
Technische Universität München
TUM School of Computation, Information and Technology

Paradigms for the Low-Frequency
Stable Solution of Electromagnetic

Scattering, Radiation, and Equivalent
Source Reconstruction Problems

Bernd Hofmann

Vollständiger Abdruck der von der TUM School of Computation,
Information and Technology der Technischen Universität München

zur Erlangung eines

Doktors der Ingenieurwissenschaften (Dr.-Ing.)

genehmigten Dissertation.

Vorsitz:
Prüfende der Dissertation:

Prof. Dr.-Ing. Norbert Hanik
1. Prof. Dr.-Ing. Thomas Eibert
2. Prof. Dr.-Ing. Simon B. Adrian
3. Prof. Dr. Kristof Cools

Die Dissertation wurde am 15.04.2024 bei der Technischen Universität
München eingereicht und durch die TUM School of Computation,

Information and Technology am 18.09.2024 angenommen.





0Kurzbeschreibung
Im Rahmen der vorliegenden Arbeit werden zwei Teilgebiete der numerischen elektromag-
netischen Feldberechnung behandelt: Die Streuung und Abstrahlung von ideal leitenden
Körpern sowie die Rekonstruktion äquivalenter Quellen anhand von Messungen des elek-
tromagnetischen Feldes.

Bezüglich des ersten Teilgebietes, werden Paradigmen zur Stabilisierung der weit verbrei-
teten elektrischen Feldintegralgleichung bei niedrigen Frequenzen vorgestellt. Ausgehend
von einer Galerkin-Diskretisierung mit Rao-Wilton-Glisson-Basisfunktionen und der eta-
blierten Vorkonditionierung mittels Quasi-Helmholtz-Projektoren, wird ein Verfahren prä-
sentiert, welches die katastrophalen Rundungsfehler beseitigt, welche entstehen, wenn ein
Feldmit solenoidalen (divergenzfreien) Funktionen getestet wird. Weiterhin, wird ein adap-
tives Normierungsverfahren für die Quasi-Helmholtz-Projektoren vorgestellt, welches sich
selbst an die vorhandene Anregung anpasst. Dadurch wir das Problem der katastrophalen
Rundungsfehler in der Lösung der elektrischen Feldintegralgleichung gelöst, indem sicher-
gestellt wird, dass sowohl die solenoidalen als auchdie nicht-solenoidalenKomponenten des
zu bestimmenden Oberflächenstromsmit ähnlicher relativer Genauigkeit bestimmt werden.
In der Folge können beliebige Anregungen für Streu- und Abstrahlungsprobleme behandelt
werden ohne die Notwendigkeit Vorwissen über die Anregung vorauszusetzen und ohne
ad-hoc Anpassungen an spezifische Anregungen. Außerdem wird für die Diskretisierung
der elektrischen Feldintegralgleichung basierend auf B-Spline Basisfunktionen eine Quasi-
Helmholtz-Zerlegung hergeleitet. Diese kann explizit in Form von dünnbesetzten Transfor-
mationsmatrizen ausgedrückt werden und erlaubt somit die in diesem Zusammenhang von
linearen Basisfunktionen bekannten vorteilhaften Eigenschaften auf B-Spline Basisfunktio-
nen beliebiger Polynomordnung zu übertragen.

Bezüglich des zweiten Teilgebietes, der Rekonstruktion äquivalenterQuellen, wird ein Ver-
fahren zur niederfrequenten Stabilisierung der Rekonstruktion äquivalenter elektrischer
Ströme anhand vonMesswerten des elektromagnetischen Feldes vorgestellt. Hierzuwerden
die aus Streuproblemen bekanntenQuasi-Helmholtz-Projektoren adaptiert, sowie die adap-
tive Frequenznormierung und die Stabilisierung des Testens von Feldern mit solenoidalen
Funktionen mit einbezogen. Als ein letztes Paradigma wird gezeigt, wie die als Compressed
Sensing (CS) bezeichneten Signalverarbeitungsverfahren zuverlässig im Bereich der sphäri-
schenNahfeld-Fernfeld-Transformation angewendetwerden können. Ziel dabei ist es grund-
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sätzlich, die Anzahl der Messwerte zu verringern, die aufgenommen werden müssen, um
das abgestrahlte Feld einer Antenne an beliebigen Punkten bestimmen zu können. Im Rah-
men dessen wird ein Verfahren vorgestellt, um die minimal benötigte Anzahl an Mess-
werten zu bestimmen, sodass mittels CS die äquivalenten Quellen mit einer vordefinierten
Genauigkeit rekonstruiert werden können. Hierbei werden auch Einflussfaktoren wie die
Wahl der Messorte, das Messrauschen oder der Einfluss der Messantenne berücksichtigt.
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0Abstract
Two problem areas encountered in computational electromagnetics (CEM) are addressed
in this dissertation: the radiation and the scattering from perfectly electrically conducting
(PEC) bodies and the reconstruction of equivalent sources from measurements of electro-
magnetic fields with probe antennas.

Concerning the first area, paradigms are presented to low-frequency stabilize the well-
established electric field integral equation (EFIE). Starting from a Galerkin discretization
with Rao-Wilton-Glisson (RWG) basis functions and the known stabilization via quasi-
Helmholtz projectors, an excitation-agnostic scheme is derived to overcome the catastrophic
round-off errors encountered when testing a field with solenoidal functions. Moreover,
an excitation-agnostic and self-adaptive frequency normalization is introduced to the qua-
si-Helmholtz projectors to overcome catastrophic round-off errors in the solution of the
EFIE.The self-adaptive normalization ensures that both solenoidal and non-solenoidal com-
ponents of the determined surface current density are recovered with a similar relative
accuracy, which is required to determine the radiated and scattered fields accurately. As a
consequence, arbitrary excitations can be handled without a-priori information about the
excitations and without ad-hoc adaptions. For the B-spline-based discretization of the EFIE,
a quasi-Helmholtz decomposition is derived. The latter can be expressed explicitly in terms
of sparse mapping matrices which allows to transfer the advantageous properties known
from the low-order mesh-based stabilization schemes to the high-order B-spline-based dis-
cretization of arbitrary polynomial degree.

Concerning the second area, the reconstruction of equivalent sources, a scheme is pre-
sented to low-frequency stabilize the reconstruction of equivalent electric currents de-
scribed by RWG functions. To this end, the quasi-Helmholtz projectors are adapted, and
the self-adaptive frequency normalization, as well as the stabilized evaluation of arbitrary
excitations by solenoidal functions, are incorporated. Finally, it is shown how compressed
sensing (CS) can, in principle, be applied reliably to reduce the number of measurement
samples that are required for a spherical near-field far-field transformation (NFFFT) based
on the spherical vector wave expansion of the radiated field of a device under test (DUT).
This includes a strategy to determine the minimum number of samples required for CS to
achieve a predefined far field (FF) accuracy, considering influence factors such as noise, the
sampling locations, or the probe antenna.
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1
Introduction

“The purpose of computation is insight, not numbers.”
[Hamming 1962]

There is a multitude of applications where the interaction of electromagnetic fields,
charges, currents, and matter play a central role. Typical examples are the design
of antennas, wired and wireless communication, imaging for medical diagnoses,
radar systems for aviation and automotive systems, and many more. Modeling

such systems via computer simulations, an approach called computational electromagnetics
(CEM), oftentimes allows for optimizations, fast trial of new concepts, and postprocessing
of measurement data, overall improving the development process. To this end, in CEM
either Maxwell’s equations governing classical electrodynamics or the equations of quan-
tum electrodynamics (QED) [Feynman 1961; Roth et al. 2019; Roth 2020] have to be solved
(depending on the average number of photons present in the considered problem [Jackson
1999, p. 1]).

This thesis is concerned with two problem areas encountered in classical electrodynamics:
the radiation and the scattering from perfectly electrically conducting (PEC) bodies, as well
as the reconstruction of equivalent sources from measurements of electromagnetic fields.
Since analytical solutions to the equations describing these problems are not available with
only a few exceptions such as the scattering from a sphere [Mie 1908], numerical techniques
are at the heart of CEM and are also subject of this thesis.

1.1 Numerical Techniques in Electromagnetics

Numerical techniques are in general concerned with finding algorithms to obtain approxi-
mate yet controllably accurate solutions to continuous equations in a limited time [Tre-
fethen 1992]. In CEM these algorithms can be classified in different ways. Following,
for example, [Jin 2015, pp. 651ff] one can distinguish time-domain and frequency-domain
methods, which can be related via the Fourier transform. In each of the two categories,

3



1 Introduction

there are partial differential equation (PDE) methods (also called local methods) and inte-
gral equation methods (also called global methods). For high frequencies, there are also
asymptotic frequency-domain techniques such as physical optics (PO) or the geometrical
theory of diffraction (GTD) and in hybrid methods different combinations of algorithms
are formed.

Typical examples of PDE methods in the time domain are the finite-difference time-domain
(FDTD) [Yee 1966] method, the finite integration technique (FIT) [Weiland 1977; Weiland
2003], or the transmission-line matrix (TLM) method [Hoefer 1985], and, in the frequency
domain, the finite element method (FEM) [Courant 1943; Silvester 1969; Nédélec 1980; Jin
2014]. While these approaches lead to sparse linear systems of equations (LSEs) and are
suitable to handle inhomogeneous media, they suffer from numerical dispersion [Jin 2014]
and require the discretization of the entire solution domain. The latter makes the PDE
methods less attractive for radiation problemswith unbounded domain (where, e.g., absorb-
ing boundary conditions [Engquist et al. 1977; Bayliss et al. 1980] or a perfectly matched
layer [Berenger 1994] are needed for a truncation of the domain). Since the problems con-
sidered in this thesis are radiation and scattering problems, the focus is on integral equation
methods.

1.1.1 Electromagnetic Radiation and Scattering

Integral equation methods do not exhibit numerical dispersion and automatically satisfy
the (Silver-Müller) radiation condition by their formulation via a Green’s function [Jin
2015, p. 655]. Moreover, for homogeneous subdomains only the surfaces separating the
domains need to be discretized leading to surface integral equations (also called boundary
integral equations). A drawback of this approach is that the discretization of the equations
commonly leads to an LSE with a dense matrix. However, several algorithms have been
proposed to overcome this issue. The algorithms allow to time- and memory-efÏciently
compute the matrix-vector product such that iterative solvers for the LSE can be employed.
Examples in the frequency domain are the mulitlevel fast multipole method (MLFMM)
[Greengard et al. 1987; Song et al. 1997; Darve 2000; Chew et al. 2001; Eibert 2005], the
adaptive cross approximation (ACA) [Zhao et al. 2005a; Bebendorf 2008; Zhao et al. 2005b],
hierarchical matrices [Hackbusch et al. 1989], the multilevel matrix decomposition algo-
rithm (MLMDA) [Michielssen et al. 1996], or fast Fourier transform (FFT) based algorithms
[Phillips et al. 1997; Schobert et al. 2012]. Analogously, in the time-domain, fast algorithms
such as the time-domain adaptive integral method [Yilmaz et al. 2004] or the plane-wave
time-domain (PWTD) algorithm [Shanker et al. 2003] have been developed.

