problems on unfitted discretizations. These develop-
ments are intended to fulfill the expectations of (A.1)-(A.2) and, simultaneously,
eliminate all limitations (S.1)-(S.6) most embedded boundary methods, at least
partially, suffer from. For this purpose, a robust and efficient workflow that pro-
vides unconditionally high-quality FE discretizations independent of the input
model’s complexity is essential. Moreover, the framework should enable a seam-
less interface between any state-of-the-art CAD program and FE solver with as
little effort as possible. The specific research objectives required to realize the
aspired workflow are listed below.

Objective I: Efficient quadrature rules

Due to the existence of arbitrarily complex integration domains, embedded
boundary methods classically require significantly more integration points than
boundary-fitted finite element methods. This results in an unnecessarily high
number of function evaluations during the assembly of the local system matrices
(implicit FEA) or the internal force vector (explicit FEA).

(a) Cut/trimmed elements

A key characteristic of the standard FEM is to mesh the geometry with only
a few different types of elements. This allows reusing the same implementa-
tions and predefined integration rules, i.e., Gauss points, for any geometry.
By definition, embedded boundary methods accept unrestricted intersec-
tion patterns between the elements and the geometric boundary. There-
fore, suitable integration rules must evaluate functions over arbitrarily
complex domains, typically leading to quadrature constructions with con-
siderably more points than with Gaussian quadrature. This work aims at
integration rules that provide sufficient accuracy to maintain optimal con-
vergence rates in, e.g., the energy norm, with a minimum number of points.
Furthermore, these rules should feature positive integration weights and
point locations limited to the material domain.

(b) Patch-wise integration

As discussed above, the simple structure of the computational mesh, i.e.,
regular grid, enables the straightforward use of higher-order and higher-
continuous basis functions, such as B-Splines and NURBS. It is well known
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that these bases achieve higher continuity by reaching over multiple ele-
ment/knot spans. This raises the question of whether generalized rules
with fewer points, which exploit the continuity property, can substitute
classical element-wise/knot span-wise Gaussian integration. Our objective
is to develop a generalized patch-wise quadrature scheme that improves
the efficiency of embedded boundary methods with higher-continuous
bases.

Objective II: Robust algorithms for processing complex B-Reps

Aiming at a fully CAD-integrated simulation workflow requires us to deal with
geometric descriptions that modern CAD programs can readily provide without
using additional third-party tools. Therefore, a suitable standardized and CAD
native data format is essential. The second goal of this work is a computational
geometry kernel that robustly processes arbitrarily complex models provided by
the CAD environment. We address the following crucial tasks necessary in em-
bedded boundary methods.

(a) Element classification
The first step in any embedded boundary method is classifying elements
into interior/uncut elements, cut elements, and exterior elements. Correct
classification is paramount for an analysis-ready simulation model since a
single falsely assessed element can lead to singular system matrices. How-
ever, this task is particularly challenging because standard B-Rep models
are not always watertight but can contain small gaps or overlaps, etc., due
to mathematical inaccuracies. Our objective is the development of a classi-
fication scheme that provides robust results for arbitrarily complex B-Reps,
including flawed geometries.

(b) Domain reconstruction for cut elements
As discussed in Objective I (a), the numerical integration of cut domains is
one of the main difficulties in embedded boundary methods and has hence
been the focus of many scientific contributions. Most of their efforts are
devoted to the actual construction of the quadrature rules. Each method,
however, also requires a geometric parameterization to perform the neces-
sary integrals or at least a set of geometric operations. These are rarely ad-
dressed in the literature or simply outsourced to third-party computational
geometry libraries. Although many existing libraries offer state-of-the-art
algorithms, they are not designed for our specific problems, resulting in in-
efficient and error-prone workflows. We aim at a geometry kernel tailored
to the needs of the methods developed in Objective I (a), potentially accel-
erating runtimes and increasing robustness. This includes an algorithm to
reconstruct the domains of each cut element, which provides the necessary
parameterization for appearing bulk and surface integrals. The respective
developments should facilitate the highly accurate calculation of proper-
ties such as the volume of a cut element and enable efficient geometrical
operations, e.g., inside-outside tests.
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Objective III: Sensitivity analysis

Besides developing a framework to facilitate the integration of embedded
boundary methods into industrial and academic workflows, this thesis also at-
tempts to extend the toolbox with shape optimization strategies. Gradient-based
optimizers require sensitivities with respect to the parameters that govern the
structure’s shape. However, the implicit geometry description of embedded
methods impedes the use of classical approaches developed for boundary-fitted
discretizations. Our goal is a sensitivity analysis that can serve as a natural inter-
face between embedded boundary methods and shape optimization algorithms.

Objective IV: Applications

The final objective of this work is to demonstrate the potential of the envi-
sioned framework for various structural applications, which are listed and briefly
discussed below.

(a) CAD-integrated static and transient analysis using B-Spline bases
Static structural analysis is arguably the most popular field of application
for embedded methods. We aim to show that our framework provides a
seamless interface for a CAD-integrated simulation workflow that can ex-
ploit the advantages of B-Spline basis functions. In addition, the quadra-
ture schemes pursued in Objective I are expected to pave the way towards
efficient transient analysis using embedded boundary methods. Our par-
ticular focus is on explicit time integration schemes, where the prevail-
ing computational cost scales linearly with the total number of integration
points. In this context, the performance of the developed quadrature rules
is to be assessed. Finally, we want to investigate the influence of cut ele-
ments on the critical explicit time step.

(b) Application to arbitrarily complex and flawed B-Reps
A substantial part of this work is dedicated to geometrical operations that
appear in the workflow of embedded boundary methods, as discussed in
Objective II. Extensive tests with complex geometries will demonstrate the
applicability of the developed algorithms for industrial and scientific work-
flows. In addition, the robustness against flawed, non-watertight models is
to be investigated.

(c) Shape optimization
A common issue of using boundary-fitted discretizations in shape opti-
mization methods is mesh distortion due to large shape updates. The sensi-
tivity analysis followed in Objective III will be used to optimize the shape of
immersed solid geometries. Embedded methods are expected to enable an
Eulerian description of the shape updates, thus avoiding mesh distortion
problems.

1.3 Outline

This cumulative dissertation features three peer-reviewed research papers,
hereafter referred to as Publications I-III. Before they are included in Chapters 5-
7, a general context is established. Chapter 2 introduces the global framework,
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explains its general scope of application, and highlights the individual compo-
nents developed. The presentation of the overall workflow also guides the reader
by providing direct references to the respective publications. Chapter 3 discusses
their scientific contributions, emphasizes the literature most relevant for under-
standing this work, and closes with a critical discussion. Chapter 4 concludes the
present work and provides a concise outlook.





CHAPTER 2

Quadrature for Embedded Solids –
QuESo

This chapter briefly describes the general scope of application and introduces
the overall framework developed.

2.1 General scope of application

The present work deals with structural finite element problems solved on un-
fitted discretizations, which are clearly distinguished from classical boundary-
fitted meshes. In particular, we consider embedded/immersed boundary meth-
ods that fulfill the following criteria.

1. The computational mesh is a simple regular grid (not necessarily uniform)
that is composed of hexahedral integration domains, i.e., finite elements
or knot spans.

2. The geometric boundary is embedded into the above-specified mesh and
allowed to intersect elements.

3. The cut domains are exclusively captured by modified quadrature rules,
whereas the function space remains unchanged.

All methods meeting the above requirements are referred to as embedded
boundary methods or just embedded methods in the following. Furthermore,
we denote the computational grid as background mesh to avoid confusion with
other meshes appearing in the workflow. Analogously, the respective elements
may also be referred to as background elements. If B-Splines or NURBS serve as
basis functions, their knot spans are regarded as elements.

2.2 Framework

The presented framework provides a plug-and-play solution for the integra-
tion of embedded boundary methods into existing scientific and industrial sim-
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ulation workflows. This is an attempt to make the advantages of these technolo-
gies accessible to a broader audience. Therefore, all methodologies and inter-
faces are implemented in an open-source library named QuESo, which is pub-
licly available at:

Github repository: QuESo

URL: https://github.com/manuelmessmer/QuESo
Language: C++

Communication: Python interface or ; file exchange

The following sections explain how QuESo can be used to realize a design-
through-analysis workflow and emphasize the adaptations necessary in the CAD
and FE environment. This should explain the scope of this work but also serve
as a guide for potential users. The above repository includes an interface to the
open-source FE framework Kratos Multiphysics [19, 20, 21].

2.2.1 Workflow

QuESo is designed as an interface/preprocessor that seamlessly connects any
CAD software and FE solver with minimal effort. The main idea is to read the
input geometry provided by CAD and output an analysis-ready embedded sim-
ulation model that standard FE solvers can handle. Fig. 2.1 illustrates this con-
cept schematically. The references integrated in Fig. 2.1, e.g., P. I, which is short
for Publication I, should help to understand the scope of the papers included in
Chapters 5-7.

In order to guarantee an easy integration into existing workflows, generic data
formats and interfaces are of central importance. Regarding the geometric in-
formation, our workflow exploits the standardized StereoLithography (STL) file
format, which provides a direct link to all modern CAD programs. An STL is
a simplified B-Rep model, representing the structure’s skin by an oriented tri-
angle mesh. For a more detailed discussion about STLs and the integration of
QuESo into a CAD environment, the reader is kindly referred to Section 2.2.2. A
schematic input file illustrating the necessary settings, processed by the QuESo
input interface in Fig. 2.1, is given below.

File 1: QuESo settings

"geometry_settings" : {

"input_filename" : "geometry.stl",

· · ·
},

"background_mesh_settings" : {

"element_size" :
[
hx ,hy ,hz

]
,

https://github.com/manuelmessmer/QuESo
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"polynomial_degree" :
[
px , py , pz

]
,

· · ·
},

"quadrature_rule_settings" : {

· · ·
},

"boundary_conditions" : [ {

"condition_id" : 1,

"input_filename" : "bc_geometry_1.stl",

· · ·
}, {

"condition_id" : 2,

"input_filename" : "bc_geometry_2.stl",

· · ·
},

· · ·
]

This input deck allows the user to define the STL file representing the struc-
ture’s geometry and to specify the sizes and polynomial degrees associated with
the finite elements to be utilized. Based on the given information, QuESo con-
structs a grid-like background mesh that encloses the entire geometric domain,
as depicted in Fig. 2.2. Subsequently, the framework robustly identifies all ac-
tive elements and constructs integration points to efficiently assemble their local
system matrices. Since the underlying algorithms are designed to operate exclu-
sively on the geometric boundary, an STL, as depicted in Fig. 2.2, provides suffi-
cient information for the given operations. In the context of embedded methods,
active elements refer to elements that are fully contained within the geomet-
rical domain (interior elements) or intersected by its boundary (cut elements).
All other elements are inactive (exterior elements) and do not contribute to the
global system matrices. Publication I discusses different quadrature rules, which
can be specified in File 1. Due to the implicit geometry description in embedded
methods, the imposition of boundary conditions requires weak formulations,
which usually take the form of boundary integrals. Besides the bulk integration
rules discussed above, QuESo also provides quadrature points tailored for inte-
grals along the respective surfaces. Fig. 2.3 illustrates the complete input and
output data of the proposed interface. Note that Fig. 2.3 is a detailed view of the
QuESo module in Fig. 2.1. In analogy to the global geometric model, the sections
of the boundary that serve as supports or are subjected to an external load are
also defined as STLs, see File 1. The surface integration points are extracted from
the triangular mesh. However, since finite elements are defined as piece-wise
polynomials, the corresponding integrals must be evaluated in an element-wise
decomposition. Thus, QuESo derives surface integration points from triangles
that conform to the element boundaries in the background mesh, as highlighted
in Fig. 2.3.
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STL model

Background mesh

Fig. 2.2: Embedded STL model.

In summary, QuESo reads the information given in File 1, processes the ge-
ometries, and outputs an analysis-ready unfitted finite element model, as de-
picted in Fig. 2.3. This model contains a list of bulk integration points asso-
ciated with the set of active elements, as well as surface integration points for
the boundary conditions. As shown in Fig. 2.1, Publications I-II present the key
components necessary for the respective model conversion. This includes the
construction of efficient quadrature rules and the robust processing of complex
geometries.

For a subsequent finite element analysis, the only data that must be commu-
nicated to the FE program by a customized interface are the active elements and
the bulk and surface integration points. QuESo supports two different options.
The corresponding data transfer can be realized either through file exchange or
QuESo’s Python interface. All other information, such as solver settings, mate-
rial properties, and boundary condition values, e.g., external forces or prescribed
displacements, are part of the standard input deck of any FE program. The neces-
sary and optional adaptations within the FE solver to realize the overall workflow
depicted in Fig. 2.1 are discussed in Section 2.2.3. Note that the dashed connec-
tions in Fig. 2.1 are not essential and are only required to drive the FE analysis
directly from CAD, which is outlined in the next section.

2.2.2 CAD-integration and STL models

Standard CAD systems represent solid structures solely by their delimiting
surfaces, i.e., their outer skin. These surfaces are, in turn, described by several
trimmed NURBS or B-Spline patches, which leads to complex data structures
that differ in each CAD program. The workflow presented in Section 2.2.1 op-
erates on oriented triangle meshes derived from the original NURBS-based B-
Rep models. Several file formats, e.g., STL, PLY, OFF, OBJ, etc., can provide such
boundary tessellations. However, due to its broad acceptance and availability,
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Fig. 2.3: QuESo as design-through-analysis interface: Illustration of input and
output data.

the following discussion focuses on the STL format, whereby the term STL can
be understood as a synonym for oriented triangle mesh.

In comparison to NURBS-based B-Rep models, STLs have two distinct advan-
tages. Firstly, their generic file format provides a native interface to any CAD en-
vironment. In addition, the simple data structure enables a drastic acceleration
of all necessary geometrical operations. For example, intersection tests can be
defined as closed forms for STLs but require iterative methods, e.g., the Newton-
Raphson method, when dealing with NURBS surfaces. Naturally, these benefits
come at the cost of a certain loss of accuracy. By definition, STLs are discrete
models that only approximate the exact geometry by simple triangles. Never-
theless, in the workflow depicted in Fig. 2.1, the STL only serves as a geometric
representation to derive integration points. As a result, classical mesh quality cri-
teria, such as element aspect ratios, etc., have no significance. The only objective
of the respective tessellation is an accurate geometry description. This allows the
utilization of entirely unstructured meshes with tiny, acute triangles in curved ar-
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eas and large elements along plane sections, yielding relatively efficient bound-
ary representations. Moreover, a fine STL model may affect QuESo’s preprocess-
ing time, i.e., the construction of quadrature rules, but it does not influence the
computational cost of the finite element solver. It is also important to emphasize
that unlike standard boundary-fitted meshes, where volumetric elements are un-
avoidable for the analysis of solid structures, the STL only represents their outer
skin. QuESo features algorithms that can efficiently process large STLs. This in-
cludes models where the geometrical error is orders of magnitude smaller than
the discretization error of the background mesh and thus lies below the percep-
tion level.

Since designers work with NURBS-based B-Rep models and not with STLs,
an intermediate tessellation is inevitable to realize the CAD-integrated simula-
tion workflow in Fig. 2.1. This may appear to be an additional computational
overhead, which complicates the whole procedure. However, surface tessella-
tion algorithms are a fundamental feature of every CAD program. In fact, surface
meshes help to visualize and render the geometry and are, therefore, often gen-
erated or modified in real-time. This means that the STL model required for the
overall geometry and the boundary conditions, as depicted in Fig. 2.3, can be re-
trieved without significant computing effort. In conclusion, QuESo offers a direct
interface to any CAD software that does not require any customization.

Moreover, these developments also pave the way for a fully CAD-integrated
simulation workflow, where the user does not have to leave the design environ-
ment. Such a workflow is implemented as a plugin for the open-source CAD pro-
gram FreeCAD [22], which involves the following features that essentially draw
the dashed lines in Fig. 2.1.

• A graphical user interface to define the structure’s geometry, the boundary
conditions, the material properties, and the solver settings.

• A customized output interface that automatically exports the STL models,
provides the respective QuESo settings in File 1, and writes the input deck
for the FE program, e.g., solver settings.

• A controller that invokes QuESo and the utilized FE solver.

• A customized input interface to read the results from the FE solver.

• A process to visualize the structural responses.

2.2.3 Requirements for the finite element solver

The fundamental difference for the FE solver in the proposed workflow is
that elements and conditions contain customized integration points. In con-
trast to standard boundary-fitted meshes, the classically used Gauss points are
substituted by the quadrature rules provided by QuESo. This allows the utiliza-
tion of the same routines, element formulations, and solution strategies initially
designed for boundary-fitted meshes. QuESo views the finite elements in the
background mesh only as integration domains with a specific function space.
Thus, the communication with the FE solver remains the same, regardless of
whether bilinear hexahedral elements, higher-order elements, or a trivariate B-
Spline patch spans the background mesh. The key prerequisite is that the actual
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finite elements or knot spans correspond to QuESo’s integration domains. This
includes their spatial dimensions, i.e., element sizes, and the polynomial degree
of the associated basis functions, which are both specified in File 1. In order to
apply essential boundary conditions, the surface integration points depicted in
Fig. 2.3 must be processed along with a set of properties that defines the con-
dition’s type and, for example, the force value or the prescribed displacement,
see Fig. 2.1. As discussed previously, Dirichlet conditions require weak formula-
tions. The simplest strategy is the Penalty method [23], where an artificial stiff-
ness counteracts the violation of the constraint. Other possible candidates are
Lagrange multipliers or Nitsche-type methods [5].

A general challenge of embedded methods is ill-conditioned system matri-
ces due to little support of basis functions within small cut elements. Therefore,
direct solvers are recommended for solving the linear system of equations. The
use of iterative solvers is not impossible but requires specific stabilization tech-
niques or preconditioners for them to converge. A comprehensive overview of
solution strategies for systems of equations derived from unfitted discretizations
is provided in [24].

As in any finite element framework, the workflow in Fig. 2.1 needs a postpro-
cesser to visualize structural responses such as displacements, stresses, etc. In
embedded boundary methods, the degrees of freedom are located at the nodes
of the background mesh. Since these can lie outside the material domain, they
do not necessarily represent physical values. Therefore, in order to recover physi-
cally meaningful responses, the respective fields must be evaluated/interpolated
at the immersed geometry, e.g., the vertices of the STL. This information then
can be transferred to third-party visualization engines, e.g., ParaView, or fed back
into the CAD environment, completing the design-through-analysis workflow, as
outlined in Section 2.2.2.

An additional component of this work is to extend the scope of embedded
methods to gradient-based shape optimization of complex solid structures. Al-
though this is not a necessary feature for standard structural analysis workflows,
its requirements for the FE solver are worth mentioning. As indicated in Fig. 2.1,
this predominantly includes a sensitivity analysis suitable for embedded bound-
aries and an optimizer that computes the respective shape updates. Both meth-
ods can be integrated into the FE solver or be implemented as stand-alone appli-
cations with suitable interfaces. Note that the sensitivity analysis requires direct
access to the response functions of the FE problem. For this reason, it is part of
the FE solver in Fig. 2.1. The communication between the sensitivity analysis and
the optimizer is limited to gradients stored at the vertices of the embedded ge-
ometry, i.e., STL. Simple strategies like the method of steepest descent can drive
the optimization process. Gradient projection may enrich the algorithm in order
to consider one or multiple constraints [25, 26]. Note that these are standard op-
timization approaches that are also employed for boundary-fitted meshes. The
sensitivity analysis, on the other hand, is more involved and must be tailored to
embedded boundary methods. A novel strategy is developed in Publication III.

All features discussed above are realized in the open-source finite element
framework Kratos Multiphysics.
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Fig. 2.4: Illustration of finite element problems solved with the proposed
workflow.

2.2.4 Finite element applications

QuESo is designed to generate efficient finite element models that can be ap-
plied to various structural problems. In summary, the workflow in Fig. 2.1 ap-
plies to linear and nonlinear static analyses, as well as transient simulations,
including implicit and explicit time integration methods. Additionally, our de-
velopments extend the scope of application to shape optimizations, in which
common FE reactions of linear static analyses, such as strain energy, are mini-
mized. Regardless of the given problem, standard C 0 continuous finite elements
or higher-continuous B-Spline bases can be employed in the background mesh.
This work demonstrates the potential of the proposed framework in all scenar-
ios mentioned above, exploiting the distinguishing features of QuESo: The ro-
bust, efficient, and fully automatized generation of high-quality finite element
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discretizations for geometries of arbitrary complexity. Fig. 2.4 shows an illustra-
tive collection of applications tackled with the presented workflow. All simula-
tions in this work are performed with Kratos Multiphysics. In [27], QuESo is used
to solve structural problems with embedded domain methods in LS-DYNA [28].



CHAPTER 3

Scientific context

This section discusses the scientific context of the framework introduced in
Chapter 2. Three peer-reviewed publications, included in Chapters 5-7, present
the underlying developments. The following section gives a brief overview of
their individual contributions with references to the research objectives stated
in Section 1.2. Please note that the respective summaries list only the key papers
on which our developments are directly based. A detailed literature review can
be found in the introductions of Publications I-III. Section 3.2 concludes with a
critical discussion.

3.1 Scientific contributions

All contributions discussed in this section are developed by the doctoral candi-
date in a leading role. Contributions by other authors that go beyond supervision,
paper revision and editing, or conceptual discussions with the doctoral candidate
are explicitly marked as such.

3.1.1 Publication I: Efficient quadrature for structural analysis

M. Meßmer, T. Teschemacher, L.F. Leidinger, R. Wüchner, K.-U. Bletzinger, Ef-
ficient CAD-integrated isogeometric analysis of trimmed solids, Computer Meth-
ods in Applied Mechanics and Engineering 400 (2022) 115584, http://dx.doi.
org/10.1016/j.cma.2022.115584.

Included in Chapter 5.

Publication I addresses the research Objectives I and IV (a). The respective
contributions are discussed below.

http://dx.doi.org/10.1016/j.cma.2022.115584
http://dx.doi.org/10.1016/j.cma.2022.115584
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Objective I: Efficient quadrature rules

A fundamental component of embedded boundary methods is the treatment
of cut elements, which inevitably appear, as shown in Fig. 2.2. Space trees and
spatial tessellations are popular methods to derive quadrature rules for such ir-
regular domains. However, they often entail numerous integration points, lead-
ing to an unnecessarily high number of function evaluations. Moment fitting
has proven to be a promising strategy towards more efficient quadrature rules
[29, 30, 31]. The main idea is to optimize a set of integration points with respect
to certain reference integrals, which typically takes the form of a least squares
problem. To solve the moment fitting equations efficiently, Publication I com-
bines components of the point-elimination algorithm proposed in [31, 32] with
a Non-Negative Least Squares (NNLS) solver suggested in [33]. These develop-
ments guarantee n ≤ (p +1)3 integration points per cut element, regardless of its
geometrical complexity, where p is the polynomial degree of the basis functions.
Furthermore, all integration points lie within the physical domain and have pos-
itive weights.

Remark. Please note that a very similar moment fitting scheme for three-
dimensional elements was independently developed in [34]. Both papers were
submitted in parallel to the respective journals.

As discussed previously, the simple structure of the background mesh enables
the straightforward use of higher-continuous basis functions. When B-Splines
are employed, the knot spans classically represent individual integration do-
mains. This interpretation allows the application of standard Gaussian quadra-
ture for all full/uncut knot spans. However, [35] showed that such knot span-wise
constructions are no longer optimal for higher-continuous bases in the sense
that exact integration rules with fewer points exist. In [36], patch-wise schemes
are constructed by tensor products from optimal one-dimensional rules, which
are referred to as Generalized Gaussian Quadrature (GGQ) rules. Publication I
extends this concept to embedded boundary methods. A novel algorithm de-
composes the background mesh into several tensor product domains, which are
each integrated as a macro element, i.e., as a group of multiple elements, using
GGQ. Both optimal and reduced quadrature constructions are derived and crit-
ically assessed. Initial studies suggest that up to ≈90% of the integration points
can be saved compared to standard element-wise Gaussian quadrature while at-
taining full-order accuracy in the energy norm. Note that these integration rules
apply only to full/uncut knot spans. Cut knot spans are still evaluated using mo-
ment fitting, as discussed above.

Objective IV (a): Application to CAD-integrated static and transient analysis
using B-Spline bases

Publication I realizes a complete CAD-integrated analysis workflow, includ-
ing all interfaces marked in Fig. 2.1. The developed integration schemes are suc-
cessfully applied to static and transient problems, where they demonstrably con-
tribute to more efficient simulations. A common problem of embedded methods
is that small cut elements can lead to arbitrarily small critical explicit time steps.
Inspired by [37], Publication I shows that the continuity of the B-Splines can help
limit the time step to feasible values. The study on the critical explicit time step
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was initiated by Lukas Leidinger.

3.1.2 Publication II: Robust geometry processing

M. Meßmer, S. Kollmannsberger, R. Wüchner, K.-U. Bletzinger, Robust nu-
merical integration of embedded solids described in boundary representation,
Computer Methods in Applied Mechanics and Engineering 419 (2024) 116670,
https://doi.org/10.1016/j.cma.2023.116670.

Included in Chapter 6.

Publication II addresses the research Objectives II and IV (b). The respective
contributions are discussed below.

Objective II: Robust algorithms for processing complex B-Reps

Publication I provides a strategy to solve the moment fitting equations for
highly efficient integration points suitable for arbitrarily cut domains. This as-
sumes, however, that accurate reference integral solutions, also known as mo-
ments, are available for the underlying least squares problem. Naturally, the
accuracy of the final quadrature rule is limited by the quality of the calculated
moments. Publication I adopts the concept proposed in [38, 39] and converts
the arising volume integrals to surface integrals over the respective boundary. In
practical terms, this requires a closed surface parameterization of each cut do-
main, which entails complex Boolean operations. Similar to [40], Publication I
outsources this task to a third-party computational geometry library. Our prelim-
inary implementation based on CGAL* showed that the bottleneck of the whole
workflow is the necessary geometrical operations, especially for large models.
This is certainly not because of inefficient algorithms but due to the focus on fun-
damentally different applications. Programs like CGAL are designed to perform
Boolean operations between two complex-shaped domains. In our particular
case, however, the intersections between a potentially complicated solid struc-
ture and thousands or millions of elements are of interest. Furthermore, compu-
tational geometry libraries classically expect watertight geometries that are not
always available.

The overarching goal of Publication II is the development of an entire geome-
try kernel tailored to the needs of embedded boundary methods. Firstly, this in-
cludes a robust algorithm for the intersection of the input STL with all elements
in the background mesh. The result is a closed surface mesh for each cut domain
that facilitates the accurate and efficient computation of the moments. Since
the respective parameterizations are exclusively used for integration purposes,
standard mesh quality criteria, such as aspect ratios, hanging nodes, etc., are not
significant. By avoiding related redundant operations, the algorithms in Publica-
tion II achieve extremely fast runtimes.

Another fundamental task of embedded boundary methods is the classifica-
tion of elements into interior, exterior, and cut domains. Standard methods rely
on ray tracing techniques, which can fail in the case of non-watertight geome-
tries. As a remedy, [42] suggests categorizing elements as a group rather than

* The Computational Geometry Algorithms Library (CGAL) [41].

https://doi.org/10.1016/j.cma.2023.116670
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individually, whereby the clustering is based on a flood fill algorithm. Publica-
tion II generalizes this concept for the application of geometries with arbitrary
topology.

Objective IV (b): Application to arbitrarily complex and flawed B-Reps

All algorithms developed in Publication II are intensively tested on nearly
5000 STLs from the Thingi10K database [43], ranging from simple shapes to
highly complex models with detailed features. These studies demonstrate their
remarkable robustness and low computational cost. Finally, the developed ge-
ometry kernel is integrated into the simulation workflow presented in Fig. 2.1,
allowing finite element analyses of highly complex models and even flawed ge-
ometries.

3.1.3 Publication III: Shape optimization

M. Meßmer, R. Najian Asl, S. Kollmannsberger, R. Wüchner, K.-U. Bletzinger,
Shape optimization of embedded solids using implicit Vertex-Morphing, Com-
puter Methods in Applied Mechanics and Engineering 426 (2024) 116999, https:
//doi.org/10.1016/j.cma.2024.116999.

Included in Chapter 7.

Publication III addresses the research Objectives III and IV (c). The respective
contributions are discussed below.

Objective III: Sensitivity analysis

Lagrangian representations, i.e., boundary-fitted meshes, usually suffer from
mesh distortions when exposed to large shape updates during an optimization
process. The main goal of Publication III is to integrate gradient-based shape
optimization strategies into the workflow in Fig. 2.1, with the aim of eliminating
mesh distortion problems. This requires the calculation of shape sensitivities at
the vertices of the immersed boundary, i.e., the STL model. However, the im-
plicit geometry description in embedded methods prevents the direct adoption
of classical sensitivity analyses, which are employed for boundary-fitted meshes.

Publication III presents a novel strategy to compute sensitivities of standard
response functions, such as strain energy, with respect to the shape of embedded
solids. The underlying scheme comprises three main steps. First, semi-analytical
methods [44] calculate the gradients at the nodes of the background mesh. In
the second step, Publication III adopts the sensitivity weighting proposed in [45].
This makes it possible to recover a continuous gradient field, which, in the last
step, can be consistently evaluated at any point on the structure’s skin. The re-
sulting sensitivities are shown to be independent of the background mesh and
the discretization of the STL.

Objective IV (c): Application to shape optimization

As soon as the shape sensitivities are available at the embedded boundary,
standard strategies that have proven successful in optimizing shells [46, 47] can
be transferred to solid models. Similar to [48], Publication III follows a node-
based approach that manipulates each boundary vertex individually. In our

https://doi.org/10.1016/j.cma.2024.116999
https://doi.org/10.1016/j.cma.2024.116999
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implementation, Rosen’s gradient projection algorithm [25, 26] drives the con-
strained optimization process. Additionally, an implicit Helmholtz/Sobolev-
based filter [49] is applied to the sensitivities and shape updates, allowing full
control over the feature size in the final design. The discussed filter was devel-
oped and implemented by Reza Najian Asl. He also provided the optimizer used in
Publication III.

Furthermore, Publication III presents an effective technique to enforce geo-
metrical constraints, such as minimum wall thicknesses and design space lim-
itations. Finally, the developed workflow is used to optimize the shape of solid
structures with industrial complexity.

3.2 Critical discussion

The following sections critically reflect on the overall developments presented
in Publication I-III. This detailed discussion is split into the construction and the
performance of the unfitted finite element model. For a concise summary, the
reader is referred to Chapter 4.

3.2.1 Construction of the unfitted finite element model

A robust generation of finite element models for arbitrarily complex geome-
tries that can be solved efficiently on unfitted discretizations is the predominant
goal of the framework presented in Section 2.2. The most important contribu-
tions to its realization are the moment fitting scheme proposed in Publication I
and the intersection algorithm developed in Publication II. They are particularly
effective in combination, which will be discussed below.

As shown in Publication II, the closed boundary meshes, constructed for each
cut element, enable the calculation of the moments with near-machine preci-
sion. Compared to an octree, a prevalent method to tackle this task [34, 40],
our approach delivers orders of magnitude higher accuracies. Due to the voxel-
like approximation of the boundary, octrees can require thousands of integra-
tion points per finite element. For each point, an inside/outside test, e.g., using
ray tracing, must be performed, resulting in an enormous computational bur-
den. Moreover, dependent on the cut element’s shape, even a million integration
points do not necessarily attain more than a rough approximation of the respec-
tive integrals, such that the relative error in the L2 norm of the moments is often
still r > 10−3. By contrast, the boundary integrals achieve residuals of r < 10−10

with much fewer function evaluations and no single inside/outside test, see Sec-
tion 6.1 in Publication II. Certainly, the necessary construction of the boundary
meshes must also be considered when comparing the two methods. However,
the time required to calculate the mesh intersections is nearly negligible, as it is
considerably less than for the assembly and the solution of the moment fitting
equations, see Section 6.3 in Publication II.

As an ideal complement, Publication I finds a set with no more than n =
(p +1)3 integration points that satisfy the moments calculated above in the least
squares sense with residuals in the order of < 10−8. Note that n = (p +1)3 rep-
resents the same number used by standard Gaussian quadrature for hexahedral
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finite elements. It may seem obvious that a reasonable solution with n = (p +1)3

points also exists for cut elements. However, this is more complex since cut do-
mains do not represent a tensor product space. In addition, orthogonal poly-
nomials are not necessarily available, which is the fundamental requirement of
Gaussian quadrature. Section 3.2.1 in Publication I discusses this topic in detail.
Consequently, a rule with n = (p+1)3 points can not be expected to provide exact
results. Nevertheless, Publication I shows that n ≤ (p +1)3 integration points are
sufficient to maintain optimal convergence in the energy norm.

In order to linearize the moment fitting equation, most approaches define
the locations of the integration points a priori and only solve for their weights. As
quadrature rules react very sensitively to the point’s locations, this decision is ac-
companied by a degradation in accuracy. Thus, the point elimination step is cru-
cial for the quadrature scheme presented in Publication I. Its main idea is to start
with more points than moments, leading to an initially under-determined system
of equations. This gives the algorithm the flexibility to select the most suitable
point locations from a discrete set while preserving a linear system of equations.
The integrated Non-Negative Least Squares (NNLS) solver not only guarantees
positive integration weights but also contributes to extremely fast convergence
of the point elimination algorithm. In all studied examples, the first iteration
yields at most n = (p + 1)3 points with weights unequal to zero. Since points
with a zero weight have no significance for the final quadrature rule, they can be
immediately discarded. Depending on the targeted residual of the least squares
problem, a few more iterations may eliminate additional points. As a result, the
average number of iterations is in the order of < 5. This is a drastic improvement
over schemes where points are eliminated individually from the initial set.

Remark. While Publication I uses a simple scheme that distributes the ini-
tial points for the elimination algorithm uniformly within the physical domain,
the current implementation in QuESo relies on an adaptive octree with Gauss-
Legendre points in each leaf node, as in [34].

An important decision when dealing with moment fitting is the definition of
the underlying set of basis functions. Most approaches employ simple polyno-
mials that provide fast function evaluations and a straightforward definition of
the anti-derivatives, which are required for the application of the divergence the-
orem, see Section 3.2.2 in Publication I and Section 3.2 in Publication II. Since
no true Gaussian quadrature can be obtained for cut domains due to the reasons
mentioned above, a substitution of the moment fitting bases can lead to different
integration points. As a result, the respective residuals of the least squares are as-
sociated with a particular set of functions. In other words, the obtained residuals
are only an estimate of how well the computed quadrature rules perform when
applied to the actual finite element shape functions. Therefore, it seems bene-
ficial to prefer distinct moment fitting bases, which are challenging to evaluate.
This provides residuals that enable a more conservative estimate of the quadra-
ture rule’s quality. For example, simple monomials often lead to fewer integra-
tion points during point elimination than, e.g., orthogonal Legendre polynomi-
als. These results do not imply that monomials generally provide more efficient
quadrature rules but rather that they tend to cause poorly conditioned moment
fitting matrices, as reported in [31]. For this reason, all examples studied in the
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present work employ orthogonal Legendre polynomials as moment fitting bases.
Note that the term orthogonality here refers to the tensor-product space of the
uncut background element or an axis-aligned bounding box containing the cut
domain. They are not orthogonal on the cut domain itself.

Up to this point, the discussion on the treatment of cut elements mainly fo-
cused on measures like the accuracy and the efficiency of the quadrature rules.
Another important aspect, however, is the robustness of the overall workflow,
which is primarily dictated by the intersection algorithm. We can assume that if
the reconstruction of a closed boundary mesh is successful for a given cut do-
main, a quadrature rule can be derived from it using the proposed methods.
Therefore, Publication II gives special attention to the robustness of the devel-
oped intersection algorithm. An essential feature in this context is the approach
suggested in Section 5.5 in Publication II for estimating the quality of the mesh
intersections. It can, for instance, determine whether the calculated parameteri-
zation is closed or not. An open surface mesh can imply two different scenarios.
Either the intersection algorithm failed due to fluctuations in the floating point
operations, or the initial geometric model, i.e., the input STL, is flawed, e.g., con-
tains gaps, overlaps, etc. In order to rule out the first possibility, the intersec-
tion algorithm is tried again on a slightly perturbed element. If the boundary
mesh is still non-closed after several attempts (<5), we can assume that the STL
model contains flaws that intersect the given background element. Section 6.2.1
in Publication II successfully applies the intersection algorithm to nearly 5000
valid/non-flawed STLs from the Thingi10K database [43], where each of them
is embedded into a background mesh with more than 103 elements. The term
successful here means that a closed boundary mesh is constructed for each cut
domain. This demonstrates the extraordinary robustness of the algorithm and
hence offers a very high level of confidence that a resulting non-closed mesh
intersection is due to defects in the initial model. Consequently, the proposed
quality measure enables the identification and localization of geometric defects
in the input STL. Since the mesh intersections are only used for integration pur-
poses, the moment fitting equation can still be assembled and solved even if the
parameterization is not perfectly closed. Naturally, this leads to a certain inte-
gration error. However, the developed method can estimate its magnitude and,
therefore, provide a reasonable basis for deciding whether or not to include the
associated background element in the simulation. In summary, the intersection
algorithm delivers precise results for all valid/non-flawed geometries. If the ge-
ometry contains defects, the affected background elements can be detected and,
if necessary, specially treated. It is important to note that the respective error is,
in any case, limited to the vicinity of the geometric defect and does not pollute
the overall FE solution.

In fact, geometric flaws are much more critical during the classification of
the background mesh into interior, exterior, and cut elements. Imagine that the
algorithm falsely categorizes an element that is far away from the geometrical
domain as inside. This single misclassification will lead to singular system matri-
ces and hence produce an unsolvable finite element model. The flood fill-based
classification scheme proposed in Publication II produces reliable results even
for severely flawed STLs. This is again demonstrated using nearly 5000 models
from the Thingi10K database. It should be noted that standard ray tracing meth-



26 3 . Scientific context

ods, where one or several rays determine the classification of a specific element,
are sufficient for most valid (non-flawed) geometries. In those cases, the sug-
gested classification scheme is not necessarily superior in terms of robustness.
However, the underlying group-based majority voting reduces the number of to-
tal ray tracing tests required, significantly decreasing the computational cost. In
summary, the developed algorithm provides robust results for flawed geometries
and is more efficient than the traditional methods.

Publication I offers the additional feature of using so-called Generalized
Gaussian Quadrature (GGQ) rules for non-cut domains. These rules are man-
ufactured to exploit the continuity properties of B-Splines or NURBS. Thus, if
such higher-continuous bases are employed, the GGQ rules can significantly re-
duce the number of integration points within interior/full knot spans. Compared
to traditional element-wise Gaussian quadrature schemes, savings in the order
of 50-90% are achieved in Section 7 in Publication I, depending on whether op-
timal or reduced quadrature constructions are employed. However, by defini-
tion, the GGQ rules only affect interior/full knot spans. Their practical influence,
therefore, depends on the ratio between the number of cut and full elements in
the background mesh, which is determined by the shape of the geometrical do-
main. In the above example, the total reduction in the number of integration
points is approximately 20-40%, with 7847 full and 10243 cut knot spans. Note
that other examples can have comparatively far more full elements, leading to
a greater improvement. Generally, GGQ rules are not fundamentally necessary
for the workflow in Fig. 2.1. Nevertheless, they can decrease simulation times in
specific applications, as will be discussed in the next section. For a more detailed
discussion on GGQ rules, including optimal and reduced quadrature construc-
tions, the reader is referred to Section 3.1 in Publication I.

Regarding the complete process from STL to analysis-ready finite element
model, the total computing time is primarily determined by the cost of assem-
bling and solving the moment fitting equations. All geometrical operations, in-
cluding element classification and mesh intersections, are significantly less ex-
pensive in practical applications. This is in opposition to workflows that rely on
third-party geometry libraries, which are not optimized for the needs of embed-
ded boundary methods. In our preliminary implementation based on CGAL [41],
both the element classification and mesh intersections were orders of magnitude
more expensive than moment fitting, restricting the application to problems of
moderate size. Therefore, the presented geometry kernel is a major step towards
the efficient generation of unfitted finite element models. With these develop-
ments, model creation is now considerably faster than solving a simple linear
static finite element problem.

3.2.2 Performance of the unfitted finite element model

The proposed framework enables structural finite element analysis of arbi-
trarily complex solids, including flawed geometries. An important aspect of the
model formulation is that the underlying integration points only need to be con-
structed once, regardless of the application. For example, in problems where the
linear system matrices are solved multiple times, the calculated quadrature rules
can be reused in each iteration. While the computational cost for model gen-



3.2. Critical discussion 27

eration is already lower than for solving a linear finite element problem, as dis-
cussed above, it tends to be negligible in nonlinear or dynamic applications. The
presented moment fitting scheme guarantees positive integration weights and
locations restricted to the material domain. These are beneficial properties for
finite element problems that include geometrical or material nonlinearities. In
fact, negative weights can lead to a divergence of the Newton-Raphson method
[34]. Moreover, material variables, such as plasticity or damage values, are diffi-
cult to interpret when associated with a point outside the physical domain or a
negative weight. In conclusion, our quadrature methods bring all fundamental
properties to tackle the aforementioned problems.

Furthermore, a particular focus of this work is on minimizing the number of
integration points. In the scope of implicit finite element analysis, the proposed
quadrature rules can drastically accelerate the assembly of the system matrices
by reducing the number of function evaluations. The potential speed-up, there-
fore, increases with the number of required matrix formations. With these devel-
opments, Publication I aims to pave the way for efficient transient simulations
using embedded boundary methods. Compared to implicit procedures, the po-
tential for accelerating explicit time integration schemes is even greater. It turns
out that in explicit dynamics, where the computational cost is directly propor-
tional to the number of integration points, conventional quadrature schemes
such as octrees strongly limit the scope of application. By contrast, quadrature
rules with n ≤ (p +1)3 points per cut element are a significant step toward com-
petitive explicit finite element analysis. Moreover, the proposed GGQ rules can
reduce the average number of integration points per element to values signifi-
cantly below n = (p +1)3, further decreasing the overall simulation time.

