
TUM School of Computation, Information and Technology
Technische Universität München

Graph Deep Learning in Medicine -
Prospects, Pitfalls, and Privacy

Tamara T. Müller
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Abstract

Over the last decades, deep learning (DL) techniques have revolutionised data process-
ing in essentially every application domain. In medicine, DL has facilitated clinical
workflows and shown highly promising results, for instance, in improving diagnoses,
tumour detection, or image enhancement. A variety of DL methods has been devel-
oped for different tasks and use cases. Each method is designed to be closely linked
to the data it is applied to. Convolutional neural networks (CNNs) have become very
powerful DL methods for image data. They use the underlying (Euclidean) geometry
of images by using local filters that aggregate information from neighbouring pixels.
Graph neural networks (GNNs) are the corresponding counterparts for non-Euclidean
data, such as graphs or manifolds. They utilise message-passing schemes that enable
information to be propagated along the graph’s underlying structure. In medicine,
non-Euclidean data can be found in numerous contexts, including knowledge graphs,
molecule representations, brain connectivity graphs, surface meshes, or population
graphs, where a whole cohort is represented as a network.

In this dissertation, we investigate different aspects of the research question of
when and how to best use graph deep learning for medical applications and research,
specifically highlighting three main findings: (1) The impact of the graph structure
on the performance of GNNs can be stronger than expected, for example in settings
of medical population graphs. (2) We extend commonly used metrics for graph
assessment to a wider range of applications, aligning with medically relevant scenarios
such as regression tasks and the utilisation of weighted graphs. (3) We introduce a
method for differentially private (DP) training of GNNs for graph-level predictions
and find a correlation between the underlying graph structure and the performance
of DP GNNs. Differentially private algorithms provide formal privacy guarantees
and protect data owners from potential risks of privacy leakage. This is of high
importance when utilising sensitive data such as medical records.

Towards a more general understanding of the utility of GNNs in medicine, we on the
one hand highlight a major advantage of graph learning by studying a novel application
of GNNs for the quantification of fatty tissue in the human body using whole-body
meshes, which requires fewer computational resources than conventional methods,
such as CNNs. On the other hand, we underline some limitations by showing that even
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though GNNs have achieved promising results and improved downstream performance,
they only outperform graph-agnostic methods under specific circumstances. With this,
we raise the need for more appropriate graph construction methods for population
graph studies. With the works summarised in this dissertation, we illuminate the
understanding of graph deep learning in medicine from a variety of angles, aiming
to make a step towards even more effective GNNs and the most suitable application
areas.
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Zusammenfassung

Die Methoden des Deep Learning (DL) haben die Datenverarbeitung in jeglichen
Bereichen unseres Lebens grundlegend verändert. In der Medizin haben Deep-Learning-
Methoden zum Beispliel Arbeitsabläufe vereinfacht und vielversprechende Ergebnisse
bei der Verbesserung von Diagnosen, Tumorerkennung und Bildverbesserung gezeigt.
Für unterschiedliche Anwendungsfälle und Daten wurden jeweils unterschiedliche
DL-Methoden entwickelt. Hierbei ist jede Methode eng mit den Daten verknüpft,
auf denen sie angewendet wird. Faltungsneuronale Netzwerke (CNNs) sind leistungs-
starke DL-Methoden, die darauf ausgelegt sind Bilddaten zu verarbeiten, indem
sie lokale Filter verwenden, die Informationen aus benachbarten Pixeln aggregieren.
Diese nutzen die zugrundeliegende (euklidische) Geometrie der Bilder. Graphneuro-
nale Netzwerke (GNNs) sind das entsprechenden Gegenstücke für nicht-euklidische
Daten wie Graphen oder Mannigfaltigkeiten. Sie nutzen Message-Passing-Systeme,
die es ermöglichen, Informationen entlang der Kanten des Graphen weiterzugeben
und daher Daten zwischen benachbarten Datenpunkten auszutauschen. In der Me-
dizin können nicht-euklidische Daten in zahlreichen Kontexten verwendet werden,
einschließlich knowledge graphs, Molekülrepräsentationen, Gehirnverbindungsgra-
phen, Oberflächengittern oder Populationsgraphen, bei denen eine ganze Kohorte als
Netzwerk dargestellt wird.

In dieser Dissertation untersuchen wir verschiedene Aspekte der Forschungsfrage
wie und wann man am besten Graphneuronale Netze für medizinische Anwendungen
verwenden sollte. Hierbei betonen wir drei Hauptkenntnisse unserer Arbeiten: (1) Der
Einfluss der Graphstruktur auf die Ergebnisse von GNNs ist teilweise höher als erwar-
tet, was wir am Anwendungsbeispiel von Populationsgraphen zeigen. (2) Wir erweitern
gängige Metriken zur Graphbewertung auf ein breiteres Anwendungsspektrum und
ermöglichen somit deren Verwendung für medizinisch relevanten Anwendungsbereicht
sowie Regressionsaufgaben und der Verwendung von gewichteten Graphen. (3) Wir
stellen eine Methode für differentially private (DP) Training von GNNs für graph-
level Vorhersagen vor und erörtern die Korrelation zwischen der zugrunde liegenden
Graphstruktur und der Leistung von DP-GNNs. Differentially private Algorithmen
bieten formale Datenschutzgarantien und schützen Datenbesitzer vor potenziellen
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Risiken der Datenschutzverletzung. Dies ist von besonders hoher Bedeutung bei der
Nutzung sensibler Daten wie im medizinischen Bereich.

Um Teile der Frage wie GNNs in der Medizin am besten verwendet werden können
herauszuarbeiten, zeigen wir einerseits einen großen Vorteil von GNNs an einer neue
Anwendung auf Oberflächennetzen des Körpers, die eine Quantifizierung des Fettge-
webes im menschlichen Körper ermöglicht, während sie weniger Ressourcen als andere
Methoden wie CNNs erfordert. Andererseits stellen wir einen großen Schwachpunkt
von GNNs heraus, indem wir zeigen, dass konventionelle Methoden auf Populations-
graphen gleiche Ergebnisse erzielen wie GNNs und betonen die Notwendigkeit von
besseren Graphkonstruktionsmethoden in diesem Kontext. Mit den Arbeiten dieser
Dissertation beleuchten wir GNNs von unterschiedlichen Gesichtspunkten und hoffen
damit einen Schritt in Richtung noch effizienterer Modelle und Anwendungsfälle zu
machen.
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Introduction

Artificial intelligence (AI) has entered, altered, and transformed almost every domain
and application area in the last decades – including medicine. Medical research
has greatly benefited from the advances of AI by, for example, automating time-
intensive tasks, such as semantic segmentations of medical images [1], or supporting
the process of medical decision-making [2], treatment planning [3] and monitoring
[4]. Neural networks are designed to learn local statistics of a dataset with the goal
of generalising them to unseen data samples [5]. This concept has, for instance,
been successfully employed with convolutional neural networks (CNNs) [6]–[8], which
extract information from medical images. These networks operate on fundamental
assumptions about the underlying geometry of the dataset, which is Euclidean [7],
[8]. Pixels or voxels in images have fixed positions and all images share the same
connectivity in terms of neighbouring pixels/voxels and their relation to each other.
Convolutional operations use these properties by extracting local features, which
are shared across the whole image domain and therefore extract global information
that can be used for downstream tasks. Their efficiency and functionality have made
CNNs one of the most powerful AI methods in the last decades.

However, a multitude of datasets is represented more accurately or appropriately
when depicted as graph-like structures. Here, data entities can be represented as
nodes and edges, which connect pairs of nodes. In contrast to images, graphs create
a more flexible structure, where nodes do not necessarily have a fixed position or
a constant number of neighbours. This allows for a flexible data representation for
various datasets, such as social networks, routing systems, or molecules. A schematic
visualisation of an example network or graph is displayed in Figure 1.1. Here, each
node represents a person and a connection between two people indicates a relationship
between them. In medicine, these networks of subjects, which are similar to social
networks, are called population graphs and allow for a coherent representation of a
whole patient cohort.

In contrast to images, the underlying space of graphs is non-Euclidean. Such
non-Euclidean data does not have the same properties as images such as a common
coordinate system or a fixed number of neighbours. Conventional convolutions

1



1. Introduction

Figure 1.1: Visualisation of a network/graph, which is built by a set of
nodes and edges connecting pairs of nodes. Each node can e.g. represent a person
in a medical cohort and hold information about their lifestyle or medical records.
Furthermore, each node can have a specific label of interest (indicated by node colour),
such as a disease or age.

of CNNs are therefore not applicable to graphs. A schematic visualisation of the
comparison between the grid-like structure –such as pixels in an image– and a graph
without coordinates and with a more flexible structure regarding neighbourhoods
and distances (indicated by curved edges) can be found in Figures 2.1a and 2.1b,
respectively. Graph-like representations of data allow for high flexibility regarding
the number of neighbours of nodes, where some nodes might only have a single
neighbour and others multiple thousands. This flexibility comes with the drawback
of requiring equally flexible learning techniques that can operate on these datasets.
Deep learning (DL) techniques that can be applied to graphs or manifolds are often
summarised by the term geometric deep learning [5] and neural networks that operate
on non-Euclidean graphs, are called graph neural networks (GNNs).

GNNs have been widely applied to several different data structures and in multiple
domains, including the studying of social networks [9], learning on manifolds [10], or
meshes [11], [12], recommender systems [13], knowledge graphs [14], drug discovery
[15], text classification [16], or disease prediction [17], [18]. In general, these graphs
can become arbitrarily large and require efficient processing by appropriate deep
learning methods. Another challenge in the context of medicine is that the initial data
does not always provide an internal graph structure, but the connectivity of different
entities needs to be established from the dataset. For example, brain connectivity
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graphs represent the connectivity of different brain regions. However, both the brain
regions and the definition of their connectivity need to be defined and structured in
order to allow for the construction of a suitable graph.

This dissertation addresses different applications and challenges of GNNs in the
medical domain. For some of these applications, the graph does not come inherent
with the dataset at hand but needs to be constructed first. This adds significant
complexity to the learning task, which needs to be addressed with caution. We
investigate the role of the underlying graph structure in different learning tasks, such
as population graphs, where a cohort is represented as one interconnected network.
Furthermore, medical research largely implies working with sensitive patient data,
such as medical images, records or reports. This raises important privacy concerns as
AI methods are vulnerable to information leakage of the data they were trained on
[19]–[22]. This can be addressed by implementing privacy-preserving methods, which
protect the owners of sensitive medical data. Applying privacy-preserving methods
to graphs can raise novel challenges compared to tabular or image data, which need
to be addressed carefully.

Objectives In this dissertation, we address parts of the very broad research question
of when and how to best use GNNs for medical applications and research. In particular,
we investigate graph construction methods that transform commonly used medical
datasets into graph-like representations and explore the graph structure’s impact on
the success of GNNs on medical tasks. We compare the utilisation of CNNs and GNNs
to investigate their differences and potential advantages. This also includes identifying
settings or data representations, where GNNs might not be the ideal methodological
choice and formulating fair comparisons to graph-agnostic methods. Finally, we want
to discuss privacy concerns that naturally arise when working with sensitive medical
data and explore privacy-preserving DL methods for GNNs. GNNs are a highly
promising method that allows for the application of deep learning technologies to
more diverse and flexible data structures such as graphs. We envision seeing more
applications and methods in this direction in future research and hope to contribute
to their development for medical applications with this work.

Contributions This dissertation discusses different aspects of graph deep learning
in medicine, including different applications of graph learning in the medical domain,
highlighting challenges regarding graph construction methods, and privacy-preserving
deep learning in the context of graph structures. The main contributions can be
summarised as follows:
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1. Introduction

• For many medical datasets, the graph structure is neither directly provided nor
obvious. Here, graph learning techniques require an explicit graph construction
step prior to or during training. We summarise and categorise graph construction
methods for medical data and formulate recommendations for this essential
step of any graph learning pipeline (Chapter 4).

• Graph properties, such as the distribution of node labels, are an important
factor for the success of graph learning techniques. However, several such
assessment methods can only be evaluated for a subset of problem settings. We,
therefore, in Chapter 5, extend two commonly used graph assessment metrics
to regression tasks and weighted graphs.

• We implement a novel application of graph deep learning to body surface meshes,
which quantifies fatty tissue in the body while reducing resource requirements
compared to methods using convolutional neural networks (Chapter 6).

• One application area of GNNs in medicine is in the domain of population
graphs. Here a cohort of subjects is represented as a graph that can be used
for medical downstream tasks such as disease prediction [17]. In Chapter 7,
we show that current state-of-the-art population graphs are not as powerful as
believed and do not outperform graph-agnostic baseline models on population
graph settings. We highlight the graph construction as the bottleneck and
discuss future directions of research in this area.

• Working with medical data naturally raises privacy concerns. Sensitive medical
data of individuals is being processed and used for the training of DL models. We
discuss applications of differential privacy to graph-structured data in Chapter
8, which comes with additional challenges compared to tabular datasets and
images.

• Furthermore, in Chapter 9, we define a method for differentially private deep
learning for whole-graph classification tasks and show its privacy-utility trade-
offs on several different datasets and under varying privacy guarantees.

• Finally, we discuss the privacy-utility trade-offs for differentially private training
on medical population graphs by applying a state-of-the-art method for DP
graph learning for node classification to population graph datasets and linking
their performance to graph properties like homophily (Chapter 10).
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Overview of this Thesis The upcoming chapters are structured as follows: In
Chapter 2, relevant background information about deep learning techniques, different
data structures in medicine and their interplay with different methods, is provided.
We hereby especially focus on graph structures and graph deep learning techniques and
highlight their differences to image data and convolutional neural networks. Chapter 3
discusses the basics of privacy-preserving machine learning, specifically focusing on the
concept of differential privacy and its application to graph-structured data. Chapter
4 provides an overview of graph construction methods in medicine, their challenges,
and recommendations for how to construct graph structures for different applications
in medicine and which graph deep learning techniques to use. In several settings, an
assessment of a constructed graph structure is of high relevance. In Chapter 5, we
formulate extended graph assessment metrics for regression tasks and weighted graphs,
which allow for a broader application of two assessment methods to more advanced
graph learning settings. Chapter 6 introduces a novel application of GNNs on surface
meshes of the whole-body for the quantification of fatty tissue in the human body.
We question the utilisation of the current population graph methods for medical
downstream tasks by showing their lack of performance improvement compared to
graph-agnostic methods in Chapter 7 and highlight that current graph construction
methods form the bottleneck for successful graph learning on population graph
datasets. Chapter 8 discusses applications of differential privacy on graph-structured
data, followed by the introduction of differentially private GNNs for whole-graph
classification in Chapter 9. Finally, Chapter 10 shows an application of a differentially
private method for node-level predictions on population graphs and discusses the
impact of the graph structure on model performance under privacy-preserving machine
learning.
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Geometric Deep Learning in
Medicine

Deep learning (DL) techniques have been highly successful in extracting statistical
properties through local statistics. For this, kernels and convolutions have been
designed to harness the properties of the data and enable the abstraction of information
from the data space. These kernels need to match the underlying data space and
profit from using its geometric properties. Medical research and workflows have
benefited greatly from DL techniques. Especially the analysis of medical images via
segmentation [23], [24], object detection [25], [26], or anomaly detection [27], [28]
has facilitated medical tasks and holds great potential to improve and facilitate the
discovery of diagnoses or the formulation of treatment plans. The success of DL
largely comes down to two aspects: (1) the quality, amount, and versatility of the data
it is trained on and (2) the utilisation of appropriate methodologies. Different types
of data require different methods and the quality of the training data has a crucial
impact on the outcome of the method. Following these two aspects, this chapter
first discusses different kinds of medical data and how they can be combined with
appropriate DL methods. First, we introduce and compare different data structures,
such as medical images, graphs, and triangulated surface meshes. We then link the
corresponding DL techniques to them with a specific focus on graph deep learning,
its application in medicine, and inherent challenges, such as graph construction and
the assessment of graph structures.

2.1 Data Structures in Medicine

Medical data comes in a high variety of formats, ranging from tabular data containing
blood values or demographic information, to genetic data, medical images, text of
medical reports, or 3D renderings. DL techniques can be applied to the whole variety
of different types of data, however, they all require slightly different methodologies.
In this section, we discuss some of these structures and their appropriate combination
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2. Geometric Deep Learning in Medicine

(a) Schematic display of pix-
els of an image. An image can
be interpreted as a special form
of a graph, where only neighbour-
ing pixels are connected and pixels
have a fixed position.

[ ]

(b) Schematic display of a
graph with 7 nodes and edges, one
edge weight wij is highlighted in
orange and an exemplary feature
vector xj of node vj is displayed by
the red squares.

(c) Schematic visualisation of
a surface mesh. The surface of
the object (here a sphere) is ap-
proximated by triangular faces. A
mesh can be interpreted as a spe-
cial type of graph2.

Figure 2.1: Visualisation of (a) a grid-like image structure, (b) a graph with edge
weights and node features, and (c) a triangulated surface mesh that can be used to
model objects in 3D space.

with corresponding DL techniques. We specifically distinguish between data in
Euclidean space –such as tabular data or images– and non-Euclidean data –such as
networks or manifolds and discuss their differences and the appropriate methods to
perform DL on the different types of data.

2.1.1 Data in Euclidean Space

Euclidean space is a finite-dimensional real vector space Rn, whose properties can
be described by the axioms of Euclidean geometry and holds a suitable (Cartesian)
coordinate system. The axioms of Euclidean geometry, for example, include that all
right angles are equal and that two points in the coordinate system define a line [29].
For more details on Euclidean spaces, we refer to [29], [30].

Data in Euclidean space includes for example 2D and 3D images, tabular data,
as well as time series data. When looking through the lens of the underlying space,
images can be interpreted as functions on the Euclidean space, which are sampled on
a grid (representing the pixels) [5]. A schematic display of the pixels of a 2D image is
visualised in Figure 2.1a. Here, the pixels have a fixed position with respect to each

2Image generated with GetImg : https://getimg.ai/
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2.1. Data Structures in Medicine

other (the image would lose its meaning if we randomly shuffle them) and the number
of neighbouring pixels is defined and consistent across all images in a dataset. The
pixels in the corners of the image have three neighbours each, all other border pixels
have five neighbours, and the remaining pixels in the middle of the image have eight
neighbours (indicated by the lines connecting pixels). This can be easily transferred
to voxels in 3D images. We can say that images are stationary and stable [5]. Other
similar data structures in Euclidean space include tabular data or text, where again,
the overall shape of the dataset is strictly defined. These properties can be used when
designing DL methods on these datasets, which we discuss in more detail in Section
2.2 for image data.

2.1.2 Data in Non-Euclidean Space

When moving away from such fundamental properties as stationarity and stability,
more flexible representations can be obtained. One such example are graphs, which
consist of a set of nodes and edges, connecting pairs of nodes (Figure 1.1). Two
critical properties of graphs that distinguish them from images are that nodes do not
have fixed positions and the number of neighbours can vary greatly –even between
different nodes of a single graph. Furthermore, two graphs of the same dataset can
have a largely different number of nodes or edges. An image can also be regarded
as a very specific type of graph, where each pixel represents a node in the graph
and both the number of neighbours and the location are fixed (see Figures 2.1a and
2.1b). Another example of non-Euclidean data is a manifold. Manifolds are locally
Euclidean spaces and can be approximated via surface meshes, which can be used to
discretise the surface of an object.

Formal Definition of Graphs

A graph G := {V ,E} is defined as a set of n nodes/vertices V and a set of edges E ,
connecting pairs of nodes. A schematic display of a graph can be found in Figure
2.1b. All edges E can be summarised in an adjacency matrix A of size n× n, where
Aij = 1 if and only if there exists an edge from node vi to node vj , otherwise Aij = 0.
Given that the nodes do not have a specific order or indexing, the adjacency matrix
can look very different for the same graph, when we re-order the graph’s nodes. This
embodies the flexibility and yet complexity that graph-structured data carries. Each
node can contain node features, usually represented by a vector or a matrix. The
node features of node vi can be represented by the vector xi and all node features can
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2. Geometric Deep Learning in Medicine

be combined in a feature matrix X. Furthermore, we can distinguish two types of
graphs: unweighted and weighted graphs. Weighted graphs have an additional weight
matrix W of size n × n, where wij indicates the edge weight of the edge eij from
node vi to vj. Additionally, depending on the graph learning task, a set of labels Y
can be defined that either contains a label for the whole graph or a label for each
node or edge. A neighbourhood Ni of node vi is defined as a set of all nodes that
have incoming edges to node vi. More specifically, one can distinguish between k-hop
neighbourhoods, where k defines the number of hops that are required to reach the
nodes in the neighbourhood starting from the node of interest. This is displayed in
Figure 2.2 and will be referred to later with the concept of graph neural networks.

Figure 2.2: Visualisation of graph neighbourhoods. In the middle is a node of
interest –also called ego-node–, all connected nodes are direct neighbours and build
the 1-hop neighbourhood of this node. All nodes that are connected to nodes of the
1-hop neighbourhood build the 2-hop neighbourhood. They are accessible from the
node of interest via two hops/edges.

Triangulated Surface Meshes A specific representation of a graph that we will
use in this dissertation, is a 3D surface mesh. Here, each node in the graph represents
a point in space that lies on the surface of an object. The node features often
summarise the 3D coordinates in space as well as potential additional features of
interest, such as intensity values. Neighbouring nodes/coordinates are connected
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2.2. Deep Learning on Images

such that they form triangular faces, which approximate the surface of the object.
The smaller the faces, the more accurate the representation of the original object.
Meshes can be seen as discrete representations of a manifold, which is why they can
be processed with geometric deep learning techniques. An example visualisation of a
surface mesh can be found in Figure 2.1c. Surface meshes can be used to represent
any object and have been used frequently in computer vision research [31], [32]. They
can also be useful for medical applications by representing medical objects of interest,
such as organs, body shapes, or skin [33]–[35].

2.2 Deep Learning on Images

Convolutional neural networks (CNNs) have been designed for DL tasks on image
data and are one of the most successful DL methods in computer vision. They apply
a set of local convolutional filters to the input images and common tasks include
semantic segmentation [1], image or object classification [36], or object tracking [37].
Their design is based on some fundamental priors about the underlying geometry
of images. This, for example, allows for the utilisation of a constant number of
parameters for the linear operators at each layer, which makes CNNs highly scalable.
CNNs are usually constructed by composing several convolutional and optionally
pooling layers, which can be used for dimensionality reduction. Both, convolutional
and pooling layers operate on the prior that images hold properties such as locality
and stationary and, therefore, leverage the images’ underlying geometry. More details
on CNNs and their success in image analyses can, for example, be found in [38]–[40].

2.3 Deep Learning on Graphs

Graph deep learning, also termed geometric deep learning [5], refers to the set of deep
learning methods that can be applied to and have been designed for non-Euclidean
data, such as graphs and manifolds. Neural networks that operate on these data
structures are called graph neural networks (GNNs). The idea of GNNs is to use
similar concepts as CNNs, such as local filters, but make them applicable to non-
Euclidean data. GNNs usually follow a so-called message passing scheme [41]. This
refers to the aggregation of information across neighbouring nodes in a graph or
graph-like structure. One of the first GNNs that has been applied to a wide range of
applications is the graph convolutional network (GCN) [42]. It uses graph convolutions
to aggregate the information stored as node features across k-hop neighbourhoods (see
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2. Geometric Deep Learning in Medicine

Figure 2.2) and learn new embeddings for the node features. These node embeddings
can then be used to make edge-, node-, or graph-level predictions. In the last years,
a multitude of graph convolutions have been introduced that use different notions of
message passing. In general, a graph convolution can be defined as follows:

Definition 2.3.1 (Graph Convolution). Let xi be the node features of node vi, and f
a function with learnable parameters that is applied repeatedly for K steps to obtain
node feature embeddings. The initial node feature representation of vi is denoted as
h0
vi
= xi. Then the node feature representation of xi at step k is defined as:

h(k)
vi

= f
(
h(k−1)
vi

, AGGR
(
{hk−1

vj
: vj ∈ Nvi}

))
, (2.1)

where AGGR denotes an aggregation function and Nvi the direct neighbourhood of
node vi. Given the fact that the size of the neighbourhoods can vary greatly across
the whole graph and that neighbouring nodes do not have an order, this aggregation
function needs to be invariant to the number of nodes and their ordering. Examples
of suitable aggregation functions are mean, min, or max operations.

2.3.1 Graph Convolutions

A wide variety of graph convolutions have been designed to address different problems
and settings and several works have investigated how to make GNNs more robust,
flexible, and performant. Some frequently used graph convolutions are GCNs [42],
GraphSAGE [43], or graph attention networks (GAT) [44] that all implement slightly
different versions of Equation 2.1. It has been shown that different graph convolutions
are affected differently by the underlying graph structure. Zhu et al. [45], for example,
show that a separation of ego-node features and each k-hop neighbourhood in the
message-passing function can have a positive impact on GNN performance under more
heterogeneous neighbourhoods. There are graph convolutions specifically designed
for mesh datasets [46], or ones that have inherent interpretability via attention
mechanisms [44], [47].

Neural Sheaf Diffusion Models Another slightly different graph learning tech-
nique are so-called neural sheaf diffusion models, introduced by Hansen and Gebhart
[48] and extended by Bodnar et al. [49]. Neural sheaf models have been shown to
perform better on heterogeneous graph structures (where on average neighbouring
labels differ from the ego label) and operate on the topological concept of cellular
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2.3. Deep Learning on Graphs

sheaves. Here, a vector space is assigned to each node and the edges connecting nodes.
The objective is to learn linear mappings between the vector spaces of nodes and the
adjacent edges. We explore the usage of neural sheaf diffusion models in Chapter 7.
Formally a sheaf convolution can be defined as follows:

Definition 2.3.2 (Sheaf Convolution [49]). Let G be a graph with feature matrix
X ∈ Rnd×a and F a sheaf on G, then the sheaf convolution is defined as

Y = σ ((Ind −∆F) (In ⊗W1)XW2) , (2.2)

with ⊗ denoting the Kronecker product, W1 ∈ Rd×d and W2 ∈ Ra×b two trainable
weight matrices, and σ a non-linearity. In this context, a and b refer to the input and
output channels of the sheaf convolution and In refers to the identity matrix of shape
n× n.

2.3.2 Learning Tasks and Strategies on Graphs

Graph neural networks can be used in several different contexts and for solving
different supervised or unsupervised learning tasks as well as for different learning
strategies and setups. For this dissertation, we only explore supervised learning tasks
for GNNs on medical data and summarise the main differences in application below.

Learning Tasks The main three learning tasks that can be distinguished are (a)
node-level predictions, (b) graph-level predictions, and (c) edge-level predictions. Each
of them can either target classification or regression tasks. As an example, we will
look at molecules as the data of interest, where atoms are represented by nodes and
chemical bonds are represented by edges between the atoms. Figure 2.3 visualises
such node- and edge-level predictions (predictions indicated by colour). An example
of node-level predictions, in this case, would be the prediction of features of atoms in
a molecule. Edge-level predictions can be used to denote properties of the chemical
bonds, such as different types or tightnesses of chemical bonds. In the context of
molecules, graph-level prediction can be used to predict general properties of a whole
molecule, such as the presence or absence of a ring. For graph-level predictions,
multi-graph datasets are required, that contain several individual graphs.

Learning Strategies For supervised training, we can distinguish two types of
learning strategies for graph learning: inductive and transductive learning. Inductive
learning refers to a learning setup similar to classical machine learning, where separate
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2. Geometric Deep Learning in Medicine

Edge-level
predictions

Node-level
predictions

Figure 2.3: Visualisation of node- and edge-level predictions at the example
of a molecule where (a) for node-level prediction a label for each node (atom) is
predicted (indicated by the colour) and (b) for edge-level prediction, properties of
the bindings are predicted.

training and test sets are defined. In the context of graph datasets, two separate
graphs are built: a training graph and a test graph. Only the training graph is
used for training and the test graph for inference. Transductive learning, on the
other hand, only operates on a single graph, utilising all node features at training
time but performing backpropagation only using the labels of the training nodes –
excluding the test nodes’ labels. The latter is specifically designed for graph learning
and cannot be applied easily to other DL settings and mostly applies to node- or
edge-level predictions.

Static and Adaptive Graph Learning In some works of this dissertation, we
distinguish two approaches of graph learning: static and adaptive (see Figure 2.4).
We consider static graph learning approaches as ones that construct a graph prior
to learning, while adaptive graph learning settings adapt the graph structure during
learning. The latter is specifically interesting when the graph structure is not inherent
to the dataset but needs to be constructed from the data. The edges are not fixed
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2.3. Deep Learning on Graphs

Figure 2.4: Visualisation of static and adaptive graph learning. Static graph
learning builds an adjacency matrix prior to training, which is kept static during
training. Adaptive graph learning adapts the graph structure during the course of
learning. A similar version of this figure was first published in [50].

in these cases and can be defined differently based on the selected method. Here,
weighted graphs usually come into play and a continuous adjacency matrix is used,
which needs to be differentiable. This adds additional challenges to the learning task
and raises interesting research questions such as which method is superior to others
and under which circumstances.

2.3.3 Applications of GNNs in Medicine

In the above chapters, we have already briefly discussed some application areas of
GNNs in medicine. Multiple types of medical data can benefit from representations
in the form of graphs. They can be used to model brain graphs [51]–[53], curvilinear
structures such as vessels or airways [54]–[56], molecules [57] for research in drug
discovery, or knowledge graphs [58], which can, for instance, contain information
about diseases, symptoms, and medication, as well as their interactions. They have
also been used in the context of population graph studies [17], where each node
represents a subject in a cohort (see Figure 1.1). Figure 2.5 shows three examples
of graph-structured data frequently used in medical research. Figure 2.5a visualises
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triangulated surface meshes of five abdominal organs: liver (red), pancreas (yellow),
spleen (purple) and both kidneys (blue). In Figure 2.5b, a schematic visualisation of a
knowledge graph is visualised, and Figure 2.5c shows a vessel structure, which can be
represented as a graph, connecting branching points of the vessels. In Chapter 4, more
graph learning applications in medicine from the perspective of graph construction are
discussed. Furthermore, we specifically investigate the usage of surface meshes and
population graphs in more detail in Chapters 6, 5, and 7. The following paragraphs
introduce the concepts of population graphs and triangulated surface meshes in more
detail.

(a) Organ meshes of a liver (red),
left and right kidney (blue), spleen
(purple) and pancreas (yellow).

(b) A medical knowledge graph,
where symptoms and diseases are
represented in a graph.

(c) Visualisation of a vessel tree
that can be represented as a graph,
by using branching points as nodes.

Figure 2.5: Three examples of graph data that is used in medicine. (a)
shows surface meshes of organs, (b) a medical knowledge graph that represents
symptoms and diseases, and (c) a vessel tree, where branching points function as
nodes and the edges follow the structure of the vessel tubes. Parts of this figure were
first published in [50] and [59].

Population Graphs One application area of graph structures, and therefore GNNs
in medicine, is population graphs (Figure 1.1). Here, a cohort of subjects is represented
in a graph structure. Each node usually represents one subject in the form of a
feature vector and “similar” subjects are connected with each other. The concept
of population graphs was first introduced by Parisot et al. [17] and has since been
extended to several downstream applications, such as disease prediction [60] or age
regression [61]. Several works have shown that population graphs out-perform graph-
agnostic techniques [17], [60]–[63]. The idea behind the usage of population graphs
is medically motivated. It is assumed that subjects which share similar phenotypes
(and are therefore connected in the graph) also show similar pathologies. Therefore,
the exchange of information between similar subjects is believed to improve the
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2.3. Deep Learning on Graphs

performance of downstream tasks. However, we question this benefit in Chapter
7 and show how easy-to-use graph-agnostic methods, such as random forests or
linear regressions, on the tabulated data, actually perform on par with much more
complicated GNNs on population graphs.

Surface Meshes in Medicine Another example of applying GNNs to medical data
is the usage of surface meshes. They can, for example, be extracted from segmentations
of medical images. Figure 2.5a shows triangulated surface meshes of five abdominal
organs: liver, kidneys, pancreas, and spleen. Based on the segmentation of an organ,
one can extract a triangulated surface mesh of this organ, for instance, by applying
the marching cubes algorithm [64]. Organ meshes have, for instance, been used for
more accurate organ segmentations [35]. We propose the utilisation of surface meshes
in combination with GNNs for the quantification of fatty tissue volume in the human
body in Chapter 6.

2.3.4 Assessment of Graph Structures

In many cases, it is important to get a better understanding of specific properties
of a graph. This can include the average node degree, the density of the graph,
or the label distribution across nodes. For that, several graph assessment metrics
have been introduced and some of them correlate with the performance of graph
neural networks. The most frequently used metric in this context is homophily.
Homophily describes the average ratio of equally and differently labelled nodes in the
1-hop neighbourhood across all nodes in the graph. In a graph with high homophily,
most of the nodes in all 1-hop neighbourhoods share the same label as the node
of interest. The opposite of homophily is often called heterophily, indicating that
most nodes in a neighbourhood have a different label than the node of interest. An
example homophilic and heterophilic graph is displayed in Figures 2.6a and 2.6b,
respectively. One can distinguish different notions of homophily: node homophily
[65], edge homophily [45], [66], and class homophily [67], [68]. In this work, we utilise
node homophily.

Definition 2.3.3 (Node homophily). Let G := (V ,E ) be a graph and Y := {yu;u ∈
V } a set of node labels, where yi is the label of node vi. Furthermore, let Nvi be the
set of neighbouring nodes of vi. Then G has the following node homophily:

h(G,Y ) :=
1

|V |
∑

v∈V

|{u|u ∈ Nv, yu = yv}|
|Nv|

, (2.3)
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where | · | refers to the cardinality of a set.

Homophily can have a strong impact on the performance of GNNs [66]. Most
GNNs are designed based on the assumption that neighbouring nodes share similar
node features, which are aggregated into new node embeddings during the forward
pass. In the case of a low-homophily graph, this can lead to indistinguishable node
embeddings, which hinders the performance of accurate predictions. For this reason,
several graph convolutions have been introduced to specifically perform well on
low-homophily graphs, such as heterogeneous graph transformers [69], H2GCN [45],
HEAT convolution [70], or the previously mentioned sheaf diffusion models [48],
[49]. Neighbourhoods of heterophilic graphs can still contain high information or be
completely uninformative, depending on the distinguishability of nodes with different
labels [71]. For example, in a binary classification task, where homophily is very low,
the correct class is mostly the opposite class of the neighbouring nodes. Therefore,
different notions of homophily, e.g. adjusted homophily [72], as well as additional
metrics have been introduced to assess the structure of a graph and indicate different
aspects of the correlation between graph structure and GNN performance.

(a) Graph with high homophily, most neighbours
share the same label as the node of interest.

(b) Graph with low homophily, most neighbours
have a different label than the node of interest.

Figure 2.6: Visualisation of a graph with (a) high homophily and (b) low homophily.
The node colours indicate node labels. For the graph with high homophily, most
neighbours share the same label, whereas the low-homophily graph shows diverse
neighbourhoods. Parts of this figure have first been published in [73].

Another commonly used graph assessment metric is called cross-class neighbour-
hood similarity (CCNS) [66] (Definition 2.3.4). This metric moves away from a binary
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notion of neighbourhood similarities, as utilised by homophily, and quantifies how
different the neighbourhoods between all pairs of node classes are. There are several
more graph assessment metrics analysing different properties of the graph, such as
label information [72], probabilistic Bayes error [71], negative generalised Jeffreys
divergence [71], normalised total variation [74], or normalised smoothed value [74], to
name only a few.

Definition 2.3.4 (Cross-class neighbourhood similarity). Let G = (V ,E ), Nvi , and
Y be defined as above. Furthermore, let C be the set of classes that nodes can
be labelled with, and Vc the set of all nodes labelled with class c. The cross-class
neighbourhood similarity of two classes c and ĉ is defined as follows:

CCNS(c, ĉ) =
1

|Vc||Vĉ|
∑

u∈Vc,v∈Vĉ

cossim(d(u), d(v)), (2.4)

where cossim(·, ·) denotes the cosine similarity and d(u) is the histogram of the labels
of a node u’s neighbours.

The CCNS of a graph is an |C| × |C| matrix, quantifying the similarity between
all combinations of classes. In Chapter 5, we propose a simplified metric that
reduces the CCNS matrix to a single value. Furthermore, we identified an essential
limitation of most graph assessment metrics: they are limited to classification tasks
and unweighted graphs. We, therefore, extend the two metrics, homophily and
cross-class neighbourhood similarity, to weighted graphs and homophily to regression
tasks. This is essential in order to cover a wider range of applications in medical
research and make the assessment of graph structures more generally applicable.

2.3.5 Interpretablity of GNNs

Despite the huge success of DL methods, there are some strong points of criticism.
One of them is that most DL models are “back box” methods that do not provide
any insights into the decision-making process. This can have negative implications
and affect the trustworthiness of DL techniques. This is especially critical in medical
settings, where both doctors and patients need to trust these technologies and where
potentially life-altering decisions could be based on recommendations of DL systems.
Therefore, interpretability methods have been developed which allow one to shed
light on certain aspects of how a DL model reaches a decision. Several different
approaches have been developed that allow for an investigation of specific aspects of
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the decision-making process of DL models [75], [76]. One can, for example, distinguish
between ad-hoc and post-hoc methods. The former has an inherent interpretability
method integrated into the model, whereas the latter uses an additional method
after training to explain the model’s decisions. Furthermore, one can distinguish
between perturbation-, surrogate-, gradient-, and reinforcement-based techniques.
For CNNs, interpretability techniques such as Grad-CAM [77] and their variants
and improvements have been used frequently, also in the domain of medical image
analysis [78], [79]. Grad-CAM is a post-hoc interpretability method, that investigates
the impact of input pixels/voxels in images using the model gradients. Ad-hoc
methods, such as attention-based approaches allow for an immediate interpretability
of the model, without requiring an extra step. For GNNs, graph attention models
(GAT) [44] have, for instance, been designed with the same principle. They learn
attention weights from neighbours, adapting the message-passing scheme to match
the neighbourhood at hand.

In Chapter 9, we use a method called GNNExplainer [80], which is a perturbation-
based post-hoc method that aims to identify a sub-graph GS ⊆ G of the input graph
G that is considered as important for the decision-making process of the GNN model.
A feature selector F ∈ {0, 1}d, where d denotes the number of node features, is used
to identify important node features. The importance is measured by maximising
the mutual information between the predicted label Y of the full model and the
model with the selected sub-graph GS and the feature selector F . This allows one
to investigate which parts of the graph have contributed most to the decision and
therefore reason about the consistency or whether a decision is medically sensible.
We investigate the interpretability of GNNs in combination with privacy-preserving
graph learning pipelines.
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Privacy-Preserving Deep Learning

An important concern of deep learning (DL) methods is that neural networks store
information about the data they are trained on, which can be leaked and raises
critical privacy concerns [81]. This is especially critical in domains like medicine,
where sensitive patient data is being processed. DL models are vulnerable to attacks
that can retrieve information about the data they were trained on from a model and
its gradients. This includes successfully distinguishing whether a specific subject
was part of the training data (membership inference attack [82]) or the successful
reconstructions of medical images (data reconstruction attack [19]). Both scenarios
can have a severe impact on the person whose data or presence in a dataset has
been identified. For example, if an adversary –who wants to retrieve information
about training samples from a DL model– can determine the presence of a person’s
data in an oncological study dataset, they can conclude beyond reasonable doubt
that this person has a tumour. This information is considered private and should
not be extracted from DL models. In the case of reconstruction attacks, highly
sensitive information such as the presence of medical pathologies can be inferred
from a reconstructed medical image. This evokes a big challenge in maintaining the
trust of patients to share their data, which is essential for gathering large datasets for
successful applications of deep learning. Therefore, privacy-preserving data analysis
needs to be implemented in order to protect the owners of sensitive medical data and
allow for the utilisation of DL methods with all their major benefits.

Anonymisation or pseudonymisation does not hold reasonable protection from data
leakage, since it is possible to match “anonymised” data points with non-anonymised
databases and therefore retrieve the identity of subjects from the first [83]–[85]. DL
models that are trained on sensitive data are sensitive data in themselves. The
training data can be reconstructed from a trained machine learning model and its
gradients [19], [21], [86]–[89], which can represent a critical privacy breach for every
subject that donates their medical data for research or medical practices. Therefore,
more sophisticated methods are required to preserve the privacy of individuals. The
gold standard for privacy-preserving deep learning is differential privacy (DP) [83],
which provides formal privacy guarantees.
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3.1 Differential Privacy

Differential privacy (DP) [83] is a theoretical framework that allows analysts to draw
conclusions from datasets while protecting the privacy of the data owners. Intuitively
speaking, a DP algorithm yields approximately the same results, independent of
whether a single individual’s data is present or absent in the training dataset. DP is
a property of the data release mechanism and holds independently of the availability
or absence of additional information –like for example linking data points to other
databases. DP is the only method that provides formal and mathematically provable
privacy guarantees. Furthermore, it is agnostic to post-processing and subsequent
computations on the private results. It is therefore future-proof: no potential addi-
tional future information or post-processing will be able to undermine the privacy
guarantees provided by a DP mechanism.

Definition 3.1.1 ((ε, δ)-DP). Let D be a database, which contains sensitive data.
Furthermore, let D′ be a neighbouring dataset which differs from D by one record.
We denote neighbouring datasets by D ≃ D′. A randomised mechanism M is
(ε, δ)-differentially private if for all subsets S of Range(M) and all pairs of neigh-
bouring datasets D and D′, the following relation holds:

P(M(D) ∈ S) ≤ eεP(M(D′) ∈ S) + δ. (3.1)

This definition is symmetric –it also holds if D and D′ are swapped– and ε is also
called privacy budget, where a low ε indicates high privacy guarantees and a high ε
low guarantees.

One strong limitation of AI in medicine compared to other domains is the scarcity
of medical data. AI models are reliant on large datasets, which are difficult to obtain
in medical settings - also due to justified privacy concerns. We believe that with a
stronger application of DP in medical research, the collection of larger datasets could
be more realistic. Data owners might be more willing to donate their data for research,
if they know that their privacy is being formally protected, immune to post-processing,
and with clearly quantified risks. We discuss the utility of privacy budgets and define
an axiomatic approach to privacy based on quantifiable information flows in [90].

Despite the strong advantages of using DP in order to provide formal privacy
guarantees, there are two main drawbacks when using DP DL techniques: (a) DP
algorithms require more resources for training and (b) the performance of DL models
suffers under the usage of DP. The latter is referred to as the “privacy-utility trade-
off”. In the medical domain, this raises an important ethical question of balancing
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the protection of data owners and highly accurate medical algorithms that could
potentially save lives or strongly impact people’s health. This trade-off is especially
important in domains like medicine, where both complementary goals are highly
desirable and have ethical implications.

3.2 Differentially Private Deep Learning

The framework of DP is applicable to all mechanisms and has been applied frequently
to DL techniques. The most commonly used approach for DP training of neural
networks is differentially private stochastic gradient descent (DP-SGD), introduced
by Abadi et al. [91]. DP-SGD uses the Gaussian Mechanism to privatise per-sample
gradients before the update of model parameters by (a) clipping the L2-norm of each
per-sample gradient and (b) adding calibrated noise to it. We note, that this method
can be applied to all first-order optimisation techniques and is not limited to SGD.

Definition 3.2.1 (Global L2-Sensitivity). Let f : X → Y be a function, X and
Y metric spaces, dX a distance metric associated with X, dY the L2 metric in Y .
Furthermore, let D and D′ be two neighbouring datasets, defined as above. Then the
global sensitivity ∆f of f is defined as follows:

∆f := sup
D,D′∈X,D≃D′

dY (f(D), f(D′))

dX(D,D′)
. (3.2)

Definition 3.2.2 (Gaussian Mechanism). Let f and ∆f be defined as above, then
the Gaussian mechanism (GM), which is applied to the output y of f is defined as
follows:

GM(y) = y + ξ, (3.3)

where ξ ∼ N (0, σ2In) and σ is calibrated to the global sensitivity of f . In denotes
the identity matrix of size n× n.

Sub-sampling amplification One concept that is frequently applied in DP ma-
chine learning is privacy amplification by sub-sampling. It ensures that a differentially
private mechanism, which is executed on a random sub-sample of a population, pro-
vides better privacy guarantees than when it would be run on the whole dataset [92].
This enables the utility of DP mechanisms in practice since the privacy guarantees
would otherwise be unusably low. Furthermore, it aligns well with many machine
learning techniques that already involve sampling operations, such as stochastic
optimisation methods.
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3.3 Differential Privacy on Graph Structures

Originally, DP and DP-SGD have been designed for datasets, where the notion
of an individual is clearly defined – such as image datasets or tabular data. On
images, for example, DP has been studied in great detail and privacy-utility trade-
offs have been reduced significantly. However, applying DP methods to models on
graph-structured data raises additional challenges. DP-SGD operates on the level of
per-sample gradients. However, for some graph learning tasks, they are challenging
to define. When performing node- or edge-level predictions on a graph, for example,
based on the message-passing methodology over neighbourhoods, individual nodes
impact each other during training. Therefore, DP methods need to be adapted to
graph learning purposes.

A

B

C

Figure 3.1: Different notions of DP on graph-structured data. A indicates
node-level DP, where two neighbouring graphs differ in one node and its adjacent
edges, B edge-level DP, where two neighbouring graphs differ in one edge, and C
graph-level DP, where two datasets differ in one graph.

We can distinguish between single-graph datasets and multi-graph datasets. In
single-graph datasets, it is (a) more difficult to distinguish between individual data
points, since nodes are connected with each other and impact each other and (b)
different parts of the graph (e.g. nodes or edges) can be considered private information
and might require protection. Therefore, different notions of DP on graph-structured
data can be distinguished that are based on the different definitions of neighbouring
datasets. Figure 3.1 summarises the three main notions of DP on graph-structured
data. Node-level DP (A) considers two graphs to be neighbouring if they differ in
exactly one node and its adjacent edges. For edge-level DP (B), two datasets are
neighbouring if they differ in one edge, and graph-level DP (C) covers multi-graph
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datasets, where neighbouring datasets differ in one graph. The DP notion of choice
depends on the application and the data that is considered private in the respective
setting. While edge-level DP considers the information of which nodes are connected
to each other as private, but the node features as general knowledge, node-level DP
protects both node features and edges. Node-level DP is a strictly stronger guarantee
than edge-level DP. Graph-level DP is of interest when working with multi-graph
datasets, where each graph as a whole is considered private. An example of this would
be a dataset of molecules, which are considered sensitive information. There exist
more variants of these three main notions of DP on graph-structured data, which can
be found in Chapter 8.

3.4 Differential Privacy for Graph Neural

Networks

There are different methods to ensure DP training of GNNs. Here, the desired notion
of DP is essential for choosing an appropriate method. In Chapter 9, we introduce
an extension of DP-SGD for whole-graph prediction tasks. We apply DP-SGD for
whole-graph classification to several medical and non-medical datasets, evaluating
privacy-utility trade-offs and the applicability of the method in different contexts.

When performing node- or edge-level predictions, the impact of one node on the
whole training process can vary greatly based on its edge degree. A node with a
lot of out-going edges impacts much more neighbouring nodes than a node with
only one out-going edge. Therefore, several methods for node-level DP bound the
maximum degree of nodes, which bounds the input of a single node on other nodes.
Daigavane et al. [93] introduced a privacy amplification by sub-sampling technique for
multi-layer GNNs for node-level predictions. They use DP-SGD and a sub-graphing
technique that allows them to bound the influence of other nodes. We apply this
method to medical population graphs and study the influence of the graph structure
on performance under different privacy levels in Chapter 10. We discuss how different
homophily values differently impact the performance of the GNNs on population
graph datasets. We find evidence that DP has a stronger negative impact on the
performance of GNNs on low-homophily graphs compared to datasets with high
homophily. Developing methods to ensure DP training of GNNs for different tasks is
still an active research area. Xiang et al. [94], for instance, introduce a novel Hetero
Poisson sampling method to extract sub-graphs of the dataset and use symmetric
multivariate Laplace noise instead of Gaussian noise for preserving node-level DP.
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Alternative methods for ensuring DP for GNNs use, e.g., private aggregation of
teacher ensembles (PATE) [95] approaches. Here, a collection of teacher models is
trained on disjoint datasets and kept private. These teacher models are then used to
train separate student models. PATE methods rely on the availability of unlabeled
public datasets for training the teacher models. Works like [96] use PATE methods
for differentially private GNN training. However, in medicine, large public datasets
are often difficult to obtain. In the following parts of this work, we only utilise
DP-SGD-based methods to ensure differentially private training of graph neural
networks.
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Synopsis: Graph neural networks are powerful tools that enable deep learning on
non-Euclidean data structures like graphs, point clouds, and meshes. They leverage
the connectivity of data points and can even benefit learning tasks on data, which is
not naturally graph-structured –like point clouds. In these cases, the graph structure
needs to be determined from the dataset, which adds a significant challenge to the
learning process. This opens up a multitude of design choices for creating suitable
graph structures, which have a substantial impact on the success of the graph learning
task. However, so far no concrete guidance for choosing the most appropriate graph
construction is available, not only due to the large variety of methods out there
but also because of its strong connection to the dataset at hand. In medicine, for
example, a large variety of different data types complicates the selection of graph
construction methods even more. We therefore summarise the current state-of-the-art
graph construction methods, especially for medical data. In this work, we introduce a
categorisation scheme for graph types and graph construction methods. We identify
two main strands of graph construction: static and adaptive methods, discuss their
advantages and disadvantages, and formulate recommendations for choosing a suitable
graph construction method. We furthermore discuss how a created graph structure
can be assessed and to what degree it supports graph learning. We hope to support
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medical research with graph deep learning with this work by elucidating the wide
variety of graph construction methods.
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Abstract

Graph neural networks are powerful tools that enable deep learning on non-Euclidean data
structures like graphs, point clouds, and meshes. They leverage the connectivity of data
points and can even benefit learning tasks on data, which is not naturally graph-structured
–like point clouds. In these cases, the graph structure needs to be determined from the
dataset, which adds a significant challenge to the learning process. This opens up a multi-
tude of design choices for creating suitable graph structures, which have a substantial impact
on the success of the graph learning task. However, so far no concrete guidance for choosing
the most appropriate graph construction is available, not only due to the large variety of
methods out there but also because of its strong connection to the dataset at hand. In
medicine, for example, a large variety of different data types complicates the selection of
graph construction methods even more. We therefore summarise the current state-of-the-art
graph construction methods, especially for medical data. In this work, we introduce a cat-
egorisation scheme for graph types and graph construction methods. We identify two main
strands of graph construction: static and adaptive methods, discuss their advantages and
disadvantages, and formulate recommendations for choosing a suitable graph construction
method. We furthermore discuss how a created graph structure can be assessed and to what
degree it supports graph learning. We hope to support medical research with graph deep
learning with this work by elucidating the wide variety of graph construction methods.8

1 Introduction

Graphs can be used to represent several kinds of real-world datasets, such as networks, interactions, connec-
tions, or information flows. They hold information encoded in a set of nodes and edges, which connect pairs
of nodes. They can add a structural component to otherwise independent data points. A wide variety of data
can be structured as graphs, such as knowledge (Ruan et al., 2021), (3D) structures in space (Wolterink
& Suk, 2021), brain signals (Kim et al., 2021), or maps (Yu et al., 2021c). Yet, the question of how to
construct an appropriate graph structure from a given dataset can be non-trivial.