The Electric Field Integral Equation

Specifically, we consider in this work the electric field integral equation (EFIE) as frequency
domain formulation for the scattering and radiation from PEC bodies. Proposed by [Maue
1949] it is by now widely adopted and known to yield accurate solutions when discretized,
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1.1 Numerical Techniques in Electromagnetics

for example, by employing a Galerkin scheme. The involved electric field integral operator
(EFIO) together with the operator of the magnetic field integral equation (MFIE) form the
building blocks for many scattering and radiation formulations such as the Poggio-Miller-
Chang-Harrington-Wu-Tsai integral equation (PMCHWT) [Poggio et al. 1973; Chang et al.
1977; Wu et al. 1977] or the Müller integral equation (MUIE) [Müller 1969] for penetrable
bodies. Hence, it is of interest to overcome the difÏculties tied to the EFIE. Namely, aspects
of numerical quadrature involving improper integrals have been addressed, for example,
in [Wilton et al. 1984; Dunavant 1985; Eibert et al. 1995; Sauter et al. 1997; Yla-Oijala et al.
2003]. Strategies for improving the conditioning of the (discretized) EFIE have been pro-
posed, for instance, in [Alléon et al. 1997; Carpentieri et al. 2004; Eibert 2003]. Specifically,
the ill-conditioning due to the spatial and the frequency dependence of the EFIE spectrum
need to be cured for many applications: the dense-discretization and the low-frequency
breakdown. The latter is also of major interest in this work and corresponding strategies
are presented for a Galerkin discretization1.

The Low-Frequency Breakdown

In essence, the low-frequency breakdown corresponds to a (quadratic) deterioration of the
conditioning of the (discretized) EFIE when decreasing the frequency [Andriulli et al. 2010;
Adrian et al. 2021]. While for small frequencies quasi-static approximations could be em-
ployed, it is desirable to have a formulation that is valid for all frequencies. This avoids find-
ing estimates for the frequency ranges in which a certain formulation is valid, which is espe-
cially difÏcult for multiscale structures exhibiting fine and coarse geometry subdomains.

Consequently, after first observations of the low-frequency breakdown in [Mautz et al. 1980;
Wilton et al. 1981] a solution strategy in the form of a quasi-Helmholtz decomposition was
proposed in [Wilton et al. 1981; Mautz et al. 1982; Mautz et al. 1984], that is, it was sug-
gested that basis and testing functions (for a Galerkin discretization) should each consist of
a solenoidal and a non-solenoidal set. For the Rao-Wilton-Glisson (RWG) basis [Rao et al.
1982] a corresponding loop-star/tree basis was given in [Wilton et al. 1981; Lim et al. 1993;
Lim 1994] and further studied in [Burton et al. 1995; Wu et al. 1995; Vecchi 1999; Eibert
2004; Andriulli 2012]. In this process, different difÏculties of the low-frequency breakdown
were identified (see also [Adrian et al. 2021]):

(a) The increasing ill-conditioning of the EFIE for decreasing frequency.
(b) The increasing ill-conditioning of the EFIE for increasing discretization density.
(c) The computational costly need to search for global loops for multiply-connected ge-

ometries, that is, geometries with handles and holes.
(d) The occurrence of round-off errors when testing the field with solenoidal functions

so severe that the solution is off by orders of magnitude.
(e) The occurrence of round-off errors in the solution of the EFIE and the computed

(radiated and scattered) fields so severe that the solution is off by orders of magnitude.
1For other approaches such as the Nyström method [Nyström 1930] or the collocation method similar

problems occur [Young et al. 2012; Shafieipour et al. 2014; Chao et al. 1995; Vico et al. 2015].
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1 Introduction

While (b) is actually the dense-discretization breakdown, it is intimately related to the low-
frequency breakdown and a joint treatment is ultimately of interest. As detailed in [An-
driulli 2012], loop-star decompositions actually worsen the dense-discretization ill-condi-
tioning. As mitigations to this additional ill-conditioning preconditioners have been pro-
posed [Lee et al. 2003; Zhao et al. 2000]with a full avoidance of an additional ill-conditioning
by the quasi-Helmholtz projectors proposed in [Andriulli et al. 2013]. In the same work, a
combination with a multiplicative Calderón projector [Andriulli et al. 2008a; Adrian et al.
2019] was proposed overcoming all difÏculties listed above (for a plan-wave excitation),
which is why it is also the starting point for the strategies proposed in this work. While the
Calderón projector, in principal, simultaneously overcomes (a)-(c), it needs to be combined
with the quasi-Helmholtz projectors to also overcome (d)-(e). As an alternative, hierarchical
loop-star bases have been proposed as preconditioner [Andriulli et al. 2007; Andriulli et al.
2008b; Andriulli et al. 2010] where for (b) only a logarithmic dependency remains and (c)
was overcome in [Adrian et al. 2014].

Approaches not using a quasi-Helmholtz decomposition but instead introducecharges as ad-
ditional unknowns (to the currents) such as [Bendali 1984a; Bendali 1984b; Taskinen et al.
2006] or the augmented EFIE [Qian et al. 2008b] still suffer from (b) and (d)-(e). As a means
to overcome the round-off errors, perturbation methods have been proposed [Qian et al.
2010] which, however, require again to determine frequency ranges of validity. Another
approach [Liu et al. 2018b] includes a boundary integral equation for the normal compo-
nent of the magnetic field for this purpose. The so called partial element equivalent circuit
(PEEC) method [Gope et al. 2007] is also based on using current and charges as unknowns
but uses a different discretization strategy. An explicit inverse of the EFIE is proposed in
[Zhu et al. 2014] leaving (b) unaddressed. In [Li et al. 2016; Alsnayyan et al. 2023] a full
Helmholtz decomposition of the basis in combination with a Calderón preconditioner was
proposed for smooth surfaces based on a subdivision surface description of the geometry.

Moreover, formulations have been proposed that no longer solve the EFIE but integral equa-
tions for potentials instead of the fields. Namely, the Debye-potential based approach [Ep-
stein et al. 2009; Epstein et al. 2012; Fu et al. 2017] for simply-connected geometries. The
approaches in [Vico et al. 2016] and [Liu et al. 2018a] are similar to current and charge
formulations of the EFIE and solve for scalar and vector surface densities. Notably, the ap-
proach in [Vico et al. 2016] is immune to all low-frequency issues listed above but is limited
to smooth surfaces.

1.1.2 Equivalent Source Reconstruction

Thesecond kind of problems considered in this thesis, the reconstruction of (time-harmonic)
equivalent sources from measurements with a probe antenna, is closely related to the scat-
tering and radiation problem. In fact, the presented methods for the low-frequency stabi-
lization of the EFIE are constructed also having the source reconstruction problem in mind.
The source reconstruction problem is, in general, concerned with finding an equivalent rep-
resentation of a radiating device under test (DUT) from a finite number of measurements.
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1.1 Numerical Techniques in Electromagnetics

This representation should allow then to compute the radiated fields at arbitrary locations
in space (outside of the DUT) and leads, thus, to something known as a field transforma-
tion [Eibert et al. 2015]. If the measurements are performed in relatively close proximity
to the DUT, that is, in its near field (NF), the transformation is commonly called near-field
near-field transformation (NFNFT) or near-field far-field transformation (NFFFT) in the case
the far field (FF) is the quantity of interest. This is often the case for the characterization of
antennas. A direct measurement of the FF might in this case be tied to the need of a large
measurement facility in order to ensure that the distance to the antenna is large enough to
support the underlying assumption of FF conditions. In contrast, sampling in the NF allows
to conduct the measurements in a relatively small anechoic chamber. Such a chamber pro-
vides the additional advantage of a controlled environment, where absorbers can be used to
reduce reflections, echos, and approximately provide free-space conditions. These aspects
are also beneficial for the related problems of determining the radar cross section (RCS)
[Melin 1987; Schnattinger et al. 2014; Neitz et al. 2019b; Neitz et al. 2019a] or performing
microwave imaging based on NF observations [Ahmad et al. 2004; Saurer et al. 2022].

For the equivalent representation of the radiating DUT, different options have been pro-
posed. One of the first were expansions in terms of planar, cylindrical, or spherical modes
[Yaghjian 1986; Hansen 1988]. For corresponding canonical scanning surfaces (planes,
cylinders, spheres) and an equidistant or equiangular sampling, they offer the possibility
for an acceleration of the field transformation by the FFT [Yaghjian 1986]. However, some
relaxations towards the possibility of a more irregular sampling were given, for example,
by employing a non-uniform FFT [Mauermayer et al. 2018]. As other options, propagating
plane waves [Schmidt et al. 2008; Eibert et al. 2015], distributed spherical harmonics [Eibert
et al. 2015; Ostrzyharczik et al. 2023], and equivalent electric and magnetic currents can be
employed [Sarkar et al. 1999; Alvarez et al. 2007a; Alvarez et al. 2007b; Vecchi et al. 2010;
Eibert et al. 2016; Kornprobst et al. 2021]. These approaches offer the advantage that the
sampling locations can be irregular while keeping a low computational complexity for the
field transformation by using, for instance, MLFMM techniques [Eibert et al. 2009].

The Low-Frequency Stability

Especially, the equivalent current representation has the advantage that it potentially of-
fers accurate diagnostics capabilities. That is, (visualizations of) the determined currents
provide information about the locations with strong radiation. This is amongst others of
interest in the area of electromagnetic compatibility (EMC) and dosimetry measurements
in order to ensure that devices have the desired radiation characteristics and that they are
in compliance with the relevant standards and limitations. If field limitations are exceeded,
the origin of the corresponding radiation has to be identified to eliminate it. However, since
the operators linking the currents and the fields beingmeasured are the ones of the EFIE and
the MFIE, similar conditioning issues can be expected as discussed in Section 1.1.1. Hence,
we propose a strategy to adapt the low-frequency stabilization techniques of radiation and
scattering problems to the source reconstruction problem.
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1 Introduction

Existing approaches in the context of EMC model the DUT by six orthogonal dipoles (three
electric and three magnetic dipoles), which offers only limited source localization capabili-
ties [Sreenivasiah et al. 1981]. In [Regue et al. 2001], a larger number of dipoles is employed
based on a genetic algorithm, which implies a high computational complexity, similarly to
[Vives-Gilabert et al. 2009] where an LSE with dense matrix limits the number of dipoles
and samples. While the direct interpretation of the measured magnetic fields as done, for
instance, in [Vives-Gilabert et al. 2007; Song et al. 2014; Ravelo et al. 2015; Rinas et al. 2016;
Hendijani et al. 2018] provides some insights, it captures only part of the information: at
low frequencies the magnetic and the electric field increasingly decouple. Hence, measur-
ing only the magnetic field potentially contains not all field information. Moreover, the
NFNFT approach provides the capability to rapidly predict the fields at many locations, for
example, to verify the compliance with different standards (i.e., the distances from the DUT
where the field values need to be measured depend on the standard) by only one kind of
measurement.