However, a huge number of integration points is not the only issue that often
prevents the use of explicit time integration schemes in embedded methods. An-
other common problem is that small cut elements cause critical time steps with
infeasible values. Publication I demonstrates that B-Splines can help mitigate
this phenomenon, provided that two essential conditions are met. The mass ma-
trix must be diagonal/lumped, and the B-Splines employed have to be at least
C 1 continuous. Note that lumped mass matrices are traditionally used by de-
fault in explicit dynamics to decouple the linear system of equations. The neces-
sary continuity is also easy to achieve by employing B-Splines with a quadratic or
higher polynomial degree. Although satisfying both requirements is, therefore,
trivial, the implication of higher-order bases in combination with mass lumping
is worthy of discussion. As a matter of fact, mass lumping restricts the accuracy
in the frequency domain to second-order regardless of the polynomial degree
[50]. Thus, additional h-refinement is inevitable to capture the dynamic behav-
ior. Publication I discusses the described phenomenon using several examples.
An additional important aspect in this context is that embedded boundary meth-
ods allow uniform meshes with equal element sizes. In contrast to boundary-
fitted discretizations, the elements do not have to be refined in order to capture
the geometry. Since the critical time step is generally determined by the smallest
element in the computational mesh, embedded methods have a clear advantage.
Thus, even if the background mesh requires the same global (average) refinement
level as linear boundary-fitted tetrahedral or hexahedral elements, the critical
time step will still be much larger in the embedded approach. Moreover, Publica-
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tion I adopts a predictor multi-corrector scheme [51, 52]. This change preserves
the computational architecture of explicit algorithms but can drastically improve
the accuracy of the lumped mass matrix for higher-order bases. The main idea
is to keep the lumped mass matrix on the left-hand-side for the decoupling of
the system matrices while additionally introducing the consistent mass matrix
for the calculation of the residual vector. In [52], this method is shown to behave
like an implicit Newmark scheme using the consistent mass matrix if a sufficient
number of corrector iterations is conducted. The associated improvement in ac-
curacy naturally comes at a certain cost, which increases proportionally with the
number of iterations. However, our examples in Publication I support the obser-
vation in [52] that 2-3 corrector passes are sufficient for most practical applica-
tions. As a result, a moderate computational overhead allows much better utiliza-
tion of higher-order basis functions and, consequently, an increase of the global
element size in embedded methods. Our preliminary studies indicate that the
benefit of an associated higher critical time step outweighs the additional cost of
the predictor multi-corrector scheme. The example in Section 7 in Publication I
shows that a uniform background mesh with quadratic B-Splines can potentially
increase the time step by a factor up to ≈ 45 compared to standard linear tetra-
hedral elements. Note that both models achieve the same relative error in strain
energy in a linear static analysis. Since the polynomial degree of the B-Splines is
still moderate (p = 2), the loss in accuracy due to mass lumping is not expected
to yield a severe deterioration of the dynamic behavior in an explicit simulation.
Moreover, even if a predictor multi-corrector scheme with 3 corrector passes is
employed to increase the accuracy of the lumped mass matrix in the embedded
model, a significant speed-up in the overall simulation time remains. Note that
this estimation is based on a fully automatically generated boundary-fitted finite
element mesh, in which no active attempt is made to avoid very small elements.
A comparison to state-of-the-art models used in industry is yet to be conducted
and may yield different results.

An additional objective of this work is the integration of shape optimization
strategies into the workflow in Fig. 2.1. The concept of embedded boundary
methods enables an Eulerian description of the respective shape updates, which
completely eliminates mesh distortion problems that pose a major challenge for
boundary-fitted discretizations. The key component in this context is the devel-
opment of a novel sensitivity analysis presented in Publication III. The proposed
approach computes shape gradients with respect to the immersed boundary,
which are entirely independent of the background discretization and the surface
mesh, i.e., the STL. Generally, once the sensitivities are available at the vertices
of the STL, the same algorithms can be used as for the optimization of shells.
Thus, the sensitivity analysis acts as a direct interface between the FE response
computed on the background mesh and the optimizer, which operates on the
immersed boundary. Publication III applies an implicit filter to control the fea-
ture size and to enforce non-design surfaces. Nevertheless, explicit filter variants
are also valid options. During the optimization process, the repetitively updated
geometric boundary can move freely through a fixed background mesh. In order
to account for the geometric changes, new quadrature rules are constructed in
each iteration. Therefore, the robust model generation discussed in Section 3.2.1
is an absolutely essential feature for a successful termination of the optimization.
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Furthermore, Publication III proposes an approach to enforce geometrical con-
straints such as minimum wall thicknesses and design space limitations. Note
that the former condition also automatically avoids infeasible, self-intersecting
geometries. In summary, combining the developments discussed leads to an op-
timization process that can tackle arbitrarily complex geometries.

All problems in this work are solved with B-Spline bases spanning the back-
ground mesh, taking advantage of their higher-order and higher-continuity
properties. Note that due to the simplicity of the background mesh, NURBS
have no distinct advantage over B-Splines. We generally observe that the un-
fitted finite element models perform remarkably well for solid geometries that
contain small features or thin-walled sections. Regarding the example in Section
7.3 in Publication III, quadratic splines with a uniform knot span size of 1.5 mm
achieve practically converged solutions in strain energy for a part with a mini-
mal wall thickness of 1 mm. In contrast, a boundary-fitted discretization with
tetrahedral or hexahedral elements would require several element rows along the
cross-section. This already yields considerable advantages for linear static analy-
ses, as shown in Publication III. However, if we recapitulate the above discussion
on the critical explicit time step, drastic improvements seem possible with the
embedded approach.

Generally, it should be noted that the advantages of higher-order and higher-
continuous basis functions come at the price of additional computational costs
for certain operations. During model generation, higher orders primarily in-
crease the size of the moment fitting equations. Remember that the point elimi-
nation scheme uses an under-determined system of equations. Thus, the initial
number of points is significantly larger than (p + 1)3 and scales cubically with
the polynomial degree. Moreover, elevated orders and, especially, higher conti-
nuities lead to a more expensive assembly of the finite element system matrices.
In addition, the associated greater bandwidth increases the burden on the linear
solver. While these are general challenges in, e.g., the scope of isogeometric shell
analysis, they become even more pronounced for volumetric discretizations. The
studies performed in this work suggest the use of quadratic or, at most, cubic B-
Splines. They drastically increase the discretization quality compared to meshes
utilizing linear elements with moderate extra computational effort.

Another general phenomenon relates to the difficulty of embedded bound-
ary methods in representing discontinuities. The main problem is that the basis
functions can span over geometric gaps, which leads to an unphysical coupling
of the two opposite sides of, e.g., a thin hole. A formal definition of this issue,
referred to as cross-talk [53], is given in [54, 55]. Generally, the region influenced
by cross-talk depends on the element size and the continuity of the basis func-
tions. This problem is, therefore, exacerbated when using B-splines instead of
C 0 continuous bases and provides a further argument to keep the spline’s poly-
nomial degree moderate. For potential solutions to mitigate cross-talk, the reader
is kindly referred to the outlook in Section 4.2.





CHAPTER 4

Conclusion and outlook

The following sections contain a concluding summary and an outlook on the
framework’s possible further developments.

4.1 Conclusion

This cumulative dissertation presents a robust framework for CAD-integrated
structural analyses using the concept of embedded boundary methods. At its
core is an open-source library – Quadrature for Embedded Solids, a.k.a. QuESo
– that provides analysis-ready unfitted finite element models for arbitrarily com-
plex solid geometries in STereoLithographie (STL) format. The publicly acces-
sible source code is intended to encourage colleagues to integrate embedded
boundary methods into their workflows. QuESo’s main idea is to act as a seam-
less interface between any CAD environment and FE program. For this purpose,
a particular focus is on generic data formats that enable the realization of the
overall workflow with minimal effort. An important component is the STL model,
which can be retrieved from any CAD program in near real-time. QuESo converts
the respective STL file into a list of integration points containing all the necessary
information to perform an FE analysis on a specified unfitted background dis-
cretization, i.e., regular grid. As a result, the communication between QuESo and
the FE solver is restricted to a set of active elements with customized quadrature
rules. Necessary and optional requirements for the FE framework are discussed
in detail.

The constructed quadrature rules fulfill all necessary requirements for appli-
cation to static linear and nonlinear finite element analyses as well as transient
simulations, including implicit and explicit time integration schemes. Their cru-
cial characteristics are listed below.

• Cut elements contain at most the same number of integration points as
standard Gaussian quadrature rules, such that n ≤ (p +1)3, where p is the
polynomial degree of the basis functions spanning the background mesh.
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• If B-Splines or NURBS are employed, generalized Gaussian quadrature
schemes can significantly reduce the number of integration points within
interior knot spans. Savings up to ≈90% are possible compared to classical
element-wise Gaussian quadrature constructions.

• All integration points are located in the physical domain.

• The integration weights are strictly positive.

All examples studied in this thesis exploit the higher-order and higher-
continuity properties of B-Splines bases. The respective finite element mod-
els maintain optimal convergence in the energy norm while being significantly
more efficient than conventional methods that rely, for instance, on octree-based
quadrature constructions. Particular benefits arise in explicit dynamics, where
the number of integration points predominantly drives the computational cost.
Moreover, B-Splines are shown to prevent infeasible critical explicit time steps
that usually occur in embedded methods due to small cut elements.

Besides efficient quadrature rules, the second main contribution of this work
is a geometry kernel tailored to the needs of embedded boundary methods. This
includes a mesh intersection algorithm, which drastically facilitates the assem-
bly of the moment fitting equations, and a flood fill-based element classification
scheme. The underlying developments not only allow extremely fast runtimes
but also provide a remarkably robust workflow that enables the processing of ar-
bitrarily complex STLs, including flawed models. All algorithms are rigorously
tested on nearly 5000 STLs from the Thingi10K database. Overall, the develop-
ments of this work fulfill the core properties sought by the isogeometric commu-
nity, which are listed in (A.1)-(A.2). Note that the CAD native boundary repre-
sentation inherently prevents the direct execution of finite element analyses on
solid CAD models. However, the proposed framework drastically alleviates the
often tedious model conversion from CAD to FEA through a fully automatized
and robust process. The complete model creation is computationally less ex-
pensive than the actual solution of a simple linear static finite element analysis.
Moreover, the presented developments eliminate all the shortcomings listed in
(S.1)-(S.6), which at least partially limit existing embedded boundary methods.

Finally, a novel sensitivity analysis paves the way for a straightforward ap-
plication of shape optimization strategies to embedded solids. In comparison
to boundary-fitted meshes, embedded methods offer an Eulerian description of
the shape updates, which eliminates mesh distortion problems from the outset.
The proposed methodology is shown to attain the initial discretization quality
throughout the entire optimization process. An effective approach to enforc-
ing geometrical constraints, such as minimum wall thicknesses and design space
limitations, complements a robust workflow that can tackle examples of indus-
trial relevance.

4.2 Outlook

As discussed in Section 3.2.2, the accurate representation of geometric dis-
continuities remains a challenging task in embedded methods, especially for
higher-continuous bases. The core problem is an unphysical coupling due to
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shape functions that extend across geometric gaps, e.g., holes. This phenomenon
is also referred to as cross-talk [53]. As a remedy, [56, 57] propose a local refine-
ment scheme using hierarchical spline formulations. The idea is to refine the ele-
ments along small gaps or holes below the critical limit, where the respective de-
grees of freedom are fully decoupled. In addition, locally refined splines offer two
further advantages. They can improve the accuracy in the vicinity of boundaries
that are subjected to weak constraints and enable a more efficient approximation
of local deformations [56, 57]. However, in order to prevent cross-talk in practi-
cal applications, potentially problematic regions must first be detected. A recent
study provides a comprehensive classification of different types of cross-talk and
proposes a systematic approach for their detection [55]. Moreover, a promising
technique to mitigate cross-talk based on control point duplication is presented.
These developments enable the decoupling of the respective degrees of freedom
without the need for local mesh refinement. Therefore, this concept may also
cover very small features that are below a minimum element size. Particular ad-
vantages are observed in the scope of explicit crash simulations, where relatively
coarse elements are inevitable in order to achieve the necessary efficiency [55].

Since locally refined splines come with additional benefits, as discussed
above, they may be prioritized in future work and subsequently combined with
control point duplication. In general, the results of this work suggest that ex-
plicit dynamic simulations, such as crash analysis, can potentially greatly ben-
efit from the proposed developments. For practical application, however, fur-
ther investigations on plasticity modeling are required. While the studies in [34]
yield promising results for several simple elastoplastic examples, the behavior in
a component-wise or a full car crash simulation is still unknown. Future studies
also need to address the extension to damage and failure mechanisms. In addi-
tion, contact modeling is a fundamental part of crash simulation that has not yet
been extensively studied in the context of embedded boundary methods and,
hence, requires further research. This includes the detection of colliding parts,
the estimation of contact stiffnesses, and the introduction of contact forces.





CHAPTER 5

Publication I

Comput. Methods Appl. Mech. Engrg. 400 (2022) 115584

Efficient CAD-integrated isogeometric analysis of
trimmed solids

Manuel Meßmer, Tobias Teschemacher, Lukas F. Leidinger, Roland Wüchner,
Kai-Uwe Bletzinger

Highlights

• CAD-integrated analysis workflow for solid B-Rep models based on
trimmed B-Splines.

• Highly efficient numerical integration schemes for trimmed and
non-trimmed domains.

• Modified point elimination algorithm based on non-negative moment
fitting quadrature.

• Extension of generalized Gaussian quadrature rules to non-tensor
product domains.

• Feasible critical explicit time steps despite arbitrarily trimmed knot spans.

Doi: http://dx.doi.org/10.1016/j.cma.2022.115584

The included publication is an open access article published by Elsevier B.V.
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.cma.2022.115584
http://creativecommons. org/licenses/by/4.0/


Available online at www.sciencedirect.com

ScienceDirect

Comput. Methods Appl. Mech. Engrg. 400 (2022) 115584
www.elsevier.com/locate/cma

Efficient CAD-integrated isogeometric analysis of trimmed solids

Manuel Meßmera,∗, Tobias Teschemachera, Lukas F. Leidingerb, Roland Wüchnerc,
Kai-Uwe Bletzingera

a Chair of Structural Analysis, Technical University of Munich, Arcisstr. 21, 80333 München, Germany
b DYNAmore GmbH, Industriestr. 2, 70565 Stuttgart, Germany

c Institute of Structural Analysis, Technische Universität Braunschweig, Beethovenstr. 51, 38106 Braunschweig, Germany

Received 19 May 2022; received in revised form 25 July 2022; accepted 19 August 2022
Available online xxxx

Abstract

This publication presents a robust and efficient approach for fully CAD-integrated analyses of solids, which aims to reduce
the current modeling effort for static and transient problems, including implicit and explicit dynamic simulations. Generating
high-quality finite element meshes of solid structures is still a time- and labor-intensive process. Since embedded methods do
not require sophisticated boundary-fitted meshes, they have gained popularity in recent years. However, most approaches tend to
be computationally expensive due to numerous integration points, especially within trimmed elements. Moreover, their practical
applicability in explicit dynamics is often limited because the classically used C0 continuous discretization field combined with
trimming leads to infeasible time steps. In the following, we present methodologies addressing both of these shortcomings.

The basic idea is to embed a three-dimensional object into a uniform C p−1 continuous B-Spline cuboid, where the solid
boundary representation provided by CAD is used as trimming surfaces to distinguish between material and void domain. Our
primary focus is on constructing highly efficient quadrature rules for both trimmed and full knot spans, which accelerates
required matrix formations and, in particular, drastically reduces the simulation times of explicit transient analyses. To fully
exploit the potential of the B-Spline bases employed, first- and second-order reduced integration schemes are investigated in
addition to optimal quadrature constructions. Despite the appearance of arbitrarily shaped domains, trimmed knot spans are
evaluated at most with the same number of integration points as required for full Gaussian quadrature while maintaining optimal
convergence in the energy norm. For full knot spans, savings in the number of quadrature points beyond 90% with respect to
full Gaussian quadrature are achieved without observing any degradation in accuracy.

The proposed methodologies are critically assessed based on scientific benchmarks of increasing complexity and a detailed
industrial example, completing the design-through-analysis workflow by performing postprocessing operations directly on the
deformed solid CAD model.
© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

The continuous innovations in Computer-Aided Engineering (CAE) have significantly increased the scope and
complexity of models in modern development processes. Inevitably, this also increased the demand for facilitated
modeling to avoid labor-intensive interfaces between design and analysis. Accordingly, simulation integrated with
Computer-Aided Design (CAD) has become a vital field of research. Conventional procedures discretize the CAD
geometry with lower-order entities to create a model suitable for analysis. This process is called meshing and
is unavoidable in the probably most prominent approach in CAE — the Finite Element Method (FEM). However,
meshing can be a time-consuming and labor-intensive process that often requires manual intervention, is error-prone,
and results in an approximate model.

To overcome this problem, Hughes et al. introduced the Isogeometric Analysis (IGA), which allows the Non-
Uniform Rational B-Spline (NURBS) shape functions provided by CAD to be used directly within an analysis
framework [1,2]. The associated transformation from traditional FEM to IGA has the potential to increase the
solution quality by avoiding any remodeling and by preserving the exact geometry for simulation. IGA inherently
provides the ability to analyze single, untrimmed NURBS curves, surfaces, and solids. However, most CAD
programs rely on the geometric boundary representation (B-Rep) [3], which shapes objects solely by their geometric
delineations. This enables a fast model generation but adds further complexity to numerical simulations due to
trimming and the occurrence of multiple patches.

The automatic construction of untrimmed spline-based models suitable for analysis seems an effective solution
to circumvent the aforementioned difficulties. Isogeometric analysis on T-Splines promises to be an essential step
toward this goal [4]. T-Splines are a generalization of NURBS, allow mesh refinement/coarsening, and enable the
representation of holes without trimming [5]. In [6], an algorithm for constructing surface and volume T-Splines
from unstructured quadrilateral and hexahedral meshes is proposed. This concept is further developed in [7] to
construct volumetric T-splines from standard boundary triangulations efficiently. However, the proposed algorithm
is limited to genus-zero topologies and does not guarantee positive Jacobians for all Bézier elements. Inspired by
the concept of Constructive Solid Geometry (CSG), the same task is solved in [8] based on Boolean operations.
Optimal convergence rates are achieved in [9] using the construction of blended B-Splines over unstructured
quadrilateral and hexahedral meshes. Similar to the previously mentioned strategies, these approaches do not apply
to arbitrarily complex geometries and are limited to C0 continuous splines at irregular subdomains containing
extraordinary vertices. Other algorithms are devoted to the even more challenging process of designing tensor
product splines [10,11], which fits nicely into the isogeometric paradigm, but inevitably leads to multiple spline
patches for complex geometries. In [12,13], the concept of the scaled boundary finite element method is applied
to parameterize the volumetric physical domain of the solid CAD model by scaling the boundary based on a
predefined radial scaling center. This method has been shown to produce accurate results, but a suitable physical
domain decomposition algorithm has yet to be developed for its application to complex real-world problems. Despite
existing promising approaches, the automatized generation of boundary-fitted analysis-suitable surface splines and,
in particular, volumetric splines from the NURBS-based boundary representation is still an open research question.

Another important role in this context is played by the family of immersed and embedded boundary methods,
which are characterized by the fact that no sophisticated boundary-fitted meshes are required. The eXtended
Finite Element Method (XFEM) [14,15] was initially developed to simulate discontinuities such as cracks by
enriching the corresponding shape functions at the points of interest. In the scope of the Cut Finite Element Method
(CutFEM) [16], the same concept is applied to embedded boundaries or interfaces. Instead of modifying the basis
functions of individual elements, the Finite Cell Method (FCM) [17–19] introduces an indicator function into the
variational form to represent the material discontinuity at the geometric boundary. The classical FCM combines the
fictitious domain technique [20,21] with the high-order finite element approach. Its application to dynamic problems
in the time domain is presented in [22]. The authors in [23] formulate a conservative approach to accurately evaluate
boundary fluxes in embedded domain methods. In addition to the widely spread and studied p-version of the FCM,
its concept has also been extended to B-Spline bases [24]. The FCM solves the problem of capturing complex
geometries not explicitly through a boundary-fitted mesh but by an accurate integration of discontinuous functions.
Similar challenges arise in the Isogeometric B-Rep Analysis (IBRA) [25,26], which can be seen as an extension to
IGA, including trimmed patches, weak enforcement of constraints, and coupling of multi-patches based on NURBS.
Since IBRA strictly avoids any remodeling, it features complete data consistency between design and analysis.
The development of IBRA has enabled a wide range of models for structural analyses but has only been able
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to handle surface- and curve-based formulations. This limitation is mainly because most CAD programs rely on
B-Rep modeling and describe three-dimensional objects solely by their delimiting surfaces, i.e., they provide neither
a physical nor a geometrical description of the interior.

If the classical IBRA concept is directly extended to three dimensions by representing the physical domain
through a trimmed B-Spline discretization, the boundaries to embedded methods such as FCM become blurred.
Therefore, the CAD-integrated analysis workflow presented in this work adopts features from both the IGA and
FCM communities. For a continuous mathematical description of the entire physical domain, the B-Rep provided by
CAD is defined as the trimming surfaces of a uniform trivariate B-Spline cuboid. Following the IBRA paradigm, the
trimming surfaces are incorporated into the parametric space of the solid, which guarantees a consistent boundary,
e.g., for the imposition of boundary conditions, throughout the entire simulation. In addition, our approach is
distinguished from others by highly efficient quadrature rules for both trimmed and non-trimmed domains, based
on integration points with strictly positive weights and locations limited to the material domain. The associated
drastic reduction of quadrature points accelerates required matrix formations and paves the way for efficient explicit
dynamic simulations. Note that due to the computational architecture of explicit algorithms, their predominant cost
is determined by the number of quadrature points. Despite the presence of arbitrarily trimmed knot spans, practically
feasible explicit time steps are guaranteed by using C p−1 continuous basis functions. Moreover, a predictor multi-
corrector scheme is adopted to improve the accuracy of the lumped mass matrix for higher-order bases. An overview
of this work shall be given in the following.

• Section 2 discusses preliminaries and describes the basic steps from a standard B-Rep model to a model
suitable for analysis, leading to a consistent extension of the IBRA concept to three dimensions.

• Section 3 presents the core of this publication. Based on the original idea proposed in [27], a Generalized
Gaussian Quadrature (GGQ) scheme is developed to construct nearly optimal and highly efficient reduced
integration rules for all full knot spans. A novel algorithm is presented to decompose arbitrary domains into
suitable tensor products to enable the application of GGQ to trimmed trivariate B-Spline patches. For an
efficient numerical integration of trimmed knot spans, the point elimination algorithm from [28] is combined
with the recent developments presented in [29] to inherently achieve positive integration weights and points
that are all within the material domain.

• Section 4 discusses solutions to prevent numerical stability issues arising from small trimmed knot spans.
• Section 5 gives an overview of the presented workflow and covers pre- and postprocessing within CAD.
• Section 6 demonstrates the method’s effectiveness based on static and transient benchmark problems.
• Section 7 presents the simulation results of a detailed solid CAD model with an industrial level of complexity.
• Section 8 concludes and discusses open research questions.

2. Isogeometric analysis of trimmed solids: Preliminaries and concept

IGA aims at the interchangeable use of design and analysis models. In order to improve industrial workflows,
various shell and membrane element formulations have been derived from the isogeometric concept and successfully
applied to NURBS-based CAD models. The following section discusses the geometric representation of solid CAD
models and the resulting challenges for IGA. Subsequently, the solution approach pursued in this work will be
presented.

2.1. Solid CAD models

For the mathematical description of solid geometries, a distinction is made between implicit and explicit
representations. Implicit models express the geometry by the level set of a function f (x, y, z) such that f < 0
if point P(x, y, z) is inside the boundary, and f > 0 if P(x, y, z) is outside the boundary, whereas a zero level set
f = 0 indicates that P(x, y, z) lies on the boundary. The CSG enables the representation of complex objects by
combining implicitly defined primitives through Boolean operations. For direct analysis based on CSG models, the
interested reader is referred to [30].

On the other hand, explicit models are represented through their bounding surfaces, which form the B-Rep.
Unlike implicit techniques, explicit B-Rep models allow direct and efficient visualization, which made them the
predominant geometry description in modern CAD systems. Generally, a B-Rep encloses a volume if and only
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Fig. 1. CAD-based B-Rep model of a cylinder with a hole.

if its surface is an orientable two-manifold without a boundary [31]. Fig. 1 illustrates the B-Rep concept using a
simple cylindrical object defined solely by the faces F1−4. The faces F1 and F4 are delimited by an inner Ct,inner

and outer trimming curve Ct,outer . Both surfaces and curves are mathematically described by B-Splines or NURBS,
enabling a direct analysis on one- and two-dimensional topologies [1,2,26]. However, due to the lack of a volumetric
function space, the isogeometric paradigm is not readily applicable to solid B-Rep models but requires additional
parameterization of the interior. Throughout this work, the computational domain Ω ⊂ R3 is defined by its closed
boundary Γ ⊂ R3 with

Γ =

⋃
a

Fa . (1)

Note that a B-Rep may also contain internal boundaries, which are not considered in Eq. (1) for brevity.

2.2. B-Spline shape functions for solids

To fill the inner cavity of the B-Rep model, as exemplified in Fig. 1, the geometry is embedded into a trivariate
B-Spline discretization. The basic principles of the underlying basis functions and the construction of B-Spline
solids are discussed below.

B-Spline basis functions Ni,p are defined by their polynomial degree p and a sorted set of coordinates in
parametric space, denoted as knot vector Ξ = {ξ1, ξ2, .., ξn+p+1}, with ξi ∈ R being the i th knot and n denoting
the number of basis functions. They can be constructed using the Cox-de Boor recursion formula [32,33]

if p = 0: Ni,0(ξ ) =

{
1, ξi ≤ ξ < ξi+1

0, otherwise
;

else : Ni,p(ξ ) =
ξ − ξi

ξi+p − ξi
Ni,p−1(ξ ) +

ξi+p+1 − ξ

ξi+p+1 − ξi+1
Ni+1,p−1(ξ ). (2)

The computed functions are C p−k̄ continuous, where k̄ is the knot multiplicity. Throughout this work, we employ
k̄ = 1 for all inner knots except otherwise specified and use k̄ = p + 1 at the ends of the knot interval, resulting in
an open knot vector. A trivariate parameterization for solids is obtained from a tensor product of the shape functions
in each spatial direction. The mapping from a point ξ = (ξ, η, ζ ) in parametric space defined by the knot vectors
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Fig. 2. Embedded solid domain Ωs spanned by quadratic B-Spline shape functions with 4 × 4 × 4 knot spans and uniform open knot
vectors. One individual knot span domain is indicated by Ω (•).

Ξ = {ξ1, ξ2, .., ξn+pξ +1}, ~ = {η1, η2, .., ηm+pη+1}, and ϑ = {ζ1, ζ2, .., ζl+pζ +1} to its corresponding physical point
is computed as

S(ξ ) =

n∑
i=1

m∑
j=1

l∑
k=1

Ni,pξ
(ξ )N j,pη (η)Nk,pζ

(ζ ) Pi, j,k, (3)

with the control points Pi, j,k ∈ R3 and n, m, and l being the respective number of basis functions. For the sake of
conciseness, we may write Eq. (3) as S = NPi, j,k . In the following, S is defined over the embedded solid domain
Ωs , where Ω (•) is the subdomain spanned by one knot interval [ξi , ξi+1] × [η j , η j+1] × [ζk, ζk+1], such that

Ωs =

⋃
a

Ω (•)
a . (4)

Note that the polynomial degree may be chosen differently for Ni,pξ
(ξ ), N j,pη (η), and Nk,pζ

(ζ ), but we fix
p = pξ = pη = pζ for clarity. Fig. 2 illustrates a B-Spline domain with 4 × 4 × 4 knot spans and quadratic basis
functions. This publication focuses on B-Splines with a polynomial degree of p = 2 to p = 4. The linear case
(p = 1) is not considered to ensure C1 continuity or higher over the entire domain.

2.3. Trimmed solid

To avoid a computationally expensive meshing process, the initial non-trimmed domain of the B-Spline solid is
restricted to a cuboid shape defined by uniform knot vectors. With this simplification, any B-Spline discretization
can be efficiently constructed from algorithms for order elevation and knot refinement [34]. The required inputs are:

• Physical dimension and orientation of the B-Spline solid.
• Polynomial degree p.
• Knot span size.

Remark. NURBS, as a generalization of B-Splines, would also be a suitable parameterization. However, as the
embedded domain Ωs is created without considering the actual computational domain Ω , NURBS provide no distinct
benefit over B-Splines but introduce additional complexity.

Due to the above established restrictions on the B-Spline mesh, the boundary Γ of the computational domain Ω ⊂ Ωs
will not coincide with the boundaries Γ (•) of the individual knot span subdomains Ω (•). Therefore, a distinction is
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made between the interior (untrimmed) knot span domain Ω i , the exterior (empty) knot span domain Ω e, and the
trimmed knot span domain divided into its inner Ω t and outer part Ω t,e, such that the physical domain of the solid
is defined as

Ω =

(⋃
a

Ω i
a

)
∪

(⋃
b

Ω t
b

)
. (5)

2.4. Variational formulation

For the following discussion, the boundary Γ of the computational domain Ω is partitioned into a Neumann
boundary ΓN and a Dirichlet boundary ΓD , where ΓD ∪ ΓN = Γ and ΓD ∩ ΓN = ∅. Moreover, x = (x, y, z)
denotes an arbitrary point in physical space at time t .

2.4.1. Strong form
Given the symmetric Cauchy stress tensor σ , the body force b, and the material density ρ, the initial boundary

value problem reads

divσ + b = ρ ü in Ω ,

u = ū on ΓD,

t = σ n = t̄ on ΓN ,

(6)

where n ∈ R3 is the outward pointing unit normal on Γ . The prescribed displacement ū ∈ R3 is enforced on the
Dirichlet boundary ΓD , while the traction t̄ ∈ R3 acts on the Neumann boundary ΓN . Due to the time dependence
of Eq. (6), the initial conditions u(x, t)|t=0 = u0(x) and u̇(x, t)|t=0 = u̇0(x) are additionally introduced [35]. In
the scope of this work, the initial values u0(x) and u̇0(x) are assumed to be zero and only homogeneous Dirichlet
conditions are considered.

2.4.2. Weak form
We define the trial space U(Ω ) = {u(x, t) | u(x, t) ∈ H 1(Ω ), u|ΓD = ū} and the weighting space

V(Ω ) = {v(x) | v(x) ∈ H 1(Ω ), v|ΓD = 0}, which satisfies the homogeneous Dirichlet boundary conditions on
ΓD . Multiplying Eq. (6) by an arbitrary test function v ∈ V and integration by parts leads to the variational form
of the initial boundary value problem, which reads: find u ∈ U such that

(ρ ü, v) + a(u, v) = L(v), ∀v ∈ V, (7)

with

(ρ ü, v) + a(u, v) =

∫
Ω

(ρ ü) · v dΩ +

∫
Ω

σ (u) : ϵ(v) dΩ , (8)

and

L(v) =

∫
Ω

b · v dΩ +

∫
ΓN

t̄ · v dΓ . (9)

Thereby, H 1 denotes the first-order Sobolev space [36], and ϵ represents the symmetric gradient of the
displacement field.

2.4.3. Boundary conditions
Neumann boundary conditions on ΓN appear naturally in the variational form, see Eq. (9). To enforce Dirichlet

boundary conditions, a penalty term [37] is introduced to Eq. (7)

b(u, v) = β

∫
ΓD

(u − ū) · v dΓ , (10)

with the penalty factor β. It should be mentioned that Lagrange multiplier and Nitsche-type methods are also
possible candidates to prescribe essential boundary conditions. A comprehensive comparison of these formulations
in the context of isogeometric analysis can be found in [38].
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Fig. 3. Mapping between spaces. The illustration shows an excerpt of the solid B-Spline domain ΩS that is trimmed by the geometric
boundary Γ .

2.4.4. Discretization in space and time
According to the Bubnov–Galerkin approach [39], both the trial and the weighting function are discretized with

the same Ansatz functions, namely the trivariate B-Spline bases given in Eq. (3), which reads

u = NU, v = NV . (11)

The spatial discretizations provided in Eq. (11) are substituted into Eq. (7) to arrive at the semi-discrete
formulation

MÜ + K U = F, (12)

with M, K , and F denoting the mass matrix, stiffness matrix, and global load vector. The vector U represents
the displacements at the control points P i, j,k of the B-Spline solid S. In Section 6.4, Eq. (12) is solved using the
implicit Newmark and the explicit central difference method [39]. For the latter time integration scheme, the system
of equations is classically decoupled by a diagonal mass matrix M L . However, [40] shows that M L obtained, e.g., by
row summing, yields only second-order accurate natural frequencies, regardless of the polynomial degree of Ni,p.
To improve the accuracy for higher-order bases, we employ an explicit predictor multi-corrector algorithm [39,41].
It also exploits the diagonal matrix M L for the simplification of Eq. (12) but additionally uses the consistent mass
matrix M to compute the residual vector. In Section 6.4, the performance of the predictor multi-corrector algorithm
is compared to the explicit central difference scheme. For all static problems solved in Section 6, the dynamic term
in Eq. (12) is neglected.

2.5. Mapping between spaces

Fig. 3 reveals that different parametric spaces can be identified as part of the presented workflow. Integration
by numerical means requires an appropriate mapping among them and the physical space, which will be discussed
in this section. For a detailed description of the employed numerical integration schemes, the reader is referred to
Section 3.

Following the notation introduced earlier, let ξ = (ξ, η, ζ ) denote a point in the parameter space spanned by
the knot vectors Ξ , ~, and ϑ . The direct mapping from ξ to its conjugate coordinate x = (x, y, z) located in the
physical domain Ωs is defined by the B-Spline solid S : ξ ↦→ x, as stated in Eq. (3). Its inverse, which generally
requires the solution of a nonlinear system of equations [34], is denoted as S−1

: x ↦→ ξ .
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Remark. If Ξ , ~ and ϑ are uniform knot vectors, and the solid is in the undeformed configuration (cuboid shape),
S−1 decomposes into a linear function. Since all necessary conditions can be met naturally during preprocessing,
exploiting this property accelerates required mapping operations drastically.

The determinant of the Jacobian matrix det( J1) (see Fig. 3) accounts for the volumetric change of the computational
domain in physical space Ω and parametric space Ω̂ , with

J1 =

⎡⎢⎢⎣
∂x
∂ξ

∂y
∂ξ

∂z
∂ξ

∂x
∂η

∂y
∂η

∂z
∂η

∂x
∂ζ

∂y
∂ζ

∂z
∂ζ

⎤⎥⎥⎦ . (13)

Each individual knot span domain Ω̂ (•) is additionally mapped to a Gaussian space Ω̂ (•)
G in order to perform

numerical integration. The determinant of the corresponding Jacobian matrix reads

det( J2) =
∂ξ

∂ξG

∂η

∂ηG

∂ζ

∂ζG
. (14)

Since the computational domain Ω contains untrimmed Ω i and trimmed domains Ω t , the relevant integral can
be decomposed to∫

Ω

dΩ =

∑
a

∫
Ω i

a

dΩ i
a +

∑
b

∫
Ω t

b

dΩ t
b, (15)

=

∑
a

∫
Ω̂ i

a

det( J1) dΩ̂ i
a +

∑
b

∫
Ω̂ t

b

det( J1) dΩ̂ t
b, (16)

=

∑
a

∫
Ω̂ i

a,G

det( J1)det( J2) dΩ̂ i
a,G +

∑
b

∫
Ω̂ t

b,G

det( J1)det( J2) dΩ̂ t
b,G . (17)

The integration over Γ may be directly performed using the corresponding surfaces F of the NURBS-based
B-Rep model. However, the parameterization provided by CAD usually contains trimmed patches, as depicted in
Fig. 1, which requires sophisticated integration schemes (see Section 3.2). To facilitate the embedding process, the
essential integrals are performed over a triangulated boundary, as suggested in [18]. The respective integral reads∫

Γ

dΓ =

∑
a

∫
Γ

Fh
a

dΓFh
a

=

∑
a

∫
Γ̂

Fh
a

det( J Fh
a

) dΓ̂Fh
a
, (18)

where det( J Fh ) represents the mapping between physical (ΓFh ) and parametric space (Γ̂Fh ) of each boundary
triangle Fh . During preprocessing, each triangle is mapped and stored in the parametric space of the B-Spline solid
(see Fig. 3), ensuring a consistent boundary parameterization throughout the entire simulation, even as the geometry
deforms. A more detailed discussion on the evaluation of boundary integrals and the treatment of non-matching
triangles at trimmed knot span boundaries is provided in Section 3.2.2.

3. Numerical integration of trimmed solids

This section is devoted to the construction of efficient quadrature rules for both trimmed Ω t and full knot span
domains Ω i . Exterior knot span domains Ω e, on the other hand, are empty and do not have any contribution to the
weak form in Eq. (7). For brevity, we use the term knot span as a synonym for knot span domain in the following.
As indicated in the previous sections, this approach relies on an a priori classification of knot spans with respect to
the geometry boundary. Intersected Ω t , interior Ω i , and exterior Ω e knot spans may be categorized using multiple
inside/outside tests, e.g., at each knot. Additional intermediate points can be considered to improve robustness
and accuracy. Ray tracing techniques allow such point membership classifications to be performed directly on the
NURBS-based B-Rep model [42]. However, classical ray tracing on conventional CAD models is computationally
expensive and might fail due to non-watertight geometries. The challenge of point membership classification on
flawed CAD models is addressed in [43], along with a strategy for direct mechanical analysis of these models
using the FCM.
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Fig. 4. Structure of Section 3 based on the distinction of different integration domains.

In the following, we use a robust and efficient alternative to ray tracing on NURBS-based B-Rep models and
classify knot spans based on an intermediate tessellation. Note that the same discretization is reused to evaluate the
boundary integrals in Eq. (18). The necessary information is recovered from an STL (STereoLithography or Standard
Tessellation Language) model, which by definition contains only triangular elements. The STL is a common file
format to exchange geometric information between CAD and Computer-Aided Manufacturing (CAM) processes
such as rapid prototyping and 3D printing. Due to the wide range of possible applications, the efficient generation
of STL representations from NURBS-based B-Rep models is a common task for CAD programs. Appendix A briefly
discusses the influence of different parameter settings for the tessellation algorithm on the accuracy of STL meshes.
In the context of the classification problem, the STL can be utilized to speed up the process as it allows the use
of well-established geometric algorithms for polygonal meshes [44]. An efficient and robust two-step classification
scheme using the STL format is applied in this work. In the first step, intersected knot spans are identified according
to [45]. Implementations of the corresponding algorithms are available in the open-source project CGAL [46,47]. In
the second step, all untrimmed knot spans are categorized as interior or exterior according to the location of their
center relative to the geometric boundary, similar to the point membership classification presented in [48] for the
application of the FCM based on oriented point clouds.

The following discussion on the numerical integration of trimmed and non-trimmed domains is organized as
depicted in Fig. 4.

3.1. Numerical integration of full knot spans

Full knot spans are typically evaluated by the tensor product of Gaussian quadrature rules, achieving exact
integration. However, the number of integration points can be significantly decreased while maintaining full accuracy
by leveraging the continuity property of B-Splines. The conceptual idea for optimal and reduced integration rules
for tensor product splines with C p−1 continuity will be discussed in the following. Subsequently, this concept is
extended to arbitrary arrangements of full knot spans within a trimmed patch.

3.1.1. Construction of optimal and reduced quadrature rules
In [27], Hughes et al. initiated the discussion of optimal quadrature or Generalized Gaussian Quadrature (GGQ)

rules for NURBS and B-Splines to improve the efficiency of IGA in general. These rules are referred to as optimal
since no other exact construction with fewer integration points exists [27,49]. The key concept is to construct
integration schemes for a macro element rather than for individual knot spans. In this context, a macro element can
be defined as multiple consecutive knot spans or an entire patch. For the following discussion, we introduce the
function space

Lq
s with

q : polynomial degree,
s : continuity,

(19)

where q and s are associated with the specified macro element. Within a one-dimensional B-Spline domain, each
knot span is influenced by ncp = q + 1 control points. In conjunction with the fact that Gaussian quadrature gives
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Fig. 5. Distribution of integration points: B-Spline basis functions over four knot spans with a uniform open knot vector, q = 4 and s = 1.
(a) Knot span-wise Gaussian quadrature. (b) Generalized Gaussian quadrature. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

exact results for nq ≥ (q + 1)/2 quadrature points, we state

nq ≥
ncp

2
. (20)

This suggests that, on average, each quadrature point can be assigned to two control points and, more importantly,
is able to evaluate the associated basis functions. Using standard knot span-wise Gaussian integration, the condition
in Eq. (20) is satisfied independently for each knot span. However, due to the smoothness of B-Splines it is beneficial
to fulfill Eq. (20) over an enlarged domain. This is exemplified in Fig. 5 for B-Spline bases of order q = 4 and
regularity s = 1. The colors indicate a fictitious affiliation between basis functions and integration points. They
are neither meant to represent a strict connection nor an independent integration area but rather to illustrate the
conceptual idea.

In IGA, as in traditional FEM, the polynomial degree and the continuity of the occurring integrands are
determined by the weak form. According to Eqs. (7) and (11), the integrals for the computation of the mass and
stiffness matrices take the following well-known structure∫

Ω

N i (ξ )N j (ξ )φ(ξ ) dΩ , (21)∫
Ω

∇N i (ξ )∇N j (ξ )φ(ξ ) dΩ . (22)

where N i (ξ ), and N j (ξ ) denote the tensor product B-Spline basis functions, and φ(ξ ) represents the geometrical
mapping between physical space and parameter space. It is a common approach to chose appropriate quadrature
rules under the assumption that φ(ξ ) is constant [27,50]∫

Ω

N i (ξ )N j (ξ ) dΩ , (23)∫
Ω

∇N i (ξ )∇N j (ξ ) dΩ . (24)
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Consequently, the integrands in Eqs. (23) and (24) are contained in L
2p
r and L

2p
r−1, which aggregate to a total

space of L2p
r−1, with p and r denoting the polynomial degree and regularity of the basis functions N i (ξ ), respectively.