8The authors used ChatGPT for minor writing support.
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Figure 1: In this work, we summarise the state-of-the-art graph creation methods that allow one to transform
a high variety of medical datasets into graph structures to perform graph deep learning. Static graph creation
methods (upper row) extract the graph structure prior to learning, while adaptive methods (lower row)
change the graph structure during training.

Graph learning techniques have been designed to apply deep learning (DL) methods directly to non-Euclidean
datasets like graphs or meshes (Bronstein et al., 2017). These methods have since been frequently applied
to data that can efficiently be structured by using a graph, for example, social networks (Fan et al., 2019)
or molecules (Moreira-Filho et al., 2022), and have addressed tasks like friendship recommendations or
drug discovery. Graph deep learning also naturally benefits many applications on medical datasets, as
Graph Neural Networks (GNNs) have proven to be powerful algorithms for downstream tasks like medical
diagnosis (Parisot et al., 2017), or image segmentation (Xie et al., 2022). They allow for straightforward
integration of multi-modal data, such as image features and clinical data, into one coherent data structure,
which has been explored in the context of so-called population graphs, where a medical cohort is represented
by a graph structure instead of a tabular database (Kazi et al., 2022; Parisot et al., 2017).

Even in cases where a graph representation is not the default choice for a dataset, it has been shown that
imposing such a graph structure by leveraging connections between data points can improve the performance
of ML algorithms (Parisot et al., 2017; Ahmedt-Aristizabal et al., 2021; Bessadok et al., 2022; Pellegrini
et al., 2022). This way, relations can be utilised or newly discovered, which can be beneficial for the task
at hand (Cosmo et al., 2020). The application of GNNs to point cloud datasets, for example, can improve
model performance compared to only using individual data points (Wang et al., 2019). This has also
been shown in the medical field for tasks like disease prediction (Parisot et al., 2017), vessel segmentation
(Paetzold et al., 2021), or the interaction between symptoms, diseases, and medication (Ruan et al., 2021).
Here, spatial proximity (Yao et al., 2022; Hansen & Heinrich, 2021), medical knowledge (Mueller et al.,
2022a), anatomical structures (Sun et al., 2021), correlations (Kim et al., 2021), or cartographic location
(Yu et al., 2021c), have been used to generate a graph structure from previously disconnected data points.

This additional processing step of generating a graph structure introduces new challenges to the overall
downstream task (Ahmedt-Aristizabal et al., 2021) and the definition or fine-tuning of nodes and edges
hold a range of crucial design choices. This has turned out to be especially challenging in many medical
settings since for medical images or health reports a graph structure is not the default choice of representation.
Brain connectivity graphs have, for example, shown to be a suitable representation of the human connectome
(Bessadok et al., 2022), which represents a map of neural connections in the brain. However, the construction
of the brain graph holds challenges like the temporal component of functional magnetic resonance imaging
(fMRI). Tube-like structures like airways (Selvan et al., 2020) and vessels (Paetzold et al., 2021) can be
accurately represented by a graph that follows the anatomy of the structure at hand. Still, the concrete
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extraction of the graph structure requires precisely segmenting the curvilinear structures or transforming
branching points into nodes.

In addition to the wide variety of graph construction methods, the strong impact of the graph structure on
the success of the learning task makes this especially challenging (Luan et al., 2022). We thus conclude that
the construction of a suitable graph structure is crucial to optimally leverage the connectedness inherent to
the dataset.

1.1 Why the graph construction matters

Since the introduction of GNNs, many works have shown that GNNs can improve performance on non-
Euclidean datasets compared to graph-agnostic DL models (Cosmo et al., 2020; Parisot et al., 2017; Ahmedt-
Aristizabal et al., 2021). However, this assumption does not apply to all settings and datasets and recent
works have demonstrated that GNNs outperform graph-agnostic models only under specific circumstances.
This can often be attributed to the utilisation of unsuitable graph structures and can even lead to simple
graph-agnostic methods outperforming GNNs (Luan et al., 2022; Zhu et al., 2020). One of the reasons
for this might be an over-smoothing of node features over unideal neighbourhoods (with, for example,
highly diverse labels), which complicates the establishment of suitable feature embeddings required for the
downstream task. When node features of neighbours with highly different labels (and therefore different node
features) get averaged during message passing, the resulting node embedding might be an over-smoothed
representation that merges node features of different labels.

The interaction between the graph structure and the model performance has been investigated in several
works. One question of interest here is how and under which circumstances the graph structure hinders or
benefits graph deep learning. In this context, several graph metrics that assess the graph structure have
been introduced that are strongly correlated with GNN performances. One such metric is homophily (and its
counterpart: heterophily) (Luan et al., 2021; Ma et al., 2022), which quantifies the similarity of neighbouring
labels. Originally, GNNs were built on the assumption that connected nodes share similar properties (they
are homophilic), and GNNs perform well based on this assumption (McPherson et al., 2001). As a result,
several graph DL models underperform on datasets with diverse neighbourhoods (heterophilic graphs). More
metrics and their impact on GNN performance are discussed in Section 5.2.

Even though this line of research implies that the graph structure and, therefore, the graph construction
method strongly impacts the performance of GNNs, the analysis of the works of GNNs in medicine shows
that there is no unique, clearly defined method nor any guidelines for creating the graph structures from
the wide variety of medical datasets. In this work, we, therefore, survey recent works that address graph
creation methods for graph deep learning tasks with a focus on medical data. The methods summarised in
this review are not limited to applications on medical datasets, and we provide links to other non-medical
domains in Section 6.

1.2 Contributions and outline

This work provides an overview of graph construction methods in medicine. We performed a literature search
on Google Scholar based on keywords like “geometric deep learning”, “graph neural network”, “medicine”,
“population graph”, “disease”, “graph construction”, and combinations of them. We summarise 78 works
and categorise them by their graph construction method. The outline of this work can be summarised as
follows:

• We identify three types of graphs that can be distinguished: population-level graphs, subject-level
graphs, and subject-independent graphs, which we use to categorise the included works (Section 3),
as well as two structure types: relationship-based structures and spatially motivated graphs;

• In Section 4, we systematise existing works that utilise GNNs in medical application areas by graph
construction methods with a focus on static and adaptive graph construction (see Figure 1);

• We formulate recommendations for choosing suitable graph construction methods in Section 5.3;
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• We summarise existing graph assessment metrics that allow the evaluation of generated graph struc-
tures in Section 5.2;

• We embed our work into the context of related review papers in Section 6;

• We identify open challenges of graph learning in medicine (Section 7) and conclude with promising
future directions of research (Section 8).

2 Background

In this section, we give an overview of graphs, GNNs, and homophily - a main graph property linked to the
performance of GNNs.

2.1 Formal definition of graphs

Throughout this work, we discuss datasets involving graph structures. A graph G := (V , E) is defined as a
collection including a set of nodes/vertices V and a set of edges E connecting nodes. n = |V | denotes the
number of nodes in the graph. An edge eij = (vi, vj) defines the connection from node vi to node vj . A graph
G is undirected if and only if eij ⇒ eji, ∀i, j ∈ {1, . . . , n}. All edges E can be represented in the adjacency
matrix A of size n × n, where Aij = 1 if eij ∈ E and 0 otherwise. A weighted graph Gw := (V , E , W)
additionally requires a weight matrix W that assigns a weight to every edge in the adjacency matrix. The
weight matrix has the same dimensions as the adjacency matrix. A neighbourhood Nv of a node v ∈ V is
defined by a set of all nodes that have an incoming edge to node v: Nv := {u ∈ V |euv ∈ E}. A node v can
be represented by a feature vector xv ∈ Rm. The features of all nodes (node features) can be summarised by
the feature matrix X ∈ Rn×m. In this work, we summarise, categorise, and investigate different methods to
build the node feature matrix X, the adjacency matrix A, and the weight matrix W from different datasets.

2.2 Graph neural networks

Graph neural networks (GNNs) were first introduced by Gori et al. (2005) and further extended by Scarselli
et al. (2008). The term summarises a branch of research that expanded DL methods to non-Euclidean
datasets, using graph convolutions. Over the last years, several different graph convolutions have been
introduced. GNNs are based on a message-passing scheme, where the information stored in the nodes is
propagated among neighbouring nodes, following the graph’s edges. We here define the message passing at
the example of graph convolutional networks (GCNs) (Kipf & Welling, 2016) but note that the principle is
easily transferable to other graph convolutions.

Definition 2.1 (Graph convolutional networks (Kipf & Welling, 2016)) Let h
(k)
v define the feature

representation of node v at layer k. For GCNs, the initial node representation for all nodes v ∈ V is defined
as following:

h(0)
v = xv. (1)

The node embedding of node v at step k is then defined as:

h(k)
v = f (k)

(
W (k) ·

∑
u∈Nv

hk−1
u

|Nv| + B(k) ∗ h(k−1)
v

)
, (2)

where the function f , the weight matrix W , and the bias B are k-dependent learnable parameters that are
shared across all nodes (Daigavane et al., 2021).

The embedding of node v of the previous step (h(k−1)
v ), as well as the sum of all neighbouring node em-

beddings, are combined in the new node feature representation at step k. Different graph convolutions use
varied versions of this definition but also follow the message-passing scheme. For more information about
GNNs, we refer to Wu et al. (2020).
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2.3 Graph homophily and heterophily

A key statistical property of graphs that indicates how nodes of different labels are connected throughout the
entire graph structure is homophily (Luan et al., 2021). This property has been shown to potentially have a
significant impact on the performance of GNNs (Zhu et al., 2020). In general, three types of homophily can
be distinguished that all focus on a different nuance of the metric: node, edge, and label homophily (Luan
et al., 2021). Edge homophily (Zhu et al., 2020; Ma et al., 2022) in graphs is defined as the ratio of edges
that connect nodes with the same label vs. different labels (see Equation 3). Node homophily (Pei et al.,
2020) describes the average number of direct neighbours with the same label. Class homophily (introduced
by Lim et al. (2021) and termed by Luan et al. (2021)) is an extension of edge homophily with the additional
consideration for class imbalance. Formal definitions of node and class homophily can be found in Luan
et al. (2021). We here define edge homophily since this is the most commonly used metric to assess graphs.

Definition 2.2 (Edge homophily) Formally, the edge homophily of a graph G := (V , E) and the set of
node labels Y := {yu; u ∈ V } is defined as:

h(G, Y ) := 1
|E |

∑

euv∈E
I(yu = yv), (3)

where I is the indicator function.

In case half of the edges in a graph connect nodes with different labels and the other half connects nodes
with the same label, the graph has edge homophily of 0.5. A graph is described as homophilous when h is
large (typically larger than 0.5) and as heterophilous otherwise (Kim & Oh, 2021). Homophily is only one
metric to assess a graph structure and still holds some drawbacks regarding comparability between datasets
and the direct impact on the performance of the downstream model (Platonov et al., 2022). More details
about homophily and further graph assessment metrics can be found in Section 5.2.

3 Graph structures in medicine

Medical research and data often contain patient data that defines the structure of the dataset. We identify
three distinct graph types that are used in medical applications: (1) population-level graphs, where typi-
cally individuals of a cohort are connected in a large graph, (2) subject-level graphs, where each subject is
represented by an individual graph –leading to a multi-graph dataset–, and (3) subject-independent graphs,
which represent more general structures, such as knowledge graphs, molecules or maps. Each graph type
comes with individual challenges and utilises different methods for graph creation. In this section, we give an
overview of those three graph types, which are visualised in Figure 2. We furthermore distinguish between
two types of structures: (a) relationship-based and (b) spatial structures. Relationship-based structures use
concepts and relationships to determine the graph structure and spatial structures use spatial information,
for example, image key-points in Euclidean space. All graph types can be combined with all structure types.
We summarise the combinations of graph types and structure types with examples in Figure 3.

3.1 Population graphs

One research area of graph learning in medicine utilises so-called population graphs (Figure 2(a)). They are
generated by connecting all subjects in a cohort to a single (usually large) graph. The goal is to improve
model performance by using interactions between the subjects/nodes in the graph. The most common
structure of a population graph is one where every subject in the dataset is represented as a node and node
connectivity is, for example, defined by some distance metric between the subjects. When using population
graphs, the learning task of the GNN is usually node prediction. Here, a prediction (e.g. classification or
regression) is made for every node. This can, e.g. be a disease prediction (Parisot et al., 2017) or age
prediction (Kazi et al., 2022). Population graphs are an effective method to integrate multi-modal data and
enable the usage of patient data from different data sources and modalities. There are some examples where
population graphs are extended with some additional components. In Gao et al. (2021) e.g., the authors
create a bipartite graph, where subjects and gene expressions are represented by node entities.
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(a) Population-level graphs (b) Subject-level graphs (c) Subject-independent graphs

Figure 2: Schematic display of the three graph types utilised in medical research with GNNs: (a)
population-level graphs, where each node represents a subject and subjects are connected based on similarity,
(b) subject-level graphs with the example of a brain connectivity graph, where each subject is represented
by a separate graph structure (c) subject-independent graph structures, here represented by a schematic
display of a knowledge graph. The last category summarises graphs that represent more general aspects
compared to subject- or population-level graphs that are not linked to medical subjects.

3.2 Subject-level graphs

Another way to represent medical data is in the form of subject-level graphs. This term summarises various
graphs, where each subject in a dataset is represented by a single graph. The individual graphs are therefore
independent of each other and together constitute a multi-graph dataset. One commonly used example for a
subject-level graph is the representation of brain images as a brain connectivity graph (see Figure 2 (b)). In
general, there are numerous ways to create subject-level graphs, depending on the dataset at hand and the
application. They can, for instance, be used to represent structural connectivity in graph representations of
arteries (Chen et al., 2020b), brain vessels (Paetzold et al., 2021), or airways (Zhao & Yin, 2021; Selvan
et al., 2020), or to model a skeleton of a human in motion (He et al., 2022). When using subject-level
graphs, the most common learning task is graph prediction (e.g. classification or regression). However, there
are also applications where node-level and edge-level predictions (Chen et al., 2020b) are targeted using
subject-level graphs.

3.3 Subject-independent graphs

As a third category, we summarise subject-independent graph structures that represent more general concepts
and data. The graphs in this category represent structures that are independent of individuals, such as
molecules or maps, that are not tailored to subjects or cohorts of patients – in contrast to subject- or
population-level graphs. This includes knowledge graphs, which encode general concepts and knowledge
in graph structure, highlighting relations between different entities. They are often utilised in the context
of diseases, symptoms, drugs, or genes to display their correlation or interaction. They are usually not
personalised but are “intended to accumulate and convey knowledge of the natural world, whose nodes
represent entities of interest and whose edges represent potentially different relations between these entities”
(Hogan et al., 2021). An example of a multi-modal medical knowledge graph is PrimeKG (Chandak et al.,
2023), which includes information about drugs, diseases, phenotypes, exposures, and genes. Cheng et al.
(2021a) construct a knowledge graph on stroke data, and Bonner et al. (2022) review different knowledge
graphs on biomedical data for drug discovery. A knowledge graph differs from population graphs in the
sense that here, no individual patient data is represented as a graph, but general knowledge and connections
between entities are modelled in graph form. For a more detailed review of knowledge graphs, we refer to
Ye et al. (2022). Knowledge graphs can be used for different applications, either on their own or as an
additional source of information for other tasks, like in Pfeifer et al. (2022). Another example would be the
encoding of cartographical proximity in maps like connecting hospitals in different regions of the country
(Jin et al., 2021) or connecting cities based on their local proximity (Yu et al., 2021c) or molecules, where
nodes represent atoms and the edges bindings between them (Bonner et al., 2022). We consider molecules
as another example of subject-independent graphs. Molecule-based datasets in the medical domain are
commonly used for graph-level predictions, for example investigating drug properties (Duvenaud et al.,
2015; Kearnes et al., 2016) or potential interactions between different drugs (Xu et al., 2019).
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Figure 3: Categorisation of graph types and structure types with examples for the different cate-
gories. We consider three graph types: population-level, subject-level, and subject-independent graphs, which
represent overall structures that are not linked to medical subjects. Additionally, we distinguish two types
of structures: ones where the edges are based on relationships between nodes and ones that follow spatial
information.

4 Graph construction methods

In the following, we summarise and categorise the state-of-the-art graph construction methods for medical
data, linking them to the different graph and structure types introduced in Section 3. For graph deep
learning, graph structures are usually extended to contain node features. This additional knowledge is then
propagated along the graph structure during the learning process.

Generally, the graph construction process consists of two aspects: (1) defining the nodes and their features
and (2) defining connections between the nodes (edge construction). Each node has a feature vector of shape
m and all node features of a graph G with n nodes are summarised by a feature matrix X ∈ Rn×m. The edges
can be summarised by the adjacency matrix A ∈ Rn×n. The definition of the adjacency matrix and node
feature matrix are in general intertwined, and both steps are necessary to extract the full graph structure.

In the following sections, we investigate the definition of nodes and node features as well as the creation of
the graph structure itself (the edges). An overview of the categories for graph construction methods, with a
focus on the definition of the graph’s edges, is visualised in Figure 4.

4.1 Defining the graph’s nodes

The extraction of the graph’s nodes is highly dependent on the constructed graph type. When building
population-level graphs, every node usually represents a subject in the dataset. Node features can,
for example, contain tabular data like lab results (Parisot et al., 2017), images (Keicher et al., 2021),
image-derived features (Parisot et al., 2017), or combinations of those (Keicher et al., 2021).

For subject-level graphs, the node feature extraction can vary greatly. We here summarise the most
prominent node and node feature definition strategies for different subject-level graphs. For the creation of
brain connectivity graphs from fMRI data, the most commonly used approach to define node features is to
define regions of interest (ROIs). Here, the definition of nodes is often guided by a 3D atlas, which defines
the ROIs from the recorded BOLD signal (Wang et al., 2022b). We, therefore, say the definition of the
graph nodes relies on prior knowledge (it is prior-driven). There are some examples where slightly different
approaches are utilised to define the final nodes of a graph connectivity graph. For example, Zheng et al.
(2022a) identify the brain’s most informative regions through sub-graph generation. Yao et al. (2021) use
several templates with varying ROI parcellation scales to create coarse-to-fine brain connectivity networks
for each subject instead of depending on a specific brain parcellation. Yao et al. (2022), for instance, build
a graph from image data and use features extracted from a convolutional neural network (CNN) as node
features of the graph. To extract a subject-level graph that represents curvilinear structures, like vessels or
airways, branching points of the structure can be used to define the nodes of the graph. However, nodes
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Figure 4: Overview of graph construction methods for GNN training in medicine categorised by
static and adaptive graph construction. The icons represent examples of represented data in the respective
categories. For static graph construction methods, the previously introduced separation of structure types
by relationship-based and spatial interactions remains.

can also represent a section of the tube (Paetzold et al., 2021). Since in most cases, the definition of node
features and edges for subject-level graphs are intertwined, we provide more information about the node
features of subject-level graphs in Section 4.2.

Subject-independent graphs cover a wide range of different graph structures and datasets that all rep-
resent data that is independent of patients or subjects. This includes knowledge graphs, molecules, or
cartography-based data of maps. When building knowledge graphs, the nodes typically represent entities of
interest, such as diseases, symptoms, or medications. For molecules in drug research, for example, the nodes
usually represent the molecules’ atoms (Zheng et al., 2021; Zhao et al., 2021), and for cartography-based
graphs, cities or hospitals can, for instance, be used to encode the graph’s nodes (Yu et al., 2021c; Jin et al.,
2021).

4.2 Defining the graph’s edges

In this section, we introduce different methods for defining the structure of the graph (the edges). We hereby
categorise existing works based on the following criteria:

(a) Graph type: population-level, subject-level, and subject-independent graph structures
(b) Static and adaptive graph construction mechanisms
(c) Purely data-driven and prior-driven methods

Graph creation methods can be categorised into static and adaptive approaches. We consider a graph creation
method as static if the adjacency matrix is generated prior to training without any adaptions during the
learning pipeline and as adaptive if the graph structure is adapted during training. The different static and
adaptive graph creation methods are summarised in Table 1 and 2, respectively. Both tables also indicate
the generated graph type and whether the approach is data- or prior-driven. We consider methods that only
use the dataset at hand as data-driven and ones that also include additional prior knowledge as prior-driven.

4.3 Static graph construction methods

In this section, we categorise different static graph construction methods by the metric and information
utilised to define the edges between the nodes. We mainly discuss graph type, connection mechanism, and
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the utilised data. The available methods are summarised in Table 1. In column “Category” we categorise
each method by the utilised relation for edge construction. “Graph type” indicates the specific type of graph
(Section 3) that is generated, “Graph construction” refers to the utilised metric or property to decide when
an edge is added to the graph, the represented data is listed in the respective column, “P/D” indicates
whether the graph is prior- or data-driven and the listed references give examples of works that utilise the
respective methods, including the initial introduction of a specific method.

Table 1: Summary of static graph construction methods. We differentiate between different graph
types, construction methods, and source data types. We also indicate if the method is prior-driven (P),
data-driven (D) or both (P, D), as well as if the graph is weighted (W).

Category Graph type Graph construction Represented data P/D W References

Similarity
and
distance

Population level Similarity score Patient cohort D ✗ Parisot et al. (2017); Ghorbani
et al. (2022); Vivar et al. (2021)
Pellegrini et al. (2022); Peng et al.
(2022); Pan et al. (2021); Kazi
et al. (2019); Ghorbani et al.
(2021)

Population level Similarity score Image features, clinical data D ✓ Lin et al. (2023); Qiu et al. (2021)
Population level Mutual information Images, clinical data D ✗ Keicher et al. (2021)
Population level Euclidean distance Image features, clinical data D ✗ Lu et al. (2022); Yu et al. (2021b)
Subject level Euclidean distance EEG signal D ✗ Demir et al. (2021)
Subject level Euclidean distance Images D ✗ Sun et al. (2021)
Subject level Euclidean distance Airways D ✗ Tan et al. (2021)
Subject level Cosine similarity Images D ✗ Mahapatra et al. (2022)
Subject level Morphological similarity fMRI data D ✗ Mahjoub et al. (2018)
Subject level Pearson correlation Brain connectivity D ✗ Kim et al. (2021)
Subject level Partial correlation Brain connectivity D ✓ Li et al. (2021c)
Subject-independent Conditional probability Lesion types D ✗ Cheng et al. (2021b)

Relation Population level Medical assessments Patient cohort D ✓ Mao et al. (2022)
Subject-independent Known interactions Disease/symptom/medication P ✓ Ruan et al. (2021)
Subject-independent Interactions Ontologies P ✓ Hao et al. (2021)
Subject-independent Synergism/antagonism Drugs P ✓ Zheng et al. (2021)
Subject-independent Drug–protein pairs Drugs P ✓ Zhao et al. (2021)
Subject-independent Protein interactions Proteins P ✗ Schulte-Sasse et al. (2021)
Subject-independent Co-occurrences (Clinical) abnormalities P ✓ Liu et al. (2021); Zhou et al. (2021)
Subject-independent Co-occurrences Medical labels D ✓ Hou et al. (2021)
Subject level Medical importance ECG leads P ✗ Mueller et al. (2022a)
Subject level Protein interactions Proteins P ✓ Pfeifer et al. (2022)

Space,
structure,
or anatomy

Subject level Local proximity Image landmarks D ✗ Yao et al. (2022); Hansen & Hein-
rich (2021); Huang et al. (2023)

Subject level Tree structure Curvilinear structures D ✓ Yu et al. (2022a)
Subject level Tree structure Curvilinear structures D ✗ Paetzold et al. (2021); Wittmann

et al. (2023); Shin et al. (2019)
Chen et al. (2020b); Wolterink
et al. (2019); Yu et al. (2022b)

Subject level Local proximity Curvilinear structures D ✗ Xu et al. (2022); Xie et al. (2022)
Subject level Local proximity Curvilinear structures D ✓ Li et al. (2021b)
Subject level Anatomy Variety of patient data D ✗ Barbiero et al. (2021)
Subject level Anatomy 3D point clouds D ✗ Yu et al. (2021a)
Subject level Anatomy Skeleton P,D ✗ He et al. (2022); Deb et al. (2022)
Subject level Anatomy Curvilinear structures D ✗ Selvan et al. (2020)
Subject level Mesh generation Cortical surface meshes D ✗ Azcona et al. (2020); Gopinath

et al. (2019a); Wu et al. (2019);
Gopinath et al. (2019b)

Subject-independent Cartography Maps D ✗ Yu et al. (2021c); Jin et al. (2021)
Subject-independent Chemical structure Molecules D ✗ Bonner et al. (2022); Kearnes et al.

(2016); Duvenaud et al. (2015)
Subject-independent Text-derived Disease/symptom/medication P,D ✓ Vretinaris et al. (2021)
Subject-independent Chemical structure Disease/symptom/medication P,D ✓ Zhang et al. (2022b)

4.3.1 Graph construction based on relations

Following the in Section 3 introduced structure types (relationship-based and spatially motivated structures),
we can differentiate these two types of static graph construction. Relationship-based graph construction
methods define a relation between node features, such as similarity or interactions, and spatially motivated
graph construction methods utilise spatial information to define edges.
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Similarity-based graph construction

One method that is frequently used to determine whether nodes connect is based on a similarity or distance
measure. Simplified speaking, in this approach, two nodes will be connected, if they are “similar” or “similar
enough”. The similarity/distance between nodes can be defined by different metrics, including a similarity
score, the Euclidean distance, cosine similarity, or correlation-based similarity. Furthermore, methods using
similarity or distance measures to construct the graph structure can be categorised into ones using the
original data at hand, or a (mostly lower-dimensional) embedding of the original data (Lu et al., 2022).
When using a similarity or distance measure to determine whether nodes should be connected, usually an
additional step of edge selection needs to be performed to obtain the final graph (Section 4.3.4).

Similarity score The similarity between nodes in the graph can be defined with the help of a similarity
score. This is one of the most commonly used methods for the creation of population graphs in order to
determine how similar two subjects in a cohort are. This method was first introduced by Parisot et al.
(2017) in 2017 and has since then been used in many variants and applications, e.g. in Ghorbani et al.
(2022); Vivar et al. (2021); Pellegrini et al. (2022); Peng et al. (2022) and Lu et al. (2022). One advantage
of this method is that the similarity score considers discrete and non-discrete features and can be adapted
by adding additional weight factors. All available features are divided into two groups (e.g. imaging and
demographic features), then the graph is built based on a similarity score that uses one of these subgroups
of features (e.g. demographic features). The second group of features (e.g. imaging features) are used as
node features. Parisot et al. (2017) originally used this approach for brain analysis in Alzheimer’s disease
and autism prediction. They used phenotypic information for the graph creation and imaging features as
node features and show an example of multi-modal data integration.

Variations of this method have been used for bone age estimation (Du et al., 2015), brain age prediction
(Stankevičiūtė et al., 2020), autism detection (Rakhimberdina et al., 2020), genome inference (Dilthey et al.,
2015), disease prediction (Chen et al., 2020a; Kazi et al., 2019; Ghorbani et al., 2021), to only name a few.
In each of the here mentioned works, the original approach of creating the population graph by Parisot et al.
(2017) has been modified to best fit the data and the application. Some adaptations of this method have
also used both imaging and non-imaging features for graph creation as well as node feature representation
(Lin et al., 2023) to maximise the information about the similarity between individual subjects.

Correlation-based similarity Another option to create the graph structure is by evaluating the cor-
relation between node features and connecting those nodes that show high correlation. Similar to the
similarity-based creation, the correlation is thresholded and only nodes that are “correlated enough” will be
connected by edges (Section 4.3.4). This method is used mainly for the creation of brain connectivity graphs
from functional magnetic resonance imaging (fMRI) data. Here the correlation between the blood oxygen
level dependency (BOLD) signal, indicating alterations in blood oxygen levels over time of all previously
defined regions of interest (ROIs) –which are represented by the nodes in the graph– is first averaged within
each brain ROI. Then, a correlation metric is calculated between pairs of regions, and the nodes that show a
high correlation are connected leading to functional connectivity that illustrates the communication between
different brain regions.

Pearson’s correlation coefficient, which measures the linear correlation between nodes, has been commonly
used to evaluate functional connectivity. Values range from −1 to 1 where the former shows perfect negative
correlation and the latter perfect positive correlation. A value of 0 indicates no correlation. Alternatively,
other correlation methods such as partial correlation, Ledoit-Wolf (LDW) regularised shrinkage estimator
(Noman et al., 2021) and Spearman’s rank correlation (Yu et al., 2023) are utilised to construct functional
connectivity. Partial correlation is an extension of the Pearson correlation coefficient, which measures the lin-
ear relationship between two variables. By removing the effects of the controlling variables, partial correlation
helps to identify the unique relationship between the two variables of interest, providing a clearer understand-
ing of the associations between them. LDW regularised shrinkage estimator is a statistical method designed
to improve the estimation of covariance matrices when the number of observations –number of scans– is
small compared to the number of variables –number of ROIs. Noman et al. (2021) use this method to obtain
well-conditioned functional connectivity. Spearman’s rank correlation is a non-parametric rank correlation
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method between two nodes that can detect monotonic nonlinear relationships. Yu et al. (2023) propose a
multi-graph attention network to use both Pearson’s and Spearman’s rank correlation measures. Li et al.
(2021c) utilise ROI-aware GNN assuming more closely connected ROIs exert a greater effect on each other
and apply node (ROI) pooling layer (R-pool) to retain the most representative ROIs while eliminating noisy
nodes. Gharsallaoui et al. (2021) predict an affinity matrix of the target view from the source view. Klepl
et al. (2022) compare different functional connectivity measures for Alzheimer’s disease prediction from EEG
data as well as different edge selection methods.

One potential shortcoming of the creation of brain connectivity graphs from the BOLD signal is that the
signal and the correlation between ROIs change over time. Kim et al. (2021); Kong et al. (2021); Wang et al.
(2022b) target this by creating several brain connectivity graphs for different time steps to allow a more
dynamic graph structure over time. Kong et al. (2022), e.g., propose a multi-stage learning module to fully
utilise features at different stages and use a deep auto-encoder to extract the graph structure.

Distance measures and mutual information In line with the usage of a similarity score, the Euclidean
distance or the cosine similarity has also been used to determine the “distance” between nodes (Lu et al.,
2022; Yu et al., 2021b). These distance measures can also be interpreted as a similarity between nodes and
used as a basis for edge selection (Section 4.3.4), where only the least distant nodes are connected. Keicher
et al. (2021) use images, extracted image features, and clinical data as node features and build the graph
based on mutual information.

Interaction-based graph construction

Apart from similarity- and correlation-based edge definitions, the graph structure can also be derived from
(usually known) interactions between entities. This can e.g. be symptoms that are related to certain diseases,
medications that are used to treat diseases, or lab results that are associated with specific doctor’s visits
(Mao et al., 2022).

Knowledge graphs Knowledge graphs are typically constructed based on known relations between entities
that are usually extracted from large knowledge resources or clinical studies. Medical knowledge graphs can
for example contain diseases, symptoms and medications, connecting co-occurring symptoms and diagnosed
diseases with prescribed medication and reported symptoms. Even though the graph is constructed based on
general knowledge, several design choices still remain. Zhang et al. (2020) create a knowledge graph based on
clinical studies where abnormalities are connected with organs and body parts. Hou et al. (2021) follow the
same graph creation approach, with an additional step of post-processing where missing links are included
in a data-driven manner. Protein-protein interactions can be encoded in knowledge graphs and have, for
example, been used to identify cancer genes (Schulte-Sasse et al., 2021) and drug–target interactions (Zhao
et al., 2021).

The knowledge graph PrimeKG (Chandak et al., 2023) was for example built on large resources like Drug-
Bank (Assempour et al., 2018), Drug central (Avram et al., 2021), and Entrez gene (Maglott et al., 2010)
- to mention only a few. The authors highlight that PrimeKG contains edges between drugs and diseases
that specify “indications”, “contradictions”, and “off-label use”, which are often missing in other medical
knowledge graphs (Chandak et al., 2023).

These constructed knowledge graphs can then be used as a basis for decision-making and graph learning.
The authors in (Vretinaris et al., 2021) for example use a knowledge graph to combine generally applica-
ble information regarding medications and symptoms with text-derived patient-specific information about
their individual symptoms. Zhang et al. (2022b) utilise a similar technique and utilise an attribute graph,
containing chemical structures of drugs as an additional graph to the knowledge graph.

Prior knowledge The graph structure can also be created or influenced by the inclusion of prior knowledge
about the data and the importance of specific features in other areas apart from knowledge graphs. This
was for example applied in a graph classification task using electrocardiogram (ECG) data to determine left
bundle branch blocks (Mueller et al., 2022a), where prior medical knowledge about the importance of seeds
guided the graph construction method.
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(a) Vessel tree (b) Centerline and branching points (c) Abstract graph

Figure 5: Example of an abstract graph representation of a vessel tree, with nodes encoding
branching points and edges encoding vessel segments. Given a vessel segmentation extracted from a 3D or
2D image (a), centerlines and branching points are automatically or semi-automatically extracted (b), from
which a graph is defined (c). Although the graph is inherent to the structure of the vessel tree, the extracted
graph ultimately depends on the entire processing pipeline, which is inherently noisy.

Pre-defined structural connections Some datasets come with internal structural information, from
which the graph can be extracted. An example of this would be molecules, which have been used for drug
discoveries (Bonner et al., 2022) or protein analysis (Pfeifer et al., 2022). Here, the graph creation usually
follows the molecular bindings. For more information about these pre-defined structural connections, we
refer the interested reader for example to a review on ML approaches for the design of multi-target drugs
(Moreira-Filho et al., 2022).

4.3.2 Graph construction based on space, structure, or anatomy

Another graph construction technique is building spatio-structural or spatio-semantic graphs, where the
nodes have associated positions in a metric space. In this case, the relations between the nodes usually
correspond to distances in the respective metric space. The starting point can e.g. be a 2D or 3D image or
a map, and a common choice for the metric space is the Euclidean space.

Curvilinear structures One prominent application of spatio-structural graphs in medical imaging is rep-
resented by curvilinear structures. These are long, thin, structurally constrained tubular structures, following
a tree or network configuration. Examples of such structures are vessel trees, airways, or neurons. As an
exemplification of their structural constraints, vessel trees follow blood flow constraints, their branching
pattern is dictated by the perfusion requirements of nearby tissue, and the cross-sectional diameter of con-
stituent vessels progressively narrows in the distal direction. The inherent graph structure of these objects
makes them ideal candidates for geometric deep learning: either by achieving a more compact, abstract
representation for branch classification or exploiting geometric information for an auxiliary task. The graph
representation is typically only a secondary representation derived from an initial imaging representation,
making graph learning highly dependent on the quality of the graph extraction process. Figure 5 shows an
example of a graph representation derived from a vessel tree.

The most straightforward representation of curvilinear trees as graphs follows the structure of the trees, where
branching points form the node set and individual segments are edges. Such an approach is suitable for multi-
class classification tasks, such as airway or vessel labelling. Chen et al. (2020b) construct a graph of the
intracranial arteries by choosing nodes as centerline points with more than two neighbours and linking them
based on skeleton connectivity. Their approach to multi-class vessel labelling is formulated as simultaneous
node and edge classification, where message passing occurs through both node and edge representations.
Many other works opt to formulate the branch labelling problem as node classification instead since node
classification is more widely spread than edge classification. Paetzold et al. (2021) introduced the VesselGraph
dataset of graphs derived from mouse brains for the tasks of link prediction and vessel classification. The
graph structure is extracted by first generating a segmentation of a 3D volume, then processing it via the
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graph extraction tool Voreen (Drees et al., 2021). Then the initial graphs with nodes as branching points
and vessels as edges are subsequently converted via the line graph approach, such that nodes of the derived
graph correspond to the edges of the initial graph. Xie et al. (2022) performed anatomical labelling of
airways by directly constructing a graph where nodes correspond to branches and assigning edges based
on the connectivity in the image segmentation map. Yu et al. (2022b) used a similar graph construction
approach for airway labelling while adding additional hyperedges between the children of a parent, thereby
using two information passing pathways.

Another prominent use of curvilinear structures in graph-based deep learning is to improve image segmen-
tation. The construction of the graph is less abstract in such scenarios, instead following the voxel structure
of the data representation. Nodes are no longer well-defined anatomical structures such as branches or
branching points but tend to be pixels or superpixels, while edges follow their connectivity in the image. Xu
et al. (2022) first partition the input image into superpixels, which become the nodes of the vessel graph.
Edges are then only defined between nodes corresponding to neighbouring superpixels in the original image.
The superpixel-derived graph is used for vessel segmentation refinement, by predicting superpixel vesselness
as a binary node classification problem. Similarly, Shin et al. (2019) proposed to train a node classifier for
segmentation refinement also using vesselness prediction. However, in their approach nodes are represented
by points sampled equidistantly along the centerlines rather than superpixels, whereas edges are based on
node connectivity or geodesic distances.

Some works (Yu et al., 2022a; Li et al., 2021b; Tan et al., 2021) only use GNNs during training for improved
CNN feature representation for image segmentation, rather than as a standalone task. Yu et al. (2022a)
partition the image into super-voxels and sample a node per super-voxel, relying on travel distance between
nodes in the ground truth for determining edges, while Li et al. (2021b) rely on corner sampling following
skeletonization for node creation and a similar approach for determining edges. Tan et al. (2021) perform
airway segmentation via CNNs with concatenated GNN features by combining nodes around landmarks and
nodes sampled at random lung locations. The adjacency matrix is created by connecting the k nearest
neighbours, in addition to connecting another node with the same predicted semantic class for each node to
improve homogeneity.

Wolterink et al. (2019) use a different approach for vessel segmentation. Instead of working in the pixel
space, they turn to the polar space centred around the vessel centerline and formulate the vessel segmentation
problem as regression. For each cross-section of the centerline, a node for the centerline and 24 additional
nodes around the centerline are created. Thus, the GNN is trained to regress the distance to the centerline.
Each non-centerline node is connected to its corresponding centerline node, the corresponding nodes in
adjacent cross-sections, as well as 2 neighbouring nodes. Additional connections are defined to establish a
triangle mesh, whose vertex coordinates are determined by the regressed distances in the polar space.

Skeleton representation Another application that follows anatomical structures for graph creation, is
the representation of the human skeleton in graph structure. Deb et al. (2022) use skeleton representation
and GNNs for the assessment of physical rehabilitation exercises. Similar representations have been used for
the detection of Parkinson’s disease, where skeletons are extracted from video data of patients (He et al.,
2022). The authors use two different methods for generating the graph structure: (1) connecting the joints
of the skeleton locally, following the underlying skeleton (prior knowledge), or (2) globally, where every joint
of the skeleton is connected to one node at the position of the neck. This shows that even when the data
contains natural connectivity, there are multiple ways to extract a suitable graph structure for graph deep
learning. The different representations are visualised in Figure 6.

Surface Meshes Meshes are a special type of graph structure, that can benefit from graph deep learning
Bronstein et al. (2017). A mesh usually represents a 3D structure in space, where nodes are aligned around
the surface of an object. Edges usually build triangular faces between neighbouring nodes, which is why they
are often also referred to as triangulated meshes. Meshes have also been used for medical data representation,
such as cortical structures (Azcona et al., 2020; Gopinath et al., 2019a; Wu et al., 2019; Gopinath et al.,
2019b) in neuroscience or organ surfaces (Mueller et al., 2022b). Meshes can, for example, be extracted from
segmentations of 3D images, using methods like marching cubes (Lorensen & Cline, 1998). Other works
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(a) Local connection module: here the
graph structure follows the underlying
skeleton of a person.

(b) Global connection module: all rele-
vant joints are connected to one global
node at the neck of a person.

(c) Another local connection module:
here the spine is also included in the
skeleton representation.

Figure 6: Schematic visualisation of two approaches to create a graph structure for skeleton representa-
tions that are introduced in He et al. (2022) and Duan et al. (2022).

utilise finite element meshes (Salehi & Giannacopoulos, 2022), for example, using methods like TetGen
(Hang, 2015). Mueller et al. (2023c) use body surface meshes for the quantification of different types of fatty
tissue. Surface meshes are frequently used in neuroscience. The authors in Salehi & Giannacopoulos (2022)
use cortical meshes for soft tissue prediction in image-guided neurosurgery. Salehi & Giannacopoulos (2022),
e.g., use meshes for predicting soft tissue deformation in image–guided neurosurgery. Azcona et al. (2020)
use surface meshes for brain morphology estimation for Alzheimer’s disease classification. They analyse
cortical and subcortical irregularities that have been shown to be correlated with Alzheimer’s disease. A
review by Zhao et al. (2023) summarises methods for cortical surface-based neuroimage analyses, including
methodologies for cortical surface extraction and parcellation. Popular software tools like FreeSurfer (Fischl,
2012) have integrated methods for cortical surface extraction from MR images.

Image landmarks Graphs can also be extracted from images by identifying landmarks in the image and
then connecting them based on local proximity. Hansen & Heinrich (2021) apply this method to extract
lung landmarks from 3D computer tomography (CT) images in order to perform graph-based registration.
They use the Foerstner interest operator (Förstner & Gülch, 1987) to identify sparse landmarks from the
image, and then use a minimum spanning tree to construct the edges of the graph structure (Heinrich et al.,
2015). Zhao (2021) use several graph structures in their work. One of them uses simple linear iterative
clustering (SLIC) (Achanta et al., 2012) to determine the connection between super-pixels in chest X-ray
images. Huang et al. (2023) use image patches as nodes, connect neighbouring nodes to construct a graph,
and apply GNNs for image reconstruction.

Cartography-based graphs There are a few works, where the graph structure follows cartographic prox-
imity, like maps or regions. Jin et al. (2021) e.g. use hospitals and regions as nodes in their graphs, connecting
geologically close entities. Yu et al. (2021c) suggest representing nodes by cities in the graph structure, and
the proximity of geolocation is used to connect them.

4.3.3 Fully connected graphs

Similar to pre-defined graph structures, there are some applications, where a fully connected graph is used
(Chao et al., 2020). In those scenarios, no graph creation method has to be chosen. Instead, all nodes are
connected to all other nodes. Chao et al. (2020), for example, use fully connected graphs for lymph node
gross tumour volume detection.

4.3.4 Edge selection

In many of the above-mentioned graph creation methods, a distance/similarity/correlation/proximity be-
tween nodes is derived. However, this does not directly lead to a final graph structure. In order to create
the final (sparse) graph from the determined distance between the nodes, a set of –sometimes weighted–
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edges needs to be selected. This is usually either done by (a) thresholding or (b) selecting a fixed number of
neighbours (k-nearest neighbours).

Thresholding edges Thresholding techniques can be further split into absolute thresholding and pro-
portional thresholding. In absolute thresholding, a fixed threshold is chosen to remove weak connections
which results in varying graph densities for different subjects. In proportional thresholding, a portion of
the strongest connections is kept resulting in all graphs having the same edge density. The latter method
is for instance used by (Noman et al., 2021; ElGazzar et al., 2022). In addition to those methods, Yang
et al. (2021) applied the spatial-constrained sparse representation optimisation method to obtain a sparse
representation matrix that captures the relationships between brain regions while considering their spatial
proximity.

k-nearest neighbour selection Alternatively, the k-nearest neighbours (k-NN) of each node can be
selected based on the similarity/distance/proximity between the nodes. This way, every node is connected
to a fixed number (k) of neighbours. K-NN graph creation methods are applied in several application areas,
e.g. for population-level graph creation and brain graph creation. In the latter, a k-NN graph is derived
from each densely connected functional connectivity matrix. It connects each brain region of interest to the
k neighbours that show the highest connectivity. This is for example used in Zhang et al. (2021b); Qu et al.
(2021); El Ouahidi et al. (2022); Wang et al. (2022a); Yao et al. (2021). For population-level graphs, usually,
the k-nearest neighbours are selected based on the features extracted from the dataset (Lu et al., 2022; Yu
et al., 2021b). An implementation of a k-NN graph creation is for example provided by PyTorch Geometric
(Fey & Lenssen, 2019).

4.4 Adaptive graph construction methods

In contrast to the previously investigated static graph creation methods, we here introduce adaptive methods,
where the graph structure is adapted during GNN training. The methods using adaptive graph construction
are summarised in Table 2.

Zhu et al. (2021) propose a categorisation of adaptive graph creation methods into (a) metric-based, (b)
neural-based, and (c) direct approaches. Metric-based approaches (a) use kernel functions to compute a
similarity between node features or embeddings and use those to determine edge weights. Neural approaches
(b) use neural networks to predict the edge weights, and direct approaches (c) interpret the adjacency matrix
as free variables. They refer to adaptive graph creation methods in general as “graph structure learning”
(GSL). However, these terms are not common in the medical domain, where instead the terms dynamic
and latent are used. Dynamic approaches adapt the graph structure in between training steps, but do not
specifically learn the graph structure in an end-to-end manner, which latent graph construction methods do.

Table 2: Summary of adaptive graph creation methods with their corresponding graph types and
examples of original data, from which the graph is extracted. D indicates, that the graph creation method
is data-driven and P that it is prior-driven.

Category Graph type Method Represented data P/D References

Dynamic Subject-independent Euclidean distance Point clouds (non-medical) D Wang et al. (2019)
Subject-independent Euclidean distance Proteins, molecules D Tran et al. (2018)
Population level Cosine distance Patient cohort D Zheng et al. (2022b)
Population level Contrastive learning Brain connectivity D Wang et al. (2022b)
Subject level Euclidean distance Airways D Garcia-Uceda Juarez et al. (2019)

Latent Population-level End-to-end learned Patient cohort P,D/D Kazi et al. (2022); Cosmo et al. (2020); Mul-
lakaeva et al. (2022); Huang & Chung (2020);
de Ocáriz Borde et al. (2023); Song et al. (2021)

Subject level End-to-end learned Brain connectivity D Kan et al. (2022); Campbell et al. (2022); Mah-
mood et al. (2021); El-Gazzar et al. (2021); Zhu
et al. (2022)

Subject level End-to-end learned MR images D Mo et al. (2021a)
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4.4.1 Dynamic graph construction

Dynamic graph creation methods do not construct a fixed/static graph structure before training but change
the graph structure depending on the embeddings during GNN training. Wang et al. (2019) propose dynamic
graph CNNs (DGCNNs) for the analysis of point clouds. They extract a k-nearest neighbour graph based
on the feature space of the applied neural network, which changes in between training steps. In Tran et al.
(2018), the authors extend this method with a new definition of graph convolutional filters with the goal
of improving the impact of distant neighbours. They use the shortest path connections and also do not
optimise the latent space with respect to the graph structure but regarding the downstream task. Their
k-nearest neighbour operation is not differentiable. Tran et al. (2018) also apply their method to biological
graphs like molecules and proteins, however, they have not been applied to medical datasets specifically.

Zheng et al. (2022b) introduce a framework that utilises a dynamic graph generation method for disease
prediction with a focus on the integration of multi-modal data. With the addition of separate loss terms,
their method optimises for the downstream task and certain properties of the adjacency matrix of the graph,
using attention. Wang et al. (2022b) use contrastive learning to generate a population-level graph from fMRI
data using multiple views of the fMRI scans of every subject. They use partial correlations between ROIs to
learn the graph structure that represents the fMRI data. Zhao et al. (2022) dynamically generate the graph
structure by aggregating calculated k-NN graphs during training. This method retains more comprehensive
non-local information diffusion compared to the proximity derived from a fixed input space.