Reducing the Number of Samples

The second aspect concerning equivalent source reconstruction, which is considered in this
thesis, is the reduction of the number of samples to a minimum in order to reduce the mea-
surement time. Determining an absolute minimum of samples that is required to determine
a set of equivalent sources for a DUT (with a certain accuracy) is, in general, an intricate
task, even if measurement uncertainties such as noise are excluded from the analysis. A
common approach to estimate the number of required samples, is via the diameter of the
minimum sphere enclosing the DUT and the number of spherical modes required to repre-
sent fields radiated from the corresponding volume [Hansen 1988, pp. 15ff]. Yet, depending
on the actual DUT this can be too few samples (e.g., if effects of super-directivity are present)
or too many samples (e.g., due to band limiting effects of the DUT). Hence, tighter bounds
were investigated, for instance, in [Bucci et al. 1987; Bucci et al. 1989; Bucci et al. 1998]
using the concept of spatial band limitation to define degrees of freedom of radiated (and
scattered) fields. Still, it is unclear whether fewer samples sufÏce when leveraging different
a-priori information about the DUT, which restrictions on the sampling locations have to
be imposed, and what the influence of measurement uncertainties is, all depending on the
chosen equivalent source representation.

With respect to the number of samples suggested by the minimum sphere diameter of the
DUT, different approaches have been proposed to reduce the number of samples: In [Bucci
et al. 1994] and [D’Agostino et al. 2017] measurements on a coarse grid were interpolated
to a finer grid in order to determine additional (virtual) measurements. In [Chiu et al. 2015]
the initial number of samples is increased iteratively until the determined FF pattern does
not considerably change anymore. However, these approaches, as well as the least squares
solution proposed in [Kordella et al. 2016], suffer from a loss in accuracy. The authors
of [Mauermayer et al. 2015] achieve a reduction of the number of unknowns (and conse-
quently the number of measurements) by considering parts of the DUT with ray optical
concepts. This is, however, only suitable for particular DUTs such as reflector antennas.
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Instead, in this thesis the capability of compressed sensing (CS) is investigated, a theory
dealing with the reconstruction of a signal from incomplete information [Candes et al.
2006a; Donoho 2006a; Candes et al. 2006b], to reduce the number of samples consider-
ably below the ones suggested by the minimum sphere diameter of the DUT. Key idea is to
leverage on a sparsity of the equivalent source representation. More precisely, a strategy
is proposed to determine the minimum number of samples such that a predefined far-field
accuracy can be achieved. To this end, spherical modes are considered as equivalent sources
since for several examples the corresponding expansion has been shown to fulfill the re-
quirements of CS [Cornelius et al. 2016; Bangun et al. 2016].

1.2 Scope and Outline of the Thesis

To summarize, this dissertation presents paradigms for the low-frequency stabilization of
the EFIE as well as the reconstruction of equivalent sources from field measurements. To
this end, Part I presents background material, where Chapter 2 introduces relevant elec-
tromagnetic principles concerning electromagnetic scattering and radiation, and Chapter 3
briefly discusses the considered discretization strategies of the continuous problems.

In Part II, strategies concerning the low-frequency stabilization of the EFIE are presented:
An analysis of the origin of the catastrophic round-off errors when testing a field with
solenoidal functions is provided in Chapter 4 together with a scheme to overcome the er-
rors for arbitrary excitations on multiply-connected geometries. This constitutes a gener-
alization of a technique proposed in [Mautz et al. 1982; Mautz et al. 1984; Wu et al. 1995]
for a loop-star decomposition. Moreover, a method to combine the stabilization with the
quasi-Helmholtz projectors [Andriulli et al. 2013] is proposed, facilitating their use with ar-
bitrary excitations. In Chapter 5, a self-adaptive frequency normalization is introduced to
quasi-Helmholtz decompositions which works irrespective of the specific excitation and ir-
respective of the underlying topology of the structure. This overcomes catastrophic round-
off errors in the solution by ensuring that both solenoidal and non-solenoidal components
of the surface current density are obtained with a similar relative accuracy such that the ra-
diated and scattered fields can be determined accurately also for low-frequencies. In Chap-
ter 6, a loop-star basis as well as quasi-Helmholtz projectors are derived for a B-spline based
discretization of the EFIE, which is valid for arbitrary polynomial orders of the basis and
applicable to open and closed, as well as to simply and multiply-connected geometries.

In Part III, strategies are proposed concerning the reconstruction of equivalent sources: A
scheme to low-frequency stabilize a formulation in terms of equivalent electric currents is
given in Chapter 7. The scheme is based on quasi-Helmholtz projectors and incorporates
the proposed self-adaptive frequency normalization as well as the stabilized evaluation of
arbitrary excitations by solenoidal functions. A thorough picture on the capability of CS to
reduce the number of measurement samples that are required for an NFFFT, based on the
spherical vector wave expansion of the radiated field of an DUT is presented in Chapter 8.
This includes a strategy to determine the minimum number of samples required to achieve
a predefined FF accuracy.
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1 Introduction

Finally, in Part IV, Chapter 9 a conclusion is given including an outline of possible future
research.

1.3 Notation

Throughout this thesis a certain typographical style is employed to highlight certain enti-
ties: Vectors and matrices are written in a bold font where for vectors lower case letters
are used and for matrices upper case letters. For vectors representing a physical quantity
such as the electric field e or the position vector r serifs are used, whereas general N -
dimensional vectors and matrices are denoted with sans-serif letters, for example, a ∈ C

N
and A ∈ C

M×N , respectively. Specifically, points in R
3 are denoted by r = (x, y, z) in Carte-

sian or r = (r , #, ') in spherical coordinates, where r = ‖r‖2 denotes the Euclidean norm andur , u#, and u' denote the unit vectors of the spherical coordinate system. As an exception,
for vectorial local loop functions �, global loop functions H , and star functions � upper-
case letters are used to better highlight their correspondence to the mapping matrices Λ, H ,
and Σ .

Scalar operators such as T are denoted with a calligraphic font and vector operators such
as T are in addition bold. For differential operators, the nabla notation is employed, that
is, ∇ denotes the gradient, ∇⋅ the divergence, and ∇× the curl. Whenever scalar and vector
quantities are restricted to a surface � , we denote the surface differential operators by ∇� .
For a rigorous definition of these operators and their properties, we refer to [Nédélec 2001]
for smooth surfaces, [Colton et al. 2013, pp. 202ff] for Hölder surfaces, and [Buffa et al.
2002; Buffa et al. 2003b] for Lipschitz surfaces. For specific parametrizations of surface
quantities, a definition of the corresponding surface differential operators will be given
when needed.
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2
Relevant Electromagnetic Principles

“Two souls dwell in the bosom of scattering theory. One is
mathematical and handles the unitary equivalence of
operators with continuous spectra. The other is physics …”

[Lax 2002]

The problems considered in this thesis can be classified into the area of classical
physics and more precisely classical electrodynamics. The corresponding equa-
tions to describe the latter, namely Maxwell’s equations, are introduced in Sec-
tion 2.1 fixing some conventions, assumptions, and notation employed throughout

this thesis. Frequently employed operators and functions for the radiation from (surface)
currents via auxiliary potentials and via spherical vector waves are introduced in Section 2.2
before defining the EFIE for the radiation and scattering from PEC bodies in Section 2.3 and
relevant aspects of the equivalent source reconstruction from field measurements in Sec-
tion 2.4.

2.1 Considered Physical Model

Within the area of classical electrodynamics, we take as starting point the time-harmonic
and macroscopic Maxwell’s equations in differential form. As a convention, we use SI units
and assume but suppress a time dependency of ej!t where t is the time and ! is the angular
frequency. Moreover, we assume a homogeneous and isotropic background medium char-
acterized by the permittivity " = "r"0 and the permeability � = �r�0 with constant "r ∈ C

and constant �r ∈ C. Based on this setting, the electric field e(r), the normalized magnetic
field h(r), the normalized volume current density jV(r), and the volume charge density
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2 Relevant Electromagnetic Principles

�V(r) (all dependent on the position vector r) are related by [Harrington 2001; Jin 2015]

−∇ × e = jkh , (2.1a)
∇ × h = jke + jV , (2.1b)
∇ ⋅ e = �V/" , (2.1c)

and
∇ ⋅ h = 0 , (2.1d)

with the wavenumber

k = !
√
�" . (2.2)

The employed normalization of the magnetic field and the current density is with respect
to the wave impedance � =

√
�/" in the sense h = �h̄ and jV = �j̄V, where h̄ and j̄V are the

classical quantities. Due to the normalization the electric field, the magnetic field, and the
current density have with Vm−1 the same unit, which simplifies the formalism. Taking the
divergence of (2.1b), leveraging ∇ ⋅ (∇ × a) = 0, and inserting (2.1c) results in the continuity
equation [Harrington 2001]

∇ ⋅ jV = −jk�V/" (2.3)

relating the current density jV and the charge density �V. As a consequence of (2.3), the
charge density can be eliminated from (2.1) and all sources can be expressed in terms of
current densities only [Hansen et al. 1999, p. 73].

2.2 Electromagnetic Radiation in Free Space

Before formulating the radiation and scattering in the presence of a PEC body, we briefly
describe the radiation of fields in free space. This corresponds to solving Maxwell’s equa-
tions (2.1) for the radiated fields (e,h) from a given set of sources jV (and �V). To this end,
we consider two strategies. The first one reformulates (2.1) in terms of auxiliary potentials,
while the second one uses a reformulation in terms of the curl-curl equation and a separa-
tion ansatz. For the scattering formulations considered in this work we will need to express
the radiation in terms of potentials for sources that are restricted to a surface � . There-
fore, we only consider surface current densities denoted by j and surface charge densities
denoted by � (both with compact support).