Similar to standard Gaussian quadrature, optimal rules for the integration of functions in L
2p
r−1 can be obtained

from the univariate case and applied to multiple dimensions using the tensor product [27]. However, these rules
are unique for one particular knot vector, i.e., if the position of a single knot is slightly shifted, the rule must be
adopted. Moreover, their construction requires the solution of a system of equations that depends linearly on the
integration weights but strongly nonlinearly on the positions of the integration points. Since this is a challenging
task, especially for large meshes, different algorithms solve the nonlinear equations locally [50,51], leading to more
efficient but still suboptimal quadrature rules. For some combinations of polynomial degree and continuity, explicit
recursion methods [52–54] are used to find optimal quadrature rules for B-Spline bases. Furthermore, [55,56] employ
Gauss–Greville rules to avoid solving the nonlinear equations and successfully apply the concept to isogeometric
shell analysis.

However, since the proposed trivariate B-Spline discretization relies on uniform knot vectors, it opens the door
for a more efficient methodology. In [49], Hiemstra et al. propose to assemble optimal integration points for uniform
knot vectors from precomputed quadrature rules. Generally, these constructions still depend on the number of knot
spans, here denoted as nks. Nonetheless, observations show that integration points with sufficient distance from the
boundary follow a periodic pattern. Therefore, optimal quadrature rules can be constructed for any number of knot
spans from a few known solutions. Considering an exact integration of cubic basis functions associated with the
target space L6

1, only the nearest 15 points are affected by each boundary. Due to symmetry constraints, an additional
center rule must be considered, which varies depending on whether nq is even or odd. Optimal quadrature rules
are explicitly provided in [49] to evaluate quadratic (L4

0), cubic (L6
1), and quartic (L8

2) B-Spline bases with uniform
knot vectors. To further decrease the number of integration points, reduced quadrature rules may be constructed by
decreasing the polynomial degree of the target space: L2p−1

r−1 . In fact, [49] shows that optimal convergence rates can
be achieved with L3

0, L5
1, and L7

2 for p = 2, p = 3, and p = 4. To consequently continue the investigations in [49],
we additionally consider the second-order reduced spaces (L2p−2

r−1 ) in the examples conducted in Sections 6.3 and
6.4. The positions and weights of the corresponding integration points are computed with a relative error of < 10−15

and documented in Appendix B for the first 10 knot spans and p = 2, p = 3, and p = 4. Fig. 6 compares the
number of required integration points for L

2p
r−1, L2p−1

r−1 , and L
2p−2
r−1 to element-wise full (nq/nks = (p + 1)3) and

reduced (nq/nks = (p)3) Gaussian quadrature. The gain in efficiency clearly depends on the mesh size, but even
for small and moderate numbers of knot spans, the reduction is shown to be significant. In the limit case, optimal
quadrature rules (L2p

r−1) for cubic splines can save up to 75,5% of the necessary points. When reduced integration
schemes are applied this number is increased to 87,5% for L2p−1

r−1 , and 94,7% for L2p−2
r−1 , respectively.

3.1.2. Generalized Gaussian quadrature for non-tensor product spaces
Following the concept introduced in the previous section, optimal and reduced one-dimensional quadrature rules

can be found for any number of knot spans at minimal cost. In [49], these quadrature rules are derived from uniform
open knot vectors. We want to emphasize that the respective quadrature constructions depend on the number of knot
spans, the continuity, and the polynomial degree of the given integrand. However, they are not restricted to open
knot vectors. The same quadrature rules can also be applied to non-open knot vectors or any set of consecutive
intermediate knot spans as long as the knot vectors are uniform. To illustrate this phenomenon, we construct the
GGQ rule for the same B-Spline target space as in Fig. 5(b), but with trimmed ends, see Fig. 7. Since the number
of active knot spans is identical, we obtain the same quadrature rule as without trimmed ends. This is because the
basis functions of open and closed knot vectors differ only in the polynomial coefficients, but not in the polynomial
degree, the continuity in the interior of the domain, or the number of active basis functions. As the coefficients are
constants, they do not affect the quadrature rule. Consequently, the precomputed integration points can be applied
to any subset of consecutive full knot spans within the trimmed B-Spline domain Ω .

However, the construction of global multi-dimensional rules using the tensor product is not straightforward in
the context of the present work. It is only applicable if all full knot spans form a perfect cuboid, representing only
one particular corner case, as the neighbor relations of untrimmed knot spans can be arbitrary. In order to ensure
an efficient integration for any knot span arrangement in multiple dimensions, a novel decomposition algorithm is
presented. Thereby, adjacent knot spans are grouped into tensor product domains that have the shape of a cuboid

11



M. Meßmer, T. Teschemacher, L.F. Leidinger et al. Computer Methods in Applied Mechanics and Engineering 400 (2022) 115584

Fig. 6. Number of integration points for generalized Gaussian quadrature rules in comparison to knot span-wise Gaussian quadrature for a
B-Spline unit cube with C p−1 continuity and nks knot spans in each spatial direction.

Fig. 7. Distribution of integration points: generalized Gaussian quadrature on trimmed knot vector with nks = 4 active knot spans, q = 4
and s = 1.

Fig. 8. Weighting of knot spans. The x-axis represents a trimmed knot vector with nks = 5 consecutive full knot spans.

and thus enable the use of GGQ rules. Generally, the larger each subdomain, the greater the savings in the number
of required integration points (see Fig. 6).

In a first step, consecutive interior knot spans are collected and weighted according to the size of their group, more
precisely, the number of knot spans nks that are included. Based on a parameter 0 < α < 1, a linear weighting
function is introduced to give additional importance to center knot spans, as depicted in Fig. 8. This process is
performed in each spatial direction. Subsequently, the directional weights wξ , wη, and wζ are multiplied to form
one global weight w per knot span. The complete algorithm is schematically depicted in Fig. 9, where the color
map visualizes the global weights based on α = 0.1. For illustration purposes, the respective representation is
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Fig. 9. Tensor-product decomposition algorithm. The color map visualizes the global knot span weights w = wξwη that are initialized
according to Fig. 8. The already found tensor product domain is indicated by fully filled knot spans. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

limited to two dimensions, but the application to three dimensions is straightforward. After the initialization phase,
the algorithm enters the decomposition loop, where the knot span with the largest weight (w = ∥wξwηwζ

∥∞) is
defined as the starting point for the first tensor product domain. The domain is successively expanded in the direction
of its neighbor with maximal weight while maintaining a rectangular/cuboid shape in two/three dimensions. If the
already found domain is adjacent to more than one knot span per direction, their weights are summed up. The
current decomposition loop ends if no direction allows to make a valid move, and a new domain is started until all
knot spans are decomposed. Once the decomposition is complete, each domain is defined as one macro element
Ω̂ i , allowing the construction of a domain-wise tensor product quadrature rule according to Eqs. (16) and (17).
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Remark. In principle, it is reasonable to define α with any value between 0 < α < 1. For values close to α = 0,
knot spans at the active boundaries are weighted significantly less compared to interior ones, while α = 1 results
in an equal weighting for all knot spans within one group (see Fig. 8). Generally, it is advantageous to put more
importance on interior domains. In addition, however, boundary knot spans should not be neglected entirely. Thus,
we propose to initialize all weights with α = 0.1. Note that the presented algorithm does not necessarily provide
the best possible decomposition regarding the final number of quadrature points in all scenarios. This would require
the solution of a complex optimization problem. Nevertheless, since the savings in integration points are already
close to the maximum for a relatively small number of knot spans (see Fig. 6), the additional effort would not bring
a significant improvement.

3.2. Integration of trimmed knot spans

Trimmed or cut elements pose a difficult challenge in most embedded boundary methods since their underlying
integration scheme must guarantee sufficient accuracy for arbitrarily shaped domains. An octree refinement, as used
in the original version of the FCM [17], can tackle such problems and is known to work robustly on various shapes.
However, already a moderate octree depth can lead to a vast number of integration points. A similar overhead must
be expected if the integration is performed on a lower-order tessellation based on tetrahedrons, as per [57]. In [58],
the so-called smart octree is developed, which incorporates a node-relocation algorithm. Due to the smart-octree’s
higher flexibility, better convergence rates are achieved, which entails a reduced number of integration points. The
authors in [59] compare the smart octree to the moment fitting approach and show that solving the moment fitting
equation can further decrease the number of integration points while attaining the same accuracy.

In the following, we propose a combined approach that solves the moment fitting equation during the execution of
an iterative point elimination algorithm. A novel solution strategy is presented, which establishes an upper bound for
the final number of integration points. As a result, the constructed quadrature rules require equal or fewer function
evaluations than full Gaussian quadrature for arbitrarily shaped domains.

3.2.1. Moment fitting equation
Given a polynomial function h(ξ ) of degree q over a continuous parametric domain, its integral can be

approximated by nq quadrature points∫
h(ξ ) dξ ≈

nq∑
i=1

h(ξ i )wi , (25)

where ξ i and wi are the distinct point positions and integration weights. We may rewrite the polynomial h(ξ ) as a
sum of m = q + 1 independent basis functions f j (ξ ) and constant coefficients β j

h(ξ ) =

m∑
j=1

β j f j (ξ ). (26)

The moment fitting approach suggests to seek for nq integration points to approximately evaluate each basis
among the given set∫

h(ξ ) dξ =

m∑
j=1

β j

∫
f j (ξ ) dξ,

≈

m∑
j=1

β j

nq∑
i=1

f j (ξ i )wi .

(27)

Finally, the terms on the right-hand side in Eq. (27) are rearranged, and the formulation is adapted for the
integration of the three-dimensional trimmed domain Ω̂ t⎡⎢⎣ f1(ξ 1) · · · f1(ξ nq )

...
. . .

...

fm(ξ 1) · · · fm(ξ nq )

⎤⎥⎦
⎡⎢⎣w1

...

wnq

⎤⎥⎦ =

⎡⎢⎣
∫
Ω̂ t f1(ξ ) dΩ̂ t

...∫
Ω̂ t fm(ξ ) dΩ̂ t

⎤⎥⎦ , (28)
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with ξ i
= (ξ i , ηi , ζ i ). The moment fitting approach can be interpreted as a procedure to optimize an a priori defined

set of integration points toward a known reference solution f c = [
∫
Ω̂ t f1(ξ ) dΩ̂ t , . . .]T . These are commonly referred

to as moments or the constant terms of the moment fitting equation.
The fact that Gaussian quadrature yields exact results for q ≤ 2nq − 1 implies that the choice of an appropriate

quadrature rule depends solely on the maximum polynomial degree q of the given integrand. Eq. (28) illustrates
this proposition, as all coefficients βi introduced in Eq. (26) have disappeared. Thus, in the univariate case, we
may choose any set of linearly independent functions F1D capable of representing the integrand h(ξ ) of order q as
moment fitting bases f j

F1D = { f j (ξ ) = L̃r (ξ ); r = 0, 1, 2, . . . , q}. (29)

However, to provide orthogonal bases on each knot span [ξi , ξi+1], L̃r is defined as

L̃r = Lr

(
2ξ − ξi − ξi+1

ξi+1 − ξi

)
, (30)

with Lr being the r th Legendre polynomial. For a tensor product space, the moment fitting equation could be solved
independently in each spatial direction since, e.g., η and ζ appear as constant terms in the integral along ξ . However,
if the domain is trimmed, the same integral can be bounded by an arbitrary function that depends on η and ζ and
vice versa. Following the notation introduced earlier, the moment fitting bases in three dimensions may hence be
defined by a tensor product, as per

F3D = { f j (ξ ) = L̃r (ξ )L̃s(η)L̃ t (ζ ); r, s, t = 0, 1, 2, . . . , q}, (31)

resulting in m = (q + 1)3 functions. As the weak form in Eqs. (23) and (24) dictates an integrand of order q = 2p,
m = 343 moment fitting bases would emerge if cubic shape functions are applied. For a more detailed discussion
on the necessary maximum polynomial degree in F3D, let us divide the univariate function h(ξ ) of order no greater
than 2nq − 1 by a function L(ξ ) of order nq

h(ξ )
q:= 2nq−1

= q(ξ )
nq−1

L(ξ )
nq

+ r (ξ )
nq−1

. (32)

Accordingly, the resulting quotient q(ξ ) and the remainder r (ξ ) are of order nq−1 or less. In Gaussian quadrature,
L is defined as the nqth Legendre polynomial Lnq . Since Lnq is orthogonal to all polynomials of order q < nq on
[−1, 1], the integral of h(ξ ) over this particular domain simplifies to the integration of the remainder r (ξ )∫ 1

−1
h(ξ ) dξ =

��������∫ 1

−1
q(ξ )Lnq (ξ ) dξ +

∫ 1

−1
r (ξ ) dξ. (33)

For the respective inner product to be zero, the Gaussian quadrature points are defined as the nq distinct roots of
Lnq . The corresponding weights can be found by solving a system of equations, which takes the form of a linearized
moment fitting equation with F1D = { f j = Lr (ξ ); r = 0, 1, 2, . . . , nq − 1}. Indeed, if orthogonal polynomials exist
for the given integration domain, the positions of the integration points are inherently given. Moreover, it seems
sufficient to restrict the moment fitting bases to m = nq = (q/2 + 1)d functions, where d is the spatial dimension.
Considering the trivariate example with cubic bases introduced above, the number of required functions drastically
reduces from m = 343 to m = 64.

Unfortunately, orthogonal polynomials are difficult to construct or might not even exist for arbitrarily shaped
domains in multiple dimensions. Due to this problem, the nonlinear moment fitting equation may be utilized to
satisfy

∫
q(ξ )Lnq (ξ )dξ ≈ 0 implicitly, without any knowledge about the form of Lnq . For the univariate case, this

approach is shown to be successful in Section 3.1 since the computation of the generalized Gaussian quadrature
rule for multiple knot spans is deduced from a similar nonlinear system of equations. However, the computationally
expensive task of solving the nonlinear problem was circumvented by using precomputed integration points. This
is not applicable in the present context due to arbitrary integral boundaries. Moreover, the moment fitting equation
(Eq. (28)) is defined in three dimensions, making its solution even more complicated and factually infeasible during
the execution of the simulation. Thus, in Section 3.2.3, the moment fitting equation is linearized by defining
the positions of the integration points a priori in order to reduce the computational effort. Additionally, a point
elimination algorithm based on the original ideas from [28,60] is utilized to select the most suitable positions from
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a discretized set. The proposed approach allows to restrict the moment fitting bases to m = (q/2 + 1)3 functions in
three dimensions while no significant degradation in accuracy is observed, see Section 6.2. Before the mentioned
solution strategies are presented, we will focus on calculating the constant terms f c in the next section.

Remark. Since the moment fitting equation in Eq. (28) is defined in the parametric space, the resulting quadrature
rules are tailored to integrate Eq. (16). The additional mapping to a Gaussian space as stated in Eq. (17) is omitted.

3.2.2. Computation of constant terms
In general, every integration scheme listed in the introduction of this section, such as octree, smart-octree, and

lower-order tessellation, are suitable candidates to compute the constant terms in Eq. (28). However, a different
methodology enables a more seamless integration into the presented workflow due to the inherently available
boundary representation. To this end, the moments in Eq. (28) are evaluated by integrating over the boundary
surfaces utilizing the divergence theorem in a similar fashion as described by [61]∫

Ω t
F j (x) dΩ t

=

∫
Ω t

∇ · g j (x) dΩ t
=

∫
Γ t

g j (x) · n(x) dΓ t , (34)

where F j (x) represents the moment fitting bases defined on the physical domain. Eq. (34) realizes a transformation
from volume to contour integrals with n(x) denoting the normal vector pointing in outwards direction of the
geometry. For the anti-derivatives g j , the notation is adopted from [62]

g j (x) =
1
3

⎡⎢⎣
∫
F j (x) dx∫
F j (x) dy∫
F j (x) dz

⎤⎥⎦ =
1
3

⎡⎢⎢⎣
∫

f j (ξ ) ∂x
∂ξ

dξ∫
f j (ξ ) ∂y

∂η
dη∫

f j (ξ ) ∂z
∂ζ

dζ

⎤⎥⎥⎦ . (35)

Gaussian quadrature seems to be predestined for an efficient evaluation of Eq. (34). However, numerical
integration requires a closed surface parameterization of the trimmed domain, which may be obtained from solid-
to-solid intersection algorithms. Most CAD programs, e.g., Rhinoceros 3D, include functionalities to conduct such
Boolean operations directly on the NURBS-based B-Rep model. Nevertheless, similar to the knot span classification
problem mentioned earlier, it can be advantageous to perform these operations on an intermediate discretized surface
description, e.g., STL mesh. Among other software packages, CGAL provides an efficient and robust implementation
for algorithms required in this context. Moreover, the resulting B-Rep of the intersecting domain is inherently
discretized and can directly be used for Gaussian quadrature. Given a boundary parameterization with nF triangular
elements, the integral is performed as follows∫

Ω t
F j (x) dΩ t

=

nF∑
a=1

∫
Γ̂ h

a

g j (x) · n(x) det( J Fh
a

) dΓ̂ h
a , (36)

with det( J Fh ) denoting the determinant of the Jacobian matrix, which accounts for the mapping between physical
(Γ h) a parametric space (Γ̂ h) of each boundary triangle Fh . Finally, the integral is retracted to the parametric space
of the B-Spline solid∫

Ω̂ t
f j (ξ ) dΩ̂ t

=

∫
Ω t

F j (x)
1

det( J1)
dΩ t . (37)

Remark. In [63], Sudhakar et al. point out that∫
Ω

dΩ =

∫
Γ

xn1dΓ =

∫
Γ

yn2dΓ =

∫
Γ

zn3dΓ , (38)

and hence suggest to restrict the evaluation in Eq. (35) to a single direction, e.g., g j (x) = [
∫
F j (x) dx, 0, 0].

Nevertheless, as Eq. (35) may seem more intuitive, we adopted the notation from [62]. In any case, the known
basis functions f j allow the calculation of the integrals in Eq. (35) by analytical means. In [64], a quadrature-free
approach for evaluating polynomials over spline-based B-Reps is proposed. The divergence theorem is applied twice
to transform the volume integrals first to surface integrals and then to line integrals. In the present work, we omit
the second transformation because Eq. (36) agrees with the terms required to impose boundary conditions (see
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Fig. 10. Initial point distribution within a trimmed domain. Dark blue: Selected points by elimination algorithm. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Eq. (18)), allowing a fast integration into traditional finite element frameworks. Note that the computed closed
surface parameterizations obtained from the intersection of the knot span domains and the computational domain
respect the knot span boundaries by definition. Therefore, the corresponding discretizations are also suitable for the
evaluation of Eq. (18).

3.2.3. Point elimination algorithm
As highlighted in Section 3.2.1, Eq. (28) is linearly dependent on the weights wi but strongly nonlinearly

dependent on the positions ξ i of the integration points. To reduce the computational effort, it is a common approach
to linearize the moment fitting equation by defining the positions of the integration points a priori [65]. The authors
in [62] propose to place the quadrature points at the locations of the standard Gauss points, which, however, does
not guarantee that all quadrature points are inside the physical domain. Especially for nonlinear simulations where
material variables, e.g., plasticity values, have to be stored, points outside the domain are unfavorable. Therefore, in
the present work, interior points are selected from the resulting locations of the adaptive point distribution scheme
developed by [61,66]. The distribution scheme defines the positions based on a regular grid, which classically covers
the space spanned by one finite element/cell. In our proposed implementation, the point distribution is restricted to
a bounding box within the parametric space of one knot span that delineates the geometry boundaries, as depicted
in Fig. 10. Especially if only small portions of an element intersect, this approach reduces the number of requisite
inside/outside tests significantly. A point distribution factor γ ∈ N is introduced to define the discretization length h

h =
L

γ (p + 1)
, (39)

determining the emerging number of points. Note that h, L , and p might differ in each spatial direction, which is
neglected for brevity. In general, γ is initialized large enough (γ ≥ 2) such that the initial number of points nq

exceeds the number of moment fitting bases m = (p+1)3. For the solution of such an under-determined system, the
moment fitting equation (Eq. (28)) is reformulated to a least squares problem reducing the L2-norm of the residual
vector r for the given set of points (ξ , w)

q(ξ ) := f c − f (ξ )w = r. (40)

To improve the solution, Eq. (40) is embedded into the iterative process of an elimination algorithm that detects
points with more suitable locations and dismisses suboptimal ones. Our implementation builds on the first proposals
of [60] and further developments by [28]. In agreement with [28], we expect the algorithm to find an approximate
solution to the nonlinear problem. In addition, if the solution is sufficiently accurate, we assume that the zero
condition in Eq. (33) is also approximately fulfilled. Therefore, we claim that using only m = (p + 1)3 moment
fitting bases is reasonable.
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Remark. Note that in a worst-case scenario where the zero condition in Eq. (33) is not satisfied, the obtained
integration points would represent a reduced quadrature rule, which can still evaluate integrands of order p but not
necessarily 2p accurately. Section 6.2 compares the proposed reduced set (m = (p + 1)3) to the full set of moment
fitting bases (m = (2p + 1)3) and illustrates the impact on the solution quality.

Moreover, the extension recently presented in [29] is incorporated to guarantee positive weights without additional
feasibility constraints and to decrease the number of required elimination loops. The respective concept is discussed
in the following.

During the first iteration (k = 1) of the elimination algorithm, the moment fitting equation is solved for the
weights w of the initial trial points obtained from the modified adaptive point distribution scheme. The key idea is
to consecutively remove quadrature points with the least significance for evaluating the constant terms f c [28,60].
In the present work, the significance of the quadrature point is measured by its computed weight wi . As proposed
in [29], a Non-Negative Least Squares (NNLS) [67] solver is employed to ensure positiveness for all elements in
w without any additional feasibility constraint. Note that a standard least squares solver does not generally satisfy
this condition. Since we enter the elimination algorithm with an under-determined system of equations (nq ≫ m),
the NNLS solver converges to a solution vector w that contains multiple entries equal to zero. As integration points
with wi = 0 have no significance for the final quadrature rule, they are all discarded after the first iteration, resulting
in a considerable reduction of required elimination loops. Additionally, the one integration point with the lowest
positive significance is also removed since, without its elimination, the results would remain unchanged in the
second iteration. In all subsequent iterations, only the integration point that exhibits the smallest significance is
removed from the list of potential solutions. Fig. 11 visualizes the main routines of the elimination algorithm in
a flowchart. The algorithm terminates if the L2-norm of the current residual vector exceeds a user-defined value δ

and returns the integration points from the penultimate iteration. If no subset of the initially distributed trial points
can be found to satisfy Eq. (40), such that ∥r∥L2 < δ, γ is automatically increased to enrich the discrete solution
space. An upper bound on γ may be introduced for performance purposes in practical applications. The presented
point elimination algorithm provides a robust strategy for the construction of efficient integration rules for arbitrarily
trimmed domains. In three dimensions, the resulting number of quadrature points is limited to nq ≤ (p + 1)3. A
detailed discussion on the performance of the algorithm is given in Section 6.

4. Numerical stability

Trimming and the evaluation of trimmed domains are key features of the presented method. Due to little support
of basis functions within small trimmed knot spans, linear dependencies may be introduced to the system matrices
in Eq. (12) [68]. As a result, the respective condition number can assume values that prevent the use of iterative
solvers or substantially reduce the accuracy of direct solvers.

To counteract ill-conditioned system matrices, one class of methods introduces quadrature points with scaled in-
tegration weights into the fictitious domain to weakly penalize the exterior part of each trimmed element [18,20,69].
Following this approach, the fictitious domain is interpreted as a soft material rather than an empty void. The authors
in [70] propose to remove basis functions with supports below a certain threshold entirely. In CutFEM [16,71], a
ghost penalty term is applied to add an artificial stiffness to nodes that may precipitate numerical instability. Usually,
these nodes are weakly coupled to one or multiple of their stable neighbors. Depending on the magnitude of the
penalization factor, the artificially introduced weight, or the ratio of neglected basis functions, a modeling error
must be expected for the methods mentioned. Preconditioners are mathematically consistent and proposed to heal
ill-conditioning of immersed boundary methods. In fact, an Additive-Schwarz inspired preconditioner developed
in [68] has proven to be an effective and robust tool, even in the presence of higher-order basis functions. The basic
concept is outlined in the following.

4.1. Additive Schwarz preconditioner for ill-conditioned system matrices

The Additive-Schwarz preconditioner P is defined as a sparse block-wise approximation of the inverse of the
system matrix A, as per

P =

∑
B∈B

RT
B (RBART

B)−1  
A−1

B

RB . (41)
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Fig. 11. Flowchart of point elimination algorithm.

Thereby, RBART
B restricts matrix A to row and column indices contained in block B ∈ B, where B is the set

of all blocks. Each sub-matrix AB is inverted, and its entries are mapped onto P by the term RT
BA−1

B RB , such that
their original row and column indices are preserved. This procedure is conducted for each block B. The blocks may
overlap, but each basis function must be contained in at least one block to avoid P being singular. In the context of
this work, the degrees of freedom associated with one knot span form an individual block B. For further details on
the theoretical background, the implementation of such preconditioners, and their application to embedded boundary
methods, the reader is referred to [68,72]. Moreover, the authors in [73] extend the given preconditioner to multigrid
approaches. In [74], Additive-Schwarz preconditioners are discussed in a general FEM setting. To demonstrate the
proposed method’s scalability potential, all static and implicit dynamic examples in Sections 6 and 7 are solved with
an Additive-Schwarz preconditioned iterative Biconjugate Gradient Stabilized Method (BiCSTAB). Nevertheless,
direct solvers are also appropriate for problems performed as part of this work.

4.2. Light control points in explicit dynamics

Since explicit solvers do not solve the system of equations, they are not constrained by ill-conditioned matrices.
However, the influence of small trimmed knot spans is still perceptible in the form of so-called light control points
characterized by small mass and stiffness terms. They are not harmful per se, as their influence on the solution is
negligible by definition. Nevertheless, the displacements, velocities, and accelerations at light control points tend to
take on extremely large values, which can cause the solver to terminate prematurely due to overflow errors [75]. In
the scope of this work, explicit simulations successfully terminated without additional stabilization. Generally, light
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Fig. 12. Required processes and interfaces for a design-through-analysis workflow for solid CAD models.
Source: Modified from [76].

control points are especially critical for highly dynamic nonlinear problems, such as impact and crash simulations,
where stabilization techniques may be considered. In [75], an effective method for stabilizing light control points
is presented, along with a comprehensive overview of other possible stabilization strategies.

5. CAD-integrated analysis workflow

This research aims to develop methods for seamless simulations within the CAD design environment focusing on
solid models. In [76], a workflow and a set of interfaces are proposed to close the gap between CAD and classical
FEM solvers in the scope of the shell-based IBRA. Essential steps are adopted and extended by some functionalities
for the application to volumetric B-Reps, as depicted in Fig. 12. The entire process is fully automatized and,
unlike classical finite element analyses on hexahedral meshes, requires no manual intervention to ensure high-
quality discretizations of solid structures. An overview of the necessary routines and operations is provided in this
section.

5.1. Preprocessing

The proposed CAD-integrated analysis workflow begins within the CAD environment, where the B-Rep model
is prepared for analysis. This includes:

• Geometric modeling of the structure to be investigated.
• Definition of the solid B-Spline domain Ωs , which can be determined automatically or by a user input.
• Definition of the boundary domains ΓD and ΓN for the application of boundary conditions.
• Writing the input file for the FE solver according to [76].

The geometric modeling kernel from Rhinoceros 3D [77] is utilized for the design of all structures investigated in
Sections 6 and 7. All remaining preprocessing operations are performed in Cocodrilo [78,79] - an IGA preprocessor
for Rhinoceros 3D.

5.2. Preparation of the integration domains and construction of quadrature rules

The centerpiece of the present workflow is the conversion of the CAD model into an integration domain suitable
for FEM analysis, resulting in a trimmed parametric space of the B-Spline solid S, see Section 3. To facilitate
the integration into state-of-the-art FE solvers, a meshless approach that relies on the exchange of information via
different sets of quadrature points is followed. Given Eqs. (8)–(10), these sets serve for the integration of:

• Mass and stiffness matrices in Ω .
• Neumann boundary conditions on ΓN .
• Dirichlet boundary conditions on ΓD .
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Note that quadrature points associated with boundary conditions may carry additional information, e.g., prescribed
displacement ū and traction force t̄ . As a result, all necessary calculations can be performed in existing FE
solvers without code duplication and methodological verification, enabling rapid integration. In addition, the above
operations to prepare a model suitable for analysis can be completed at the beginning of the simulation and do not
need to be repeated. Especially for transient problems with many time steps, the computational effort associated with
the preparation of the integration domains becomes insignificant compared to the total simulation time. All processes
and algorithms related to the automatic construction of quadrature rules presented in Section 3 are implemented by
the corresponding author in Trivariate Isogeometric B-Rep Analysis (TIBRA) [80]. The underlying code is written in
C++ and uses the Polygon Mesh Processing package from CGAL [47] to perform necessary geometrical operations.
The data transfer between TIBRA to third-party software is realized either via file exchange or an extensive python
interface. This also allows the necessary information to be easily passed on to commercial solvers.

5.3. FE solver

Given the setup discussed in the previous sections, the FE solver must perform the following fundamental
operations:

• Read the sets of quadrature points.
• Pre-evaluate the B-Spline basis functions, the normal vectors, and the material properties at each quadrature

point.
• Assemble and solve the system of equations.
• Write the output for the postprocessor.

In the scope of this work, all examples are solved using the open-source FE framework Kratos Multiphysics [81–83].
Necessary implementations required for the analysis of trimmed B-Spline solids are made by the authors. In [84],
we show preliminary results of highly dynamic nonlinear simulations performed in LS-DYNA [85], including large
deformation and contact mechanisms.

5.4. Postprocessing

For the visualization of results, such as displacements and stresses, an auxiliary mesh is defined on the NURBS-
based B-Rep model. This is a standard procedure in CAD programs like Rhinoceros 3D to facilitate color mapping
on smooth surfaces. Here, the required mesh is constructed by tessellating the integration points of the boundary
surfaces F . In order to reduce the complexity to two dimensions, the tessellation is performed in the respective
parametric spaces. Additional points are introduced at each surface’s trimming or delimiting edges, ensuring that the
mesh accurately represents the geometry. Finally, in a consecutive step, simulation resultants are either interpolated
(e.g., displacements) or evaluated (e.g., stresses) at each mesh vertex to provide a smooth visualization on the
NURBS-based B-Rep model. Moreover, the Universal Deformation Technologies from Rhinoceros 3D are utilized
to deform the B-Rep model according to the displacements of the control points P i, j,k of the B-Spline solid S.
Therefore, S is defined as a so-called control cage that dictates the deformation of its captive objects, namely the
surfaces F contained in the B-Rep model. For more information, the reader is referred to [77]. The corresponding
interface is realized in Cocodrilo [78].

6. Scientific benchmarks

In the following, we demonstrate the efficacy of the proposed method for the analysis of static and transient
problems. All examples are conducted on a C p−1 B-Spline discretization constructed by standard k-refinement
[1,34]. The contour parameterization of each trimmed knot span required for evaluating Eq. (36) is retrieved from the
intersection of the knot span domain and an STL mesh. The corresponding tessellation is automatically performed
in Rhinoceros 3D with a chordal tolerance of 10−5 (see Appendix A). Subsequently, the obtained intersection mesh
is homogenized using an isotropic remeshing algorithm [47], targeting a prescribed minimum number of triangles.
This lower bound is introduced to ensure a high-quality contour parameterization of the trimmed domains. Note
that rather conservative thresholds are used in the following examples to avoid the results being affected by the
quality of the constant terms of the moment fitting equation. The interested reader is referred to [61], where the
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Fig. 13. Cantilever subjected to a surface load: Configuration of the beam and solid B-Spline discretization.

influence of the number of elements on the quality of the constant terms in Eq. (28) is studied. In the following,
we further increase the accuracy of the respective volume integrals by using three instead of one quadrature point
per boundary triangle. The allowed residual for the moment fitting equation is fixed to δ = 10−10 unless stated
otherwise. Moreover, the point distribution factor is initialized with γ = 2. For the sake of comprehension, all
depicted knot span domains are visualized in physical space.

6.1. Trimmed cantilever

In the first example, the influence of trimming on the solution quality of static problems is investigated. A trimmed
cantilever with a circular cross-section is subjected to a tip load. The structure is fully embedded into the B-Spline
solid S, as depicted in Fig. 13, where a = 3 m, b = 3 m, R = 1 m, and L = 10 m. Homogeneous Dirichlet
boundary conditions are enforced using a penalty factor of β = 1010 N/m3 at x = 0 m. The tip load is modeled
as a surface load with p = 0.1 N/m2 and applied over the structure’s boundary at x = L . The discretization of the
cross-section is fixed to 2 × 2 knot spans, whereas the number of knot spans along x is parameterized with nx

ks.
Consequently, all knot spans in the B-Spline solid are trimmed. Given the predefined chordal tolerance of 10−5,
the tessellation algorithm generates a B-Rep model with 2808 elements. Furthermore, the computed solid-to-solid
intersections are parameterized with approximately 3000 boundary triangles used to evaluate Eq. (36).

According to [86], the analytical solution of such a Timoshenko beam is given as

we
=

px2(3L − x)
6E I

+
px

G Aκ
, (42)

with E I and G denoting the bending stiffness and shear modulus, respectively. The shear coefficient κ =

(6 + 12ν + 6ν2)/(7 + 12ν + 4ν2) accounts for the varying shear stress distribution across the circular cross-section
with area A [87]. Fig. 14 shows the relative error in the vertical displacement with respect to the analytical solution
we over the entire length of the beam for five different meshes. The first four simulations are conducted using a
constant polynomial degree of p = 2, but a varying number of knot spans in x-direction: nx

ks = 3, nx
ks = 4, nx

ks = 5
and nx

ks = 10. The corresponding maximum relative errors are: 1.3%, 0.47%, 0.19%, and 0.015%. In all cases, the
accuracy can be further increased by raising the polynomial degree. For example, when p is elevated to cubic order,
a single trimmed knot span in x-direction yields a relative error of 0.03%.
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Fig. 14. Cantilever subjected to a surface load: Relative error in displacement for different meshes, indicating convergence.

Table 1
Convergence of point elimination algorithm. The current residual ∥r∥L2 and the number of
quadrature points nq are given for one trimmed knot span. Point distribution factor γ = 2.
Prescribed tolerance δ = 10−10.

p = 2, nx
ks = 10 p = 3, nx

ks = 1

Iteration k ∥r∥L2 nq Iteration k ∥r∥L2 nq

1 <10−15 168 1 <10−15 416
2 <10−15 27 2 <10−15 64
3 1.21 × 10−5 26 3 1.74 × 10−8 63

As discussed in Section 3.2.1, the moment fitting equation is assembled with m = (p + 1)3 basis functions.
Therefore, the system of equations (Eq. (28)) is determined for nq = (p + 1)3, corresponding to the exact number
of integration points required for full Gaussian quadrature. Table 1 lists the number of integration points and the
obtained residual ∥r∥L2 during the execution of the point elimination algorithm for one knot span. Note that due
to the simple shape of the structure, all trimmed domains are similar and thus give equivalent results. Already the
predefined initial distribution factor of γ = 2 leads to a set of points that satisfies Eq. (40) with machine precision.
Furthermore, the NNLS solver in conjunction with the orthogonal Legendre polynomials as moment fitting bases
allows the algorithm to converge to nq = (p + 1)3 after the first iteration. This behavior is observed independent
of the employed polynomial degree. The values are shown for p = 2, nx

ks = 10 and p = 3, nx
ks = 1 in Table 1.

Due to a predefined maximum error norm of δ = 10−10, the algorithm terminates after the third iteration. The
size of the final set of quadrature points is highlighted in gray. Fig. 15(a) depicts the Von Mises stresses on the
NURBS-based B-Rep model, which exhibit a clear axisymmetric distribution. Next to it, the deformed CAD model
and the B-Spline solid discretization is visualized. The postprocessing of stresses and displacements on the CAD
B-Rep model is performed in Rhinoceros 3D as described in Section 5.4.

The obtained results show that the full potential of higher-order basis functions is exploited despite the presence
of trimmed knot spans. Moreover, Table 1 reveals the clear advantage of the presented modified point elimination
algorithm, which converges to nq = (p + 1)3 quadrature points after the first iteration, in contrast to classical
methods that eliminate only one point per iteration.

6.2. Thick-walled cylinder subjected to internal pressure

In this section, the performance of the presented method shall be assessed by studying a thick-walled cylinder
subjected to internal pressure. Fig. 16 depicts the simulation setup and the four different meshes investigated. Similar
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Fig. 15. Postprocessing of the cantilever beam (p = 2, nx
ks = 5) on the NURBS-based CAD model in Rhinoceros 3D: (a) Von Mises stress

and (b) Deformation and active control points.

to [1,12,13], which study the same example in the scope of IGA, plane strain conditions are applied by fixing
the longitudinal displacement at the bottom and top surface of the cylinder. The exact solutions for the radial
displacement and the stresses are taken from [88] and serve as reference

ue
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where Ẽ = E/(1− ν2) and ν̃ = ν/(1− ν) account for the plane strain conditions. The bottom surface with an inner
radius of Ri = 1 m and an outer radius of Ro = 2 m is extruded to form a cylinder with a length of L = 5 m.
In all simulations, symmetry conditions are applied to reduce the problem’s complexity. The linear elastic material
properties are defined by the Young’s modulus E = 40 N/m2 and the Poisson’s ratio ν = 0.0. To model the internal
pressure, a constant surface load of p = 20 N/m2 is applied in normal direction of the boundary parameterization of
the inner surface. The constant terms of the moment fitting equation are computed from a boundary parameterization
with approximately 1500 triangular elements. According to the discussion in Section 3.2.1, the moment fitting bases
are defined by a reduced set of m = (p + 1)3 functions. Consequently, Eq. (28) turns into a determined system
of equations for nq = (p + 1)3 quadrature points per trimmed knot span domain. Table 2 shows the convergence
behavior of the point elimination algorithm for the two trimmed knot span domains Ω t

1 and Ω t
2 indicated in Fig. 16.

Similar to the results obtained in Section 6.1, the algorithm finds nq = (p + 1)3 quadrature points that satisfy
Eq. (40) with machine precision. The numbers of quadrature points in the finally selected sets are highlighted in
gray. Given the prescribed tolerance of 10−10, an additional iteration is performed in domain Ω t

2, resulting in a
quadrature rule with one integration point less. Note that Ω t

2 is the smaller of the two trimmed domains. Fig. 17(a)
depicts the deformed solid CAD model in Rhinoceros 3D. The displacement contour is smooth and symmetric.
Fig. 17(b) plots the relative error in radial displacement using quadratic basis functions. The maximum errors for
Mesh 1, 2, 3, and 4 are 1.09%, 0.21%, 0.059%, and 0.02%. In all cases, the accuracy can be further increased by
order elevation.

Up to this point, all full knot spans have been evaluated by classical knot span-wise Gaussian quadrature. Unlike
the optimal and reduced GGQ rules discussed in Section 3.1.1, standard Gaussian quadrature schemes do not exploit
the continuity across adjacent knot spans and are therefore less efficient. However, applying GGQ rules to two and
three dimensions requires a tensor product structure of the respective knot spans, which is not inherently given
for trimmed patches. To enable the use of GGQ rules, the decomposition algorithm presented in Section 3.1.2
is employed. Fig. 18(a) illustrates the decomposed local tensor product domains for Mesh 4, where the numbers
indicate the order followed by the algorithm. Note that the order, and thus the final decomposition, can depend on
the knot span numbering, see domains 3 and 7. Nevertheless, this does not affect the accuracy of the quadrature
rules. Although the visualization is limited to two dimensions, the GGQ rules are also applied in axial direction. For
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Fig. 16. Thick-walled cylinder: Model configuration and meshes.

Table 2
Convergence of point elimination algorithm. The current residual ∥r∥L2 and the number of
quadrature points nq are given for the domains Ω t

1 and Ω t
2 (see Fig. 16). Point distribution factor

γ = 2. Prescribed tolerance δ = 10−10.

Ω t
1 Ω t

2

Iteration k ∥r∥L2 nq Iteration k ∥r∥L2 nq

1 <10−15 156 1 <10−15 126
2 <10−15 27 2 <10−15 27
3 3.41 × 10−6 26 3 8.67 × 10−11 26
– 4 1.095 × 10−10 25

demonstration purposes, the decomposition is additionally performed for the full cylinder, as shown in Fig. 18(b).
In both cases, the linear weighting function is defined by α = 0.1. Based on Mesh 4, Fig. 19(b) compares the
performance of the three different quadrature rules associated with the B-Spline target spaces L

2p
r−1, L2p−1

r−1 , and
L

2p−2
r−1 introduced in Section 3.1.1. Note that the depicted graph is a detailed view of Fig. 17(b). The results highlight

the exactness of quadrature rules derived from L
2p
r−1. When using first- and second-order reduced quadrature rules,

minor deviations from full Gaussian quadrature are apparent. However, we observe that the discrepancy is of the
same order of magnitude as the discretization error in both cases. Fig. 19(a) illustrates the point distributions of the
investigated quadrature rules. Despite the modest size of this particular example, the potential savings in required
points are significant. While attaining exact integration, the average number of quadrature points inside one knot
span domain is reduced from nq = 27 for full Gaussian quadrature to nq = 13.8 for L2p

r−1. The reduced integration
rules L

2p−1
r−1 and L

2p−2
r−1 decrease this number further to nq = 5.9 and nq = 1.9, respectively. We continue the

discussions on the performance of L2p
r−1, L2p−1

r−1 , and L
2p−2
r−1 in Sections 6.3.1 and 6.4.1.