Garcia-Uceda Juarez et al. (2019) use GNNs for improved CNN feature representation, by placing a GNN
as the bottleneck layer inside a U-Net (Ronneberger et al., 2015). Features from the last encoder layer
corresponding to encoded super-voxels serve as nodes connected either through regular grid connectivity, or
based on the nearest neighbours in the feature space.

4.4.2 Latent graph learning

Here, we summarise methods that specifically learn the graph structure in an end-to-end manner. This
requires the adjacency matrix of the graph to be differentiable. When using static graph construction
methods, the adjacency matrix A is often a binary discrete matrix, where an entry aij = 1 indicates that
there is a connection from node i to node j. When using latent graph creation methods, A needs to be
continuous, to allow backpropagation through the adjacency matrix (Figure 7). This is usually implemented
by a fully connected graph with continuous edge weights that are updated during learning.

GNN

Figure 7: Schematic overview of a latent graph learning approach. Figure adapted from Cosmo et al.
(2020); Kazi et al. (2022). The purple arrows indicate the backpropagation tracks through the networks. fϕ

is an embedding network with learnable weights ϕ and A is the adjacency matrix, which will be updated.

The first works in this area used the spectral domain to learn the latent structure of the graph (Zhan et al.,
2018; Li et al., 2018; Huang et al., 2018). These spectral methods require an initial graph which will then
be changed over training and are limited to transductive learning settings since the extraction of the graph
Laplacian requires the full graph including test and validation sets. Later, latent graph learning methods
have also been transformed into the spatial domain, which also allows inductive training.
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Cosmo et al. (2020) were the first to apply this approach in medical research for computer-aided diagnosis
(CADx) and disease prediction. They could report improved performance when using a learned graph
structure on two CADx problems (brain age prediction and Alzheimer’s Disease prediction) compared to the
approach of extracting a graph structure prior to training the GNN. In terms of graph structure learning,
their method is classified as a “metric-based” GSL (Zhu et al., 2021). Mullakaeva et al. (2022) suggest
extending the same graph learning method by adding additional loss to control the graph sparsity and
applying it to a graph-in-graph learning task. Mo et al. (2021a) explore a similar technique for multi-modal
data integration of MR images that also utilises an end-to-end trainable adaptive graph learning method.
Huang & Chung (2020) also utilise an adaptive graph learning mechanism for disease prediction with the
aid of population graphs. Their method includes a Monte-Carlo edge dropout for uncertainty estimation.
This can be used to quantify the uncertainty of the edges learned in the graph creation method.

As an extension of Cosmo et al. (2020), Kazi et al. (2022) introduce the differentiable graph module (DGM).
They propose two variants of their method with different sampling strategies: continuous and discrete. The
latter has the advantage that a sparse graph can be sampled without the need for a fully connected adjacency
matrix and requires the utilisation of the Gumbel-top-k trick (Kool et al., 2019) to ensure differentiability. In
general, DGM can be applied based on an initial graph structure (prior-driven) or solely on the node features
(data-driven). DGM uses Euclidean space to encode the latent features from which the latent graphs are
decided. de Ocáriz Borde et al. (2023), extend the DGM to work on more complex embedding spaces by
utilising Riemannian geometry.

One aspect in which static methods seem to show shortcomings in representing the full dimensionality of
the data is when a temporal component is introduced. Functional brain connectivity networks e.g. fluctuate
over time and can therefore benefit from an adaptive creation of the graph structure (Kim et al., 2021). We
found five works that use similar approaches to learning the graph structure of functional brain connectivity
networks end-to-end (Kan et al., 2022; Campbell et al., 2022; Mahmood et al., 2021; El-Gazzar et al., 2021;
Zhu et al., 2022). In the method proposed by El-Gazzar et al. (2021), the adjacency matrix is randomly
initialised, and its weights are adaptively learned along with the GNN weights by using gradient descent.
Zhu et al. (2022) couple feature learning with dynamic graph learning into the GCN architecture. Campbell
et al. (2022) and Mahmood et al. (2021) utilise self-attention in their model architecture. Kan et al. (2022)
introduce loss components that enforce sparsity in the graph and maximise the similarity between adjacency
matrices of the same group while minimising similarity between differently labelled subjects.

There are some methods for adaptive graph construction, that have –to the best of our knowledge– so far
not been applied to medical data that we consider promising methods from which medical data analysis with
GNNs could benefit. Some examples are pointer graph networks (Velickovic et al., 2020), dynamic graph
message passing networks (Zhang et al., 2022a), and deep heterophily graph rewiring (Bi et al., 2022).

5 Discussion and recommendations

In this section, we give insights and recommendations for selecting suitable graph construction methods.
We summarise the main advantages of static and adaptive graph creation methods (Table 3) and provide
an overview of graph metrics, that can be used to assess the generated graph structure. We give recom-
mendations regarding the selection of a graph type as well as the choice between static and adaptive graph
construction and discuss some essential impacts of the graph structure on different graph convolutions,
guiding a suitable choice of the latter for the downstream task.

5.1 Static vs. adaptive graph construction

Comparing Tables 1 and 2, we can see that fewer works utilise approaches that work with an adaptive graph
structure creation, compared to the static approaches. In the following, we will compare both methods and
discuss the shortcomings and benefits of both (Table 3).

Static graph creation methods are more computationally efficient during training since they do not require
updating the graph structure. They require fewer trainable parameters and are easier to train in general.
Backpropagating through the adjacency matrix and fine-tuning the adjacency matrix during training (adap-
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Table 3: Overview of advantages and disadvantages of static and adaptive graph construction methods
with respect to different aspects of the methods.

Aspect Static Adaptive

Training efficiency Computationally more efficient during training No pre-processing w.r.t graph creation required
Complexity of training Easier to train (fewer (hyper-)parameters) More difficult to train
Final graph structure Generally applicable for different problems Adjacency matrix is fine-tuned to the problem
Further utility of graph structure Application independent graph structure Adjacency matrix usable for interpretability
Generalisability of method Different datasets require different methods General method, dataset independent
Prior knowledge Can be easily included in the graph Some methods allow inclusion of prior knowledge

tive approach) adds additional complexity to the learning problem and can make training more difficult. On
the other hand, the end-to-end learning of the graph structure eliminates critical design choices, since the
adjacency matrix does not need to be defined prior to training.

Another advantage of adaptive graph creation methods is that the resulting adjacency matrix is fine-tuned
to the specific task. This way, the most suitable adjacency matrix can be learned. This is not the case
for static methods, where the edges are defined prior to learning. Whereas the latter makes the adjacency
matrix more general and the same matrix can be used for different learning tasks on the same dataset.

Regarding the utility of the created graph structure beyond the specific downstream task, the adeptly gener-
ated adjacency matrix can also be used for interpretability purposes. Learned connections can indicate corre-
lations between node components or highlight more important regions of the graph. Campbell et al. (2022)
use their adaptive graph creation functional connectivity networks as a basis to identify sex-discriminate
brain regions, which show higher importance within the decision-making progress of the algorithm.

5.2 Graph assessment

So far, we have investigated different methods to construct a graph structure from medical data and evaluated
the advantages and disadvantages of different methods. Now we discuss methods that can be used to assess
the constructed graph in terms of similarities in neighbourhoods. This can be done before or during model
training, depending on the utilisation of static or dynamic methods. Several graph assessment metrics have
been introduced to evaluate the impact of the graph structure on the learning of GNNs. Table 4 summarises
the different metrics as well as a summary of their targets.

Table 4: Summary of graph assessment metrics that have been shown to be correlated to GNN
performance and can be used to evaluate generated graph structures.

Graph Assessment Metric Reference Details

Edge homophily Zhu et al. (2020) Ratio between edges connecting same and differently labelled nodes
Node homophily Pei et al. (2020) Average amount of neighbours with the same label
Class homophily Lim et al. (2021) Edge homophily with consideration for class imbalance

Adjusted homophily Platonov et al. (2022) Extension of edge homophily satisfying maximal agreement
Label informativeness (LI) Information quantity provided about a node’s label

Probabilistic Bayes Error (PBE) Luan et al. (2023) Probability of a node being misclassified
Negative generalized Jeffreys divergence Analytic expression for PBE

Normalized total variation (NTV) Luan et al. (2022) Variation of the graph signal w.r.t. graph filters
Normalized smoothness value (NSV) Effect of the edge bias

Neighbourhood entropy Xie et al. (2020) Similarity of node embeddings within neighbourhoods
Center-neighbour similarity (Dis)similarity of the neighbours of a node

Aggregation similarity score Luan et al. (2021) Proportion of similarity weights after aggregation
Diversification distinguishability Proportion of nodes benefitting from diversification operations

Cross-class neighbourhood similarity (CCNS) Ma et al. (2022) Similarity measure for neighbourhoods

Label smoothness Hou et al. (2019) Dissimilarity of neighbouring labels
Feature smoothness Similarity between connected feature vectors
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Edge homophily (Zhu et al., 2020) (defined in Section 2.3) is one of the most commonly used metrics
known to be correlated with the performance of GNNs. It has been shown that several graph convolutions
do not perform well on heterophilic graph structures. However, homophily is not a necessary property for
successful graph learning and heterophily affects different graph models at different rates (Zhu et al., 2020).
Heterophilic graphs can have very different structures, containing either highly informative neighbourhoods
or uninformative ones. These different notions of heterophily can be captured by other metrics, such as label
informativeness (Platonov et al., 2022) or cross-class neighbourhood similarity (CCNS) (Ma et al., 2022).
For that reason, a more general term node distinguishability (ND) has been used (Luan et al., 2023), which
quantifies the difference in neighbourhoods more generally than heterophily/homophily.

Additional metrics have been introduced that have shown to impact the performance of GNNs (Luan et al.,
2021; Ma et al., 2022; Luan et al., 2022). Luan et al. (2022) discuss in which settings GNNs are beneficial and
when GNNs under-perform other ML models and introduce two metrics called normalized total variation
(NTV) and normalized smoothness value (NSV) to measure the effect of edge bias. Xie et al. (2020) decide
when neighbourhood aggregation may be unnecessary by evaluating the so-called neighbourhood entropy and
centre-neighbour similarity in graphs. Luan et al. (2021) assess graph statistics with the aid of an aggregation
similarity score and a diversification distinguishability metric, mainly capturing the linear relations of the
aggregated node features. Ma et al. (2022) investigate the similarity in neighbourhoods of same-labelled
nodes and call their metric cross-class neighbourhood similarity (CCNS). Mueller et al. (2023a) reduce the
CCNS matrix to a single value they call CCNS distance. Label informativeness (LI) (Platonov et al., 2022)
quantifies the information content a neighbour’s label provides about the label of a node of interest and
therefore gives more insights into different notions of heterophily. Luan et al. (2023) address the concept of
node-distinguishability (ND), which is represented by several metrics (Ma et al., 2022; Luan et al., 2023).
This concept is more general than homophily versus heterophily. Luan et al. (2023) also extend the idea of
homophily by introducing probabilistic Bayes error (PBE) and negative generalised Jeffreys divergence as
metrics. PBE describes the “probability of a node being misclassified when the true class probabilities given
the predictors are known” (Luan et al., 2023) and the negative generalised Jeffreys divergence is an analytic
expression for PBE. Hou et al. (2019) introduce two smoothness metrics: label and feature smoothness.
Label smoothness is similar to the homophily metric and feature smoothness quantifies how similar the node
features are between connected nodes.

There is no easy answer to what a “good” graph structure looks like. Some graph learning methods are
highly sensitive to heterophilic graphs, while others work well on both homophilic and heterophilic graphs
(Zhu et al., 2020). Different notions of heterophilic graphs (Platonov et al., 2022) show the complexity of
assessing graph structures by their homophily value. We believe that the notion of node distinguishability
(Luan et al., 2023) summarises the impact of graph characteristics on GNN performance best.

Given the complexity of assessing a graph structure, we advise using multiple graph assessment metrics –
ideally before (and for adaptive methods also during) model training. They can shed light on the composition
of the graph and can potentially reveal reasons for poor performance or guide a suitable graph convolution
for performing the downstream task. The evaluation of different metrics that assess different qualities of
the graph structure can be essential for understanding the complex interplay between graph structure and
model performance (Platonov et al., 2022).

Graph assessment beyond supervised node classification While graph assessment metrics have
mostly been applied for node-level classification tasks and under supervised training, they are not limited
to these settings since they represent general graph properties and can equally be applied to graph-level or
edge-level predictions. Homophily has initially been introduced for classification tasks and discrete adjacency
matrices but has recently been extended to the notion of node homophily in regression tasks and continuous
adjacency matrices, which are required for some adaptive graph learning methods (Mueller et al., 2023a).
Furthermore, some metrics have been specifically used for link prediction and unsupervised learning tasks.
Li et al. (2022) discuss unsupervised learning for node and edge classification tasks and link prediction, as
well as the utilisation of edge labels for edge label assortativity. They observe that edge classification tasks
rely more on features of paired nodes having signals with different frequencies. We notice a lack of more
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detailed and specific graph assessment metrics for tasks beyond node-level classification and identify this as
an open and important research area.

5.3 Selection of graph construction methods

We here formulate specific recommendations for selecting a graph construction method for different ap-
plications and datasets. We discuss the choice of graph type (population-level, subject-level, or subject-
independent graphs) as well as the choice between static and adaptive graph construction.

Choosing a graph type The choice between the different graph types is highly dependent on the dataset
as well as the desired downstream task. If a graph structure can be extracted for each subject individually,
subject-level graphs are of use. Here, no dependencies between the subjects need to exist or be derived.
Population-level graphs on the other hand aim to represent all subjects in one data structure. Each subject
is represented by a feature vector or matrix and additional information is added by connecting the subjects.
There are also works studying graph-in-graph problems, where subject-level graphs can be additionally
connected to form a population-level graph (Mullakaeva et al., 2022). The authors show that nested graph
approaches can improve performance. Subject-independent graphs are of interest, when no specific relation
to a medical subject is available or relevant. This is for example the case when performing link prediction in
knowledge graphs, where the relationships between entities (such as diseases and symptoms) are of interest
and there is no personal data of patients.

Choosing a static or adaptive graph construction method The choice between a static or adaptive
graph construction method is more challenging and depends both on the application and its goal. Knowledge
graphs are typically created statically, since here, the connections between entities (e.g. symptoms and
diseases) are based on literature and probably do not benefit from end-to-end learning. The same holds
for molecules. Here, the graph structure is intrinsic to the data, and it would be unintuitive to change the
edges (i.e. chemical bonds) of molecules. On the other hand, population-level graphs and some subject-level
graphs have shown to benefit from an adaptive graph construction (Kazi et al., 2022; Campbell et al., 2022;
Kan et al., 2022). They can, for example, be used to incorporate a temporal component into the learning
process, like with fMRI data. It can also be a suitable method to altogether avoid the necessity of picking
the right graph creation method before training since no specific metric or feature selection is required in this
case. The main advantages and shortcomings of adaptive and static graph creation methods are summarised
in Section 5.1. We believe that choosing an adaptive graph construction method is especially beneficial in
settings like population graphs, where neither an initial graph structure nor a ground truth is available.
We believe that this is a promising area for future research. Especially, the possibility of using the learned
graphs to gain insight into the dataset at hand for interpretability purposes shows high potential for further
investigation.

The most commonly used method to generate population-level graphs is based on similarity (Parisot et al.,
2017) or distance (e.g. Euclidean) (Lu et al., 2022). In both settings, a subset of the available features can be
used to define the edges of the graph (e.g. non-imaging features), while the remaining features (e.g. imaging
features) can be used as node features (Parisot et al., 2017). This –in itself– implements an opportunity for
multi-modal data integration. Later, it has also been shown that using all available features for both, creating
the edges and the node features might be beneficial over splitting the features up (Keicher et al., 2021).
The most frequently used approach for generating brain graphs is based on correlation, and graphs from
curvilinear structures are mostly extracted based on the underlying tree structure of the vessels/airways.

Regardless of the graph construction method of choice, we highly recommend evaluating graph assessment
metrics to gain insights into the graph structure and potentially evaluate whether it is beneficial to the learn-
ing task or might hinder GNN performance. This is especially useful when using static graph construction
methods so that the graph structure can be judged prior to training.
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5.4 Selection of Graph Learning Method

The graph construction method directly impacts the graph structure and therefore the performance of the
utilised GNN for the downstream task. We, therefore, here discuss the interplay between the two components.
The graph construction method can be either independent of the graph learning pipeline (static graph
construction) or intertwined (adaptive graph construction). In both cases, the choice of graph convolution is
an important factor. Zhu et al. (2020) identify some critical design choices that can improve the performance
of GNNs on heterophilous graphs. They show that a separate embedding of neighbourhood node features and
node-internal features improves the performance of heterophilous graphs as well as a separate embedding of
higher-order neighbourhoods and introduces a new model architecture that works well on both homophilous
and heterophilous graphs. Graph convolutions that propagate information simultaneously for all neighbours
and their own node features are more impacted by heterophilic graphs than convolutions that have separate
message-passing schemes for the neighbourhoods and their own node features. There are several graph
convolutions, that have been specifically designed for low-homophily graphs, such as H2GCN (Zhu et al.,
2020), HEAT convolutions (Mo et al., 2021b), or heterogeneous graph transformers (Hu et al., 2020b). In
case the constructed graph results in a low-homophily graph, it is advisable to select one of these graph
convolutions for graph learning. However, the choice of such graph convolutions does not guarantee high
performance. We furthermore note that graph convolutions that are highly impacted by the graph structure
(e.g. GCN (Kipf & Welling, 2016)) benefit most from the utilisation of adaptive graph construction methods.
In these cases, the graph structure can be optimised for the whole graph learning pipeline, including the
graph convolution at hand. Different models have also been specifically designed for specific tasks. RotatE
(Sun et al., 2018), TransE (Bordes et al., 2013), and PairRE (Chao et al., 2021) have, for example, been
designed for link prediction tasks and applied for knowledge graph completion. We furthermore identify
a systematic evaluation of the connection between model architectures and graph structures as an open
research question.

6 Related work

In this section, we put our work in context with existing research. Table 5 summarises adjacent works in
similar fields and more information about GNNs and their application in different areas of medicine.

Table 5: Summary of recent survey papers in connected areas with their specific application areas, the
year of publication, and the reviewed methods. Categorisation methodology lists the main categorisation
schemes followed in the respective works. GSP refers to graph signal processing, and AE to autoencoders.

Domain Reference Year Reviewed methods Categorisation methodology

Medical Ahmedt-Aristizabal et al. (2021) 2021 GNNs Model architecture, application
Medical imaging Ding et al. (2022) 2022 GNNs medical image type
Bioinformatics Yi et al. (2022) 2021 Graph embedding, GNNs Algorithm, application levels
Bioinformatics Zhang et al. (2021a) 2020 GNNs Application, prediction task

Neuroscience Bessadok et al. (2022) 2020 GNNs Application, loss function
Architecture, graph creation

Biological data Li et al. (2021a) 2022 GNNs, GSP Application, feature extraction

Medical Ours 2023 GNNs Graph construction, graph type

Knowledge graphs Ye et al. (2022) 2022 GNNs Task, application
Recommender systems Wu et al. (2022) 2022 GNNs Type of information used
Fault analysis Chen et al. (2021) 2021 GNNs Application, data representation
Finance Wang et al. (2021) 2021 GNNs Graph construction, feature extraction

Text classification Pham et al. (2022) 2022 GNNs, RNNs Text to graph transformation,
CNN, AE Model architectures

Domain invariant Zhu et al. (2021) 2022 GNNs Graph structure learning type

Reviews on GNNs on medical data Ahmedt-Aristizabal et al. (Ahmedt-Aristizabal et al., 2021) give
a detailed overview of GNN training on medical data, organised by application type and graph architectures.
The authors investigate different graph creation methods, however, putting them mostly into context with
varying application areas. They specifically name graph creation as one of the open challenges in research
in this area. For an overview of works covering GNNs, different graph embedding techniques (homogeneous,
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heterogeneous, and attributed), and generative graph models, we refer to Yi et al. (2022), who target works
in bioinformatics. Zhang et al. (2021a) focus on GNNs in bioinformatics, and Bessadok et al. (2022) give
an overview of GNNs in network neuroscience. The latter also categorise existing works by graph creation
methods; however only refer to research in neuroscience, and summarise different loss functions for different
applications. For a review of graph signal processing and graph learning on biological data, we refer to Li
et al. (2021a). The authors also provide a summary of feature extraction techniques in the graph domain.
Ding et al. (2022) give an overview of applications of GNN methods to multi-modal medical imaging datasets.

Graph construction in other domains Graph construction can be a challenging aspect of graph deep
learning pipelines, regardless of the domain and application. Therefore, we list some works investigating
graph creation methods in different domains.

For recommender systems, Wu et al. (2022) provide an extensive survey on GNN applications, including an
elaboration of the graph creation methods in this area. However, they only focus on the post-processing
of the graph structure before training since the initial graph structure is usually always provided by the
bipartite user-item graph - which differs from several medical datasets. Han et al. (2022) highlight the dif-
ficulties of creating a graph for retrosynthetic planning with GNNs and propose a semi-dynamic approach
for connecting different molecules with each other. Different graph construction methods for association
graphs for fault analysis are discussed in Chen et al. (2021). Here, the authors categorise the graph con-
struction methods into (a) using the k-nearest neighbour method, (b) using prior knowledge, and (c) using
matrix completion. This categorisation is similar to the one we use in this review. However, we add the
additional component of adaptive graph construction. For a review on GNNs in finance, including different
graph construction methods, we refer to Wang et al. (2021). They distinguish three graph creation methods:
data-based, knowledge-based, and similarity-based. This categorisation is similar to the one utilised in our
work. However, we provide a more detailed methodological distinction between the graph creation methods.
Pham et al. (2022) give an overview of graph creation methods for text analysis, categorising existing works
based on text graphs and model architectures. In Zhu et al. (2021), the authors investigate general methods
for graph structure learning, limited to the here termed “adaptive” graph creation methods.

7 Open challenges and future directions

In this section, we discuss open challenges that arise when working with GNNs in medicine that can be
linked to graph construction methods and graph learning in general.

7.1 GNNs vs. graph agnostic models

As mentioned in Sections 1.1 and 5.2, recent works have shown that GNNs do not consistently outperform
graph agnostic models (Luan et al., 2022). In most of the here summarised works, the original data does
not come naturally in graph structure. Therefore, one could raise the question of when it is beneficial to
construct a graph and perform graph learning at all. Most methodological works show that GNNs lead to
improved performances compared to graph-agnostic baselines. However, sometimes GNNs show only little
or no improvement over other ML methods. We see a detailed investigation of these connections to be a
highly relevant area of future work.

7.2 Bias introduction

Another challenge that arises when choosing a graph creation method is the introduction of bias (Mehrabi
et al., 2021). When creating a graph structure statically, every design choice (e.g. which features to select for
graph creation and which to use as node features, the incorporation of prior knowledge) introduces (human)
bias to the resulting graph structure. Sohn et al. (2015), for example, discuss the impact of the selection
of ROIs for brain graph creation from fMRI data and argue that individual ROI selections would be more
accurate. When using purely adaptive graph creation methods, no human bias will be introduced into the
graph creation method. Here, the bias in the dataset will dominate the graph creation. If the available data
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is highly imbalanced, questions of fairness might arise. This is something we believe should be considered
when selecting a graph creation method, and we believe this to be an interesting area of research.

7.3 Undirected vs. directed graphs

Most approaches discussed in this work have been applied to undirected graphs, where edges are always bi-
directional and only a few works discuss methods that work on directed graphs (Keicher et al., 2021). The
effects of using directed versus undirected graphs have not been studied in detail. Changing an undirected
graph to a directed one could be an extension of some of the here mentioned methods for graph construction.

7.4 Availability of public datasets

One significant challenge in exploring graph construction methods on medical data is the shortage of publicly
available datasets. For population graphs, two commonly used public datasets are TADPOLE (Yu et al.,
2020), a subset of the ADNI dataset, and the autism brain imaging data exchange (ABIDE) (Di Martino
et al., 2014), which address Alzheimer’s disease and autism detection, respectively. The private dataset UK
Biobank (Sudlow et al., 2015) is also frequently used. The open graph benchmark (Hu et al., 2020a) holds
a set of benchmark datasets for graph learning. It also contains molecule datasets and a vessel graph dataset
from Paetzold et al. (2021). For the construction of brain connectivity graphs, the human connectome project
(HCP) (Elam et al., 2021) and the brain connectivity challenge dataset1 have been used apart from several
private datasets. For surface mesh representations, MedShapeNet Scharinger et al. (2023) offers a variety of
medical mesh structures.

7.5 Data privacy

Medical research is usually performed on private data such as medical images or patient records, which hold
highly sensitive information about patients. A well-established, formal method to allow DL while giving
privacy guarantees to individuals is Differential Privacy (DP) (Dwork et al., 2014). It ensures that the
output of a randomised algorithm is approximately the same, independent of a single data point being in the
dataset or not. It has been shown that guaranteeing DP in GNNs is more challenging than in tabular data
since the individual data points (nodes) in a graph are inter-connected (Mueller et al., 2023b). Furthermore,
graph-structured data is more sensitive to privacy attacks like Membership Inference Attacks (MIAs), which
aim to identify whether a certain data point was part of the training dataset. This is because the additional
information lies in the graph structure itself and can be leveraged by adversaries (Olatunji et al., 2021).
We see a requirement for the development of high-utility privacy-preserving techniques for graph learning in
medicine.

8 Conclusion

This in-depth review of state-of-the-art works on graph creation methods for medical data shows that graph
construction is challenging and requires various design choices as well as a careful consideration of the dataset
and task at hand. There are numerous ways to construct a suitable graph structure from a dataset and
the best method needs to be selected with caution. We categorise graph construction methods by static or
adaptive approaches. Static graph construction methods generate a graph structure prior to learning, whereas
adaptive methods change the graph throughout GNN training. We analyse advantages and disadvantages of
both approaches and formulate recommendations about how to pick a suitable graph construction method.

So far, adaptive methods have only been applied to a small subset of graph-learning tasks in medicine. We
believe that this will be explored further in the coming years. Especially, the post-hoc interpretability of
the learned adjacency matrix can hold valuable information about the dataset and task, which might not be
possible to extract from a statically generated graph.

Given the findings about the strong impact of the graph structure on GNN performance (Section 1.1 and
5.2), we want to raise awareness that in cases where the graph structure is not clearly defined by the dataset,

1miccai.brainconnectivity.net
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it is important to consider different graph creation methods as well as suitable graph convolutions. One
characteristic of static graph creation methods is that the graph structure is defined before training. This
opens up the possibility of evaluating the graph structure based on the metrics summarised in Section 5.2.
We believe this to be a valuable step in evaluating the generated graph structure. This way, for example,
the homophily of the graph can be analysed and the potential need for graph convolutions that can handle
heterophilous graph structures can be evaluated (Du et al., 2022; Zhu et al., 2020). This could lead to graph
learning methods that are more linked to the constructed/available graph structures. These graph metrics
could also potentially be incorporated into the end-to-end learning of adaptive graph structures, where they
could be added to the loss function to push the generated graph in the direction of a specific metric.

Given the various options to construct graphs from medical data, we think that explicit explanations of the
applied graph creation method in each work would be beneficial to the research community. Even though the
current state-of-the-art results summarised in this work indicate several recommendations for graph-creation
methods on medical data, we believe that there are still a lot of open questions regarding which graph-
creation method works best for which application. Furthermore, we consider a more thorough investigation
of why a certain method might be beneficial over others to be necessary to learn more about the fundamental
methodologies of GNNs and how they can be applied in the most favourable ways. We hope to contribute
to further research in this area with this survey.
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Synopsis: When re-structuring patient cohorts into so-called population graphs,
initially independent patients can be incorporated into one interconnected graph
structure. This population graph can then be used for medical downstream tasks
using graph neural networks (GNNs). The construction of a suitable graph structure
is a challenging step in the learning pipeline that can have severe impact on model
performance. To this end, different graph assessment metrics have been introduced to
evaluate graph structures. However, these metrics are limited to classification tasks
and discrete adjacency matrices, only covering a small subset of real-world applications.
In this work, we introduce extended graph assessment metrics (GAMs) for regression
tasks and weighted graphs. We focus on two GAMs in specific: homophily and
cross-class neighbourhood similarity (CCNS). We extend the notion of GAMs to more
than one hop, define homophily for regression tasks, as well as continuous adjacency
matrices, and propose a light-weight CCNS distance for discrete and continuous
adjacency matrices. We show the correlation of these metrics with model performance
on different medical population graphs and under different learning settings, using
the TADPOLE and UKBB datasets.
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Abstract. When re-structuring patient cohorts into so-called popula-
tion graphs, initially independent patients can be incorporated into one
interconnected graph structure. This population graph can then be used
for medical downstream tasks using graph neural networks (GNNs). The
construction of a suitable graph structure is a challenging step in the
learning pipeline that can have severe impact on model performance.
To this end, different graph assessment metrics have been introduced to
evaluate graph structures. However, these metrics are limited to classifi-
cation tasks and discrete adjacency matrices, only covering a small subset
of real-world applications. In this work, we introduce extended graph
assessment metrics (GAMs) for regression tasks and weighted graphs. We
focus on two GAMs in specific: homophily and cross-class neighbourhood
similarity (CCNS). We extend the notion of GAMs to more than one hop,
define homophily for regression tasks, as well as continuous adjacency
matrices, and propose a light-weight CCNS distance for discrete and
continuous adjacency matrices. We show the correlation of these metrics
with model performance on different medical population graphs and under
different learning settings, using the TADPOLE and UKBB datasets.

1 Introduction

The performance of graph neural networks can be highly dependent on the graph
structure they are trained on [16,15]. To this end, several graph assessment
metrics (GAMs) have been introduced to evaluate graph structures and shown
strong correlations between specific graph structures and the performance of
graph neural networks (GNNs) [14,16,15]. Especially in settings, where the graph
structure is not provided by the dataset but needs to be constructed from the data,
GAMs are the only way to assess the quality of the constructed graph. This is for
example the case when utilising so-called population graphs on medical datasets.
Recent works have furthermore shown that learning the graph structure in an
end-to-end manner, can improve performance on population graphs [9]. Some of
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these methods that learn the graph structure during model training operate with
fully connected, weighted graphs, where all nodes are connected with each other
and the tightness of the connection is determined by a learnable edge weight. This
leads to a different representation of the graph, which does not fit the to-date
formulations of GAMs. Furthermore, existing metrics are tailored to classification
tasks and cannot be easily transformed for equally important regression tasks.
The contributions of this work are the following: (1) We extend existing metrics
to allow for an assessment of multi-hop neighbourhoods. (2) We introduce an
extension of the homophily metric for regression tasks and continuous adjacency
matrices and (3) define a cross-class neighbourhood similarity (CCNS) distance
metric and extend CCNS to learning tasks that operate on continuous adjacency
matrices. Finally, (4) we show these metrics’ correlation to model performance
on different medical and synthetic datasets. The metrics introduced in this work
can find versatile applications in the area of graph deep learning in medical and
non-medical settings, since they strongly correlate with model performance and
give insights into the graph structure in various learning settings.

2 Background and Related Work

2.1 Definition of graphs

A discrete graph G := (V ,E ) is defined by a set of n nodes V and a set of edges
E , connecting pairs of nodes. The edges are unweighted and can be represented
by an adjacency matrix A of shape n× n, where Aij = 1 if and only if eij ∈ E
and 0 otherwise. A continuous/weighted graph Gw := (Vw,Ew,W), assigns a
(continuous) weight to every edge in Ew, summarised in the weight matrix W.
Continuous graphs are for example required in cases where the adjacency matrix
is learned in an end-to-end manner and backpropagation through the adjacency
matrix needs to be feasible. A neighbourhood Nv of a node v contains all direct
neighbours of v and can be extended to k hops by N (k)

v . For this work, we assume
familiarity with GNNs [3].

2.2 Homophily

Homophily is a frequently used metric to assess a graph structure that is correlated
to GNN performance [15]. It quantifies how many neighbouring nodes share the
same label [15] as the node of interest. There exist three different notions of
homophily: edge homophily [10], node homophily [19], and class homophily [12,15].
Throughout this work, we use node homophily, sometimes omitting the term
“node”, only referring to “homophily”.

Definition 1 (Node homophily). Let G := (V ,E ) be a graph with a set of
node labels Y := {yu;u ∈ V } and Nv be the set of neighbouring nodes to node v.
Then G has the following node homophily:
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h(G ,Y ) :=
1

|V |
∑

v∈V

|{u|u ∈ Nv, Yu = Yv}|
|Nv|

, (1)

where | · | indicates the cardinality of a set.

A graph G with node labels Y is called homophilous/homophilic when h(G, Y )
is large (typically larger than 0.5) and heterophilous/heterophilic otherwise [10].

2.3 Cross-class neighbourhood similarity

Ma et al. [16] introduce a metric to assess the graph structure for graph deep
learning, called cross-class neighbourhood similarity (CCNS). This metric indi-
cates how similar the neighbourhoods of nodes with the same labels are over the
whole graph – irrespective of the labels of the neighbouring nodes.

Definition 2 (Cross-class neighbourhood similarity). Let G = (V ,E ), Nv,
and Y be defined as above. Let C be the set of node label classes, and Vc the set
of nodes of class c. Then the CCNS of two classes c and c′ is defined as follows:

CCNS(c, c′) =
1

|Vc||Vc′ |
∑

u∈V,v∈V′

cossim(d(u), d(v)). (2)

d(v) is the histogram of a node v’s neighbours’ labels and cossim(·, ·) the cosine
similarity.

3 Extended Graph Metrics

In this section, we introduce our main contributions by defining new extended
GAMs for regression tasks and continuous adjacency matrices. We propose (1) a
unidimensional version of CCNS which we call CCNS distance, which is easier to
evaluate than the whole original CCNS matrix, (2) an extension of existing metrics
to k-hops, (3) GAMs for continuous adjacency matrices, and (4) homophily for
regression tasks.

3.1 CCNS distance

The CCNS of a dataset with n classes is an n×n matrix, which can be large and
cumbersome to evaluate. The most desirable CCNS for graph learning has high
intra-class and low inter-class values, indicating similar neighbourhoods for the
same class and different neighbourhoods between classes. We propose to collapse
the CCNS matrix into a single value by evaluating the L1 distance between the
CCNS and the identity matrix, which we term CCNS distance.



4 Mueller et al.

Definition 3 (CCNS distance). Let G = (V ,E ), C, CCNS be defined as
above. Then the CCNS distance of G is defined as follows:

DCCNS :=
1

n

∑
∥CCNS−I∥1, (3)

where I indicates the identity matrix and ∥·∥1 the L1 norm.

We note that the CCNS distance is best at low values and that we do not define
CCNS for regression tasks, since it requires the existence of class labels.

3.2 K-hop metrics

Most GAMs only evaluate direct neighbourhoods. However, GNNs can apply the
message passing scheme to more hops, including more hops in the node feature
embedding. We therefore propose to extend homophily and CCNS on unweighted
graphs to k-hop neighbourhoods. An extension of the metrics on weighted graphs
is more challenging, since the edge weights impact the k-hop metrics. The formal
definitions for k-hop homophily and CCNS for unweighted graphs can be found
in the Appendix. We here exchange the notion of Nv with the specific k-hop
neighbourhood N (k)

v of interest.

3.3 Metrics for continuous adjacency matrices

Several graph learning settings, such as [6,9], utilise a continuous graph structure.
In order to allow for an evaluation of those graphs, we here define GAMs on the
weight matrix W instead of the binary adjacency matrix A.

Definition 4 (Homophily for continuous adjacency matrices). Let Gw =
(Vw,Ew,W), be a weighted graph defined as above with a continuous adjacency
matrix. Then the 1-hop node homophily of Gw is defined as follows:

HCont(Gw, Y ) :=
1

|V |
∑

v∈V

(∑
u∈Nv|yu=yv

wuv∑
u∈Nv

wuv

)
, (4)

where wuv is the weight of the edge from u to v.

Definition 5 (CCNS for continuous adjacency matrices). Let Gw =
(Vw,Ew,W), C, cossim(·, ·) be defined as above. Then, the CCNS for weighted
graphs is defined as follows:

CCNScont(c, c
′) :=

1

|Vc||Vc′ |
∑

u∈V,v∈V′

cossim(dc(u), dc(v)), (5)

where dc(u) is the histogram considering the edge weights of the continuous
adjacency matrix of the respective classes instead of the count of neighbours. The
CCNS distance for continuous adjacency matrices can be evaluated as above.
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3.4 Homophily for regression

Homophily is only defined for node classification tasks, which strictly limits its
application to a subset of use cases. However, many relevant graph learning tasks
perform a downstream node regression, such as age regression [21,2]. We here
define homophily for node regression tasks. Since homophily is a metric ranging
from 0 to 1, we contain this range for regression tasks by normalising the labels
between 0 and 1 prior to metric evaluation. We subtract the average node label
distance from 1 to ensure the same range as homophily for classification.

Definition 6 (Homophily for regression). Let G = (V ,E ) and N k
v be defined

as above and Y be the vector of node labels, which is normalised between 0 and 1.
Then the k-hop homophily for regression is defined as follows:

HReg(k)(G, Y ) := 1−


 1

|V |
∑

v∈V


 1

|N (k)
v |

∑

n∈N (k)
v

∥yv − yn∥1




 , (6)

where ∥·∥1 indicates the L1 norm.

Definition 7 (Homophily for continuous adjacency matrices for regres-
sion). Let Gw = (Vw,Ew,W), Y, and Nv be defined as above and the task be a
regression task, then the homophily of G is defined as follows:

HReg(G, Y ) := 1−
(

1

|V |
∑

v∈V

(∑
n∈Nv

wnv ∥yv − yn∥1∑
n∈Nv

wnv

))
, (7)

where wnv is the weight of the edge from n to v and ∥·∥1 the L1 norm.

3.5 Metric evaluation

In general, we recommend the evaluation of GAMs separately on the train,
validation, and test set. We believe this to be an important evaluation step since
the metrics can differ significantly between the different sub-graphs, given that
the graph structure in only optimised on the training set.

4 Experiments and Results

We evaluate our metrics on several datasets with different graph learning tech-
niques: We (1) assess benchmark classification datasets using a standard learning
pipeline, and (2) medical population graphs for regression and classification
that learn the adjacency matrix end-to-end. All experiments are performed in a
transductive learning setting using graph convolutional networks (GCNs) [11].
In order to evaluate all introduced GAMs, we specifically perform experiments
on two task settings: classification and regression, and under two graph learning
settings: one using a discrete adjacency matrix and one using a continuous one.
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4.1 Datasets

In order to evaluate the above defined GAMs, we perform node-level prediction
experiments with GNNs on different datasets. We evaluate {1, 2, 3}-hop homophily
and CCNS distance on the benchmark citation datasets Cora, CiteSeer, and
PubMed [24], Computers and Photos, and Coauthors CS datasets [20]. All of these
datasets are classification tasks. We use k-layer GCNs and compare performance
to a multi-layer perceptron (MLP).

Furthermore, we evaluate the introduced metrics on two different medical
population graph datasets, as well as two synthetic datasets. The baseline results
for these datasets can be found in Appendix Table 4. We generate synthetic
datasets for classification and regression to analyse the metrics in a controllable
setting. As a real-world medical classification dataset, we use TADPOLE [17],
a neur-imaging dataset which has been frequently used for graph learning on
population graphs [18,6,9]. For a regression population graph, we perform brain
age prediction on 6 406 subjects of the UK BioBank [22] (UKBB). We use 22
clinical and 68 imaging features extracted from the subjects’ magnetic resonance
imaging (MRI) brain scans, following the approach in [5]. In both medical
population graphs, each subject is represented by one node and similar subjects
are either connected following the k-nearest neighbours approach, like in [9] or
starting without any edges.

4.2 GNN Training

Prior to this work, the homophily metric has only existed for an evaluation on
discrete adjacency matrices. In this work, we extend this metric to continuous
adjacency matrices. In order to evaluate the metrics for both, discrete and
continuous adjacency matrices, we use two different graph learning methods: (a)
dDGM and (b) cDGM from [9]. DGM stands for “differentiable graph module”,
referring to the fact that both methods learn the adjacency matrix in an end-to-
end manner. cDGM hereby uses a continuous adjacency matrix, allowing us to
evaluate the metrics introduced specifically for this setting. dDGM uses a discrete
adjacency matrix by sampling the edges using the Gumbel-Top-K trick [8]. Both
methods are similar in terms of model training and performance, allowing us to
compare the newly introduced metrics to the existing homophily metric in the
dDGM setting.

4.3 Results

(1) Benchmark classification datasets The results on the benchmark datasets
are summarised in Table 1. We can see that the k-hop metric values can differ
greatly between the different hops for some datasets, while staying more constant
for others. This gives an interesting insight into the graph structure over several
hops. We believe an evaluation of neighbourhoods in graph learning to be more
insightful if the number of hops in the GNN matches the number of hops
considered in the graph metric. Interestingly, performance of k-hop GCNs did not
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Table 1. K-hop graph metrics of benchmark node classification datasets. Cl.: number
of classes, Nodes: number of nodes

Dataset Nodes Cl. Node homophily ↑ DCCNS ↓
1-hop 2-hop 3-hop 1-hop 2-hop 3-hop

Cora 1,433 7 0.825 ± 0.29 0.775 ± 0.26 0.663 ± 0.29 0.075 0.138 0.229
CiteSeer 3,703 6 0.706 ± 0.40 0.754 ± 0.28 0.712 ± 0.29 0.124 0.166 0.196
PubMed 19,717 3 0.792 ± 0.35 0.761 ± 0.26 0.687 ± 0.26 0.173 0.281 0.363

Computers 13,752 10 0.785 ± 0.26 0.569 ± 0.27 0.303 ± 0.20 0.080 0.275 0.697
Photo 7,650 8 0.837 ± 0.25 0.660 ± 0.30 0.447 ± 0.28 0.072 0.210 0.429

Coauthor CS 18, 333 15 0.832 ± 0.24 0.698 ± 0.25 0.520 ± 0.25 0.043 0.110 0.237
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Fig. 1. Development of graph metrics on TADPOLE over training using cDGM; left:
train set; right: validation set

align with the k-hop metric values on the specific datasets. We summarise these
results in Appendix Table 3. One possible reason for this might be that, e.g., the
3-hop metrics assess the 1, 2, and 3-hop neighbourhood at once, not just the outer
ring of neighbours. Another reason for this discrepancy might be that homophily
and CCNS do not perfectly predict GNN performance. Furthermore, different
graph convolutions have shown to be affected differently by low-homophily graphs
[25]. We believe this to be an interesting direction to further investigate GAMs
for GNNs.

(2) Population graph experiments Table 2 shows the dDGM and cDGM
results of the population graph datasets. We can see that in some settings, such
as the classification tasks on the synthetic dataset using dDGM, the homophily
varies greatly between train and test set. This can be an indication for over-fitting
on the training set, since the graph structure is optimised for the training nodes
only and might not generalise well to the whole graph.

Since we here use graph learning methods which adapt the graph structure
during model training, also the graph metrics change over training. Figure 1 shows
the development of the accuracy as well as the mean and standard deviation
of the 1-hop homophily and CCNS distance, evaluated on the train (left) and
validation set (right). We can see that for both sets, the homophily increases with
the accuracy, while the standard deviation (STD) of the homophily decreases and
the CCNS distance decreases with increasing performance. However, the GAMs
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Table 2. cDGM and dDGM results on the population graph datasets. We report the
test scores averaged over 5 random seeds and 1-hop homophily and CCNS distance of
one final model each. We do not report CCNS distance on regression datasets, since it
is not defined for regression tasks.

Method Dataset Task Test score 1-hop node homophily ↑ 1-hop DCCNS ↓
train test train test

cDGM Synthetic 1k c 0.7900 ± 0.08 1.0000 ± 0.00 1.0000 ± 0.00 0.0000 0.0000
r 0.0112 ± 0.01 0.9993 ± 0.00 0.9991 ± 0.00 - -

Synthetic 2k c 0.8620 ± 0.03 1.0000 ± 0.00 1.0000 ± 0.00 0.0000 0.0000
r 0.0173 ± 0.00 0.8787 ± 0.06 0.8828 ± 0.05 - -

Tadpole c 0.9333 ± 0.01 1.0000 ± 0.00 0.9781 ± 0.09 0.0000 0.0314

UKBB r 4.0775 ± 0.23 0.8310 ± 0.06 0.8306 ± 0.07 - -

dDGM Synthetic 1k c 0.8080 ± 0.04 0.6250 ± 0.42 0.1150 ± 0.32 0.4483 0.4577
r 0.0262 ± 0.00 0.7865 ± 016 0.8472 ± 0.15 - -

Synthetic 2k c 0.7170 ± 0.06 0.6884 ± 0.40 0.0950 ± 0.29 0.4115 0.4171
r 0.0119 ± 0.00 0.8347 ± 0.13 0.8295 ± 0.13 - -

Tadpole c 0.9614 ± 0.01 0.9297 ± 0.18 0.8801 ± 0.31 0.1045 0.0546

UKBB r 3.9067 ± 0.04 0.8941 ± 0.13 0.9114 ± 0.12 - -

align more accurately with the training accuracy (left), showing that the method
optimised the graph structure on the training set. The validation accuracy does
not improve much in this example, while the validation GAMs still converge
similarily to the ones evaluated on the train set (left). Figure 2 shows the mean
(left) and STD (right) of the validation regression homophily HReg on the UKBB
dataset with continuous adjacency matrices (using cDGM) and the corresponding
change in validation mean absolute error (MAE). Again, homophily raises when
the validation MAE decreases and the STD of the homophily decreases in parallel.
On the left, the dotted grey line indicates the MAE of a mean prediction on
the dataset. We can see that the mean regression homophily HReg raises once
the validation MAE drops below the error of a mean prediction. We here only
visualise a subset of all performed experiments, but we observe the same trends
for all settings. From these experiments we conclude that the here introduced
GAMs show strong correlation with model performance and can be used to assess
generated graph structures that are used for graph deep learning.
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5 Conclusion and Future Work

In this work, we extended two frequently used graph assessment metrics (GAMs)
for graph deep learning, that allow to evaluate the graph structure in regression
tasks and continuous adjacency matrices. For datasets that do not come with a
pre-defined graph structure, like population graphs, the assessment of the graph
structure is crucial for quality checks on the learning pipeline. Node homophily
and cross-class neighbourhood similarity (CCNS) are commonly used GAMs that
allow to evaluate how similar the neighbourhoods in a graph are. However, these
metrics are only defined for discrete adjacency matrices and classification tasks.
This only covers a small portion of graph deep learning tasks. Several graph
learning tasks target node regression [21,2,1]. Furthermore, recent graph learning
methods have shown that an end-to-end learning of the adjacency matrix is
beneficial over statically creating the graph structure prior to learning [9]. These
methods do not operate on a static binary adjacency matrix, but use weighted
continuous graphs, which is not considered by most current GAMs. In order
to overcome these limitations, we extend the definition of node homophily to
regression tasks and both node homophily and CCNS to continuous adjacency
matrices. We formulate these metrics and evaluate them on different synthetic
and real world medical datasets and show their strong correlation with model
performance. We believe these metrics to be essential tools for investigating the
performance of GNNs, especially in the setting of population graphs or similar
settings that require explicit graph construction.

Our definition of the CCNS distance DCCNS uses the L1-norm to determine
the distance between the node labels in order to weight each inter-class-connection
equally. However, the L1-norm is only one of many norms that could be used
here. Given the strong correlation of our definition of DCCNS, we show the the
usage of the L1-norm is a sensible choice. We also see an extension of the metrics
for weighted graphs to multiple hops as promising next steps towards better
graph assessment for GNNs.

There exist additional GAMs, such as normalised total variation and nor-
malised smoothness value [13], neighbourhood entropy and centre-neighbour
similarity [23], and aggregations similarity score and diversification distinguisha-
bility [7] that have been shown to correlate with GNN performance. An extension
of these metrics to regression tasks and weighted graphs would be interesting to
investigate in future works. All implementations of the here introduced metrics
are differentiable. This allows for a seamless integration in the learning pipeline,
e.g. as loss components, which could be a highly promising application to improve
GNN performance by optimising for specific graph properties.
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Abstract. Body fat volume and distribution can be a strong indication
for a person’s overall health and the risk for developing diseases like type
2 diabetes and cardiovascular diseases. Frequently used measures for fat
estimation are the body mass index (BMI), waist circumference, or the
waist-hip-ratio. However, those are rather imprecise measures that do
not allow for a discrimination between different types of fat or between
fat and muscle tissue. The estimation of visceral (VAT) and abdominal
subcutaneous (ASAT) adipose tissue volume has shown to be a more
accurate measure for named risk factors. In this work, we show that
triangulated body surface meshes can be used to accurately predict VAT
and ASAT volumes using graph neural networks. Our methods achieve
high performance while reducing training time and required resources
compared to state-of-the-art convolutional neural networks in this area.
We furthermore envision this method to be applicable to cheaper and
easily accessible medical surface scans instead of expensive medical images.

1 Introduction

The estimation of body composition measures refers to the qualification and
quantification of different tissue types in the body as well as the estimation of
their distribution throughout the body. These measures can function as risk
factors of individuals and be an indicator for health and mortality risk [1,12]. One
component of body composition analysis is the estimation of fatty tissue volume
in the body. The strong correlation between body composition and disease risk
has lead to a routine examination of measures indicating body composition in
medical exams. The body mass index (BMI), for example, measures the ratio
between a person’s weight and height and has been shown to be an indicator for
developing cardiovascular diseases, type 2 diabetes, as well as overall mortality
⋆ These authors contributed equally to this work.
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Fig. 1. Visualisation of body surface meshes at different decimation rates; The most
left mesh shows the original mesh, then left to right are visualisations of decimated
meshes with ten thousand, one thousand, five hundred and two hundred faces.