2.2.1 Radiation in Terms of Potentials

Using some fundamental relationships of vector calculus, (2.1) can be expressed as (see,
e.g., [Jin 2015, pp. 58ff])

e = −jka − ∇� , (2.4)
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2.2 Electromagnetic Radiation in Free Space

and h = ∇ × a (2.5)

via the vector potential a(r) and the scalar potential �(r)which satisfy the inhomogeneous
Helmholtz equations

� a + k2a = −j (2.6)
and

Δ� + k2� = −�/" . (2.7)

In these expressions, Δ denotes the Laplace operator and � the vector Laplace operator
(applying Δ to each component of the corresponding vector field). The vector and the scalar
potential are not independent, but linked via the (employed) Lorenz gauge

∇ ⋅ a = −jkΦ . (2.8)

Solution of the Helmholtz Equations

For a surface current density j with compact support placed in free space, a solution to the
Helmholtz equation for a can be expressed in terms of the Green’s function of free space1
[Hanson et al. 2013, pp. 38ff]

g(r, r′) = e−jk|r−r′ |
4π|r − r′| (2.9)

as

a = TAj (2.10)

where we have introduced the vector potential operator (also known as singular opera-
tor [Sauter et al. 2011; Cools et al. 2009; Andriulli et al. 2013])

TAj = ∬
�

g(r, r′)j(r′) dr′ . (2.11)

Note that (2.11) constitutes an improper integral due to the singular Green’s function g(r, r′).
However, the integral can be shown to be convergent2 [Hanson et al. 2013, pp. 26ff]. Anal-
ogously, we can solve (2.7) and using �/" = jk−1∇� ⋅ j from (2.3), we find [Nédélec 2001,
pp. 238f]

∇� = jk−1TΦj (2.12)
1TheGreen’s function of free space is the particular solution to (Δ+k2)g(r, r′) = −δ(r−r′) together with

the Sommerfeld radiation condition, with δ(r) denoting the Dirac delta distribution.
2For a definition of convergent improper integrals see, e.g., [Kellogg 1929, pp. 146f] and [Budak et al.

1973, pp. 412ff].
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2 Relevant Electromagnetic Principles

with the scalar potential operator (also known as hypersingular operator [Sauter et al. 2011;
Cools et al. 2009; Andriulli et al. 2013])

TΦj = ∇∬� g(r, r′) ∇′� ⋅ j(r′) dr′ , (2.13)

which contains again an improper but convergent integral [Hanson et al. 2013, pp. 26ff].
Since from the Lorenz gauge (2.8) it follows that ∇� = jk−1 ∇∇ ⋅ TAj, the scalar and the
vector potential operator are linked via

TΦj = ∇∇ ⋅ TAj , (2.14)

which might also be shown via Stokes identities [Nédélec 2001, p. 73].

Radiated Fields

Inserting the obtained solutions (2.10) and (2.12) into (2.4), the radiated electric field can be
expressed as

e = −T j (2.15)

via the EFIO

T j = jkTAj + jk−1TΦj . (2.16)

By inserting (2.10) into (2.5) and applying the identity ∇ × Ig = ∇g × I with the identity
dyadic I [Hanson et al. 2013, p. 608], the magnetic field is given by

h = ∬� ∇g(r, r′) × j(r′) dr′ . (2.17)

Note that the latter integral is improper and not convergent [Hanson et al. 2013, pp. 31ff]
in the sense that it is proper for r ∉ � but for r ∈ � a subtle limiting procedure is re-
quired [Collin 1990, p. 142][Bladel 1996, p. 71][Colton et al. 2013, p. 201].

Radiated Far Fields

If the FF shall be determined, that is, the fields are evaluated for r → ∞, the vector potential
operator simplifies to [Jin 2015, p. 74]

TA,FFj = ∬� j(r′) ejkur ⋅r′ dr′ (2.18)

where a normalization with respect to e−jkr/(4πr) has been performed and ur denotes the
unit vector in radial direction. With (2.18), the electric FF eFF can be brought into the
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2.2 Electromagnetic Radiation in Free Space

form [Jin 2015, p. 74]

eFF = −jkur × ur × TA,FFj (2.19)

and analogously, the magnetic FF hFF can be expressed as

hFF = jkur × TA,FFj . (2.20)

2.2.2 Radiation in Terms of Spherical Vector Waves

As an alternative to the representations (2.15) and (2.17), Maxwell’s equations (2.1) can be
reformulated by taking the curl of (2.1a) and inserting (2.1b). Taking also the curl of (2.1b)
and inserting (2.1a) results in the curl-curl (also called vector wave) equations [Hansen et al.
1999, p. 74]

∇ × ∇ × e − k2e = −jkjV (2.21a)
and

∇ × ∇ × h − k2h = ∇ × jV . (2.21b)

Together with the continuity equation (2.3) (establishing the relation to the charge den-
sity �V) these two equations are fully equivalent to (2.1) since the latter can be derived
from (2.21) as shown in [Hansen et al. 1999, p. 74].

Solution of the Homogeneous Curl-Curl Equation

In a source-free region both the electric and the magnetic field e and h satisfy the homoge-
neous curl-curl equation

∇ × ∇ × c − k2c = 0 , (2.22)

for which a solution can be derived in spherical coordinates r = (r , #, ') [Hansen 1935;
Stratton 1941, pp. 392ff]. Employing a power normalization, the solution can be expressed
as a superposition of the (dimensionless) TEmn spherical vector wave functions (also called
modes) [Hansen 1988, p. 13]

q(c)1mn(r , #, ') = 1√2� 1√n(n + 1) [z(c)n (kr) jmP̄
|m|n (cos #)
sin # ejm' u#
−z(c)n (kr) dP̄|m|n (cos #)

d# ejm' u' ] (2.23)
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2 Relevant Electromagnetic Principles

and the TMmn spherical vector wave functions

q(c)2mn(r , #, ') = 1√2� 1√n(n + 1) [n(n + 1)kr z(c)n P̄|m|n (cos #) ejm'ur
+ 1kr d(kr z(c)n (kr))d(kr) dP̄|m|n (cos #)

d# ejm' u#
+ 1kr d(kr z

(c)n (kr))
d(kr) jmP̄|m|n (cos #)

sin # ejm' u'] , (2.24)

which are mutually orthogonal [Hansen 1988, pp. 330f]. In these expressions, the singulari-
ties (angles where sin # = 0) have a finite limit, ur , u#, and u' are the spherical unit vectors,

P̄mn (cos #) =
√
2n + 1
2

(n − m)!
(n + m)! Pmn (cos #) (2.25)

denote the normalized associated Legendre polynomials Pmn for n > 0, m ≥ 0, and
z(c)n =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
jn(kr) for c = 1 (standing wave)
nn(kr) for c = 2 (standing wave)h1n(kr) for c = 3 (inward traveling wave)h2n(kr) for c = 4 (outward traveling wave)

(2.26)

represents the spherical Bessel function jn, the spherical Neumann function nn, the spherical
Hankel function of the first kind h1n, or the spherical Hankel function of the second kind h2n
depending on the superscript c. The choice of the latter corresponds to standing waves forc = 1, 2, inward traveling waves for c = 3, and outward traveling waves for c = 4.
Radiated Fields

By superimposing the spherical vectorwave functions, the radiated electric field in a source-
free region (limited by concentric spherical surfaces centered at the origin of the coordinate
system) can be expressed as [Hansen 1988, p. 14]

e = limL→∞
k√� L∑

n=1
n∑

m=−n
2∑
a=1

xamnq(4)a,m,n (2.27)

with the expansion coefÏcients xamn ∈ C and the corresponding magnetic field as

h = limL→∞
jk√� L∑

n=1
n∑

m=−n
2∑
a=1

xamnq(4)3−a,m,n (2.28)

16



2.3 Scattering and Radiation from PEC Bodies—The EFIE

with the same expansion coefÏcients. Note that only outward traveling waves are included
by fixing c = 4. A general (not radiated) field can, for instance, be expressed by the super-
position of c = 3 and c = 4 waves [Hansen 1988, p. 14].

As a solution to the inhomogeneous curl-curl equations (2.21), the expansion coefÏcientsxamn for a given current density in a volume V can be determined as [Hansen 1988, p. 333]

xamn = (−1)m+1 k√�∭V q(1)a,−m,n ⋅ jV dr (2.29)

which can be derived from reciprocity relations and orthogonality properties of the f(c)a,m,n.
The volume current density might also be replaced by a surface current density j.
Radiated Far Fields

The radiated FF can be represented by

eFF = limL→∞
k√� L∑

n=1
n∑

m=−n
2∑
a=1

xamnqFFamn (2.30)

where the FF vector wave functions qFFamn are found by using the large argument approxi-
mations of the z(4)n in the q(4)amn functions as [Hansen 1988, p. 328]

qFF1mn(#, ') = √2√n(n + 1) ejm'jn+1 [ jmP̄|m|n (cos #)
sin # u# − d P̄|m|n (cos #)

d# u'] (2.31)

and

qFF2mn(#, ') = √2√n(n + 1) ejm'jn [d P̄|m|n (cos #)
d# u# + jmP̄|m|n (cos #)

sin # u'] . (2.32)

Note that (2.30) is normalized with respect to e−jkr/(4πr) just as it was done in (2.18).

2.3 Scattering andRadiation fromPECBodies—TheEFIE

For the radiation in the presence of a PEC body, the Huygens equivalence principle (also
known as surface equivalence principle) [Harrington 2001; Jin 2015, pp. 106ff] depicted in
Fig. 2.1 can be employed: Given an external excitation field (eex,hex) causing a scattered fieldesc,hsc due to the PEC body with surface � , the scenario can be equivalently represented
by a free-space setting with a surface current density j restricted to the location of � such
that the total electric field e can be expressed as

e = eex − T j (2.33)

17



2 Relevant Electromagnetic Principles

eex, hex esc, hsc

�

(a)

eex, hex esc, hsc

�

j

(b)

Fig. 2.1: Huygens equivalence principle (for the exterior problem): (a) A field (eex,hex) ex-
cites a PEC body with surface � and causes a scattered (radiated) field esc,hsc. (b)
The equivalent free space problem with the surface current density j and a zero
field inside � .

where −T j corresponds to the scattered field esc. Leveraging the boundary condition for
PEC enforcing the part of the total electric field tangential to � to be zero [Harrington 2001,
p. 34], that is, etan = 0, the EFIE

(T j)tan = eextan , (2.34)

is obtained, which was proposed first by [Maue 1949]. After solving this equation for j, the
scattered fields can be computed via (2.15) and (2.17).

Note that the EFIE is often defined with a surface normal vector n to express the notion
of a (rotated) tangential component, that is, n × T j = n × eex. However, following for
example [Mautz et al. 1978] and defining the EFIE as in (2.34) has the advantage that non-
orientable surfaces (which do not possess a canonically definable normal vector field) can be
considered as scattering objects in a natural manner [Johnson et al. 1990; Buffa et al. 2003a].
Since the normal vector is only an auxiliary tool (when discretizing the EFIE the normal
vectors can be canceled out of the equation), however, the in Part II proposed strategies are
independent of the definition of the EFIE with or without a normal vector.

Moreover, throughout this thesis the surface � is assumed to be a Lipschitz-manifold which
can be open or closed as well as simply- or multiply-connected, where we assume that �
is orientable in the case that � is closed3. For such surfaces the EFIE is well-posed, that
is, a solution exists and is unique, with the exception of resonant frequencies [Buffa et al.
2003a; Buffa et al. 2003b]. For the latter, uniqueness can be re-established, for instance,
by combining the EFIE with the MFIE to form the combined field integral equation (CFIE)
[Mautz et al. 1978] or the combined source integral equation (CSIE) [Mautz et al. 1979].