In a second study, the suitability of the proposed reduced set of moment fitting bases using m = (p+1)3 functions
(see Section 3.2.1) shall be illustrated. For this purpose, the convergence in energy norm for quadratic, cubic, and
quartic B-Spline bases is examined. To obtain a computational domain with uniform edge length, the cylinder’s
length is reduced to L = 2 m. Initially, nks = 2 knot spans discretize the cylinder in each spatial direction. In an
iterative process, we subsequently refine the mesh and compute the relative error in energy norm, which is defined
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Fig. 17. Thick-walled cylinder: Deformation and convergence of displacement.

Fig. 18. Thick-walled cylinder: Tensor product decomposition of full knot spans. Colors indicate different domains. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

as follows

er =

√∫
Ω (σ h − σ e)C−1(σ h − σ e) dΩ∫

Ω σ eC−1σ e dΩ
, (46)

where σ h and σ e are the approximated and exact stress tensors, and C is the constitutive tensor of linear elasticity.
Fig. 20 shows the convergence of er with respect to the knot span length h. To avoid the results being affected
by the quality of the constant terms of the moment fitting equation, we parameterize the trimmed domains with
an average of 2500 triangles instead of 1500 used previously. The simulations are performed for p = 2, p = 3,
and p = 4 using the proposed reduced set of m = (p + 1)3 moment fitting bases. As a reference, the results for
m = (2p + 1)3 are additionally plotted, which reveal optimal quadratic, cubic, and quartic convergence rates. We
observe that the reduction of the moment fitting function space is only slightly reflected in Fig. 20. In all cases,
nearly optimal convergence rates are achieved. Since nq = m results in a determined system of equations, the
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Fig. 19. Thick-walled cylinder: Exact and reduced integration for Mesh 4 and quadratic basis functions.

Fig. 20. Thick-walled cylinder: Relative error in energy norm er over knot span edge length h.

number of moment fitting bases provides a rough estimate of the required number of integration points, such that
nq ≈ m, where m represents an upper bound, i.e., nq ≤ m. Thus, m = (2p + 1)3 inherently yields a more complex
quadrature rule, which in addition is more computationally intensive to construct. Moreover, the improvement in
accuracy over the proposed approach seems irrelevant for practical applications. We conclude that the restriction to
m = (p + 1)3 basis functions is justifiable and therefore applied in all other simulations in this work.

6.3. Eigenfrequency analysis of an elastic cube

An elastic cube is investigated to demonstrate the potential of the presented method for efficient analyses of
transient problems. First, we compare the performance of the exact and reduced quadrature rules presented in
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Fig. 21. Free Vibrating Cube: Relative error in eigenfrequency under global h-refinement with consistent mass matrix for quadratic, cubic,
and quartic basis functions.

Section 3.1 based on the angular eigenfrequencies of the cube. Inspired by the results presented in [75], the second
example is devoted to the influence of trimming on the critical time step ∆tcri t of explicit dynamic simulations.

6.3.1. Free vibration of an unit cube
The natural frequencies of a traction-free unit cube are computed for E = 100 N/m2, ν = 0.3, and ρ = 1 kg/m3

by solving the generalized eigenvalue problem

(K − ω2 M)Φ = 0, (47)

where ω2 is the vector of eigenvalues and Φ is the modal matrix. In fact, for most natural frequencies of a
vibrating isotropic cube, no analytical solution is available. However, an exact solution exists for the Mindlin–Lamé
modes [89], which are given as

ωe
i =

√
2π i
L

√
G
ρ

, (48)

where G is the shear modulus, L is the cube’s edge length, and i is a positive integer. In our example, the first
Mindlin–Lamé mode corresponds to the fourth natural frequency of the free vibrating cube. A reference solution
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Fig. 22. Free Vibrating Cube: Relative error in eigenfrequency under global h-refinement with lumped mass matrix and quadratic basis
functions.

is computed for p = 4, and a uniform mesh with 20 knot spans in each spatial direction for all remaining modes.
The obtained angular eigenfrequencies are ω1 = 17.712 rad/s, ω2 = 23.852 rad/s, ω3 = 24.257 rad/s, ω4 = 27.554
rad/s, and ω5 = 28.359 rad/s, whereby ω4 approximates the first Mindlin–Lamé eigenfrequency with a relative error
of ≈10−13. Fig. 21 depicts the relative errors for p = 2, p = 3, and p = 4 over the knot spans edge length h.
In all cases, exact and reduced quadrature rules based on L

2p
r−1, L2p−1

r−1 , and L
2p−2
r−1 are compared to full Gaussian

quadrature. The respective savings in the number of integration points are shown in Fig. 6. Note that the entire cube
contains only full knot span domains. In agreement with the theoretical derivation in Section 3.1.1, L2p

r−1 provides
exact quadrature rules and hence optimal convergence. Moreover, the error due to reduced integration associated
with L

2p−1
r−1 is clearly bounded by the discretization error. Considering the second-order reduced integration scheme

corresponding to the target space of L2p−2
r−1 , the integration error becomes more dominant. Overall, the relative error

still decreases when h-refinement is applied. However, optimal accuracy is not maintained in all cases. Additionally,
nearly singular or negative-defined mass matrices are observed for quadratic basis functions, which are reflected in
the peaks in Fig. 21(a)–(b).

For a second investigation, the consistent mass matrix M is diagonalized using the row-summing technique.
Fig. 22 proves that the use of a diagonal mass matrix M L limits the accuracy of the eigenfrequencies to second-
order [40]. In Section 6.4.2, a predictor multi-corrector scheme is employed to circumvent this limitation. However,
in the present example, we focus on the performance of the exact and reduced GGQ rules. Since the limitation
imposed by the diagonal mass matrix is independent of the polynomial degree, the results are plotted exemplarily
for quadratic basis functions in Fig. 22. Again, the first-order reduced integration rules do not significantly influence
the overall accuracy. However, a further reduction of the target space to L

2p−2
r−1 leads to quadrature rules that render

the mass matrix singular, leading to unsolvable eigenvalue problems.
In summary, first-order reduced quadrature rules are shown to be robust for both the consistent M and lumped

mass matrix M L while maintaining full accuracy compared to exact integration. When using second-order reduced
integration, occasional instabilities for M and severe instability problems for M L are observed.

Remark. Besides row-summing, diagonal scaling and nodal quadrature methods are common techniques to obtain
diagonal mass matrices. Note that the second-order accuracy restriction described above applies to all these lumping
methods [90]. However, the diagonal mass matrices generally have a positive effect on the critical explicit time
step ∆tcri t , since they underestimate the high eigenfrequencies. The authors in [91] compare the discrete spectrum
obtained using row-summing and diagonal scaling to the consistent mass matrix and show that both lumping schemes
lead to a similar increase of ∆tcri t . To improve the spatial accuracy, higher-order lumping techniques are developed
in [92], which yield promising results for vibration analysis but produce non-diagonal mass matrices.
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Fig. 23. Trivariate B-Spline cube with embedded CAD geometry. The cube is trimmed symmetrically on all sides according to the trimming
distance ξ̂ .

6.3.2. Free vibration of a trimmed cube
Small trimmed elements do not only affect the numerical stability, as discussed in Section 4 but may also hinder

the use of explicit time integration schemes due to resulting infeasible critical time steps. The central difference
scheme, widely used in explicit dynamics, is stable if the time step is smaller than the time it takes for a shock
wave to pass through an element [93]. Several guidelines for estimating the critical time step are derived from this
simple idea, all based on determining a characteristic element length. In the standard FEM, the nodes are either
located on the boundary or inside the element. Therefore, it seems reasonable to establish a direct relation between
characteristic length and the physical extent of the element. Consequently, the smaller the element, the smaller
the critical time step. Generally, this is a meaningful analogy for simulation methods based on a C0 continuous
discretization field. As a result, trimmed elements, which can be arbitrarily small in practical applications, lead to
infeasible simulation times in most embedded boundary methods. Nonetheless, this section demonstrates that the
proposed method achieves practically feasible critical time steps despite arbitrarily small trimmed knot spans. Here,
the continuity of the B-Spline bases is the crucial property [75]. To illustrate this phenomenon and to demonstrate
the method’s potential within an explicit dynamic setting, Eq. (47) is solved for a trimmed cube. Fig. 23 shows
the corresponding B-Spline domain as well as the embedded CAD geometry. A uniform open knot vector spans
each spatial direction with 12 knot spans. Since explicit dynamic solvers classically do not invert the consistent
mass matrix M but decouple the system of equations by a diagonal mass matrix M L , the angular eigenfrequencies
are computed with respect to M L accordingly. Eq. (47) is solved for different trimming configurations, where the
B-Spline domain is fixed and solely the size of the embedded cube changes. The model is kept symmetric, such that
the trimming distance ξ̂ is equivalent on all sides of the cube, as depicted in Fig. 23. For all simulations, E = 100
N/mm2, ν = 0.25, and ρ = 30 kg/mm3 define the linear elastic material.

In a first study, all inner knots are repeated k̄ = p times to create a C0 continuous discretization field. Fig. 24
plots the maximum angular eigenfrequency ωmax over the trimming distance ξ̂ for different polynomial degrees of
the underlying B-Spline basis functions. The dashed line represents a reference solution retrieved from a standard
FE model using a structured hexahedral mesh and a constant element edge length of 10 mm. When linear basis
functions are employed, and no trimming operations are applied (ξ̂ = 0 mm), the obtained maximum angular
eigenfrequency is identical to the FE reference solution. In fact, the same values are repeatedly encountered for
ξ̂ = 10 mm, ξ̂ = 20 mm, ξ̂ = 30 mm, and ξ̂ = 40 mm, as the size of the interior part of the knot spans is constant
throughout the entire domain. However, if knot spans are cut at intermediate positions, the angular eigenfrequency
rises and tends towards infinity when ξ̂ approaches the knot span boundaries. According to the well-known relation:
∆tcri t = 2/ωmax , the critical time step ∆tcri t drops to infeasible values in these scenarios. Note that an increased
polynomial degree reduces ∆tcri t even further, see Fig. 24. The same undesirable behavior is expected for any
trimmed C0 continuous discretization field.

In contrast to classical methods, the here employed basis functions allow to elevate the continuity across adjacent
knot spans by limiting the inner knot multiplicity to k̄ = 1. Fig. 25 plots the corresponding graphs for the
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Fig. 24. Maximum angular eigenfrequency ωmax over the trimming distance ξ̂ for a trivariate B-Spline cube (see Fig. 23) with uniform
open knot vectors, C0 continuity (inner knot multiplicity: k̄ = p), and varying polynomial degrees. The vertical lines at 10 mm, 20 mm,
30 mm, and 40 mm represent the knot span boundaries. The dashed horizontal line indicates a reference value obtained from a standard FE
model with a structured hexahedral mesh and a constant element edge length of 10 mm.

Fig. 25. Maximum angular eigenfrequency ωmax over the trimming distance ξ̂ for a trivariate B-Spline cube (see Fig. 23) with uniform
open knot vectors, C p−1 continuity (inner knot multiplicity k̄ = 1), and varying polynomial degrees. The vertical lines at 10 mm, 20 mm,
30 mm, and 40 mm represent the knot span boundaries. The dashed horizontal line indicates a reference value obtained from a standard FE
model with a structured hexahedral mesh and a constant element edge length of 10 mm.

resulting C p−1 continuous discretization. Note that open knot vectors are applied in each spatial direction. Since the
linear basis functions are still C0 continuous, the same results as in Fig. 24 are obtained. However, the maximum
eigenfrequency for p > 1, starts now at a higher level for cut boundary knot spans but converges towards values
below the FE reference solution for cut intermediate knot spans. This trend becomes even more pronounced with
increasing order of p. Regardless of the polynomial degree, all computed eigenfrequencies are lower than the
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Fig. 26. Trivariate B-Spline cube with embedded CAD-geometry. Embedded cube is rotated by 30◦ around the x and y axes. L0 denotes
the initial edge length.

reference value for ξ̂ > 10 mm, representing the transition point from boundary to intermediate knot span. This
observation is crucial since it shows that higher continuities can remove the adverse effect of trimming on the
critical time step. However, trimming may only be applied to intermediate knot spans to take advantage of this.

These results suggest that the characteristic length does not correlate with the actual size of a knot span but
with the zone spanned by the active control points. For intermediate knot spans, the zone grows with increasing
polynomial degree and hence reduces the maximum angular eigenfrequency. Moreover, this interpretation also
explains the contrary behavior within the boundary knot spans, as those are characterized by a higher control point
density and steeper basis functions. Consequently, the corresponding stiffness entries are greater and mass values
are smaller, which are both contributions to higher eigenfrequencies. For a more detailed discussion on the effect
of boundary knot spans in this context, the interested reader is referred to [75,91].

In a second study, the embedded cube is rotated by 30◦ around the x and y axes to demonstrate that the above
results are reproducible in more complex trimming scenarios. The corresponding setup is depicted in Fig. 26, where
L0 = 140 mm defines the initial edge length of the cube. We again employ an open knot vector with inner knot
multiplicity of k̄ = 1. Note that the cube is embedded such that all boundary knot spans are trimmed off. For
the following investigation, the cube’s edge length is parameterized by L = L0 − L̂ . Fig. 27 shows the obtained
maximum angular eigenfrequency ωmax over the reduced length L̂ . The results highlight the beneficial effect of
the higher continuities on the critical time step ∆tcri t . While the results associated with the linear basis functions
(C0 continuous) are heavily affected by the different trimming scenarios, the curves for p > 1 are practically
independent of them.

In conclusion, feasible critical time steps in an explicit dynamic setting can be realized if two crucial conditions
are met:

1. The continuity across adjacent knot spans satisfies Cr>0.
2. If open knot vectors are used, the effect of the boundary knot spans must be eliminated.

The first condition is inherently fulfilled if C p−1 continuity in conjunction with quadratic or higher-order basis
functions is employed. For the second requirement, the B-Spline domain is chosen large enough such that all
boundary knot spans are outside the physical domain and hence trimmed off during the embedding process.
Alternatively, non-open knot vectors can be employed, eliminating the adverse boundary effect due to equal and
periodic basis functions over the entire patch. If these guidelines are followed, Figs. 25 and 27 indicate that the
critical time step for p = 3 and p = 4 is practically independent of ξ̂ , and for p = 2 only slightly affected by
the trimming operations. Moreover, in all cases, the B-Spline bases allow higher critical time steps than the FE
reference model with the same number of elements. These results match the observation in [75], where a similar
study in the scope of shell element-based IGA is performed. In [94], critical time step estimations for explicit IGA
are studied and discussed.

We conclude that trimming in an explicit dynamic setting is only feasible with higher-order basis functions
and higher continuity as naturally provided in IGA. This is a limitation for most embedded boundary methods,
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Fig. 27. Maximum angular eigenfrequency ωmax of a rotated cube over the reduced length L̂ with L = L0 − L̂ (see Fig. 26) for different
polynomial degrees. A trivariate B-Spline discretization with uniform open knot vectors and C p−1 continuity (inner knot multiplicity k̄ = 1)
is employed. The dashed horizontal line indicates a reference value obtained from a standard FE model with a structured hexahedral mesh
and a constant element edge length of 10 mm.

which may fulfill the former requirement, but usually do not provide the necessary continuity due to the use of C0

discretization fields.

6.4. Dynamic analysis of an elastic rod

In Section 6.3.1, generalized Gaussian quadrature rules are assessed based on the eigenfrequencies of a unit
cube. The simple shape of the cube allows the construction of optimal and reduced quadrature rules from one single
tensor product domain. In the following, the domain decomposition algorithm presented in Section 3.1.2 is applied
to construct efficient integration rules for non-tensor product domains. The performance of different quadrature
schemes associated with the target spaces L

2p
r−1, L2p−1

r−1 , and L
2p−2
r−1 are compared using the eigenfrequencies of an

elastic rod with different cross-sections. Moreover, a transient analysis of the given structure is performed.

6.4.1. Eigenfrequencies of an elastic rod with varying cross-sections
Fig. 28 shows three different cross-sections that are each extruded to form a rod of length L = 10 m. The colors

indicate the tensor product domains found by the decomposition algorithm presented in Section 3.1.2. Note that the
cross-sections are chosen to avoid any trimmed knot spans. The elastic material is defined by E = 100 N/m2, ν =

0.0, and ρ = 1 kg/m3. In all performed simulations, one end of the rod is fixed, while the rest of the structure is
free to move in longitudinal direction. The exact natural frequencies of such fixed-free rod are given as

ωe
i =

(2i − 1)π
2L

√
E
ρ

, (49)

where i is a positive integer [95]. In the first study, the eigenvalue problem (Eq. (47)) is solved for the Square
cross-section (see Fig. 28) using the consistent mass matrix M. Figs. 29 (a)–(c) show the convergence of the
first eigenfrequency over the knot span length hx in longitudinal direction for p = 2, p = 3, and p = 4. The
knot spans in cross-section remain unchanged. If exact integration schemes are applied, the rates of convergence
are O(h2p), which are optimal according to [40]. Moreover, we observe that the quadrature rules associated with
L

2p−1
r−1 and L

2p−2
r−1 do not lower the accuracy, suggesting that the error due to reduced integration is bounded by the

discretization error.
Eq. (49) shows that the natural frequencies of an elastic rod are neither affected by the shape nor the size of its

cross-section. Therefore, the eigenfrequencies obtained from structures with varying cross-sections can directly be
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Fig. 28. Cross-sections of an elastic rod. Colors indicate different tensor product domains. Dimensions are given in [m]. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 29. Free-fixed elastic rod with Square cross-section: (a)–(c) Relative error in eigenfrequency with consistent mass matrix and (d)
comparison to other cross-sections.

compared. Fig. 29(d) plots the relative discrepancy between the Cross and Square cross-sections, and the L-Shape
and Square cross-sections, respectively. Regardless of the polynomial degree, the applied integration scheme, or the
number of knot spans nx

ks in x-direction, the decomposition of the Cross and L-Shape domains into tensor product
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Fig. 30. Free-fixed elastic rod with Square cross-section. (a) Relative error in eigenfrequency with lumped mass matrix and (b) comparison
to other cross-sections.

domains does not affect the accuracy of the quadrature rules. Note that all values in Fig. 29(d) are less than 10−12,
illustrating that the graphs depicted in Figs. 29 (a)–(c) would be the same for all cross-sections examined.

Fig. 30 shows the results obtained when the consistent mass matrix is approximated by a lumped mass matrix M L
using the row summing method. As already observed in Section 6.3, applying a second order-reduced integration
scheme based on L

2p−2
r−1 does not preserve rank sufficiency and positive definiteness of the lumped mass matrix in all

cases. Therefore, the corresponding results are not shown. However, quadrature rules derived from L
2p
r−1 and L

2p−1
r−1

are robust and provide the same accuracy in the first eigenfrequency as full Gaussian quadrature. This is observed
for all cross-sections depicted in Fig. 28. Since the lumped mass matrix restricts the accuracy to second-order
independent of the polynomial degree, Fig. 30 provides the results only for p = 2. An effective remedy to improve
the accuracy of the lumped mass matrix for transient analyses is applied in the next section.

6.4.2. Forced vibration of a trimmed elastic rod
In this section, a transient analysis of a trimmed rod with circular cross-section is performed. We model the

structure similar to the configuration of the beam depicted in Fig. 13, where a = 4 m, b = 4 m, R = 1 m, and
L = 10 m. Due to the cylindrical shape, the computational domain contains full and trimmed knot spans. The
number of knot spans discretizing the cross-section is fixed to 5 × 5, while the number of knot spans along x is
parameterized with nx

ks. Note that in contrast to Fig. 13, the loading is not applied in transverse but in longitudinal
direction. A surface load of px = p0 sin(Ω t) with Ω = 4 rad/s and p0 = 1 N/m2 acts at the right end at x = 10
m. Homogeneous Dirichlet conditions are enforced at x = 0 m using a penalty factor of β = 5 × 104 N/m3.
Each trimmed knot span domain is parameterized by approximately 1000 boundary triangles to evaluate Eq. (36).
Fig. 31 shows the axial tip displacement obtained with different time integration schemes over time t . The implicit
Newmark scheme with βN = 0.25 and γN = 0.5 and the explicit central difference scheme are compared to a
reference response retrieved by the superposition of the first 10 modes from the analytical solution [95]. Fig. 31
(a) (nx

ks = 10) reveals that an implicit time integration in conjunction with the consistent mass matrix M achieves
accurate results that match the reference solution. The maximum relative error over time is 1.2%. However, the
response obtained with an explicit scheme shows a clear discrepancy. This gap stems from the lower accuracy of the
employed lumped mass matrix, which has been already observed and discussed in Section 6.4.1. Another simulation
with implicit time integration and lumped mass matrix M L supports this claim, since it produces identical results
as the explicit scheme. If h-refinement is performed, all simulation results converge to the analytical solution (see
Fig. 31(b)), where the number of knot spans in longitudinal direction is increased to nx

ks = 50. In both examples,
the implicit time step is fixed to ∆t = 0.02 s. For the explicit analysis, a maximum angular eigenfrequency of
ωmax = 297.93 rad/s, and ωmax = 615.05 rad/s prescribes a critical time step of ∆tcri t = 6.71 × 10−3 s for
nx

ks = 10, and ∆tcri t = 3.25 × 10−3 s for nx
ks = 50. To provide a small buffer the explicit time steps are defined as

∆t = 6.5 × 10−3 s and ∆t = 3 × 10−3 s, respectively.
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Fig. 31. Forced vibrating free-fixed elastic trimmed rod with circular cross-section: Implicit and explicit simulation with quadratic basis
function.

Fig. 32. Forced vibrating free-fixed elastic trimmed rod with circular cross-section: Predictor multi-corrector scheme with (a) quadratic and
(b) cubic basis functions.

In a second example, a modified integration scheme addresses the lower accuracy of the lumped mass matrix for
higher-order basis functions [40]. The authors in [39,41,96] propose an explicit predictor multi-corrector algorithm
that still relies on a decoupling of the system of equations through a diagonal mass matrix but additionally introduces
the consistent mass matrix for the computation of the residual vector. According to [41], the explicit algorithm can
behave like a classical Newmark method with the consistent mass matrix if a sufficiently large number of corrector
passes rc are conducted. However, already for moderate values of rc, significant improvements are observed. To
demonstrate this, the predictor multi-corrector scheme is applied to the vibrating elastic rod with nx

ks = 10 studied
above. Our implementation of the explicit scheme follows the algorithmic structure in [41]. Fig. 32 shows the effect
of rc = 1, rc = 2, and rc = 3 corrector passes for quadratic and cubic basis functions. If rc = 1, the algorithm breaks
down to a forward difference scheme and consequently provides no distinct advantage over the central difference
scheme. However, for rc ≥ 2 a significant improvement is observed in Fig. 32. Note that the algorithm’s stability
is not adversely affected compared to, e.g., a forward difference scheme (rc = 1) since the lumped mass matrix is
still inverted and the consistent mass matrix is solely used to enrich the computation of the residual vector [39]. In
fact, the eigenvalue problem using the consistent mass matrix for p = 2 and p = 3 yields the following maximum
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Fig. 33. Model configuration of steering knuckle with Neumann (red) and Dirichlet (blue) boundary conditions. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

eigenfrequencies: ωmax = 1384.07 rad/s and ωmax = 1520.83 rad/s, which would result in ∆tcri t = 1.445 × 10−3

s and ∆tcri t = 1.315 × 10−3 s. However, the actual critical time steps are governed by the eigenvalue problem
employing the lumped mass matrix. For p = 2 and p = 3, the corresponding values are ωmax = 297.93 rad/s and
ωmax = 280.11 rad/s, and ∆tcri t = 6.71 × 10−3 s and ∆tcri t = 7.14 × 10−3 s. Thus, the finally used time steps are
again ∆t = 6.5 × 10−3 s for p = 2, and ∆t = 7 × 10−3 s for p = 3.

In conclusion, the predictor multi-corrector scheme is shown to drastically improve the spatial accuracy for
higher-order bases while preserving the computational architecture of explicit algorithms. The associated additional
cost is directly proportional to the conducted corrector passes rc. In agreement with [41], the obtained results
indicate that 2–3 corrector passes are sufficient for most practical applications. Generally, such a moderate number
of corrector passes pays off since the classical central difference scheme requires much finer meshes to attain the
same accuracy.

7. Industrial example

The effectiveness of the proposed methodology in analyzing real-world applications will be demonstrated in the
following. To this end, we investigate a steering knuckle1 with complex geometry and detailed features. The model
configuration with Neumann and Dirichlet boundary conditions is depicted in Fig. 33. The surface loads of p1 = 2
N/mm2, p2 = 1 N/mm2, and p3 = 0.3 N/mm2 act in inward-pointing normal direction on the Neumann boundaries
ΓN ,1, ΓN ,2, and ΓN ,3. Homogeneous Dirichlet conditions are enforced on ΓD,1 with a penalty factor of β = 1010

N/mm3. Approximately 1000 boundary triangles parameterize each trimmed knot span domain in order to evaluate
the constant terms of the moment fitting equation (see Eq. (36)). The point distribution factor is initialized with
γ = 2. For all simulations performed, E = 2.1 × 105 N/mm2 and ν = 0.3 define the linear elastic material. To
assess the performance of the proposed method, the relative error in total strain energy is computed according to

ēr =

√
|U h − U re f |

U re f
, (50)

where U re f is the total strain energy of a FE reference model with 3 million linear tetrahedral elements and U h is the
total strain energy associated with the trimmed B-Spline domain. Fig. 34(a) plots the relative error ēr for different
quadratic B-Spline discretizations produced by h-refinement. Furthermore, the exact and reduced quadrature rules
related to the target spaces L

2p
r−1, L2p−1

r−1 , and L
2p−2
r−1 (see Section 3.1.1) are applied to all full knot spans, and their

1 CAD model of steering knuckle is taken from: https://grabcad.com/library/steering-knuckle-rh-1. Designer: Rushikesh Kulkarni.
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Fig. 34. Steering Knuckle: Relative error in internal energy ēr (a) over knot span edge length h and (b) number of integration points.
Comparison between exact and reduced quadrature rules for full knot spans. Quadratic basis functions are employed.

performances are compared. The decomposition algorithm presented in Section 3.1.2 is employed to construct the
necessary tensor product domains. Note that all computational models are created automatically and without manual
interventions, such as defeaturing the CAD geometry etc. Fig. 34(a) reveals that second-order accuracy is achieved
regardless of the quadrature rule used. For the coarsest mesh with h = 30 mm, the results are identical since all
active knot spans are trimmed. However, as the mesh is refined, the ratio between full and trimmed knot spans
increases steadily. The finest discretization (h = 3 mm) depicted in Fig. 35 contains 7847 full and 10 243 trimmed
knot spans. In this example, exact integration (L4

0) reduces the average number of integration points per full knot
span from nq = 27 to nq = 13.1. Using first- and second-order reduced quadrature rules associated with the target
spaces L3

0 and L2
0 further reduces these numbers to nq = 5.3 and nq = 2.5, respectively. Since the moment fitting

equation is assembled with only m = (p + 1)3 moment fitting bases (see Section 3.2.1), the point elimination
algorithm presented in Section 3.2.3 converges to approximately nq = 27 integration points per trimmed knot span.
For some trimmed domains, the predefined moment fitting residual of δ = 10−10 is even achieved with nq < 27.
Thus, the average number of quadrature points per trimmed knot span aggregates to nq = 26.9. In conjunction with
a second-order reduced integration scheme for all full knot spans, the global number of quadrature points per knot
span decreases from nq = 27 to nq = 16.3 while attaining the same degree of accuracy. Note that the saving in
quadrature points will be even more pronounced when the mesh is finer or, in general, for geometries where the
volume to surface ratio is larger.

In Fig. 34(b), the accuracy in internal energy with respect to the number of quadrature points is compared to
a classical FE model. The associated tetrahedral meshes are also automatically generated without defeaturing the
detailed CAD geometry for a fair comparison. Due to the quadratic basis functions used for the trimmed B-Spline
solid, the internal energy corresponding to the FE model is expected to converge slower regarding the number of
elements. In fact, to achieve similar accuracy as the finest B-Spline mesh with 18 090 knot spans, the FE model
requires approximately 2 million elements. However, since higher-order elements, and especially trimmed higher-
order elements, usually require more complex quadrature rules, predicting the accuracy with respect to the number
of integration points is less obvious. Note that the number of integration points in the FE model is equivalent to
the number of elements, since a single Gauss point exactly evaluates linear tetrahedral elements. Fig. 34(b) shows
that the FE model requires significantly more quadrature points than the proposed approach to achieve the same
accuracy in internal energy. Even if knot span-wise Gaussian quadrature is applied to all full knot spans within the
B-Spline solid, the difference is remarkable. In comparison to the finest B-Spline discretization (h = 3 mm), the FE
model requires around 4 times more integration points. This discrepancy can be further increased by using exact
and reduced generalized Gaussian quadrature rules. When second-order reduced quadrature schemes are employed,
the FE model requires approximately 7 times more integration points. Fig. 36 shows the deformed CAD geometry
and compares it to the FE reference model with 3 million elements. For the finest discretization studied, the relative
error of the maximum displacement is <1% with 18 090 active knot spans.
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Fig. 35. Steering Knuckle: Active knot spans and integration points for finest discretization studied with h = 3 mm.

Fig. 36. Steering Knuckle: (a) comparison FE analysis to (b) proposed method. Deformed and undeformed CAD geometry with color
mapping in Rhinoceros 3D. Displacements are given in [mm]. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

The results suggest that the proposed approach requires fewer elements and quadrature points than traditional
low-order finite element methods to achieve the same degree of accuracy. However, the higher polynomial degree
and continuity of the B-Spline bases entail more computationally intensive operations when assembling and solving
the system of equations. Note that this is not a peculiarity of the present approach but a common side effect of
isogeometric methods. On the one hand, the cost to build the system matrices increases for higher polynomial
degrees. On the other hand, the efficiency of direct and iterative solvers may be affected by the higher continuities
of the basis functions [97,98]. Generally, the computational overhead of both assembly and solution per degree of
freedom increases drastically for higher polynomial degrees. However, since we use only low to moderate values
of p, the associated additional cost is still modest. Moreover, compared to the linear FE model, the same accuracy
is achieved with 12-times fewer degrees of freedom, which counteracts the extra effort mentioned. Based on the
work presented in [99], a more detailed estimation of the actual cost of the simulation is presented in Appendix C.
We compare the most refined B-Spline discretization to the FE model that achieves similar accuracy. It is shown
that despite the presence of ill-conditioned system matrices due to trimming, the overall cost for this particular
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example can be estimated to be comparable to the FE simulation. Moreover, an outlook on explicit solvers is
given in Appendix C.3, demonstrating that the proposed approach allows for a drastically larger critical time step.
Compared to linear FEM, ∆tcri t is shown to increase by a factor of 45.

8. Conclusion and outlook

This publication presents a complete workflow for direct analysis of solid B-Rep models from the initial design
in CAD to the visualization of simulation results in CAD. A key feature is that the geometric boundary is defined
as the trimming surface of a uniform trivariate B-Spline cuboid. The newly developed method features highly
efficient quadrature rules that drastically reduce the number of integration points compared to classical embedded
boundary methods. As a result, our approach is characterized by fast matrix formations for static and implicit
dynamic simulations. Moreover, the proposed method achieves practically feasible critical explicit time steps despite
arbitrarily small trimmed knot spans/elements, which traditional embedded techniques on C0 continuous domains
cannot guarantee. Finally, the developed quadrature rules can be applied in explicit dynamic simulations, where
function evaluations at each integration point are the predominant cost. The key building blocks tailored to achieve
these objectives are summarized below.

• Efficient and robust integration of

– trimmed knot spans:
For each trimmed knot span domain, we solved the linearized moment fitting equation for the weights of
the integration points and optimized their locations during the execution of a point elimination algorithm.
A new solution strategy was developed to set an upper bound on the final number of quadrature points.
The proposed implementation resorts to a non-negative least squares solver, which inherently ensures
positive defined weights and also drastically reduces the number of required elimination loops. Regardless
of the polynomial degree, the algorithm converged to nq = (p+1)3 quadrature points per trimmed domain
after the first iteration. Depending on the prescribed maximum residual of the least squares problem,
further iterations may be performed, leading to a final set of points with nq < (p + 1)3.

– full knot spans:
To leverage the higher continuity of the B-Spline bases, generalized Gaussian quadrature schemes were
employed, which are superior to knot span-wise Gaussian quadrature. Exact and reduced integration
schemes were constructed from precomputed quadrature rules associated with the B-Spline target spaces
L

2p
r−1, and L

2p−1
r−1 . We developed a novel decomposition algorithm to enable their application to non-tensor

product domains. In all simulations performed, the reduced integration associated with the target space
L

2p−1
r−1 maintained the accuracy of full Gaussian quadrature while achieving another significant efficiency

gain compared to the exact rules corresponding to L
2p
r−1.

Moreover, we continued the discussion started in [49] and studied second-order reduced quadrature
schemes derived from L

2p−2
r−1 . The corresponding error arising from reduced integration was bounded by

the discretization error for linear static examples, as predicted in [49]. Moreover, optimal convergence
rates were attained for the relative error in the first natural frequency of an elastic rod but were not
maintained for an elastic cube. In addition, rank insufficient mass matrices were observed in some cases.
When applying mass lumping in conjunction with second-order reduced quadrature schemes, negative
defined or singular matrices lead to infeasible results in most examples. In contrast, quadrature rules
associated with L

2p−1
r−1 were stable even when mass lumping was applied and provided the same accuracy

as exact integration.

To demonstrate the potential of the proposed method, quadratic B-Splines were applied to a detailed and
complex industrial example, where nq = 27 quadrature points per trimmed knot span and nq = 2.5 per full
knot span were sufficient to achieve optimal convergence in the energy norm.

• Practically feasible critical explicit time step:
We showed that the critical explicit time step becomes independent of the trimming operations when non-open
knot vectors in conjunction with C1 continuous (or higher) basis functions are employed. If open knot vectors
are used, trimming must be applied exclusively at intermediate knot spans in order to allow efficient explicit
dynamic simulations.
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• Increased spatial accuracy of the lumped mass matrix for higher-order bases:
Even if an exact integration scheme is applied, it is known that mass lumping (e.g., by row summation) limits
the accuracy of the calculated natural frequencies to second-order, regardless of the polynomial degree. A
predictor multi-corrector scheme was successfully adopted to trimmed B-Spline solids and has proven to be
an effective remedy to improve the accuracy of explicit transient analyses significantly.

Future work will focus on local mesh refinement and the representation of discontinuities within smooth patches.
The developed integration schemes combined with the presented practical approach to bound the critical time step
to feasible values open the door for efficient explicit dynamic simulations. However, stabilization schemes for
light-control points may need to be considered for large-scale applications, which will require further investigation.
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Appendix A. Minimal boundary representation: STL

This section shall give a brief overview of the STL file format and its beneficial properties exploited in this work.
The STL is a prominent data format for exchanging geometric information between CAD and analysis. An STL
model is a minimal boundary representation, as it is limited to the essential information. Since several innovative
processes such as rapid prototyping and 3D printing rely on STL models, their construction from classical NURBS-
based B-Rep models is a standard feature of modern CAD programs. At the core of this process is a tessellation
algorithm generating the boundary triangles. Besides the triangle’s vertices, the STL also stores a normal vector,
pointing in outward direction of the geometry.

The accuracy of the final geometry represented by the STL can be determined by a number of different
parameters, such as the maximum aspect ratio and the maximum/minimum edge length of the triangles. However,
unlike the classical FEM, the proposed method does not impose high requirements on the mesh quality. Since it is
not used to discretize the field variables but solely serves as the delimitation of the integration domains, the aspect
ratio does not affect the overall solution. Furthermore, a general upper bound for the edge length of the triangles does
not necessarily need to be enforced either. In fact, the only goal regarding the quality of the boundary tessellation
is to represent the original B-Rep model accurately. This objective can be achieved with a single parameter: the
chordal tolerance or chordal deviation, which controls the maximum distance between the surface mesh and the
exact geometric boundary. If the chordal tolerance is the only constraint on the tessellation algorithm, relatively flat
or straight regions will be discretized with large triangles, and small elements will emerge at curved surfaces, sharp
corners and edges. Thus, very efficient boundary representations with high accuracy are achieved. For example,
a simple cube can be exactly represented with only twelve elements. At the same time, the cylinder depicted in
Fig. 1 requires a higher density of elements at the curved boundaries. In any case, the entire process can be fully
automated. Fig. A.37 plots the relative error in the volume over the number of respective boundary triangles for the
cylinder just mentioned. The corresponding error is defined according to

ev =
|V ST L

− V e
|

V e
, (A.1)

where V ST L is the volume computed based on the STL representation and V e is the exact volume of the cylinder. In
this example, a quadratic convergence rate is achieved, considering the relative error ev and the number of triangles
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Fig. A.37. Relative error in volume over the number of triangles in the STL model.

within the STL mesh. This is not meant as a representative study with general applicability but rather to give an
approximate idea of the feasible accuracy. Since a boundary mesh is sufficient, fewer elements can achieve higher
accuracy compared to standard FEM, which inevitably requires a volumetric mesh. Moreover, an extremely fine
boundary description may slow down required preprocessing operations but does not influence the actual simulation
time due to the decoupling of the geometric description and the discretization of the field variables.

Appendix B. Second-order reduced quadrature rules for C p−1 continuous splines

Table B.3
Quadrature points corresponding to the target space L2

0.

nks Position Weight nks Position Weight

1 0.211324865405187 0.500000000000000 2 0.166666666666666 0.375000000000000
0.788675134594812 0.500000000000000 0.500000000000000 0.250000000000000
– – 0.833333333333333 0.375000000000000

3 0.111111111111111 0.250000000000000 4 0.083333333333333 0.187500000000000
0.375774001250011 0.250000000000000 0.305555555555555 0.241071428571428
0.624225998749988 0.250000000000000 0.500000000000000 0.142857142857142
0.888888888888888 0.250000000000000 0.694444444444444 0.241071428571428
– – 0.916666666666666 0.187500000000000

5 0.066666666666666 0.150000000000000 6 0.055555555555555 0.125000000000000
0.244444444444444 0.192857142857142 0.203703703703703 0.160714285714285
0.424121308936067 0.157142857142857 0.368686868686868 0.166208791208791
0.575878691063932 0.157142857142857 0.500000000000000 0.096153846153845
0.755555555555555 0.192857142857142 0.631313131313131 0.166208791208791
0.933333333333333 0.150000000000000 0.796296296296296 0.160714285714285
– – 0.944444444444444 0.125000000000000

(continued on next page)
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Table B.3 (continued).

nks Position Weight nks Position Weight

7 0.047619047619047 0.107142857142857 8 0.041666666666666 0.093750000000000
0.174603174603174 0.137755102040816 0.152777777777777 0.120535714285713
0.316017316017316 0.142464678178963 0.276515151515151 0.124656593406593
0.445731404374050 0.112637362637362 0.401422764227642 0.124975218080888
0.554268595625950 0.112637362637362 0.500000000000000 0.072164948453608
0.683982683982683 0.142464678178963 0.598577235772357 0.124975218080888
0.825396825396825 0.137755102040816 0.723484848484848 0.124656593406593
0.952380952380952 0.107142857142857 0.847222222222222 0.120535714285713
– – 0.958333333333333 0.093750000000000

9 0.037037037037037 0.083333333333333 10 0.033333333333333 0.075000000000000
0.135802469135802 0.107142857142857 0.122222222222222 0.096428571428571
0.245791245791245 0.110805860805860 0.221212121212121 0.099725274725274
0.356820234869015 0.111089082738567 0.321138211382113 0.099980174464710
0.457787206903364 0.087628865979381 0.421132897603485 0.099998576066526
0.542212793096636 0.087628865979381 0.500000000000000 0.057734806629834
0.643179765130984 0.111089082738567 0.578867102396514 0.099998576066526
0.754208754208754 0.110805860805860 0.678861788617886 0.099980174464710
0.864197530864197 0.107142857142857 0.778787878787878 0.099725274725274
0.962962962962963 0.083333333333333 0.877777777777777 0.096428571428571
– – 0.966666666666666 0.075000000000000

In the following, the second-order reduced quadrature rules for uniform C p−1 continuous splines are provided.
Tables B.3, B.4, B.5 list the respective integration points for the numerical integration of quadratic, cubic, and
quartic basis functions. The positions and weights are computed with a relative error of <10−15.