[28,12,3,32]. Additionally, the waist circumference and waist-hip-ratio can be
used as an indication for body fat distribution [42,48,25,6]. These metrics are
easy, fast, and cheap to assess. However, they have strong limitations. They are
imprecise as they do not allow for a more accurate assessment of the distribution
of body fat or to differentiate between weight that stems from muscle or fat tissue.
Understanding the specific differences between different types of fatty tissue and
their impact on health risks is crucial for accurately assessing an individual’s risk
factors and enabling personalised medical care. Towards this goal, several works
have investigated methods to identify variations of fat distribution in the body
and the quantification of fatty tissues [54,29].

Body fat can be divided into different types of fat. Two commonly investi-
gated types are visceral fat (VAT), which surrounds the abdominal organs, and
abdominal subcutaneous fat (ASAT), which is located beneath the skin. Studies
have shown that especially visceral fat can have a negative impact on a person’s
health [40,8,47]. Therefore, a separate analysis of VAT and ASAT is an important
step towards gaining accurate insights into body composition. Several works have
investigated a precise estimation of VAT and ASAT volumes from medical images,
like magnetic resonance (MR) [29] and computed tomography (CT) images [23],
dual-energy X-ray absorptiometry (DXA) assessment [41], or ultrasound imaging
[7]. Deep learning techniques have shown promising results in analysing these
medical images in order to estimate body composition values [29,23,53,43].

In this work, we perform VAT and ASAT volume prediction from full body
triangulated surface meshes using graph neural networks (GNNs). We show that
GNNs allow to utilise the full 3D data at hand, thereby achieving better results
than state-of-the-art convolutional neural networks (CNNs) on 2D silhouettes,
while requiring significantly less training time and therefore resources. Both ours
and related work, such as [29], use data extracted from MR images. However,
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MR imaging is a very expensive technique, which is highly unequally distributed
around the globe. The access to MR scanners in lower income countries is much
more limited [18]. Furthermore, the acquisition of MR images is time consuming
and very unlikely to be used for routine exams. Given the light computational
weight and fast nature of our method, we envision it to be applied to data acquired
from much simpler surface scans in the future and enable an incorporation into
routine medical examination.

2 Background and Related Work

In the following, we summarise related works on body fat estimation from medical
(and non-medical) images, define triangulated meshes and the concept of graph
neural networks and show some of their application to medical data, with a focus
on surface meshes.

2.1 Body Fat Estimation from Medical Imaging

Body fat estimation has been part of routine medical assessments for decades
through the analysis of simple measurements such as BMI or waist circumference
[17]. However, more elaborate ways such as using proxy variables derived from
medical images, like dual energy X-ray absorptiometry (DXA), CT or MR images,
have achieved more accurate results. Multiple studies have successfully assessed
patient body composition based upon DXA [22,15,41]. Hemke et al. [23] and
Nowak et al. [43] show successful utilisation of CT images for body composition
assessment. Works like [31] use segmentation algorithms to identify fatty tissue
in MR scans, from which body composition values can be derived. Tian et al. [50]
estimate body composition measures based on 2D photography, not even requiring
medical imaging techniques. Many of these approaches focus on predicting specific
types of adipose tissue [36,39,29,31]. One idea, that has been followed by several
works is the utilisation of silhouettes, a binary 2D projection of the outline of
the body extracted from images. Xie et al. [54] use silhouettes generated from
DXA whole-body scans to estimate shape variations and Klarqvist et al. [29]
use silhouettes derived from MR Images for VAT and ASAT volume estimation
using CNNs. The latter use two-dimensional coronal and sagittal silhouettes of
the body outline and predict VAT and ASAT volume using convolutional neural
networks. The silhouettes are extracted from the full-body magnetic resonance
(MR) scans of the UK Biobank dataset [49]. In our work, we propose to switch
from full medical images or binary silhouettes to surface meshes for fat volume
prediction, which allows to integrate the full potential of the 3D surface into deep
learning methods, while using the light-weight and fast method of graph neural
networks (GNNs).

2.2 Triangulated Meshes

In this work, we use triangulated surface meshes of the body outline. A mesh
structure can be interpreted as a specific 3D representation of a graph. A graph
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G := (V ,E ) is defined by a set of nodes V and a set of edges E , connecting pairs
of nodes. The nodes usually contain node features, which can be summarised
in a node features matrix X. A triangulated mesh M has the same structure,
commonly holding the 3D coordinates of the nodes as node features. All edges
form triangular faces that define the surface of the object of interest –in our case:
body surfaces. A visualisation of such meshes can be found in Figure 1.

2.3 Graph Neural Networks

Graph neural networks have opened the field of deep learning to non-Euclidean
data structures such as graphs and meshes [11]. Since their introduction by [20]
and [46], they have been utilised in various domains, including medical research
[2,14]. Graphs are, for example, frequently used for representations of brain
graphs [9], research in drug discovery [10], or bioinformatics [55,56]. One native
data structure that benefits from the utilisation of graph neural networks are
surface meshes [11]. GNNs on mesh datasets have also advanced research in the
medical domain such as brain morphology estimation [5], which can be used for
Alzheimer’s disease classification, or for the predicting of soft tissue deformation
in image–guided neurosurgery [45].

In general, GNNs follow a so-called message passing scheme, where node
features are aggregated among neighbourhoods, following the underlying graph
structure [27,13,24,30]. This way, after each iteration, a new embedding for the
node features is learned. In this work, we use Graph SAGE [21] convolutions,
which were designed for applications on large graphs. The mean aggregator
architecture for a node v ∈ V at step k is defined as follows:

hk
v = σ

(
W · MEAN({hk−1

v } ∪ {hk−1
u ,∀u ∈ Nv})

)
. (1)

Nv is the neighbourhood of node v, W is a learnable weight matrix, and
MEAN the mean aggregator, which combines the node features of v at the
previous step and the node features of v’s neighbours.

3 Methods

We construct three different model architectures: (a) a graph neural network, (b)
a simple convolutional neural network (CNN), and (c) a DenseNet and compare
their performance. All models are trained using the Adam optimiser [26] and
Shrinkage loss [38] and all results reported are cross-validated based on a 5-fold
data split. We use a Quadro RTX 8 000 GPU for our experiments and all models
predict both targets –VAT and ASAT– with the same network, following the
approach from [29].

GNN Architecutre We perform a whole-graph regression task on the input
meshes. The model architecture consists of a three-layer GNN with SAGE graph
convolutions [21] and batch normalisation layers, followed by a max aggregation
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Fig. 2. Distribution of VAT (left) and ASAT (right) volume of male and female subjects
in the cohort. Male subjects tend to have more VAT volume, whereas female subjects
tend to have more ASAT volume.

and a three-layer multi-layer perceptron (MLP). Hyperparameters such as learning
rate and GNN layers are selected by manual tuning. All GNNs are trained for
150 epochs.

CNN Architecture In order to compare our results to the work by Klarqvist
et al. [29], we also train a DenseNet and a simpler CNN on the silhouette data.
DenseNet is a CNN which is more densely connected, where each layer takes all
previous outputs as an input. For our DenseNet implementation, we follow the
architecture in [29]. We additionally construct a simpler CNN architecture that
consists of three 2D convolutions, followed by a three-layer MLP, matching the
design of the graph neural networks. Both convolutional networks are trained for
20 epochs on a 2D input image, that consist of a sagittal and a coronal view of
the binary silhouette masks of the MR images, following the pipeline in [29].

4 Experiments and Results

We use a subset of the UK Biobank dataset [49], which is a large-scale medical
database. It contains a variety of imaging data, genetics, and life-style information
from almost 65 000 subjects and was acquired in the United Kingdom. In this
work, we use the neck-to-knee magnetic resonance images of a subset of 25 298
subjects, for which the labels are available (12 210 male and 13 088 female). The
mean age of this cohort is 62.95 years. The VAT and ASAT distributions of male
and female subjects are visualised in Figure 2. We can see that female subjects
tend to have a higher ASAT volume, whereas male subjects tend to have more
VAT. As labels, we used the reported VAT and ASAT volumes in the UK Biobank
(field IDs: 22407 and 22408).

4.1 Data Processing

The experiments in this work are performed on triangulated body surface meshes
that are extracted from the neck-to-knee MR images from the UK Biobank
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[44]. These were acquired in stations and merged through stitching [33]. In
order to extract the surface meshes, we first perform an algorithmic whole-
body segmentation by a succession of morphological operations on the stitched
MR scans. We then convert these segmentations into surface meshes using the
marching cubes algorithm [37] and the open3d library [57]. In order to investigate
how much the surface meshes can be simplified, we decimate them into meshes
consisting of different numbers of faces. We use meshes with 10 000, 5 000, 1 000,
500, 200, and 100 faces. The number of nodes is always half the number of faces,
following Euler’s formula for triangular meshes [16]. Subsequently, the meshes
are registered into a common coordinate system, using the iterative closest point
algorithm [4]. As a reference subject, the most average subject in the dataset was
selected based on height, weight, and age. The resulting decimated and registered
surface meshes are then used for graph learning. Figure 1 shows an example of a
body surface mesh at different decimation rates.

4.2 Results

Table 1 summarises the results of the GNNs and CNNs for ASAT and VAT
volume prediction. We report the 5-fold cross-validation results on the test set of
the best performing models, evaluated on the validation loss. We compare the
results of our graph neural networks (GNNs) with the results achieved by the
DenseNet from [29] and the results of a simpler CNN (which we call CNN in the
tables). We furthermore report the training times of all models, measured by the
full training process for 150 and 20 epochs for GNNs and CNNs, respectively. All
GNNs are trained on the body surface meshes, whereas the CNNs are trained
on the silhouettes, following the approach proposed in [29]. We evaluate the
GNNs on body surface meshes at different decimation rates of ten thousand, five
thousand, one thousand, 500, 200, and 100 faces per mesh (see Figure 1 for a
visualisation of some of these decimated meshes). The best test performances
are highlighted in bold, so are the shortest training times. We can see that the
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Table 1. Results for VAT and ASAT volume estimation; We report the R2 scores on
the test set with standard deviations based on 5-fold cross validation, as well as the
training times of the full training in minutes.

Tissue Model Decim. Test R2 Time (min)

VAT GNN (ours) 100 0.858 ± 0.001 8.36
200 0.872 ± 0.001 8.63
500 0.882 ± 0.001 9.01
1k 0.888 ± 0.001 10.11
5k 0.893 ± 0.002 22.36
10k 0.893 ± 0.003 37.75

CNN (ours) - 0.874 ± 0.001 16.20

DenseNet - 0.878 ± 0.004 95.79

ASAT GNN (ours) 100 0.909 ± 0.001 8.36
200 0.921 ± 0.002 8.63
500 0.931 ± 0.001 9.01
1k 0.935 ± 0.002 10.11
5k 0.938 ± 0.000 22.36
10k 0.941 ± 0.002 37.75

CNN (ours) - 0.921 ± 0.002 16.20

DenseNet - 0.934 ± 0.002 95.79

simpler CNN architecture almost matches performance of the DenseNet proposed
by [29], while requiring less training time. The GNNs outperform the CNN and
the DenseNet, when the utilised meshes are not heavily decimated. But even
highly decimated surface meshes with one hundred faces, only result in minor
performance loss while requiring less than ten times less training time compared
to the DenseNet. We envision the utilisation of the surface meshes and graph
neural networks to allow for more efficient model training and the utilisation of
the full 3D structure of the body, while keeping resource requirements low.

Male and female subjects show different distributions in VAT and ASAT
volume. While male subjects tend to have more VAT, females tend to have more
ASAT. Figure 2 shows the distributions of the fat volumes of the two sex groups.
We therefore compare the results of our method for female and male subjects
separately. Table 2 summarises the results of all GNNs and CNNs for VAT and
ASAT volume prediction split by sex. The best performing model for each fat
type and sex is highlighted in bold. We can see that the predictions of VAT
volume tends to be better on male subjects whereas the prediction of ASAT
volume achieves slightly higher scores for the female subject. The GNNs, however,
seem to show a slightly lower gap in performance between the sex groups. We
attribute the difference in performance on the different fatty tissue types to the
varying distributions in fat volume between the sex groups.
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Table 2. Results of VAT and ASAT volume prediction split by subject sex; all
reported values are R2 scores on the test set, cross-validated across 5 folds.

Fat tissue Model Decimation Female R2 Male R2

VAT GNN (ours) 100 0.782 ± 0.004 0.824 ± 0.003
200 0.804 ± 0.006 0.840 ± 0.003
500 0.815 ± 0.008 0.854 ± 0.003
1k 0.827 ± 0.004 0.861 ± 0.001
5k 0.831 ± 0.006 0.868 ± 0.002
10k 0.837 ± 0.002 0.867 ± 0.004

CNN (ours) - 0.804 ± 0.003 0.845 ± 0.002

DenseNet - 0.811 ± 0.006 0.849 ± 0.006

ASAT GNN (ours) 100 0.923 ± 0.003 0.852 ± 0.004
200 0.934 ± 0.001 0.870 ± 0.006
500 0.940 ± 0.002 0.890 ± 0.002
1k 0.945 ± 0.001 0.895 ± 0.004
5k 0.945 ± 0.000 0.903 ± 0.002
10k 0.948 ± 0.001 0.906 ± 0.005

CNN (ours) - 0.934 ± 0.002 0.870 ± 0.002

DenseNet - 0.944 ± 0.001 0.891 ± 0.003

5 Discussion and Conclusion

In this work, we introduce a graph neural network-based method that enables
adipose tissue volume prediction for visceral (VAT) and abdominal subcutaneous
(ASAT) fat from triangulated surface meshes. The assessment of fatty tissue
has high clinical relevance, since it has been shown to be a strong risk factor
for diseases like type 2 diabetes and cardiovascular diseases [28,32]. Especially a
separate estimation of the two different fat tissues VAT and ASAT has shown to
be a relevant medical assessment, since VAT is known to have a higher correlation
with disease development compared to ASAT [40,8,47]. We here use graph neural
networks and triangulated surface meshes, extracted from full-body MR scans
and show that they achieve accurate VAT and ASAT volume predictions. We
investigate how different decimation rates impact model performance and training
times. Figure 4 visualises this correlation. The bars in the left figure show the
average ASAT volume prediction R2 scores on the test set of the GNNs trained on
the differently decimated meshes. The overlaid line plot notes the corresponding
training times. We can see that at one thousand faces, we reach an optimal
trade-off between training time and performance. Training the GNN on the
meshes with one thousand faces only takes about 10 minutes and achieves high
results of 0.893 R2 on VAT and 0.935 on ASAT volume prediction. On the right
in Figure 4, we visualise the linear relation between the training time and the
number of faces in the meshes. Training time also corresponds linearly to energy
consumption in kWh. We attribute the comparably high performance of the
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strongly decimated meshes to the fact that the most outer coordinates/nodes
still remain in the meshes, which carry a lot of information about the outline of
a body.

The light-weight nature of GNNs allows for the usage of the full 3D data,
while significantly reducing resource requirements and run time compared to
3D image-based methods. This shows great promise in the effort of bridging
the gap between cheap, fast, but imprecise measures –such as BMI and waist
circumference– and time-consuming, costly, but accurate methods such as medical
imaging (CT, MR, or DXA).

6 Limitations and Future Work

We see high potential in the utilisation of surface meshes and graph neural
networks, given that the full 3D data can be utilised compared to only using
binary silhouette projections like in [29]. The low training times as well as the
high scores of the GNNs show the successful application to fat volume prediction.
We note that we compare the run time of the training loops only. This does
not include any pre-processing that is required for both silhouette-based and
surface mesh-based approaches. The GNN architecture is based on SAGE graph
convolutions [21], because they achieved the best results in our experiments,
compared to graph attention networks [51] and graph convolutional networks
[27]. A potential improvement of our method would be the utilisation of other
mesh-specific convolutions such as adaptive graph convolution pooling [19] or
FeaStNet [52]. Another interesting direction to explore is the utilisation of deeper
GNNs. Li et al. [34], for example, introduce a method that enables the utilisation
of deeper GNNs without over-smoothing –a commonly known problem with
GNNs. Over-smoothing refers to the issue that deep GNNs do not achieve high
performance because all node embeddings in the graph converge to the same
value [35].
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Our experiments are performed on surface meshes, that were extracted from
MR images. However, we envision this method to work equally well on designated
surface scans, without requiring expensive and time-consuming MR scans. We
intend to investigate this in future work and apply our method to surface scans,
which are for example acquired for dermatological examinations. This would
eliminate the need for expensive MR scans and could lead to an embedding of
this technique into routine medical examination.
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Abstract

Population graphs and their use in combination with graph neural networks (GNNs) have
demonstrated promising results for multi-modal medical data integration and improving
disease diagnosis and prognosis. Several different methods for constructing these graphs
and advanced graph learning techniques have been established to maximise the predictive
power of GNNs on population graphs. However, in this work, we raise the question of
whether existing methods are really strong enough by showing that simple baseline methods
–such as random forests or linear regressions–, perform on par with advanced graph learning
models on several population graph datasets for a variety of different clinical applications.
We use the commonly used public population graph datasets TADPOLE and ABIDE, a
brain age estimation and a cardiac dataset from the UK Biobank, and a real-world in-house
COVID dataset. We (a) investigate the impact of different graph construction methods,
graph convolutions, and dataset size and complexity on GNN performance and (b) discuss
the utility of GNNs for multi-modal data integration in the context of population graphs.
Based on our results, we argue towards the need for “better” graph construction methods or
innovative applications for population graphs to render them beneficial1.

1 Introduction

Graphs can be used to model and represent various types of data. They allow for a suitable representation of
interconnected structures, such as social networks (Fan et al., 2019), molecules (Moreira-Filho et al., 2022),
or surface meshes (Mueller et al., 2023b). In order to perform deep learning on graph-like data structures,
graph neural networks (GNNs) have been introduced (Gori et al., 2005; Scarselli et al., 2008). GNNs follow a
message-passing scheme and collect information that is stored in nodes across a graph structure (Bronstein
et al., 2017) and have shown improved performance of various deep learning tasks (Parisot et al., 2017;
Ahmedt-Aristizabal et al., 2021; Bessadok et al., 2022; Pellegrini et al., 2022). Most of these tasks rely
on datasets that inherently provide a graph structure, such as social networks, or provide well-established
methods to construct the graph, such as point clouds (Wang et al., 2019).

In the medical domain, GNNs have been applied to improve disease diagnostics (Parisot et al., 2017; Cosmo
et al., 2020; Kazi et al., 2022), model biological structures (Chen et al., 2020), or temporal components of data
(Kim et al., 2021). They can be used to perform deep learning on surface meshes for fatty tissue quantification
(Mueller et al., 2023b), vessel structures (Paetzold et al., 2021) for vessel segmentation, or molecules for drug
discovery (Bonner et al., 2022). The respective datasets provide an inherent graph structure in the form
of a mesh, a vessel tree, or chemical bindings. In contrast to datasets that provide a clear graph structure,

1The source code for this work can be found at: https://github.com/tamaramueller/population_graphs
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one research area in medicine studies so-called population graphs. A population graph refers to a network
of inter-connected subjects encoding the medical information of all subjects in graph form. Usually, the
subjects’ medical data, such as imaging or clinical features, is used as node features in the graph. The edges
are constructed so that similar subjects are connected. Figure 1 shows a schematic of a typical population
graph. Each subject (node) is represented by a data vector often extracted from medical images. Additionally,
non-imaging clinical data, such as demographics or lab results, can be used to define the edges between
subjects, where similar non-imaging features lead to a connection between two subjects.

Figure 1: Overview of a typical population graph construction. Subject-specific medical data is
represented as a feature vector and used as node features in the population graph. The most frequently used
setup uses imaging features as node features and non-imaging features for edge construction.

Several works have shown that population graphs for medical applications can improve downstream tasks
compared to graph-agnostic methods (Parisot et al., 2017; Kazi et al., 2019; Cosmo et al., 2020; Kazi et al.,
2022). Parisot et al. (2017) first introduced the concept of population graphs for the detection of Alzheimer’s
disease and autism. Later works (Kazi et al., 2019; Cosmo et al., 2020; Kazi et al., 2022; Bintsi et al., 2023a;b)
used the method of population graphs under different settings, developing new graph construction methods
and for different tasks, such as age prediction. The motivation for using population graphs is the hypothesis
that subjects that share similar phenotypes tend to have similar pathologies and, therefore, benefit from
sharing information. The goal is to facilitate personalised medicine by utilising the shared information across
similar subjects. However, population graphs come with a significant limitation: the graph structure needs to
be constructed from the dataset. This has led to different graph construction methods. Two branches of
graph construction have been established: static and dynamic graph construction. Static graph construction
refers to creating the graph structure prior to graph learning, while dynamic graph construction methods
adapt the graph structure during training (Cosmo et al., 2020). To date, both methods are used frequently.
For an overview of graph construction methods for GNNs in medicine, we refer to Mueller et al. (2024). What
makes the choice of graph construction method so crucial is the impact of the resulting graph structure on
the downstream performance of the GNN. It has been shown that a “poor” graph structure can lead to GNNs
under-performing graph-agnostic models (Luan et al., 2022; Zhu et al., 2020). Some methods have been
specifically designed to work on such challenging graph structures, one of them being neural sheaf diffusion
models (Hansen & Gebhart, 2020). We investigate their potential on population graph datasets, which tend
to have challenging graph structures.

So far, there are two commonly used arguments for using medical population graphs compared to graph-
agnostic models: (1) GNNs allow for meaningful multi-modal data integration, and (2) the message passing
across neighbourhoods improves model performance. In this work, we investigate how firm those claims are
and contradict them on several datasets. Our contributions can be summarised as follows:
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• We compare static and dynamic state-of-the-art graph construction methods with GNNs, as well as
the usage of neural sheaf diffusion models for population graphs and show how simple graph-agnostic
baselines perform on par with them on several population graph datasets.

• We show that GNNs can be superior to graph-agnostic models if the graph structure is provided with
the dataset but do not achieve performance boosts on any medical population graph dataset used
in this work. We hypothesise that in the latter case, the graph structure does not add additional
valuable information.

• We evaluate the impact of the graph structure on several different types of graph convolution using
two different graph assessment metrics: homophily and cross-class neighbourhood similarity (CCNS)
distance.

• We highlight that the graph construction methods for population graphs are not sufficient and discuss
potential future directions for population graph studies.

Our results lead us to conclude that we need a discussion about whether population graphs are beneficial over
graph-agnostic methods and that the currently available graph construction methods are the performance
bottleneck of GNNs on population graphs. We see a requirement for “better” graph construction methods if
we want to improve the performance of GNNs on population graphs.

2 Background

In this section, we discuss some background on graphs, graph neural networks, neural sheaf diffusion models,
and two graph assessment metrics, namely homophily and cross-class neighbourhood similarity.

2.1 Graph Structures

A graph G := (V, E) is defined as a set of n vertices/nodes V and a set of edges E, where eij = 1 and
eij ∈ E if there exists an edge from node i to node j. All edges can be summarised in an n × n adjacency
matrix A, where aij = 1 if eij ∈ E and 0 otherwise. In the context of graph deep learning, the graph’s nodes
usually hold node features of dimension r that can be summarised in the node feature matrix X ∈ Rn×r. A
neighbourhood of a node i, Ni is the set of all nodes j, for which an edge eji from j to i exists. Furthermore,
in the setting of node classification, each node i usually holds a label yi, and all labels can be summarised in
the label vector Y .

2.2 Graph Assessment Metrics

Several works have shown that the graph structure can have a significant impact on the performance of
GNNs (Luan et al., 2022; Zhu et al., 2020). In this line, different metrics have been introduced that assess
graph structures and have been shown to correlate with GNN performance. The metric most commonly
used is homophily. One can distinguish between three different types of homophily: class homophily (Lim
et al., 2021; Luan et al., 2021), edge homophily (Kim & Oh, 2022), and node homophily (Pei et al., 2020),
which all highlight slightly different aspects of the graph structure. They all evaluate the ratio between edges
that connect nodes with the same label and edges that connect nodes with different labels. The idea is that
since GNNs propagate node features across edges, the less similar the neighbours are, the less likely it is for
the GNN to learn representative node feature embeddings for this node, which can impact the network’s
performance. In the remaining parts of this work, we will use node homophily.

Definition 2.1 (Node homophily (Pei et al., 2020)) A graph G := (V , E) with node labels Y :=
{yu; u ∈ V } has the following node homophily:

hom(G, Y ) := 1
|V |

∑

v∈V

|{u|u ∈ Nv, Yu = Yv}|
|Nv| , (1)

where Nv is the set of neighbouring nodes of v and | · | the cardinality of a set.
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We speak of “high homophily” or a “homophilic” graph, when hom(G, Y ) → 1 and of “low homophily” or a
“heterophilic” graph, when hom(G, Y ) → 0. A graph’s homophily can also be defined for regression tasks by
taking the distance between node feature labels among neighbourhoods into account (Mueller et al., 2023a):

Definition 2.2 (Homophily for regression (Mueller et al., 2023a)) The node homophily of a graph
G with labels Y (defined as above) that indicate a regression task is defined as follows:

homreg(G, Y ) := 1 −
(

1
|V |

∑

v∈V

(
1

|Nv|
∑

n∈Nv

∥yv − yn∥1

))
, (2)

where ∥·∥1 indicates the L1 norm.

Another metric that does not only focus on the ratio of edges connecting same-labelled or differently-labelled
nodes is cross-class neighbourhood similarity (CCNS) (Ma et al., 2021). Here, the overall similarity of
neighbourhoods of nodes with the same label is evaluated, irrespective of whether the neighbours share the
same label as the node of interest.

Definition 2.3 (Cross-class neighbourhood similarity (Ma et al., 2021)) Let G := (V, E), Y , and
Nv be defined as above. In addition, let C be the set of all possible classes of node labels, and Vc the set of
vertices of a specific class c. Then the CCNS of two classes cr and cs can be derived as follows:

CCNS(cr, cs) = 1
|Vcr

||Vcs
|
∑

u,v∈V

cossim(d(u), d(v)), (3)

where d(v) indicates the histogram of a node v’s neighbours’ labels and cossim(·, ·) the cosine similarity.

Mueller et al. (2023a) introduce a reduction of CCNS to a single-valued parameter, they call CCNS distance,
which defines the L1 distance between the CCNS matrix and the identity matrix:

Definition 2.4 (CCNS distance (Mueller et al., 2023a)) Let G := (V, E), C, and CCNS be defined as
above. Then the CCNS distance of the whole graph G is:

DCCNS := 1
n

∑
∥CCNS −I∥1, (4)

where ∥·∥1 is the L1 norm and I the identity matrix.

2.3 Graph Neural Networks

GNNs have been introduced with the aim of enabling deep learning on non-Euclidean spaces, such as graphs,
manifolds, or meshes (Bronstein et al., 2017). They all follow a so-called message-passing scheme, which
propagates the information that is stored in the node features of the graph (or mesh or manifold) to its
neighbouring nodes. The GNN then learns a node feature embedding based on the original node features
as well as the propagated node features of the neighbouring nodes. GNNs make use of graph convolutions,
which specify the concrete message-passing scheme that is applied during training and inference. There exist
several different types of graph convolution, all varying slightly in their methodology. Here, we summarise
the definitions of four commonly used graph convolutions.

Definition 2.5 (Graph Convolutional Networks (GCN) (Kipf & Welling, 2016)) Graph convolu-
tional networks (GCNs) were one of the first GNNs introduced by Kipf & Welling (2016). They were
originally defined in a spectral manner, using the graph Laplacian. The PyTorch Geometric implementation
follows the following definition:

x′
i = ΘT

∑

j∈Ni∪{i}

1√
d̂j d̂i

xj , (5)

where d̂i = 1 +
∑

j∈Ni
1, Θ learnable weights, and Ni the neighbourhood of node i.
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Definition 2.6 (Graph SAGE (Hamilton et al., 2017)) In 2017, Hamilton et al. (2017) introduced a
novel graph convolution that was originally designed for large graphs and inductive training, which is called
GraphSAGE. Here, the new feature representation of a node i is defined as follows:

x′
i = W1xi + W2 · Ej∈Ni

, (6)
where W1 and W2 denote learnable weights and Ej∈Ni the expectation over all node features in the neighbour-
hood of j.

Definition 2.7 (Higher-order Graph Neural Networks (GraphCONV) (Morris et al., 2019))
Morris et al. (2019) introduced so-called higher-order GNNs, where the node feature embedding x′

i of node i is
defined as follows:

x′
i = W1xi + W2

∑

j∈Ni

xj , (7)

where W1 and W2 are learable weights and Ni denotes the neighbourhood of node i.

Definition 2.8 (Graph Attention Networks (GAT) (Veličković et al., 2017)) Veličković et al.
(2017) introduced a graph neural network, that learns attention weights for edges in the graph. The new node
feature embedding of a node i is defined as:

x′
i = αiiΘxi +

∑

j∈Ni

αijΘxj , (8)

where Θ are learable parameters and αij is the attention coefficient between two nodes i and j and is defined
as follows:

αij =
exp

(
ϕ
(
aT (Θxi ∥ Θxj)

))
∑

k∈Ni∪i exp (ϕ (aT (Θxi ∥ Θxk))) , (9)

where ϕ is commonly the LeakyReLU function and ∥ indicates a concatenation of the values.

2.4 Neural Sheaf Diffusion Models

With a rising discussion on how GNNs perform on low-homophily graph structures, different approaches to
graph learning have been established that target these more challenging settings for graph learning. One
of these methods is neural sheaf diffusion models, originally introduced by Hansen & Gebhart (2020) and
extended by Bodnar et al. (2022). They use the topological concept of cellular sheaves, which assign vector
spaces to all nodes and edges and linear mappings between them for all node-edge connections. Traditional
GNNs are designed in a way that they assume a graph structure with a trivial underlying sheaf. Hansen &
Gebhart (2020) and Bodnar et al. (2022) introduce an alternative approach to graph deep learning that is
based on the concept of cellular sheaves, where different sheaf representations are learned for nodes and edges
of the graph. They show that with this method, they can provide a graph learning technique that is less
impacted by heterophilic graphs and over-smoothing - two commonly known limitations of GNNs. Sheaf
neural networks (Hansen & Gebhart, 2020; Bodnar et al., 2022) are a generalisation of GCNs (Kipf & Welling,
2016) and leverage the sheaf Laplacian (Hansen & Ghrist, 2019), an extension of the graph Laplacian. This
allows for an expression of more complex relationships between nodes rather than “similarity”. Bodnar et al.
(2022) furthermore show how these sheaves can be learned from the data at hand, using neural networks.

Definition 2.9 (Sheaf Convolution) Let F be a sheaf on a graph G with feature matrix X ∈ Rnd×a and
sheaf Lapacian ∆F . A sheaf convolutional model is then defined as follows:

Y = σ ((Ind − ∆F ) (In ⊗ W1) XW2) , (10)
where σ is a non-linearity, ⊗ denotes the Kronecker product, W1 ∈ Rd×d and W2 ∈ Ra×b are two weight
matrices, and a and b define the number of input and output channels, respectively.

The authors introduce different versions of neural sheaf networks, such as GeneralSheaf, BundleSheaf, and
DiagSheaf. For more details about sheaf networks, we refer to Hansen & Gebhart (2020) and Bodnar et al.
(2022). In this work, we utilise neural sheaf diffusion models on all classification datasets in order to investigate
their potential on potentially low-homophily graph structures of medical population graphs.
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3 Related Work

Medical population graphs have been used for several different downstream tasks, such as disease prediction
(Parisot et al., 2017; Kazi et al., 2019; 2022) or age prediction (Bintsi et al., 2023a;b). Given that the
construction of the graph itself is a major challenge when working with population graphs, several methods for
graph construction have been established, which we utilise and compare in this work. For example, dynamic
graph learning (Cosmo et al., 2020; Kazi et al., 2022) has been established to allow for end-to-end learning of
the graph structure, so the graph does not have to be defined manually. There is little work investigating the
impact of different graph construction methods and different graph learning schemes on the performance of
population graphs. Bintsi et al. (2023b), for instance, evaluate different static graph construction methods
on an age regression dataset but do not evaluate dynamic graph construction methods. To the best of our
knowledge, this is the first work specifically addressing the challenge of graph construction in population graph
studies in combination with different graph learning methods and with a detailed comparison to baseline
models.

In general GNN research, several works have investigated the impact of the graph structure on model
performance. Zhu et al. (2020) address the issue of the impact of the graph structure, measured by homophily
(see Section 2.2), on different graph convolutional networks on citation networks. Several metrics have been
established that allow for an assessment of the graph structure and show a correlation with the performance of
GNNs. Luan et al. (2022) introduce two metrics, normalised total variation and normalised smoothness value,
that measure the effect of edge bias. Xie et al. (2020) measure the graph structure with two metrics called
neighbourhood entropy and centre-neighbourhood similarity. Ma et al. (2021) utilise the above-mentioned
metric called cross-class neighbourhood similarity, which assesses how similar all neighbourhoods of all nodes
with the same label are and show their correlation with GNN performance. Most of these works assess their
metrics on benchmark datasets, such as citation networks, that come with a ground truth graph structure. In
this work, we want to take these experiments one step further and investigate the impact of graph construction
methods on population graph studies with GNNs and investigate the benefit of using GNNs over baseline
methods.

4 Methods and Training Setup

In this section, we provide an overview of the utilised methods in this work. We introduce the different static
and dynamic graph construction methods, summarise the utilised GNN models and the training setup, and
introduce the datasets that were used to perform the experiments. A summary of the different learning and
graph construction pipelines is visualised in Figure 2.

Figure 2: Overview of the conducted experiments. We tune different baselines and compare their
performance to GNNs on population graphs. We perform static and dynamic graph construction (GC) and
use four graph convolutions: GCN, GraphSAGE, GraphConv, and GAT, and Neural Sheaf Models. The
original edges are only used if available, and self-loops mimic a transductive learning setting (see appendix).
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4.1 Datasets

We perform our experiments on five medical population graph datasets, which are summarised in Table 1.
First, we use the commonly used subset of the TADPOLE dataset (Yu et al., 2020) that is, for example,
used in Kazi et al. (2022). The task of this dataset is to distinguish between patients with Alzheimer’s disease
(AD), ones with mild cognitive impairment (MCI), and healthy control groups (NC). The dataset consists
of 30 imaging features of 564 subjects. A second public and frequently used dataset for population graph
studies is the Autism Brain Imaging Data Exchange (ABIDE) dataset (Di Martino et al., 2014). It contains
brain imaging features and clinical features such as age of 871 subjects and has been used in the context of
population graphs in several works (Parisot et al., 2017; Kazi et al., 2019; 2022). The task of this dataset is a
binary classification task, discriminating between autism patients and healthy controls. Furthermore, we
use a small real-world medical dataset of COVID patients that has also been used before in population
graph settings (Keicher et al., 2021); however, in a slightly different version of the dataset. The task is a
binary classification of whether a subject is predicted to require intensive care or not. The dataset consists of
image-derived features and clinical features of 65 subjects. Additionally, we use a larger population graph
dataset from the UK Biobank (UKBB) (Sudlow et al., 2015) that consists of features extracted from brain
magnetic resonance (MR) images (UKBB brain age). To extract the features, we follow the approach
from Cole (2020), resulting in 68 imaging features and 20 non-imaging features for each subject. We use a
set of 6406 subjects and perform a regression task for age prediction on this dataset. The mean age of this
dataset is 62.86 years. We use this dataset to explore the difference in model performance when only using
the imaging features compared to using all features. If not specifically specified, we only use the 68 imaging
features. We extract another dataset from the UKBB (Sudlow et al., 2015) containing imaging features from
cardiac MRIs as well as clinical features, on which we perform a binary classification of whether a subject
suffers from cardiovascular diseases or not (UKBB cardiac). We extract 6 non-imaging features and 86
imaging features using the pipeline from Bai et al. (2020) and create a population graph with 2900 subjects.

Table 1: Overview of all utilised population graph datasets with the respective number of nodes,
number of samples/nodes in the train, test, and validation sets, the number of node features (Nr. features),
and the number of classes.

Dataset Nr. nodes Train samples Val. samples Test samples Nr. features Nr. classes
TADPOLE 564 468 48 57 30 3
ABIDE 871 609 41 221 6105 2
UKBB cardiac 2900 2320 58 522 89 2
COVID 65 45 4 16 29 2
UKBB brain age 6406 4811 1276 319 88 Regression

In order to evaluate the impact of the graph construction method and the resulting graph structure on the
performance of the GNN, we also utilise three benchmark citation datasets: CORA, CITESEER, and
PUBMED (Yang et al., 2016). These datasets come with a pre-defined graph structure, which we can use
as the ground truth graph and compare performance to our generated graph structures. In Section 5.4, we
also evaluate the impact of scale with a synthetically generated classification dataset with 4 classes and
between 5 000 and 30 000 nodes.

4.2 Graph Construction Methods

We use distinct graph construction methods for population graphs and compare their impact on the
performance of different GNNs. We note that the utilised methods are not extensive, but we picked
the most representative, most frequently used, and well-established methods for static and dynamic graph
construction. For more details on graph construction methods for GNNs in medicine, we refer to Mueller
et al. (2024).
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4.2.1 Static Graph Construction

Static graph construction methods refer to the construction of a graph structure that stays constant throughout
GNN training. There are several methods to construct a static population graph structure, while the most
common one utilises a k-nearest neighbour approach (Cunningham & Delany, 2021).

Self-loops Only To get an intuition about the impact of the graph structure on the GNN, we evaluate a
GNN on a graph that is not really a graph but only contains self-loops. The adjacency matrix of a graph that
only contains self-loops is equivalent to the identity matrix. In this setting, no message passing among nodes
is performed since there are no connections between nodes. We use this setting to simulate a transductive
learning setting without using a graph structure.

Random Graph Secondly, we construct a random graph structure by generating an Erdos-Rényi Graph
with an edge probability of 0.001. We choose to evaluate all methods applied to a graph with a random graph
structure in order to investigate the impact of the graph structure on model performance.

k-Nearest Neighbour Graph The most frequently used approach of graph construction for population
graphs is the k-Nearest Neighbour (k-NN) approach. Here, k is a hyperparameter and defines the number
of neighbours each node has. For this approach, different distance measures can be used, for example, the
Euclidean distance or the cosine similarity. We use the implementation of knn_graph from Pytorch Geometric
(Fey & Lenssen, 2019) and refer to the usage of the Euclidean distance as “k-NN Eucl.” and the usage of the
cosine similarity as “k-NN Cosine” in the tables below.

4.2.2 Dynamic Graph Construction

Dynamic graph construction refers to the learning of the graph structure in an end-to-end manner in parallel
to the model training. There exist a few dynamic graph construction methods; however, for population
graphs, mostly the approach from Kazi et al. (2022) is used. Here, we use the dDGM method, a differentiable
graph construction method that allows for end-to-end learning of the graph structure during GNN training.
In their work, Kazi et al. (2022) propose two differentiable graph learning modules: cDGM and dDGM.
We here only use the dDGM implementation since both in their work and in our preliminary results and
related works like (Mueller et al., 2023a), dDGM resulted in better performance. The dDGM module can be
applied to arbitrary initial graph structures. We evaluate the impact of the initial graph structure on the
model performance by using different graphs as a starting point. For the CORA dataset, we evaluate dDGM
starting with (a) no edges, (b) only self-loops, (c) a random graph structure, (d) a k-NN graph, and (e) the
original edges of the dataset, in Section 5.4.

4.3 Graph Assessment

In order to gain insights into the constructed graph structures and investigate their “quality”, we evaluate two
graph assessment metrics: node homophily (Pei et al., 2020) and cross-class neighbourhood similarity (CCNS)
(Ma et al., 2021). We follow the approach from Mueller et al. (2023a) and evaluate the CCNS distance, the
there-defined homophily for regression tasks, and split the evaluation of all metrics into train and test nodes.
The latter can be useful to investigate how differently the graph structure impacts training and test nodes.

4.4 Model Architectures and Training

We use two different model architectures in our experiments. For all dynamic graph construction experiments,
we use the architecture proposed by Kazi et al. (2022), which consists of two graph convolutional networks: a
graph embedding function f and a diffusion function g. Following the results from the original paper (Kazi
et al., 2022), we use the respective graph convolutions for both modules. For the static graph construction
experiments, we use a GNN with 1, 2, or 3 graph convolutional layers (e.g. GCN or GraphSAGE), followed
by an MLP. We use two sets of hyperparameters regarding the layers of these networks that can be found in
the Appendix. During preliminary experiments, we noticed that using the same architecture for static graph
construction results in strong over-fitting of the models to the training sets. We, therefore, use a different
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architecture for the static graph construction experiments than for the dynamic ones. More details about all
architectures can be found in the appendix. In all architectures, we utilise four different frequently used graph
convolutions, namely graph convolutional networks (GCNs) (Kipf & Welling, 2016), graph SAGE networks
(Hamilton et al., 2017), higher-order GNNs (GraphConv) (Morris et al., 2019), and graph attention networks
(GATs) (Veličković et al., 2017). They all differ in the methodology of how the message-passing scheme is
performed and their formal definitions can be found in Section 2.3. For the neural sheaf diffusion models, we
utilise the setup of the original work, varying between the following sheaf models: BundleSheaf, DiagSheaf,
and GeneralSheaf.

All models are trained in a transductive setting, where all nodes are available during training. We define
a fixed set of hyperparameters for all experiments and run a hyperparameter search for at least 200 runs
using sweeps from Weights and Biases (Biewald, 2020). We then pick the run with the best validation
accuracy/MAE, evaluate its performance over 5 random seeds, and report the mean test accuracy with
the standard deviation. All trainings are performed on an Nvidia Quadro RTX 8000 GPU, using Pytorch
lightning and Pytorch Geometric (Fey & Lenssen, 2019). The hyperparameters can be found in the
appendix.

5 Experiments and Results

In this section, we summarise our experiments with different graph construction methods, including static and
dynamic graph construction and Neural Sheaf Diffusion models. We (1) summarise the overall best-performing
GNNs for all datasets and compare them to three different baselines and discuss more detailed results on
two of the medical population graph datasets, (2) compare our results to different state-of-the-art (SOTA)
population graph studies, (3) evaluate the method of population graphs for multi-modal data integration,
and (4) evaluate the impact of the different components –such as graph structure, dataset complexity and
size– on the performance of GNNs for population graphs.

The most noteworthy finding of our work is possibly the fact that simple baseline methods outperform more
complex graph learning techniques on all tested population graph datasets.

5.1 Baselines Achieving Comparable Performance to GNNs

During an extensive evaluation of the performance of GNNs on medical population graphs, we found that when
optimally tuning baseline models (random forest, linear/logistic regression, and ridge classifier/regression)
they perform competitively on all datasets. We summarise these results, the best GNN as well as a Neural
Sheaf Diffusion model in Table 2, where the best model for each dataset is highlighted in bold.

Table 2: Summary of results of different baseline methods and the best GNNs and Neural Sheaf Models,
either from our training evaluated on 5 random seeds or from literature ([1]: Parisot et al. (2017)). For
classification datasets, we report the test accuracy; for regression tasks, the test MAE.

Method TADPOLE UKBB Brain Age UKBB Cardiac COVID ABIDE
Random forest 0.9474 ± 0.00 3.7913 ± 0.01 0.7061 ± 0.01 0.8250 ± 0.02 0.7046 ± 0.01
Ridge 0.7368 ± 0.00 3.4185 ± 0.00 0.6935 ± 0.00 0.8750 ± 0.00 0.7014 ± 0.00
Linear/Logistic 0.8421 ± 0.00 3.4287 ± 0.00 0.6858 ± 0.00 0.8125 ± 0.00 0.6290 ± 0.00

GNN k-NN 0.9404 ± 0.02 3.3524 ± 0.06 0.6970 ± 0.02 0.7875 ± 0.03 0.695 [1]

Neural Sheaf 0.9368 ± 0.02 - 0.6904 ± 0.01 0.8000 ± 0.03 0.5448 ± 0.01

It is noteworthy that for all population graph datasets apart from the UKBB brain age dataset, at least one
of the baseline methods outperforms the best GNN model. On the UKBB brain age dataset, the GNN slightly
outperforms the ridge regression (best baseline) by an MAE of 0.066. However, a two-sided t-test between
the results of the best GNN and the strongest baseline (ridge regression) did not show a significant difference
in performance with a p-value of 0.06. These results raise the main question of this work: “Are population
graphs really as powerful as believed?” Our results indicate the contrary, and we investigate the discrepancy
between our work and related works in the following sections, discussing potential reasons for this gap.
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(a) Static graph construction on TADPOLE
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(b) Dynamic graph construction on TADPOLE
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(c) Static graph construction on UKBB brain age
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(d) Dynamic graph construction on UKBB brain age

Figure 3: Results on two datasets with static graph construction (left column) and dynamic graph
construction (right column). First row: TADPOLE reporting the test accuracy (higher better), second
row: UKBB brain age, reporting the test MAE (lower better). The mean performance of the baseline is
indicated by the dashed blue lines.

In the following, we evaluate the experiments summarised in Figure 2 on the two population graph datasets
TADPOLE and UKBB brain age in more detail. The results are visualised in Figure 3, where the first row
shows the TADPOLE dataset and the second row the UKBB brain age dataset. The results are also listed in
Tables 3 and 4, respectively. For the TADPOLE dataset, none of the GNNs outperform the best baseline
method, which in this case is a random forest. This is even the case in settings where the homophily of the
test set is very high, for example, for the static k-NN graph construction and the GAT convolution. We
observe similar results on the UKBB brain age dataset, where we perform age regression on the imaging
features only and report the MAE as model performances. We do not report the CCNS values for this dataset
since CCNS is not defined for regression tasks. GraphSAGE and GraphConv networks do not seem to be
influenced by the randomness of the graph structure and are still able to learn meaningful representations of
the node features and make accurate predictions. The homophily of the k-NN graphs generated for the UKBB
dataset is also quite high, similar to the TADPOLE dataset. The same holds for its low CCNS distance
score. Furthermore, we observe that GCN models tend to perform better at a lower number of neighbours.
Interestingly, the best-performing GNN on the TADPOLE dataset is trained on a random graph structure,
using GraphSAGE convolutions and dynamic graph construction. We also cannot see a clear benefit of using
dynamic graph construction methods on all datasets. While the best dynamic result outperforms the best
static result on the TADPOLE dataset, static methods achieve higher results on the UKBB brain age dataset.
We observe the same behaviours on all other datasets Their results can be found in the appendix.
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Table 3: Results of the experiments on the TADPOLE dataset. GC: graph construction, BL: baselines, k:
number of neighbours. The best performance for each method is bold.

Initial edges Model k Test acc ↑ Test homophily ↑ Test CCNS distance ↓

B
L

- Majority vote - 0.5674 ± 0.00 - -

- Random forest - 0.9474 ± 0.00 - -
- Logistic regression - 0.8597 ± 0.00 - -

St
at

ic
G

C

Random GCN - 0.7965 ± 0.04 0.426 ± 0.49 0.348
SAGE - 0.8877 ± 0.01 0.426 ± 0.49 0.348
GraphConv - 0.8842 ± 0.01 0.426 ± 0.49 0.348
GAT - 0.7930 ± 0.04 0.426 ± 0.49 0.348

k-NN Euclidean GCN 5 0.7439 ± 0.03 0.775 ± 0.24 0.213
SAGE 5 0.8982 ± 0.03 0.775 ± 0.24 0.213
GraphConv 5 0.9088 ± 0.01 0.775 ± 0.24 0.213
GAT 2 0.7895 ± 0.04 0.904 ± 0.20 0.094

D
yn

am
ic

G
C

No edges GCN 20 0.9263 ± 0.03 0.919 ± 0.19 0.073
SAGE 20 0.9053 ± 0.02 0.806 ± 0.21 0.183
GraphConv 2 0.9228 ± 0.02 0.798 ± 0.34 0.190
GAT 20 0.9018 ± 0.06 0.908 ± 0.15 0.101

Random GCN 2 0.8421 ± 0.06 0.851 ± 0.27 0.177
SAGE 10 0.9228 ± 0.02 0.423 ± 0.22 0.616
GraphConv 5 0.8947 ± 0.03 0.411 ± 0.25 0.594
GAT 5 0.8632 ± 0.02 0.895 ± 0.20 0.119

k-NN Euclidean GCN 2 0.9333 ± 0.01 0.793 ± 0.28 0.204
SAGE 20 0.9368 ± 0.01 0.461 ± 0.63 0.632
GraphConv 10 0.8947 ± 0.02 0.777 ± 0.29 0.219
GAT 10 0.9123 ± 0.03 0.775 ± 0.29 0.206

Table 4: Results of the experiments on the UKBB brain age imaging dataset. BL: baselines, k: number of
neighbours, GC: graph construction. The best performance for static and dynamic graph construction and
the highest homophily is bold.