2.4 Equivalent Source Reconstruction

To capture the radiation behavior of a DUT, again the Huygens principle can be employed:
the radiated field external to the DUT can be equivalently represented by a surface current

3A Möbius strip is an example of an open, multiply-connected, and non-orientable � . As noted in [John-
son et al. 1990; Buffa et al. 2003a], the EFIE can be solved on such � .
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2.4 Equivalent Source Reconstruction

density j (on a surface enclosing the DUT) radiating into free space. As noted in Sec-
tion 1.1.2, instead of a surface current density j, other forms of current densities can be
employed such as a magnetic surface current density, Love currents, or forms of directive
currents. However, in this work we focus on the case of j only, such that only the EFIO
is involved for which we propose a low-frequency stabilization. In order to determine the
unknown j, one can solve (2.15) by collecting samples of the (electric) field. This sampling
of the field is done by a probe antenna which actually measures not the field directly but
the output signal of the probe antenna corresponds to a form of weighted average of the
field. A corresponding model to account for this will be discussed in Chapter 7.

In comparison to the scattering formulation via the EFIE, it can observed that not a bound-
ary condition on a material interface is enforced but instead, the radiated field is sampled
in some distance to the DUT.

Instead of determining a surface current density j, the representation of the radiated field
via spherical vector wave functions in (2.27) can be employed and solved for the expansion
coefÏcients xamn by sampling the field. By (2.29) the direct relation to the Huygens principle
in terms of surface currents is established showing that the spherical expansion coefÏcients
can be understood as a form of equivalent source.
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3
Discretization, Solution Uniqueness,
and Conditioning

“Numerical analysis is the study of algorithms
for the problems of continuous mathematics.”

[Trefethen 1992]

As fundamental solution strategy for the EFIE and the equivalent source reconstruc-
tion problem, we employ established discretization approaches of the continuous
equations. Corresponding details and frequently used notation are introduced in
this chapter: Concerning the EFIE, a Galerkin scheme is employed in this work as

detailed in Section 3.1. For the resulting LSE, the concept of quasi-Helmholtz decomposi-
tions is introduced in Section 3.2 to form low-frequency stabilizing preconditioners of the
original LSE. As discussed in Section 1.1.1, these are the starting points for the paradigms
proposed in the remainder of this thesis. Analogously, the discretization strategies con-
cerning the equivalent source reconstruction are outlined in Section 3.3.

3.1 Galerkin Discretization of the EFIE

Common discretization strategies for the EFIE are the Nyström method [Nyström 1930;
Hackbusch 1995; Atkinson 2009], the collocation method [Hackbusch 1995; Atkinson 2009],
the method of source potentials [Hazard et al. 1996; Buffa et al. 2003b], or the here con-
sidered Galerkin scheme, which is also known as method of moments (MoM) [Harrington
1993; Buffa et al. 2003b]. An advantage of the latter is that a rigorous convergence the-
ory is available, that is, via the so-called inf-sup-conditions [Babuška 1971; Xu et al. 2003],
existence, uniqueness, and asymptotically optimal convergence of the discrete solution to
the analytical (for non-resonant frequencies unique) solution have been proven [Buffa et al.
2003a; Buffa et al. 2003b; Sauter et al. 2011; Dölz et al. 2019].
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3 Discretization, Solution Uniqueness, and Conditioning

In practice, for the Galerkin scheme1, the unknown surface current density j of the EFIE
(T j)tan = eextan given in (2.34) is approximated by N basis functions fn(r) as

j ≈
N∑
n=1
[j ]nfn(r) , (3.1)

with j ∈ C
N containing the expansion coefÏcients. The resulting equation is then tested

(the scalar product is formed and integrated) with the same fn resulting in the LSE

T j = e
ex , (3.2)

with the system matrix

T = jkTA + jk−1TΦ , (3.3)

where the matrix TA ∈ C
N×N consists of the entries

[TA]mn = ∬� fm ⋅ TAfn dr , (3.4)

the matrix TΦ ∈ C
N×N consists of the entries (evaluated in a weak sense as further detailed

in Section 3.1.3)

[TΦ]mn = ∬� fm ⋅ TΦfn dr , (3.5)

and the right-hand side (RHS) vector eex ∈ C
N consists of the entries

[eex]m = ∬� fm ⋅ eex dr . (3.6)

In consequence, a description of the surface � is required in order to integrate over it and
appropriate basis functions need to be chosen.

3.1.1 Surface Representation

We consider in this work twoways of representing the surface � exemplified in Fig. 3.1. The
first is a mesh of flat triangular patches which for most surfaces involves an approximation
of the actual surface. The second is a union of curvilinear rectangular patches. In both
cases, � is described by a union of A patches �a whose pairwise intersections are either
empty, a vertex, or an edge, that is, � = ⋃Aa=1 �a, where each �a is described by a mapping
sa(u, v) ∶ �̂a ↦ �a from the parametric space �̂a = (u, v) to the physical space �a ⊂ R

3.
Specifically, the triangular reference element is given by the unit triangle

�̂a = {(u, v) ∈ R
2 ∶ 0 < u < 1; 0 < v < 1 − u} (3.7)

1Also known as Bubnov-Galerkin scheme [Elishakoff et al. 2004; Elishakoff et al. 2021].
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3.1 Galerkin Discretization of the EFIE

(a) (b)

Fig. 3.1: Representation of a sphere by (a) a mesh of triangular patches and (b) by curvilinear
rectangular patches.
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Fig. 3.2: Mapping from reference elements to the physical space: (a) mapping from a unit
triangle and (b) mapping from a unit square.

as depicted in Fig. 3.2 (a), and the rectangular reference element is given by the unit square

�̂a = (u, v) ∈ [0, 1]2 (3.8)

as depicted in Fig. 3.2 (b). With ra1 , ra2 , and ra3 denoting the vertices of a triangle, the mapping
to the physical space for the triangles can be defined by

sa(u, v) = ra1 + u(ra2 − ra1) + v(ra3 − ra1) . (3.9)

The mapping to the physical space for a curvilinear rectangular element will be specified
in Section 6.1 since several required definitions in terms of B-splines are only relevant to
the corresponding Chapter 6. The Jacobi matrix Ja ∈ R

3×2 of the mapping (3.9) is

Ja(u, v) = [∂usa ∂vsa] = [(ra2 − ra1) (ra3 − ra1)] (3.10)

and its generalized determinant is

Da(u, v) = √
det(JTa Ja) = ‖(ra2 − ra1) × (ra3 − ra1)‖2 = 2Sa , (3.11)

where Sa denotes the area of the ath triangle.
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Fig. 3.3: Conventions for the definition of an RWG basis function in the physical domain:
at the nth edge dn with vertices v±n the basis function exists on the cell domains c±n .

3.1.2 Basis Functions

From the EFIO T , it follows that the basis functions should be divergence-conforming in
the sense that the occurring operation ∇� ⋅fn is well-defined2. In agreement with functional
analytical considerations in the setting of Sobolev spaces3 this also ensures that the testing
is performed in the dual space of the range of T [Buffa et al. 2003b].

As detailed in [Peterson 2006] divergence-conforming basis functions can be defined in the
parametric domain, here denoted as f̂n, and mapped to the physical domain as [Peterson
2006, p. 85]

fn(r) = J(u, v)D(u, v) f̂n(u, v) (3.12)

with r = sa(u, v). For the triangular patches, the basis function

f̂n(u, v) = uuu + vuv (3.13)

ensures normal continuity (and thus, divergence conformity) when combined across two
triangles touching at an edge (specifically the edge connecting ra2 and ra3). By using (3.10)
and (3.11), it can be verified that by doing so the well-established RWG functions are ob-
tained, commonly defined directly in the physical domain as [Rao et al. 1982]

fn =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
r − r+n
2S+a for r ∈ c+n

r−n − r

2S−a for r ∈ c−n
(3.14)

2More precisely, that j and hence also the basis functions approximating j have to be divergence-
conforming, is a necessary and sufÏcient condition following from the requirement that e and h are of finite
energy in the sense that the (weak) curl of e and h should be finite. In terms of Sobolev spaces e,h ∈ H (∇×)
if and only if j ∈ H−1/2(∇� ⋅, � ) [Hsiao et al. 1997; Buffa et al. 2003b; Cessenat 1996, p. 49].

3For thechosen definition of the EFIO, we have the mapping T ∶ H−1/2(∇� ⋅, � ) ↦ H−1/2(∇� ×, � ) between
Sobolev spaces H−1/2 such that fn ∈ H−1/2(∇� ⋅, � ) ensures dual space testing. See, for example, [Sauter et al.
2011, pp. 57ff] for a corresponding introduction.
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3.2 Quasi-Helmholtz Decompositions

for the nth directed edge dn of the triangular mesh and the conventions in Fig. 3.3. The
domains of the cells are denoted as c±n , the vertices of the edge dn as v±n , and the position
vectors of the vertices opposite to dn as r±n . Note that in contrast to [Rao et al. 1982] no
normalization with respect to the length of dn is performed resulting in a more compact
definition of the loop-star matrices [Andriulli et al. 2013]. The basis functions for the curvi-
linear rectangular elements will be specified in Chapter 6 in an analogous manner.

3.1.3 Matrix Elements

The parametric description of the surface � and the basis functions enables the evaluation
of the matrix entries ofTA as

[TA]mn = ∬�̂ J(u, v)f̂m(u, v) ⋅∬�̂ g(s(u, v), s(u′, v′)) J(u′, v′)f̂n(u′, v′) du′dv′dudv (3.15)

and the matrixTΦ as

[TΦ]mn = −∬�̂ ∇�̂ ⋅ f̂m(u, v)∬�̂ g(s(u, v), s(u′, v′)) ∇�̂ ⋅ f̂n(u′, v′) du′dv′dudv , (3.16)

where we have used the Stokes identity [Nédélec 2001, p. 73]

∬� f ⋅ ∇� dr′ = −∬� �∇� ⋅ f dr′ . (3.17)

as well as the relation ∇� ⋅ fn = D−1∇�̂ ⋅ f̂n [Peterson 2006, p. 88]. The RHS vector eex can be
evaluated as

[eex]m = ∬�̂ J(u, v)f̂m(u, v) ⋅ eex(s(u, v)) dudv (3.18)

showing that the generalized Jacobi determinant cancels in all expressions and that all eval-
uations of the basis functions can be performed in the parametric domain.