Table B.4
Quadrature points corresponding to the target space L4

1.

nks Position Weight nks Position Weight

1 0.112701665379257 0.277777777777777 2 0.084001595740497 0.204166185672590
0.500000000000000 0.444444444444445 0.353667436436311 0.295833814327409
0.887298334620742 0.277777777777777 0.646332563563688 0.295833814327409
– – 0.915998404259502 0.204166185672590

3 0.055307959538964 0.134383670129083 4 0.042302270496914 0.102836135188702
0.232008127012760 0.190719210529352 0.178540270746367 0.151209936088574
0.410698113579587 0.174897119341563 0.335067537628327 0.165363166232140
0.589301886420412 0.174897119341563 0.500000000000000 0.161181524981165
0.767991872987239 0.190719210529352 0.664932462371672 0.165363166232140
0.944692040461035 0.134383670129083 0.821459729253632 0.151209936088574
– – 0.957697729503086 0.102836135188702

5 0.033825647049692 0.082228488484279 6 0.028201513664609 0.068557423459134
0.142739413107186 0.120781740225645 0.119026847164245 0.100806624059049
0.267383546533899 0.131305988133937 0.223378358418885 0.110242110821427
0.393434348254817 0.112350449822804 0.333469112711755 0.107894565719166
0.500000000000000 0.106666666666667 0.444444801812292 0.112499275941222
0.606565651745182 0.112350449822804 0.555555198187707 0.112499275941222
0.732616453466100 0.131305988133937 0.666530887288244 0.107894565719166
0.857260586892813 0.120781740225645 0.776621641581114 0.110242110821427
0.966174352950307 0.082228488484279 0.880973152835755 0.100806624059049
– – 0.971798486335390 0.068557423459134

7 0.024172701827349 0.058763445397266 8 0.021151135248457 0.051418067594351
0.102022872988446 0.086405398333432 0.089270135373183 0.075604968044287

(continued on next page)
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Table B.4 (continued).

nks Position Weight nks Position Weight

0.191466170226540 0.094491808034350 0.167533768814163 0.082681583116070
0.285521376837719 0.091484077091862 0.250101839718338 0.080920941088586
0.378383847551573 0.091689963236568 0.333333646037763 0.084374547320314
0.461048573830697 0.077165307906519 0.416666711318236 0.084374909580740
0.538951426169302 0.077165307906519 0.500000000000000 0.081249966511299
0.621616152448426 0.091689963236568 0.583333288681763 0.084374909580740
0.714478623162281 0.091484077091862 0.666666353962236 0.084374547320314
0.808533829773459 0.094491808034350 0.749898160281661 0.080920941088586
0.897977127011553 0.086405398333432 0.832466231185836 0.082681583116070
0.975827298172650 0.058763445397266 0.910729864626816 0.075604968044287
– – 0.978848864751543 0.051418067594351

9 0.018801009109739 0.045704948972756 10 0.016920908198765 0.041134454075480
0.079351231442830 0.067204416039366 0.071416108298547 0.060483974435429
0.148918905612590 0.073494740547618 0.134027015051331 0.066145266492856
0.222306384934177 0.071909111681224 0.200081471774670 0.064736752870869
0.296241798312773 0.074889092297216 0.266666916830210 0.067499637856251
0.369983340610217 0.074427408306718 0.333333369054589 0.067499927664592
0.440686894185870 0.062740652525469 0.400000004121687 0.064999986604520
0.500000000000000 0.059259259259259 0.466666666666667 0.067499999999999
0.559313105814129 0.062740652525469 0.533333333333332 0.067499999999999
0.630016659389782 0.074427408306718 0.599999995878313 0.064999986604520
0.703758201687226 0.074889092297216 0.666666630945410 0.067499927664592
0.777693615065822 0.071909111681224 0.733333083169789 0.067499637856251
0.851081094387409 0.073494740547618 0.799918528225329 0.064736752870869
0.920648768557169 0.067204416039366 0.865972984948668 0.066145266492856
0.981198990890260 0.045704948972756 0.928583891701453 0.060483974435429
– – 0.983079091801234 0.041134454075480

Table B.5
Quadrature points corresponding to the target space L6

2.

nk Position Weight nk Position Weight

1 0.069431844202971 0.173927422568723 2 0.046212737218260 0.115024181444676
0.330009478207568 0.326072577431276 0.213797850600020 0.203072613437833
0.669990521792431 0.326072577431276 0.413962200649005 0.181903205117489
0.930568155797028 0.173927422568723 0.586037799350994 0.181903205117489
– – 0.786202149399979 0.203072613437833
– – 0.953787262781739 0.115024181444676

3 0.032509212332345 0.080935503234345 4 0.024674350061534 0.061435702093655
0.150617986025161 0.143497669038852 0.114388066516855 0.109125580973741
0.294914900084714 0.137136269815659 0.225696248333799 0.109440065519939
0.429193875888645 0.138430557911142 0.338034400421371 0.117618543966108
0.570806124111354 0.138430557911142 0.451622850188173 0.102380107446554
0.705085099915285 0.137136269815659 0.548377149811826 0.102380107446554
0.849382013974838 0.143497669038852 0.661965599578628 0.117618543966108
0.967490787667655 0.080935503234345 0.774303751666200 0.109440065519939
– – 0.885611933483144 0.109125580973741
– – 0.975325649938465 0.061435702093655

5 0.019796220904766 0.049291039978813 6 0.016508606164153 0.041105385951518
0.091787579286592 0.087594474874909 0.076547082893084 0.073056382382853
0.181541216020813 0.089204170945074 0.151495324087457 0.074702389409214
0.274797052289731 0.098993104267740 0.229972811622965 0.083636771294890
0.371943037927439 0.090194507546743 0.313018298389042 0.079318952819677
0.456885245389880 0.084722702386718 0.391207050914918 0.079501094709966

(continued on next page)
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Table B.5 (continued).

nk Position Weight nk Position Weight

0.543114754610120 0.084722702386718 0.467553762645136 0.068679023431878
0.628056962072560 0.090194507546743 0.532446237354863 0.068679023431878
0.725202947710268 0.098993104267740 0.608792949085081 0.079501094709966
0.818458783979186 0.089204170945074 0.686981701610957 0.079318952819677
0.908212420713407 0.087594474874909 0.770027188377034 0.083636771294890
0.980203779095233 0.049291039978813 0.848504675912542 0.074702389409214
– – 0.923452917106915 0.073056382382853
– – 0.983491393835846 0.041105385951518

7 0.014152764059326 0.035239541651249 8 0.012384225491674 0.030835997499107
0.065624147934996 0.062632886080504 0.057423850693207 0.054806665556838
0.129898953088507 0.064110618987887 0.113671692274629 0.056114474224266
0.197332988106867 0.071940415673692 0.172713533232678 0.063003575169824
0.269035732180605 0.069122133946639 0.235572849776790 0.060747103491937
0.338420711069781 0.071627956854866 0.296849601057879 0.063533327687617
0.408333520242371 0.064746706239499 0.359592609050278 0.059762992256298
0.469180175658879 0.060579740565660 0.418373312590155 0.059670136789748
0.530819824341120 0.060579740565660 0.475657800642327 0.051525727324360
0.591666479757629 0.064746706239499 0.524342199357672 0.051525727324360
0.661579288930218 0.071627956854866 0.581626687409844 0.059670136789748
0.730964267819394 0.069122133946639 0.640407390949721 0.059762992256298
0.802667011893132 0.071940415673692 0.703150398942120 0.063533327687617
0.870101046911492 0.064110618987887 0.764427150223209 0.060747103491937
0.934375852065003 0.062632886080504 0.827286466767321 0.063003575169824
0.985847235940673 0.035239541651249 0.886328307725370 0.056114474224266
– – 0.942576149306792 0.054806665556838
– – 0.987615774508326 0.030835997499107

9 0.011008325205230 0.027410088865353 10 0.009907520963014 0.024669150989656
0.051044032467356 0.048717683543367 0.045939767391172 0.043846061941698
0.101043770058877 0.049883498131122 0.090939906667056 0.044896047319972
0.153533718064065 0.056015674884574 0.138182744190679 0.050416940709795
0.209435701838085 0.054057750384956 0.188500673590387 0.048665699900945
0.264032718441349 0.056670800869697 0.237667301043392 0.051048534167829
0.320210113857124 0.054003404171116 0.288322679569029 0.048814929863247
0.374297895841799 0.055749470152259 0.337453272587259 0.050861702245569
0.428695931786807 0.050371508064125 0.387667015672957 0.047821735608030
0.476028082276644 0.047120120933427 0.434697333269080 0.047737938026192
0.523971917723355 0.047120120933427 0.480525931013719 0.041221259227061
0.571304068213192 0.050371508064125 0.519474068986280 0.041221259227061
0.625702104158200 0.055749470152259 0.565302666730919 0.047737938026192
0.679789886142875 0.054003404171116 0.612332984327042 0.047821735608030
0.735967281558651 0.056670800869697 0.662546727412740 0.050861702245569
0.790564298161914 0.054057750384956 0.711677320430971 0.048814929863247
0.846466281935934 0.056015674884574 0.762332698956608 0.051048534167829
0.898956229941122 0.049883498131122 0.811499326409612 0.048665699900945
0.948955967532643 0.048717683543367 0.861817255809320 0.050416940709795
0.988991674794769 0.027410088865353 0.909060093332943 0.044896047319972
– – 0.954060232608827 0.043846061941698
– – 0.990092479036985 0.024669150989656

Appendix C. Comparison of estimated costs between trimmed trivariate IGA and traditional FEM

This section provides an estimation of the total computational cost associated with the trimmed B-Spline and
FE models presented in Section 7. Note that the corresponding figures are not intended for a rigorous comparison
but to give an insight into the simulation times, independent of the solver implementation. We are interested in the
computational effort to obtain results of the same quality. To this end, the finest B-Spline discretization (h = 3 mm)
is compared with the corresponding linear FE model that achieves a similar relative error in total strain energy ēr .
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Table C.6
Representative numbers of the trimmed B-Spline model and the linear FE model.

ēr p ndofs n̂dofs nq nnz

IGA
(
C p−1) 6.9 × 10−2 2 9.2 × 104 81 3.1 × 105 (L3

0) 2.6 × 107

FEM
(
C0) 7.7 × 10−2 1 1.1 × 106 12 1.9 × 106 4.5 × 107

Table C.6 lists the error in strain energy ēr , the polynomial degree p, the total number of degrees of freedom ndofs,
the degrees of freedom per element/ knot span n̂dofs, the number of quadrature points nq, and the number of non-zero
entries of the sparse system matrices nnz for both models. In the following, we estimate the cost required to build
and solve the system matrices for linear elasticity problems and give an outlook for explicit dynamic simulations.

C.1. Matrix formation

The predominant cost of constructing the system matrices results from the matrix multiplications of BTCBdet
( J)w, where B denotes the B-operator and C is the constitutive tensor of linear elasticity. In three dimensions, B
and C are of size [6 × n̂dofs] and [6 × 6], respectively. If the above product is performed from right to left

11 n̂2
dofs + 72 n̂dofs (C.1)

floating point operations (flops) are required [99]. Since BTCBdet( J)w is evaluated at each quadrature point,
the total cost adds up to 2.4×1010 flops (IGA) and 4.7×109 flops (FEM). Note that the difference is less than one
order of magnitude. Nevertheless, the additional cost to perform the required matrix formation must be considered,
especially for large values of p, since n̂dofs = 3(p + 1)3 yields a complexity of O(p6).

C.2. Solution of linear systems of equations

It is known that continuous basis functions such as B-Splines and NURBS can affect the efficiency of linear
solvers [97,98]. The authors in [97] compare the cost of direct solvers for systems of equations associated with
C0 and C p−1 B-Spline spaces. The corresponding complexity for the entire solution process is estimated to be
O(ndofs p6

+ n2
dofs) for C0 basis functions and O(n2

dofs p3) for C p−1 continuous bases. Consequently, for large ndofs,
the solution of C p−1 is p3 times more expensive compared to C0. Therefore, given the same number of degrees
of freedom, a C p−1 B-Spline space can slow down the solution process. However, Table C.6 shows that the FEM
model requires 12-times more degrees of freedom to achieve the same level of accuracy, which relativizes the above
statement for the discussed example.

A similar study on the performance of iterative solvers in the context of IGA is presented in [98]. The most
expensive operation associated with iterative solvers is the necessary matrix–vector product in each iteration. Its
computational cost is proportional to the number of non-zero entries nnz in the sparse system matrices [98]. Note
that the FE model contains almost 2-times more non-zero entries than the trimmed IGA model. This indicates that
the proposed approach can achieve simulation times similar to those obtained with conventional FE tools, even
when the additional cost of preconditioners (see Section 4) is taken into account.

C.3. Explicit algorithms

Although the discussed example is linear static, a brief outlook for explicit dynamics shall be given. We assume
that both models produce results of similar accuracy also in a dynamic simulation. If the first-order derivatives are
pre-evaluated and stored at each quadrature point, the prevailing cost of the explicit solver can be attributed to the
calculation of BTCBûdet( J)w, where û is the local displacement vector [99]. The required number of flops per
time iteration is given as

13n̂dofs + 19. (C.2)

Consequently, the evaluation of (C.2) at all quadrature points requires 3.3 × 108 flops (IGA) and 3.3 × 108 flops
(FEM). Accordingly, the cost per time step of the FEM model and the B-Spline model is identical. However, due to
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the uniform mesh and the C p−1 continuous basis functions, the proposed method is distinguished by a significantly
larger critical time step ∆tcri t . Section 6.3.2 shows that ∆tcri t is practically independent of the trimming operations.
In fact, ∆tcri t is reduced below the values of a uniform hexahedral mesh with the same element length. Therefore,
we assume that the classical time step estimation for hexahedral elements provides a conservative lower bound for
the ∆tcri t of the B-Spline discretization. Thus, we predict the critical time step with ∆tcri t = clc, where lc is the
characteristic length of the smallest element in the mesh and c is a constant. The same equation can be applied
to the tetrahedral mesh. While the characteristic length of the B-Spline mesh is lc = 3 mm, the tetrahedral mesh
contains elements with lc < 0.065 mm, demanding a drastically smaller critical time step. Note that even the largest
tetrahedron has a characteristic length of lc < 2 mm.
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A B S T R A C T

Embedded and immersed methods have become essential tools in computational mechanics,
as they allow discretizing arbitrarily complex geometries without the need for boundary-fitted
meshes. One of their main challenges is the accurate numerical integration of cut elements.
Among the various integration schemes developed for this purpose, moment fitting has proven
to be a powerful technique that provides highly efficient and accurate integration rules.

This publication presents a framework for the robust and efficient numerical integration
of embedded solids described by oriented boundary meshes using moment fitting. The devel-
opments include an intersection algorithm that aims to drastically accelerate the computation
of the necessary moments while achieving high accuracy. A closed surface parameterization
of each cut domain is computed to facilitate the direct application of the divergence theorem.
The algorithm is subject to a single quality criterion that guarantees the accurate evaluation of
boundary integrals. At the same time, it allows to disregard classical mesh criteria, such as high
aspect ratios, strongly varying angles, etc., resulting in extremely fast runtimes. In addition, an
existing robust flood fill-based element classification scheme is further developed to initiate
filling from arbitrary seed elements and to enable parallel execution, increasing its flexibility
and efficiency.

The successful application of all proposed algorithms to 4948 valid and flawed STLs from the
Thingi10K database (Zhou and Jacobson, 2016) demonstrates their extraordinary robustness.
In all cases, the wall-clock time scales at most linearly with the number of elements in the
background mesh. We show that higher-order quadrature rules on the boundary elements enable
efficient computation of the moments via the divergence theorem with near-machine precision.
Finally, the presented methodologies are used to perform direct FE analyses on clean and flawed
B-Rep models. All proposed algorithms are publicly available in the open-source C++ framework
QuESo – Quadrature for Embedded Solids (https://github.com/manuelmessmer/QuESo), where
the moment fitting equations are assembled and solved.
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1. Introduction

Numerical integration plays a vital role in various scientific and engineering fields. In the particular case of the Finite Element
Method (FEM), quadrature rules are used to evaluate the weak formulation of the underlying Partial Differential Equation (PDE).
Since each finite element is classically mapped to a standardized subspace, the positions and weights of the integration points
are known a priori. Thus, the quadrature rules can be tabulated for each element when a boundary-fitted discretization explicitly
describes the integration domain. However, the generation of such boundary-fitted models for arbitrarily complex geometries is,
until today, a delicate problem. In state-of-the-art development pipelines, FE discretizations are usually derived from explicitly
defined geometries described by Non-Uniform Rational B-Splines (NURBS). This process, known as meshing, is time-consuming,
error-prone, and often requires manual interventions. To circumvent the undesirable model conversion, Hughes et al. introduced
the Isogeometric Analysis (IGA), which allows FE analyses to be performed directly on the exact NURBS-based geometries [1,2].
However, the so-called Boundary Representation (B-Rep) of three-dimensional shapes used in modern CAD software poses severe
challenges for analyzing solids by isogeometric methods. Since volumes are exclusively described by their bounding faces, a suitable
volumetric function space must still be created during preprocessing. Embedded and immersed boundary methods provide a generic
approach for discretizing complex domains and have, therefore, become increasingly important in the isogeometric community,
among other fields.

Their main philosophy is to solve PDEs on a simple computational mesh, i.e., a regular grid, often also referred to as background
mesh, where the geometric boundaries are allowed to intersect elements. Prominent examples are the eXtended Finite Element
Method (XFEM) [3], the Cut Finite Element Method (CutFEM) [4,5], the Aggregated Finite Element Method (AgFEM) [6,7], IGA of
trimmed Non-Uniform Rational B-Spline (NURBS) patches [8–10], and the Finite Cell Method (FCM) [11,12]. These technologies,
recently reviewed in [13], represent the geometry not explicitly by a boundary-fitted discretization but implicitly by integrating
discontinuous functions along the interface. The main challenge is that the discontinuity’s location, topology, and geometry can be
arbitrary, preventing the use of classical quadrature rules. To this end, it is essential for embedded or immersed boundary methods
to construct appropriate integration schemes automatically and without user interaction as fast and robustly as possible.

A common approach is subdividing cut elements in order to decompose and simplify the given integrals. In many applications,
tessellation algorithms [14–18] or space trees, i.e., quadtree in 2D, and octree in 3D, [12,19,20] are applied for this purpose.
However, due to the low-order approximation of the geometry, the number of integration points may be unnecessarily high.
Adaptive space trees can reduce the number of points by Boolean operations [21,22] or merging of subcells [23]. In [24], the
octree is equipped with a node relocation algorithm and a specific mapping scheme to increase its flexibility and improve the
quadrature rule’s efficiency. Other approaches retain the original integration domain but modify the integrand accounting for
appearing discontinuities [25,26]. The works in [27,28] successfully apply the divergence theorem to reduce the dimension of
the respective integral by one. Another method, which is characterized by highly efficient quadrature rules, involves the solution of
the moment fitting equations [29–31]. The main idea is to optimize a set of integration points based on known reference integrals.
Challenges that arise during the assembly and solution of the moment fitting equations have been an active area of research over
the past decade. One problem is the strong nonlinear dependency on the location of integration points. The authors in [32] address
this issue with an optimization strategy approximating the nonlinear solution. To drastically simplify the system of equations, [30]
suggests predefining the locations of the integration points a priori. In addition, point elimination may be employed to find the best
points from a discrete set [31,33]. Applying a Non-Negative-Least-Square (NNLS) solver guarantees positive defined weights [34,35].
In [36], the concept of point elimination is coupled with the NNLS achieving 𝑛𝑞 ≤ (𝑝 + 1)3 quadrature points with positive weights
and locations restricted to the material domain for arbitrarily cut three-dimensional elements. Nevertheless, regardless of the chosen
solution technique, the quality of the integrated moments determines the overall accuracy. Technically, each previously mentioned
quadrature scheme is also a potential candidate for evaluating the moment fitting basis functions. Due to the simplicity of these bases,
other methods have also gained increasing attention. The authors in [37] utilize Lasserre’s theorem to reduce the integral dimension,
simplifying the integration of homogeneous functions over convex polygons or polytopes. The divergence theorem may be applied for
the same purpose, expanding this concept to arbitrarily shaped domains [38,39]. Since the moment fitting bases are known and well-
defined, also their anti-derivatives are available, rendering the divergence theorem an ideal tool for the computation of the moments.
However, its application to embedded methods, as in [40], requires a suitable surface parameterization for each cut element, which
must be computed through Boolean operations. Since this is a complex task, it is usually outsourced to available computational
geometry libraries, e.g., CGAL [41], OpenCascade [42], or GTS [43]. However, these libraries aim at general algorithms with a wide
range of applications. They are not specifically designed for the intersection between one geometrical boundary and thousands or
millions of background elements. Therefore, the geometrical operations can quickly become the bottleneck in the entire simulation
pipeline. Moreover, most algorithms only accept watertight (closed) geometries, which in many cases, are not available.

This work presents a framework for the robust and efficient numerical integration of embedded B-Reps. The developments involve
a clipping and intersection algorithm tailored to efficiently assemble the moment fitting equations using the divergence theorem.
We do not aim at a novel solution strategy for the moment fitting equations but at the accurate computation of the moments,
which is a crucial step in all moment fitting methods. In particular, the focus lies on the necessary geometrical operations. The
algorithm is designed to work with arbitrarily complex geometries described by oriented boundary meshes, e.g., STereoLithography
(STL) meshes, which can be retrieved from any CAD program. We assume that each integration domain (element) is a rectangular
cuboid, corresponding to the standard discretization used in classical embedded methods. Note that this does not only include 𝐶0
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continuous background meshes but also higher continuous function spaces defined by trivariate B-Splines [44,45]. In contrast to the
intersection algorithm recently proposed in [46], our implementation does not target a volumetric representation of the cut domain
through, e.g., polytopes. Instead, the core idea is to drastically accelerate required geometrical operations by providing only the
absolute minimum information needed for the application of the divergence theorem. This is realized by computing a closed surface
mesh for each cut element, which is completely free of unnecessary and computationally intensive quality requirements. Since the
mesh is solely used for integration purposes, high aspect ratios, hanging or duplicated vertices, zero-area triangles, etc., do not cause
errors or limit accuracy. The algorithm is subject to a single quality measure based on known solutions of the divergence theorem,
which ensures an accurate evaluation of the boundary integrals. The second important development concerns the classification of
the background discretization into interior, exterior, and cut elements. We extend the robust cell classification scheme developed
in [47] for solid geometries containing cavities. In addition, the algorithm is further improved to allow its execution in a parallel
environment, resulting in substantial runtime reductions.

All algorithms presented in this paper are verified by implementation in C++ and are available to the interested reader in
a coherent library called QuESo [48] (Quadrature for Embedded Solids). QuESo combines the new developments with the point
elimination algorithm proposed in [36] to solve the moment fitting equations for highly efficient and accurate quadrature rules.
The result is a complete preprocessing framework from the initial design represented as STL to an analysis-ready embedded FE
model. For a subsequent FE analysis, only the background mesh and a set of integration points are passed to the FE solver. This
renders the integration of QuESo into existing simulation software very easy.

An overview of the paper at hand is given in the following.

• Section 2 discusses the fundamentals of embedded boundary methods.
• Section 3 summarizes a state-of-the-art approach to construct efficient quadrature rules for arbitrarily shaped domains by

means of moment fitting.
• Section 4 introduces the notation and functions used in our pseudo-codes.
• Section 5 presents the proposed embedding pipeline for the fast and robust integration of volumetric B-Rep models.
• Section 6 demonstrates the potential of the proposed workflow. A comparison with classical octree integration and the results

of an extensive robustness and efficiency analysis are presented. Moreover, the proposed framework is used to perform direct
FE analysis of valid and flawed geometries.

• Section 7 concludes the present work.

2. Embedded methods

Let 𝛺 ∈ R3 be the physical domain in which a set of PDEs shall be approximated. The boundary of 𝛺 is denoted as 𝛤 = 𝜕𝛺,
which is split into a Dirichlet boundary 𝛤𝐷 and a Neumann boundary 𝛤𝑁 , such that 𝛤𝐷 ∪ 𝛤𝑁 = 𝛤 and 𝛤𝐷 ∩ 𝛤𝑁 = ∅. The core idea
of traditional embedded methods is to discretize 𝛺 by means of an unfitted background partition  bg. Reducing the meshing effort
to an absolute minimum,  bg is classically defined by a simple grid-based discretization with hexahedral elements/cells  ∈  bg.
Consequently, if domain 𝛺 is embedded in  bg, cut cells cut are inevitable. For uncut cells, a distinction is made between interiorin and exterior cells out . The active subset of  bg is defined as  =  bg ⧵  out . This publication aims to provide a framework for
the efficient construction of quadrature rules based on 𝛤 as the only input. In particular, we assume that 𝛤 is given as an oriented
surface mesh, i.e., an STL, which is a common scenario in industrial and scientific workflows.

Classically, the weak form of the finite element formulation contains bulk and surface terms. Due to their definition as piecewise
polynomials, these terms must be evaluated in a cell-wise decomposition. Considering the background mesh  , the integrals over
the domain 𝛺 take the following well-known form

∫𝛺(⋅) d𝛺 =
∑
∈ ∫∩𝛺

(⋅) d𝛺. (1)

Since the faces and, thus, the individual integration domains of 𝛤 do not coincide with the boundaries of  ∈  , the corresponding
integrals are also performed in a cell-wise decomposition

∫𝛤𝛽 (⋅) d𝛤 =
∑
∈

∑
𝐹𝛽∈𝛤𝛽

∫𝐹𝛽∩(⋅) d𝛤 , 𝛽 ∈ {𝐷,𝑁}, (2)

where 𝐹𝐷 and 𝐹𝑁 are the Dirichlet and Neumann boundary conditions defined on 𝛤𝐷 and 𝛤𝑁 , respectively. Since in = in ∩ 𝛺
always holds, the integration of all in ∈  in Eq. (1) is straightforward, and standard Gauss quadrature schemes can be applied.
However, the evaluation of cut ∩𝛺 requires more sophisticated strategies. The next section outlines the basic steps to convert the
respective volume integral to a surface integral over 𝜕(cut ∩𝛺). Section 5 presents the main algorithm that performs all necessary
geometrical operations to obtain 𝜕(cut ∩𝛺) (required for Eq. (1)) and 𝛤 ∩cut (required for Eq. (2)).

3. Construction of efficient quadrature rules for arbitrarily cut domains

The common difficulty of most embedded and immersed methods is the accurate integration of arbitrarily cut domains. In this
section, we outline a state-of-the-art approach to construct efficient quadrature rules and emphasize the necessary inputs required
for this method.
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3.1. Moment fitting

The moment fitting method is a powerful tool for finding a set of optimized integration points based on known reference integrals.
Given the physical domain 𝛺c = cut ∩𝛺, its classical form can be stated as

⎡⎢⎢⎢⎣

𝑓1(𝒙1) ⋯ 𝑓1(𝒙𝑛q )
⋮ ⋱ ⋮

𝑓𝑚(𝒙1) ⋯ 𝑓𝑚(𝒙𝑛q )

⎤⎥⎥⎥⎦

⎡⎢⎢⎣

𝑤1
⋮

𝑤𝑛q

⎤⎥⎥⎦
=
⎡⎢⎢⎢⎣

∫𝛺c
𝑓1(𝒙) d𝛺
⋮

∫𝛺c
𝑓𝑚(𝒙) d𝛺

⎤⎥⎥⎥⎦
, (3)

where 𝒙𝑖 and 𝑤𝑖 are each point’s distinct positions and weights, and 𝑓𝑗 are the moment fitting basis functions. The integrals on the
right-hand side of Eq. (3) are called the moments or the constant terms of the moment fitting equations. Generally, any set of linearly
independent functions that is capable of representing the target integrand may be used as moment fitting bases. However, orthogonal
bases, e.g., Legendre polynomials, are often preferred over monomials due to better conditioning of Eq. (3) [31,36,40]. Since the
moment fitting equations are highly nonlinearly dependent on the positions 𝒙𝑖, Eq. (3) is classically linearized by defining the
locations of the integration points a priori [30,39,49]. Consequently, Eq. (3) transforms into a linear system of equations, which only
depends on the integration weights 𝑤𝑖. The authors in [50] show that Lagrange polynomials through Gauss–Legendre points achieve
a diagonal moment fitting matrix, which circumvents having to solve Eq. (3). A point elimination algorithm may be employed to
find the most suitable point locations from a predefined discrete set [31,33]. Moreover, a Non-Negative Least Square (NNLS) solver
inherently guarantees positively defined weights without additional feasibility constraints [34,51]. In [36], the point elimination
algorithm presented in [31,33] is combined with the proposed NNLS solver and successfully applied to three-dimensional domains.
It is shown that accurate quadrature rules can be constructed for arbitrarily cut elements with 𝑛𝑞 ≤ (𝑝+1)𝑑 quadrature points, where
𝑝 denotes the polynomial degree of the basis functions, and 𝑑 is the dimension of the integration space. In addition, all integration
weights are positive, and point locations are restricted to the material domain, which is advantageous in the presence of geometric
and material nonlinearities [32,35]. These results are obtained using a tensor product of functions as the moment fitting bases. The
function space is defined as

𝑭 = {𝑓𝑗 (𝒙) = 𝐿𝑟(𝑥)𝐿𝑠(𝑦)𝐿𝑡(𝑧); 𝑟, 𝑠, 𝑡 = 0, 1, 2,… , 𝑝}, (4)

where 𝐿𝑟 is the 𝑟th Legendre polynomial.
This brief overview aims to give a glimpse of the diversity of existing moment fitting methods, providing quadrature rules with

distinct properties that fulfill the needs of varying applications. However, regardless of the solution strategy used for Eq. (3), the
accuracy of the final quadrature rule is always limited by the quality of the computed moments. Thus, this work provides a framework
to robustly and accurately evaluate the moments over arbitrarily complex cut domains that can be combined with any moment fitting method.
In the following, we use the moment fitting scheme presented in [36] to demonstrate the potential of the proposed developments.

3.2. Computation of the moments

As discussed in the previous subsection, different solution strategies involving the moment fitting equations are available
to achieve highly efficient and accurate integration points. Nevertheless, when explicitly defined B-Reps are considered, the
computation of the moments can quickly become the bottleneck in the entire process. Generally, all available integration schemes
that can deal with discontinuous functions are potential candidates for the assembly of the right-hand side in Eq. (3) [52]. However,
most of these methods rely on a spatial refinement or tessellation of the B-Rep, which often negates the advantages of embedded
methods. In this work’s scope, we hence employ the divergence theorem to transform the necessary volume integrals into surface
integrals [38–40]

∫𝛺c

𝑓𝑗 (𝒙) d𝛺 = ∫𝛺c

∇ ⋅ 𝒈𝑗 (𝒙) d𝛺 = ∫𝛤c 𝒈𝑗 (𝒙) ⋅ 𝒏(𝒙) d𝛤 , (5)

where 𝒏 denotes the outward pointing unit normal on the boundary 𝛤c = 𝜕𝛺c. For the anti-derivatives 𝒈𝑗 , we adopt the notation
from [39]

𝒈𝑗 (𝒙) =
1
3

⎡⎢⎢⎢⎢⎣

∫ 𝑓𝑗 (𝒙) d𝑥∫ 𝑓𝑗 (𝒙) d𝑦∫ 𝑓𝑗 (𝒙) d𝑧

⎤⎥⎥⎥⎥⎦
. (6)

As a result, Eqs. (5)–(6) allow the integration of 𝑓𝑗 over 𝛺 without the need for a spatial refinement or tessellation of the
three-dimensional domain.

3.3. Application to B-Reps

Since Eq. (5) only contains boundary integrals, it is predestined for evaluating domains enclosed by a B-Rep model. Assuming
the boundary parameterization 𝛤c is available as an oriented triangle mesh, i.e., STL, Eq. (5) may be evaluated by

∫𝛺c

𝑓𝑗 (𝒙) d𝛺 =
∑
𝒇∈𝛤c

∫𝒇 𝒈𝑗 (𝒙) ⋅ 𝒏(𝒙) d𝛤 , (7)
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with 𝒇 denoting a triangular face. However, the evaluation of Eq. (7) requires a closed surface parameterization of each cut domain
𝛤c = 𝜕(cut ∩𝛺). To this end, Section 5 presents an efficient intersection algorithm tailored to the Boolean operations between an
arbitrarily complex surface mesh and a bounding box (cell/element).

4. Definitions and notation

This section introduces the notation and basic functions used in the following. Generally, we define a set 𝑨 as 𝑨 = {𝑎, 𝑏, 𝑐},
whose 𝑖th element can be accessed by 𝑨𝑖. The indices of 𝑨 range from 0 ≤ 𝑖 < 𝑛. All algorithmic functions and variables are written
as Functions() and Variables. Some of the rudimentary functions used in the upcoming pseudo-codes are listed and briefly described
in the following:

• InitializeSet(𝑛, 𝑐): Creates a set of size 𝑛 with all values equal to 𝑐.
• Range(0, 𝑛): Returns a sequence of numbers from 0 to 𝑛 − 1.
• 𝑨[𝑖]: Returns the 𝑖th element contained in 𝑨.
• Size(𝑨): Returns the number of elements contained in 𝑨.
• Last(𝑨): Returns the last element contained in 𝑨.
• Append(𝑨,𝑩): Returns 𝑨 ∪ 𝑩.
• Zip(𝑨,𝑩): Returns {{𝐴0, 𝐵0}, {𝐴1, 𝐵1}, .., {𝐴𝑛−1, 𝐵𝑛−1}}.
• Verts(𝑮): Returns all vertices contained in 𝑮.
• Faces(𝑮): Returns all faces, e.g., triangles, contained in 𝑮.

5. Embedding of B-Reps

In the following, we present the core algorithms tailored to a fast and robust numerical integration of solids described in boundary
representation. These developments aim to facilitate the direct application of the divergence theorem for the assembly of the moment
fitting equations. Therefore, the algorithm is designed to provide reliable results for any solid geometry model that exists as an
oriented surface mesh, e.g., STereoLithography (STL). These models may represent arbitrarily complex geometries, where hundreds
or even tens of thousands of triangles intersect with one background cell cut ∈  bg. Furthermore, the embedding workflow is
robust against flaws commonly present in B-Rep models, such as duplicate geometrical entities, gaps, wrong orientations, etc. We
explicitly refer to [47] for a concise definition of flaws.

As discussed in Section 2, embedded methods are characterized by a very simple discretization, which in most cases takes the
form of a regular grid. This is true for classical 𝐶0 discretizations [11,12] but also for B-Spline bases [45]. Thus, in the following,
we assume a background discretization composed of hexahedral elements/cells and consider each cell  ∈  bg as an Axis-Aligned
Bounding Box (AABB). This property is exploited to simplify and speed up the overall process. Rotational transformations may be
applied if the background mesh  bg is not strictly axis-aligned. Algorithm 1 outlines the general workflow. Based on 𝛤 = 𝜕𝛺, each
cell  is classified as cut cut , interior in, or exterior out , see Line 3. The developed scheme is designed to provide robust results
even for severely flawed geometries. For all cut ∈  bg, the input STL 𝛤 is clipped against the corresponding bounding boxes (Line
6). The resulting mesh 𝛤c,⊂ = cut ∩ 𝛤 can be used directly to impose essential boundary conditions, see Eq. (2). Subsequently,
Line 8 triangulates all open faces to obtain a closed surface parameterization 𝛤c = 𝜕(cut ∩𝛺) for the evaluation of the moments in
Eq. (7). Fig. 1 visualizes this process for an exemplary cut cell.

Algorithm 1: Proposed workflow.

Input: 𝛤 : Geometry boundary,  bg: Background mesh
1: function Main(𝛤 ,  bg)
2:  ← BuildAABBTree(𝛤 ) ⊳ See: Section 5.1.
3:  ← ClassifyCells( ,  bg) ⊳ See: Section 5.2.
4: for all {, 𝑠} ∈ Zip( bg, ) do
5: if 𝑠 is 𝑠cut then ⊳  = cut .
6: 𝛤c,⊂ ← ClipBoundary(,  ) ⊳ See: Section 5.3.
7: c ← BuildAABBTree(𝛤c,⊂) ⊳ See: Section 5.1.
8: 𝛤c ← CloseDomain(, c) ⊳ See: Section 5.4.
9: 𝑲 ← ComputeMoments( 𝛤c ) ⊳ See: Eq. (7).

10: ...
11: else if 𝑠 is 𝑠in then ⊳  = in.
12: ...
13: end if
14: end for
15: end function
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Fig. 1. Main steps required for the embedding of cut cells: (1.) Clip boundary and (2.) close domain. The depicted STL is taken from the Thingi10K database
(id: 69 930) [53].

The presented algorithms are implemented and provided in the open-source framework QuESo - Quadrature for Embedded
Solids [48]. QuESo is written in C++ and has a user-friendly Python interface for easy integration with other software packages.
The novel embedding technologies are coupled with the point elimination algorithm developed in [36] to compute highly efficient
quadrature rules for arbitrarily complex domains. Thus, QuESo provides a complete and automated workflow for generating analysis-
ready FE models from solids in boundary representation. The resulting model is available as a list of integration points and the
corresponding unfitted background discretization (e.g., classical 𝐶0 discretization or B-Spline mesh), which can be imported into
any FE solver. An interface to the open-source framework Kratos Multiphysics [54–56] is provided in [48]. Before Sections 5.2–
5.5 present the key developments of this work, we discuss in Section 5.1 all required basic geometrical operations and search
strategies that are inevitable for an efficient implementation. Note that the core functions of the presented algorithms are exclusively
rudimentary operations for linear triangles, allowing for a simple data structure and straightforward implementation.

5.1. Search strategy and basic geometrical algorithms

To efficiently process large STL models with potentially millions of faces, a fast search algorithm is required. In the scope of this
work, we use a dynamic Bounding Volume Hierarchy (BVH) [57] with AABBs as its primitives. Such AABB trees are often used in
game engines for collision detection, as they allow fast intersection and distance queries against a set of geometric objects. In our
application, the AABB tree  is built for each triangle 𝒇 in the input STL 𝛤 (see Algorithm 1, Line 2). However, the tree  does not
store the triangle itself but only the AABB that bounds the triangle. These AABBs represent the leaf nodes, which are hierarchically
clustered by possibly several layers of branch nodes. The idea is that each branch node is again a simple AABB that contains all its
children. Therefore, potential intersection candidates between any geometrical object and the triangle mesh can be determined by
testing the geometrical object against a few AABBs by walking from the root node to the respective leaves. As a result, the actual
intersection test between the query object and a triangle has to be performed only for a small fraction of all 𝒇 ∈ 𝛤 suggested by
the conservative tree search. We use the implementation provided in [58] and equip the AABB tree with functions to quickly find
all 𝒇 ∈ 𝛤 that are potentially intersected by an AABB or a ray. Thus, the necessary geometrical operations are:

• Intersection query between AABB-AABB: Trivial operation.
• Intersection query between Ray-AABB: Standard algorithm in computer graphics and game development [57,59].

A subsequent exact intersection test requires the following methods:

• Intersection query between AABB-Triangle: Can be performed using the Seperating Axis Theorem (SAT) [57,60].
• Intersection query between Ray-Triangle: This operation can be performed using the Möller–Trumbore (MT) algorithm [61].

Another necessary geometrical operation used in the work is:

• Clip triangle against AABB: We use a specialization of the Sutherland–Hodgman polygon clipping algorithm for axis-aligned
planes, which is performed six times for each planar face of the AABB [57,62].

5.2. Classification of cells

The first step in traditional embedded boundary methods is classifying cells/elements as cut cut , interior in, or exterior out .
Generally, cells fully contained within the physical domain 𝛺 can be integrated by standard Gauss quadrature, whereas cut cells
require more sophisticated strategies, see Section 3.

Most embedded methods classify each cell based on the point membership of discrete seed points distributed throughout the cell.
While for Constructive Solid Geometry (CSG) models, the necessary inside/outside queries for each point are inherently given by the
model description, this task is much more involved for solids explicitly defined in boundary representation. Classically, ray tracing
methods are employed where the number of intersections of each ray with the geometrical boundary decides the classification of



Computer Methods in Applied Mechanics and Engineering 419 (2024) 116670

7

M. Meßmer et al.

Fig. 2. Limitations of standard flood fill-based cell classification schemes.

the examined point [63]. This approach works robustly on B-Reps, which are an orientable 2-manifold without a boundary. Such
models are often loosely termed valid, watertight, or closed B-Reps. Nevertheless, ray-tracing approaches are unfavorable for flawed
geometries, which only seemingly describe a solid and are non-watertight, wrongly oriented, or contain internal boundaries. For
example, a small gap represents such an internal boundary for which the point membership can no longer be uniquely determined
using a single ray probe. The number of intersections of the ray with the domain’s boundary now depends on the direction of the
ray. Moreover, potential misclassifications are not limited to the vicinity of the geometrical flaw but can occur in the entire domain.
This dramatically affects the robustness of the simulation workflow. In fact, a single cell outside the physical domain, which is
falsely classified as inside, can lead to an infeasible FE discretization. Majority voting based on multiple rays is a common approach
to significantly reduce the likelihood of such misclassifications. However, this entails expensive schemes whose cost scales linearly
with the number of ray tests carried out, which, in turn, is directly determined by the desired degree of robustness. We note that
an inaccurate integration of cut cells due to geometric flaws is less severe because it is a local error that does not necessarily lead
to an unsolvable system. Therefore, a robust cell classification scheme is the basis for a universally applicable embedding workflow
that can handle erroneous geometries.

A major step towards this goal is presented in [47], employing a flood fill algorithm. Generally, given a multi-dimensional array,
flood fill algorithms can determine all objects that are connected to a given starting object and match a certain attribute. Typical
applications are image processing tools, which change the color of a similarly-colored area of adjacent pixels. For more information
on flood fill algorithms, the interested reader is referred to [64]. In [47], flood filling is used to group connected cells that are located
inside or outside the domain. Since cells are classified as a group rather than individually, misclassification of cells that are not in
immediate proximity to geometric flaws is avoided. Technically, flood fill-based schemes combined with a triangle-cell intersection
query can provide robust cell classifications without a single cast ray. However, this requires flooding to be initiated from a seed
cell whose membership must be known. Since this information decides the classification of the entire group, it is imperative that it
is correct. Therefore, flooding is usually started from a cell outside the domain, e.g., a corner cell of  bg, while cut cells serve as
delimitations. Consequently, all unvisited cells are assumed to be inside. This approach, however, prevents the detection of cavities
or regions enclosed by a concave domain, as illustrated in Fig. 2.

The presented algorithm is inspired by the flood fill-based classification scheme proposed in [47] and is further developed in
such a way that flooding can be initiated from any seed cell without prior knowledge of its membership. We aim to combine the
advantages of flood filling and ray casting to achieve an efficient and generally applicable cell classification algorithm. The novel
classification approach has the following characteristics:

• Interior and exterior cells are first grouped and then classified, whereby multiple groups are allowed.
• Local ray tracing, which only operates on a very small section of the boundary 𝛤 , is performed to automatically classify each

group.
• An incorrect classification of cells, which are not in immediate proximity to the geometric flaw, is excluded.
• Robust results for any kind of geometrical features, including cavities, as depicted in Fig. 2.
• Wall-clock times scale linearly with the number of cells in  bg.