Initial edges Model k Test MAE ↓ Test homophily ↑

B
L

- Mean prediction - 6.4090 ± 0.00 -

- Random Forest - 4.1424 ± 0.01 -
- Linear Regression - 3.7545 ± 0.00 -

St
at

ic
G

C

Random GCN - 6.2158 ± 0.07 0.742 ± 0.10
SAGE - 3.8764 ± 0.08 0.742 ± 0.10
GraphConv - 4.2029 ± 0.16 0.742 ± 0.10
GAT - 6.4034 ± 0.07 0.742 ± 0.10

k-NN Euclidean GCN 2 4.3351 ± 0.07 0.916 ± 0.07
SAGE 10 4.1780 ± 0.17 0.844 ± 0.06
GraphConv 2 4.1979 ± 0.04 0.916 ± 0.07
GAT 20 4.2888 ± 0.01 0.834 ± 0.06

D
yn

am
ic

G
C

No edges GCN 2 4.0257 ± 0.06 0.865 ± 0.10
SAGE 5 3.8882 ± 0.03 0.754 ± 0.10
GraphConv 5 3.9741 ± 0.05 0.840 ± 0.08
GAT 2 4.1071 ± 0.07 0.843 ± 0.11

Random GCN 2 5.1712 ± 0.20 0.834 ± 0.13
SAGE 10 3.8811 ± 0.04 0.780 ± 0.09
GraphConv 10 4.1248 ± 0.30 0.768 ± 0.09
GAT 2 5.7138 ± 0.10 0.831 ± 0.14

k-NN Euclidean GCN 2 4.1109 ± 0.07 0.849 ± 0.11
SAGE 20 3.9226 ± 0.13 0.842 ± 0.07
GraphConv 2 3.9560 ± 0.09 0.831 ± 0.11
GAT 2 4.1603 ± 0.04 0.837 ± 0.11

5.2 Comparison to Other Published Results

With these results, the question arises as to why population graphs have been believed to improve the
performance of medical downstream tasks. We compare our results to published results in the most closely
related works, investigating the different performances of baseline models and GNNs on different datasets. We
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compare all datasets that have been used in related works: TADPOLE, ABIDE, and UKBB brain age datasets.
The related works we pick for comparison are works introducing the concept of population graphs (Parisot
et al., 2017), as well as new graph learning techniques that have been applied to or designed for population
graph studies (Kazi et al., 2019; 2022; Bintsi et al., 2023a). The results are summarised in Table 5. All our
baselines outperform the published baselines in the related works, while our GNN implementations match the
performances reported in the respective works. This corroborates our hypothesis that our implementation is
on par with previously reported works, while these works seem to underestimate the baseline performance.

Table 5: Comparison of our results to results from related works: Parisot et al. (2017) [1], Kazi et al. (2022)
[2], Kazi et al. (2019) [3], and Bintsi et al. (2023a) [4]. The overall best result for each dataset is underlined.
The baseline for the UKBB brain age dataset is a ridge regression for our work and a linear regression for the
results from Bintsi et al. (2023a); for the TADPOLE dataset: Linear classifier for results from Kazi et al.
(2022), random forest for our results; for ABIDE: Ridge regression for results from Parisot et al. (2017),
random forest for our results. All our baselines outperform reported baselines in other works, while our GNN
implementations match performance.

Dataset Score Method Convolution Other reported results Our results

TADPOLE Accuracy ↑
Baseline - 0.7022 ± 0.06 [2] 0.9474 ± 0.00
dDGM [2] GCN 0.9414 ± 0.02 [2] 0.9333 ± 0.01
InceptionGCN [3] InceptionGCN 0.8435 ± 0.07 [3] -

UKBB Brain Age MAE ↓
Baseline - 3.82 [4] 3.5063 ± 0.00
dDGM [2] GCN 3.72 [4] 3.8287 ± 0.03
dDGM [2] SAGE - 3.5034 ± 0.06
adaptive [4] GCN 3.62 [4] -

ABIDE Accuracy ↑
Baseline - 0.668 [1] 0.7040 ± 0.01
Similarity Score [1] GCN 0.695 [1] -
InceptionGCN [3] InceptionGCN 0.6923 ± 0.07 [3] -

The discrepancy in baseline performance can partially be due to different models, different hyperparameters,
or the utilisation of only a subset of the features for the evaluation of the baselines. Some works, for example,
only use the node features of the GNN as input for the baseline, while using additional features for the edge
construction of the population graph. We deem this to be an unfair comparison and always use all features
that we use for graph construction and as node features as input for the baseline. For the evaluation of the
baseline methods on the benchmark citation network datasets, we use only the node features of the graphs
since the edges cannot be incorporated in the same feature vector in a straightforward way. Some works do
not specify on which features the baseline is evaluated (Parisot et al., 2017).

5.3 Population Graphs for Multi-Modal Data Integration

One highly emphasised advantage of population graphs is their utilisation for multi-modal data integration
(Parisot et al., 2017; Zheng et al., 2022; Keicher et al., 2021). In one of the first utilisations of population
graphs (Parisot et al., 2017), for instance, a graph construction method is introduced that uses clinical features
to generate the edges between subjects, while image-derived features are used as node features in the graph.
In later approaches, especially for dynamic graph construction, methods moved away from a clear separation
between clinical and image-derived features (Kazi et al., 2022). In this so far typical setting of population
graphs, we scrutinise this claimed advantage and argue that all available features can easily be appended and,
therefore, incorporated into the node features. However, we see exceptions when the information used for
edge construction cannot be used as node features. This is the case when high dimensional data is used as
node features –e.g. text, audio data or images. However, this setup comes with large memory requirements
and has not been studied in detail. We encourage a more critical assessment of the utilisation of GNNs
for multi-modal data integration in conventional configurations of population graphs and advocate a shift
towards more advanced settings and a more suitable usage of multi-modal data integration for cases where it
is indeed beneficial.

We perform several experiments investigating whether GNNs are useful for multi-modal data integration for
population graphs. We take the two UKBB datasets and evaluate the performance of GNNs with different
combinations of imaging and non-imaging features for graph construction and as node features. The results
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are summarised in Table 6. Given that the convolutions GraphSAGE and GraphConv performed best
in our previous experiments on population graphs, we limit these results to those two convolutions. The
best performing GNN is highlighted in bold, the second best in purple, and the third best in green. The
corresponding homophily values for each graph structure for both datasets are summarised in Table 7. For
these experiments with static graph construction, we experiment with a different model architecture consisting
of only one graph convolutional layer, followed by an MLP.

We observe that for the brain age dataset, the best GNN is the one that uses all available features as node
features and for edge construction. The second and third-best GNNs also use all features as node features.
For the cardiac dataset, the best and second-best models also use all features as node features. However,
the third-best model uses only the imaging features as node features and the non-imaging features for edge
construction. Furthermore, on the UKBB brain age dataset, some GNNs outperform the respective baseline
(which only uses the node features) by small margins. This is not the case for the cardiac dataset. Here none
of the GNNs outperform the respective baselines. Interestingly, on the UKBB brain age dataset, the static
graph construction results in better performance than dynamic graph construction, which is the opposite for
the cardiac dataset. We can also see that the node features slightly dominate the prediction, such that the
performance of the GNN somewhat matches the performance of the baseline that uses the node features only.
This is reasonable since the specific features used for edge construction are reduced into a simple “measure of
similarity”. However, overall, the baselines perform on par with the GNNs.

The graph metrics for the experiments are summarised in Tables 3 and 4. The homophily values of the graph
structures constructed from different combinations of image and non-image features for the UKBB brain age
and cardiac dataset are summarised in Table 7. We can see that for both datasets, all graph structures have
similar homophily values, which might be why the performance of all graph structures is very similar when
using all node features.

Table 6: Results of different combinations of image-derived and non-imaging features as node features and for
graph construction on the UKBB brain age and cardiac datasets. For the age prediction dataset, the baseline
is a ridge regression, and for the cardiac dataset, a random forest. GNN outperforms their corresponding
node-feature-baseline are underlined. Best GNN: bold, second best GNN: purple, third best GNN: green.
All scores are evaluated on the test set.

UKBB Brain Age UKBB Cardiac

B
as

el
in

e

Features Model Test MAE ↓ Test accuracy ↑
- Naive baseline 6.4090 0.5000

Non-imaging Best baseline 4.6509 ± 0.00 0.6678 ± 0.00
Imaging 3.5063 ± 0.00 0.6969 ± 0.01
All 3.4185 ± 0.00 0.7046 ± 0.01
Node Feat. (Initial) Edges Model dDGM MAE ↓ Static MAE ↓ dDGM acc. ↑ Static acc. ↑

G
ra

ph
N

eu
ra

l
N

et
w

or
ks

All All GraphSAGE 3.5034 ± 0.06 3.4351 ± 0.00 0.6816 ± 0.01 0.6609 ± 0.02
GraphConv 3.5407 ± 0.04 3.3524 ± 0.06 0.6785 ± 0.01 0.6705 ± 0.01

All Imaging GraphSAGE 3.5471 ± 0.02 3.4249 ± 0.00 0.6839 ± 0.01 0.6739 ± 0.01
GraphConv 3.5221 ± 0.03 3.3758 ± 0.05 0.6690 ± 0.01 0.6743 ± 0.01

All Non-imaging GraphSAGE 3.5317 ± 0.04 3.4175 ± 0.00 0.6724 ± 0.01 0.6632 ± 0.01
GraphConv 3.6792 ± 0.25 3.4330 ± 0.01 0.6751 ± 0.01 0.6644 ± 0.02

Imaging Imaging GraphSAGE 3.9226 ± 0.13 3.7716 ± 0.04 0.6743 ± 0.01 0.6705 ± 0.00
GraphConv 3.9560 ± 0.09 3.8368 ± 0.00 0.6632 ± 0.01 0.6628 ± 0.01

Imaging Non-imaging GraphSAGE 3.9130 ± 0.05 3.6791 ± 0.01 0.6567 ± 0.01 0.6785 ± 0.00
GraphConv 3.9835 ± 0.01 3.7099 ± 0.04 0.6805 ± 0.01 0.6483 ± 0.01

Non-imaging Imaging GraphSAGE 4.6767 ± 0.06 4.9382 ± 0.00 0.6755 ± 0.01 0.6521 ± 0.01
GraphConv 4.0376 ± 0.12 5.0410 ± 0.02 0.6579 ± 0.01 0.6452 ± 0.01

5.4 Further Components of Impact on Model Performance

In this section, we investigate the impact of the graph structure on model performance from three further
viewpoints. (1) The experiments above have indicated that the graph structure has a different impact on
different graph convolutions, (2) the complexity of the dataset plays an important role in the performance of
GNNs on low-homophily graphs, and (3) if a meaningful graph structure is available, GNNs out-perform
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Table 7: Homophily values of the UKBB brain age and cardiac datasets with k = 5 and k-NN graph
construction, when using all features, only imaging, or only non-imaging features for graph construction.

Dataset Features Homophily

Brain Age
All 0.8571 ± 0.07
Imaging 0.8619 ± 0.07
Non-imaging 0.8237 ± 0.08

Cardiac
All 0.6404 ± 0.22
Imaging 0.6396 ± 0.22
Non-imaging 0.6649 ± 0.23

graph-agnostic models. Therefore, we perform additional experiments on synthetically generated graph
structures at different homophily values. Here, the graph is constructed statically and to specifically match
a certain homophily value by using the labels and connecting each node to a specific number of same
and differently labelled neighbours. The results for three datasets are visualised in Figure 4, and more
visualisations can be found in the appendix in Figure 6.
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Figure 4: Performance of different graph convolutions on synthetic graph structures with different homophily
values on (a) the CORA dataset, (b) the TADPOLE dataset, and (c) the ABIDE dataset. The dashed
blue line indicates the mean performance of the best baseline for each dataset.

Different Types of Graph Convolution Zhu et al. (2020) have shown interesting correlations between
homophily and different graph convolutions. They showed that the separate handling of node features of the
node of interest (xi) and its neighbouring nodes (Ni) improves the performance of GNNs on heterophilic graphs.
The same accounts for networks that evaluate the k-hop neighbourhoods separately. Graph convolutional
networks (GCNs) (Kipf & Welling, 2016) do not separate node features of i and Ni, but average the message
passing over both in one step (Equation 5). GraphSAGE and GraphConv, on the other hand, distinguish
between xi and xj , j ∈ Ni (Equations 6 and 7). GAT (Equation 8) learns different attention coefficients
for xi and xj , j ∈ Ni. However, the network weights are shared for both, which might negatively impact
performance on graphs with low homophily. Our experiments support these findings. We observe that the
graph structure strongly affects GCN and GAT, whereas GraphSAGE or GraphConv networks perform more
consistently across different graph structures.

Impact of Dataset Complexity The impact of the homophily on the model performance is not only
dependent on the graph convolution but also varies depending on the dataset, probably related to the number
of classes in the dataset as well as class imbalance. In order to investigate this, we perform experiments
with synthetic graph structures on the TADPOLE dataset (3 classes), the CORA dataset (7 classes), the
UKBB cardiac dataset (2 classes), and the ABIDE dataset (2 classes) at different synthetically generated
homophily values. Figure 4 shows the performance of different graph convolutions on 3-layer GNNs using
synthetically generated graphs for the different datasets. For the CORA dataset (Figure 4a), all models
perform worse than the baseline with homophily values lower than 0.8. While all graph convolutions are
impacted similarly and perform worse than the baseline for low-homophily graphs, SAGE and GraphConv
perform better than GAT and GCN. The low-homophily graphs do not allow the model to learn meaningful
node feature embeddings since, during the course of training, node features of differently labelled nodes are
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averaged and shared, interfering with the model’s goal to distinguish different classes. Interestingly, the
performance for the TADPOLE dataset (Figure 4b) looks different. We observe similar differences between
the graph convolutions. However, we also observe that only at very high and very low homophily values can
the GNN outperform the baseline. Everything in between either matches the performance of the baseline or
reaches a worse performance. When we now compare the homophily values of the generated graph structures
in our experiments on the TADPOLE dataset above, we can see that most of them have a homophily of
around 0.7 or 0.8. The ABIDE dataset requires a graph structure with lower homophily to outperform the
baseline. However, the same pattern holds that all population graphs constructed in our experiments reached
homophily values in the range where the GNNs under-perform or perform on par with the baselines. This
potentially explains why the population graphs do not outperform the graph-agnostic baseline models.

Furthermore, the high performance of the GNNs at low homophily values for the population graphs is highly
different from that on the CORA dataset. We attribute this to the capability of the GNNs to learn the opposite
labels from the majority of the neighbour labels, which we deem impossible for datasets with more classes. To
investigate this further, we evaluate the attention of GAT models trained on graphs with different homophily
values on the TADPOLE dataset and observe that low-homophily graphs (homophily=0.1) attribute high
attention from differently labelled nodes and low attention to same-labelled nodes. The opposite is the case
for high-homophily graphs. This allows the model to also perform well on low-homophily graphs on datasets
with only a few classes. More details about these experiments can be found in appendix, Section C.3.

Impact of Dataset Size We investigate the impact of the graph size on model performance with two
additional experiments: (a) We partition the largest population graph dataset –UKBB brain age– into smaller
subsets (25%, 50%, and 75% of the original dataset) and (b) generate a synthetic dataset at different sizes
and compare GNN performances to baselines. The results of the partitioned UKBB brain age dataset (a)
and the synthetic dataset (b) are summarised in Table 8. For the GNN, we use the DGM adaptive graph
construction with the k-NN initial graph structure and GraphSAGE convolutions. For the baseline, we use a
linear regression for the UKBB brain age dataset and a 4-layer MLP for the synthetic dataset. We do not
observe a tendency for the dataset size to have an impact on the difference in performance between the GNN
and the baseline on the partitioned UKBB dataset. The same holds for the synthetic dataset, even for very
large graphs with 30 000 nodes.

Dataset Nr. Nodes Score GNN Baseline Performance Difference
UKBB brain age 25% 1841 MAE 3.6804 ± 0.08 3.5577 ± 0.00 -0.1227
UKBB brain age 50% 3362 MAE 3.7658 ± 0.18 3.5363 ± 0.00 -0.2295
UKBB brain age 75% 4884 MAE 3.7022 ± 0.11 3.4651 ± 0.00 -0.2371

UKBB brain age 100% 6406 MAE 3.5034 ± 0.06 3.4185 ± 0.00 -0.0849

Synthetic 5 000 ACC 0.7980 ± 0.03 0.8164 ± 0.00 0.0184
Synthetic 10 000 ACC 0.8100 ± 0.04 0.8532 ± 0.00 0.0432
Synthetic 20 000 ACC 0.8895 ± 0.01 0.9072 ± 0.00 0.0177
Synthetic 30 000 ACC 0.9179 ± 0.01 0.9413 ± 0.00 0.0234

Table 8: Performance differences between the baseline and GNNs for different subsets of the original dataset
UKBB brain age (reported MAE) and a synthetically generated dataset (reported accuracy ACC). The
column Performance Difference indicates the performance of the baseline minus the performance of the GNN.

Ground Truth Graph Structures Based on these results, we argue that the graph construction methods
currently utilised for population graphs are insufficient. Only a meaningful graph structure that adds
additional information to the node features leads to better performance of GNNs compared to baseline
methods. To support this, we investigate commonly used graph construction methods for population graph
studies on the frequently used benchmark citation datasets CORA, CITESEER, and PUBMED (Yang et al.,
2016). They provide a “ground truth” graph structure, which we can evaluate in comparison to the graphs
resulting from graph construction methods used for population graph studies. This allows us to investigate
how the different graph construction methods perform compared to a given “ground-truth” adjacency matrix.
The results of the best-performing GNNs and baselines on all three datasets are summarised in Table 9. The
experiments on all benchmark citation network datasets have shown that GNNs can improve performance
compared to simple baseline methods. However, even for the CITESEER dataset, a ridge classifier outperforms
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all GNN methods and neural sheaf diffusion networks. The results for the CORA dataset are also visualised in
Figure 5. Only the usage of the original edges outperforms the baseline methods, while all static and dynamic
graph construction methods yield poor results. This supports the hypothesis that the graph construction
methods for population graphs do not add relevant information to the node features. More detailed results
can be found in the appendix.

Table 9: Summary of results on benchmark datasets of different baseline methods and the best GNNs
and Neural Sheaf Models.

Method CORA CITESEER PUBMED
Random forest 0.7788 ± 0.00 0.7480 ± 0.01 0.7286 ± 0.01
Ridge 0.7860 ± 0.00 0.7720 ± 0.00 0.7350 ± 0.00
Linear/Logistic 0.5750 ± 0.00 0.5600 ± 0.00 0.7310 ± 0.00

GNN k-NN 0.7692 ± 0.01 0.6908 ± 0.01 0.6908 ± 0.01
GNN orig. edges 0.8540 ± 0.01 0.7548 ± 0.01 0.8760 ± 0.01 [1]

Neural Sheaf 0.8730 ± 0.01 [3] 0.7714 ± 0.02 [3] 0.8949 ± 0.00 [3]
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Figure 5: Results on the CORA dataset with static (left) and dynamic (right) graph construction.

6 Discussion

In this work, we evaluate the performance of medical population graphs on five population graph datasets and
compare state-of-the-art graph learning techniques to well-tuned baseline models. We consistently observe
the following findings:

1. GCN and GAT are poorly suited for population graph studies. GNNs using GraphSAGE
and GraphConv convolutions consistently outperform GCN and GAT models, which leads to the
conclusion that the latter methods are unsuitable for GNNs in population graph studies. We attribute
this to the fact that GCN and GAT networks are highly affected by the graph structure, whereas
GraphSAGE and GraphConv networks are more robust in this regard. This also manifests in the
fact that GCN and GAT networks benefit more from dynamic graph construction than the other
two convolutions and that GraphSAGE and GraphConv models can perform equally well on random
graph structures.

2. The utilisation of population graphs with the goal of multi-modal data integration might
not be as promising as believed. The most frequently used method for the construction of
population graphs includes a separation of features into node features and ones utilised for edge
construction. We show that using all available features for edge construction and as node features
might lead to better results and argue that a concatenation of all features is easily doable –except
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when using images as node features. We see potential in using population graphs in different settings
where the connectivity information cannot easily be integrated with the node features.

3. None of the state-of-the-art GNN methods significantly outperform well-tuned baseline
methods (see Table 2). This raises the question of whether population graphs –in the way they
are currently used– have any benefit over graph-agnostic models. In Section 5.4, we investigate the
interplay of the graph structure and the performance of the GNNs on a population graph dataset and
conclude that only a nearly perfect graph structure leads to a better performance of GNNs compared
to baseline models, which has not been possible with the current graph construction methods.

4. Better graph construction methods are required. The experiments on the benchmark datasets
and the synthetically generated graph structures with different homophily values (see Figures 4 and
5) show that GNNs can improve downstream task performance if the graph structure is “meaningful”.
However, current graph construction methods do not lead to valuable graph structures, which makes
graph construction the performance bottleneck in these settings. The same is represented by the fact
that random graph structures often achieved comparable results to approaches like k-NN graphs.

We furthermore note that all baseline models are easy to implement using standard libraries such as
scikit-learn (Pedregosa et al., 2011), are significantly faster to fit than the training of GNNs, and do not
require extensive hyperparameter tuning.

7 Conclusion and Future Work

Medical population graphs were first introduced by Parisot et al. (2017) to allow for a population-wide
representation of a cohort of patients. The idea behind the utilisation of population graphs is that subjects
that share similar phenotypes (and are therefore neighbours in the population graph), also show similar
pathologies. Thus, the neighbouring nodes are hoped to improve model performance when using graph deep
learning methods. They have since then been combined with GNNs and used on multiple medical datasets.
Most works utilise population graphs as a method for multi-modal data integration (Parisot et al., 2017;
Kazi et al., 2019; Cosmo et al., 2020; Bintsi et al., 2023a). Here, a subset of the features are used as node
features (usually imaging features), while other features (usually non-imaging) are used to generate the graph
structure (the edges).

In this work, we perform an extensive study on how GNNs are used in the context of population graphs and
compare different graph-learning methods to graph-agnostic baseline models. We use five medical population
graph datasets, including all publicly available datasets used for population graph studies in related works.
We utilise state-of-the-art (a) static graph construction methods, (b) dynamic graph construction methods,
and (c) neural sheaf diffusion models. The latter have been designed to address two of the most dominant
problems of GNNs: over-smoothing and performance on low-homophily graphs. We investigate the usage of
neural sheaf diffusion models since the graph construction methods for population graphs seem to result in
unideal graph structures, which might benefit from the use of neural sheaf diffusion models.

Even though we reach comparable results to related works on population graphs with GNNs for all methods,
none of the GNNs significantly out-perform the strongest baseline method. This raises the question of how
powerful population graphs indeed are and whether they are a suitable data representation combined with
GNNs. We conclude that currently available graph construction methods are the performance bottleneck of
GNNs on population graphs compared to graph-agnostic methods. We see a need for either more advanced
methods to learn a graph structure that contains additional meaningful information to the node features or
novel ideas on how to build population graphs from additional information that cannot be represented as
node features. When using synthetically generated graph structures, we observe that only graphs with higher
homophily than possible to extract from the node features result in better performance of GNNs compared
to properly tuned graph-agnostic methods such as a random forest or linear regression (Figure 4). Even a
dynamic graph construction method, which optimises the graph structure during training, does not reach
a “good enough” graph structure. Also, models designed for “low-quality” graph structures (e.g. neural
sheaf diffusion models) do not improve performance on population graphs. The fact that our baseline models
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outperform the results reported in related works emphasises the importance of appropriate tuning of baseline
methods in general. It shows that the currently available graph construction methods for population graphs
are insufficient.

There are a few more graph construction methods that we did not evaluate in this work, such as Similarity
Scores. The first one was introduced by Parisot et al. (2017) and followed by several extensions and
modifications (Ghorbani et al., 2022; Vivar et al., 2021; Pellegrini et al., 2022; Peng et al., 2022; Lu et al.,
2022). In this work, we focus on using k-NN graphs since this method has been shown to achieve the best
results in related works (Bintsi et al., 2023b) and preliminary experiments. Furthermore, investigating other
graph convolutions or different GNN architectures in combination with specific population graph setups
might give more insights. One example would be higher-order GNNs for node-level predictions (Li et al.,
2021). We would see this as a fitting method for longitudinal studies. Finally, it could be interesting to
evaluate additional graph assessment metrics (Luan et al., 2021; Xie et al., 2020; Luan et al., 2022) and their
correlation with graph construction methods and model performance.

We generally see three future directions for population graph studies. Either (a) new and better graph
construction methods need to be developed for population graphs to bring benefits to medical downstream
tasks, (b) innovative applications of population graphs that truly benefit from the usage of connectivity
information need to be explored, or (c) the usage of population graphs in combination with GNNs does not
seem valuable for the performance of medical downstream tasks. It would be interesting to follow up with a
theoretical analysis. Our experiments showed that the graph construction is a major performance bottleneck
for population graphs. We believe this to be a good starting point for follow-up analyses. For better graph
construction methods, we see the requirement of increasing the information content of the graph structure
compared to the node features alone. This could potentially be achieved by encoding information in the graph
structure that cannot be trivially added to the node features, such as genetic similarity between subjects or
the risk groups in survival analysis. Other potentially interesting applications of population graphs, where the
edges add additional information to the node features, are geospatial graphs. This could include analysing
location-based health data, disease spreading, or tracing local differences in medication or care units. Also,
time-series data has not been explored in great detail in the context of population graphs, which might
add more valuable information to the graph structure. The concept of population graphs has, with a few
exceptions (Keicher et al., 2021), mostly focused on vector data instead of images. This is mostly because
image data is much larger and, therefore, more difficult to fit into memory in the context of population graphs.
This could be another interesting future direction to improve the predictive power of population graphs.
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1. Introduction

Many real-world datasets like social networks, molecules, population data or electronic
health records don’t naturally befit a row-and-column (tabular) representation as they hold
complex internal connections and relationships. Such data can often be efficiently represented
using graphs as data structures. The additional intrinsic structural information maintained
by this representation holds great potential for data analytics and learning tasks on such
graph-structured data. A graph’s interconnected nature can be leveraged by appropriate
algorithms and graph-based learning models and can be deployed in contexts such as market
value prediction [1], fake news detection [2] and drug development [3]. Within the last
two decades, “traditional” algorithms such as triangle counting, node degree estimation
etc. have been complemented or superseded by advanced machine learning applications
on graph-structured data, made possible by the introduction of Graph Neural Networks
(GNNs) [4]. Such models have since then been successfully applied to various learning
scenarios [5, 6, 7]. These works demonstrate that a graph’s connectivity confers valuable
additional information, and allows analysts to leverage the interaction between individual
data points, which can significantly improve the accuracy of learning tasks compared to
reducing graph-structured data to a tabular form [8]. However, the information contained in
graph-structured data is often highly sensitive in nature in the sense that either the data in
the graph’s nodes, the connections between nodes or both represent sensitive information
mandating protection.

Moreover, the rich inter-node relationships render graph-structured data more vulnerable
to attacks that attempt do disclose the private data of individuals contained within the
graph without their consent [9, 10]. Such attacks can take form of membership inference
(MIA) [11], where the adversary attempts to verify if a record that they possess was part of
the sensitive dataset (e.g. a patient’s electronic health record). MIA, in fact, has a higher
fidelity in graph-based settings, due to additional information that intrinsically lies in the
structure of a graph [12]. Another commonly used attack is termed an attribute (or feature)
inference attack [13]. It aims to reconstruct sensitive features of individuals in the training
dataset and typically involves an adversary having access to a non-overlapping dataset of
publicly available attributes which, alongside the predictions of the trained model, are used to
determine the value of a sensitive feature that belongs to a target participant. Furthermore,
models trained on graph-structured data, such as GNNs, were shown to be susceptible to
model inversion attacks (MInv) [14], which allow the adversary to extract sensitive training
data by leveraging the internal representations of the model (e.g. reverse-engineering a
model update into disclosing which data point corresponds to this specific update). Authors
in [9] show that MInv attacks can be adapted to graph-based learning. Notably, seeing as
graph-structured data captures information not just about individuals themselves, but about
their relationships with other participants, all of these attacks can potentially compromise
privacy of multiple participants at once.

The increasing popularity of graph-based analytics and machine learning coupled with
the regulatory and ethical mandates to protect sensitive data imply that privacy enhancing
technologies (PETs) [15] need to be applied in order to provide formal guarantees of privacy.
Differential privacy (DP) [16] was proposed to objectively quantify the privacy loss of
individuals whose data is subjected to algorithmic processing and is now regarded as the gold
standard of formal privacy guarantees. Differentially private algorithms upper-bound the
amount of information that can be inferred by an adversary from observing a computation’s
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output, thus mitigating the attacks discussed above. The utilisation of DP mechanisms thus
allows to train machine learning models on sensitive datasets while preserving privacy of
contributors’ data. However, the adaptation of DP to graph-structured data is non-trivial
for two main reasons: (1) there exist several notions of DP on graph-structured data, which
protect different components of the graph, and thus need to be selected carefully and
appropriately to the application; (2) due to the formal definition of DP, its realisation on
graphs encompasses several additional implementation challenges compared to tabular data.

To promote the development of responsible and privacy-preserving machine learning
systems, we identify the requirement for a comprehensive systematisation of knowledge in
the areas of differentially private graph analytics and graph machine learning tasks. In this
work, we investigate existing implementations, their limitations and application areas, as
well as a number of challenges associated with differentially private learning on graph-based
structures and promising directions for future work. We distinguish two lines of works: (1)
non-machine learning graph analytics methods and (2) machine learning approaches on
graph-structured data with Graph Neural Networks (GNNs). This distinction allows us
to emphasise open challenges and highlight opportunities to transferring DP techniques
from graph analytics methods to GNNs. The outline of the remaining work and our main
contributions can be summarised as follows:

• In Section 2, we provide an introduction to graph-structured data and graph neural
networks, as well as a formal definition of DP;

• We formalise the three main notions of DP on graph-structured data: edge-level, node-level,
and graph-level DP in Sections 2 and expand them by introducing several additional
notions of DP in Section 4;

• We demonstrate how different DP formulations can be applied in various settings in
Section 5 and how graph analytics and graph learning under DP can be compared in all
scenarios;

• We identify limitations and open challenges of these approaches and pinpoint promising
areas of future work in the domain of DP on graph-structured data in Section 6.

2. Background

In this section, we formalise the concept of DP, introduce the three main notions on DP on
graph-structured data, as well as the concept of sensitivity, the Gaussian and the Laplace
mechanisms, and provide a brief introduction to graph-structured data and graph neural
networks (GNNs).

2.1. Graph-Structured Data. In the following, we will refer to a graph G = (V ,E ) as a
collection containing a set of nodes V = {v1, v2, ..., vn} and a set of edges E = {e1, e2, ..., em},
n and m ∈ N. Here, n determines the number of nodes in the graph and m the number of
edges. The data contained in the graph can be split into the attributes contained in the
nodes V of the graph, which can be referred to as node features, and the data held by the
connections E between the nodes. The edges can optionally also contain edge attributes,
holding additional information about the tightness or nature of the connection.
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2.2. Differential Privacy. Differential privacy (DP) is a stability condition on randomised
algorithms that makes their outputs approximately invariant to an inclusion or exclusion
of a single individual [16]. In the words of the authors of [16], DP promises “to protect
individuals from any additional harm that they might face due to their data being in the
private database that they would not have faced had their data not been part of [the
database]”. This allows one to interpret DP as guaranteeing an upper bound on the effect
size introduced by the inclusion or exclusion of the individual’s data [17]. The DP framework
and its associated techniques allow data analysts to draw conclusions about datasets while
preserving the privacy of individuals. We note that the DP guarantee makes no assumption
about potential correlations between datapoints, however the “standard” interpretation of
DP can behave in unpredictable ways when applied näıvely to data with such correlations
such as graphs, prompting the more specific definitions introduced below.

In a setting of DP on graph-structured data, we assume that an analyst A is entrusted
with a database D containing sensitive graph-structured data. From D a neighbouring (in
this work we additionally use the term adjacent) dataset D′ is constructed by either (a)
removing or adding one node and its adjacent edges (node-level DP), (b) removing or adding
one edge (edge-level DP), or (c) removing or adding one graph (graph-level DP). Formally,
DP can be defined as follows:

Definition 2.1 ((ε-δ)-DP). A randomised algorithm M is (ε-δ)-differentially private if for
all S ⊆ Range(M) and all neighbouring datasets D and D′ in X the following (symmetric)
statement holds:

P[M(D) ∈ S] ≤ eεP[M(D′) ∈ S] + δ. (2.1)

The definition of neighbouring datasets on graph-structured data depends on the desired
formulation of privacy in the setting (i.e. which attributes need to be kept private, such
as outgoing edges for instance). Therefore, the desired notion (as well as the associated
mechanisms) of privacy preservation depend on what the data owner requires to protect,
the structure of the graph and the desired application to ensure a context-appropriate
interpretation of the DP guarantee. In order to employ differentially private algorithms
to process graph-structured data, the property of neighbouring datasets thus needs to be
formally defined. The three main notions of DP on graphs can be formalised as follows:

Definition 2.2 (Edge-level DP). Under edge-level differential privacy, two graphs G and G ′

are neighbouring if they differ in a single edge (either through addition or through removal
of the edge) [18]. (ε-δ) edge differential privacy is therefore preserved if equation (2.1) holds
for all events S and all pairs of neighbours G , G ′ that differ in a single edge. In this setting,
two graphs G = {V ,E} and G ′ = {V ′,E ′} are neighbours if

V ′ = V ∧ E ′ = E \ ei, (2.2)

where ei ∈ E .

Definition 2.3 (Node-level DP). Under node-level DP, two graphs G = {V ,E} and
G ′ = {V ′,E ′} are defined as neighbouring if they differ in a single node and its corresponding
edges (achieved through a node removal/addition) [19]. (ε-δ)-node differential privacy is
therefore preserved if equation (2.1) holds for all events S and all pairs of neighbours G , G ′,
that differ in a single node and its corresponding edges:

V ′ = V \ vi ∧ E ′ = E \ c, (2.3)



DP GUARANTEES FOR ANALYTICS AND MACHINE LEARNING ON GRAPHS 5

where vi is a node in V and c is the set of all edges connected to vi.

Figure 1 visualises these two main definitions of DP on graphs. Two neighbouring
datasets (graphs) under node-level DP and edge-level DP are displayed in sub-figures A and
B, respectively.

A

B

Figure 1: Two neighbouring graphs in the context of (A) node-level DP and (B) edge-level
DP. By removing (A) one node and its adjacent edges or (B) one edge (displayed
in red), two neighbouring graphs can be transformed into each other.

For multi-graph datasets, we can define a different notion of privacy:

Definition 2.4 (Graph-level DP). Under graph-level DP, we define two multi-graph datasets
D = {G11, G12, . . . , G1n} and D′ = {G21, G22, . . . , G2m} to be neighbours if they differ in
one single graph (achieved through the addition or removal of one entire graph). (ε-δ)-graph
differential privacy is therefore preserved if equation (2.1) holds for all events S and all pairs
of neighbouring datasets D and D′, where

D′ = D \G1i, (2.4)

and G1i ∈ D.

We now assume that the analyst A executes a function (or query) f over the graph
dataset. When considering DP in GNNs, the function f is a repeated composition of
the forward pass, loss calculation, and gradient computation of the graph neural network
(resulting in a “database” of gradients). In order to determine the magnitude of noise that
needs to be added, we are required to calculate the sensitivity of the function that noise is
applied to. We will consider either the L1- or the L2-sensitivity of f .

Definition 2.5 (L2-sensitivity ∆2 of f). Let f be defined as above and X be the set of all
neighbouring databases. We can define the L2-sensitivity of f as:

∆2(f) := max
D,D′∈X,D≃D′

∥f(D)− f(D′))∥2. (2.5)

We note that the maximum is taken over all neighbouring pairs of datasets in X.

Using the definition of L2-sensitivity, we can formalise the Gaussian Mechanism on f :

Definition 2.6 (Gaussian Mechanism). Let ∆2 and f be defined as above. The Gaussian
Mechanism M is applied to the function y = f(x), y ∈ Rn, as follows:

M(y) = y + ξ, (2.6)
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where ξ ∼ N (0, σIn). In is the identity matrix with n diagonal elements and σ is
calibrated to ∆2.

Similarly to L2-sensitivity, we can define the L1-sensitivity as:

Definition 2.7 (L1-sensitivity ∆1 of f).

∆1(f) := max
D,D′∈X,D≃D′

||f(D)− f(D′)||1. (2.7)

When it is clear from context, we will omit the argument and write just ∆1/2.

Definition 2.8 (Laplace Mechanism). Let ∆1 and f be defined as above. The Laplace
Mechanism M is applied to the output y = f(x), y ∈ Rn, as follows:

M(y) = y + (ξ1, ξ2, . . . , ξn) , (2.8)

where ξi are I.I.D. draws from Lap
(
0, ∆1

ε

)
.

2.2.1. Local and Central DP. In general, one can furthermore distinguish between local and
central DP. Under local differential privacy (LDP) [20] the data owner performs the noise
perturbation step before the data reaches the analyst. Such interpretation can be preferable
in low-trust collaborative learning settings, as no party other than its owner has access to
the data before the learning task commences. Data owners only share a perturbed version
of their training data, which reduces the amount of information an analyst can infer about
the shared data itself, while still allowing to draw insights from the privatised aggregated
data [7]. Local DP thus bounds the information at the data source itself, minimising the
potential privacy exposure [15]. An adversary is, therefore, unable to infer the input value
with high confidence, but is possible to approximate the target query if provided with a
large number of noisy samples [7]. More details about local DP on graph-structured data
can be found in Section 4.6.

When DP is, on the other hand, applied to the output of the computation instead of
the input data, one speaks of central differential privacy. In this case, the noise is not added
directly to the input data but instead to the computation outputs. Due to the properties
of DP, only a bounded quantity of additional information can be derived about the data
belonging to an individual, while the overall statistics of the whole dataset can still be
approximately evaluated.

2.3. Graph Neural Networks. To allow machine learning to be performed directly on
graph-structured data, GNNs were proposed [4]. They leverage the full underlying structure
of the dataset and maximise learning capacity by directly learning on the graph. GNNs can
be applied to either single graph or multi-graph datasets, depending on task and application.
The three major application areas of GNNs are node classification (where one label is
predicted for each node in the graph), edge prediction (where edges are predicted or labeled),
and graph classification (where one label is predicted for each graph).

A key concept for the successful application of GNNs is message passing [21], where
information is shared along edges and therefore propagated among neighbourhoods of nodes.
This property enables the utilisation of the full dimensionality of graph datasets. However,
this typically complicates the disentanglement of contributions by individual nodes, making
the calculation of individual privacy loss per each participant a challenging task.
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3. Systematisation Methodology

We conducted a survey of papers that intersect the domains of graph analytics or deep
learning on graphs with differential privacy. We employed the Google Scholar and the Web of
Science search engines and examined papers that contained the keywords “node-”, “edge-”,
“graph-” “differential privacy” between January, 2007 and February 2022. Our searches often
had to be coupled (e.g. “node differential privacy graphs”), as notions such as graphs or
nodes are often used in unrelated concepts such as computation graphs or network nodes.
We selected 51 studies, which we partitioned based on the application of DP employed in
each work: node-level DP, edge-level DP, graph-level DP, and whether local DP was applied
in the respective works. Furthermore, we separated the works into graph analytics and GNN
training applications. We additionally recorded the contexts in which DP was applied. A
summary of the works that we discuss in this study can be found in Table 1.

We observed that a large number of studies concentrate on the usage of graph datasets
but explicitly not on the application of GNNs. The large amount of research in the context of
DP on graphs in general shows the importance of applying differentially private algorithms to
graph-structured data. However, applications of DP to GNNs are currently underrepresented,
presumably due to the fact that GNNs are a relatively recent deep learning method, and
the application of DP to GNNs entails several challenges. For example, there is no singular
explicit notion of “DP” in different graph machine learning settings, as discussed below.
Furthermore, the here-presented systematisation of different possibilities to apply differential
privacy to graph neural networks will act as a comprehensive guide to practitioners and aid
in the the development of new methods in this area. With the advent of privacy-preserving
machine learning and the strong interest in geometric deep learning applications, we strongly
believe the differentially private training of GNNs to be a promising future research area
with several applications to sensitive data. We therefore explicitly decided to include both
graph analytics and machine learning on graphs in our survey. Some exemplary application
areas are discussed in Section 5.

4. DP formulations on Graph-Structured Data

In this section, we outline and discuss methods from the research field of differentially private
graph analytics and graph machine learning. We identify and consider two separate lines of
work: (a) DP in traditional graph analytics methods and (b) DP in graph neural networks.
We therefore separate the works in Table 1 depending on their association with one of those
categories. We also indicate the notion of DP that was applied in the respective research
in the columns Edge-DP, Node-DP, Graph-DP, and LDP and summarise ranges of the
privacy budget ε if they were reported in the respective works. The line of work of DP in
traditional graph analytics (a) includes methods for privately computing graph statistics
like degree-distributions [23], frequent sub-graph-mining [34], and sub-graph counting [31],
as well as private graph release [24, 43, 6]. The works of DP for GNN training (b) include,
for instance, text classification [5], whole-graph classification [68], and attacks on GNNs [9].

The first application of differentially private computation on graph data was introduced
by Nissim et al. [22]. Authors showed an estimation of the cost associated with the
computation of a minimum spanning tree and triangle counts in a differentially private
manner. In their work, the authors opted for the utilisation of edge-level DP.

As indicated in Table 1, we generally observe a focus on edge-level DP in earlier papers,
compared to a more frequent utilisation of node-level DP in more recent works. We attribute
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Edge-DP Node-DP Graph-DP LDP Year Reference Context ε

G
ra

p
h

A
n
a
ly
ti
c
s

✓ ✓ 2007 Nissim et al. [22] Estimation for spanning trees -
✓ 2009 Hay et al. [23] Graph degree estimation [0.01; 1]
✓ 2009 Mir et al. [24] Graph estimation -

2011 Gehrke et al.** [25] Zero-knowledge statistics estimation -
✓ 2011 Machanavajjhala et al. [26] Privacy in social graphs [0.5; 3]
✓ 2011 Sala et al. [27] Release of private graphs [0.1; 100]
✓ 2011 Karwa et al. [18] Private subgraph counting 0.5
✓ 2012 Gupta et al. [28] Synthetic data for graph cuts -
✓ 2012 Karwa et al. [29] Release of graph degree sequences -
✓ 2012 Mir et al. [30] Private release of graph distribution 0.2
✓ ✓ 2013 Blocki et al. [31] Restricted sensitivity for DP -

✓ 2013 Chen et al. [32] Private graph database aggregation [0.1; 0.5]
✓ 2013 Kasiviswanathan et al. [33] Private graph analysis -

✓ 2013 Shen et al. [34] Private graph pattern mining [0.1; 1]
✓ 2013 Wang et al. [35] Private spectral graph analysis 460
✓ 2013 Wang et al. [36] Private spectral graph analysis -
✓ 2014 Chen et al. [37] Correlated network data release [0.6; 1]
✓ 2014 Lu et al. [38] Estimation of graph model parameters [0.1, 1]

✓ 2014 Proserpio et al. [39] Synthetic graph generation [0.01; 10]
✓ 2014 Raskhodnikova et al. [40] DP analysis of graphs -

✓ ✓ ✓ 2014 Task et al. [41] Private social network analysis -
✓ 2016 Day et al. [42] Private graph distribution release [0.1; 2]

✓ 2016 Jorgensen et al. [43] Private attributed graph models [1; 20]
✓ 2016 Raskhodnikova et al. [44] Private release of graph statistics -

✓ ✓ 2016 Wang et al. [45] Private aggregation of data [0; 2]
✓ ✓ ✓ 2017 Qin et al. [46] Private release of social graphs [0; 7]
✓ ✓ 2017 Zhu et al. [47] Applications of differential privacy -
✓ ✓ ✓ 2018 Cormode et al. [48] Private data release -

✓ 2018 Macwan et al. [49] Private release of graph data 0.5
✓ 2019 Arora et al. [50] Graph sparsification -

✓ 2019 Sealfon et al. [51] Estimation of graph statistics -
2019 Sun et al. [52] Subgraph statistics, decentralised DP [1; 10]

✓ 2019 Yuxuan et al. [53] Private histogram release -
✓ 2020 Chen et al. [54] Private synthetic data release [2; 5]

✓ 2020 Liu et al. [55] Node strength distribution [0.1; 2]
✓ 2020 Zhang et al. [56] Private social graph release [0.1; 20]
✓ ✓ 2020 Zhang et al. [57] Control-flow graph coverage analysis [2−5; 25]
✓ 2021 Iftikhar et al. [58] Private release of degree distribution [0.01; 10]
✓ 2021 Fichtenberger et al. [59] Private dynamic graph algorithms -

✓ ✓ 2021 Imola et al. [60] Private sub-graph counting [0; 2]
✓ 2021 Lan et al. [61] Private node strength histogram release [0.1; 2]
✓ 2021 Liu et al. [62] Private degree histogram release [0.1; 2]
✓ 2021 Sealfon et al. [63] Private graph density estimation -

✓ ✓ ✓ 2021 Xia et al. [64] Benchmark platform for DP on graphs -
✓ ✓ 2021 Zheng et al. [65] Private graph publication framework -
✓ 2021 Zheng et al. [66] Network Generation [0.1; 440]

G
N
N
s

Edge-DP Node-DP Graph-DP LDP Year Reference Context ε

✓ 2020 Sajadmanesh et al.* [7] Locally private GNNs [0.01; 3]
✓ 2021 Daigavane et al. [67] Node-level DP in GNNs [5; 30]

2021 Igamberdiev et al.* [5] Private text classification [1; 100]
2021 Olatunji et al.* [6] Private GNN and graph data release [1; 40]
2021 Zhang et al.* [9] Attacks on GNNs [1; 10]

✓ 2022 Mueller et al. [68] Graph-level DP for graph classification [0.5; 20]

Table 1: Summary of existing works on DP on graphs, ordered ascending by publication
year and alphabetically within the same year. The works are split into Graph
Analytics and GNNs. Ticks in columns Edge-DP, Node-DP, and Graph-DP
specify which notion of privacy was used. A tick in column LDP indicates that the
authors used local DP. The asterisks (*) indicates that the DP notion is not clearly
stated. Two asterisks (**) indicate the utilisation of zero-knowledge privacy (see
Section 4.5.3). The column ε reports the privacy budget that was evaluated in the
respective works.
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this to the fact that node-level DP is more challenging to achieve, but offers stronger privacy
guarantees (as it considers the privacy of a node and all its adjacent edges). Works on
graph-level DP are quite rare. However, we believe this notion of DP to be promising and
given that different works name the same concept differently, we still included graph-level
DP in Table 1.

We furthermore observe that, in the works discussing DP on GNNs, authors frequently
omit to specifically assign the guarantees provided to one of the aforementioned DP notions,
which highlights the need for more systematic approaches to defining DP in graph learning
tasks. We attribute this lack of specification to missing systematisation of terminology in
this area as well as the challenging task to differentiate the individual notions of privacy in
graph learning tasks and their dependence on the dataset and the application area.

4.1. Sensitivity Calculation on Graphs. As described above, ensuring data privacy on
graphs presents additional challenges compared to structured databases such as image or
tabular datasets, since the data points are inter-connected and the graph structure itself can
contain sensitive information. Furthermore, depending on the application it can be desired
to protect different parts of the graph. One fundamental challenge is therefore the issue of
sensitivity calculation.

In cases of graphs, this value can be challenging to obtain as it depends not only on the
structure of the graph but also on the attributes of the query function. Two main methods
have been proposed to obtain node differentially private algorithms which are either based on
(a) the utilisation of projections, for which sensitivity can be bounded, or (b) on computing
Lipschitz extensions [44, 31, 32]. Raskhodnikova et al. [44] study the efficient computation
of Lipschitz extensions for multi-dimensional functions on graphs, which can be obtained in
polynomial time, and determine that they do not always exist - in comparison to Lipschitz
extensions for 1-dimensional functions.

In the next sections, we give more details about the different definitions of DP on graphs
in node-level, edge-level, graph-level DP as well as some alterations and combinations of
these, with respective interpretations of what is implied by neighbouring datasets in each
setting.

4.2. Edge-Level Differential Privacy. There exist several approaches that allow to
release graph statistics with edge-level DP guarantees, including sub-graph counts [29],
spanning tree estimation [22], degree distributions [41, 23] and graph cuts [28]. Those
settings set a focus on privatising the relationships between nodes. This can be applied
to social network graphs [23, 24] or location graphs [69], where the edges contain sensitive
information, but the data represented in the nodes of the graph are assumed to be publicly
known or non-sensitive.

4.3. Node-Level Differential Privacy. Node-level differential privacy is a strictly stronger
guarantee than edge-level differential privacy [33]. This is of particular importance in
scenarios where graphs are very sparse, and thus, the removal of a single node can alter the
graph structure severely. For instance, the number of triangles in a graph with n nodes can
increase by

(
n
2

)
when inserting a single additional node. Consequently, these functions tend

to have high sensitivity [44], resulting in an unnecessarily large noise magnitude. Bounded-
degree graphs (graphs where each node has an upper limit of edges and the degree of each
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node is therefore bounded) can assist in lowering the sensitivity. Here, the removal of a
single node results in an upper-bounded change in edges which typically leads to a reduced
impact on the output of the algorithm. When calculating the number of triangles in a graph,
for instance, maximum change of a D-bounded-degree graph is

(
D
2

)
which is strictly smaller

than
(
n
2

)
if D < n.