3.2 Quasi-Helmholtz Decompositions

The discretized EFIET j = eex in (3.2) has been shown to exhibit an ill-conditioning [Andri-
ulli et al. 2010]

condT ∝ (�ℎ)2

=
1

(kℎ)2
, (3.19)

where ℎ is the average edge length of the triangulation. As discussed in Section 1.1.1, the
ill-conditioning in k can be overcome by quasi-Helmholtz decompositions. Namely, we con-
sider the loop-star decomposition mainly for purposes of analyzing different problems. The
actual decomposition of interest are then obtained leveraging quasi-Helmholtz projectors.
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3 Discretization, Solution Uniqueness, and Conditioning

�m

(a)

�m

(b)

Fig. 3.4: Examples of loop-star basis functions: (a) RWG loop formed around a vertex by five
RWG functions; (b) RWG star formed around a triangle by three RWG functions.

3.2.1 Loop-Star Decomposition

The basic idea of the loop-star decomposition is to express the surface current density j as a
superposition ofN� local loops�m andNH global loopsHm (associated with the handles and
holes of � ) representing the solenoidal component of j, as well as N� stars �m representing
the non-solenoidal component of j [Wu et al. 1995; Burton et al. 1995; Vecchi 1999]. To
do so, following [Andriulli 2012] the star to RWG expansion coefÏcient mapping matrix
Σ ∈ Z

N×N� defined via the cells c±i of the mesh (see Fig. 3.3)

[Σ]ij =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 if cj = c+i
−1 if cj = c−i
0 else

, (3.20)

the loop to RWG expansion coefÏcient mapping matrix Λ ∈ Z
N×N� defined via the verticesv±i of the mesh

[Λ]ij =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 if vj = v+i
−1 if vj = v−i
0 else

, (3.21)

and the global loop to RWG expansion coefÏcient mapping matrix H ∈ R
N×NH are intro-

duced. An explicit definition of H will be given in Chapter 4. The transpose of these map-
ping matrices superimpose the original RWG functions to form the loops

�m =
N∑
n=1 [ΛT]mnfn (3.22)

and the stars

�m =
N∑
n=1 [ΣT]mnfn (3.23)

as exemplified in Fig. 3.4. Applying the transformation matrix

Q = [Λ H Σ] (3.24)
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3.2 Quasi-Helmholtz Decompositions

to (3.2) as

TΛHΣ j
′′ = Q

T
TQj

′′ = Q
T
e
ex , (3.25)

with j = Qj ′′, allows to remove the ill-conditioning of (3.2) with respect to k by introducing
suitable diagonal block normalization matrices D1 and D2 yielding the stabilized system

D1TΛHΣD2j
′ = D1Q

T
e
ex (3.26)

with j = QD2j
′. Since the choice of the matrices Di is the central topic of Chapter 5 we

define it here in a general form as

Di = diag(�i, i, �i) = ⎡⎢⎢⎣
�iIN�×N� iINH×NH �iIN�×N�

⎤⎥⎥⎦ (3.27)

Consequently, the preconditioned system (3.2) is solved for j ′ = [j TΛ j TH j TΣ ]T which is related
to the actual current vector as

j = �2ΛjΛ + 2HjH + �2ΣjΣ . (3.28)

Note that instead of stars also tree functions can be employed to complement the loops and
form the loop-tree decomposition [Eibert 2004; Andriulli 2012]. However, they lack the
orthogonality property [Andriulli et al. 2013]

Λ
T
Σ = Σ

T
Λ = 0 (3.29)

valid for the loop-star matrices. This property is a key to define the quasi-Helmholtz pro-
jectors in the following Section 3.2.2.

3.2.2 Quasi-Helmholtz Projectors

As an improvement over the loop-star decomposition, the quasi-Helmholtz projectors in-
troduced in [Andriulli et al. 2013] can be employed: The orthogonal projectors PΣ ∈ R

N×N
defined by

PΣ = Σ(ΣT
Σ)+ΣT , (3.30)

where (⋅)+ denotes the Moore-Penrose pseudoinverse, PΛ ∈ R
N×N defined by

PΛ = Λ(ΛT
Λ)+ΛT , (3.31)

and PH ∈ R
N×N defined by

PH = I − PΛ − PΣ (3.32)
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3 Discretization, Solution Uniqueness, and Conditioning

Table 3.1: Notation overview.
loop-star projectors

j ′sol ..= ΛjΛ PΛj
′

j ′hsol ..= HjH PH j
′

j ′nsol ..= ΣjΣ PΣ j
′

jsol ..= �2 j ′sol
jhsol ..= 2 j ′hsol
jnsol ..= �2 j ′nsol

loop-star projectors

esol ..= ΛTeex PΛe
ex

ehsol ..= HTeex PH e
ex

ensol
..= ΣTeex PΣe

ex

e′sol
..= �1 esol

e′hsol ..= 1 ehsol
e′nsol ..= �1 ensol

are introduced (note that the pseudoinverses can be computed efÏciently via algebraic
multigrid (AMG) preconditioning as detailed in [Andriulli et al. 2013, Section V]) as well as
the decomposition operator

Pi = �iPΛ + iPH + �iPΣ . (3.33)

Applying the latter to (3.2) as

P1TP2j ′ = P1eex (3.34)

yields awell-conditioned LSE, which is better conditioned than the loop-star preconditioned
system (3.26), with

j = P2j
′ = �2PΛj

′ + 2PH j
′ + �2PΣ j

′ (3.35)

if �i, �i, and i, i = 1, 2 are suitably chosen. Note, that in [Andriulli et al. 2013], a combined
projector,

PΛH = PΛ + PH = I − PΣ (3.36)

is used with �1 = �2 = 1 = 2 = 1/
√k and �1 = �2 = j

√k. In contrast, we chose with our
definition of Pi to treat PΛ and PH separately aswe need the general form in several places for
our theoretical apparatus. All final formulations use again the combined projector PΛH .

For both decompositions, we define the quasi-Helmholtz components j ′sol, j ′hsol, and j ′nsol,
that is, the solenoidal component, the solenoidal component associated with the handles
and holes of � , and the non-solenoidal component, respectively, as shown in Table 3.1.
This leads to the preconditioner-agnostic definitions of jsol, jhsol, and jnsol. Moreover, we
introduce jsol,hsol = jsol + jhsol. The RHS Helmholtz components esol, ehsol, ensol, as well as
their primed variants are defined analogously.

3.3 Equivalent Source Reconstruction

Just as the EFIE, the continuous equations describing the equivalent source reconstruction
problem are discretized to approximate the solution. Concerning the reconstruction of
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3.3 Equivalent Source Reconstruction

equivalent surface currents a strategy similar to the one for the discretization of the EFIE is
employed. Since it is part of the in this work proposed stabilization method, it is introduced
in detail in Chapter 7.

The discretization of the spherical vector wave formulation for the equivalent source re-
construction follows without modification [Hansen 1988]. A brief summary is given at the
beginning of Chapter 8.
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Part II

Paradigms for Boundary Integral
Scattering and Radiation Formulations
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4
AnExcitationAgnosticRight-HandSide
Discretization Scheme

“The first important notions in topology were
acquired in the course of the study of polyhedra.”

[Lebesgue 1924]

In order to accurately compute scattered and radiated fields in the presence of arbitrary exci-
tations, a low-frequency stable discretization of the RHS of the quasi-Helmholtz preconditioned
EFIE on multiply-connected geometries is introduced, which avoids an ad-hoc extraction of
the static contribution of the RHS when tested with solenoidal functions. To obtain an excita-
tion agnostic approach, the proposed approach generalizes a technique to multiply-connected
geometries where the testing of the RHS with loop functions is replaced by a testing of the
normal component of the magnetic field with a scalar function. To this end, we leverage ori-
entable global loop functions that are formed by a chain of RWG functions around the holes
and handles of the geometry, for which we introduce cap surfaces that allow to uniquely de-
fine a suitable scalar function. It is shown that this approach works with open and closed,
orientable and non-orientable geometries. The numerical results demonstrate the effectiveness
of the approach.

This chapter is based on [Hofmann et al. 2023a] including substantial verbatim portions, where
preliminary results were presented in [Hofmann et al. 2022b; Hofmann et al. 2021b; Hofmann
et al. 2021a; Hofmann et al. 2022d; Hofmann et al. 2022a].

While the preconditioned EFIE (3.26) or (3.34) is no longer ill-conditioned in k,
for the accurate computation of surface current densities and fields, a well-
conditioned system matrix alone is not sufÏcient. One issue that must be re-
solved is that testing the incident field directly with solenoidal and, on multi-

ply-connected geometries, with solenoidal functions associated with the handles and holes
of the structure can lead to catastrophic round-off errors. In consequence, the physically
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4 An Excitation Agnostic Right-Hand Side Discretization Scheme

correct scaling in frequency of the RHS cannot be maintained resulting in incorrect surface
current densities [Bogaert et al. 2014].

One strategy to obtain an accurate discretization of the RHS leverages a Taylor series expan-
sion of the excitation field to set the static contribution to zero when tested with solenoidal
functions [Andriulli et al. 2013; Chhim et al. 2020; Adrian et al. 2021]. Notably, this approach
is independent of the topology of the underlying geometry. Since it is not agnostic of the
RHS, the extraction of the static part must be derived and implemented for each excitation.
For an impinging wave that is modeled based on measurement data, however, this might
be impractical.

In the case that information on the magnetic field is available, an alternative solution is
to replace the testing of the electric field with a solenoidal function by testing the normal
component of the magnetic field with a corresponding scalar function. One of the earliest
accounts of this method is by Mautz and Harrington [Mautz et al. 1982; Mautz et al. 1984],
where they used a decomposition similar to the loop-star decomposition, but adapted to
a body of revolution formulation. Moreover, the method was used in the context of mag-
netostatics [Arvas et al. 1983; Arvas et al. 1986], and later applied to the RWG discretized,
loop-star decomposed EFIE [Wu et al. 1995]. In these works, the treatment of multiply-con-
nected geometries was only partial. For example, [Wu et al. 1995] notes that global loops
must be incorporated into the quasi-Helmholtz basis, but the discretization of the RHS is
only studied for local loops, for which a corresponding scalar function is straightforward
to define. In [Mautz et al. 1984], open surfaces with holes are treated and it is suggested to
introduce a cap surface in order to close the hole. However, while the analysis was gen-
eral, the basis functions provided were limited to bodies of revolution. Closed bodies, such
as a torus, or non-orientable surfaces were not treated. Hence it is unclear, how such an
approach can be extended to global loops on surfaces of arbitrary topology.