Algorithm 2 outlines the necessary operations. First, Lines 4–10 identify all cut cells cut ∈  bg using Algorithm 3. The Separating
Axis Theorem employed in our implementation allows the detection of all possible intersection patterns, including arbitrarily small
cuts, see Section 5.1. All potentially intersected triangles  pot are obtained from an AABB tree query, see Algorithm 3, Line 2. Thus,
the exact triangle-AABB intersection test is only performed for a minimal set of triangles, decreasing the execution time drastically.
If at least one triangle is intersected, the cell is classified as cut 𝑠 = 𝑠cut .

In the following, the cut cells are utilized as a watertight boundary, delimiting interior and exterior cells. Note that the cut cells
will always provide a watertight delimitation as long as there is no gap in the model large enough for the outer and inner cells to
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Algorithm 2: Classify cells.

Input:  : AABB tree (built on 𝛤 ), Background mesh  bg
1: function ClassifyCells( ,  bg)
2:  ← InitializeSet( Size( bg), 𝑠out ); 𝑖 ← 0 ⊳ Initialize all cells as outside.
3: 𝑉 ← InitializeSet( Size( bg), False) ⊳ Initialize all cells as unvisited.
4: for all  ∈  bg do ⊳ Note that  =  bg [𝑖].
5: if IsCut(,  ) then ⊳ See: Algorithm 3.
6:  [𝑖] ← 𝑠cut ⊳ Mark as cut.
7: 𝑉 [𝑖] ← True ⊳ Mark as visited.
8: end if
9: 𝑖 ← 𝑖 + 1

10: end for
11: while ∃𝑉 𝑖 ∈ 𝑉 ∶ (𝑉 𝑖 = False) do ⊳ Repeat until all cells are visited.
12: 𝑖 ← 𝑖 ∶ (𝑉 𝑖 = False) ⊳ Get the index of an unvisited cell.
13:  ← FloodFill(𝑖, , 𝑉 ,  bg) ⊳ See: Fig. 3.
14: end while
15: return 
16: end function

Algorithm 3: Detect whether a cell  is cut or not.

Input: : AABB,  : AABB tree (built on 𝛤 )
1: function IsCut(,  )
2:  pot ← QueryAABBTree(,  ) ⊳ Get potential intersections.
3: for all 𝒇 ∈  pot do
4: if DoIntersct(, 𝒇 ) then ⊳ Test for actual intersection, see Section 5.1.
5: return True
6: end if
7: end for
8: return False
9: end function

be connected by an uncut cell. This is not a severe limitation, however, since gaps are usually due to mathematical inaccuracies
in CAD and are, therefore, rarely large enough for an entire uncut cell to fit through. Once all cut cells are identified, Algorithm
2 repeatedly invokes the flood fill algorithm until all cells are visited. Fig. 3 visualizes this process. Given any unvisited seed cell ≠ cut , the currently active group is extended until all neighbors are either part of the group or cut. Note that we employ a
6-connected or 6-neighbor version in three dimensions [64]. This means neighbors are only considered if they share a face and not
only a vertex. For the algorithm to be generic, the found group must be automatically classified as inside or outside. To this end,
we detect all cells that are part of the active group  and have a neighboring cut cell cut . The main idea is to examine each of
these boundary cells locally, combine the information, and base the final classification of the entire group on a majority vote. The
boundary cells are rated according to the location of their center point 𝒙 relative to the boundary 𝛤 . Algorithm 4 uses ray tracing for
the respective point membership classification. However, this query operates only on a very small section of 𝛤 , which guarantees
a local classification of each boundary cell  ∈  and drastically reduces the potential intersection candidates for each ray 𝒓. To be
more precise, given a cell  ∈ , the boundary 𝛤 is clipped against all its neighboring cut cells cut to obtain 𝛤c,⊂, see Fig. 3. For
a detailed discussion of the respective clipping algorithm, we refer to the next subsection. Before 𝛤c,⊂ is passed to Algorithm 4, a
local AABB tree c is built to allow a quick search for possible intersection candidates.

Note that the classical approach, where the number of intersections between a ray and the boundary determines the point’s
membership, is only valid for closed meshes. Since 𝛤c,⊂ is an open mesh, Algorithm 4 (IsInside()) classifies the query point 𝒙 based
on the orientation of the closest triangle 𝒇 ∈ 𝛤c,⊂ that is intersected by the ray 𝒓. For this purpose, all intersected triangles are
detected and compared based on their distance to 𝒙. To make sure 𝒓 does not miss 𝛤c,⊂ entirely, we initially shoot toward the center
of the first triangle 𝒇 = Faces(𝛤c,⊂)0, see Lines 5–6. Subsequently, all other triangles intersecting with 𝒓 are found. The orientation
of the nearest triangle determines whether 𝒙 ∈ 𝛺 or 𝒙 ∉ 𝛺. Ambiguous results caused by rays falling on the vertex or edge between
two or multiple neighboring triangles are marked as unsuccessful. Triangles that are found to be numerically parallel to 𝒓 are also
not considered. The Möller–Trumbore algorithm recognizes both scenarios. If the current ray is unsuccessful, a new ray towards
the center of the next triangle is cast until only unequivocal intersection states are found. Furthermore, 𝑎min

count allows us to base the
decision about the membership of 𝒙 on multiple rays. If 𝑎min

count > 1, a majority vote decides whether 𝒙 is classified as inside or outside,
see Algorithm 4, Line 10 and Line 14. In this case, multiple rays are shot toward the clipped boundaries 𝛤c,⊂ for each boundary
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Algorithm 4: Point membership classification for open meshes.

Input: 𝒙: Point in 3D, c: AABB tree (built on clipped mesh 𝛤c,⊂)
1: function IsInside(𝒙, c)
2: 𝑖 ← 0; 𝑎count ← 0; 𝑏count ← 0
3:  clip ← Faces(c) ⊳ Get list of triangles of clipped mesh 𝛤c,⊂.
4: while 𝑎count < 𝑎min

count ∧ 𝑖 < Size( clip) do
5: 𝒙𝑐 ← Center(  clip[𝑖])
6: 𝒓 ← Ray(𝒙, 𝒙𝑐 - 𝒙) ⊳ Cast ray through center of  clip[𝑖].
7: {𝑎, 𝑏} ← IsInside(𝒙, 𝑐 , 𝒓) ⊳ 𝑎 = True ↦ successful test. 𝑏 = True ↦ 𝒙 is inside.
8: if a then
9: 𝑎count ← 𝑎count + 1

10: (𝑏) ? (𝑏count ← 𝑏count + 1) ∶ (𝑏count ← 𝑏count − 1)
11: end if
12: 𝑖 ← 𝑖 + 1
13: end while
14: return 𝑏count > 0
15: end function

Input: 𝒙: Point, 𝑐 : AABB tree (built on clipped mesh 𝛤c,⊂), 𝒓: Ray
16: function IsInside(𝒙, 𝑐 , 𝒓)
17:  pot ← QueryAABBTree(𝒓, 𝑐) ⊳ Get potential intersections, see Section 5.1.
18: 𝑑min ← ∞; 𝑏 ← False
19: for all 𝒇 ∈  pot do
20: if DoIntersect(𝒓, 𝒇 ) ∧ ¬AreParallel(𝒓, 𝒇 ) then ⊳ Test for actual intersection, see Section 5.1.
21: if OnTriangleEdge(𝒓, 𝒇 ) then
22: return {False, False} ⊳ Cast new ray.
23: end if
24: 𝑑 ← Distance(𝒓, 𝒇 )
25: if 𝑑 < 𝑑min then
26: 𝑏 ← IsBackFacing(𝒓, 𝒇 ); 𝑑min ← 𝑑
27: end if
28: end if
29: end for
30: return {True, b}
31: end function

cell in the active group . Fig. 3 shows an example of two rays per neighboring cut cell (𝑎min
count = 2). Note that the number of rays

that can be shot is limited by the number of triangles intersected by each cell. Once all boundary cells are locally classified based
on a majority vote of all ray tracing tests, the majority of all cells decides about the classification of the entire group. As discussed
previously, we note that majority voting will also increase the robustness of classical ray tracing, where multiple rays are cast for
each cell individually. The advantages of the proposed scheme over such approaches are listed in the following.

• Rays are only intersected with the clipped mesh 𝛤c,⊂, which covers a small fraction of the global mesh 𝛤 .
• Rays are only cast for boundary cells, see Fig. 3. When the background grid is refined, many cells are classified without a

single ray shot.
• Cells are not individually classified but profit from the information available in the entire group, which might contain thousands

or even millions of cells.

Embedded boundary methods usually rely on cell-wise computations, allowing efficient, embarrassingly parallel implementa-
tions. Since standard flood fill schemes are sequential algorithms, they can quickly become the bottleneck in a parallel execution.
For an efficient implementation, we partition the background grid  bg into 𝑛procs stripes, where 𝑛procs is the number of available
processes. This allows each partition to be flood filled in parallel. Subsequently, the groups from all 𝑛procs partitions are merged and
finally classified. The partitioning is applied along the axis of  bg with the most number of elements. Fig. 4 illustrates the main
steps. Section 6.2 applies the presented classification scheme to 4948 valid and flawed STLs with varying complexity.
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Fig. 3. Main steps of the generalized flood fill-based classification scheme for flawed geometries.

Fig. 4. Partitioned flood fill-based cell classification for parallel implementation. As an example, the algorithm is shown for three available processes 𝑛procs = 3.

5.3. Clip boundary

In the following, we discuss the necessary mesh clipping algorithm to clip the boundary 𝛤 against any cut ∈  bg, see Fig. 1. The
resulting mesh is denoted as 𝛤c,⊂. A main feature of the presented embedding scheme is that the clipping algorithm is utilized to
partition the global mesh 𝛤 into many local sub-meshes 𝛤c,⊂. All subsequent operations in Section 5.4 are designed to rely exclusively
on 𝛤c,⊂, drastically reducing the computational overhead. Furthermore, 𝛤c,⊂ can also be directly used to evaluate surface integrals
for imposing essential boundary conditions (see Eq. (2)).

Algorithm 5 outlines the clipping workflow, taking the bounding box  and the AABB tree  built on 𝛤 as input arguments.
Line 3 determines all intersected triangles using Algorithm 6, which again employs the AABB tree  to accelerate this process. The
query for the intersection between a triangle and the bounding box (Algorithm 6, Line 5) is hence only performed for the potential
candidates suggested by  . Once all intersected triangles are found, Algorithm 5 adds those that are fully contained within  to
the output mesh  out . Since the remaining triangles intersect  but do not lie entirely within , they must cross its boundaries.
Therefore, they are clipped by the six half-spaces that enclose the bounding box. The Sutherland–Hodgam polygon clipping algorithm
introduced in Section 5.1 performs the respective operations. Note that a triangle clipped by a bounding box results in a polygon
with ≤9 vertices. To get a pure triangle mesh again, we triangulate the domain by introducing an additional vertex at the polygon’s
center.

Remark. The clipped mesh 𝛤c,⊂ of cut ∈  bg is the basis for many operations. Thus, Algorithm 5 is listed in several places in this
work for a better understanding, although it is executed only once per cell.
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Algorithm 5: Clip the boundary 𝛤 against a bounding box .

Input: : Bounding box,  : AABB tree (built on 𝛤 )
1: function ClipBoundary(,  )
2:  out ← ∅ ⊳ Initialize empty list of triangles.
3:  int← IntersectedTriangles(,  ) ⊳ See: Algorithm 6.
4: for all 𝒇 ∈  int do
5: if IsInside(𝒇 ,  ) then
6:  out ← Append( out , 𝒇 )
7: else
8:  clip ← Clip(𝒇 , ) ⊳ See: Sutherland-Hodgman algorithm discussed in Section 5.1.
9:  out ← Append( out ,  clip )

10: end if
11: end for
12: return  out
13: end function

Note: IsInside(𝒇 , ) returns True, if all vertices of 𝒇 are inside .

Algorithm 6: Find all intersected triangles.

Input: : Bounding box,  : AABB tree (built on 𝛤 )
1: function IntersectedTriangles(,  )
2:  out ← ∅
3:  pot ← QueryAABBTree(,  ) ⊳ Get potential intersections, see: Section 5.1.
4: for all 𝒇 ∈  pot do
5: if DoIntersct(𝒇 , ) then ⊳ Test for actual intersection, see: Section 5.1.
6:  out ← Append( out , 𝒇 )
7: end if
8: end for
9: return  out

10: end function

5.4. Close domain

Evaluating the boundary integrals in Eq. (7) requires a closed surface parameterization of each cut domain. Therefore, this
section presents a fast and robust triangulation algorithm that allows the direct assembly of the moment fitting equations from
B-Rep models. Given the bounding box  and the clipped boundary 𝛤c,⊂ obtained in Section 5.3, the proposed algorithm outputs a
closed boundary mesh 𝛤c representing the cut domain, as depicted in Fig. 1. To speed up all necessary operations, 𝛤c,⊂ is stored in
a local AABB tree c, which is built in Algorithm 1, Line 7.

Algorithm 7 summarizes the essential steps for generating a closed surface mesh. The main routines CollectEdgesOnPlane(),
CategorizeEdges(), CloseUpperPolyLine(), SplitEdges(), and TriangulateOpenFaces() are performed successively for all six planar faces 𝑷
of the bounding box . Each step is visualized in Figs. 5 and 6 and described individually in the following subsections.

5.4.1. Collect and categorize edges on the plane
As depicted in Fig. 5, we collect all edges on the current planar face 𝒑 ∈ 𝑷 and map them to a local coordinate system

𝒗 = {𝜉, 𝜂} ∈ R2. Subsequently, all edges  are classified according to their normals as upper edges up, lower edges low, or vertical
edges vert , such that

 = up ∪ low ∪ vert , (8)

as shown in Fig. 6(b). Note that edges located on one of the six planar faces can be directly marked in the Sutherland–Hodgman
polygon clipping algorithm since these are the newly introduced ones. Analogously, the required normal vector 𝒏𝜺 can be retrieved
from the respective intersected triangle. For valid faceted B-Reps, all triangles are oriented so that their normals point outward.
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Algorithm 7: Triangulate enclosed domain.

Input: : Bounding box, c: AABB tree (built on clipped mesh 𝛤c,⊂)
1: function CloseDomain(, c)
2: 𝑷 ← BoundingFaces()
3:  clip ← Faces(c) ⊳ Get list of triangles of clipped mesh 𝛤c,⊂.
4:  out ←  clip
5: for all 𝒑 ∈ 𝑷 do ⊳ Do for all six planar faces of bounding box .
6:  ← CollectEdgesOnPlane(𝒑,  clip) ⊳ See: Fig. 6 (a) and Section 5.4.1.
7: [up, low, vert] ← CategorizeEdges() ⊳ See: Fig. 6 (b) and Section 5.4.1.
8: up ← CloseUpperPolyLine(up, low, vert , 𝒑, c) ⊳ See: Fig. 6 (c) and Section 5.4.2.
9: [up, low] ← SplitEdges(up, low, 𝒑) ⊳ See: Fig. 6 (d) and Section 5.4.3.

10:  new ← TriangulateOpenFaces(up, low, 𝒑) ⊳ See: Fig. 6 (e) and Section 5.4.4.
11:  out ← Append( out ,  new)
12: end for
13: return  out
14: end function

Fig. 5. Clip the boundary mesh 𝛤 and collect all edges on the plane 𝒑 ∈ 𝑷 .

5.4.2. Close upper polyline
Figs. 5 and 6(a) reveal that the collected edges do not necessarily represent a closed polyline. In fact, they may enter and exit

the bounding box multiple times, which makes it difficult to tessellate the desired domain. Thus, we aim to close the polyline in
order to enable a simple triangulation. As a first step, this section considers the polyline at the upper boundary of 𝒑 ∈ 𝑷 . Given
the example depicted in Fig. 7, the task is to close the corresponding gaps at 𝜂 = 𝜂max by inserting the dashed red edges.

In the following, {{𝜉min, 𝜂min}, {𝜉max, 𝜂max}} denote the extreme points of 𝒑 ∈ 𝑷 , see Fig. 6(c). As shown in Fig. 7, the edges
𝜺up ∈ up, 𝜺low ∈ low, and 𝜺vert ∈ vert are defined such that

∀
(
𝜺 = {𝒗l, 𝒗r} ∈ up ∪ low

)
∶ (𝜉l < 𝜉r ), and (9)

∀
(
𝜺 = {𝒗l, 𝒗r} ∈ vert

)
∶
⎧⎪⎨⎪⎩

(𝜂l < 𝜂r ), if 𝒏0𝜺 < 0,

(𝜂r < 𝜂l), if 𝒏0𝜺 > 0.
(10)

The main idea is to find the subset  ′ of all vertices () such that

∀𝒗′ ∈  ′ ∶ (𝜂 = 𝜂max), and (11)

∀ (0 ≤ 𝑖 < 𝑛 − 1) ∶
(
𝜉 ∈  ′,𝑖 ≤ 𝜉 ∈  ′,𝑖+1

)
. (12)
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Fig. 6. Illustration of main steps in Algorithm 7: CloseDomain().

Fig. 7. Illustration of main steps in Algorithm 8: CloseUpperPolyline().

Subsequently, we mark each 𝒗′ ∈  ′ as LeftBoundary or RightBoundary and introduce a new edge 𝜺 between every  ′,𝑖 = {𝒗′,
LeftBoundary} that is immediately followed by  ′,𝑖+1 = {𝒗′,RightBoundary}, see Fig. 7. Thereby, the orientation of the connected
edges decides the classification into LeftBoundary or RightBoundary. A detailed discussion of this procedure is provided below.

Given the classified edges up, low, and vert , the corresponding face 𝒑 of , and the local AABB tree c built on the clipped
mesh 𝛤c,⊂, Algorithm 8 performs the necessary operations. Firstly, Lines 4–5 filter all edges ′

up ⊆ up, ′
low ⊆ low, and ′

vert ⊆ vert
that contain exactly one vertex 𝒗′ = {𝜉, 𝜂 = 𝜂max} and sort each subset in ascending order from left to right such that

∀ (0 ≤ 𝑖 < 𝑛 − 1) ∶
⎧⎪⎨⎪⎩

𝜉 ∈ (𝒗 = 𝒗′) ∈ ′,𝑖
𝛽 < 𝜉 ∈ (𝒗 = 𝒗′) ∈ ′,𝑖+1

𝛽 , if 𝒗′ ∈ ′,𝑖
𝛽 ≠ 𝒗′ ∈ ′,𝑖+1

𝛽 ,

𝜉 ∈ (𝒗 ≠ 𝒗′) ∈ ′,𝑖
𝛽 < 𝜉 ∈ (𝒗 ≠ 𝒗′) ∈ ′,𝑖+1

𝛽 , else,
(13)
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Algorithm 8: Close upper polyline.

Input: up: Upper edges, low: Lower edges, vert : Vertical edges, 𝒑: Face of ,
c: AABB tree (built on clipped mesh 𝛤c,⊂)

1: function CloseUpperPolyline(up, low, vert , 𝒑, c)
2:  ′ ← ∅;  ′

corn ← ∅;
3: {{𝜉min, 𝜂min}, {𝜉max, 𝜂max}} ← BoundingBox(𝒑) ⊳ See: Fig. 6 (c).
4: ′

up ← EdgesAtEtaMax(up) ⊳ Find all edges that have exactly one vertex at 𝜂 = 𝜂max.
5: ′

up ← Sort(′
up) ⊳ Sort in ascending order from left to right, see Fig. 7 and Eq. (13).

6: 𝑖up ← 0; 𝑛up ← Size(′
up) ⊳ Repeat operation (Lines 4-6) for low and vert .

7: while 𝑖up < 𝑛up ∨ 𝑖low < 𝑛low ∨ 𝑖vert < 𝑛vert do
8: 𝑑up ← ∞; 𝑑low ← ∞; 𝑑vert ← ∞
9: if 𝑖up < 𝑛up then

10: 𝒗′up ← VertexAtEtaMax(′
up[𝑖up]) ⊳ Get vertex at 𝜂 = 𝜂max.

11: 𝑑up ← 𝒗′up[0] − 𝜉min ⊳ Measure distance to left boundary 𝜉 = 𝜉min.
12: end if ⊳ Repeat operation (Lines 9-12) for 𝒗′low and 𝒗′vert .
13: 𝑑min ← Min(𝑑up, 𝑑low, 𝑑vert)
14: 𝑞up ← (𝑑up = 𝑑min) ⊳ Repeat operation (Line 14) for 𝑞low and 𝑞vert .
15: if 𝑞up + 𝑞low + 𝑞vert > 1 then
16: 𝑖up ← 𝑖up + 𝑞up; 𝑖low ← 𝑖low + 𝑞low; 𝑖vert ← 𝑖vert + 𝑞vert ⊳ Skip edge, if 𝑞up, 𝑞low, or 𝑞vert is True.
17: else if 𝑞up then
18:  ′ ← ClassifyBoundaryVertex( ′, 𝒗′up, ′

up[𝑖up], UpperEdge) ⊳ See: Algorithm 9.
19: 𝑖up ← 𝑖up + 1
20: else if 𝑞low then
21:  ′ ← ClassifyBoundaryVertex( ′, 𝒗′low, ′

low[𝑖low], LowerEdge) ⊳ See: Algorithm 9.
22: 𝑖low ← 𝑖low + 1
23: else if 𝑞vert then
24:  ′ ← ClassifyBoundaryVertex( ′, 𝒗′vert , ′

vert [𝑖vert ], VerticalEdge) ⊳ See: Algorithm 9.
25: 𝑖vert ← 𝑖vert + 1
26: end if
27: end while
28: if {𝜉min, 𝜂max} ∉ (up ∪ low ∪ vert ) then
29:  ′

corn ← Append( ′
corn, {{𝜉min, 𝜂max }, LeftBoundary} ) ⊳ Mark corner vertex as LeftBoundary.

30: end if
31: if {𝜉max, 𝜂max} ∉ (up ∪ low ∪ vert ) then
32:  ′

corn ← Append( ′
corn, {{𝜉max, 𝜂max}, RightBoundary} ) ⊳ Mark corner vertex as RightBoundary.

33: end if
34: up ← InsertEdges(up,  ′,  ′

corn, 𝒑, c) ⊳ See: Algorithm 10.
35: return up
36: end function

with 𝛽 ∈ {up, low, vert}. Consequently, two edges ′,𝑖
𝛽 and ′,𝑖+1

𝛽 are generally sorted by comparing their vertices 𝒗′ ∈ ′,𝑖
𝛽 and

𝒗′ ∈ ′,𝑖+1
𝛽 , as shown in Fig. 7. In the particular case where ′,𝑖

𝛽 and ′,𝑖+1
𝛽 share a vertex at 𝜂max, the two opposite vertices are used.

After the initialization, Algorithm 8 loops over all 𝜺up ∈ ′
up, 𝜺low ∈ ′

low, and 𝜺vert ∈ ′
vert , see Line 7. During each iteration, the

vertices 𝒗′up, 𝒗
′
low, and 𝒗′vert are obtained from the edges 𝜺up, 𝜺low, and 𝜺vert . To ensure the ordering defined in Eq. (12), the vertex

𝒗′ with the shortest distance to the left boundary 𝜉 = 𝜉min is always processed first. In the special case where 𝒗′ is connected to
two differently oriented edges, e.g., 𝒗′up ∈ 𝜺up = 𝒗′low ∈ 𝜺low (see example (a) in Fig. 7), both edges are skipped in Algorithm 8,
Line 16. In all other scenarios, Algorithm 9 (ClassifyBoundaryVertex) classifies 𝒗′ as LeftBoundary or RightBoundary and adds it to
the ordered set  ′. The classification obeys the following simple rules. If 𝜺 = 𝜺up ∨ 𝜺 = 𝜺vert , (𝒗l = 𝒗′) ↦ RightBoundary (Line 5) and
(𝒗r = 𝒗′) ↦ LeftBoundary (Line 7). On the other hand, if 𝜺 = 𝜺low, (𝒗l = 𝒗′) ↦ LeftBoundary (Line 11) and (𝒗r = 𝒗′) ↦ RightBoundary
(Line 13), also see Fig. 7. Note that 𝒗′ may also be connected to two edges with the same orientation (see example (b) in Fig. 7).
In that case, 𝒗′ is added twice to  ′, whereby the ordering defined in Eq. (13) guarantees that 𝒗′ is first added by the edge to its
left and then by the edge to its right.
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Algorithm 9: Classify boundary vertex.

Input:  ′: List of vertices, 𝒗′: Vertex at 𝜂 = 𝜂max, 𝜺: Edge, 𝑡𝑒: Edge type
1: function ClassifyBoundaryVertex( ′, 𝒗′, 𝜺, 𝑡𝑒)
2: {𝒗l, 𝒗r} ← 𝜺
3: if 𝑡𝑒 = UpperEdge ∨ 𝑡𝑒 = VerticalEdge then
4: if 𝒗l = 𝒗′ then
5:  ′ ← Append( ′, {𝒗′, RightBoundary})
6: else if 𝒗r = 𝒗′ then
7:  ′ ← Append( ′, {𝒗′, LeftBoundary})
8: end if
9: else if 𝑡𝑒 = LowerEdge then

10: if 𝒗l = 𝒗′ then
11:  ′ ← Append( ′, {𝒗′, LeftBoundary})
12: else if 𝒗r = 𝒗′ then
13:  ′ ← Append( ′, {𝒗′, RightBoundary})
14: end if
15: end if
16: return  ′

17: end function

Before  ′ is used to introduce new edges to close the upper polyline, as shown in Fig. 7, the two corner points 𝒗′corn = {𝜉min, 𝜂max} ∈
 ′

corn (Algorithm 8, Line 29), and 𝒗′corn = {𝜉max, 𝜂max} ∈  ′
corn (Algorithm 8, Line 32) must also be considered. Note that the corner

points are only introduced when not already contained in up, low, or vert .

Algorithm 10: Insert Edges.

Input: up: List of edges,  ′: List of vertices,  ′
corn: List of corner vertices, 𝒑: Planar face,

c: AABB tree (built on clipped mesh 𝛤c,⊂)
1: function InsertEdges(up,  ′,  ′

corn, 𝒑, c)
2: if  ′ ≠ ∅ then
3:  ′ ← Append( ′

corn[0],  ′,  ′
corn[1])

4: 𝑛 ← Size( ′)
5: for all 𝑖 ∈ Range(0, 𝑛 − 1) do
6: if LeftBoundary ∈  ′[𝑖] ∧ RightBoundary ∈  ′[𝑖 + 1] then
7: up ← Append(up, {𝒗′ ∈  ′[𝑖], 𝒗′ ∈  ′[𝑖 + 1]})
8: end if
9: end for

10: else
11: 𝒗𝑐 ← 0.5 (𝒗′corn ∈  ′

corn[0] + 𝒗′corn ∈  ′
corn[1]) ⊳ Compute center.

12: 𝒙𝑐 ← MapTo3d(𝒗𝑐 , PlaneOffset(𝒑)) ⊳ Map point to 3D space: 𝒗𝑐 ∈ R2 ↦ 𝒙𝑐 ∈ R3.
13: if IsInside(𝒙𝑐 , c) then ⊳ See: Algorithm 4.
14: up ← Append(up, {𝒗′corn ∈  ′

corn[0], 𝒗
′
corn ∈  ′

corn[1]})
15: end if
16: end if
17: return up
18: end function

Subsequently, both  ′ and  ′
corn are passed to Algorithm 10 (InsertEdges). The additional input parameters are the edges up,

the planar face 𝒑, and the local AABB tree c built on the clipped mesh 𝛤c,⊂. If  ′ ≠ ∅, a new edge is introduced between every
LeftBoundary that is immediately followed by a RightBoundary, see Algorithm 10, Line 7. Lines 11–15 account for the case where
no vertex 𝒗′ at 𝜂 = 𝜂max exists. If  ′ = ∅, the only two vertices available are  ′,0

corn and  ′,1
corn. However, since  ′,0

corn and  ′,1
corn are not

connected to any edge, no information about the cut domain is provided. Therefore, the question of whether the edge between  ′,0
corn

and  ′,1
corn is part of 𝛺 is still to be answered. To this end, we test if the midpoint 𝒗c between both corner points  ′,0

corn and  ′,1
corn is

inside or outside 𝛺, see Algorithm 10, Line 13. Consequently, a new edge is only introduced if 𝒗c ∈ 𝛺. Algorithm 4 performs the
necessary point membership classification of 𝒗c.
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5.4.3. Split edges
After modifying the upper polyline to meet the requirements discussed in Section 5.4.2, we split certain edges 𝜺 ∈ up ∪ low to

create simple triangular or quadrilateral domains that can be easily tessellated. During this process, each vertex 𝒗 ∈ low is projected
along 𝜂 onto 𝜺up ∈ up and vice versa, as depicted in Fig. 6(d). If a target edge 𝜺t is found, such that (𝜉l ∈ 𝜺t ) < (𝜉 ∈ 𝒗) < (𝜉r ∈ 𝜺t ), a
new vertex is introduced, and 𝜺t is split accordingly. When multiple edges meet this condition, only the nearest edge is considered.
If no 𝜺t can be found, 𝒗 is skipped, as shown in Fig. 6(d) for the last upper edge on the right.

5.4.4. Triangulate open faces
The last step of Algorithm 7 (CloseDomain()) is the triangulation of all open faces. For each 𝜺up ∈ up, we search for its

corresponding partner 𝜺low ∈ low, such that 𝜉𝑙 ∈ 𝜺low = 𝜉𝑙 ∈ 𝜺up and 𝜉𝑟 ∈ 𝜺low = 𝜉𝑟 ∈ 𝜺up. The vertices  = {𝜺0up, 𝜺
1
up, 𝜺

1
low, 𝜺

0
low}

represent the polygon enclosed by 𝜺up and 𝜺low in clockwise orientation. Note that 𝜺0up and 𝜺0low, or 𝜺1up and 𝜺1low might be identical,
resulting in a triangular region, which can be directly added to 𝛤c. If we do not find a partner edge for 𝜺up, the polygon is given
by  = {𝜺0up, 𝜺

1
up, {𝜉 ∈ 𝜺1up, 𝜂min}, {𝜉 ∈ 𝜺0up, 𝜂min}}. All resulting quadrilateral domains are triangulated based on their center point, as

depicted in Fig. 6(e).

Remark. The computed mesh 𝛤c may contain hanging vertices because each open face on 𝒑 ∈ 𝑷 is tessellated completely
independently. However, since 𝛤c is only used as a parameterization for evaluating Eq. (7), these do not pose a problem or limit
accuracy. The only necessary condition is that 𝛤c is closed. This criterion is ensured in Section 5.5.

5.5. Quality assurance for computed intersections

Since the algorithms presented above rely on inexact arithmetic, slight fluctuations in the floating point operations are inevitable.
In some corner cases, these inaccuracies can lead to unlikely but possible misclassifications, e.g., whether a vertex is classified on
the plane or not. Therefore, in this section, we present a simple but effective approach that dramatically increases the robustness of
our workflow for arbitrary input geometries. In order to improve the accuracy, erroneous results must be detected and corrected.
Thus, Algorithm 1 is extended to guarantee certain quality requirements. Algorithm 11 summarizes the respective improvements.
Line 9 estimates the quality of all computed intersections 𝛤 trial

c using four different error measures to assess if the tessellation of all
open faces of 𝛤c,⊂ was successful. Since 𝛤c is exclusively used to evaluate the divergence theorem in Eq. (7), the results of Eq. (7)
serve as the only indicator for determining a successful triangulation. Note that hanging vertices, high aspect ratios, etc., do not
affect the accuracy of the boundary integrals and are therefore neglected.

Let ℎ(𝒈𝑗 ) be the solution of Eq. (7) integrated over the boundary 𝛤c. Function EstimateQuality() evaluates ℎ(𝒈𝑗 ) for the following
anti-derivatives

𝒈1(𝒙) =
⎡
⎢⎢⎣

𝑥
0
0

⎤
⎥⎥⎦
, 𝒈2(𝒙) =

⎡
⎢⎢⎣

0
𝑦
0

⎤⎥⎥⎦
, 𝒈3(𝒙) =

⎡⎢⎢⎣

0
0
𝑧

⎤⎥⎥⎦
, 𝒈4(𝒙) =

⎡⎢⎢⎣

1
1
1

⎤⎥⎥⎦
. (14)

Since ℎ(𝒈1), ℎ(𝒈2), and ℎ(𝒈3) all compute the volume enclosed by 𝛤c, they must provide the same results. Their respective error
measures 𝑒𝑖 are defined as

𝑒𝑖 =
|ℎ(𝒈𝑖) − ℎ̄|

ℎ̄
, for 1 ≤ 𝑖 ≤ 3, (15)

where

ℎ̄ = 1
3
(
ℎ(𝒈1) + ℎ(𝒈2) + ℎ(𝒈3)

)
. (16)

The constant anti-derivatives 𝒈4 yield a weighted evaluation of all normal vectors 𝒏. Therefore, if 𝛤c is closed, ℎ(𝒈4)
!
= 0. We

estimate the quality of 𝛤c based on the most significant error, as per

𝑞 = Max
(
𝑒1, 𝑒2, 𝑒3, |ℎ(𝒈4)| ∕ 𝐴𝛤c

)
, (17)

where 𝐴𝛤c denotes the surface area of 𝛤c. If 𝑞 is larger than a predefined threshold 𝑞max, the bounding box  is slightly perturbed,
see Algorithm 11, Line 16. We move all six faces (0 ≤ 𝑖 < 6) in the direction 𝒏𝑖 by the value 𝛿𝑖 = 𝑟𝑖 𝛿, with 𝑟𝑖 ∈ {1 .. 100} being a
random number and 𝛿 denoting a small value close to machine precision, e.g., 𝛿 = 10−14. This process is repeated until a surface
parameterization with 𝑞 < 𝑞max is obtained or the maximum number of iterations 𝑖max is reached. When 𝑖 = 𝑖max, the best previous
solution is returned, see Algorithm 11, Lines 13–14.

If flawed and non-watertight geometries are considered, the computed intersections cannot be expected to be closed. In these
cases, boundary meshes with 𝑞 > 𝑞max may also be accepted. We notice that intersections containing geometric flaws may lead to
local integration errors. However, a major advantage is that they can still be evaluated using the divergence theorem in Eq. (7),
while Eq. (17) allows quantifying the associated error. Consequently, depending on the size of 𝑞, it is possible to decide whether to
consider or neglect the corresponding cut element during analysis or even to initiate a recursive subdivision of the domain to further
localize the integration error. Section 6.2 demonstrates the effectiveness of the method introduced in this subsection by assessing
4948 STLs from the Thingi10K database [53].
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Algorithm 11: Proposed workflow with quality assurance.

Input: 𝛤 : Geometry Boundary,  bg: Background mesh
1: function Main(𝛤 ,  bg)
2: ... ⊳ See: Algorithm 1.
3: if 𝑠 is 𝑠cut then ⊳  = cut .
4: 𝛤c ← ∅; 𝑖 ← 0; 𝑞best ← ∞
5: while 𝑖 < 𝑖max do
6: 𝛤c,⊂ ← ClipBoundary(,  ) ⊳ See: Algorithm 5.
7: c ← BuildAABBTree(𝛤c,⊂)
8: 𝛤 trial

c ← CloseDomain(, c) ⊳ See: Algorithm 7.
9: 𝑞 ← EstimateQuality(𝛤 trial

c ) ⊳ See: Eq. (17).
10: if 𝑞 < 𝑞max then
11: 𝛤c ← 𝛤 trial

c
12: break
13: else if 𝑞 < 𝑞best then
14: 𝛤c ← 𝛤 trial

c ; 𝑞best ← 𝑞
15: end if
16:  ← Perturb(); 𝑖 ← 𝑖 + 1
17: end while
18: 𝑲 ← ComputeMoments( 𝛤c ) ⊳ See: Eq. (7).
19: ...
20: else if 𝑠 is 𝑠in then ⊳  = in.
21: ...
22: end if
23: ... ⊳ See: Algorithm 1.
24: end function

6. Numerical experiments

This section demonstrates the potential of the proposed workflow for embedded and immersed boundary methods. Section 6.1
applies the divergence theorem given in Eq. (7) to assemble the moment fitting equations and compares the performance of different
quadrature rules used on the boundary triangles. The presented cell classification, clipping, and intersection algorithms are subjected
to an intensive robustness and performance analysis in Sections 6.2 and 6.3. Finally, the entire framework is utilized to perform
structural analyses of valid and flawed B-Rep models in Section 6.4.

In all numerical examples, comparisons between vertices are performed with a relative snap tolerance 𝛿relsnap = Max(𝑑max𝛿snap,
𝛿snap), where 𝑑max is the largest axis of the bounding box , and 𝛿snap = 10−12. General floating point operations use a zero tolerance
of 𝛿zero = 10−14. The parameters 𝑞max and 𝑖max in Algorithm 11 are set to 𝑞max = 10−5 and 𝑖max = 5. All experiments are conducted
on a local workstation with an Intel(R) Xeon(R) W-2255 CPU @ 3.70 GHz and 96 GB system memory.

6.1. Performance comparison of triangle quadrature rules for the evaluation of boundary integrals

In this section, we study the quality of the computed moments (right-hand side of the moment fitting equations) for four
differently cut cells, as depicted in Fig. 8. The complexities of the respective domains range from a simple tetrahedron in Fig. 8(a) to
clipped miniature figures with detailed features in Fig. 8(d). The main objective is to assess the impact of the quadrature rule used
on the boundary triangles for the assembly of the moment fitting equations. For comparison, the same computation is performed
with a classical octree. Note that our octree implementation does not rely on discrete seed points to detect intersections but uses
the generalized test described in Algorithm 3. We define orthogonal Legendre polynomials as moment fitting bases and construct a
trivariate function space from the tensor product given in Eq. (4).

Fig. 9 plots the relative error in the L2-norm, as per

𝑒𝑟 =
‖𝑲 −𝑲 ref‖L2

‖𝑲 ref‖L2 , (18)

where 𝑲 denotes the right-hand side in Eq. (3) containing all computed moments, and 𝑲 ref is a reference solution. The respective
integrands contain functions of order 0 ≤ 𝑝 ≤ 2, resulting in a vector 𝑲 with 27 entries. According to [36], this is a sufficient
function space to derive accurate quadrature rules for quadratic finite elements. In Fig. 9, 𝑒𝑟 is plotted for increasing refinement
levels while both schemes are tested for a different number of quadrature points per octant or triangle. Each octant is integrated
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Fig. 8. Four differently cut cells with increasing complexity. Cell (d) is intersected by an STL (id: 82 536) from the Thingi10k database.

Fig. 9. Quadratic moments: Relative error (see Eq. (18)) of the moments for integrands of order 0 ≤ 𝑝 ≤ 2 (resulting in 27 functions) and four differently cut
cells (see Fig. 8). Comparison between octree (Oct) and boundary integration (Tri) with different numbers of quadrature points per octant/triangle.

with 2 × 2 × 2, 3 × 3 × 3, or 4 × 4 × 4 Gauss quadrature points. For all cut leaf octants, only the interior points are considered. The
boundary integrals are evaluated with 𝑛tri = 1, 𝑛tri = 3, and 𝑛tri = 6 integration points per triangle [65]. The reference 𝑲 ref results
from an overkill solution with 𝑛 > 106 boundary triangles, each evaluated with 𝑛tri = 12 integration points. To refine the boundary
mesh 𝛤c, we introduce three new vertices at the center of each edge and split the respective triangle into four new sub-triangles.
Note that this does not affect the geometry, and the enclosed domain 𝛺c remains unchanged.

Fig. 9 indicates that the chosen quadrature rule has no significant effect on the accuracy of the integrals for all studied octree
versions. Since the octree delivers only a low-order approximation of the geometrical boundary, this is an expected result. On the
contrary, the accuracy of the boundary integrals strongly depends on the integration scheme. It becomes apparent that increasing
the order of the triangle quadrature rules can significantly improve the rate of convergence of the relative integration error. In some
cases, e.g., in Fig. 9(a) and (b), the boundary integrals with 𝑛tri = 1 produce similar relative errors as the octrees. However, using
𝑛tri = 3 or 𝑛tri = 6 integration points per triangle reduces the maximum error to 𝑒𝑟 = 3.46×10−4 and 𝑒𝑟 = 1.48×10−6. Note that these
are obtained for the initial discretization of the tetrahedral domain, which contains only one single triangle along the cutting plane,
see Fig. 8(a). When the boundary is refined with 𝑛 = 200 triangles, the errors drop to 𝑒𝑟 < 10−5 and 𝑒𝑟 < 10−9. In all other examples,
where more detailed geometries are represented and hence more triangles are involved (Fig. 9(b)–(d)), the maximum relative errors
with 𝑛tri = 3 and 𝑛tri = 6 are 𝑒𝑟 < 3 × 10−5 and 𝑒𝑟 < 1 × 10−11. Fig. 10 shows the respective errors for moment fitting bases of order
0 ≤ 𝑝 ≤ 4, which are suitable to derive quadrature rules for quartic finite elements. Since the function space is more complex, the
errors in the computed moments are slightly larger. However, in all cases, 𝑛 > 200 with 𝑛tri = 6 and 𝑛tri = 12 produces the following
maximum errors 𝑒𝑟 < 10−5 and 𝑒𝑟 < 10−8, respectively.

We conclude that boundary integrals are well suited for accurately integrating the right-hand side of Eq. (3). Since the
corresponding set of integrands contains not only constant but also polynomial functions with 𝑝 > 0, higher-order triangle quadrature
rules can provide better accuracy. It is shown that a suitable quadrature scheme drastically improves the rate of convergence of
the relative integration error. This allows all moments to be calculated with near-machine precision and reasonable computational
effort.
Remark. In this context, a triangle quadrature rule of a certain degree does not necessarily integrate all polynomials of the
same degree exactly. Two factors increase the complexity of the given integral. Firstly, the anti-derivatives in Eq. (6) elevate the
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Fig. 10. Quartic moments: Relative error (see Eq. (18)) of the moments for integrands of order 0 ≤ 𝑝 ≤ 4 (resulting in 125 functions) and four differently cut
cells (see Fig. 8). Comparison between octree (Oct) and boundary integration (Tri) with different numbers of quadrature points per octant/triangle.