Settings that can benefit most from this formulations of DP are those that put an
emphasis on the data within the node itself yet additionally privatise the connections
between the nodes include studies on social networks [46, 31], degree histogram distribution
[62, 58, 49], and recommendation systems [26].

4.4. Graph-Level Differential Privacy. So far, graph-level DP has not been explored in
great detail, neither in the context of graph analytics nor in GNNs. Task et al. [41] name
this notion of privacy partition privacy and show its application to graph analytics of social
networks. Shen et al. [34] investigate the mining of frequent graph patterns in multi-graph
datasets and apply the mechanism of graph-level DP to their algorithm. They use Markov
Chain Monte Carlo (MCMC) random walks to discover frequently appearing sub-graphs in
the graph dataset and infer graph statistics under graph-level DP.

In the context of GNN training, graph-level DP can be applied in learning settings
that investigate graph classification tasks, e.g. drug discovery or molecule classification [70],
discovering disease-specific biomarkers of brain connectivity [71, 72], or shape analysis [73].
This way, privacy guarantees can be given to the individuals, whose sensitive information
is contained in those multi-graph datasets. For instance, in the setting of drug discovery,
a group of pharmaceutical companies can collaborate on a graph classification task, while
bounding the information that can be inferred about their individual molecules, which
represent the private data in this context. Mueller et al. [68] apply graph-level DP for
classification tasks on several sensitive datasets, implementing the concept of graph-level
DP on GNNs and showing potential applications.

4.5. Further Definitions of DP on Graphs. We consider node-, edge-, and graph-level
DP to be the three main categories of DP guarantees on graph-structured data. However,
there exist additional notions of DP on that have not yet found a widespread application
and are mostly derived from the notions formalised above. Here, we provide further details
about those additional definitions and variations of applied notions of DP.

4.5.1. k-Edge Differential Privacy. One such formulation is k-edge differential privacy
introduced by Hay et al. [23]. It defines a stricter notion of edge-level DP, where two graphs
G = {V ,E} and G ′ = {V ′,E ′} are neighbours if |V ⊕V ′|+ |E⊕E′| ≤ k. Hereby, ⊕ denotes
the symmetric difference. If k = 1, the definition recovers edge-level DP. However, if k = |V |
k-edge-level DP is a stricter definition than node-level DP, as the set of neighbouring graphs
in the definition of node-level DP is a subset of the neighbouring graphs under k-edge-level
DP. For nodes with a degree smaller then k, k-edge-level DP provides an equivalent protection
as node-level DP. Nodes with a degree ≥ k face more exposure, since they have more edges.
However, one can argue that those high degree nodes have a higher impact on the general
graph structure and it might therefore be necessary to expose them to larger privacy risks to
allow analysts to accurately measure graph statistics. The authors experimentally evaluate
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their notion of k-edge-differential privacy on social network data from Flickr, LiveJournal,
Orkut, and YouTube.

4.5.2. Out-Link Differential Privacy. Another definition of DP on graphs was introduced
by Task et al. [41] and is termed out-link differential privacy. In this context directed
graphs are considered, where it is possible to distinguish between incoming and outgoing
edges of nodes. Under this notion, two datasets are considered to be neighbouring if all
out-links (outgoing edges) of an arbitrary node are added or removed. Formally, two graphs
G = {V ,E} and G ′ = {V ′,E ′} are neighbours, if V = V ′ and E ′ = E − {(v1, v2)|v1 = x}
for an x ∈ V . (v1, v2) hereby defines an edge going from node v1 to node v2.

Out-link DP is strictly weaker then node-level DP, but in many applications comparable
to edge-level DP. Under this notion of DP, an attacker would not be able to determine
whether a person x contributed their data to the construction of the graph and participants
in the graph can hide their out-links. In the setting of a social network, for instance, a
person x can deny friendships. Others can still claim to be friends with person x, but the
latter can deny that those connections are mutual (i.e. that person x has out-going links to
adjacent nodes). The authors argue that out-link privacy simplifies sensitivity computation
and reduces noise addition requirements, enabling queries that would be infeasible under
previous DP definitions.

Similar to k-edge-level DP, out-link DP can also be extended to k-out-link privacy.
In this case, neighbouring datasets are considered, that differ in k out-links compared to
the original dataset. When considering 2-out-link privacy, for example, two nodes can
simultaneously deny all their out-links. This would also enable to protect a complete mutual
edge, resulting in edge-level DP in addition to out-link DP.

4.5.3. Zero-Knowledge Privacy. Gehrke et al. [25] introduce a stricter formulation of node-
level DP, namely zero-knowledge privacy on graphs, which authors argue is particularly
desirable in social network analysis. It relies on a notion similar to the one of cryptographic
zero-knowledge proofs [74], which entails that a protocol participant obtains a computation
result with “zero additional knowledge” about the data used to perform this computation. A
privacy mechanism M is (Agg, ε)-zero-knowledge private if there exists a simulator S and
an agg from the family of algorithms Agg such that for all neighbouring datasets D1 and
D2 the following holds: M(D1) ≈ε S(agg(D2)) [25]. Authors in [25] apply this definition
to ensure that a mechanism does not release additional information apart from “aggregate
information” which is considered acceptable to release to ensure usability.

4.5.4. Relationship Differential Privacy. Imola et al. [60] introduce a notion called relation-
ship DP, a definition falling under local DP. Here, one edge in a graph is masked during the
entire learning process. In a setting of social network analysis, relationship DP assumes that
each user only knows their own connections (i.e. friends), requiring users to have a higher
degree of “trust” when interacting with their immediate neighbours. Given two users vi and
vj that share a link in the social network, under relationship-DP a user vi has to trust its
adjacent user vj not to leak information about their shared connection. Intuitively, edge-level
LDP considers the edge from user vi to user vj and the edge from user vj to user vi to be two
separate “secrets”, whereas relationship DP assumes that the two edges represent the same
“secret”. (More details about edge-level LDP can be found in Section 4.6.) Therefore, the
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trust model of relationship DP is a stronger one than the one of edge-level LDP, which does
not hold any assumptions about what other users do, but weaker than the one of centralised
edge-level DP, where all edges are held by a centralised party. If a randomised algorithm M
provides ε-edge-level LDP, then M provides 2ε-relationship DP, given that an edge (vi, vj)
affects two elements in the adjacency matrix of the graph and the property of group privacy
[16].

The authors apply this formulation of privacy to algorithms for sub-graph, k-star, and
triangle counting, which can be used to analyse connection patterns in graphs.

4.5.5. Edge-Weight Privacy. For shortest path or distance queries on graphs, edge-level and
node-level DP are not well suited, since both queries usually return a set of edges, which
violates both edge-level and node-level DP. Therefore, Sealfon [75] introduced a different
notion of privacy on graphs: edge-weight privacy. This notion of privacy is applicable if the
edge weights of a graph contain private data, whereas the graph structure itself is publicly
available and does not need to be protected. An example would be traffic data in a known
street system.

4.5.6. Node Attribute Privacy. Chen et al. [54] define another notion of privacy for attributed
graphs. An attributed graph G = (V,E,X) is the set of vertices V , edges E and node
attributes X. In this definition of privacy, two graphs are defined to be neighbouring if they
differ in one edge or in the attribute vector of one node. So in this scenario, the presence of
nodes is assumed to be non-private, whereas the connections (edges) between the nodes as
well as the attributes that define the nodes contain private information. This definition can
for example be useful in social networks, where the existence of a profile can be publicly
known but friendships and personal attributes (stored in the profiles/nodes) are private.

4.6. Local DP on Graphs. There exist several works that target the preservation of local
differential privacy (LDP) on graph-structured data. The advantage of local DP [76] in
comparison to central DP is that no trusted third party is required. LDP can and has been
applied to both, classical graph analytics and graph neural networks. Qin et al. [46] define
edge-level and node-level LDP in the context of neighbour lists. A neighbour list of a vertex
vi in a directed graph with n vertices is defined to be an n-dimensional bit vector (b1, . . . , bn),
where bi = 1, i ∈ [1;n], if and only if there exists an edge (vi, vj), going from vi to vj , in the
graph, otherwise bi = 0. Edge-level LDP is then defined for two neighbour lists that differ
in exactly one bit, whereas node-level LDP is defined for any two neighbour lists.

4.6.1. Locally private graph analytics. Examples for LDP in graph analytics tasks include
Zhang et al. [57], who perform control-flow graph coverage analysis under node-level LDP
and Imola et al. [60], who apply LDP to sub-graph counting, k-star and triangle counts
while preserving edge-level LDP.
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4.6.2. Locally private GNNs. LDP can also be applied to GNNs, where settings such as
decentralised social networks can benefit from this property, as shown by Sajadmanesh and
Gatica-Perez [7]. They introduce a privacy-preserving architecture-agnostic GNN algorithm,
which preserves private node features under LDP. Their architecture includes an LDP
encoder and an unbiased rectifier, which functions as the communicator between the server
and the graph. This algorithm can be applied in a setting where either the node features or
the labels (or in certain cases both) are to be kept private regardless of the GNN architecture.
Authors use a so-called multi-bit mechanism which allows the nodes to perturb their features
before passing them to the server. The server then processes this noisy data through the
first convolutional layer. GNNs aggregate the node features before passing them through
the activation function, which can be used as a denoising mechanism to average out the
noise that was injected into the node features in the first place. The authors employ a
generalised randomised response mechanism [77] to preserve privacy of node labels. However,
they explicitly do not preserve node-level or edge-level DP but protect the privacy of node
features and labels. This leaves the graph structure itself unprotected, which remains an
open challenge in this context.

4.7. DP for Graph Neural Networks. While the notion of DP on traditional graph
analytics and statistics applications (particularly for private data release) is well established,
there exist significantly fewer studies on differentially private GNN training. This can be
attributed to multiple factors, one of them being the number of different GNN machine
learning settings (e.g. single- and multi-graph settings). This renders the identification of a
standardised method for differentially private GNN training significantly more challenging.
Furthermore, GNN learning is not yet a fully established area of research, leaving a number
of learning contexts unexplored. In this section we introduce two methods that have been
used to achieve differentially private training on GNNs.

4.7.1. DP-SGD Training of GNNs. One of the most common methods to perform differen-
tially private training in (non-graph) machine learning is differentially private stochastic
gradient descent (DP-SGD) [78]. Here, a gradient descent step is privatised through bound-
ing the gradient L2-norm (clipping) and through the addition of calibrated noise, such
that the output of the gradient calculation over two neighbouring datasets can –with high
probability– not be well distinguished. This concept is not limited to SGD and can be applied
to other first-order optimisation techniques, e.g. Adam. In standard machine learning, the
clipping in DP-SGD is applied to the gradient of each individual data point to minimise the
amount of noise that has to be added to the gradients. This method, naturally befitting
structured databases with well-defined notions of what an “individual” gradient entails, does
not seamlessly extend to graph machine learning in all cases. For graph classification tasks,
for instance, each graph can be seen as an individual entity in a multi-graph dataset and,
therefore, graph-level DP can be seen as a natural formulation in these learning settings.
Here the standard procedure of DP-SGD can be transferred from database queries to graph
learning tasks, matching database entries (rows) with individual graphs. This has been
shown in [68]. Even though graph-level DP has not been deeply explored in research so far,
we believe this to be an interesting and promising research are with multiple application
areas, for example in medical settings with population graphs or brain networks (see Sections
5.2 and 5.3).
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However, this approach is not directly transferable to GNNs in a single-graph setting,
because the individual data points in a graph (where its nodes or edges) cannot be separated
without breaking up the graph structure, which is essential to the message passing mechanism
of GNNs. This not only precludes a notion of “per-sample” gradients, but also privacy
amplification by sub-sampling, which states that a DP mechanism run on a random sub-
sample of a population results in tighter privacy guarantees than when applied to the whole
population [79]. To counter this effect, Igamberdiev et al. [5] implement a graph splitting
method, which partitions the graph into smaller batches to approximate sub-sampling
amplification and apply DP mechanisms to graph neural networks. Daigavane et al. [67]
recently introduced an extension to DP-SGD to enable the training of node-differentially
private multi-layer GNNs, whereas previous works were constrained to single-layer GNNs.
They implement (sub-sampled) DP-SGD by sampling the local neighbourhood of a node and
by generalising the approach of privacy amplification by sub-sampling through the analysis
of affected per-sample gradient terms in a batch. In general however, no universally valid
method to assign one of the DP formulations discussed above to the application of DP-SGD
in GNNs on single-graph datasets has been proposed so far. Sajadmanesh and Gatica-Perez
[7] address this problem by applying local DP on the node features, without protecting the
graph structure. Given the so far limited amount of work in this area, we believe that the
utilisation of DP-SGD in GNNs to represent an important open research question which
needs to be explored in more detail.

4.7.2. Private Aggregation of Teacher Ensembles. Differentially private stochastic gradient
descent is one of the most common methods to offer DP guarantees in machine learning.
However, there are also alternative methods of preserving DP in machine learning, one being
private aggregation of teacher ensembles (PATE), introduced by Papernot et al. [80]. PATE
and its variants (e.g. [81, 82, 83, 84]) leverage an ensemble (a collection) of so-called teacher
models that are trained on disjoint datasets containing sensitive data. These models are not
published but instead used as teacher models for a separate student model. The student
model cannot access any single teacher model nor the underlying data. It instead relies on a
noisy voting algorithm performed across all teacher models to make a prediction [80]. One
notable limitation of PATE is the reliance on a publicly available unlabelled dataset that is
utilised by the teacher model. In general, this is a rather strong assumption, particularly in
contexts relying on scarce, private datasets, such as medical data, limiting how generally
it can be adopted as the means of differentially private training. In general, PATE should
be considered a private student-teacher data labeling mechanism rather than necessarily
representing a method for private collaborative training.

This shortcomings of PATE techniques are compounded by a low utility of PATE in
graph settings as well as the limited generality beyond graph classification settings, as the
physical separation of datasets in graph learning destroys structural information, significantly
reducing the utility of the trained model [6]. Therefore, Olatunji et al. [6] recently introduced
a framework named PrivGNN, which also leverages a student-teacher training paradigm for
GNNs. The authors generate pseudolabels for public query nodes using specialised GNN
models while adding noise to the predictions. The method requires two datasets: labeled
private data for the teacher model and unlabeled public data for the student model. In the
end, the public student model is released. It is trained using the noisy pseudo-labels and is
differentially private based on the post-processing property of DP. The authors therefore
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implement a method for private release of trained graph neural networks and show their
results on three node classification datasets.

5. Application Areas for DP on Graphs

In this section we discuss how our findings from above can be and have previously been
applied to graph learning tasks in order to establish which formulations of DP are most
suitable for each context, and give insights into a selection of potential application areas for
DP on graph-structured data. Lastly, we provide an outlook on promising future research in
those settings. We chose three exemplary learning contexts to allow us to cover all commonly
used formulations of DP on graphs (i.e. node-level, edge-level and graph-level DP). Overall,
more contexts relying on sensitive (or proprietary) data can benefit from a formalisation
of DP, such as drug discovery [85] or location-based learning [86]. We leave an in-depth
investigation of privacy in these settings as future work.

5.1. Social Networks. One of the more well-researched areas of private learning on graphs
concerns social graphs [25, 27, 31, 41, 46], where the personally-identifying information is
contained in the nodes of the graph and/or in the edges, defining the interactions between
individuals, that could potentially allow to uniquely identify them (e.g. when spatio-temporal
data is published [87]). As a result, there exist two concievable routes to perform private
learning on such data: edge-level DP to protect the connections to other individuals in
the graph and prevent unique identification of users like in [26, 18, 27] and node-level
DP to protect the data of each individual itself (as well as the outgoing edges) like in
[25, 30, 31, 46, 55, 56].

Numerous works have previously been employed to allow private release of social graphs
or their associated statistics [30, 41, 49]. Sajadmanesh et al. [7] utilise locally differentially
private GNNs in the context of social networks. The focus on social network data for the
utilisation of DP in GNNs shows the high importance of protecting privacy in these settings,
as well as the associated risks inherent to working with such datasets.

5.2. Population Graphs. The large amount of medical data collected by multiple medical
institutions as well as personally through wearable devices, for instance, lead to mounting
challenges of structuring these multi-modal datasets. One approach of handling this data
heterogeneity is the construction of population graphs, which have found widespread adoption
in medical research [88, 89, 90]. These data structures allow to encapsulate the information
about patients across multiple departments and time periods (e.g. spatio-temporal patient
data [91]), leveraging much more relevant information and leading to better predictions.
One such scenario could involve representing each patient as a node and the whole patient
population/cohort by a graph comprising the individuals, as described e.g. in [92, 93].
Connections between patients can, for instance, be based on their similarity (like in [94]). An
advantage of creating such patient population graphs for the application of DP mechanisms
is that the graph can be explicitly degree-bounded, limiting the impact of individual nodes
on the graph structure.

Alternatively, each node can be patient-specific data about a single individual collected
at different times by various specialists. Either of these contexts would benefit from the
utilisation of node-level DP in order to quantify and limit the amount of information revealed
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when node-level data is processed or released, as they are relying on extremely sensitive
data contained in each node.

5.3. Brain Networks. Here, we give an example for a graph classification problem on
multi-graph datasets. In such setting it is not the information contained in a single node or
inter-node connections that need to be kept private, but rather the information contained in
a graph as a whole. One prime example of such dataset that contains sensitive information
on a whole-graph level, rather than on the level of its individual constituents is a brain
network graph [95]. Such data is used extensively in neuroimaging problems [96, 97, 98].
However, similarly to most medical datasets, due to the difficulty of obtaining such data
(both because of the complexity of the task as well as of the privacy concerns) it is essential
that the learning task is augmented with a suitable privacy-preservation mechanisms. In
the case of brain network graphs, information about the value of individual voxels, or single
connections to other voxels in the brain network are not necessarily personally identifying.
Nonetheless, a collection of such interconnected points is considered to be a particularly
sensitive medical dataset and it thus needs to be protected. For this setting, graph-level DP
is a particularly suitable technique for data release. To date, there only exists a small number
of such implementations of differentially private multi-graph learning and we envision that
such formulation can gain significance as part of the future work in the area. We recall
that DP deep learning on brain graphs (with learning tasks similar to [99] for instance) can
be implemented through a straightforward utilisation of DP-SGD, similarly to Euclidean
contexts.

6. Challenges and Outlook

In this section, we discuss a number of challenges associated with differentially private
graph analytics, some of which can be attributed to the inter-connected nature of graphs,
while others are inherent to DP itself. Note that we also discuss a number of potential
complications arising in DP GNN training as well as in DP graph analytics and data release.

6.1. Privacy Accounting. Typically, in differentially private machine learning settings
privacy loss can be bounded per individual data point (i.e. per image or table record), thus
considering data points independently from each other, simplifying privacy loss accounting.
However, due to the intrinsic inter-dependency of nodes in a graph, independence cannot be
guaranteed and therefore quantifying the contribution of each individual becomes non-trivial.
Thus, there arises a need for concrete definitions which would allow the data owner(s) to
determine the exact formulation of differentially private training that is applicable in the
specific application areas. As noted by [19], the guarantees given by edge-level DP and
node-level DP have different implications, which are based on the exact features data owners
wish to protect.

DP is inherently compositional, that is, DP algorithms composed with each-other yet
again yield a DP algorithm [16]. However, the heterogeneous composition of different
formulations of DP in a graph setting (e.g. simultaneously accounting for learning the
adjacency matrix of a graph and for node classification) has not been studied previously,
and we consider it a promising avenue for future research.

Furthermore, the reliance on random sampling of sub-populations from the dataset
(privacy amplification by sub-sampling) can result in not only a better performance, but
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additionally much tighter privacy bounds, providing stronger privacy guarantees for the
participants [79]. This approach has been applied by [67], e.g., where random sub-graphs
are sampled during the private training of GNNs.

Another focus of DP is followed by techniques aiming to account for individual privacy
loss [100]. Here, a “bespoke” privacy guarantee is given to each individual participating
in a computation, typically combined with a method to automatically terminate their
participation when their individual privacy budget is exhausted. As the process of deciding
to continue or halt a computation by considering the currently spent privacy budget is an
instance of fully adaptive composition, additional mechanisms are introduced: a privacy
odometer (which tracks the privacy expenditure in the process of computation, without
having to specify a privacy budget in advance) and the privacy filter (which stops the
computation once the privacy budget is exceeded). The combination of these tools allows
for a finer-grained control of the information that can be learned from each individual data
point and potentially higher utility. The ability to compute individual privacy loss can allow
a selective removal of individual nodes (and their corresponding edges), resulting in a much
finer control of individual privacy expenditure. This method can permit tighter privacy
bounding in settings where amplification by sub-sampling is not possible. However, it is
also limited in applicability whenever the notion of a single individual within the graph is
ill-defined.

6.2. Privacy-Utility Trade-Offs. As briefly discussed in section 4, DP in general adversely
affects the utility of the model or of the results derived from a differentially private graph
analytics. Utility if often measured by the accuracy of a query or with similar evaluation
metrics. Therefore, similar to differentially private machine learning on Euclidean data or
release of statistics derived from the sensitive data, there persists an issue of privacy-utility
trade-off. This implies that the more “private” the result of the computation is (e.g. the
lower the value of epsilon is), the less useful information can be inferred from that result not
just by the adversary, but also by the end user of the trained model, potentially hindering
the scientific progress based on the insights that could have otherwise been obtained from the
study. This is further exacerbated by the inter-connected nature of the graphs, as it is not
possible to guarantee independence of individual nodes, as we discussed above. Therefore,
operations that limit the amount of information that can be derived from these nodes (e.g.
through DP statistics release) affect not just the individuals, but also additional nodes
connected to them. Thus, the utility loss can become more problematic when compared to
datasets with independent data points and inflict additional penalties on the results of the
computation. We note that this discussion is relevant to both graph datasets and GNNs, as
the nature of GNN learning can only make full use of the data if these properties of graphs
are preserved. Relying on GNN models pre-trained on publicly available data (similar to
[101, 102, 103]) could severely reduce the negative impact that DP has on utility, when
used in transfer learning contexts. Here a model is trained on public data and subsequently
fine-tuned on private data where higher privacy can be achieved, while having better utility.
This approach was demonstrated in [78] and more recently in [104] for non-graph machine
learning tasks, demonstrating that –whereas training to the same utility from scratch–
requires about one order of magnitude more data, results comparable to non-private training
can easily be achieved by transfer learning.
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6.3. Computational Performance. Beyond the aforementioned trade-offs in model gen-
eralisation performance, the utilisation of differential privacy is also associated with a
computational performance overhead when employed in deep learning settings. This can
be attributed to a requirement for per-sample gradient calculation, imposing a significant
burden on model performance at train time. Moreover, due to noise addition and gradient
clipping, models typically converge more slowly, thus prolonging the required training time
[105].

6.4. Interpretability of DP in Graphs. DP can often be difficult to reason over from
the perspectives of fairness [106] and explainability [107]. Moreover, its correct application
is complicated by the introduction of unintuitive parameters like ε or δ [108, 109], or by the
requirement to understand additional DP definitions like node, edge or graph-level DP. Thus,
besides systems which automate sensitivity calculations and the application of DP to generic
machine learning workflows [110], works similar to [111] are required, which investigate user
expectations and interpretations of DP, paving the way for an improved user experience for
practitioners.

Interpretability of GNNs in general is a highly discussed task in literature. The authors
in [68] use an explainability method called GNNExplainer [112] to visualise and quantify
the similarity between graph neural networks trained with and without DP-SGD to evaluate
whether the privately trained network considers the same edges in the graph as important
as the network trained with standard ML. We see potential in methods like these to get a
better insight into differenitially private GNNs and increase their interpretability.

6.5. Synthetic Graph Generation. One final graph learning context that still remains
an open challenge is private synthetic graph generation. The ability to generate synthetic
samples allows one to augment existing datasets with additional data points in a privacy-
neutral way, resulting in more diverse data representations. This, in turn, improves utility
of the model trained on this data as well as empirically reduces the effectiveness of inference
attacks [113]. There exist prior works in the area [66, 35, 24, 46, 29] that allow to generate
graph-structured data in a private manner, however, authors outline a number of limitations.
Firstly, the effect of privacy-utility trade-off is much more profound in graph generation
tasks, forcing the model owner to either lower the privacy guarantees or to generate graphs of
much lower utility. Secondly, the number of DP formulations that are applicable to synthetic
graph generation is rather limited: To-date, stronger privacy formulations like node-level
DP are not yet widespread in the setting of private synthetic graph generation. Chen et al.
[54], e.g., explore synthetic graph generation of social graphs under edge-level DP. Gupta
et al. [28] introduce a method for synthetic graph generation specifically tailored to graph
cuts. Additionally, graph generation has so far been limited to simple benchmark datasets
and has not been widely investigated under the lens of the privacy-utility trade-off in more
challenging contexts. Qin et al. [46], e.g., therefore resort to LDP to generate synthetic
decentralized social graphs. Since this particular application of private graph-based learning
is relatively new, we identify this to be a promising area of future work in the graph domain.
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7. Conclusion

In this work, we explore and systematise applications of differential privacy in graph analytics
and on graph neural networks. We discovered 51 works that perform differentially private data
processing of graph structures, which we classify by the DP formulations employed in each
work and summarise our findings in Table 1. We identify three main DP formulations with
regards to the attributes of graphs considered to be sensitive: (1) edge-level, (2) node-level,
and (3) graph-level differential privacy. We additionally discuss machine learning tasks (in
particular those relying on GNNs) that require utilisation of sensitive graph-structured data
and could hence benefit from a formalisation of differentially private learning. Subsequently,
we discuss the limitations of DP when applied to such learning contexts, some of which are
inherent to the choice of DP learning setting and some attributable to the inter-connected
nature of graph structures specifically. We conclude our discussion with an analysis of graph
learning tasks on sensitive data, summarise which DP formulations are suitable for different
learning problems and identify promising areas of future research. We hope that our work
offers practitioners a helpful overview of the current state of DP employed in graph-based
learning, and will stimulate both foundational and application-focused future research.
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Abstract—Graph Neural Networks (GNNs) have established themselves as state-of-the-art for many machine learning applications such
as the analysis of social and medical networks. Several among these datasets contain privacy-sensitive data. Machine learning with
differential privacy is a promising technique to allow deriving insight from sensitive data while offering formal guarantees of privacy
protection. However, the differentially private training of GNNs has so far remained under-explored due to the challenges presented by the
intrinsic structural connectivity of graphs. In this work, we introduce a framework for differential private graph-level classification. Our
method is applicable to graph deep learning on multi-graph datasets and relies on differentially private stochastic gradient descent
(DP-SGD). We show results on a variety of datasets and evaluate the impact of different GNN architectures and training hyperparameters
on model performance for differentially private graph classification, as well as the scalability of the method on a large medical dataset.
Our experiments show that DP-SGD can be applied to graph classification tasks with reasonable utility losses. Furthermore, we apply
explainability techniques to assess whether similar representations are learned in the private and non-private settings. Our results can
also function as robust baselines for future work in this area.

✦

1 INTRODUCTION

The introduction of geometric deep learning, and more specif-
ically Graph Neural Networks (GNNs) [1], [2], has enabled
training ML models on data in non-Euclidean spaces with
state-of-the-art performance in many applications. GNNs
are able to directly leverage the graph structure of the
data and propagate the information stored in nodes of the
graph along the edges connecting nodes with each other.
Thus, the information flow through the network respects the
underlying topology of the graph.

In general, GNNs have been employed in three types
of problem areas: node classification, edge prediction, and
graph classification. In this work, we focus on graph clas-
sification tasks. In the setting of graph classification (also
termed graph property prediction), the dataset consists of
multiple independent graphs and a GNN is trained to
predict one label for each individual graph, predicting a
specific property of the whole graph. Application areas of
geometric deep learning range from social networks [3] to
medical applications [4], [5], drug discovery or molecule
classification [6], spatial biological networks [7] and shape
analysis [8]. Drawing meaningful insights in many of these
application areas fundamentally relies upon the utilisation
of privacy-sensitive, often scarce, training data belonging to
individuals. For example when using functional magnetic
resonance imaging (fMRI) for identifying disease-specific
biomarkers of brain connectivity like in [4] and [9], the graph
data encodes sensitive, patient-specific medical data.

The source code is available at https://github.com/tamaramueller/DP-GNNs.
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Fig. 1: Overview of our differentially private training method
for graph classification on a fingerprint dataset. In step (1)
the fingerprint images are converted into graphs, which are
then in step (2) passed to a GNN model, which is trained
with differentially private stochastic gradient descent (DP-
SGD). The individual gradients are clipped, then averaged
and Gaussian noise is added.

The reliance on sensitive data in machine learning holds
potential for misuse and can therefore be associated with
the risks to individual participants’ privacy. Various ma-
chine learning contexts have been shown vulnerable to
be exploited by malicious actors, resulting in a leakage
of private attributes [10], of membership information [11]
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or even in full dataset reconstruction [12], [13]. In graph
machine learning, the data and the models trained on that
data are by design more vulnerable to adversarial attacks
targeting privacy of the data owners. This is attributed
to the fact that graphs incorporate additional information
that is absent from typical Euclidean training contexts,
such as the relational information about the nodes in the
graph. This auxiliary, highly descriptive information can
be leveraged by an adversary to assist them in sensitive
information extraction, which has been demonstrated in a
number of prior works [14], [15], [16]. Such attacks can also
be facilitated by the choice of learning context in cases the
model is trained collaboratively. For instance, transductive
collaborative learning renders attacks aimed at disclosing the
membership of individual training points trivial [15]. Of note,
such additional information embedded in graphs is often
essential for effective GNN training and is, thus, non-trivial
to privatise or remove, as it would be highly detrimental to
the performance of the model.

It is thus apparent that the implementation of privacy-
enhancing techniques is required to facilitate the training
of models of sensitive graph-structured data, but such
techniques must also respect the particularities of graph
machine learning. Our work utilises a formal method of
privacy preservation termed differential privacy (DP) [17]
which, when applied to machine learning training, is able
to objectively quantify the privacy loss for individual input
data points. DP methods have been successfully applied to
numerous problems such as medical image analysis [18],
[19], natural language processing (NLP) [20], reinforcement
learning [21] or generative models [22] and have shown
promising results. DP guarantees that the information gain
from observing the output of an algorithm trained on
datasets differing in one individual is (sometimes with high
probability), bounded by a (typically small) constant.

In this work, motivated by the above-mentioned require-
ments for objective privacy guarantees in machine learning
tasks involving graph-structured data, we study the prob-
lem of efficient differentially private graph neural network
training for graph classification tasks. To the best of our
knowledge, ours is the first work that demonstrates the ap-
plication of differential privacy to whole graph classification
tasks. We investigate and evaluate privacy-utility trade-offs
on several datasets and compare the learned representations
between DP and non-DP trained models using explianability
methods for GNNs. This comparison can offer insights into
differences regarding model parameters, which are consid-
ered as important for the decision making, under different
training conditions. In our work, we extend the utilisation
of differentially private stochastic gradient descent (DP-
SGD) [23], a technique designed for the training of regular
neural networks. Due to its compatibility with existent deep
learning workflows, it can be seamlessly adapted to GNN
use cases and therefore offers high generalisability to new
model architectures and problem spaces. We demonstrate
that DP-SGD can be applied to graph learning and evaluate
our results with respect to privacy budgets and network
performance on five different datasets. Combined with our
investigation of the explainability technique GNNExplainer
to determine differences between DP and non-DP models,
this work can serve as a baseline for future work in this area.

Our contributions can be summarised as follows:

1) We formally extend the application of DP-SGD to
graph classification tasks with GNNs;

2) To demonstrate its utility, we apply our method
to commonly utilised graph neural networks on a
number of benchmark and real-world datasets and
investigate the effects of DP training on model utility
and privacy guarantees;

3) To assess how similar the representations between
privately and non-privately trained models are, we
apply GNNExplainer, a state-of-the-art explainabil-
ity technique tailored to graph neural networks.

2 RELATED WORK

Specific facets of differentially private graph analysis have
been addressed in prior work: Since the introduction of
differentially private computation on graph data in 2007
by Nissim et al. [24], node-level and edge-level DP have been
established as the two DP formalisms on graphs [25]. As
discussed in the Theory section below, the definition of DP
relies on the notion of adjacent datasets, that is, datasets
differing in the data of one individual. In the setting of
tabular data for example, two datasets are adjacent if they
differ in one row. In node-level DP, two graph datasets are
interpreted as adjacent if one node and its incident edges is
inserted or removed. For edge-level DP, on the other hand,
two datasets are regarded as adjacent if they differ in exactly
one edge. As real-world graphs are prevalently sparse, the
removal of a single node can severely alter the graph’s
structure [26], whereas removal of an edge typically has
a less severe impact on the resulting graph structure.

Implementations of the aforementioned techniques have
been presented in the context of graph neural network
training. For instance, Igamberdiev et al. [27] explore the
application of DP on Graph Convolutional Networks (GCNs)
[28] for node classification. They evaluate privacy guarantees
for text classification on benchmark datasets and achieve
rigorous privacy guarantees while maintaining high model
performance. Daigavan et al. [29] formalise the notion of
node-level DP on one-layer GNNs with an extension of
privacy amplification by sampling to GNNs and evaluate
their method on several benchmark datasets in node classi-
fication tasks. Different approaches to the here introduced
application of differential privacy have been explored in the
context of federated learning on graphs and locally private
graph neural network training. Zhou et al. [30], for example,
introduce a vertically federated GNN for node classification
tasks and Sajadmanesh et al. [31] introduce a framework to
train locally private GNNs. These works stand in contrast to
the notion of graph-level DP, which ensures data privacy of
a graph as a whole.

DP is one of the most frequently used methods in deep
learning that offer privacy guarantees. Furthermore, it is the
only approach that gives formal guarantees for privacy as
well as a quantification of the guaranteed privacy. However,
there exist other empirical methods next to differential
privacy that allow to privatise sensitive data of individuals,
which have also been applied to GNN training in node
classification and edge prediction tasks. Liao et al. [32]
introduce a method to filter specific node feature attributes
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using adversarial training of GNNs and therefore achieve
a strong defence against inference attacks. Their method is
in parallel to our work, since they do not ensure differential
privacy guarantees for each graph as a whole, but instead
address an information obfuscation problem where the goal
of an adversary is to infer specific node attributes in a graph.
Other works like the privacy-preserving network embedding
introduced by Han et al. [33] and the privacy-preserving
GCN model by Hu et al. [34] also do not give differential
privacy guarantees. They show other methods for protecting
private links in graph-structured data [33] and user-specific
sensitive node features [34], respectively.

However, to our knowledge, the application of DP
algorithms specifically to graph property prediction has
neither been formalised nor evaluated.

3 THEORETICAL PRELIMINARIES

In this section, we introduce and formalise the theory to
train graph neural networks for graph property prediction
using the concept of differentially private stochastic gradient
descent (DP-SGD).

3.1 GNNs for Graph Property Prediction
The objective of graph classification (also known as graph
property prediction) is to predict a specific property of
interest for an entire graph G. In our examples, G represents
an unweighted and undirected graph with G = (V, E),
where V is a set of nodes and E is a set of edges. The
nodes V are represented by a vector or a matrix of node
features. Graph classification aims to predict a property
for each graph Gi, i ∈ [1, · · · , N ] in a multi-graph dataset
D = {G1,G2, . . . ,GN} with N graphs. A GNN used for
graph property prediction needs to map the embedded node
features into a unified representation of the whole graph
using a readout layer (e.g. global max pooling). This single
unified embedded graph representation allows to learn a
prediction for the whole graph.

3.2 Differential Privacy
Differential Privacy (DP) [17] is a theoretical framework and
collection of techniques aimed at enabling analysts to draw
conclusions from datasets while safeguarding individual
privacy. Intuitively, an algorithm preserves DP if its outputs
are approximately invariant to the inclusion or exclusion of
a single individual in the dataset over which the algorithm is
executed. The DP guarantee is given in terms of probability
mass/density of the algorithm’s outputs.

In the current study, we assume that an analyst A is
entrusted with a multi-graph database D of cardinality N
containing privacy-sensitive graphs Gi ∈ D, i ∈ [1, · · · , N ]
by a group of individuals. We assume that each individual’s
graph is only present in the database once. From D, an
adjacent database D′ of cardinality N ± 1 can be constructed
by adding or removing a single individual’s graph. We
denote adjacency by D ≃ D′. The set (universe) of all adjacent
databases forms a metric space X with associated metric dX ,
in our case, the Hamming metric.

We additionally assume that A executes a query function
f over an element of X . In our study, the application of

f represents a sequential composition of the forward pass,
loss calculation and gradient computation of a graph neural
network for each individual input (training example) to f .
We then define the global L2-sensitivity of f as follows:
Definition 3.1 (Global L2-sensitivity of f ). Let f,X and dX

be defined as above. Additionally, let Y be the metric
space of f ’s outputs with associated metric dY . When Y
is the Euclidean space and dY the L2 metric, we define
the (global) L2-sensitivity ∆ of f as:

∆ := max
D,D′∈X,D≃D′

dY (f(D), f(D′))
dX(D,D′)

. (1)

We remark that the maximum is taken over all adjacent
database pairs in X . Moreover, ∆ describes a Lipschitz
condition on f , implying that ∆ ≡ Kf , where Kf is
the Lipschitz constant of f . This in turn implies that
∆ = sup ∥∇f∥2. In our case, the L2-sensitivity of the loss
function therefore corresponds to the upper bound on its
gradient.

We can now define the Gaussian Mechanism on f :
Definition 3.2 (Gaussian Mechanism). Let f,∆ be defined

as above. The Gaussian mechanism M operates on the
outputs of f , y = f(x), where y ∈ Rn as follows:

M(y) = y + ξ, (2)

where ξ ∼ N (0, σIn), σ is calibrated to ∆, and In is the
identity matrix with n diagonal elements.

When σ is appropriately calibrated to ∆, M preserves (ε, δ)-
DP:
Definition 3.3 ((ε, δ)-DP). M preserves (ε, δ)-DP if, ∀S ⊆

Range(M) and all adjacent databases D,D′ in X :

P(M(D) ∈ S) ≤ eεP(M(D′) ∈ S) + δ. (3)

We remark that the definition is symmetric.

3.3 DP-SGD
Abadi et al. [23] introduced an extension to stochastic
gradient descent (SGD), termed DP-SGD to enable the dif-
ferentially private training of neural networks. Here, at each
training step, the Gaussian Mechanism is used to privatise
the individual gradients of each training example before the
model parameters are updated. However, since the sensitivity
of the loss function in deep neural networks is – in general –
unbounded, the gradient L2-norm of each individual training
example is clipped, that is, projected to an L2-ball of a pre-
defined radius to artificially induce a bounded sensitivity
condition before noise is applied. Tracking the privacy
expenditure over the course of training (privacy accounting)
is enabled through the composition property of DP, stating
that repeated application of DP algorithms over the same
data predictably degrades the privacy guarantees. In our
study, a relaxation of DP termed Rényi DP (RDP) [35] is used
for privacy accounting, due to its favourable compositional
properties. RDP guarantees can be converted to (ε, δ)-DP.

DP-SGD is widely regarded as the gold-standard for pri-
vacy preserving deep learning, as it is generically applicable
to all types of gradient-based optimisation and protects both
features and labels. It can be easily adapted to e.g. regression
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or generative modelling workflows. Other DP methods
are substantially less flexible [23]. Private aggregation of
teacher ensembles (PATE) [36] for example, is only usable for
classification tasks and requires large public datasets, which,
especially in the medical field, cannot be procured in many
cases.

3.4 DP Notions on Graph-Structured Datasets

There exist three major tasks in the context of GNN training:
node classification/regression, edge prediction, and graph
classification/regression. Similar to the existence of multiple
tasks in graph deep learning, there also exist different notions
of DP on graph-structured datasets, that specifically relate
to different notions of adjacent datasets. For node-level DP,
two datasets are interpreted as adjacent, if they vary in one
node and all its adjacent edges [37]. If the notion of adjacent
datasets is based on the inclusion or exclusion of one edge,
this notion of DP is called edge-level DP [38]. Node-level DP is
a strictly stronger privacy guarantee in comparison to edge-
level DP [26]. As real-world graphs are prevalently sparse,
the removal of a single node can severely alter the graph’s
structure [26], whereas removal of an edge typically has a
less severe impact on the resulting graph structure. However,
in case of multi-graph datasets, a third notion of DP can come
into play. Here, two datasets can be defined to be adjacent if
they differ in one graph. The resulting DP-guarantee is then
graph-level DP [39], which we utilise in this work. For more
details we refer to [39].

4 EXPERIMENTS

4.1 Datasets

We evaluate the application of DP-SGD in the context of
graph property prediction tasks on five datasets. We rely on
three publicly available benchmark datasets, a dataset from
the UK Biobank [40], and a synthetic dataset, generated
to provide a reproducible and easy to control proof-of-
concept. The three benchmark datasets tackle the problems
of molecule classification (Molbace), fingerprint classifica-
tion, and Left Bundle Branch Block (LBBB) detection on
electrocardiogram (ECG) data. Table 1 provides an overview
of the datasets and their characteristics and more detailed
information about the datasets can be found in the Appendix.

Dataset Mean num. nodes Num. graphs Num. node features Num. classes

Synthetic 20 1,000 9 2
Fingerprints 7.6 1,900 2 4
Molbace 34 1,513 9 2
ECG 12 1,125 512 2
Organ Meshes 7546.7 151,910 3 5

TABLE 1: Overview of the utilised datasets and their charac-
teristics. We report the mean number of nodes, in case the
dataset contains graphs of varying sizes.

Synthetic Dataset
In order to derive a proof-of-concept of the novel application
of DP-SGD on graph classification tasks, we construct a
synthetic dataset, in which parameters can be manually
controlled to create an easily controllable dataset where high
accuracy can be achieved in a non-private setting and we

can evaluate how DP-SGD training at different strengths
of privacy guarantee impacts utility. We generate 1, 000
individual Erdős-Rényi graphs, equally distributed to two
classes. Each graph consists of twenty nodes which contain
nine features each. The node features are sampled from
a normal distribution with different mean values and the
same standard deviation, corresponding to the label class of
the graph. The edge connection probabilities vary slightly
between the two classes.

Fingerprints Dataset
Fingerprint classification aims to separate images of finger-
prints into the different classes - arch, left, right, and whorl
- from the Galton-Henry classification system [41], [42]. A
large within-class variability and a small separation between
classes makes fingerprint classification a challenging task [43].
We rely on the dataset introduced by Riesen et al. [44] and
provided by TU Datasets [45] to perform differentially private
graph classification on fingerprints. The graphs are extracted
from the images based on directional variance and the
task follows the Galton-Henry classification scheme of five
classes. We merge the five classes into four classes following
the approach described in [44]. Differentially private ML
naturally befits this task, as it allows one to privatise the
utilisation of the uniquely identifying fingerprint data for e.g.
training machine learning models in tasks such as automated
authentication.

Molbace Dataset
To perform molecule classification in a binary graph classifi-
cation setting, we use the benchmark dataset Molbace from
the OGB database [46], where the Molbace dataset is adapted
from MoleculeNet [47]. It consists of 1, 513 graphs, where
each graph represents a molecule. Edges represent molecular
bonds and nodes correspond to the atoms in the molecule.
Each node contains 9 node features and the average number
of nodes per graph is 34. We split the dataset into 1, 210
training graphs, 152 test graphs and 151 validation graphs.
Node features contain atom features; for example the atomic
number, chirality, formal charge, or whether the atom is in a
ring or not. The prediction task of this dataset is to correctly
classify whether the molecule inhibits HIV virus replication
[46]. Such a task is representative of federated learning
workflows with per-site (local) DP application, in which
e.g. several pharmaceutical companies wish to jointly train
a model for molecule property prediction, while wishing to
limit the disclosure of their (possibly proprietary) molecule
structures from third parties.

ECG Dataset
For the task of electrocardiogram (ECG) classification, we use
the publicly available ECG dataset from the China Physiolog-
ical Signal Challenge (CPSC) 2018 challenge dataset [48]. We
formulate a classification task between ECGs showing signs
of a Left Bundle Branch Block and normal ECGs showing
a sinus rhythm. The ECG data consists of twelve ECG
signal channels (leads), recorded at different locations on the
human torso and extremities. Leads affixed to the extremities
constitute signal channels I, II, II, aVR, aVF and aVL. Leads
affixed to the chest are used to derive signal channels V1
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Fig. 2: Graph visualisation of ECG data. We connected the
different signal channels based on the medical location of the
leads as well as prior knowledge. Leads I, II, III, aVF, aVL,
and aVR are located on the extremities and the remaining
leads on the chest.

liver
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Fig. 3: Organ meshes extracted from segmenations of UK
Biobank data [40]. The organs shown in this figure are the
liver (coral), the spleen (purple), the left and right kidneys
(blue) and the pancreas (yellow).

through V6. To construct a graph dataset from the ECG
data, we utilise this medical motivation and divide the ECG
extremity signal channels from the chest signal channels
by fully connecting the extremity and chest subgraphs. In
addition, we utilise prior knowledge about the leads which
are typically used by physicians to delineate LBBB from sinus
rhythm and thus connected channels I, aVR, V5, and V6. The
structure of those graphs is visualised in Figure 2. The dataset
we use contains ECG data of 1, 125 subjects. As ECG signals
are periodic, we sub-sample the signals by only retaining the
first 512 signal points of each channel, leading to 512 node
features in the graphs. The binary classification dataset is
highly imbalanced with 207 subjects showing signs of LBBB
and 918 having normal ECG curves. Evidently, ECG data,
like all medical data is highly sensitive, and thus requires
formal methods of privacy protection.

Organ Meshes Dataset
To investigate the scalability of our method to large sensitive
medical datasets, we perform an organ mesh classification
task on 151, 910 organ surface meshes extracted from 30, 382
subjects from the UK Biobank database [40]. As a first step,
the five organs liver, spleen, left and right kidney, and
pancreas were segmented using the segmentation pipeline
of [49]. Secondly, the organ meshes were extracted from
those segmentations using the marching cubes algorithm
[50] implementation by [51]. Figure 3 shows an example

visualisation of the surface meshes of one subject. Each
organ is represented as an individual graph in the dataset
and the task is to classify which of the five organs is
represented by the surface mesh. Node features contain the
three dimensional coordinates of the organs with respect to
the original magnetic resonance imaging (MRI) scan of the
subject.

4.2 GNN Models for Graph Classification and DP-SGD
Training
Since the adoption of deep learning techniques to graph learn-
ing, most state-of-the-art methods for graph classification
rely on a variant of message passing to aggregate information
across the nodes [52], [53], [54], [55], [56].

For our experiments, we implement a variety of GNN
models to compare performance and evaluate the impact
of DP on different graph learning techniques. We use
GraphSAGE [57], Graph Attention Networks (GATs) [58],
Graph Convolutional Networks (GCNs) [28], and chebyshev
spectral graph convolutions (Cheb) [59]. For each dataset,
we perform hyperparameter searches, leading to different
models for each application. The depth of the GNNs varies
from two to three layers with/without Instance Normal-
isation layers and with/without dropout, depending on
the problem space. We do not use Batch Normalisation
because of its incompatibility with differentially private
training; Batch Normalisation, by taking averages across
the batch during the forward pass, leaks information over
samples in a batch and precludes the computation of per-
sample gradients necessary for DP-SGD. More details about
the model architectures can be found in the supplementary
material.

When training graph classification models with DP-SGD,
we follow the standard procedure of DP-SGD training. Firstly,
a privacy budget is set in terms of ε, then the model is trained
with a specific noise multiplier that defines the amount of
Gaussian noise added to the gradients of the model and
a L2-sensitivity bound. The model can then be trained a
certain number of iterations, until the privacy budget ε is
reached. We then report the scores of the best-performing
model out of the ones trained before the privacy budget is
exhausted. For all differentially private training runs, we
set δ = 1

N , where N is the cardinality of the dataset and
monitor the performance of the algorithm with different
privacy budgets ε. Across all experiments, we utilise the
same model architectures for DP-SGD and SGD training
with the removal of potential dropout layers for DP-SGD
training. In Table 2 we report the mean performance as
well as the standard deviation of five independent runs
for each experiment. We evaluate different scores for each
model: ROC AUC, Accuracy, Sensitivity, Specificity and F1
Score. Hereby sensitivity reports the rate between the true
positives and the sum of the true positives and false negatives.
Specificity is the rate between the true negatives and the sum
of the true negatives and false positives. The ROC AUC
score is the Compute Area Under the Receiver Operating
Characteristic Curve with a micro average for multi-class
datasets. Accuracy is the rate between the true positives and
all samples and the F1 Score reports the harmonic mean of
the precision and recall, also using a micro averaging strategy
for multi-class datasets.
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Fig. 4: Impact of ε on test accuracy on ECG dataset. The
performance increases with larger ε values and looser
privacy guarantees. The top dashed line (blue) indicates
the performance without DP, the lower dashed line (green)
a constant prediction and the solid line in the middle
(orange) the model performance with different ε values:
ε ∈ {1, 2, . . . , 10, 15, 20}.

5 EXPERIMENTAL RESULTS

In this section, we evaluate our results, compare DP-SGD
training with standard SGD training and show the impact
of different privacy budgets on model performances. The
results achieved on the four datasets are summarised in Table
2.