In this chapter, we generalize the approach of Mautz and Harrington to the case of an RWG-
based discretization, where the underlying geometry may be open or closed, simply- or
multiply-connected, and orientable or non-orientable, thus, enabling the treatment of arbi-
trary excitations in an RHS agnostic approach. Specifically, the contribution is two-fold: i)
We show how a scalar function can be efÏciently derived for global RWG loops which are
constructed as a chain of RWG functions forming an orientable strip. This allows to intro-
duce a cap surface such that a scalar function can be defined. The obtained scalar function
is then used to test the normal component of the magnetic field resulting in a stable testing
procedure for arbitrary RHS excitations. ii)We demonstrate how this generalized excitation
agnostic RHS scheme can be combined with the quasi-Helmholtz projectors Pi of [Andriulli
et al. 2013], thus, facilitating their use with arbitrary excitations. Numerical results corrob-
orate the presented theory and demonstrate the effectiveness of our approach, including
cases of non-orientable and multiply-connected geometries such as the Möbius strip.

To this end, this chapter is organized as follows: Section 4.1 elaborates on the numerically
accurate testing scheme for arbitrary incident waves, including an analysis for the root
causes of the occurring round-off errors. The analysis is carried out in the first place based
on a loop-star decomposition in order to highlight different low-frequency issues related to
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4.1 Stable Evaluation of the Right-Hand Side On Multiply-Connected Geometries

the excitations. In a second step, wewill then showhow to adapt the solution strategies such
that they become applicable to the quasi-Helmholtz projectors—the actual decomposition
we are interested in. The corresponding adaption of the projector based approach is deduced
in Section 4.2, and numerical studies on the influence of the RHS evaluation on the solution
accuracy are presented in Section 4.3.

4.1 Stable Evaluation of the Right-Hand Side OnMulti-
ply-Connected Geometries

In the following, we are interested in stabilizing the evaluation of the RHS

Q
T
e
ex =

⎡⎢⎢⎣
ΛTeex

HTeex

ΣTeex

⎤⎥⎥⎦ (4.1)

in (3.26). We note that the m-th entry of ΛTeex corresponds to testing the incident field eex

with the m-th loop function �m, that is,

[ΛT
e
ex]m = N∑

n=1 [ΛT]mn∬� fn ⋅ e
ex dr = ∬� �m ⋅ eex dr . (4.2)

The same is true for the m-th entry of HTeex, where the corresponding loop Hm is a global
one. Evaluating (4.2) by numerical integration, either by adding up the contributions from
each test function fn or by directly testingwith�m, can lead to catastrophic round-off errors,
the precise behavior depending on the RHS as will be discussed in the following subsection.
For a plane wave excitation eex = e0e

−jk⋅r , a known remedy is to leverage a Taylor series
expansion of e−jk⋅r around k ⋅ r = 0 and subtracting the static contribution [Andriulli et al.
2013; Adrian et al. 2021], that is,

[ΛT
e
ex]m = N∑

n=1 [ΛT]mn∬� fn ⋅ e0 T(e−jk⋅r − 1) dr (4.3)

where

T(e−jk⋅r − 1) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Q∑
q=1

(−jk ⋅ r)qq! for |k ⋅ r| < 1

e−jk⋅r − 1 else

(4.4)

denotes the Taylor series expansion around k ⋅ r = 0 with a sufÏciently large Q. However,
such an approach requires its adaption to each and every excitation, which is impractical.
Remedies for general excitations are known for �m that avoid ad-hoc extractions of the
static part of the RHS. In the following, we generalize these to Hm, after an analysis for
which RHSs we expect round-off errors.
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Sm

Hm

Cm,1

Cm,0 Sm

Fig. 4.1: Example of a global loop Hm as a chain of RWG functions with support Sm and
boundary ∂Sm = Cm,0 ∪ Cm,1. © 2023 IEEE.

4.1.1 Analysis of the RHS Round-Off Errors—When to Expect and
When Not to Expect Them

As local loops �m and global loops Hm will be treated in a similar way, we call their union
���m. That is, ���m can represent �m or Hm. Since all ���m are solenoidal, i.e., ∇� ⋅ ���m = 0 with ∇� ⋅
denoting the surface divergence, they can be expressed by the surface gradient of a scalar
function1  m as [Bladel 1993; Bladel 2007, (A1.65)]

���m = nm × ∇� m(r) , (4.5)

where nm denotes the normal vector field associated with the loop ���m. While for general
Hm this can lead to multi-valued  m [Verite 1987], we consider here only Hm which are
constructed as a chain of RWG functions forming an orientable surface with surface normal
nm (as noted in Section 2.3 a surface normal for the whole surface � is neither needed for
the EFIE nor introduced, as for non-orientable surfaces there is no canonical normal vector-
field on � [Johnson et al. 1990; Buffa et al. 2003a]). An example of such a chain is shown in
Fig. 4.1. The construction of global loops is a common problem in many branches of finite
and boundary element method problems, see, for example [Alonso Rodríguez et al. 2017].
Specifically, algorithms [Dey et al. 2013; Hiptmair et al. 2002; Erickson et al. 2004; Erickson
et al. 2005; Dey 1994; Yin et al. 2007] are suitable for finding global loops on a surface.2

Naturally, this poses the question if for any � for which the EFIE is admissible we can
find such an orientable surface. As noted in Section 2.3, we limit ourselves to manifolds
(e.g., this excludes geometries with T-junctions) in order to leverage results from topology,
thoughwe conjecture that the methodwould work even for more general geometries. More
specifically, invoking the classification theorem for surfaces [Richeson 2012, p. 181], the
topological constraints on � denoted in Section 2.3 imply that � is either homeomorphic to
a sphere, to the connected sum of tori, or to a non-orientable Möbius strip, where each of
these may have a finite number of holes cut out. It turns out that on such � , we can always
find Hm with the desired properties: for � homeomorphic to a sphere or to the connected

1In this context,  m is also called scalar potential [Bladel 2007; Bladel 1993; Verite 1987] or solenoidal
potential [Vecchi 1999].

2The reader should be reminded that the found loops are not uniquely determined. Even when the se-
quence is optimized such that the shortest possible loops are determined, the found global loops are not
unique. E.g., for a torus several poloidal loops of equal length can exist.
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Fig. 4.2: Mesh of a non-orientable Möbius strip discretized with 852 triangles and 1180
RWGs. The green triangles form an orientable surface that could serve as sup-
port for a global loop. © 2023 IEEE

sum of tori, this follows from the fact that they are orientable surfaces; for � homeomorphic
to a Möbius strip, we recall that when the strip is cut along its center line, the resulting strip
is no longer a Möbius strip but a longer orientable strip with two half twists [Richeson 2012,
pp. 162ff]. On this orientable strip, which is homeomorphic to a sphere with two holes, we
can construct a global loop with the desired properties. For example, the green triangles
shown in Fig. 4.2 form an orientable surface that could serve as support for a global loop
(evidently, the Möbius strip must be meshed finely enough so that there is a center line).
Hence, no additional restrictions on � are imposed.

Constructing theHm in such a manner (as chain of RWG functions) ensures that the bound-
ary )Sm of the support Sm of anyHm consists of two disjoint curves Cm,0 and Cm,1 (see Fig. 4.1).
As will be shown in Section 4.1.2, it allows to choose the corresponding  m to be zero on
one of the boundary curves, and it ensures  m to be single-valued by implicitly considering
one of the curves as a cut, where  m otherwise would be discontinuous.

Inserting (4.5) into (4.2) and using the identity of [Mautz et al. 1982, (C-1)], the representation

∬� ���m ⋅ eex dr = −∬�  mnm ⋅ (∇ × eex) dr + ∫)Sm  m(eex ⋅ um) dr (4.6)

is obtained. Here the line integral is along the boundary )Sm of the support Sm of ���m, and
um is the unit vector tangent to )Sm forming a right-handed system with nm. For �m, the
contribution of the line integral is zero as  m = 0 on ∂Sm. For Hm, we have  m = 0 only
on one of the two disjoint curves forming ∂Sm, for example, Cm,0, whereas we have  m = 1
on the other curve Cm,1. Thus, the line integral does not vanish on Cm,1. To remove this
line integral, we introduce an arbitrary cap surface Sm with ∂Sm = Cm,1 (see Fig. 4.1), apply
Stokes’ theorem with respect to Sm, and leverage that  m is constant on Cm,1 resulting in

∬� ���m ⋅ eex dr = −∬�  mnm ⋅ ∇ × eex dr +∬
Sm

nm ⋅ ∇ × eex dr . (4.7)

This representation shows that testing the incident field eex with a loop function (i.e., when
evaluating (4.2)) corresponds to computing the curl of eex perpendicular to nm weighted
with a scalar function (see also the remark for local loops in [Wu et al. 1995]). Such a com-
putation is stable whenever |∇ × eex| and |eex| have a similar order of magnitude. Otherwise,
the limitation of the numerical precision can lead to a loss of significant digits resulting in
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an erroneous RHS. In general, |∇ × eex| and |eex| will asymptotically scale differently in k fork → 0, and thus result in unstable discretizations of the RHS. However, it is interesting to
note that if

O(|∇ × eex|) = O(|eex|) (4.8)

is satisfied (i.e., |∇ × eex| and |eex| have the same asymptotic scaling in k) and if a sufÏcient
machine precision is used, then the testing with loop functions is stable independent fromk (and thus, also the evaluation in (4.2)). To obtain a numerical test that detects whether or
not this condition is satisfied, we recast (4.8) by leveraging Faraday’s law ∇ × eex = −jkhex
resulting in the equivalent condition

O(|eex|) = O(k |nm ⋅ hex|) . (4.9)

Again, it should be stressed that, in general, an excitation will not satisfy this condition and
thus its discretization will become unstable for k → 0. For example, neither a plane-wave
excitation, where we have O(|eex|) = O(|hex|) = O(1), nor a Hertzian dipole excitation,
where we have O(|eex|) = O(1/k) and O(|hex|) = O(1), satisfies (4.9). A notable exception
is an electric ring current, where we have O(|eex|) = O(k) and O(|hex|) = O(1) resulting
in no k-dependent round-off errors. This will be confirmed by the numerical results in
Section 4.3.