Fig. 11. Sample STLs from the Thinki10K database [53] with their respective model ids.

polynomial order by one. Secondly, oblique cuts do not maintain a tensor product space. Hence, the integral along 𝑥 can no longer
be evaluated for 𝑦 and 𝑧 being constant, and vice versa.

6.2. Robustness analysis of cell classification, clipping, and intersection algorithms

For a seamless embedding workflow, the underlying geometrical operations must be reliable and robust. Sections 6.2.1 and 6.2.2
investigate the performance of the proposed methods regarding valid and flawed geometries.

6.2.1. Valid geometries
In the following, the proposed clipping and intersection algorithms are applied to various STLs from the Thingi10K database [53],

similar to the study performed in [46]. To this end, we filter all available solid models by simply typing is solid on the corresponding
web page. Of the 5113 resulting models, 4 are no STLs or could not be parsed into memory. Another 28 STLs are identified as
broken, e.g., containing normals that falsely point inward instead of outward and are hence discarded from the set. To ensure valid
geometries, we also measure each STL’s quality using Eq. (17) and consider only surface meshes with 𝑞 ≤ 10−10. A total of 4948
STLs are recovered, meeting all requirements.

Fig. 11 shows 11 samples from the given set and illustrates their diversity. For the following study, each of the 4948 STLs is
embedded into a background partition  bg with 𝒑min

bg and 𝒑max
bg being its extreme points. Based on the bounding box of the STL

defined by 𝒑min
stl and 𝒑max

stl , we create the background mesh similarly as in [46]. A Cartesian grid is constructed that is approximately
20% larger in each direction (𝑥, 𝑦, 𝑧) than the bounding box of the STL. This ensures that every model contains not only interior and
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Fig. 12. Performance of clipping and intersection algorithms: Relative surface and volume errors (see Eq. (22)) for 4948 STLs from the Thingi10k database [53].

cut cells but also a considerable number of exterior cells. Each of them must be classified and processed correctly. Consequently,
the cell’s edge length ℎ is computed as

ℎ = 1.2 Min
{
Max

{
𝛥𝒑0stl, 𝛥𝒑

1
stl, 𝛥𝒑

2
stl
}

𝑛max ,
Min

{
𝛥𝒑0stl, 𝛥𝒑

1
stl, 𝛥𝒑

2
stl
}

𝑛min

}
, (19)

where

𝛥𝒑stl = 𝒑max
stl − 𝒑min

stl , (20)

and

𝒑min
bg = 𝒑min

stl − 0.1 𝛥𝒑stl, 𝒑max
bg = 𝒑min

bg + ℎ
⌈1.2 𝛥𝒑stl

ℎ

⌉
. (21)

Eqs. (19)–(21) create a background mesh containing at least 𝑛max and 𝑛min elements along the longest and shortest axis of  bg.
To assess the clipping and intersection algorithms, we compute the relative errors in surface area and volume, as per

𝑒𝐴 =
|∑𝐴𝑐 − 𝐴|

𝐴
, 𝑒𝑉 =

|∑𝑉𝑐 − 𝑉 |
𝑉

, (22)

where 𝐴𝑐 is the area of the clipped surface mesh 𝛤c,⊂, and 𝐴 is the area of the input STL 𝛤 . If cell  is inside 𝛺 and uncut ( = in),
𝑉𝑐 is given by the volume of . Whereas, if the cell is cut ( = cut ), 𝑉𝑐 denotes the volume enclosed by 𝛤c. Note that for 𝑉𝑐 and 𝑉 ,
we employ Eq. (7) to compute the respective volumes by integrating over 𝛤c and 𝛤 . Fig. 12 depicts the relative surface and volume
errors for all 4948 STLs studied, where 𝑛min = 5 and 𝑛max = 50. The maximum overall error for 𝑒𝐴 and 𝑒𝑉 is less than 10−10. In
addition, no relation between the number of triangles in the STL and the accuracy can be observed.

These results demonstrate the reliability and robustness of the proposed algorithms for computing clipped domains and
intersections of arbitrary input geometries. Moreover, since the present workflow relies on a preceding classification of cells, Fig. 12
also implies that all cells are correctly classified as interior, exterior, or cut.

6.2.2. Flawed geometries
A second study shall demonstrate the robustness of the proposed cell classification scheme regarding flawed geometries. We

consider the same 4948 STLs processed in Section 6.2.1 but introduce artificial flaws to each of them. When the STLs are parsed
into memory, every 100th triangle is modified to mimic gaps, overlaps, and incorrect orientations. Alternately, the respective triangle
is ignored, added twice, or flipped, resulting in a mesh where 1% of all triangles are erroneous. Note that a triangle is only ignored if
it does not violate the necessary condition of the proposed cell classification scheme. As discussed in Section 5.2, a gap must not be
large enough for an uncut cell to fit through. To meet this requirement, the area of ignored triangles is limited by ≤2ℎ2. An example
of a faulty model is shown in Fig. 13(a), where the modified triangles are highlighted. In the following, the results from Section 6.2.1
obtained from valid geometries are used as references. Fig. 13 compares traditional ray tracing with our proposed cell classification
scheme. Each bar depicts the results for one STL, measuring the number of cells classified incorrectly due to geometrical flaws. All
models where there are no misclassified cells are marked in green, and all others in red. Note that only cells classified originally as
interior or exterior are considered. Cut cells can change their state because the triangle that previously cut them is now missing.
However, these are local errors, which do not affect the solvability of the system, and are therefore accepted in this study. The same
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Fig. 13. Comparison between classical ray tracing and the proposed classification scheme in the presence of flawed geometries for 4948 STLs from the Thingi10K
database [53]. Each bar corresponds to the number of incorrectly classified cells for one STL. The green bars indicate that not a single misclassification is observed.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

is true for evaluating boundary integrals, which may also suffer from gaps, overlaps, and falsely oriented triangles. These additional
local errors are similarly challenging to circumvent but, again, do not necessarily lead to an unsolvable problem. Since a single
exterior cell falsely classified as inside, however, can result in singular system matrices, our primary focus is on correctly classifying
interior and exterior cells.

In Fig. 13(b), classical ray tracing is performed, where a majority vote of five rays decides the membership. The result of each
individual ray is based on the number of intersections with the geometrical boundary. It is worth mentioning that this approach
produces correct classifications for all valid STLs. However, when flaws are introduced to the examined geometries, standard ray
tracing fails entirely. A significant number of misclassifications occur in many models. Fig. 13(c) shows the results for the proposed
cell classification scheme. For a fair comparison, the maximum number of cast rays per cell is also set to 𝑎min

count = 5. However, contrary
to the classical approach, rays are exclusively cast for boundary cells within one flood fill group, as discussed in Section 5.2, leaving
many cells without a single ray test. The computational cost is further reduced by shooting rays toward the local clipped mesh 𝛤c,⊂
instead of the global STL 𝛤 . As shown in Fig. 13(c), all cells in all models are classified correctly despite severely flawed geometries,
demonstrating the robustness of this method.

6.3. Scaling of wall-clock times

Section 6.2 assesses the robustness of the presented embedding workflow. Since we aim not only for a reliable but also an efficient
framework, the wall-clock times of the presented algorithms are studied in the following. For this purpose, the 11 STLs depicted in
Fig. 11 are investigated and compared to a simple cube used as a reference. Table 1 lists the key figures of the respective surface
meshes. Again, we follow the setup suggested in [46], and construct the background mesh  bg for 𝑛max = 𝑛max

0 2𝛽 (see Eqs. (19)–(21))
with 𝑛max

0 = 14. Algorithm 11 is executed for 𝛽 = {0, .., 5}, and the execution times spent on each subtask are measured. Consequently,
up to 448 cells are distributed along the largest axis of  bg. To reduce the influence of external disturbances, we take the average
runtime of 5 simulations. Fig. 14(a)–(b) show the corresponding results for cell classification and intersection. Regardless of the
model size and complexity, linear scaling of wall-clock times is observed as the background mesh is refined in Fig. 14(a). This is an
expected result because the classification scheme is applied to each cell of the background mesh  bg. The intersection algorithm,
however, is applied only to cut cells, resulting in sublinear scaling, see Fig. 14(b). Note that the plotted elapsed times in Fig. 14(b)
account for all operations from Line 4 to Line 17 in Algorithm 11. Since all developments presented in this work are realized in
the open-source framework QuESo, the computed intersection 𝛤c can directly be used to assemble and solve the moment fitting
equations. QuESo solves Eq. (3) during the iterative process of a point elimination algorithm to optimize the weights and the
positions of the integration points. For more information on the used quadrature scheme, the reader is referred to [36]. Fig. 14(c)
plots the corresponding simulation times for quadratic moment fitting bases. We note that the assembly and solution of the moment
fitting equations are more computationally intensive than the intersection of the cut cells. Moreover, increasing the polynomial
degree of the bases will only affect the simulation times in Fig. 14(c), but will not influence the computational effort required for
the classifications and intersections. Fig. 14(d) shows the accumulated wall-clock times. The graphs tend towards a linear scaling, as
the classification of the cells becomes more dominant with an increasing refinement of the background mesh. However, the linear
range is not yet reached even with 100 million cells. Since the cell intersection and moment fitting are only applied to a fraction of
all active cells in  bg, Fig. 15 plots their execution times over the number of cut cells. Now all simulations tend towards an expected
linear scaling.

We conclude that the proposed framework enables a swift model generation for solving PDEs on unfitted background meshes.
This paves the way for a direct CAD-integrated analysis pipeline.
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Table 1
Key figures of the 11 STLs depicted in Fig. 11. The model ids represent the ids in the Thingi10K database [53].
Model id Num faces Num vertices Volume Surface area

37 266 29 472 14 738 68 631.4015 13 112.2210
293 137 292 148 273 280.034 29 490.7155
441 708 112 402 56 203 279 628.299 29 684.9511
551 021 348 128 174 066 19 362.2212 7282.979 87
65 904 157 726 78 869 42 564 245.2 773 637.925
47 076 1532 768 104 370.679 21 864.7523
1 458 688 7736 3844 6568.517 00 5588.699 07
252 119 49 950 24 979 28 004.8858 12 439.2719
82 536 144 024 71 946 18 354.6418 18 682.0280
37 881 3400 1700 8461.643 57 3992.616 28
550 964 6156 3072 989.761 580 1715.987 50
Cube 12 8 1.000 000 00 6.000 000 00

Fig. 14. Wall-clock times spent on different tasks over the number of background cells for 11 STLs from the Thingi10k database [53], see Fig. 11: (a) Classification
of cells. (b) Intersection of cells (contains all operations from Line 4 to Line 17 in Algorithm 11). (c) Assembly and solution of the moment fitting equations.
(d) Total time. The experiment is conducted on a local workstation with an Intel(R) Xeon(R) W-2255 CPU @ 3.70 GHz and 96 GB system memory.

6.4. Finite element analysis of valid and flawed B-Reps

Finally, the proposed embedding workflow is used to solve linear elasticity problems on complex domains defined by faceted
B-Reps. We aim to demonstrate the potential of the proposed methodologies for the solution of PDEs on unfitted background
discretization. Therefore, the model generator QuESo [48] is coupled with the finite element framework Kratos Multiphysics
[54–56]. The underlying workflow looks the following. QuESo reads the STL file, assembles the moment fitting equations according
to Section 5, and constructs highly efficient quadrature rules for each active element in  bg. Using the point elimination algorithm
presented in [36], the number of quadrature points per cut element is bounded by 𝑛𝑞 ≤ (𝑝 + 1)𝑑 , where 𝑝 is the polynomial degree,
and 𝑑 is the space dimension. Consequently, each cut element is evaluated with, at most, the same number of points as suggested by
Gauss quadrature for regular elements. Moreover, all integration points have positive weights and are located within the material
domain. In the next step, the analysis-ready model is passed to Kratos Multiphysics, where the finite element problem is assembled
and solved. Note that the data transfer between QuESo and Kratos is limited to the background mesh  bg and a list of integration
points. In all experiments,  bg is spanned by a trivariate B-Spline domain with a maximum interior knot multiplicity of 𝑘 = 1 and
quadratic basis functions, resulting in a 𝐶1 continuous discretization field. Section 6.4.1 shows results from valid geometries, while
Section 6.4.2 studies flawed geometries.

6.4.1. Valid geometries
Four different STLs from the Thingi10k database, namely the models with ids 441 708, 551 021, 252 119, and 550 964, see Fig. 11,

are subjected to a body force. The material properties of the structures are Young’s modulus 𝐸 = 2 × 105 N/m2 and Poisson’s ratio
𝜈 = 0.3. Models 441 708 and 252 119 are loaded with [0, 0, −10] N/m3, while 551 021 and 550 964 are subjected to [0, 0, −100] N/m3.
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Fig. 15. Wall-clock times spent on different tasks over the number of cut background cells for 11 STLs from the Thingi10k database [53], see Fig. 11: (a)
Intersection of cells (contains all operations from Line 4 to Line 17 in Algorithm 11). (b) Assembly and solution of the moment fitting equations. The experiment
is conducted on a local workstation with an Intel(R) Xeon(R) W-2255 CPU @ 3.70 GHz and 96 GB system memory.

Fig. 16. FE convergence test: Relative error in strain energy for four models from the Thingi10k database [53] subjected to a body force. The unfitted background
mesh  bg is constructed by quadratic 𝐶1 continuous B-Spline bases.

Dirichlet boundary conditions 𝑢̄ = [0, 0, 0] are enforced at their bases using the penalty method with a penalty factor of 𝛽 = 1012
N/m3 for all geometries. Fig. 16 shows the relative errors in strain energy under ℎ-refinement. The error is defined as

𝑒𝐸 =

√
|𝑈ℎ − 𝑈 ref |

𝑈 ref , (23)

where 𝑈ℎ is the approximated strain energy. The reference solution 𝑈 ref is computed from a discretization that is at least twice
as fine (half the element size) as the finest mesh examined. Fig. 16 indicates that the error 𝑒𝐸 decreases monotonically and tends
towards a quadratic convergence rate for the smallest element sizes. Fig. 17 shows the respective deformation patterns and illustrates
the surfaces to which Dirichlet boundary conditions are applied. In all cases, the displacement contours a very smooth.

6.4.2. Flawed geometries
As discussed in Section 5.2, CAD models are not always valid and watertight due to various sources of errors but often contain

defects. These imperfections still pose major challenges for the generation of suitable FE models. In the following, we aim to
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Fig. 17. Deformation contours under self-weight for four different models from the Thingi10k database [53]. The blue surfaces depict the Dirichlet boundary
conditions. The unfitted background mesh  bg is constructed by quadratic 𝐶1 continuous B-Spline bases. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Fig. 18. Artificially introduced flaws. Every 500th triangle is either ignored, flipped, or considered twice.

investigate the potential of our proposed workflow for the direct analysis of such flawed geometries. Therefore, as in Section 6.2.2,
we again introduce artificial defects into the examined STLs: 441 708, 551 021, 252 119, and 550 964. Two test series with 0.1% and
0.2% modified triangles are conducted. Every 1000th or 500th triangle in each STL is alternately ignored, flipped, or considered
twice. Fig. 18 illustrates the flawed geometries highlighting the modified triangles. All four models are again subjected to the same
boundary conditions as in the previous subsection. Fig. 19 compares the strain energies obtained with those calculated for the valid
(watertight) geometries. The results show that some discrepancies are visible for very coarse meshes. However, when the meshes
are refined, the flawed geometries produce similar results as the valid models. We note that Fig. 19 shows absolute values of the
strain energy and does not aim to demonstrate optimal convergence rates. In fact, the convergence rate may still be affected by the
present flaws. Nevertheless, the proposed integration scheme allows all simulations to terminate successfully and produce results
with sufficient accuracy for many practical problems that cannot be easily solved with classical methods.

7. Conclusion

This publication presents a complete and fully automated methodology for the fast and robust numerical integration of embedded
B-Reps. For seamless incorporation into industrial and scientific workflows, the algorithm can process all B-Reps available as
oriented surface meshes, e.g., STL, and is optimized for the application of grid-based background discretizations. The realization
of the framework involves two major developments. One main objective is to provide the necessary parameterization for the
efficient assembly of the moment fitting equations. At its core, a novel intersection algorithm facilitates the direct application of the
divergence theorem to compute the necessary moments. The result is a closed surface mesh representing the intersection between
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Fig. 19. Comparison of strain energies 𝑈ℎ obtained from valid and flawed geometries. The percentages indicate the number of modified triangles. The unfitted
background mesh  bg is constructed by quadratic 𝐶1 continuous B-Spline bases.

the geometrical domain and each cut element. Since this mesh is used exclusively for integration purposes, the algorithm is subject
to a single quality criterion. To this end, we compare the boundary integral of the intersection with solutions of the divergence
theorem, which are known for closed domains. Other standard mesh quality measures, regarding, e.g., aspect ratios, hanging vertices,
duplicated nodes, etc., are not enforced, resulting in a very efficient implementation. This work’s second contribution deals with
partitioning the background mesh into interior, exterior, and cut elements. The developments include the extension of a robust flood
fill-based classification scheme for application to all geometrical topologies, including interior cavities. Furthermore, the algorithm
is adapted to run in parallel, drastically reducing execution times.

The presented methods are successfully applied to 4948 STLs from the Thingi10K database [53], ranging from simple geometries
to extremely complex models with detailed features and millions of faces. All elements in the given background mesh are correctly
classified and intersected for each STL with a maximum relative volume error of <10−10. Applying higher-order quadrature rules
on the elements of the computed boundary meshes allows the integration of the moment fitting bases via the divergence theorem
with near-machine precision. We also show that the extended classification scheme yields identical results regardless of whether it
operates on valid or severely flawed geometries. These outcomes illustrate the robustness of the proposed methods. A subsequent
study demonstrates that the overall wall-clock times scale at most linearly with the number of elements in the background mesh.
The computational effort for performing the geometric operations is of the same order of magnitude as for solving the moment
fitting equations with quadratic bases. Finally, the proposed workflow is successfully used for the structural analysis of embedded
solids defined by valid and flawed geometries. A comparison shows that the same values in strain energy are obtained when missing,
duplicated, or falsely oriented faces are introduced to the initially valid models.

We provide all discussed developments as an implementation in the open-source C++ framework QuESo (Quadrature for
Embedded Solids) [48], which was initially designed to solve the moment fitting equations for highly efficient quadrature rules. In
conjunction with the methodologies presented in this work, QuESo can generate analysis-ready FE models from arbitrarily complex
faceted B-Reps. For a given background grid, the model is output as a list of integration points and can hence be processed in any
FE solver without significant adjustments. This enables a CAD-integrated simulation pipeline from the initial design in CAD (STL)
to the direct solution of PDEs on unfitted background meshes. An interface to the FE framework Kratos Multiphysics [54–56] is
provided in [48].

Since all required computations of cut cells are defined cell-wise, the respective algorithms are embarrassingly parallel, which
is a major advantage over unstructured mesh generators. Extending the current implementation to distributed memory machines
is the subject of future work. Moreover, the presented workflow may be developed further for time-dependent or highly nonlinear
problems where the background mesh undergoes extreme deformations and needs to be reset.
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A B S T R A C T

One of the biggest challenges in optimizing the shape of complex solids is the requirement to
maintain a reasonable mesh quality not only at the boundary but also for the bulk discretization
of the interior. Thus, additional regularization and, in many cases, re-meshing of the structure
during the iterative process is unavoidable with a Lagrangian description. By tracking the
shape update using an Eulerian representation, embedded boundary methods are a promising
technique for eliminating mesh distortion problems.

This work consistently combines the unique features of implicit Vertex-Morphing and
embedded boundary methods, facilitating the node-based shape optimization of solids with
industrial complexity. One of the crucial elements for solving the primal problem on a
fixed background grid is an efficient and robust quadrature scheme. To this end, we incor-
porate the open-source C++ framework QuESo (https://github.com/manuelmessmer/QuESo)
developed for the numerical integration of arbitrarily complex embedded solids defined by
oriented boundary meshes, e.g., in STereoLithography (STL) format. Meanwhile, applying the
Helmholtz/Sobolev-based (implicit) filter to the vertices of the embedded boundary mesh
not only exploits the extensive design space of node-based optimization but also ensures
robust control over the feature size. To realize the above methodology, this work introduces
a novel sensitivity analysis that yields mesh-independent shape gradients with respect to
the immersed boundary. Through a specific sensitivity weighting, we recover a continuous
gradient field from discrete values calculated at the nodes of the background grid. In addition,
the presented workflow ensures robust enforcement of challenging geometrical constraints,
including minimum wall thicknesses and design space limitations.

We critically assess our approach with benchmarks and structures of industrial relevance.
In all examples, trivariate B-Spline bases span the background grid, providing highly accurate
finite element solutions and shape sensitivities at every iteration. Moreover, the elimination of
mesh distortion problems enables a successful termination at the local optimum, even for large
shape modifications.
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1. Introduction

Traditionally, shape optimization was predominately driven by Lagrangian Finite Element (FE) discretizations. One of the major
drawbacks of such approaches is the inevitable distortion of the computational mesh for large shape updates. This problem is
particularly pronounced for solid structures since an accurate finite element solution requires a reasonable mesh quality not only
of the boundary but also of the internal bulk discretization. Studied remedies to maintain the initial discretization quality include
adaptive finite elements [1–4], mesh moving strategies [5,6], and smoothing or filtering techniques [7,8]. However, these methods
increase the computational effort and often only postpone the need to completely re-mesh the domain to a later phase of the
optimization.

Immersed or embedded boundary methods [9–12], on the other hand, enable the complete decoupling of geometry representation
and FE discretization and are, therefore, a promising concept for eliminating mesh distortion problems stemming from large shape
updates from the outset. Their main idea is to maintain a simple computational discretization, i.e., a regular grid, hereafter referred to
as background mesh, whose elements are intersected by the embedded/immersed boundary. The geometry is no longer represented
by an explicit boundary-fitted discretization but by modified quadrature schemes within the cut domains. Thus, the combination of
shape optimization and embedded methods allows the changing boundary to move freely through the steady background mesh,
potentially guaranteeing a high-quality discretization of arbitrarily complex geometries at every iteration. One class of shape
optimization methods deals with embedded geometries that are implicitly defined in terms of level-set functions [13–18], where the
shape updates are classically driven by the solution of an additional boundary value problem, e.g., the Hamilton–Jacobi equation.
Several other approaches resort to explicit geometry descriptions with variants that employ analytical expressions [19], parametric
shape designs [20–22], or CAD-based representations defined by Non-Uniform-Rational B-Splines (NURBS) [23,24]. By contrast,
the authors in [25] rely on a discrete geometry description, enabling an independent manipulation of all contour nodes. In [26],
the concept is further developed to leverage the merits of shape and topology optimization using an embedded domain approach.
Furthermore, [27,28] extend the scope of application to aerodynamic systems.

Although many of the above approaches are conceptually applicable to solid structures, the examples shown are mostly limited to
two-dimensional shapes or simple three-dimensional extrusions. A review of the existing publications indicates that the quadrature
rules employed in this context are one of the remaining bottlenecks preventing application to volumetric structures with industrial
complexity. Numerical integration schemes applied to optimization workflows with embedded boundaries include the area-fraction
method [15,29,30], sub-triangulation [22], discontinuous shape functions [16,31], and integration point oversampling [25,26].

This publication integrates the concept of implicit Vertex-Morphing, an efficient, mesh-independent parameterization technique
(or regularization) for node-based optimization, with highly efficient and robust quadrature schemes. These integration rules are
designed specifically for arbitrarily complex embedded solids described in Boundary Representation (B-Rep), ensuring precise
analysis. The presented workflow incorporates the recent developments of the open-source C++ framework QuESo (Quadrature for
Embedded Solids) [32] presented in [33,34]. Similar to [25], we allow the individual manipulation of all vertices of a discretized
geometry. In our study, we define the solid’s geometry by its outer surface as an oriented triangle mesh, allowing seamless integration
into node-based shape optimization with a vast design space. Provided with such a discrete B-Rep model, e.g., in STL format, QuESo
outputs a list of integration points to accurately evaluate required bulk and surface terms for the user-defined background mesh
in a fully automatized process. The algorithm solves the moment fitting equations [35–37] during an iterative point elimination
scheme [33,37,38]. Necessary moments are computed employing the divergence theorem over each cut element’s boundary [39,40]
calculated by a novel intersection algorithm [34]. The publication at hand exploits the extraordinary robustness of this procedure,
as comprehensively demonstrated in [34], to optimize the shape of embedded solids with industrial relevance.

Generally, gradient-based optimization requires the accurate evaluation of shape sensitivities of the objective functional. For a
comprehensive overview of different approaches to calculating shape updates in the context of parameter-free optimization, the
interested reader is referred to [41]. While sensitivities are classically computed at the nodes of a boundary-fitted discretization,
embedded methods necessitate their evaluation at the immersed boundary using the primal solution computed on the background
mesh. The second contribution of this work is a sensitivity analysis, where the objective functional is evaluated over the volumetric
domain instead of being projected onto the boundary as in existing methods [25,26]. Embedded discretizations establish a direct
relationship between each background node and a section of the immersed boundary. Our developments incorporate this association
in the sensitivity analysis, yielding mesh-independent and smooth gradients. As a result, the sensitivities and, hence, the shape
updates of each vertex on the immersed boundary are governed by the corresponding node of the background mesh, while each
vertex remains an individual design variable. To this end, we first evaluate the sensitivities at the nodes of the background mesh
by classical semi-analytical methods derived from the discrete formulation [42,43]. Subsequently, the sensitivity weighting initially
introduced in the context of isogeometric shape optimization [43] is adopted for immersed boundaries to recover a continuous
gradient field on the background mesh, which can be evaluated at any point on the structure. Once the sensitivities are available
on the immersed boundary, i.e., immersed surface mesh, classical node-based shape optimization techniques may be employed [44–
47]. For a simple example, we demonstrate that the computed gradient field is smooth enough to drive shape updates without
additional regularization. Nevertheless, the proposed workflow applies implicit Vertex-Morphing [48] to control the feature size
based on a user-defined filter radius. Compared to explicit filters, the implicit formulation is shown to be computationally less
expensive, especially for large filter radii [48]. Furthermore, the implicit approach is unconditionally mesh-independent and allows
the consideration of non-design surfaces directly as Dirichlet boundary conditions.

Lastly, we incorporate a robust methodology to enforce geometrical constraints, such as minimum wall thicknesses and design
space limitations. For this purpose, a damping matrix is introduced into the geometric parameterization and the sensitivity filtering.
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The presented workflow can straightforwardly be applied to higher-order and higher-continuous discretizations. All studied examples
exploit this property and employ quadratic 𝐶1 continuous B-Spline basis functions, providing highly accurate primal solutions and
sensitivity fields.

This work is organized as follows.

• Section 2 introduces the employed embedded boundary method along with the underlying quadrature schemes.
• Section 3 provides the optimization algorithms and filter techniques used in this work.
• Section 4 presents the mesh-independent sensitivity analysis, which extends the sensitivity weighting proposed in [43] to

embedded boundary methods.
• Section 5 describes the enforcement of geometrical constraints, including wall thickness and design space constraints.
• Section 6 summarizes the overall workflow to perform shape optimization of embedded solid B-Reps of arbitrary complexity.
• Section 7 demonstrates the potential of the presented methodology using industrial examples.

2. Embedded boundary method

This section provides a brief introduction to the realm of embedded boundary methods. However, the focus is on the central
aspects that are relevant to the publication at hand. For further information, we refer the reader to the papers on the following
methods: the Cut Finite Element Method (CutFEM) [10,49], the Aggregated Finite Element Method (AgFEM) [11,50], IGA of trimmed
Non-Uniform Rational B-Spline (NURBS) patches [51–53], the implicit mesh discontinuous Galerkin method [54,55], and the Finite
Cell Method (FCM) [12,56].

2.1. Definition

Classical finite element analysis requires the creation of a boundary-fitted mesh, which explicitly describes the material domain
𝛺 ∈ R3. The common philosophy of the embedded methods mentioned above is to avoid this often laborious and error-prone process
from the outset. Their main idea is to use a simple discretization  bg, e.g., a regular grid that covers the entire geometrical domain
𝛺, whereby the domain’s boundary 𝛤 = 𝜕𝛺 is allowed to intersect elements. In the following, we refer to  bg as the background
mesh and define it as a regular grid with hexahedral integration domains corresponding to the standard discretization used in
most embedded boundary methods. Note that this definition applies to classical 𝐶0 continuous finite elements but also includes
background meshes spanned by trivariate B-Splines [57]. Due to the simplicity of  bg and the potentially arbitrary complexity of
𝛺, cut elements cut are inevitable. Uncut elements are classified as interior in and exterior out based on their location relative
to the boundary 𝛤 . The subset  =  bg ⧵ out represents the active mesh, where  out contains all out. Consequently, the necessary
integration of bulk and surface terms appearing in the weak formulation can be stated as

∫𝛺(⋅) d𝛺 =
∑
∈ ∫∩𝛺

(⋅) d𝛺, (1)

and

∫𝛤𝛽 (⋅) d𝛤 =
∑
∈

∑
𝐹𝛽∈𝛤𝛽

∫𝐹𝛽∩(⋅) d𝛤 , 𝛽 ∈ {𝐷,𝑁}, (2)

with 𝐹𝐷 and 𝐹𝑁 denoting the Dirichlet and Neumann boundary conditions defined on 𝛤𝐷 and 𝛤𝑁 , where 𝛤𝐷 ∪ 𝛤𝑁 = 𝛤 and
𝛤𝐷 ∩ 𝛤𝑁 = ∅. In the following, we will refer to 𝒙𝛤 ∈ 𝛤 as boundary vertices or vertices and 𝒙𝑝 ∈  as background nodes or
nodes for clarity.

One of the biggest challenges of embedded boundary methods is the numerical integration of cut domains. Section 2.2 outlines
the quadrature scheme used in this work to evaluate Eqs. (1)–(2). Another common difficulty is poorly conditioned system matrices
due to little support of the basis functions within small cut elements. This problem is less critical for direct solvers but often
impedes the use of iterative solvers. For huge problems, however, iterative solvers are unavoidable due to their better scalability and
lower memory requirements. The authors in [58] provide a comprehensive overview of stabilization techniques and preconditioners
enabling the use of iterative solvers for matrices derived from embedded finite element formulations. In the scope of this work, a
PARDISO sparse direct solver from the Intel MKL library is used, which can solve the linear system of equations despite small
cut elements. Furthermore, due to the implicit domain description in embedded methods, the enforcement of Dirichlet boundary
conditions requires weak formulations. All examples in Section 7 use the Penalty method [59].

2.2. Numerical integration of embedded solids with QuESo

Since the present work aims at an optimization workflow for embedded geometries, a robust generation of the unfitted finite
element model is essential. To this end, we employ the open-source framework QuESo (Quadrature for Embedded Solids) [32], which
provides highly efficient quadrature rules for arbitrarily complex solids described by oriented boundary meshes, e.g., STereoLithog-
raphy (STL) meshes. The framework reads the boundary mesh and outputs a list of integration points to evaluate Eqs. (1)–(2) for
the specified background discretization. QuESo’s quadrature rules, geometrical operations, and algorithmic structure are presented
in great detail in [33,34]. At first, a generalized flood fill-based classification scheme robustly identifies cut, interior, and exterior
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elements. Subsequently, QuESo computes the intersection of each cut element and the boundary 𝛤 given as an STL model. The
resulting surface meshes enclosing the cut domains are used to assemble the moment fitting equations. Through the application
of the divergence theorem, the moments can be computed up to machine precision, as demonstrated in [34]. Finally, the moment
fitting equations are solved by a point elimination algorithm employing a Non-Negative Least Squares (NNLS) solver [33]. The
framework guarantees 𝑛𝑞 ≤ (𝑝 + 1)3 integration points per cut element, where 𝑝 is the polynomial degree of the shape functions.
Moreover, all integration weights are strictly positive, and point locations are restricted to the material domain.

3. Node-based shape optimization using implicit Vertex-Morphing

In the scope of the present work, we utilize the Nested Analysis and Design (NAND) technique, where design optimization is
conducted in an outer loop, and analysis (such as structural analysis) is performed in an inner loop [60]. This means that the PDE
solver is nested inside the optimization solver. As a result, the residuals of the system’s governing equations, denoted as 𝒓, are treated
as constraints in the optimization. The described problem is thus mathematically articulated as follows

min 𝑓 (𝒙𝛤 , 𝒖)
subject to 𝒑(𝒙𝛤 , 𝒔𝛤 ) = 𝟎, on 𝛤 ,

𝒓(𝒙𝛤 , 𝒖) = 𝟎, in 𝛺,

ℎ𝑗 (𝒙𝛤 , 𝒖) = 0, 𝑗 = 1…𝑚ℎ,

𝑔𝑗 (𝒙𝛤 , 𝒖) ≤ 0, 𝑗 = 1…𝑚𝑔 ,

(3)

where 𝑓 represents the objective functional that depends on the state variables 𝒖 and the surface geometry. The goal is to minimize
𝑓 with respect to the design variables 𝒔𝛤 , which dictate the coordinates of the surface vertices 𝒙𝛤 ∈ 𝛤 through the parameterization
operator 𝒑. Section 3.1 introduces the concept of implicit Vertex-Morphing [48], which involves the specific formulation of 𝒑. The
functions ℎ𝑗 and 𝑔𝑗 are the equality and inequality constraints, respectively.

3.1. Implicit Vertex-Morphing

Filters, whether implicit or explicit, can be used to consistently control or, in other words, regularize the design space. In addition,
the associated filter radius allows to prescribe the minimum feature size of the final shape. A comprehensive comparison between
implicit and explicit formulations is provided in [48]. In the following, we construct the physical shape 𝒙𝛤 = (𝑥1𝛤 , 𝑥

2
𝛤 , 𝑥

3
𝛤 ) from

the control field 𝒔𝛤 = (𝑠1𝛤 , 𝑠
2
𝛤 , 𝑠

3
𝛤 ) through the implicit Helmholtz/Sobolev filtering operation. The essential equations are briefly

described in this section. However, for a more detailed discussion, the interested reader is referred to [48,61–63]. Generally, the
Helmholtz/Sobolev filtering operation can be expressed through the components 𝑝𝑖 of the vector-valued function 𝒑, as per

𝑝𝑖 = −(𝑟𝐻𝛤 )2 ∇𝛤 ⋅ ∇𝛤 𝑥𝑖𝛤 + 𝑥𝑖𝛤 − 𝑠𝑖𝛤 = 0, 𝑖 ∈ {1, 2, 3}, on 𝛤 ,

𝑥𝑖𝛤 = 𝑠𝑖𝛤 , along 𝛤𝐻
𝐷 (fixed boundaries),

(4)

where ∇𝛤 ⋅∇𝛤 is the Laplace–Beltrami operator. Given a function 𝑤 defined on some open neighborhood of 𝛤 , the tangential surface
gradient ∇𝛤 reads

∇𝛤𝑤 = ∇𝑤 − (𝒏 ⋅ ∇𝑤)𝒏, (5)

with 𝒏 denoting the unit normal vector on 𝛤 and ∇ being the three-dimensional Nabla operator. The filter radius 𝑟𝐻𝛤 in Eq. (4)
defines the maximum correlation distance of two boundary vertices. If 𝑟𝐻𝛤 → 0, the smoothing effect disappears, such that 𝒙𝛤 = 𝒔𝛤 .
In this work, linear shape functions spanned over the triangular elements of 𝛤 discretize Eq. (4). To account for the gradients
described in the three Cartesian directions 𝑖 ∈ {1, 2, 3}, trivariate shape functions are introduced. For this purpose, we reconstruct
an auxiliary tetrahedron for each triangle and use the traces of the bulk shape functions on the boundary, i.e., triangle, as surface
shape functions. This concept for the discretization of surface PDEs is adopted from [64,65]. Furthermore, the boundary 𝛤𝐻

𝐷 ⊂ 𝛤
defines the non-design surfaces that are treated as Dirichlet conditions during optimization. Employing a standard Galerkin-based
finite element formulation yields the corresponding filtering-based surface parameterization

𝒑(𝒙𝛤 , 𝒔𝛤 ) = 𝑲𝐻
𝛤 𝒙𝛤 +𝑴𝐻

𝛤 𝒙𝛤 −𝑴𝐻
𝛤 𝒔𝛤 = 𝟎, (6)

with the surface mass matrix

𝑴𝐻
𝛤 =

∑
∫𝛤 𝑒

𝑵𝑇
𝛤 𝑵𝛤 d𝛤 , (7)

and the surface stiffness matrix

𝑲𝐻
𝛤 = (𝑟𝐻𝛤 )2

∑
∫𝛤 𝑒

(∇𝛤𝑵𝛤 )𝑇∇𝛤𝑵𝛤 d𝛤 , (8)

where 𝑵𝛤 contains the traces of the bulk shape functions on the boundary. The superscript 𝐻 indicates that the respective matrices
belong to the Helmholtz filtering and not to the problem of linear elasticity. Consequently, we establish the following relation

𝒙𝛤 = 𝑨𝐻
𝛤 𝒔𝛤 ; 𝑨𝐻

𝛤 = (𝑲𝐻
𝛤 + 𝑴𝐻

𝛤 )−1 𝑴𝐻
𝛤 . (9)

Note that the matrix 𝑨𝐻
𝛤 ∈ R𝑚𝑑×𝑚𝑑 is positive definite, where 𝑚𝑑 denotes the number of design variables corresponding to three

times the number of vertices on the design surface.
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3.2. Update rule

To tackle the constrained optimization problem in Eq. (3), we employ an adapted version of Rosen’s gradient projection
algorithm [66,67], which operates in the control space, as per

𝑘+1𝒔𝛤 = 𝑘𝒔𝛤 − 𝛼
[
𝐼 − 𝑷 (𝑷 𝑇𝑷 )−1𝑷 𝑇 ] 𝑑𝑓

𝑑𝒔𝛤

||||c
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

projection

correction
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
−
[
𝑷 (𝑷 𝑇𝑷 )−1

]
𝒈𝑎, (10)

where 𝛼 is the projection step size. The matrix 𝑷 ∈ R𝑚𝑑×𝑚𝑘 contains the gradients 𝑑𝒈𝑎∕𝑑𝒔𝛤 |𝑐 in a column-wise arrangement, with
𝒈𝑎 ∈ R𝑚𝑘 being the vector of active constraints. Eq. (10) includes a projection and a correction term. The former term projects
the steepest descent direction onto a subspace tangent to the active constraints. Since this projection can still lead to violations
in the case of nonlinear constraints, an additional correction term is added. The corresponding correction or restoring direction is
multiplied by 𝒈𝑎, see the right term in Eq. (10).

It is clear that the update rule in Eq. (10) relies on the gradients of the objective and the constraints w.r.t. the design variables.
Thus, their accurate calculation is paramount for a successful optimization. A general problem of discrete sensitivity analysis is
the strong dependency on the finite element discretization used. In contrast to the design variables, which are support values of a
continuous field, the discrete sensitivities are integrated values containing size effects of the associated finite elements. For the sake
of clarity, we explicitly distinguish between discrete (mesh-dependent) 𝑑𝐽∕𝑑𝒙𝛤 |𝑑 sensitivities and continuous (mesh-independent)
sensitivity fields 𝑑𝐽∕𝑑𝒙𝛤 |𝑐 sampled at the mesh vertices 𝒙𝛤 . In the scope of this work, Eq. (10) processes 𝑑𝐽∕𝑑𝒙𝛤 |𝑐 , resulting in
mesh-independent search directions. Based on the derivations in [48], we establish the following filter operator for the continuous
gradient fields of the response 𝐽

𝑑𝐽
𝑑𝒔𝛤

||||c
= 𝑨𝐻

𝛤
𝑑𝐽
𝑑𝒙𝛤

||||c
. (11)

Note that 𝐽 can be any response function, e.g., strain energy, of the finite element problem. In Eq. (10), the responses of interest
are the objective functional 𝑓 , the equality constraints ℎ𝑗 , and the inequality constraints 𝑔𝑗 . When the primal solution is solved on a
boundary-fitted mesh, Eq. (11) can be reformulated to approximate continuous control gradients 𝑑𝐽∕𝑑𝒔𝛤 |c from discrete sensitivities
𝑑𝐽∕𝑑𝒙𝛤 |d, as shown in [48]. In the scope of this work, however, continuous fields are already introduced in the physical space,
i.e., 𝑑𝐽∕𝑑𝒙𝛤 |c, to facilitate a consistent transfer of information between the finite element discretization (background mesh) and the
surface parameterization. The next section illustrates this concept and presents the required steps for calculating 𝑑𝐽∕𝑑𝒙𝛤 |𝑐 along
immersed boundaries.

4. Sensitivity analysis

The core idea of the present work is to perform gradient-based shape optimization of the immersed boundary 𝛤 (see Section 3)
while solving the primal problem

𝑲𝒖 = 𝑭 , (12)

with the stiffness matrix 𝑲 , solution vector 𝒖, and force vector 𝑭 on the background mesh  (see Section 2). The result is a complete
decoupling of the geometry parameterization and the finite element discretization. On the one hand, this is the key feature that
maintains a high mesh quality for large shape updates throughout the optimization. Simultaneously, however, the responses and
design variables are no longer defined at the same discrete points, posing severe challenges for the sensitivity analysis. While 𝑲 , 𝒖,
and 𝑭 are stored on the nodes 𝒙𝑝 ∈  , the geometric shape is defined by the vertices 𝒙𝛤 ∈ 𝛤 . Semi-analytical methods [42], which
are common strategies for computing shape sensitivities, involve approximations by finite differences. Since Eq. (12) is solved on
 , finite differences can simply be applied to 𝒙𝑝 ∈  but not to 𝒙𝛤 ∈ 𝛤 . The main idea in the following is to first compute the
gradients w.r.t. 𝒙𝑝 ∈  with semi-analytical methods and subsequently use them for a consistent evaluation of the sensitivities at the
immersed boundary 𝛤 . Sections 4.1–4.2 individually describe these two critical steps and provide several examples demonstrating
the accuracy of the proposed approach.