Summary of Results

For all datasets, we observe similar behaviour, namely a
correlation between stronger privacy budgets and dimin-
ished model performance. Although this phenomenon is – in
general – an unavoidable, information-theoretic consequence
of the trade-off between privacy and utility, the individual
models exhibit different behaviour with regards to their
individual tolerances towards the amount of Gaussian noise
added for DP-SGD, as well as the tolerances towards gradient
clipping. For instance, for the synthetic dataset, an ε value of
5 does not lead to accuracy loss, whereas for the Molbace
dataset, a privacy budget of ε = 10 already results in
diminished model accuracy. Interestingly, the performance
of DP-SGD training is overall not substantially influenced
by the choice of GNN architecture (GCN, GAT, GraphSAGE,
or ChebNet). We observe high performance and similar
convergence rates for all architectures, indicating the robust
performance of DP-SGD training. For a comparison of the
training behaviours please see our Figure in the supplemen-
tary material.

For all models, we observe an increased inter-run vari-
ability with stronger privacy guarantees. This behaviour
is reflected in the higher standard deviations reported in
Table 2, and we attribute this phenomenon to the increased
randomness injected by the DP mechanism.

Exemplarily, we visualise the impact of a stronger privacy
guarantee on the performance on the ECG dataset in Figure
4. Given that the dataset is highly imbalanced, a constant
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Fig. 5: Impact of graph size to performance under DP:
Increasing graph sizes result in better performance and faster
convergence. The privacy guarantees are set to ε = 2.3.

prediction (marked by the lower dashed green line in Figure
4) would result in an approximate test accuracy of 81.6%. We
examine the dependency of the results on the choice of ε and
report the different performances. With a very strong privacy
guarantee (corresponding to a low ε value), the performance
of the network is barely better than a constant prediction.
The looser the privacy guarantee (larger ε value) the better
the performance; for a very loose ε the results reach non-
DP performance. Interestingly, for some models we observe
identical performance between DP-SGD and normal training,
e.g. Fingerprint-GCN, where the DP-SGD model (privacy
budget of ε = 5) reaches slightly higher performance then
the normal training, see Table 2; this beneficial effect can
be attributed to the regularising effects of gradient norm
bounding and noise injection, indicating that – within certain
constraints – DP training can go hand-in-hand with excellent
overall model performance and generalisability.

Scalability

In order to investigate the scalability of our approach, we
vary the size of the created Erdős-Rényi graphs in the
synthetic dataset between 10 and 500 nodes per graph. Figure
5 shows the impact of the graph size on the performance
under DP using a three-layer GCN and ε = 2.3. We
visualised the performances of graph sizes between 10 and 50
nodes and find that performance improves with increasing
graph size in these ranges. Beyond 50 nodes, the performance
remains consistently high, which is why these plots were
not included in Figure 5. This behaviour indicates a strong
performance of our model across varying graph sizes, i.e.
robust scalability. Furthermore, with the utilisation of the
large organ mesh dataset, we could show that our method
also performs excellently for graphs with a large number of
nodes and edges as well as large datasets with more than
100, 000 graphs. In this dataset, we observe low utility loss
in the range of 10−3 even in a very high privacy regime
of ε = 0.5. In comparison, many deep learning networks
require a more loose privacy guarantee to achieve high
performance [60].
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Data Network Training ROC-AUC Accuracy Sensitivity Specificity F1-Score Noise L2-Clip ε

Sy
nt

he
tic

GCN SGD 0.934 ± 0.01 0.934 ± 0.01 0.955 ± 0.03 0.913 ± 0.03 0.934 ± 0.01 - - -
DP-SGD 0.918 ± 0.02 0.918 ± 0.02 0.897 ± 0.03 0.940 ± 0.02 0.917 ± 0.02 1.0 3.0 5.0
DP-SGD 0.907 ± 0.02 0.910 ± 0.20 0.869 ± 0.04 0.946 ± 0.20 0.907 ± 0.02 2.0 3.0 1.0
DP-SGD 0.757 ± 0.11 0.756 ± 0.10 0.936 ± 0.06 0.575 ± 0.28 0.756 ± 0.10 2.2 3.0 0.5

GAT SGD 0.912 ± 0.01 0.912 ± 0.01 0.940 ± 0.03 0.883 ± 0.06 0.912 ± 0.01 - - -
DP-SGD 0.893 ± 0.01 0.893 ± 0.01 0.895 ± 0.03 0.891 ± 0.03 0.893 ± 0.01 1.0 3.0 5.0
DP-SGD 0.872 ± 0.02 0.872 ± 0.02 0.827 ± 0.04 0.907 ± 0.07 0.872 ± 0.02 2.0 3.0 1.0
DP-SGD 0.575 ± 0.07 0.575 ± 0.07 0.730 ± 0.35 0.419 ± 0.42 0.576 ± 0.08 2.2 3.0 0.5

SAGE SGD 0.903 ± 0.02 0.902 ± 0.02 0.913 ± 0.04 0.893 ± 0.08 0.903 ± 0.02 - - -
DP-SGD 0.918 ± 0.01 0.918 ± 0.01 0.907 ± 0.03 0.933 ± 0.02 0.918 ± 0.01 1.0 3.0 5.0
DP-SGD 0.893 ± 0.01 0.892 ± 0.01 0.872 ± 0.04 0.914 ± 0.03 0.893 ± 0.01 2.0 3.0 1.0
DP-SGD 0.598 ± 0.10 0.598 ± 0.11 0.609 ± 0.47 0.587 ± 0.39 0.598 ± 0.10 2.2 3.0 0.5

Fi
ng

er
pr

in
ts

GCN SGD 0.856 ± 0.01 0.785 ± 0.01 0.785 ± 0.01 0.928 ± 0.00 0.785 ± 0.01 - - -
DP-SGD 0.863 ± 0.01 0.794 ± 0.01 0.771 ± 0.01 0.932 ± 0.00 0.794 ± 0.01 1.0 3.0 5.0
DP-SGD 0.844 ± 0.02 0.766 ± 0.04 0.733 ± 0.05 0.921 ± 0.01 0.766 ± 0.04 1.8 3.0 1.0
DP-SGD 0.796 ± 0.06 0.693 ± 0.10 0.658 ± 0.09 0.898 ± 0.03 0.693 ± 0.09 2.3 3.0 0.5

GAT SGD 0.857 ± 0.01 0.786 ± 0.01 0.764 ± 0.02 0.929 ± 0.01 0.786 ± 0.01 - - -
DP-SGD 0.849 ± 0.02 0.774 ± 0.03 0.733 ± 0.04 0.924 ± 0.01 0.770 ± 0.03 1.0 3.0 5.0
DP-SGD 0.812 ± 0.02 0.728 ± 0.03 0.661 ± 0.01 0.906 ± 0.01 0.730 ± 0.03 1.8 3.0 1.0
DP-SGD 0.737 ± 0.05 0.605 ± 0.08 0.585 ± 0.08 0.871 ± 0.03 0.610 ± 0.08 2.3 3.0 0.5

SAGE SGD 0.876 ± 0.02 0.814 ± 0.02 0.802 ± 0.03 0.940 ± 0.01 0.814 ± 0.02 - - -
DP-SGD 0.869 ± 0.01 0.804 ± 0.01 0.788 ± 0.02 0.935 ± 0.01 0.804 ± 0.01 1.0 3.0 5
DP-SGD 0.861 ± 0.01 0.792 ± 0.01 0.776 ± 0.01 0.932 ± 0.00 0.791 ± 0.01 1.8 3.0 1
DP-SGD 0.712 ± 0.06 0.568 ± 0.08 0.529 ± 0.09 0.853 ± 0.03 0.568 ± 0.08 2.3 3.0 0.5

EC
G

GCN SGD 0.979 ± 0.01 0.932 ± 0.01 0.744 ± 0.03 0.979 ± 0.01 0.845 ± 0.02 - - -
DP-SGD 0.983 ± 0.01 0.904 ± 0.02 0.581 ± 0.07 0.983 ± 0.01 0.727 ± 0.06 0.6 5.0 10
DP-SGD 0.983 ± 0.01 0.923 ± 0.01 0.644 ± 0.12 0.983 ± 0.01 0.772 ± 0.09 0.8 5.0 5.0
DP-SGD 0.986 ± 0.02 0.824 ± 0.03 0.169 ± 0.23 0.986 ± 0.02 0.231 ± 0.28 1.5 5.0 1.0

GAT SGD 0.983 ± 0.01 0.922 ± 0.04 0.675 ± 0.19 0.983 ± 0.01 0.781 ± 0.17 - - -
DP-SGD 0.968 ± 0.03 0.899 ± 0.01 0.637 ± 0.11 0.968 ± 0.03 0.762 ± 0.11 0.6 5.0 10
DP-SGD 0.960 ± 0.01 0.909 ± 0.02 0.712 ± 0.12 0.960 ± 0.01 0.811 ± 0.08 0.8 5.0 5.0
DP-SGD 0.991 ± 0.01 0.846 ± 0.01 0.200 ± 0.11 0.991 ± 0.01 0.319 ± 0.11 1.5 5.0 1.0

SAGE SGD 0.985 ± 0.01 0.946 ± 0.01 0.757 ± 0.04 0.985 ± 0.01 0.856 ± 0.02 - - -
DP-SGD 0.972 ± 0.01 0.932 ± 0.02 0.767 ± 0.09 0.972 ± 0.01 0.854 ± 0.06 0.6 5.0 10
DP-SGD 0.973 ± 0.02 0.928 ± 0.02 0.738 ± 0.09 0.973 ± 0.02 0.835 ± 0.06 0.8 5.0 5.0
DP-SGD 0.951 ± 0.07 0.841 ± 0.02 0.402 ± 0.30 0.951 ± 0.07 0.493 ± 0.24 1.5 5.0 1.0

M
ol

ba
ce

GCN SGD 0.743 ± 0.00 0.655 ± 0.02 0.511 ± 0.03 0.820 ± 0.01 0.629 ± 0.02 - - -
DP-SGD 0.699 ± 0.01 0.670 ± 0.01 0.723 ± 0.02 0.608 ± 0.01 0.660 ± 0.01 0.5 5.0 20
DP-SGD 0.688 ± 0.01 0.609 ± 0.01 0.412 ± 0.01 0.834 ± 0.01 0.552 ± 0.01 0.6 5.0 10

GAT SGD 0.781 ± 0.01 0.726 ± 0.02 0.691 ± 0.07 0.766 ± 0.06 0.721 ± 0.02 - - -
DP-SGD 0.747 ± 0.02 0.580 ± 0.02 0.333 ± 0.07 0.862 ± 0.03 0.475 ± 0.07 0.5 5.0 20
DP-SGD 0.692 ± 0.03 0.518 ± 0.04 0.153 ± 0.10 0.935 ± 0.04 0.248 ± 0.14 0.6 5.0 10

SAGE SGD 0.785 ± 0.00 0.654 ± 0.01 0.484 ± 0.02 0.848 ± 0.01 0.616 ± 0.01 - - -
DP-SGD 0.717 ± 0.00 0.620 ± 0.01 0.901 ± 0.00 0.299 ± 0.01 0.448 ± 0.02 0.5 5.0 20
DP-SGD 0.701 ± 0.00 0.550 ± 0.01 0.262 ± 0.00 0.879 ± 0.01 0.403 ± 0.01 0.6 5.0 10

O
rg

an
M

es
he

s

GCN SGD 0.997 ± 0.00 0.988 ± 0.00 0.988 ± 0.00 0.997 ± 0.00 0.988 ± 0.00 - - -
DP-SGD 0.946 ± 0.00 0.940 ± 0.00 0.940 ± 0.00 0.985 ± 0.00 0.940 ± 0.00 0.791 2.0 1.0
DP-SGD 0.946 ± 0.00 0.934 ± 0.00 0.934 ± 0.00 0.984 ± 0.00 0.934 ± 0.00 1.07 1.5 0.5

Cheb SGD 0.992 ± 0.00 0.983 ± 0.00 0.983 ± 0.00 0.996 ± 0.00 0.983 ± 0.00 - - -
DP-SGD 0.978 ± 0.00 0.933 ± 0.00 0.933 ± 0.00 0.983 ± 0.00 0.933 ± 0.00 0.796 2.5 1.0
DP-SGD 0.982 ± 0.00 0.925 ± 0.00 0.924 ± 0.00 0.981 ± 0.00 0.925 ± 0.00 1.094 2.5 0.5

SAGE SGD 0.996 ± 0.00 0.992 ± 0.00 0.991 ± 0.00 0.998 ± 0.00 0.991 ± 0.00 - - -
DP-SGD 0.981 ± 0.00 0.938 ± 0.00 0.937 ± 0.00 0.984 ± 0.00 0.938 ± 0.00 0.796 1.0 1.0
DP-SGD 0.988 ± 0.00 0.937 ± 0.00 0.937 ± 0.00 0.984 ± 0.00 0.937 ± 0.00 1.06 2.5 0.5

TABLE 2: Summary of our experimental evaluation on four datasets: Synthetic, Fingerprints, ECG, Molbace, and Organ Meshes
with different network types. We report results with SGD and DP-SGD training as well as varying privacy budgets ε. The
scores are evaluated on the test sets with a standard deviation based on five independent runs. We find that our models
achieve high performance when using our proposed DP-SGD training method. The performance decreases gradually when
increasing privacy guarantees.
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Explainability

The interpretability of GNNs is a challenging and frequently
discussed task in research. Recently, approaches like the
GNNExplainer [61] formalised methods which can be used
to interpret the results of trained GNNs. We make use of this
method to interpret the differences in learned representations
between models trained with DP-SGD and non-private SGD
and visualise the results in Figure 6. The GNNExplainer
is an approach for post-hoc interpretation of predictions
generated by a trained GNN. It is used to identify which
edges in the graph represent essential connections for a
prediction of the network, thus indicating nodes important
for the final prediction. GNNExplainer prunes the original
graph to only contain the nodes and edges with the highest
impact on the model prediction. We apply the GNNExplainer
to our results on the Fingerprints dataset, comparing a GCN
model trained with standard SGD and three GCN models
trained with DP-SGD with ε = 5, ε = 1 and ε = 0.5. We
set the GNNExplainer threshold for edge importance to 0.2.
Qualitatively, we observe that the GNNExplainer results
of the DP models and the standard models appear very
similar, if not identical for some examples, see Figures 6 and
supplementary material. In these Figures, (A) visualises an
example of an original graph from the Fingerprints dataset,
containing all edges. Figures (B) and (C) show the pruned
graphs for SGD and DP-SGD training, respectively. In the
lower example (2) in Figure 6, both GNNExplainer graphs are
identical (almost identical in the upper row), showing that in
both models the same edges and nodes have a high impact
on the models’ predictions. This indicates that the feature
importance is the same (or almost the same) between both
models and that the feature importance is not compromised
by the privacy guarantees achieved through DP training.

ε ROC-AUC IoU (orig. ∥ DP) IoU (DP ∥ non-DP)

5.0 0.863 0.652 0.765
1.0 0.844 0.592 0.736
0.5 0.796 0.617 0.609

TABLE 3: Mean IoU scores of ten test samples from the
Fingerprint dataset for comparing edges between (∥) the
original graph, the GNNExplainer graph of the model trained
with SGD, and the GNNExplainer graph of the model trained
with DP-SGD. The IoU between the original graph and
the non-DP graph is 0.739. The IoU between the DP and
the non-DP graphs decreases with a smaller ε value which
corresponds to smaller ROC AUC results.

To provide a quantitative estimation of GNNExplainer
similarity of our results, we propose and use an Intersection
over Union (IoU) score, measuring the pair-wise overlap of
edges in the three resulting graphs. The IoU score of two
graphs A and B is defined as follows:

|EA ∩ EB |
|EA ∪ EB |

, (4)

where EX represents the set of all edges in Graph X and
| · | denotes the cardinality of a set. Table 3 summarises
the results of the mean IoU values between the original
graph and the GNNExplainer graph based on training with
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Fig. 6: Visualisation of two GNNExplainer examples. The
original graph (A) is shown in blue, the resulting graph
from the GNNExplainer and the model trained with SGD in
orange (B) and with DP-SGD in red (C). In the example in
the upper row (1) the two graphs (B) and (C) differ slightly,
whereas in the lower example (2) both GNNExplainer graphs
(B) and (C) are equal, meaning that the two models consider
the same edges to be relevant. The privacy budget for the
models trained with DP-SGD was set to ε=5.

DP, and the two resulting GNNExplainer graphs from DP-
SGD and SGD training. The IoU score of the original graph
and the GNNExplainer graph of the model trained with
standard SGD is 0.739 for all graphs. We compare the overlap
between the graphs with the model performance, reported
by the ROC AUC score. We find a high IoU score for DP
vs. non-DP models, which is in line with the GNNExplainer
plots we observe in Figure 6. Moreover, we observe that our
GNNExplainer IoU score of the DP and the non-DP models
slightly decreases with a smaller ε and smaller ROC AUC
scores, see Table 3. The increase in the IoU score between
the original model and the DP model with ε = 0.5 most
likely only indicates that the DP trained model with ε = 0.5
considers more edges as relevant than the model trained with
ε = 1.0. These qualitative and quantitative GNNExplainer
results indicate that our proposed DP graph classification
models exhibit strong and similar inductive biases compared
to “normal” GNNs while preserving privacy guarantees.

6 DISCUSSION, CONCLUSION, AND FUTURE WORK

Our work introduces and evaluates differentially private
graph classification, a formal method to offer quantifiable
privacy guarantees in applications where sensitive data of
individuals is represented as a whole graph. Such contexts
include medical data (as shown in our ECG classification
example), where DP can enable training of machine learning
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models while maintaining both regulatory compliance and
adherence to ethical standards mandating the protection of
health-related data.

GNN training is possible with strong privacy guarantees
and excellent utility
Our experiments on benchmark and real-world datasets
demonstrate that the training of GNNs for graph classifica-
tion is viable with high utility and tight privacy guarantees.
Especially the large scale mesh classification dataset achieved
almost perfect accuracy even with very tight privacy bounds
of ε = 0.5. Expectedly, we observe a privacy-performance
trade-off for all datasets, whereby a decrease in the value
of ε results in a decline in the accuracy of the model, as
demonstrated in Figure 4. The amount of performance loss
is task and dataset dependent.

GNNs learn similar features in the private and non-private
scenarios
Additionally, we investigate the utilisation of explainability
techniques to compare the representations learned by models
trained with SGD and DP-SGD. The application of the
GNNExplainer indicates that models trained with DP-SGD
learn similar relevant representations to the non-privately
trained models. To quantitatively demonstrate the results of
the GNNExplainer, we calculated an IoU score on the edges
considered important by the technique between the resulting
graphs. We observe an overall high IoU with a slight decline
in overlap with tighter privacy guarantees, indicating that
– as expected – the high levels of noise required to achieve
such guarantees eventually become detrimental to learning.

Private GNN training can help alleviate social impacts of
machine learning
We strongly believe that the implementation of formal
techniques for privacy preservation like DP in the setting of
GNN training will mitigate the risks of using sensitive data
in ML tasks. In the case of medical data (as in the ECG dataset
example), we believe the utilisation of privacy preserving
methods to also hold positive effects in terms of encouraging
data owners (such as patients) to make their data accessible
for research purposes. Evidently, such implementations must
go hand in hand with educating potential stakeholders in
the correct application of DP mechanisms, including the
appropriate choice of parameters like ε. In this work, we
rely exclusively on public datasets collected with informed
consent or with approval of institutional review boards
wherever applicable.

Limitations
Inherent to the concept of differential privacy in machine
learning is a performance-to-privacy trade-off. While our
experiments visually illustrate the implications of the trade-
off and provide insight into its practical importance in the
context of machine learning on graphs, the actual relationship
between privacy and accuracy is highly task- and user-
specific [62], [63]. Therefore, we note that one can interpret
the value of ε as an additional design-parameter that needs
to be optimised for in order to minimise the adverse effects
that DP can have on performance in the context of graph
classification (or most other learning tasks in general).

Future work
In our experiments we utilise a limited set of standard model
architectures (GCN, GraphSAGE, GAT, ChebNet). Evidently,
more sophisticated architectures have been designed and
deployed to real world problems. As our proposed approach
is general, we assume that an extension to such advanced
graph learning models is natural and should exhibit similar
behaviour, and we intend to expand our purview to such
models in future investigations.

While the GNNExplainer concept can provide initial clues
to interpret and explain GNN training and the intrinsic
differences between models trained with SGD and DP-SGD,
it is only an initial step towards full explainability and
interpretability. We consider this to be a highly relevant
and an interesting direction for future research. In particular,
we aim to investigate the effects of differentially private
GNN learning on adversarial robustness of the model. We
hypothesise that – similarly to Euclidean settings – [64],
[65] DP should have a mitigating effect against attacks that
diminish the utility of the trained model in the context
of machine learning on graphs. Furthermore, we believe
that a comparison of different explainability techniques like
[66], [67], [68], [69] will provide even more insight into the
differences between DP and non-DP training, which we also
intend to investigate in future work.
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ABSTRACT

We initiate an empirical investigation of differentially private
graph neural networks for medical population graphs. In this
context, we examine privacy-utility trade-offs at different pri-
vacy levels on both real-world and synthetic datasets and per-
form auditing through membership inference attacks. Our find-
ings highlight the potential and the challenges of this specific
DP application area, which comes with an additional difficulty
of graph structure construction that potentially complicates
graph deep learning. We find evidence that the underlying
graph structure constitutes a potential factor for larger perfor-
mance gaps by showing a correlation between the degree of
graph homophily and the accuracy of the trained model.

Index Terms— Differential Privacy, Graph Neural Net-
works, Medical Population Graphs

1. INTRODUCTION

Graph neural networks (GNNs) are powerful methods to apply
deep learning (DL) to non-Euclidean data like graphs or mani-
folds [1]. A graph G := (V ,E ) is defined as a set of nodes V
and a set of edges E , connecting nodes. A neighbourhood of a
node v ∈ V contains all nodes u ∈ V for which an edge euv
from u to v exists. GNNs follow a message passing scheme,
where node features are aggregated across neighbourhoods of
n hops [2, 3].The utilisation of GNNs has shown improved
performance over graph agnostic methods, even on datasets
not exhibiting an intrinsic graph structure. Their application
has therefore been expanded to datasets which require con-
structing a graph structure before learning. One example are
medical population graphs [4]. Here, a cohort is represented by
one graph, where nodes represent subjects and their medical
data, and edges connect similar subjects. The construction of
the graph’s edges is an important step in this pipeline since
a poor graph structure can hinder graph learning [5, 6]. This
has been attributed to several different graph properties, one
of them being homophily, which is a measure of the ratio
between same-labelled and differently-labelled neighbours.
High homophily indicates that the majority of nodes in all
neighbourhoods share the same label as the nodes of interest.

1.1. Privacy Preserving DL with Differential Privacy

DL on medical data comes with high privacy risks. The utilised
data –e.g. medical images or clinical data– is highly sensitive
and it has been shown that trained DL models are prone to
data leakage, where even full medical images can be recon-
structed [7, 8]. Therefore, privacy-preserving methods need to
be applied in order to protect the patients’ data. The gold stan-
dard for training DL methods while providing formal privacy
guarantees, is differential privacy (DP) [9]. DP operates based
on a privacy budget ε, where a small ε ensures high privacy
and a large ε low guarantees. Intuitively, DP guarantees that
the output of an algorithm is approximately invariant to the
addition/removal/replacement of one subject in the database
[9]. That is, for two so-called neighbouring databases, that
differ in one record, the output of the algorithm remains sim-
ilar. Formally, a randomised algorithm A satisfies (ε,δ)-DP
if, for all neighbouring databases D and D′ and all subsets
S ⊆ Range(A), the following symmetric statement holds:

P [A(D) ∈ S] ≤ eεP [A(D′) ∈ S] + δ.

One way to ensure DP for DL models is by applying a variant
of stochastic gradient descent (SGD): DP-SGD [10] during
training. Here, the model’s per-sample gradients are clipped
(to ensure boundedness in L2-norm) and then calibrated noise
is added.

While being originally defined databases with rows and
columns, the application of DP to graph neural networks for
node classification tasks presents two main challenges: (1)
The connection and information exchange between data points
requires specific definitions of DP for graph-structured data;
(2) In addition, the unboundedness of neighbourhoods in a
graph makes privacy amplification by sub-sampling –meaning
that a DP algorithm, which is executed on random subsamples
of a population provides higher privacy guarantees than when
executed on the whole population– non-trivial. In tabular
datasets, individual data points can be treated separately. This
is not the case in graph learning settings, where nodes are
connected and share information [11]. This contradicts the
principle of per-sample gradients in DP methods and thus
requires specialised notions of DP on graphs [11].



In this work, we focus on node-level DP, which protects the
sensitive information stored in the node features of population
graphs as well as the connections between neighbouring nodes.
For that, we define two datasets D and D′ to be neighbouring
if they differ in one node and all its adjacent edges.

DP with sufficiently strong guarantees naturally protects
against membership inference attacks (MIAs), which aim to
infer whether a certain individual was part of the training set
or not. There are a few works investigating MIAs on GNNs
[12, 13]. These and works on other privacy attacks on GNNs
such as link stealing attacks [14] and inference attacks [15]
highlight the vulnerability of GNNs compared to non-graph
machine learning methods. In this work, we extend the state-
of-the-art MIA technique by [16] to GNNs for the purpose of
empirically validating the privacy guarantees.

1.2. Node-level DP for GNNs

So far, only few works have investigated DP training of GNNs.
Daigavane et al. [17] introduced a privacy amplification by
sub-sampling technique for multi-layer GNN training with
DP-SGD. To enable a sensitivity analysis for DP-SGD in
multi-layer GNNs, the authors apply a graph neighbourhood
sampling scheme. Here, the number of k-hop neighbours is
bounded to a maximum node degree. This ensures that the
learned feature embeddings throughout training are influenced
by at most a bounded number of nodes. Furthermore, the
standard privacy amplification by sub-sampling technique for
DP-SGD is extended, such that a gradient can depend on multi-
ple subjects in the dataset: First, a local k-hop neighbourhood
of each node with a bounded number of neighbours is sam-
pled. Next, a subset Bt of n sub-graphs is chosen uniformly at
random from the set of sub-graphs that constitute the training
set. On these sub-samples, standard DP-SGD is applied by
clipping the gradients, adding noise, and using the noisy gradi-
ents for the update steps. The noise is hereby calibrated to the
sensitivity with respect to any individual node, which has been
bounded via sub-sampling of the input graph. The authors of
[17] show generally good performance at various privacy lev-
els, motivating us to adopt their technique for this work. Chien
et al. [18] introduce a method for DP GNNs under node-level
DP for highly heterophilic graphs (e.g. homophily of 0.02),
which does not apply to population graph settings.

1.3. Contributions

In this work, we investigate privacy-utility trade-offs of DP
GNN training on medical population graphs. Our contributions
are as follows: (1) To the best of our knowledge, our work
demonstrates the first successful application of DP to GNNs
in medical population graphs, (2) we empirically investigate
the success of membership inference attacks (MIAs) at differ-
ent levels of privacy protection and (3) analyse the interplay
between graph structure and model performance, highlighting
homophily as a key factor influencing model utility.

2. EXPERIMENTS AND RESULTS

All experiments are performed based on the node-level DP
GNN implementation of [17], using graph convolutional net-
works (GCNs) [2] and the transductive learning approach.
Transductive learning means that all node features and edges
are included in the forward pass, but only the training labels
are used for backpropagation. We note that the utilised DP
GNN implementation [17] does not guarantee privacy at infer-
ence. As a baseline for comparison, we also train a multi-layer
perceptron (MLP) for specific experiments below. We use
three medical datasets which are frequently used in the con-
text of population graphs [4]: The TADPOLE dataset studies
Alzheimer’s disease and functions as a benchmark dataset for
population graphs [4, 19]. We also use an in-house COVID
dataset as a realistic, noisy, and small medical dataset, with
the task of predicting whether a COVID patient will require
intensive care unit (ICU) treatment and the ABIDE dataset
from the autism brain imaging data exchange [20], where we
perform a binary classification task. The ABIDE dataset is
highly challenging and therefore lends itself to investigating
the impact of the graph structure on our experiments. We
therefore report results on the ABIDE dataset for two different
graph structures, constructed using either 5 or 30 neighbours.
Furthermore, we evaluate our experiments on a synthetically
generated binary classification dataset to investigate the impact
of different graph structures on the performance of DP popula-
tion graphs under controlled conditions. All graph structures
are generated using a k-nearest neighbours approach. Here,
k is a hyperparameter, which specifies how many neighbours
each node has, and the k most similar nodes are connected. We
note that this graph construction is not private, which aligns
with DP graph learning on other datasets, where an original
graph structure is provided. Given that we utilise node-level
DP guarantees, this graph structure is then protected during
training. Details about the datasets as well as all δ values used
for DP-SGD training are summarised in Table 1.

Table 1: Homophily, node count, and δ values for all datasets.

Dataset Nr. of nodes Homophily δ

TADPOLE 1 277 0.7392 1.31 · 10−4

COVID 65 0.7569 2.78 · 10−3

ABIDE (k=5) 871 0.6009 1.92 · 10−4

Synthetic 1 000 varying 1.79 · 10−4

2.1. DP Training of GNNs on Population Graphs

We summarise the results of non-DP and DP training at differ-
ent privacy budgets in Table 2. As expected, a higher privacy
guarantee results in lower model performance. For the TAD-
POLE dataset, a DP guarantee of ε = 20 achieves performance
comparable to non-DP training and even at ε = 10, perfor-
mance is only about two percent lower than non-DP results.



Table 2: Test set accuracy (%) of non-DP and DP models at different ε-values across five random seeds.

Dataset Non-DP Sub-graphing DP (ε = 20) DP (ε = 15) DP (ε = 10) DP (ε = 5)

TADPOLE 72.73 ± 1.39 76.09 ± 1.73 72.42 ± 0.94 71.02 ± 1.22 70.39 ± 0.43 69.45 ± 1.82
COVID 72.31 ± 11.51 73.85 ± 3.77 69.23 ± 8.43 69.23 ± 12.87 66.15 ± 10.43 56.92 ± 12.87
ABIDE (k=5) 58.86 ± 0.81 65.14 ± 2.37 57.83 ± 2.02 55.54 ± 2.62 53.71 ± 2.73 54.17 ± 2.97
ABIDE (k=30) 68.51 ± 2.75 65.83 ± 3.57 53.49 ± 4.27 53.37 ± 1.47 51.89 ± 4.40 51.43 ± 3.47

We attribute this to the informative underlying graph structure
of the TADPOLE dataset, which stabilises graph learning. For
the ABIDE dataset, non-DP performance is better for the graph
structure that uses 30 neighbours (k=30) compared to only 5
neighbours. However, larger neighbourhoods lead to more
noise being added during DP-SGD training, which impacts
the privacy-utility trade-off on this graph. For all datasets
apart from the ABIDE dataset with 30 neighbours (k=30), the
model trained without DP, but employing sub-graph sampling
(“sub-graphing”) and gradient clipping out-performs the non-
DP model trained without these techniques. We attribute this
to the regularising effect of both aforementioned methods. As
seen, the ABIDE dataset has overall much lower accuracy and
simultaneously, the homophily of the ABIDE dataset is the
lowest among all datasets. We therefore further investigate
the impact of the homophily of the graph structure on the
performance of DP population graphs in Section 2.3.

2.2. Membership Inference Attacks

The dependencies between graph elements render GNNs more
vulnerable to MIA. Moreover, in the transductive setting of
graph learning, test node features are included in the forward
pass, which facilitates MIA [12]. To empirically audit the
privacy leakage of sensitive patient data from our GNN models,
we employ the MIA implementation of Carlini et al. [16].
We perform these experiments on the GNNs trained on the
TADPOLE dataset, as it is known that higher model accuracy
improves MIA success [16]. The adversary/auditor in this
membership inference scenario has full access to the trained
model fθ, its architecture, and the graph, including its ground-
truth labels [16]. We trained 128 shadow models to estimate
the models’ output logit distributions and create a classifier
that predicts whether a specific example was used as training
data for the model fθ. In Figure 1, we report the log-scale
receiver operating characteristic (ROC) curve of the attacks
and report the true positive rate (TPR) at three fixed, low false
positive rates (FPR) (0.1%, 0.5%, 1%). The attack’s success
rates are also summarised in Table 3. Furthermore, we derive
the maximum TPR (i.e. power) that is theoretically achievable
for a given (ε, δ) setting through the duality between (ε, δ)-DP
and hypothesis testing DP. We will refer to this maximum
achievable TPR as the adversary’s supremum power P . As
seen, for FPR-values < 0.001, the MIA is unsuccessful. As
the FPR tolerance is increased, models trained with weaker
privacy guarantees (ε ∈ {20, 15}) yield positive TPR when
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Fig. 1: Empirical ROC curves for MIA on TADPOLE.

attacked, with TPR values approaching these of models trained
without DP guarantees (Non-DP and Sub-graphing variants)
in case of ε = 20. Interestingly, the model trained at ε = 5
successfully resists membership inference even at an FPR
value of 0.01. Moreover, we observe that the GNN trained with
clipped gradients is less vulnerable to membership inference
than the GNNs trained without gradient clipping. This is in
line with the findings in [16] that clipping the gradients during
training offers some (empirical) protection against MIAs.

Table 3: MIA results at different privacy budgets (TADPOLE).

Model Variant ≤ 0.001 FPR ≤ 0.005 FPR ≤ 0.01 FPR
TPR P TPR P TPR P

MLP - 0.0115 - 0.0138 - 0.0184 -

GNN Non-DP 0.0092 - 0.0092 - 0.0230 -
Sub-graphing 0.0023 - 0.0069 - 0.0207 -
DP (ε = 20) 0.0000 1.0 0.0069 1.0 0.0230 1.0
DP (ε = 15) 0.0000 1.0 0.0046 1.0 0.0069 1.0
DP (ε = 10) 0.0000 1.0 0.0000 1.0 0.0023 1.0
DP (ε = 5) 0.0000 0.1485 0.0000 0.7422 0.0000 1.0

2.3. Impact of Graph Structure on Performance

The interaction between memorisation and generalisation in
neural networks is of particular interest to the privacy commu-
nity. Feldman [21] hypothesises that atypical data from the
long tail of the data distribution requires memorisation. This
increases the negative impact of DP training for those samples.
To investigate the applicability of the long-tail hypothesis to
graphs, we evaluate the impact of the graph structure, mea-
sured by homophily, on model performance. Concretely, we
hypothesise that graphs with low homophily are “noisier” and



Table 4: Results of the experiments on the synthetic dataset at different homophily values; All results refer to test accuracy (%),
with the best ones highlighted in bold. Compare Section 2 for details. Hom.: Homophily, Subg.: Sub-graphing.

Hom. Non-DP Clipping Sub-graphing Subg. + Clip. DP (ε = 20) DP (ε = 15) DP (ε = 10) DP (ε = 5)

0.9 99.90 ± 2.00 100.0 ± 0.00 99.80 ± 0.40 99.90 ± 0.00 93.00 ± 4.17 96.00 ± 2.49 93.10 ± 1.36 88.70 ± 3.06
0.8 99.62 ± 0.37 99.90 ± 0.00 100.0 ± 0.00 99.80 ± 2.45 82.80 ± 7.83 80.60 ± 10.8 81.30 ± 6.40 80.00 ± 8.76
0.7 96.50 ± 1.23 99.70 ± 0.40 98.42 ± 0.51 98.20 ± 0.50 79.10 ± 3.00 76.30 ± 3.10 74.80 ± 4.55 70.30 ± 5.64
0.6 73.60 ± 0.97 91.00 ± 2.24 83.10 ± 3.10 85.40 ± 3.54 57.72 ± 2.38 55.50 ± 1.45 54.80 ± 3.87 57.90 ± 1.32
0.5 66.10 ± 1.361 53.60 ± 1.16 57.00 ± 1.76 58.10 ± 2.03 52.71 ± 3.34 51.82 ± 3.43 51.70 ± 2.38 50.70 ± 3.87
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Fig. 2: Impact of sub-graphing/noise addition at different ε.
Clip: clipping only, Subgr.: sub-graphing only.

therefore suffer more from DP training. For example, at ho-
mophily of 0.5 on a binary classification dataset, on average,
only half of the neighbours have the same label. Thus, when ap-
plying message-passing on such a graph, the node features will
get averaged over an approximately equal number of nodes
from both labels. This makes it nearly impossible to learn
meaningful node feature embeddings, such that learning likely
relies on memorisation. The results using a synthetic dataset
with different levels of homophily are summarised in Table
4 and visualised in Figure 2. The generalisation gap is espe-
cially large on low-homophily graphs, indicating over-fitting
in the non-DP setting. Model accuracy in the non-DP setting
profits more from the regularising effects of clipping and sub-
graphing in lower-homophily graphs (0.6) compared to ones
with high homophily (0.9). We note that, in a binary classi-
fication task, homophily values are symmetric about 0.5. As
expected, at the lowest homophily of 0.5, learning is severely
compromised without DP, and the regularising effect of clip-
ping and sub-graphing harms accuracy. Moreover, learning is
nearly impossible with DP, corroborating that, in this setting,
the accuracy benefit of non-DP learning is mostly due to mem-
orisation. Under DP, graphs with high homophily (0.9) suffer
a lower performance decrease compared to low-homophily
graphs, likely due to the favourable graph structure for the
learning task, i.e. not requiring strong memorisation.

3. DISCUSSION, CONCLUSION, FUTURE WORK

We investigate the practicality and challenges of differentially
private (DP) graph neural networks (GNNs) for medical popu-

lation graphs. The utilisation of population graphs in medicine
has shown promising results in performance for disease pre-
diction [4]. However, it comes with the additional challenge
of an explicit graph construction step. This can lead to poor
graph structures, regarding the homogeneity of neighbour-
hoods, which can be measured by the homophily metric. Popu-
lation graphs contain sensitive medical data of several subjects,
which requires protection when applying DL methods to these
graphs. Applying DP to GNNs requires special formulations
of DP concepts like privacy amplification techniques and DP-
SGD methods [17]. We here evaluate privacy-utility trade-offs
of DP GNNs trained on medical population graphs and reveal
interesting correlations between the graph structure and perfor-
mance of DP GNNs. When the underlying graph structure of a
dataset has low homophily (indicating diverse neighbourhoods
with different labels), DP has a stronger negative impact on
model performance compared to datasets with high homophily.
This finding and its possible connection to the long-tail hypoth-
esis [21] is a promising direction for future work to potentially
improve DP methods for GNNs by improving the underlying
graph structure. Moreover, homophily is not the only mea-
sure for the “quality” of a graph structure. Homophily is not
the only measure for the “quality” of a graph structure. Fur-
ther metrics such as cross-class neighbourhood similarity [22]
could be evaluated, which may shed more light on the impact
of graph structure on the performance of DP GNNs.
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Concluding Remarks

Applications of artificial intelligence (AI) in medicine have shown highly promising
results and contributions to medical research and procedures, such as disease prediction
[17], [60], image segmentation [1], or text analysis [98]. Hereby, different types of
(medical) data require different methods that are adapted to the data space and
the use case. Convolutional neural networks (CNNs) are currently among the most
successful deep learning methods on images, using the underlying geometry of image
data to extract global representations from local (pixel or voxel) information. With
this, they have become very popular in supporting diverse medical tasks, such as
organ segmentation [99], tumour classification [100], or concluding diagnoses [101], to
only name a few.

When operating on non-Euclidean data –such as graphs or manifolds– different
methods have to be developed that can directly learn from graph-structured data.
These methods are summarised as graph neural networks (GNNs). GNNs show
two strong advantages compared to CNNs. They are (a) faster during training and
inference than CNNs and (b) have the methodological advantage of directly leveraging
the underlying structure of non-Euclidean data, without the need to transform a
graph dataset to another space. In this dissertation, we address parts of a broad
research question of when and how to best use GNNs for medical applications and
research. In order to address this question we target three directions: We (1) explore
the limitations of the utility of GNNs, (2) investigate their strengths and advantages
compared to other DL techniques, and (3) investigate privacy-preserving techniques.
For this, we analyse different application areas of GNNs in medicine, analyse the
impact of the graph structure on model performance, and formulate recommendations
for the utilisation of GNNs in the medical domain. We extend existing methods to
a wider range of use cases, discuss the general utility of GNNs for specific datasets,
and design and evaluate methods for privacy-preserving graph learning on medical
data. In the following sections, we discuss the individual chapters of this dissertation,
highlighting the respective challenges, discussing their implications on general research
in the domain of AI on non-Euclidean data, and spotlighting future directions.
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11. Concluding Remarks

11.1 Discussion

Chapter 4 - A Survey on Graph Construction for Geometric
Deep Learning in Medicine: Methods and Recommendations

GNNs can be used to integrate data from highly different modalities by combining
them in different parts of the graph structure. This can be a great opportunity for
multi-modal data integration, where the information of different modalities can be
represented in different parts of the graph. However, the graph construction can
also be a challenge for datasets that do not come with an inherent graph structure,
which is often the case in medicine. Here, graph construction methods are required to
transform the datasets into graph-like structures, to render them suitable for graph
deep learning. Over the years, a variety of such methods have been developed that
are often highly specific to the data type at hand. We categorise relevant works for
graph construction, systematise the taxonomy for static and adaptive graph learning
in the medical domain, and formulate recommendations for graph construction for
future research. The multitude of available methods, even for the same type of
dataset, shows the complexity of this task and the requirement for standard methods
and guidelines. It is important to note that the graph structure can have a severe
impact on the performance of the GNN, which makes it even more important to
select suitable graph construction methods that yield a “good” graph structure for
subsequent deep learning. This work provides an overview of graph construction
methods for graph deep learning in medicine and provides relevant recommendations
for selecting suitable methods for different medical datasets and use cases. We hope
for this work to function as a foundation for future work on GNNs in medicine and
to facilitate future research in this area. Apart from the selection of appropriate
methods, we believe it is equally important to investigate in which settings GNNs
are the most beneficial method and in which other methods are more successful. We
believe that our work is an important step towards further work on (a) whether it is
useful to transform a dataset into graph-like structures for graph learning and (b) if
so, which methods are the most promising ones. We also see a deeper investigation
of different graph convolutions for different medical use cases as an important future
step. This might shed more light on an optimal link between GNN methods and
medical applications with the hope of improved utility.
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Chapter 5 - Extended Graph Assessment Metrics for
Regression and Weighted Graphs

As discussed in the previous chapter, the selection of a suitable graph construction
method is important since the resulting quality of the graph can highly impact the
performance of GNNs. This is, for example, relevant when working with population
graphs, where initially independent data points (subjects) need to be connected in
a meaningful way to construct an informative network that can be used for graph
learning. In this context, the assessment of the graph structure can provide important
insights into the quality of a constructed graph and hint towards potential implications
on the GNN performance. Based on this, the graph construction method or the
GNN architecture could be adjusted if necessary. We identify a major shortcoming of
currently used graph assessment metrics as them being only applicable for unweighted
graphs and classification tasks. We therefore extend two commonly used graph
assessment metrics –namely homophily and cross-class neighbourhood similarity
(CCNs)– to weighted graphs and if possible regression tasks. With this, we can
address a wider range of applications and use cases, which require regression tasks
and can potentially benefit from the utilisation of weighted graphs. We believe that
the evaluation of graph assessment metrics is an important step in understanding and
interpreting the results of graph learning as they allow for a better comprehension
of the graph structure as well as its impact on the downstream task. Therefore, we
deem the extensions addressed in this work as an important step towards having
widely applicable, comparable, and comprehensive metrics for graph assessment. We
hope to see more of this development in future research by extending more metrics to
regression tasks and weighted graphs. Furthermore, most such metrics only investigate
1-hop neighbourhoods but could be extended to several hops, which would align well
with the notion of n-hop graph neural networks and might provide more applicable
insights for graph learning.

Chapter 6 - Body Fat Estimation from Surface Meshes using
Graph Neural Networks

One application of graph deep learning in medicine is the usage of triangulated
surface meshes. They can efficiently capture structural information and can be used
to represent various forms and shapes. Here, we highlight one big advantage of GNNs
compared to CNN on image data: GNNs require fewer resources and are faster to
train. This can yield important utility improvements and increase the willingness to
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integrate such methods into medical workflows. We see this as one major promising
aspect of the usage of GNNs in medical workflows since short training cycles and
low resource requirements during training can reduce some of the obstacles involved
in using DL methods in medicine. In this work, we use graph neural networks to
estimate the quantity of body fat of two types of abdominal fatty tissue: visceral and
subcutaneous fat. The distribution of body fat can be a strong indication for health-
related risk factors such as the development of diseases [102], [103]. We compare the
performance and run time of our GNNs trained on surface meshes to comparable
approaches using CNNs on 3D magnetic resonance image (MRI) data and observe
similar performance at significantly lower resource requirements. We use different
mesh decimation rates to adjust the size of the meshes and investigate their impact
on model performance. We note that other works [104] have shown that 2D images
might be sufficient to accurately estimate different body composition values such as
fat mass. This could highly reduce training time and resource requirements for CNN
approaches as well and it would be interesting to also compare a 2D image-based
approach with 2D and 3D meshes. In this work, we generate the surface meshes from
3D MRIs. However, we see high potential for our method to work on much cheaper
and easier-to-acquire data sources, such as surface scans. They could be more easily
integrated into standard medical workflows and would be more comparable to the
acquisition of photographs.

Chapter 7 - Are Population Graphs Really as Powerful as
Believed?

One research branch of deep learning in medicine has investigated the usage of
population graphs. Here, a cohort of subjects is restructured to build a network
–similar to a social network–, where subjects are connected if they show similar
medical features. Related works [17], [61]–[63], [105] have shown improved prediction
performance on several medical downstream tasks. However, we question said utility
by showing on-par performance of well-tuned graph-agnostic methods compared
to more complex GNNs. We identify the graph construction method as the main
bottleneck for good performance of GNNs on population graphs and lay the ground
for future theoretical analyses in this direction. We believe the latter to be highly
relevant for gaining a good understanding of when and how GNNs are best used and to
shed light on still unanswered questions regarding the power of GNNs. Furthermore,
this work does not only question the utility of population graphs in the way they are
currently used but also highlights the importance of proper usage of baseline methods
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in DL research in general. We believe this work to be an important step towards a
better understanding of the power of GNNs and that more research needs to be done
in order to render population graph studies useful. We see four directions population
graphs might take in the future: (1) they render themselves to be equally useful as
graph-agnostic methods in general, (2) novel and better graph construction methods
will be developed, (3) different graph learning techniques are developed or used in
this context, or (4) more complex data integration methods or novel use cases are
employed that render population graphs more useful.

Chapter 8 - Differentially Private Guarantees for Analytics
and Machine Learning on Graphs: A Survey of Results

Differential privacy (DP) is the gold standard for training deep learning models
while providing formal privacy guarantees. Ensuring the privacy of sensitive data
is especially relevant in medical settings, where the utilised patient data can reveal
highly sensitive information. Many DP methods have been designed for datasets
with rows and columns (such as image datasets or tables) and their application to
graph-structured data raises additional challenges. We discuss these challenges and
solutions for them by summarising, categorising, and systematising the works in this
area. We specifically focus on graph learning tasks in comparison to graph analytics.
We summarise different notions of DP on graph data, categorise related works in
this area, show promising use cases and applications, and discuss future works. We
especially highlight the variety of different notions of DP on graph-structured data,
which can complicate the comparison of different methods as well as the most suitable
choice of DP notion for a problem at hand. With this work, we aim to facilitate
future work in the direction of privacy-preserving DL, which is of high relevance
for medical applications. The trade-off between high-performing DL methods and
the protection of sensitive medical data are complementary goals of high relevance
and raise ethical questions since a well-performing method could potentially impact
the health of patients. We believe DP methods on graph-structured data to still be
under-explored and hope to encourage future research in this area with this work.

Chapter 9 - Differentially Private Graph Neural Networks for
Whole-Graph Classification

One desired task of graph learning is whole-graph classification, where a network
learns to predict a property for each individual graph. This can, for example, be
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used for molecule classification, the previously mentioned surface mesh application, or
fingerprint analyses. We introduce a method for DP whole-graph classification with
GNNs, allowing the usage of highly sensitive graph data while preserving privacy.
Our method is based on DP-stochastic gradient descent and extends previous DP
methods to graph deep learning tasks providing graph-level DP. We are able to
achieve high privacy guarantees while keeping reasonable performance on several
datasets. Furthermore, we utilise interpretability methods to show that DP and
non-DP models consider similar components of the graph as important. This supports
the hope that even though the DP models protect the whole graph structure and
satisfy graph-level DP, the model performance is similar to non-DP models both in
terms of predictive performance and internal decision processes. We deem a further
investigation with different interpretability methods as an interesting future direction.
For example, attention-based graph learning techniques could be used in addition to
post-hoc methods to investigate the impact of different neighbouring nodes between
private and non-private learning. With the extension of DP methods to graph-level
tasks, even sensitive multi-graph datasets can be used for DL while considering
privacy concerns. We believe the still present performance gap between private and
non-private DL models for graph classification to be further reduced in the future
and hope to have contributed towards this development with this work.

Chapter 10 - Differentially Private Graph Neural Networks
for Medical Population Graphs and the Impact of the Graph
Structure

Applying DP to node- or edge-level predictions is inherently more complex than
for graph-level predictions since a disentanglement of individuals is impossible. In
this chapter, we combine the application of differential privacy (DP) for node-level
predictions with medical population graphs and investigate the impact of the graph
structure on the performance of DP-GNNs. We find that the “quality” –measured by
homophily in this work– is correlated with larger performance gaps on DP-GNNs.
This is especially critical in settings such as population graphs, which tend to result
in rather low-homophily graphs [73], [105]. We believe this to be an interesting future
direction and that the comparison to other methods for node-level DP GNNs such
as [94] would be valuable next steps. Furthermore, we see a potential to tie graph
structure properties to the long-tail hypothesis on memorisation [106], which could
give more insight into how and when GNNs memorise data and whether the graph
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structure has an impact on this. In the previous chapters, we have highlighted that
GNNs do not out-perform well-tuned baseline methods, such as random forests, on
population graph datasets. An investigation in the context of DP-trained population
graphs would be highly interesting for future work. It is still an open question whether
this also holds under DP guarantees.

The Power of Graph Neural Networks

Over the past years, graph deep learning techniques have become highly popular
and have shown to be powerful tools that can solve a multitude of learning tasks
[107]–[109]. They are promising methods to perform deep learning on a variety of
datasets and data structures, often showing improved performance compared to other,
graph-agnostic DL approaches. However, it has been shown that GNNs out-perform
graph-agnostic models only under certain circumstances [62], [73], [108]. Therefore,
several works have investigated the interplay between graph structure and GNN
performance for different graph convolutions [74]. Zhu et al. [45], e.g., showed that
not only the graph structure –measured by homophily or similar metrics– have an
impact on the performance of GNNs, but that a separation of the ego-node features
of the node of interest from the node features of each k-hop neighbourhood can
improve performance. This and other works investigating the performance of GNNs
on low-homophily graphs have shown that GNNs should not be used without care and
that for some datasets and settings, graph-agnostic methods might even out-perform
GNNs. We investigate the power of GNNs in the medical domain and show that
well-tuned baselines, such as linear regression and random forest, are able to perform
on par with much more complex GNNs on a variety of medical population graph
datasets (Chapter 7). We deem this an important subject that not only raises the
question of how and when GNNs should be utilised but also highlights the need for
well-tuned baselines in (AI) research in general. However, we do not argue that GNNs
are not as powerful as other DL techniques but highlight that the use case and a
suitable graph structure need to be considered in order to achieve appropriate results.
We believe an in-depth analysis, both empirically and theoretically, of when GNNs
are most beneficial and when other DL methods should be favoured to be highly
important future steps in the direction of understanding the power of GNNs and
ensuring their most effective usage.
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11.2 Outlook

This dissertation covers different aspects and challenges of graph deep learning in
medicine. We want to highlight three main aspects of this work and how we believe
this can impact future directions of research in this area:

1. Graph deep learning can lead to faster training and fewer resource
requirements than CNNs on the same task. The mesh representation
of a dataset is more memory efficient than medical images and if the mesh
contains all relevant information, using them for DL speeds up the training
process. This can render GNNs as highly suitable methods for routine medical
examination and clinical translation. This can lead to an easier integration
of DL methods into medical workflows and therefore strongly benefit medical
tasks such as diagnosis or treatment planning. We believe this to be one reason
for seeing more applications of GNNs in the medical domain in the future.

2. A clear understanding of the power of GNNs will increase their
impact. We showed that medical population graphs in combination with
GNNs do not outperform graph-agnostic methods in the currently used setups
–if they are tuned appropriately. We identify the graph construction step as
the major bottleneck for these applications and believe that the development
of novel and more suitable graph construction methods is an important next
step for future research in this area. We furthermore believe that this work
lays the foundation for future theoretical analyses of the power of GNNs, which
would be highly beneficial for the research community and increase the impact
of GNNs on all downstream tasks.

3. Differentially private GNNs are becoming more powerful. The research
area of differentially private GNNs has plenty of open questions to investigate.
Node- and edge-level DP methods still under-perform non-private GNNs more
drastically than privacy-preserving ML in the imaging domain. We believe
DP GNNs to become more powerful in the future and the performance gap
between private and non-private networks to be reduced further, also for edge-
and node-level DP.

In this dissertation, we investigated several different aspects of the utilisation of
GNNs in medicine to which we see many subsequent connection points and promising
possibilities to further improve the understanding and effectiveness of GNNs in
healthcare applications. It would, for instance, be interesting to investigate additional
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graph convolutions on medical datasets, ranging from heterogeneous GNNs [110]
to high-order message-passing schemes [111]. Heterogeneous GNNs can be useful
for more complex graphs, where several different entities are combined, such as
knowledge graphs [112]. Furthermore, the investigation of unsupervised learning
techniques for medical applications, such as anomaly detection, would be interesting.
Graph clustering methods or learning-based methods for anomaly detection of graph
data in medicine could be highly valuable in identifying diseases or pathologies. We
see high value in a future investigation of GNNs compared to other types of DL,
such as natural language processing and transformer networks, which have recently
gained a lot of attention in the DL community. Comparisons between these methods
and GNNs in the medical domain could provide more insights into the power of
GNNs and their applicability to medical tasks and use cases. The definition of clear
(theoretical) boundaries of when GNNs are a suitable choice for solving a problem at
hand would (a) give strong evidence for their applicability and expressiveness and
(b) guide future research in the direction where GNNs can solve previously unsolved
tasks. Finally, we believe that there is high potential in further investigating the
combination of differential privacy (DP) and graph neural networks, especially for
node- and edge-level DP. The authors of [94], for instance, argue that previously used
methods such as [113] are not able to provide satisfying privacy-utility trade-offs and
propose a novel method for DP-GNN training for node-level DP. A combination of
these methods with medical data and the impact of the graph structure under different
privacy guarantees would be interesting to explore. Furthermore, an investigation of
the interplay between different graph convolutions and DP guarantees could improve
the performance of DP GNNs by constructing graph convolutions that are especially
insensitive to the addition of DP methods.

Overall, with the works summarised in this dissertation, we believe to contribute
to a better understanding of how and when GNNs can be used for medical tasks and
aim to guide future research with the goal of obtaining the most beneficial and well-
targeted application of GNNs for medical research and workflows. By showcasing the
applicability of differential privacy to different graph-learning tasks in medicine, we
provide more insights into the important subject of privacy-preserving graph-learning
techniques. We believe privacy-preserving DL on sensitive medical data to become
more ubiquitous in the future and therefore hope to advance the research in this
domain.
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A Further Information on Extended Graph Assessment
Metrics

A.1 K-hop metrics

We here formally define k-hop node homophily and k-hop CCNs.

Definition 8 (k-hop node homophily). A graph G := (V ,E ) with the set of
node labels Y := {yu;u ∈ V } has the following k-hop node homophily:

h(k)(G ,Y ) :=
1

|V |
∑

v∈V

∣∣∣{u|u ∈ N (k)
v , yu = yv}

∣∣∣
|N (k)

v |
, (8)

where N (k)
v is the set of nodes in the k-hop neighbourhood of v.

Definition 9 (k-hop CCNS). A graph G := (V ,E ) with the set of node labels
C has the following k-hop CCNS for two classes c and c′:

CCNS(c, c′) =
1

|Vc||Vc′ |
∑

u∈V,v∈V′

cossim(d(k)(u), d(k)(v)), (9)

where d(k)(v) indicates the empirical histogram of the labels of the k-hop neighbours
of node v and cossim(·, ·) the cosine similarity.

Table 3 summarises model performances of {1, 2, 3}-hop GCNs on the different
benchmark datasets and the corresponing MLP performance on the node features
only. We can see that even though 3-hop homophily of the datasets Computers
and Photo is very low, the GCNs with 3 hops perform best on these datasets.
This does not align with our initial intuition about these metrics and we believe
this finding to be interesting to investigate further.

Table 3. Graph metrics of benchmark node classification datasets with corresponding
performances of an MLP and 1,2, and 3-hop GCNs, reported in accuracy in %. Nodes:
number of nodes, Cl.: number of classes in the dataset.

Dataset Nodes Cl. Node homophily MLP GCN
1-hop 2-hop 3-hop 1-hop 2-hop 3-hop

Cora 1 433 7 0.825 ± 0.29 0.775 ± 0.26 0.663 ± 0.29 60.41 76.33 81.70 78.90
Citeseer 3 703 6 0.706 ± 0.40 0.754 ± 0.28 0.712 ± 0.29 61.19 71.20 72.10 67.10
Pubmed 19 717 3 0.792 ± 0.35 0.761 ± 0.26 0.687 ± 0.26 74.00 76.60 79.10 77.70

Computers 13 752 10 0.785 ± 0.26 0.569 ± 0.27 0.303 ± 0.20 79.35 39.27 67.56 83.13
Photo 7 650 8 0.837 ± 0.25 0.660 ± 0.30 0.447 ± 0.28 82.09 48.10 82.88 88.37

Coauthor CS 18 333 15 0.832 ± 0.24 0.698 ± 0.25 0.520 ± 0.25 88.93 93.13 89.31 92.09
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A.2 Node-wise metrics

The k-hop homophily for regression can also defined for every node individually
and then combined in the full homophily over the entire graph as defined in the
main part of this work.

Definition 10 (Homophily for regression). Let G = (V ,E ) and N k
v be

defined as above and Y be the vector of node labels, which is normalised between
0 and 1. Then the k-hop homophily of a node v ∈ Vc in a node regression task is
defined as the mean label distance between the node v and all it’s neighbours.

HReg(k)v := 1−


 1

|N (k)
v |

∑

n∈N (k)
v

∥yv − yn∥


 , (10)

where | · | is the cardinality of a set and ∥x∥ the absolute value of x.

The k-hop homophily for regression of the whole graph G can then be extracted
as follows:

HReg
(k)
G := 1−

(
1

|V |
∑

v∈V

HReg(k)v

)

= 1−


 1

|V |
∑

v∈V


 1

|N (k)
v |

∑

n∈N (k)
v

∥yv − yn∥




 . (11)

B Experiments

In this section we give more details on training parameters and setups of the
experiments performed in this work.

B.1 Synthetic dataset

The synthetic datasets are generated using sklearn [4]. Each dataset consist of
either 1 000 or 2 000 nodes, with 50 node features of which 5 are informative.
For all experiments on the synthetic dataset we utilise early stopping and the
initial graph structure is generated using the k-nearest neighbours approach with
5 neighbours and the Euclidean distance.

B.2 TADPOLE dataset

We use the same TADPOLE dataset as in [9], which consists of 564 subjects.
The task is the classification of Alzheimer’s disease, mild cognitive impairment
and control normal. For all experiments on the TADPOLE dataset, we use early
stopping and generate the initial graph structure using the k-nearest neighbours
approach and the Euclidean distance.
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B.3 UKBB dataset

The dDGM experiments on the UKBB dataset are performed using no initial
graph structure, since this resulted in better model performance. For the cDGM
experiments we use the k-nearest neighbours approach with x neighbours. We
utilised no early stopping and the Euclidean distance for the graph construction
for the cDGM experiments.

B.4 Baseline results

Table 4 summarises the baseline results on the population graph datasets using a
random forest and the implementation from sklearn [4].

Table 4. Baseline results using random forests on the different datasets. For classification
tasks, we report accuracy in % and for regression MAE. We report the mean and standard
deviation of a 5-fold cross validation.

Dataset Nr. nodes Task Test Score

Synthetic 1000 Binary classification 78.00 ± 0.07
Regression 0.0529 ± 0.01

2000 Binary classification 88.10 ± 0.02
Regression 0.0081 ± 0.00

Tadpole 564 Classification 94.15 ± 0.01

UKBB 6406 Regression 4.2644 ± 0.05
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A Additional Information on the Datasets

We here provide some additional information on some of the population graph datasets.

TADPOLE For the TADPOLE dataset, we follow the approach from Kazi et al. (2022) and use the same
features as in their work.

ABIDE For the ABIDE dataset, we follow the approach from Parisot et al. (2017) and use the following
non-imaging features: Sex and site. The imaging features are extracted in the same way as in their work.

UKBB cardiac We use the following non-imaging features from the UKBB: Age, sex, body fat percentage,
smoking status, body mass index, and the frequency of exercises in the last four weeks. The imaging features
are extracted from these subjects’ cardiac magnetic resonance images (MRIs) and contain information such as
end-diastolic, end-systolic volume, stroke volume, and ejection fraction for both ventricles and myocardial-wall
thickness. More information about the imaging features can be found in Bai et al. (2020).

COVID The COVID dataset is an in-house dataset, with the task of predicting whether a CoViD patient
will require an intensive care unit. The non-imaging features are demographics, blood values, and prior
diseases such as age, sex, fever, coughing, the loss of taste or smell, other symptoms, immunosuppressors,
duration of symptomatic, shortness of breath, GIT symptoms, neurological symptoms, acute, prior diseases,
temperature, oxygen saturation.

UKBB brain age For this dataset, we follow the approach from Bintsi et al. (2023a) for both imaging and
non-imaging features. We use the same non-imaging features as in the original work: Sex, weight, height,
body mass index, systolic blood pressure, diastolic blood pressure, college education, smoking status, alcohol
intake frequency, stroke, diabetes, walking per week, moderate exercising per week, vigorous exercising per
week, fluid intelligence, tower rearranging: number of puzzles correct, trail making task: duration to complete
numeric path trail 1, trail making task: duration to complete alphanumeric path trail 2, matrix pattern
completion: number of puzzles correctly solved, matrix pattern completion: duration spent answering each
puzzle.

Synthetic dataset We generate a synthetic dataset using sklearn with 4 classes and a varying number of
nodes to investigate the impact of the dataset size on the GNN performance. We use 50 node features, of
which 10 are informative.

B Hyperparameters and Model Architectures

We summarise the hyperparameter ranges used for the sweeps for our experiments in Table 10. We distinguish
between experiments using static graph construction, dynamic graph construction, and baseline tuning.

C Additional Results

We here summarise the results of additional experiments to the ones reported in the main text on the datasets
CORA (Table 11), TADPOLE (Table 12), UKBB brain age (Table 13), and UKBB cardiac (Table 14). For
example, the performance of the GNNs on an imitated graph structure that only contains self-loops simulates
transductive learning without a meaningful graph structure and a graph construction using k-NN with the
cosine distance. All here summarised experiments follow the same setup as introduced in Section 4.4. Figure
6 visualises more results following the same approach as in Section 5.4 with the additional dataset UKBB
cardiac and larger.

C.1 Benchmark Datasets

With the experiments on the CORA dataset (Table 11), we observe that only the GNNs that utilise the
“ground truth” edges out-perform our baseline methods, while the commonly used graph construction methods

23



Published in Transactions on Machine Learning Research (02/2024)

Parameter Range

A
ll

Learning rate [0.00001; 0.09]
Dropout [0.0,0.1,0.2,0.3,0.4]
k [2,5,10,20]
Convolutions [GAT, GCN, GraphConv, GraphSAGE]

St
. Nr. layers [1,2,3]

Hidden channels 32

D
yn

. FC layers [[32,8,1], [8,8,3]]
DGM layers [[[32,16,4]], [[32,16,4],[],[]]]
Conv layers [[[32,32]], [[32,32],[32,16],[16,8]]]

N
eu

ra
l

Sh
ea

f

d [2,3,4]
Add lp [0,1]
Add hp [0,1]
Nr. layers [2,3,4,5,6]
Hidden channels [8,16,32]
Input dropout [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]
Dropout [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]
Learning rate [0.02, 0.01, 0.05, 0.05, 0.001]
Sheaf type [BundleSheaf, DiagSheaf, GeneralScheaf]

R
F Max depth [2;20]

Nr. estimators [500;2000]

R Alpha [0.001; 50]

Table 10: Hyperparameter ranges for static and dynamic graph construction experiments. All GNN: for
all GNN experiments, St.: parameters for static experiments only, Dyn.: for dynamic experiments only,
Neural Sheaf : experiments with neural sheaf diffusion models, RF: random forest experiments, R: ridge
classifier/regressor experiments.

for population graphs also do not benefit performance on the CORA dataset. We observed similar results for
the other benchmark datasets.

C.2 Population Graph Datasets

Tables 12, 13, and 14 show the results of additional experiments on the TADPOLE, UKBB brain age, and
UKBB cardiac datasets, respectively. We here also test the performance of GNNs on a graph that only
contains self-loops, which mimics a transductive learning setting without actually using a graph structure.
This rules out that a potential performance increase of GNNs stems from the fact that all node features are
seen during training, which is not the case for standard baseline models, such as random forests or linear
regressions. However, we here also do not observe an improved performance of GNNs compared to our
baseline models.

C.3 Attention Evaluation

In Section 5.4, we observed an impact of the dataset complexity on GNN performance at different homophily
values. While for the CORA dataset, which has 7 classes, low-homophily graphs always resulted in poor
performance, on the TADPOLE dataset, low-homophily graphs were also able to lead to good GNN
performance. Similar to Figure 4, we visualise an additional dataset in Figure 6. We attribute the relatively
good performance of all models at low homophily values on the TADPOLE dataset (Figure 6b) to the
learning of opposite labels for specific node features. If most of the neighbouring nodes share a different label
than the one the node of interest holds, but this is consistent across the graph –the graph has a low CCNS
distance–, then the network can still learn to make the correct predictions. We show this by evaluating the
attention values of GAT networks of four synthetic graph structures with different homophily values. All
values are summarised in the appendix in Table 15. We always report the normalised sum of all attention
heads of the GAT. At homophily 0.9 (where most neighbours share the same label as the node of interest),
the attention from the neighbours with the same label is the highest. On the other hand, at hom = 0.5, all
nodes receive the highest attention from neighbours with class label “MCI”. This makes it very difficult for
the network to distinguish between nodes of different labels, and therefore to make the correct predictions.
At very low homophily (hom = 0.1), the attention of the neighbours with the same label is 0, which again,
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Table 11: Results of the experiments on the CORA dataset. BL: baselines, k: number of neighbours,
Transd.: transductive learning with only self-loops. GNNs out-performing the BL are underlined, and the
best performances of static and dynamic graph constructions, the highest homophily and the lowest CCNS
distance are bold.

Initial edges Model k Test acc Homophily ↑ CCNS distance ↓
Train Test Train Test

B
L

- Random Forest - 0.7788 ± 0.00 - - - -
Ridge classifier - 0.7860 ± 0.00 - - - -
MLP - 0.6030 ± 0.00 - - - -

T
ra

ns
d. Self-loops GCN - 0.6200 ± 0.02 1.000 ± 0.00 1.000 ± 0.00 0.000 0.000

SAGE - 0.6396 ± 0.03 1.000 ± 0.00 1.000 ± 0.00 0.000 0.000
GraphConv - 0.6504 ± 0.01 1.000 ± 0.00 1.000 ± 0.00 0.000 0.000
GAT - 0.6848 ± 0.01 1.000 ± 0.00 1.000 ± 0.00 0.000 0.000

St
at

ic
gr

ap
h

co
ns

tr
uc

ti
on

Random GCN - 0.3068 ± 0.02 0.171 ± 0.26 0.201 ± 0.29 0.373 0.356
SAGE - 0.6224 ± 0.02 0.171 ± 0.26 0.201 ± 0.29 0.373 0.356
GraphConv - 0.5388 ± 0.03 0.171 ± 0.26 0.201 ± 0.29 0.373 0.356
GAT - 0.3208 ± 0.02 0.171 ± 0.26 0.201 ± 0.29 0.373 0.356

k-NN Euclidean GCN 20 0.7336 ± 0.01 0.498 ± 0.23 0.495 ± 0.22 0.378 0.396
SAGE 20 0.6836 ± 0.02 0.498 ± 0.23 0.495 ± 0.22 0.378 0.396
GraphConv 20 0.7692 ± 0.01 0.498 ± 0.23 0.495 ± 0.22 0.378 0.396
GAT 20 0.7288 ± 0.01 0.498 ± 0.23 0.495 ± 0.22 0.378 0.396

k-NN Cosine GCN 20 0.7332 ± 0.01 0.537 ± 0.24 0.537 ± 0.23 0.344 0.362
SAGE 20 0.6668 ± 0.01 0.537 ± 0.24 0.537 ± 0.23 0.344 0.362
GraphConv 20 0.7628 ± 0.01 0.537 ± 0.24 0.537 ± 0.23 0.344 0.362
GAT 20 0.7260 ± 0.01 0.537 ± 0.24 0.537 ± 0.23 0.344 0.362

Orig. edges GCN - 0.8332 ± 0.01 0.830 ± 0.29 0.860 ± 0.29 0.101 0.084
SAGE - 0.8540 ± 0.01 0.830 ± 0.29 0.860 ± 0.29 0.101 0.084
GraphConv - 0.8540 ± 0.01 0.830 ± 0.29 0.860 ± 0.29 0.101 0.084
GAT - 0.8420 ± 0.00 0.830 ± 0.29 0.860 ± 0.29 0.101 0.084

D
yn

am
ic

gr
ap

h
co

ns
tr

uc
ti

on

No edges GCN 2 0.6900 ± 0.03 0.987 ± 0.10 0.749 ± 0.42 0.072 0.181
SAGE 2 0.7000 ± 0.02 0.589 ± 0.38 0.510 ± 0.37 0.232 0.267
GraphConv 2 0.6904 ± 0.01 0.880 ± 0.21 0.769 ± 0.25 0.085 0.144
GAT 2 0.6532 ± 0.03 0.921 ± 0.20 0.652 ± 0.43 0.050 0.208

Self-loops GCN 5 0.5932 ± 0.13 0.737 ± 0.31 0.612 ± 0.37 0.176 0.244
SAGE 20 0.6900 ± 0.01 0.857 ± 0.23 0.751 ± 0.25 0.092 0.160
GraphConv 2 0.7024 ± 0.01 0.696 ± 0.27 0.586 ± 0.32 0.185 0.273
GAT 5 0.6492 ± 0.01 0.796 ± 0.28 0.584 ± 0.39 0.139 0.259

Random GCN 2 0.3240 ± 0.02 0.663 ± 0.28 0.230 ± 0.38 0.201 0.351
SAGE 10 0.6960 ± 0.01 0.674 ± 0.25 0.534 ± 0.32 0.206 0.323
GraphConv 2 0.7052 ± 0.01 0.831 ± 0.24 0.719 ± 0.25 0.101 0.180
GAT 10 0.4252 ± 0.02 0.405 ± 0.23 0.252 ± 0.23 0.436 0.544

k-NN Euclidean GCN 5 0.7192 ± 0.01 0.581 ± 0.31 0.533 ± 0.30 0.314 0.363
SAGE 5 0.7264 ± 0.01 0.838 ± 0.23 0.676 ± 0.35 0.097 0.222
GraphConv 5 0.7284 ± 0.01 0.884 ± 0.21 0.801 ± 0.24 0.073 0.129
GAT 20 0.6388 ± 0.06 0.419 ± 0.27 0.415 ± 0.28 0.429 0.446

k-NN Cosine GCN 5 0.7424 ± 0.00 0.611 ± 0.33 0.570 ± 0.32 0.299 0.349
SAGE 5 0.7216 ± 0.01 0.774 ± 0.26 0.663 ± 0.35 0.153 0.234
GraphConv 5 0.7304 ± 0.01 0.890 ± 0.21 0.778 ± 0.25 0.070 0.143
GAT 20 0.6716 ± 0.01 0.662 ± 0.30 0.634 ± 0.37 0.216 0.236

Orig. edges GCN 20 0.8372 ± 0.01 0.861 ± 0.24 0.813 ± 0.31 0.086 0.133
SAGE 10 0.7832 ± 0.01 0.958 ± 0.10 0.780 ± 0.32 0.019 0.138
GraphConv 2 0.7576 ± 0.02 0.819 ± 0.25 0.780 ± 0.29 0.115 0.149
GAT 2 0.8388 ± 0.04 0.885 ± 0.21 0.807 ± 0.29 0.071 0.131

makes it possible for the network to distinguish nodes by their neighbourhood, enabling correct predictions.
Three examples of 2-hop neighbourhoods at the different homophily values are visualised in Figure 7. The
label is indicated by the node colour and the distance between two nodes indicates the attention value of
this edge. While at hom = 0.9, most neighbours share the same label, at a low homophily value of 0.1 (c),
most neighbours have a different label and the attention values are similar across them. At an in-between
homophily of 0.4, several nodes share the same label, while others do not.

25



Published in Transactions on Machine Learning Research (02/2024)

Table 12: Results of the experiments on the TADPOLE dataset. BL: baselines, k: number of neighbours,
Transd.: transductive learning with only self-loops. Overall, the best performance for static and dynamic
graph construction is underlined, the best performance for static and dynamic graph construction, highest
homophily and lowest DNNS distance are bold.

Initial edges Model k Test acc ↑ Homophily ↑ CCNS distance ↓
Train Test Train Test

B
L

- Majority vote - 0.5674 ± 0.00 - - - -

- Random forest - 0.9474 ± 0.00 - - - -
- Logistic regression - 0.8597 ± 0.00 - - - -

T
ra

ns
d. Self-loops GCN - 0.9018 ± 0.01 1.000 ± 0.00 1.000 ± 0.00 0.000 0.000

SAGE - 0.8772 ± 0.01 1.000 ± 0.00 1.000 ± 0.00 0.000 0.000
GraphConv - 0.8912 ± 0.01 1.000 ± 0.00 1.000 ± 0.00 0.000 0.000
GAT - 0.6386 ± 0.07 1.000 ± 0.00 1.000 ± 0.00 0.000 0.000

St
at

ic
gr

ap
h

co
ns

tr
uc

ti
on

Random GCN - 0.7965 ± 0.04 0.457 ± 0.49 0.426 ± 0.49 0.350 0.348
SAGE - 0.8877 ± 0.01 0.457 ± 0.49 0.426 ± 0.49 0.350 0.348
GraphConv - 0.8842 ± 0.01 0.457 ± 0.49 0.426 ± 0.49 0.350 0.348
GAT - 0.7930 ± 0.04 0.457 ± 0.49 0.426 ± 0.49 0.350 0.348

k-NN Euclidean GCN 5 0.7439 ± 0.03 0.754 ± 0.23 0.775 ± 0.24 0.283 0.213
SAGE 5 0.8982 ± 0.03 0.754 ± 0.23 0.775 ± 0.24 0.283 0.213
GraphConv 5 0.9088 ± 0.01 0.754 ± 0.23 0.775 ± 0.24 0.283 0.213
GAT 2 0.7895 ± 0.04 0.857 ± 0.23 0.904 ± 0.20 0.184 0.094

k-NN Cosine GCN 5 0.7789 ± 0.02 0.760 ± 0.23 0.754 ± 0.25 0.276 0.221
SAGE 5 0.8877 ± 0.02 0.760 ± 0.23 0.754 ± 0.25 0.276 0.221
GraphConv 5 0.9333 ± 0.01 0.760 ± 0.23 0.754 ± 0.25 0.276 0.221
GAT 2 0.8105 ± 0.02 0.855 ± 0.23 0.895 ± 0.21 0.192 0.105

D
yn

am
ic

gr
ap

h
co

ns
tr

uc
ti

on

No edges GCN 20 0.9263 ± 0.03 0.899 ± 0.19 0.919 ± 0.19 0.143 0.073
SAGE 20 0.9053 ± 0.02 0.867 ± 0.20 0.806 ± 0.21 0.183 0.183
GraphConv 2 0.9228 ± 0.02 0.919 ± 0.18 0.798 ± 0.34 0.107 0.190
GAT 20 0.9018 ± 0.06 0.739 ± 0.24 0.908 ± 0.15 0.280 0.101

Self-loops GCN 10 0.9298 ± 0.02 0.891 ± 0.21 0.902 ± 0.16 0.150 0.085
SAGE 5 0.9088 ± 0.02 0.900 ± 0.19 0.614 ± 0.29 0.140 0.441
GraphConv 5 0.9228 ± 0.02 0.920 ± 0.18 0.937 ± 0.15 0.113 0.051
GAT 20 0.9123 ± 0.05 0.826 ± 0.24 0.784 ± 0.21 0.236 0.204

Random GCN 2 0.8421 ± 0.06 0.912 ± 0.20 0.851 ± 0.27 0.132 0.177
SAGE 10 0.9228 ± 0.02 0.834 ± 0.23 0.423 ± 0.22 0.205 0.616
GraphConv 5 0.8947 ± 0.03 0.775 ± 0.24 0.411 ± 0.25 0.273 0.594
GAT 5 0.8632 ± 0.02 0.903 ± 0.20 0.895 ± 0.20 0.145 0.119

k-NN Euclidean GCN 2 0.9333 ± 0.01 0.811 ± 0.25 0.793 ± 0.28 0.229 0.204
SAGE 20 0.9368 ± 0.01 0.896 ± 0.19 0.461 ± 0.63 0.138 0.632
GraphConv 10 0.8947 ± 0.02 0.736 ± 0.23 0.777 ± 0.29 0.302 0.219
GAT 10 0.9123 ± 0.03 0.826 ± 0.24 0.775 ± 0.29 0.223 0.206

k-NN Cosine GCN 2 0.8421 ± 0.02 0.833 ± 0.24 0.786 ± 0.30 0.210 0.199
SAGE 20 0.9404 ± 0.02 0.822 ± 0.23 0.899 ± 0.21 0.220 0.084
GraphConv 10 0.8982 ± 0.02 0.740 ± 0.25 0.761 ± 0.28 0.304 0.213
GAT 10 0.8316 ± 0.04 0.846 ± 0.23 0.828 ± 0.27 0.201 0.187
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Table 13: Results of the experiments on the UKBB Brain Age dataset. BL: baselines, k: number of
neighbours, Transd.: transductive training with only self-loops. The best performance and highest homophily
for static and dynamic graph construction are bold. For all methods, homophily is evaluated on the train
and test set.

Initial edges Model k Test MAE ↓ Homophily ↑
Train Test

B
L

- Mean prediction - 6.4090 ± 0.00 - -
- Random Forest - 4.1424 ± 0.01 - -
- Linear Regression - 3.7545 ± 0.00 - -

T
ra

ns
d. Self-loops GCN - 4.0236 ± 0.12 1.000 ± 0.00 1.000 ± 0.00

SAGE - 4.0339 ± 0.05 1.000 ± 0.00 1.000 ± 0.00
GraphConv - 3.9750 ± 0.06 1.000 ± 0.00 1.000 ± 0.00
GAT 3.9477 ± 0.04 1.000 ± 0.00 1.000 ± 0.00

St
at

ic
gr

ap
h

co
ns

tr
uc

ti
on

Random GCN - 6.2158 ± 0.07 0.750 ± 0.10 0.742 ± 0.10
SAGE - 3.8764 ± 0.08 0.750 ± 0.10 0.742 ± 0.10
GraphConv - 4.2029 ± 0.16 0.750 ± 0.10 0.742 ± 0.10
GAT - 6.4034 ± 0.07 0.750 ± 0.10 0.742 ± 0.10

k-NN Euclidean GCN 2 4.3351 ± 0.07 0.915 ± 0.07 0.916 ± 0.07
SAGE 10 4.1780 ± 0.17 0.843 ± 0.06 0.844 ± 0.06
GraphConv 2 4.1979 ± 0.04 0.915 ± 0.07 0.916 ± 0.07
GAT 20 4.2888 ± 0.01 0.832 ± 0.06 0.834 ± 0.06

k-NN Cosine GCN 2 4.3808 ± 0.08 0.915 ± 0.07 0.919 ± 0.06
SAGE 10 4.2302 ± 0.21 0.843 ± 0.06 0.844 ± 0.06
GraphConv 2 4.2260 ± 0.06 0.915 ± 0.07 0.919 ± 0.06
GAT 20 4.3182 ± 0.03 0.833 ± 0.06 0.833 ± 0.06

D
yn

am
ic

gr
ap

h
co

ns
tr

uc
ti

on

No edges GCN 2 4.0257 ± 0.06 0.886 ± 0.09 0.865 ± 0.10
SAGE 5 3.8882 ± 0.03 0.752 ± 0.10 0.754 ± 0.10
GraphConv 5 3.9741 ± 0.05 0.845 ± 0.08 0.840 ± 0.08
GAT 2 4.1071 ± 0.07 0.840 ± 0.10 0.843 ± 0.11

Self-loops GCN 2 3.9869 ± 0.06 0.844 ± 0.10 0.841 ± 0.10
SAGE 20 3.9496 ± 0.16 0.781 ± 0.07 0.780 ± 0.08
GraphConv 20 3.9422 ± 0.13 0.849 ± 0.06 0.845 ± 0.07
GAT 2 4.0825 ± 0.07 0.844 ± 0.10 0.839 ± 0.10

Random GCN 2 5.1712 ± 0.20 0.837 ± 0.12 0.834 ± 0.13
SAGE 10 3.8811 ± 0.04 0.769 ± 0.08 0.780 ± 0.09
GraphConv 10 4.1248 ± 0.30 0.770 ± 0.08 0.768 ± 0.09
GAT 2 5.7138 ± 0.10 0.852 ± 0.11 0.831 ± 0.14

k-NN Euclidean GCN 2 4.1109 ± 0.07 0.835 ± 0.10 0.849 ± 0.11
SAGE 20 3.9226 ± 0.13 0.845 ± 0.06 0.842 ± 0.07
GraphConv 2 3.9560 ± 0.09 0.843 ± 0.11 0.831 ± 0.11
GAT 2 4.1603 ± 0.04 0.835 ± 0.10 0.837 ± 0.11

k-NN Cosine GCN 2 4.0975 ± 0.05 0.839 ± 0.10 0.844 ± 0.10
SAGE 20 3.9353 ± 0.12 0.837 ± 0.06 0.837 ± 0.07
GraphConv 2 4.0181 ± 0.13 0.848 ± 0.11 0.852 ± 0.10
GAT 2 4.1927 ± 0.04 0.833 ± 0.10 0.835 ± 0.10
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Table 14: Results of the experiments on the UKBB Cardiac dataset. BL: baselines, k: number of neighbours,
Transd.: transductive training with only self-loops, GC: graph construction. GNNs out-performing the
baselines are underlined, and the best performances of static and dynamic graph constructions are bold.

Initial edges Model k Test accuracy Homophily ↑ CCNS distance ↓
Train Test Train Test

B
L

- Majority vote - 0.5000 ± 0.00 - - - -

- Random Forest - 0.7027 ± 0.00 - - - -
- Linear Regression - 0.6916 ± 0.00 - - - -

T
ra

ns
d. Self-loops GCN - 0.6816 ± 0.01 1.000 ± 0.00 1.000 ± 0.00 0.000 0.000

SAGE - 0.5920 ± 0.08 1.000 ± 0.00 1.000 ± 0.00 0.000 0.000
GraphConv - 0.6724 ± 0.02 1.000 ± 0.00 1.000 ± 0.00 0.000 0.000
GAT - 0.6812 ± 0.01 1.000 ± 0.00 1.000 ± 0.00 0.000 0.000

St
at

ic
G

C

Random GCN - 0.5019 ± 0.03 0.504 ± 0.34 0.480 ± 0.34 0.500 0.499
SAGE - 0.6824 ± 0.02 0.504 ± 0.34 0.480 ± 0.34 0.500 0.499
GraphConv - 0.5169 ± 0.03 0.504 ± 0.34 0.480 ± 0.34 0.500 0.499
GAT - 0.5291 ± 0.02 0.504 ± 0.34 0.480 ± 0.34 0.500 0.499

k-NN Euclidean GCN 10 0.6632 ± 0.01 0.590 ± 0.19 0.605 ± 0.19 0.477 0.467
SAGE 2 0.6498 ± 0.01 0.778 ± 0.25 0.786 ± 0.25 0.345 0.335
GraphConv 5 0.6686 ± 0.01 0.640 ± 0.22 0.645 ± 0.23 0.449 0.447
GAT 20 0.6322 ± 0.03 0.563 ± 0.16 0.572 ± 0.15 0.488 0.483

k-NN Cosine GCN 20 0.6517 ± 0.00 0.564 ± 0.16 0.576 ± 0.15 0.487 0.482
SAGE 10 0.6510 ± 0.03 0.595 ± 0.19 0.601 ± 0.19 0.474 0.470
GraphConv 10 0.6563 ± 0.02 0.595 ± 0.19 0.601 ± 0.19 0.474 0.470

D
yn

am
ic

G
C

No edges GCN 2 0.6816 ± 0.01 0.644 ± 0.36 0.627 ± 0.37 0.458 0.468
SAGE 20 0.6379 ± 0.02 0.599 ± 0.18 0.572 ± 0.19 0.489 0.484
GraphConv 2 0.6215 ± 0.06 0.606 ± 0.37 0.636 ± 0.36 0.478 0.463
GAT 2 0.6839 ± 0.00 0.615 ± 0.38 0.616 ± 0.38 0.474 0.473

Self-loops GCN 2 0.6521 ± 0.03 0.622 ± 0.37 0.602 ± 0.36 0.470 0.479
SAGE 20 0.6444 ± 0.01 0.617 ± 0.20 0.606 ± 0.21 0.461 0.468
GraphConv 2 0.6659 ± 0.02 0.718 ± 0.33 0.652 ± 0.36 0.405 0.454
GAT 2 0.6812 ± 0.01 0.636 ± 0.37 0.634 ± 0.38 0.463 0.464

Random GCN 2 0.6360 ± 0.02 0.551 ± 0.37 0.538 ± 0.37 0.495 0.497
SAGE 10 0.6678 ± 0.01 0.508 ± 0.16 0.556 ± 0.19 0.500 0.490
GraphConv 2 0.6563 ± 0.02 0.542 ± 0.36 0.526 ± 0.36 0.496 0.499
GAT 10 0.6510 ± 0.04 0.520 ± 0.18 0.516 ± 0.16 0.499 0.499

k-NN Euclidean GCN 2 0.6781 ± 0.01 0.611 ± 0.37 0.612 ± 0.36 0.475 0.475
SAGE 10 0.6970 ± 0.02 0.499 ± 0.11 0.507 ± 0.12 0.500 0.500
GraphConv 2 0.6860 ± 0.02 0.678 ± 0.35 0.614 ± 0.38 0.436 0.474
GAT 5 0.6690 ± 0.03 0.541 ± 0.25 0.554 ± 0.25 0.495 0.493

k-NN Cosine GCN 2 0.6770 ± 0.00 0.607 ± 0.37 0.595 ± 0.37 0.477 0.482
SAGE 10 0.6659 ± 0.03 0.682 ± 0.24 0.677 ± 0.25 0.421 0.426
GraphConv 2 0.6862 ± 0.01 0.767 ± 0.25 0.714 ± 0.30 0.357 0.409
GAT 2 0.6736 ± 0.01 0.589 ± 0.37 0.588 ± 0.37 0.484 0.484

Table 15: Mean and standard deviation of normalised attention values from all neighbours with respective
labels of a graph structure with high and low homophily. The highest attention values for each node label
class are highlighted in bold. NC: normal control, MCI: mild cognitive impairment, AD: Alzheimer’s disease.

Homophily Node label Attention from NC Attention from MCI Attention from AD

0.9
NC 1.919 ± 1.08 0.532 ± 0.56 0.091 ± 0.21
MCI 0.198 ± 0.31 1.881 ± 1.06 0.083 ± 0.22
AD 0.158 ± 0.29 0.777 ± 0.66 1.961 ± 1.14

0.4
NC 0.978 ± 0.75 2.002 ± 1.05 0.255 ± 0.34
MCI 0.556 ± 0.59 0.972 ± 0.74 0.243 ± 0.36
AD 0.676 ± 0.68 1.743 ± 0.97 0.940 ± 0.71

0.1
NC 0.000 ± 0.00 3.106 ± 1.47 0.415 ± 0.48
MCI 0.985 ± 0.74 0.000 ± 0.00 0.461 ± 0.57
AD 1.038 ± 0.88 3.013 ± 1.35 0.000 ± 0.00
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(b) TADPOLE dataset
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(c) ABIDE dataset
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(d) UKBB Cardiac dataset

Figure 6: Performance of different graph convolutions on synthetic graph structures with different homophily
values on (a) the CORA dataset, (b) the TADPOLE dataset, (c) the ABIDE dataset, and (d) the UKBB
cardiac dataset. The dashed blue line indicates the mean performance of the best baseline for each dataset.

(a) Homophily 0.9 (b) Homophily 0.4 (c) Homophily 0.1

Figure 7: Visualisation of attention-based neighbourhoods of a random node (centre node) from the
TADPOLE dataset with synthetically generated graph structures and its two-hop neighbourhood. The node
colours indicate node labels and the distance is proportional to the summed attention weight of the edges to
the respective neighbouring node.
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SUPPLEMENTARY MATERIAL

APPENDIX A
DATASETS

Here, we provide some additional information about the
datasets that were used for the experiments presented in this
work.

A.1 Synthetic Dataset

We generate 1, 000 individual Erdős-Rényi graphs, where
500 graphs belong to each of the two classes that define the
binary classification problem. Each individual graph consists
of twenty nodes and each node contains nine features, which
are sampled from a normal distribution with the mean values
of 0 and 0.1, while having the same standard deviation of 0.5.
The edge connection probabilities of the graphs from the two
classes are set to 0.2 and 0.3, respectively. We split the dataset
into 600 training samples, 100 validation samples and 300
test samples, and perform binary graph classification.

A.2 ECG Dataset

LBBB is an insidious type of arrhythmia (that is, anomaly in
the conduction system of the heart), which, when appearing
suddenly, can herald acute myocardial ischemia (a lack of
oxygenation of the heart muscle) or infarction. The ECG
dataset we use contains ECG data of 1125 subjects.

APPENDIX B
EXECUTION ENVIRONMENT

The experiments were executed on a Linux machine with a
Quadro RTX 8000 GPU and the code was implemented in
PyTorch [70] version 1.12.0, Pytorch Geometric [71] version
2.0.4 and Functorch [72] version 0.2.0.

APPENDIX C
MODEL ARCHITECTURES AND TRAINING
PARAMETERS

We here provide a brief overview of the model architectures
we used for our experiments as well all corresponding hyper-
parameters. For each dataset, we utilised a different model
architecture which we determined through hyperparameter
searches. Table 4 summarises the hyperparameters used for
each experiment. For SGD training on the Molbace dataset
we used a cyclic learning rate scheduler with a defined lower
and upper learning rate as described in Table 4. We did not
observe increased performance when applying the cyclic
learning rate scheduler to DP-SGD training on this dataset,
which is why we did not utilise a learning rate scheduler
for those applications. All models are implemented using
PyTorch [73] and PyTorch Geometric [71]. For all binary models
we used the Binary Cross Entropy Loss, for the non-binary
classification task of the Fingerprint dataset we use the Cross
Entropy Loss.

C.1 Synthetic Dataset
For the synthetic dataset we use a Neural Network (NN)
with four layers of the corresponding graph convolutions
(GCN, GAT, or GraphSAGE), followed by a Mean Pooling
layer and two linear layers. Each convolutional layer, as well
as the first linear layer, is followed by a ReLU activation
function. The hidden channels of the graph convolutional
layers are 200, 400, 800, 1600 and the fully connected layers
at the end of the network have 265 hidden channels. For
non-DP training, we used a learning rate of 0.05 for the
GCN network, 0.1 for GAT and 0.08 for GraphSAGE and a
batch size of 24. For all DP-SGD training runs we use an L2

clipping bound of 3.0 and noise multipliers in {1.0, 2.0, 2.2}.

C.2 Fingerprint Dataset
For the experiments on the Fingerprint dataset we use a NN
architecture with an Instance Normalisation layer followed
by three layers of the corresponding graph convolution
(GCN, GAT, or GraphSAGE), a Max Pooling layer and
two linear layers. Each convolutional layer, as well as the
first linear layer, is followed by a ReLU activation function.
The hidden channels of the graph convolutional layers are
256, 512, 1024 and the fully connected layers at the end of
the network have 265 hidden channels. For the non-DP
training we used a learning rate of 0.08 for GCN, GAT
and GraphSAGE networks and a batch size of 64. DP-SGD
training was performed with different noise multipliers in
{1.0, 1.8, 2.3} and the same L2 Clip of 3.0. The learning rates
differ with the type of graph convolution and can be found
in Table 4.

C.3 ECG Dataset
The experiments on the ECG Dataset were performed with a
model architecture consisting of two graph convolutional lay-
ers, followed by a Max Pooling layer and three linear layers.
Each convolutional layer and each linear layer is followed by
a ReLU activation function. The hidden channels of the graph
convolutional layers are 256, 512 and of the linear layers
128, 56, 24. In the non-DP training all convolutional layers
and the Max Pooling layer are followed by a Dropout Layer
with dropout probability 0.2. We removed all Dropout Layers
for the DP-SGD training, because the added noise intrinsic to
the algorithm already functions as regularisation. Learning
rate and batch size of the SGD training were set to 0.05 and
24, correspondingly for all models. The learning rates for
DP-SGD training runs depends on the graph convolution
and can be found in Table 4.

C.4 Molbace Dataset
For the experiments on the Molbace dataset we utilise a NN
with an Instance Normalisation layer, followed by three
graph convolution layers, each followed by another Instance
Normalisation layer and a ReLU activation function. The
convolutional layers are followed by a Mean Pooling layer
and two linear layers with 512 hidden channels. For the non-
DP training we use a Batch Size of 64 and a cyclic learning
rate scheduler with upper and lower learning rates noted in
Table 4. The learning rates were determined using a learning
rate finder. For the DP-SGD training we use a Batch Size of
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Fig. 7: Training loss curves of the three GNN models on the
ECG dataset using DP-SGD with a noise multiplier of 0.6
and an L2-clip of 5.0, where ε = 10.

24 and a learning rate of 0.1 for all models. We did not use a
learning rate scheduler for DP-SGD training, since it did not
improve model performance.

C.5 Organ Meshes Dataset
To train the organ mesh classification we utilise a NN with
three graph convolutional layers that are either GCN, Graph-
SAGE, or Cheb convolutions. The Leaky ReLU activation
function was used as well as a dropout layer with probability
0.3 after each non-linearity. Global mean pooling was used
as a readout layer to unify the graph representation into
one representation for the whole graph. The batch size was
set to 24 for all experiments on this dataset. The specific
learning rates for each model and DP and non-DP setting
can be found in Table 4. We used chebyshev spectral graph
convolutions (Cheb) instead of graph attention (GAT) layers
for this dataset, due to limited resources and the fact that
GAT layers need more memory for multiple attention heads.

APPENDIX D
PERFORMANCES OF DIFFERENT MODEL
ARCHITECTURES

The comparable performance of the different GNN architec-
tures we use for our experiments (GCN, GAT, Cheb, and
GraphSAGE) leads to the conclusion that DP-SGD training
is independent from the type of graph convolution. For all
datasets, we report similar performance of all models and
we show two examples of respective training loss curves in
Figure 7 and 8. Figure 7 shows the training loss curves on the
ECG dataset for the DP-SGD training with noise multiplier
0.6 and L2 Clip 5.0.

APPENDIX E
EXPLAINABILITY USING GNNEXPLAINER

As noted in section 5, we applied the explainability tech-
nique GNNExplainer [74] to our trained networks. Figure
9 visualises four more examples of the original graph (A)
in blue, the output of the GNNExplainer from the “normal”
SGD training (B) in orange and the graph resulting from

Fig. 8: Training loss curves of the three GNN models on the
Fingerprint dataset using DP-SGD with a noise multiplier of
1.0 and an L2-clip of 3.0, where ε = 5.

the GNNExplainer and the DP-SGD training (C) in red. All
figures were created using our GCN model on the Fingerprint
dataset. The DP model was trained with a privacy budget
of ε = 5. In the second example, B.2 and C.2 are equal,
indicating that in both SGD and DP-SGD training the same
graph edges are considered most relevant. In the other three
examples in Figure 9 there are minute differences in the
GNNExplainer graphs, showing that slightly different edges
have most impact on the model’s prediction.
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Dataset Model Optimiser Learning Rate Batch Size Scheduler

Synthetic GCN SGD 0.05 24 -
DP-SGD 0.1 24 -

GAT SGD 0.1 24 -
DP-SGD 0.4 24 -

SAGE SGD 0.04 24 -
DP-SGD 0.2 24 -

Fingerprints GCN SGD 0.08 64 -
DP-SGD 0.2 64 -

GAT SGD 0.08 64 -
DP-SGD 0.2 64 -

SAGE SGD 0.08 64 -
DP-SGD 0.1 64 -

ECG GCN SGD 0.05 24 -
DP-SGD 0.12 24 -

GAT SGD 0.05 24 -
DP-SGD 0.15 24 -

SAGE SGD 0.05 24 -
DP-SGD 0.1 24 -

Molbace GCN SGD 7e− 3 to 7e− 2 64 cyclic
DP-SGD 0.1 24 -

GAT SGD 5e− 3 to 5e− 2 64 cyclic
DP-SGD 0.1 24 -

SAGE SGD 7e− 3 to 7e− 2 64 cyclic
DP-SGD 0.1 24 -

Organ Meshes GCN SGD 0.0712 24 -
DP-SGD (ε = 1.0) 0.07134 25 -
DP-SGD (ε = 0.5) 0.0748 25 -

Cheb SGD 0.0923 24 -
DP-SGD (ε = 1.0) 0.0394 24 -
DP-SGD (ε = 0.5) 0.05495 24 -

SAGE SGD 0.0765 24 -
DP-SGD (ε = 1.0) 0.07134 24 -
DP-SGD (ε = 0.5) 0.02735 24 -

TABLE 4: Overview of hyperparameters for all datasets and experiments. We performed manual, grid search, and random
search hyperparameter tuning.
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Fig. 9: Visualisation of four GNNExplainer examples on the
fingerprint dataset. The original graph (A) is shown in blue,
the resulting graph from the GNNExplainer and the model
trained with SGD in orange (B) and with DP-SGD in red
(C). Both models were trained on the Fingerprint dataset. The
DP-SGD training was performed with a privacy budget of
ε = 5.
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