4.1. Semi-analytical sensitivity analysis on the background mesh

This section provides a brief introduction to semi-analytical sensitivity analysis, focusing on the most important equations
relevant to the publication at hand. We refer the interested reader to [42,43] for a more detailed derivation. Applying the chain
rule to the response 𝐽 enables the straightforward calculation of the sensitivities w.r.t. the nodes of the background mesh

𝑑𝐽
𝑑𝒙𝑝

|||||d
= 𝜕𝐽

𝜕𝒙𝑝
+
( 𝜕𝐽
𝜕𝒖

)𝑇 𝑑𝒖
𝑑𝒙𝑝

. (13)

We note that for the evaluation of Eq. (13) at a specific node 𝒙𝑝, the response must be integrated over the associated finite elements,
resulting in mesh-dependent discrete sensitivity values. Calculating the partial derivatives 𝜕𝐽∕𝜕𝒙𝑝 is usually simple and, in many
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Fig. 1. Boundary-fitted and embedded discretization with one-dimensional linear truss elements.

cases, leads to a zero vector. Given the discrete primal problem in Eq. (12), the derivative of the state variable 𝒖 w.r.t. the nodal
coordinate 𝒙𝑝 can be formulated as

𝑑𝒖
𝑑𝒙𝑝

= 𝑲−1
(

𝑑𝑭
𝑑𝒙𝒑

− 𝑑𝑲
𝑑𝒙𝑝

𝒖
)

(14)

The substitution of Eq. (14) into Eq. (13) results in the equation for analytical sensitivity analysis

𝑑𝐽
𝑑𝒙𝑝

|||||d
= 𝜕𝐽

𝜕𝒙𝑝
+
( 𝜕𝐽
𝜕𝒖

)𝑇
𝑲−1

(
𝑑𝑭
𝑑𝒙𝑝

− 𝑑𝑲
𝑑𝒙𝑝

𝒖
)

= 𝜕𝐽
𝜕𝒙𝑝

+
( 𝜕𝐽
𝜕𝒖

)𝑇
𝑲−1𝑭 ∗, (15)

with 𝑭 ∗ being the so-called pseudo load vector. We follow a semi-analytical approach, where the pseudo load vector is evaluated
by finite differences, as per

𝑭 ∗ =
𝑭 (𝒙𝑝 + 𝛥𝒙𝒑) − 𝑭 (𝒙𝒑)

𝛥𝒙𝒑
−

𝑲(𝒙𝒑 + 𝛥𝒙𝒑) −𝑲(𝒙𝒑)
𝛥𝒙𝒑

𝒖. (16)

Considering the strain energy 𝑈 = 1
2𝒖

𝑇𝑲𝒖 as the response and 𝜕𝑈
𝜕𝒙𝑝

= 0, Eq. (15) simplifies to

𝑑𝑈
𝑑𝒙𝒑

|||||d
= 𝒖𝑇𝑭 ∗. (17)

The crucial aspect of the proposed sensitivity analysis is that Eq. (15) is computed with respect to the nodes of the background mesh
𝒙𝑝 ∈  , yielding the gradients 𝑑𝐽∕𝑑𝒙𝑝|d. Eqs. (16)–(17) reveal that, in the case of 𝐽 = 𝑈 , the respective calculation only requires
evaluating the perturbed system, i.e., 𝑭 (𝒙𝑝 + 𝛥𝒙𝑝) and 𝑲(𝒙𝑝 + 𝛥𝒙𝑝). Nevertheless, for subsequent shape optimization, the gradients
must be computed w.r.t. the immersed boundary, i.e., 𝒙𝛤 ∈ 𝛤 , and not w.r.t. the nodes of the background mesh. Furthermore, these
gradients should be independent of the finite element discretization. To this end, the next subsection establishes a consistent relation
between 𝑑𝐽∕𝑑𝒙𝑝|𝑑 and 𝑑𝐽∕𝑑𝒙𝛤 |𝑐 .

4.2. Sensitivity weighting and interpolation at the embedded boundary

As discussed above, the gradients 𝑑𝐽∕𝑑𝒙𝑝|d can be computed with the same methods used for classical boundary-fitted
discretizations. However, standard response functions, such as strain energy, volume, etc., are integrated values, which means that
their discrete gradients depend on the size of the associated finite elements [43,48]. In embedded methods, the intersection between
the boundary 𝛤 and the background element  ∈  determines the area of integration. As a result, the cut domain’s location, shape,
and topology affect the sensitivities when evaluating Eqs. (15)–(16). In the following, we recover a continuous gradient field that is
independent of the location of the boundary 𝛤 within  . This allows the gradients to be calculated w.r.t. any vertex 𝒙𝛤 located on
𝛤 . Three examples in one- two- and three dimensions discuss the mentioned phenomenon and present the required gradient scaling
and interpolation procedure in detail. Our approach adopts the sensitivity weighting introduced in the scope of isogeometric shape
optimization of shells [43] and extends it for application to embedded boundary methods.

4.2.1. One-dimensional example
Fig. 1 depicts a simple one-dimensional truss model in two different configurations. In both cases, 𝑥𝛤 denotes the location of

the boundary 𝛤 . Given the response 𝐽 , we aim to find the derivative 𝑑𝐽∕𝑑𝑥𝛤 |c. For illustration purposes, the structure’s volume 𝑉
serves as the response function below.

(a) Boundary-fitted discretization
Firstly, let us consider the boundary-fitted discretization in Fig. 1(a), where the nodes of the FE mesh explicitly describe the

boundary 𝛤 . Note that the coordinates associated with the boundary-fitted mesh are marked by an overline, e.g., 𝑥. The volume of
the structure is given as

𝑉 = 𝐴
(
𝑥𝛤 − 𝑥𝑝,1

)
, (18)
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where 𝐴 denotes the surface area of the cross-section. Consequently, the gradient of 𝑉 with respect to the position 𝑥𝛤 of the boundary
𝛤 yields

𝑑𝑉
𝑑𝑥𝛤

|||||d
= 𝐴. (19)

It becomes evident that the sensitivity value contains information about the element’s cross-section. Due to the simplicity of the
given example, the result in Eq. (19) does not necessarily cause problems. However, for demonstration purposes, we may normalize
Eq. (19) with the surface area 𝐴 to obtain a mesh-independent unit gradient, as per

1
𝐴

𝑑𝑉
𝑑𝑥𝛤

|||||d
= 1. (20)

Eq. (20) shall serve as a reference solution for the discussion in the next paragraph.

(b) Embedded discretization
We now investigate the embedded discretization, as depicted in Fig. 1(b). The volumes of elements 1 and 2 read

𝑉 1 = 𝐴(𝑥𝑝,2 − 𝑥𝑝,1), and 𝑉 2 = 𝐴(𝑥𝛤 − 𝑥𝑝,2). (21)

Since the internal boundary’s position is described by 𝑥𝛤 = 𝑁1(𝜉𝛤 )𝑥𝑝,2 +𝑁2(𝜉𝛤 )𝑥𝑝,3, we rewrite Eq. (21) as

𝑉 1 = 𝐴(𝑥𝑝,2 − 𝑥𝑝,1), and 𝑉 2 = 𝐴(𝑁1(𝜉𝛤 )𝑥𝑝,2 +𝑁2(𝜉𝛤 )𝑥𝑝,3 − 𝑥𝑝,2). (22)

Given that the entire volume 𝑉 of the structure is the accumulated volume 𝑉 = 𝑉 1 + 𝑉 2, the discrete gradients with respect to the
coordinates 𝑥𝑝,2 and 𝑥𝑝,3 are

𝑑𝑉
𝑑𝑥𝑝,2

|||||d
= 𝑑𝑉 1

𝑑𝑥𝑝,2

|||||d
+ 𝑑𝑉 2

𝑑𝑥𝑝,2

|||||d
= 𝐴𝑁1(𝜉𝛤 ), (23)

𝑑𝑉
𝑑𝑥𝑝,3

|||||d
= 𝑑𝑉 1

𝑑𝑥𝑝,3

|||||d
+ 𝑑𝑉 2

𝑑𝑥𝑝,3

|||||d
= 𝐴𝑁2(𝜉𝛤 ). (24)

Eqs. (23) and (24) reveal that the gradients are a function of 𝜉𝛤 and hence depend on where element 2 is cut. Note that our final goal
is to interpolate the gradients of the background nodes at the embedded boundary 𝛤 . However, a direct interpolation of the gradients
in Eqs. (23)–(24) at 𝑥𝛤 will inevitably propagate the dependency on 𝜉𝛤 . This clearly contradicts the result in Eq. (19) obtained
from the boundary-fitted discretization, which also depends on the surface area 𝐴 but not on the element’s length. Furthermore,
the reference value is a complete mesh-independent unit gradient with respect to 𝑥𝛤 , see Eq. (20). The only possibility of always
obtaining 𝑑𝑉 ∕𝑑𝑥𝛤 = 1 by interpolating 𝑑𝑉 ∕𝑥𝑝,2 and 𝑑𝑉 ∕𝑥𝑝,3 is that both gradients at the background nodes are themselves equal to
one. Therefore, in this particular example, a consistent sensitivity analysis must ensure that 𝑑𝑉 ∕𝑑𝑥𝑝,2 = 1 and 𝑑𝑉 ∕𝑥𝑝,3 = 1 for any
value of 𝜉𝛤 . In line with the gradient weighting proposed in [43] to eliminate the influence of the control points on the geometry
of a NURBS-based shell surface, we introduce the following weighting factors at nodes 𝑥𝑝,2 and 𝑥𝑝,3

𝑥𝑝,2 = ∫ 𝑁1 d𝛤 = 𝐴𝑁1(𝜉𝛤 ), (25)

𝑥𝑝,3 = ∫ 𝑁2 d𝛤 = 𝐴𝑁2(𝜉𝛤 ). (26)

Note that in this one-dimensional example, the boundary 𝛤 , which defines the domain of integration in Eqs. (25)–(26), is the
cross-section of the truss. Eqs. (25)–(26) can be interpreted as a measure of how much a perturbation of the coordinates 𝑥𝑝,2 or 𝑥𝑝,3
affects the boundary 𝛤 . The respective sensitivity weighting yields

1
𝑥𝑝,2

𝑑𝑉
𝑑𝑥𝑝,2

|||||d
= 1, (27)

1
𝑥𝑝,3

𝑑𝑉
𝑑𝑥𝑝,3

|||||d
= 1. (28)

Finally, we can interpolate Eqs. (27) and (28) via the shape functions 𝑁1 and 𝑁2 at the internal boundary 𝜉𝛤

𝑑𝑉
𝑑𝑥𝛤

||||c
= 𝑁1(𝜉𝛤 )

1
𝑥𝑝,2

𝑑𝑉
𝑑𝑥𝑝,2

|||||d
+ 𝑁2(𝜉𝛤 )

1
𝑥𝑝,3

𝑑𝑉
𝑑𝑥𝑝,3

|||||d
= 1, (29)

which results in an expected constant unit gradient. The next subsections generalize the presented weighting and interpolation
procedure to two- and three-dimensional problems.
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Fig. 2. Boundary-fitted and embedded discretization with bilinear quadrilateral elements.

4.2.2. Two-dimensional example
Similar to the previous example, this section studies a classical boundary-fitted mesh before discussing the procedure for

embedded discretizations. In both cases, we assume bilinear quadrilateral finite elements and aim to calculate the gradients of
the volume 𝑉 with respect to the vertices 𝒙𝛤 ∈ 𝛤 .

(a) Boundary-fitted discretization
Fig. 2(a) shows a section of a standard finite element mesh composed of quadrilateral elements whose right edges explicitly

describe the boundary 𝛤 . This example quantifies the influence of the 𝑥-component of node 𝒙∗𝛤 = {𝑥∗𝛤 , 𝑦
∗
𝛤 } on the structure’s volume,

see Fig. 2(a). Therefore, a unit displacement in 𝑥-direction is applied on the corresponding node. This perturbation can be interpreted
as the finite difference 𝛥𝒙𝑝 in Eq. (16). Based on the observed change in area, the gradients are

𝑑𝑉
𝑑𝑥∗𝛤

|||||d
= 𝑡 (𝛥𝐴

1
+ 𝛥𝐴

2
) = 𝑡𝑎, (30)

where 𝑡 denotes the thickness of the two-dimensional elements. As in the one-dimensional example, the sensitivity value in Eq. (30)
contains mesh-dependent information. Consequently, the gradient may again be normalized by the respective element’s dimen-
sions

1
𝑡𝑎

𝑑𝑉
𝑑𝑥∗𝛤

|||||d
= 1. (31)

(b) Embedded discretization
Fig. 2(b) perturbs node 𝒙∗𝑝 of the background mesh  bg in the embedded configuration by a unit displacement, which again

imitates the finite difference 𝛥𝒙𝑝 in Eq. (16). This example illustrates that the maximum perturbation 𝛥𝑥 of the boundary 𝛤 is no
longer 1 but 𝑁1

𝒙∗𝑝
(𝜉, 𝜂̂). Note that both shape function values, 𝑁1

𝒙∗𝑝
(𝜉, 𝜂̂) and 𝑁2

𝒙∗𝑝
(𝜉, 𝜂̂), are equal at this particular point. Consequently,

the gradient with respect to the 𝑥-coordinate of node 𝒙∗𝑝 is

𝑑𝑉
𝑑𝑥∗𝑝

|||||d
= 𝑡 (𝛥𝐴1 + 𝛥𝐴2) = 𝑡

(
𝑁1

𝒙∗𝑝
(𝜉, 𝜂̂) 𝑎

2
+𝑁2

𝒙∗𝑝
(𝜉, 𝜂̂) 𝑎

2

)
. (32)

A closer look at Fig. 2(b) reveals that Eq. (32) equals the integral of all shape functions associated with node 𝒙∗𝑝 evaluated over the
boundary 𝛤

𝒙∗𝑝 = ∫𝛤 𝑁1
𝒙∗𝑝

d𝛤 + ∫𝛤 𝑁2
𝒙∗𝑝

d𝛤 . (33)

Let us remember that the reference solution in Eq. (31) is a constant unit gradient. To achieve the same result, we apply the weighting
analogous to the one-dimensional case in Section 4.2.1

1
𝒙∗𝑝

𝑑𝑉
𝑑𝑥∗𝑝

|||||d
= 1. (34)
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Fig. 3. Clipped boundary of an exemplary cut element. The clipping operation is performed by QuESo [32]. The resulting triangle mesh is used to calculate the
weighting factors in Eq. (37).

In fact, by following this procedure, we obtain unit gradients for all nodes 𝒙𝑝 depicted in Fig. 2(b). Consequently, they can again
be used to consistently calculate the shape sensitivity w.r.t. the vertex coordinate 𝑥∗𝛤 on the immersed boundary 𝛤

𝑑𝑉
𝑑𝑥∗𝛤

|||||c
=

𝑛=4∑
𝑖=1

𝑁𝒙𝑝,𝑖
(
𝜉, 𝜂̂

) (
1

𝒙𝑝,𝑖

𝑑𝑉
𝑑𝑥𝑝,𝑖

|||||d

)
= 1, (35)

where 𝑖 are the indices of the nodes connected to the element containing 𝒙∗𝛤 . Since, in this particular case, 𝒙∗𝛤 is located on the
boundary between elements 1 and 2, both can be used to evaluate Eq. (35). In any case, the result is a mesh-independent unit
gradient.

4.2.3. Generalization and application to three-dimensional problems
The following paragraph provides the generalized equations for the sensitivity analysis introduced in Sections 4.2.1–4.2.2, along

with a consistency check for three-dimensional solid geometries. In accordance with the above derivations, the continuous gradient
field 𝑑𝐽∕𝒙𝛤 |c sampled at the boundary vertices 𝒙𝛤 ∈ 𝛤 can be expressed as

𝑑𝐽
𝑑𝒙𝛤

||||c
=
∑
𝑖∈

𝑁𝒙𝑝,𝑖

(
1

𝒙𝑝,𝑖

𝑑𝐽
𝑑𝒙𝑝,𝑖

|||||d

)
, (36)

where  is the set of indices of all background nodes 𝒙𝑝,𝑖 with support at 𝒙𝛤 . The corresponding weighting factors read

𝒙𝑝,𝑖 =
∑
𝑗∈ ∫𝛤 𝑁 𝑗

𝒙𝑝,𝑖
d𝛤 , (37)

with  denoting the indices of all basis functions associated with node 𝒙𝑝,𝑖. In the scope of this work, Eq. (37) is evaluated by
quadrature rules on the triangles that discretize the boundary 𝛤 . Generally, shape functions are piece-wise polynomials defined on
element level. Thus, for an accurate evaluation by means of numerical integration, we decompose 𝛤 into subsections that conform
to the background mesh. This means that no triangle crosses the element boundaries of  . The open-source code QuESo [32]
performs the necessary clipping operations. For more information on the respective algorithms, the interested reader is kindly
referred to [34]. Fig. 3 shows the clipped mesh that serves as surface parameterization to evaluate all active shape functions of
the associated background nodes, see Eq. (37).

The consistency of the proposed sensitivity analysis is demonstrated in the following. For this purpose, we investigate a sphere
and compute the gradients 𝑑𝑉 ∕𝑑𝒙𝛤 |c of its volume 𝑉 w.r.t. 𝒙𝛤 ∈ 𝛤 . Due to the symmetrical nature of the sphere, the gradients
𝑑𝑉 ∕𝑑𝒙𝛤 |c must be uniformly distributed in the direction of the surface normals. In order to illustrate the influence of the presented
weighting scheme, Eq. (36) is additionally evaluated by omitting the weighting factors, such that ∀𝑖 ∈  ∶ (𝒙𝑝,𝑖 = 1). The resulting
gradients are denoted as 𝑑𝑉 ∕𝑑𝒙𝛤 |d. Fig. 4 shows the magnitudes of 𝑑𝑉 ∕𝑑𝒙𝛤 |d and 𝑑𝑉 ∕𝑑𝒙𝛤 |c, along with the used background
mesh. Note that the gradients 𝑑𝑉 ∕𝑑𝒙𝑝|d w.r.t. the background nodes 𝒙𝑝 ∈  are computed by finite differences in analogy to the
formulation introduced in Eq. (16). Fig. 4(b) reveals that the gradients 𝑑𝑉 ∕𝑑𝒙𝛤 |d without weighting exhibit severe disturbances,
which depend on the intersections between the boundary 𝛤 and the cut elements cut ∈  . By contrast, the results in Fig. 4(c),
calculated with the appropriate weighting factors (Eq. (37)), show the expected uniform distribution. Moreover, since 𝑑𝑉 ∕𝑑𝒙𝛤 |c is
obtained through interpolation of gradients evaluated at the background nodes 𝒙𝑝, the respective field is entirely independent of the
surface mesh representing 𝛤 . It is also worth emphasizing that the proposed sensitivity analysis is not restricted to classical trilinear
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Fig. 4. Influence of the proposed weighting procedure (see Eqs. (36)–(37)) on the volume sensitivities evaluated at the embedded boundary of a sphere. The
gradients 𝑑𝑉 ∕𝒙𝛤 |𝑑 are calculated by omitting the weighting factors in Eq. (36), such that ∀𝑖 ∈  ∶ (𝒙𝑝,𝑖

= 1), while the gradients 𝑑𝑉 ∕𝒙𝛤 |𝑐 are evaluated via
Eq. (36) using the weighting factors stated in Eq. (37). The color scheme indicates the magnitude of the gradients. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Relative error 𝑒𝑉 (see Eq. (38)) under ℎ-refinement of the background mesh for different polynomial degrees 𝑝 and continuities 𝐶𝑘.

hexahedral finite elements but can straightforwardly be applied to discretizations of higher order or higher continuity. Fig. 5 plots
the relative error of 𝑑𝑉 ∕𝑑𝒙𝛤 |c under ℎ-refinement of three different background meshes. The error is computed as follows

𝑒𝑉 =
‖𝑽 grad −𝑵‖L2

‖𝑵‖L2
, (38)

where 𝑽 grad is a vector containing the gradients 𝑑𝑉 ∕𝑑𝒙𝛤 |c evaluated at each vertex 𝒙𝛤 ∈ 𝛤 . Every gradient is compared to the
respective unit normal 𝒏 ∈ 𝑵 of the sphere, which serves as a reference solution. Fig. 5 shows the results using linear finite elements
and quadratic 𝐶0 and 𝐶1 continuous B-spline bases for the background discretization  . In all cases, 𝑒𝑉 monotonically decreases as
 is refined. The finite differences employed to compute 𝑑𝑉 ∕𝑑𝒙𝑝|d suggest linear convergence rates. However, we observe that the
graphs tend towards 𝑂(ℎ2), where ℎ = ℎ𝑥 = ℎ𝑦 = ℎ𝑧 is the element’s edge length. To understand this phenomenon, let us consider the
perturbation 𝛥𝑥𝑝 of 𝒙𝑝 ∈  depicted in Fig. 3. If 𝒙𝑝 moves along the 𝑥-axis, the affected section of the boundary 𝛤 is proportional
to 𝐴 ∼ ℎ𝑦ℎ𝑧. Halving the element size, therefore, leads to a quartering of the region approximated by the finite differences. As a
result, the gradients 𝑑𝑉 ∕𝑑𝒙𝛤 |c follow a convergence rate of 𝑂(ℎ2).

Finally, we investigate the strain energy gradients 𝑑𝑈∕𝑑𝒙𝛤 |c w.r.t. the boundary vertices 𝒙𝛤 of a cantilever beam with a
rectangular cross-section. Fig. 6(a) shows the problem setup, including the geometry, the applied boundary conditions, and the
resulting deformation pattern. Initially, the problem is solved on an axis-aligned background mesh  , as depicted in Fig. 6(b),
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Fig. 6. Strain energy sensitivities 𝑑𝑈∕𝑑𝒙𝛤 |c evaluated at the embedded boundary of a cantilever with rectangular cross-section: Comparison between axis-aligned
and 45◦ rotated background mesh. In both examples, the background mesh is spanned by quadratic 𝐶1 continuous B-Splines.

yielding a smooth sensitivity field. Subsequently,  is rotated by 45◦ to investigate the influence of the background mesh’s orientation
on the gradients 𝑑𝑈∕𝑑𝒙𝛤 |c. Fig. 6(c) reveals that the previous gradient field remains unchanged despite irregular intersections
between the cut elements and the boundary 𝛤 .

In summary, the proposed sensitivity analysis stated in Eqs. (36)–(37) guarantees reproducible and consistent results that are
independent of the surface mesh 𝛤 and the background discretization  .

5. Geometrical constraints

A common requirement in shape optimization is compliance with geometric constraints, which arise, e.g., from the manufacturing
or assembly process of the individual part. In this context, minimum wall thicknesses and design space restrictions are particularly
important, posing major challenges for robust optimization workflows. A direct approach involves formulating the constraints math-
ematically and incorporating them individually in the optimization problem [68]. However, given that these geometrical constraints
are inherently localized or point-wise, the solution must typically consider a significant number of constraints. This potentially leads
to as many constraints as there are design variables, placing a substantial burden on the optimizer. Alternative approaches combine
the restrictions in a single function [69], which yields a more efficient implementation but also a weaker enforcement. A systematic
and promising solution to address these constraints is to incorporate them explicitly into the parameterization and hence prevent the
generation of non-feasible geometries by definition. The following two subsections discuss how minimum wall thickness and design
space constraints are detected and enforced in our workflow. Finally, Section 5.3 deals with the smooth transition from design to
non-design surfaces.

5.1. Active constraint detection

The formulations for compliance with specified minimum wall thicknesses and feasible design spaces are fundamentally similar.
In both cases, we shoot a ray [70] for each vertex 𝒙𝛤 ∈ 𝛤 in normal direction 𝒏 and test for intersection with a constraining
boundary 𝛤𝑐 . Thereby, the vertex normals 𝒏 are computed by the averaged orientation of their adjacent triangles and normalized
to unit length. The distinction between the different constraint types manifests in the specific boundary 𝛤𝑐 used to detect the active
vertices. For the minimum wall thickness constraint, 𝛤𝑐 is defined as the actual boundary 𝛤 of the structure, while the design space
constraint requires the introduction of an auxiliary boundary delimiting the feasible domain. In the latter case, we read 𝛤𝑐 from an
additional STL model. Fig. 7 schematically demonstrates the detection of the two constraint types and illustrates the definition of
𝛤𝑐 . A vertex 𝒙𝛤 ∈ 𝛤 is considered to be active if the distance 𝑑 between 𝒙𝛤 and 𝛤𝑐 in direction 𝒏 is smaller than

𝑑 < 2𝛥𝑥max + 𝑡min; for wall thickness constraints,
𝑑 < 2𝛥𝑥max; for design space constraints,

(39)

where 𝑡min is the enforced minimum wall thickness and 𝛥𝑥max is the maximum vertex shape update of the previous iteration. Thus,
the term 2𝛥𝑥max serves as a buffer to prevent the unnoticed violation of the constraints. As depicted in Fig. 7, the direction of
the associated normal vectors, i.e., inward-pointing or outward-pointing, depends on the constraint type. QuESo [32], introduced
in Section 2.2, performs the necessary ray triangle intersection tests. The underlying algorithmic structure, which allows efficient
processing of large surface meshes, is presented in [34].

5.2. Constraint enforcement

Interpolated or fixed non-design areas can readily be included in the implicit filtering by applying Dirichlet conditions on the
corresponding boundaries, see Eq. (4). However, enforcing additional geometrical constraints, i.e., prescribed wall thicknesses or
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Fig. 7. Detection of active geometrical constraints.

Fig. 8. Damping of control sensitivities. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

feasible design spaces, is more challenging. In the scope of this work, we systematically dampen the control gradients 𝑑𝐽∕𝑑𝒔𝛤 |c that
point toward an infeasible direction by projecting them onto a tangential subspace, as per

𝑑𝐽
𝑑𝒔𝛤

||||
proj

c
= 𝑫𝛤

𝑑𝐽
𝑑𝒔𝛤

||||c
,with 𝑫𝛤 =

[
𝐼 −𝑵 (𝑵𝑇𝑵)−1 𝑵𝑇 ] . (40)

Here, 𝑫𝛤 is referred to as the damping matrix, and 𝑵 ∈ R3𝑚𝛤 ×𝑚𝑐 denotes a block diagonal matrix, where each 3×𝑚𝑐,𝑖 block contains
one (𝑚𝑐,𝑖 = 1) or multiple (𝑚𝑐,𝑖 > 1) infeasible directions enforced at vertex 𝑖. All other entries of 𝑵 are zero. Furthermore, 𝑚𝛤

represents the number of all vertices 𝒙𝛤 ∈ 𝛤 , and 𝑚𝑐 is the total number of active constraints, i.e., the total number of infeasible
directions.

The main idea to enforce minimum wall thickness and design space constraints is to use the active normal vectors 𝒏, which satisfy
the condition in Eq. (39), as the infeasible directions in Eq. (40). However, since the filtering generally smooths the gradients over
a certain distance, we must attenuate the entire surrounding of an actively constrained vertex that lies within the range of the
filter radius. In order to find the respective neighbors, the filter function 𝐴𝐻

𝛤 is applied to the normal vectors intersecting 𝛤𝑐 , as
indicated by the orange arrows in Fig. 8. Subsequently, all filtered intersection directions are assembled in matrix 𝑵 in Eq. (40).
To numerically limit the affected neighborhood to a reasonable size, only filtered directions are considered where the length of the
vector is larger than a certain threshold defined as 𝛿 ≈ 0.01 − 0.05. Fig. 8 illustrates the overall damping process. Consequently, we
modify the parameterization formulation (Eq. (9)) and respectively the sensitivity filtering (Eq. (11)) as follows

𝒙𝛤 = 𝑨𝐻
𝛤 𝑫𝛤 𝒔𝛤 , (41)

and
𝑑𝐽
𝑑𝒔𝛤

||||c
= 𝑫𝛤 𝑨𝐻

𝛤
𝑑𝐽
𝑑𝒙𝛤

||||c
. (42)

It is important to recognize that while the modified sensitivity and filtering equations are formulated in the global matrix–vector
form, the damping matrix can be constructed and applied locally to the gradients at each vertex.

5.3. Smooth transition from design to non-design surfaces

As discussed above, the implicit filter function inherently allows the introduction of non-design surfaces by applying Dirichlet
boundary conditions in Eq. (4). However, since the vertices adjacent to the non-design surface are free to move, kinks can potentially
occur at the transition zone. While this is a desired feature in some cases, other problems may prefer a generally smooth design.
Therefore, our workflow provides the additional option to dampen the gradients in the vicinity of non-design surfaces. Similar to
the approach introduced in Section 5.2, the filter function is employed to find the respective neighborhood. For this purpose, an
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Fig. 9. Workflow of the node-based shape optimization of embedded solids.

auxiliary field, e.g., unit vector field, is introduced on the non-design surfaces and propagated over the actual design surface through
the filter function. Subsequently, we eliminate, i.e., set to zero, all control gradients 𝑑𝐽∕𝑑𝒔𝛤 |c wherever the magnitude of the filtered
unit gradient field is larger than the previously introduced numerical limit 𝛿 ≈ 0.01 − 0.05.

6. Optimization workflow

The main feature of the presented optimization strategy is that the geometry representation and the finite element discretization
are independent of each other. This allows the structure’s boundary 𝛤 to move freely through a fixed background mesh during each
shape update. As a result, mesh distortion problems are eliminated from the outset. For clarity, Fig. 9 combines the necessary steps
discussed in Sections 2–5 into a complete optimization workflow.

7. Numerical experiments

This section will demonstrate the potential of the proposed workflow for optimizing the shape of complex solid structures
described in boundary representation. The first subsection examines the accuracy of the sensitivity analysis proposed in Section 4
using the example of a simple cube. Subsequently, Sections 7.2–7.3 present examples of industrial complexity, including mass and
strain energy minimization problems under multiple constraints. All numerical experiments are conducted with the open-source FE
framework Kratos Multiphysics [71–73], which is fed with the quadrature rules of QuESo [32–34].



Computer Methods in Applied Mechanics and Engineering 426 (2024) 116999

14

M. Meßmer et al.

Fig. 10. First four iterations of a volume maximization problem of an embedded cube. The color scheme shows the magnitude of the volume sensitivities 𝑑𝑉 ∕𝑑𝒙𝛤 |c.
The gradients are directly used to update the positions of the boundary vertices 𝒙𝛤 , and no additional filtering is applied, see Eq. (43). (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

7.1. Volume maximization of a cube

To study the quality of the computed gradient field presented in Section 4, we investigate a simple cube with an edge length of
𝑙 = 1, as shown in Fig. 10(a). Its geometrical boundary is embedded into a background mesh spanned by quadratic 𝐶1 continuous
B-Splines, where each knot span’s length is ℎ = 1∕3. The objective is to maximize the volume of the initial cube. Note that
considering the negative objective functional transforms the formulation into a minimization problem, as stated in Eq. (3). In order
to demonstrate the consistency and smoothness of the computed gradient field, this example omits the filtering in Eqs. (9) and (11)
and directly manipulates the boundary vertices 𝒙𝛤 in the physical space using the unfiltered sensitivities 𝑑𝐽∕𝑑𝒙𝛤 |c. The respective
shape update straightforwardly reads

𝑘+1𝒙𝛤 = 𝑘𝒙𝛤 + 𝛼 𝑑𝐽
𝑑𝒙𝛤

||||c
, (43)

where 𝛼 denotes a constant step size, which is set to 𝛼 = 1.
Fig. 10(b)–(f) show that the initial cube evolves to a nearly perfect sphere after very few iterations. This is an expected result

because the sphere has the largest volume compared to all shapes with the same surface area. The color scheme visualizes the
magnitudes of the sensitivity gradients 𝑑𝐽∕𝑑𝒙𝛤 |c, which approach the value one as the geometry converges to a sphere. Since the
gradients on the boundary surface 𝑑𝐽∕𝑑𝒙𝛤 |c are governed by the gradients of the nodes of the background mesh, the corresponding
shape functions guarantee a smooth field, as can be seen in Fig. 10. Moreover, the sensitivities are completely independent of the
discretization of the surface mesh. Fig. 11(a) plots the relative error of the radius computed as

𝑒𝑅 = max{𝑹} − min{𝑹}
avg{𝑹}

, with avg{𝑹} =
∑

𝑅∈𝑹 𝑅
|𝑹| (44)

where 𝑅 ∈ 𝑹 is the distance between each vertex on the boundary to the center of the initial cube. Eventually, all values 𝑅 ∈ 𝑹
are expected to be equal, representing the radius of the sphere. Fig. 11(a) reveals a monotonic reduction of 𝑒𝑅 during the first nine
optimization steps. In fact, after only four iterations, the maximum relative error drops below one percent. Next to it, Fig. 11(b)
depicts the current volume over the average radius avg{𝑹}, which grows at an expected cubic rate during the optimization.

We conclude that the sensitivity analysis presented in Section 4 enables the computation of shape gradients that are independent
of the discretization of the boundary mesh. In addition, the direct use of these gradients as shape updates yields smooth geometries.
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Fig. 11. Volume maximization of an embedded cube. (a) Relative error in radius as defined in Eq. (44) and (b) volume over the average radius avg{𝑹} four
the first nine iterations. The background mesh is spanned by quadratic 𝐶1 continuous B-Splines and a knot span size of ℎ = 1∕3.

7.2. Strain energy minimization of a hook

The second study investigates the performance of the entire workflow proposed in Section 6 using the example of a three-
dimensional hook. Fig. 12 shows the problem setup, including geometrical description, boundary conditions, and design space
constraint. Due to the deliberately simple initial geometry, large shape updates are to be expected, which generally pose severe
challenges for the shape optimization of solid structures. This example is intended to show that the presented methodology provides
accurate primal solutions despite significant changes in geometry.

We employ 𝐶1 continuous B-Spline bases on the background mesh with a uniform knot span size of ℎ = 3 mm. The Dirichlet
conditions 𝑢 = [0, 0, 0] are enforced on 𝛤𝐷 with the Penalty method [59] and a penalty factor of 𝛽 = 1012 N/mm3. Two forces,
𝐹1 = 10 kN and 𝐹2 = 5 kN, as shown in Fig. 12, load the structure. The Young’s modulus 𝐸 = 2.1 × 105 N/mm2, Poisson’s ratio
𝜈 = 0.3, and density 7.85×10−6 kg/mm3 define the linear elastic material. This example aims to minimize the strain energy 𝑈 while
retaining the initial mass 𝑚init. In analogy to Eq. (3), the optimization problem reads

min 𝑈,

subject to 𝒑 = 𝟎, on 𝛤 ,

𝒓 = 𝟎, in 𝛺,

𝑚 − 𝑚init = 0,

(45)

where 𝑚 is the current mass. Additionally, the geometrical constraints introduced in Section 5 enforce a minimum material thickness
of 8 mm, compliance with the design space, and a smooth transition from design to non-design surface with 𝛿 = 0.04.

Fig. 13(a)–(b) compare the shape of the initial and optimized geometry, which is obtained with a filter radius of 𝑟𝐻𝛤 = 5 mm. It is
shown that the cross-section undergoes significant thinning orthogonal to the 𝑧-axis. However, during the optimization process, the
material thickness constraint becomes active and limits the minimum distance between the two opposite boundaries to 8.13 mm in
the final geometry. The geometry also approaches the boundary of the design space but does not violate it, as shown in Fig. 13(b).
Fig. 14(a)–(b) plot the graphs of the objective and the constraint for each iteration. The strain energy follows a monotonic reduction
and approaches a plateau, indicating that a local minimum has been found. In the last iteration, the relative change in the objective
is less than 0.1%, which is defined as the convergence criterion. Over the entire course of the optimization, the maximum violation
of the mass constraint is 1.05%. Compared to the original design, the final geometry is characterized by a 33.0% reduction in strain
energy with only a 0.17% increase in mass.

Fig. 14(c) shows the convergence in strain energy under ℎ-refinement of the background mesh for the initial and the final
geometry. Each marker represents the results of an individual FE analysis, whereby the discretization is successively refined. The
element size of the initial and coarsest mesh is referred to as ℎ0. The dashed lines indicate the discretization used for this optimization
process (ℎ = 3 mm). It becomes evident that a highly accurate finite element solution is maintained until the last iteration. Thus,
the discretization quality of the background mesh is shown to be completely unaffected by the shape updates.

7.3. Mass minimization of a jet engine bracket

This section shall demonstrate the robustness of our workflow for optimizing structures of industrial complexity. In the following,
we examine the second place winning geometry of the General Electric (GE) jet engine bracket challenge.1 The corresponding design

1 https://grabcad.com/challenges/ge-jet-engine-bracket-challenge/results.

https://grabcad.com/challenges/ge-jet-engine-bracket-challenge/results
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Fig. 12. Initial design, boundary conditions, and design space constraint of a three-dimensional hook. Dimensions are given in [mm].

Fig. 13. Hook example: Comparison of initial and final geometry.

Fig. 14. Hook example: Relevant graphs for the optimization problem, including the objective function (a), the constraint (b), and a convergence study of the
background mesh for the initial and final geometry (c).
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Fig. 15. Jet engine bracket example: Initial geometry (designer: Thomas Johansson; https://grabcad.com/library/tj2-1) and problem setup.

Fig. 16. Jet engine bracket example: Comparison between initial and final geometry. The red areas indicate the active geometrical constraints. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

shown in Fig. 15 is used as the initial geometry of a mass minimization problem. According to the challenge regulations, the structure
is subjected to four different load cases. These are defined by 𝐹1 = 36 kN, 𝐹2 = 38.25 kN, 𝐹3 = 42.75 kN, and 𝑀 = 546 N m. For each
of them, an individual constraint is formulated to maintain the strain energy value of the initial geometry. In analogy to Eq. (3),
the constrained minimization problem of the mass 𝑚 reads

min 𝑚,

subject to 𝒑 = 𝟎, on 𝛤 ,

𝒓 = 𝟎, in 𝛺,

𝑈𝑗 − 𝑈 init
𝑗 = 0, 𝑗 ∈ {1, 2, 3, 4},

(46)

where 𝑈𝑗 and 𝑈 init
𝑗 are the current and initial strain energy values associated with the four load cases. We consider the official

design space constraint, as depicted in Fig. 15. In addition, a minimum thickness constraint of 1.0 mm is enforced with 𝛿 = 0.01 mm,
see Section 5. The surface filter radius is set to 𝑟𝐻𝛤 = 5 mm. Again, quadratic 𝐶1 continuous B-Splines span the background mesh
using a uniform knot span size of ℎ = 1.5 mm. The Young’s modulus 𝐸 = 1.138 × 105 N/mm2, Poisson’s ratio 𝜈 = 0.342, and density
4.43 × 10−6 kg/mm3 define the linear elastic material.

Fig. 16 compares the initial and optimized geometry. The red areas highlight the vertices with active design space and material
thickness constraints. Table 1 lists the key properties of the final geometry. Although the original shape is already a highly optimized
design, a further reduction in mass of ≈15% is achieved. Fig. 17(a)–(b) depict the evolution of the objective and the constraints.
Analogous to the previous example in Section 7.2, the objective decreases monotonically until the local minimum is reached. The

https://grabcad.com/library/tj2-1
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Fig. 17. Jet engine bracket example: Relevant graphs for the optimization problem, including the objective function (a), the constraints (b), and a convergence
study of the background mesh for the initial and final geometry (c). The color scheme for the different load cases used in (b) also applies to (c). (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 1
Jet engine bracket example: key figures of final geometry.

Objective Constraints

Mass Strain energy
load case 1

Strain energy
load case 2

Strain energy
load case 3

Strain energy
load case 4

Min. material
thickness

Max. nodal design
space violation

−14.96% +0.35% +0.23% +0.36% +0.17% 1.009 mm 1.048 mm

design does not exceed a violation of the four strain energy constraints by more than 1% in any optimization phase. Fig. 17(c) again
illustrates the quality of the background discretization used in this optimization process. A convergence study of the strain energy
under ℎ-refinement is conducted. The graphs show that for all four load conditions, the discretization employed delivers highly
accurate primal solutions for both the initial and the final geometry. These results prove that the underlying shape updates do not
affect the discretization quality.

8. Conclusion

This publication presents a complete workflow to optimize the shape of embedded solid structures described in boundary
representation using implicit Vertex-Morphing. Its main feature is the decoupling of the geometry description from the finite element
discretization, eliminating mesh distortion problems even for extensive shape updates. Following the concept of classical embedded
boundary methods allows the computation of the primal solution and response functions on a fixed background mesh, i.e., a regular
grid, which can be reset in each iteration. A gradient-based constrained optimizer calculates the shape updates of the immersed
boundary, representing the structure’s skin. The geometric model is defined by an oriented triangle mesh, e.g., in STL format, which
offers a seamless interface to additive manufacturing processes. One of the crucial elements for a robust embedding workflow is the
reliable construction of integration points for cut domains. To this end, the present work incorporates the open-source framework
QuESo [32–34], which provides efficient and highly accurate quadrature rules for arbitrarily shaped geometries. This paves the way
for the optimization of solid structures with industrial complexity using embedded boundary methods. The second contribution of
the publication at hand is a novel sensitivity analysis delivering shape gradients that are independent of the surface mesh and the
background discretization. This procedure includes three main steps.

• Calculation of shape sensitivities at the nodes of the background mesh.
• Weighting of gradients to eliminate size effects of the cut elements.
• Interpolation of gradients at the immersed boundary through the shape functions of the background elements.

Several examples demonstrate the consistency of the proposed sensitivity analysis. The computed gradients are shown to yield
smooth shape updates even without additional regularization. Nevertheless, the presented workflow adopts a Helmholtz/Sobolev-
based filter to control the minimum feature size of the final geometry and to account for non-design surfaces. Furthermore, a
sensitivity damping scheme is introduced that effectively enforces geometric constraints, such as minimum wall thicknesses or design
space limits. We demonstrate the potential of our approach by optimizing several models, including an industrial component. In all
examples, the initial mesh quality is proven to be maintained throughout the entire simulation, allowing a successful termination at
the local minimum. Future work may enrich the current workflow by enhanced gradient-based optimization algorithms, as proposed
in [74].
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