4.1.2 Handling Arbitrary Excitations—Construction of Scalar Func-
tions  m for Global RWG Loops

Equation (4.7) can be leveraged to obtain a stable RHS evaluation scheme for Hm: We forgo
the implicit computation of ∇ × eex by using its analytical expression ∇ × eex = −jkhex (as
was originally suggested in [Mautz et al. 1984] in the context of simply-connected body of
revolution problems) resulting in

∬� ���m ⋅ eex dr = jk∬�  mnm ⋅ hex dr − jk∬
Ŝm

nm ⋅ hex dr . (4.10)

To derive an expression for  m corresponding toHm, we first consider the well-known local
loop case. Here, the scalar function  m can be expressed in closed form on the d-th triangle
as [Zhao et al. 2002; Zhao et al. 2000]

 md(r) = 1 +
1

2Sd(r − cm) ⋅ ((r2d − r1d) × nmd) , (4.11)

which corresponds to a pyramid shape around the center node cm as shown in Fig. 4.3. Since
the integration is carried out in the parametric domain, it is useful to express  directly in
the parametric domain as

 md(u, v) = 1 − u − v . (4.12)
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r2d
r1dcm

Sd

�m

 m

Fig. 4.3: Representation of a loop formed by Dm RWG functions around the center node cm
by the scalar function  m. © 2023 IEEE

That this expression is equivalent to (4.11) can be verified by inserting

r(u, v) = cm + u(r2d − cm) + v(r1d − cm) (4.13)

and leveraging a ⋅ (b × c) = −b ⋅ (a × c). The vectors r1d and r2d are defined per triangle with
area Sd . Inserting (4.11) or (4.12) into (4.10), the products ΛTeex can be evaluated as

[ΛT
e
ex]m = jk Dm∑

d=1 ∬�  mdnmd ⋅ hex dr (4.14)

(since Sm vanishes) and in the parametric domain as

[ΛT
e
ex]m = jk Dm∑

d=1 ∬�̂  md(u, v) [(r2d − cm) × (r1d − cm)] ⋅ hex(r(u, v)) dudv (4.15)

with Dm = ‖‖[ΛT]m‖‖1 the number of RWGs spanning �m and the normal vectors nmd =
(r2d − cm) × (r1d − cm)/(2Sd).
To derive  m for a global RWG loop Hm, we exemplify the discussion by considering theHm with support Sm around the hole shown in Fig. 4.4 (a). First, we introduce a vertex
at an arbitrary point (e.g., in the center of the hole) such that a triangulated cap surface
is introduced (see Fig. 4.4 (b)) corresponding to Sm in Section 4.1.1.3 The global loop can
then be expressed by introducing local loops of equal strength around each vertex inside
the global loop. Figure 4.4 (b) shows that the overall current density of the global loop is
left unaltered, since all other contributions cancel each other. In consequence,  m is the
superposition of the scalar functions of the local loops such that  m is constant on the parts
of � lying inside Cm,1 (the inner part of )Sm) and on the cap surface, which is illustrated
in Fig. 4.4 (c). Hence, the support of  m partially lies outside of � . This corresponds well
with the expression derived in (4.7), where by applying Stokes’ theorem a cap surface was
introduced.

Expressing  m through (4.11), using  md = 1 on the cap surface elements Smd , the stable

3Alternatively, several vertices can be introduced or one of the vertices on one of the boundary curves
can be selected and connected to all other vertices of the same boundary curve.
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Hm

Cm,1

Cm,0
Sm

(a) A global RWG loop.

(b) Expressing the global loop by local loops.

 m

(c) Resulting scalar function.

Fig. 4.4: Construction of the the scalar function  m by representing a global loop Hm as the
superposition of local loops. © 2023 IEEE
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evaluation scheme

[HT
e
ex]m = jk Dm∑

d=1 ∬Smd
 md nmd ⋅ hex dr − jk Dm∑

d=1 ∬Smd
nmd ⋅ hex dr (4.16)

for global loops is obtained with Dm = ‖‖[HT]m‖‖1 (the integrals in the parametric domain
can be expressed analogously to (4.15)). As a consequence, the numerically stable testing
requires the evaluation of the incident fields across the holes and handles of a multiply-
connected surface � .
It should be stressed that the support of Hm does not necessarily have to touch )� , that is,
it is not required to find the shortest global loop. Also, the cap surface does not necessarily
have to be introduced over the inner boundary (in the example Cm,1), but also the outer
boundary (Cm,0) can be chosen. As noted before, this approach can also be applied to multi-
ply-connected surfaces which are closed, such as a torus, where both toroidal and poloidal
loops can be treated in the same manner.

It is also interesting to note that the introduction of cap surfaces strikes some resemblance
to the introduction of so-called cutting surfaces in the context of Eddy current problems
using a magneto-quasistatic approximation (see, e.g., [Brown 1984; Ren 2002]). In the latter
case, the cutting surfaces are needed to render the involved potentials single-valued as a
fundamental requirement to obtain correct solutions [Brown 1984; Ren 2002; Kotiuga 1987;
Kotiuga 1988; Kotiuga 1989; Hiptmair et al. 2005]. In contrast to the cap surfaces employed
in this work, however, the introduced surfaces can have a finite thickness, they cut the
domain instead of closing handles and holes, the potential itself is part of the unknowns,
and the setting is commonly based on a tetrahedral discretization of the volume [Dlotko
et al. 2013; Dlotko et al. 2014].

4.2 Stable Right-Hand Side Evaluation for Quasi-Helm-
holtz Projectors

As discussed in Section 3.2, instead of directly using decomposition (3.26), it is advantageous
to utilize the quasi-Helmholtz projectors introduced in [Andriulli et al. 2013], in particular,
when combined with the (refinement-free) Calderón multiplicative preconditioner [Adrian
et al. 2019], even though the required search for global loops in our scheme loses one of
the advantages of quasi-Helmholtz projectors, which do not require this search. One could
think of avoiding the construction of global loops; however, introducing a cap surface that
closes the handles and holes requires a cut in the surface. Finding such a cut corresponds
to finding a global loop. Analogous issues for the stable evaluation of the RHS arise and we
need to establish how (4.14) and (4.16) can be used in this context.
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4.2.1 Stable Evaluation of the Right-Hand Side

A direct evaluation of the RHS P1e
ex in (3.34) as

P1e
ex = �1(I − PΣ )e

ex + �1PΣe
ex (4.17)

results in similar round-off errors as for the loop-star decomposition. To see why, we con-
struct PΛH explicitly. This can be done by applying [Λ H ]T to (3.28) yielding

[ΛT

HT]j = [ΛTΛ ΛTH

HTΛ HTH][jΛjH] , (4.18)

where the orthogonality relations ΛTΣ = 0 and HTΣ = 0 were used. After solving for jΛ
and jH and mapping back to ΛjΛ and HjH , the projector

PΛH = [Λ H][ΛTΛ ΛTH

HTΛ HTH]+[ΛT

HT] (4.19)

is obtained. In consequence, evaluating PΛHe
ex involves the products ΛTeex and HTeex ex-

hibiting the round-off errors discussed in the previous Section 4.1. At the same time, us-
ing (4.19) instead of PΛH = I−PΣ for the RHS product allows to employ the stable evaluation
schemes given in (4.14) and (4.16) for the quasi-Helmholtz projectors rendering the product
PΛHe

ex numerically stable.

However, evaluating the pseudoinverse in (4.19) involves matricesΛTΛwhich exhibit a con-
dition number which growswith the average edge length ℎ of the triangulation as 1/ℎ2 [An-
driulli 2012]. Hence, an efÏcient inversion strategy is required.

4.2.2 Efficient Evaluation of the Projected RHS

As ΛTΛ is a graph Laplacian, it can be inverted with a constant number of iterations in-
dependent of ℎ by employing an AMG preconditioner [Livne et al. 2012; Andriulli 2012].
In order to maintain this property for (4.19), we propose to employ the Schur complement
(see, e.g., [Boyd 2004, p. 650]). More precisely,

PΛHe
ex = [Λ H][yΛyH] (4.20)

is evaluated, where yΛ and yH are the solutions to

[ΛTeex

HTeex] = [ΛTΛ ΛTH

HTΛ HTH][yΛyH] . (4.21)
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(a) (b)

Fig. 4.5: Rectangular torus of size 1m × 1m × 0.4m and inner radius of 0.3m with a 1/ℎ =
5m−1 and b 1/ℎ = 40m−1. © 2023 IEEE

These solutions are obtained by first solving the LSE

S yH = H
T(I − PΛ)e

ex (4.22)

containing the Schur complement

S = H
T
H − H

T
Λ(ΛT

Λ)
+
Λ
T
H = H

T(I − PΛ)H (4.23)

with PΛ = Λ(ΛTΛ)
+
ΛT and subsequently solving

Λ
T
Λ yΛ = Λ

T(eex − HyH ) . (4.24)

This allows to use an AMG preconditioner each time an inverse of ΛTΛ is formed, and thus,
fully removes the ill-conditioning with respect to ℎ in (4.24). We do not expect an ℎ-ill-
conditioning of S in (4.22) due to the global nature of the Hm.

As an example consider the rectangular torus shown in Fig. 4.5 for which 1/ℎ is varied
between 2 and 100. The corresponding number of iterations for conjugate gradient (CG) to
compute the pseudoinversewhen evaluating PΛHe

ex is depicted at the top of Fig. 4.6. Clearly,
if no preconditioner is employed, the iteration count increases with 1/ℎ. This is improved
by applying an AMG preconditioner directly to the whole matrix in (4.21). However, a
detrimental dependency on ℎ remains. Only when computing the pseudoinverse via the
Schur complement, the number of iterations (summed up for both LSEs to be solved) is
constant and overall the smallest for all considered cases.

As the pseudoinverse depends also on H , it is of interest to investigate the influence of
the number of global loops NH . To this end, we vary the number of handles of the plate
with finite thickness depicted in Fig. 4.7, where there are two global loops per handle. The
corresponding number of iterations is shown at the bottom of Fig. 4.6. Again, the overall
fewest iterations are required when the proposed Schur complement scheme is used. The
remaining dependency onNH for the LSE in (4.22) is acceptable in most realistic cases, since
the involved matrix is only of size NH × NH and the LSE has to be solved only once in the
overall solution process.

In addition, it should be noted that the proposed approach is fully compatiblewith a Calderón
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Fig. 4.6: Number of iterations for the iterative computation of the pseudoinverse in the pro-
jector PΛH via CG. © 2023 IEEE

preconditioner. The latter is commonly combined with the stabilized system (3.34) to pre-
vent a dense-discretization breakdown, that is, an ill-conditioning of the system matrix
with respect to ℎ [Andriulli et al. 2013; Andriulli et al. 2008a]. As this does neither affect
the problems with the RHS (the same kind of RHS stabilization is needed) nor the proposed
solution strategy all benefits of the Calderón preconditioning are maintained.

4.3 Numerical Results

In order to show the impact of the stabilized RHS evaluation on the accuracy of the com-
puted scattered and radiated fields, several scenarios are investigated. For all of them, a
GMRES solver is employed without restarts and a relative residual of �res = 1 × 10−6 as stop-
ping criterion. Furthermore, the quasi-Helmholtz projectors Pi = �iPΛH +�iPΣ are employed
as done in (3.34) in all scenarios. For the normalization coefÏcients �i and �i we employ the
approach derived in the next Chapter 5, where also details are provided why specifically
this choice of coefÏcients is crucial. The implementation of (3.2) is based on [Cools 2021].
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(a) (b)

Fig. 4.7: Finite-height plate of size 1m × 1m × 0.2m with varying number of global loops
NH and a constant average edge length with 1/ℎ = 25m−1: from a NH = 2 to b
NH = 200. © 2023 IEEE
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Fig. 4.8: Scattering from a sphere of radius rs = 1m (a) excited by dipoles and ring currents
at position z = 2m and radius rrc = 0.5m; (b) discretized with 624 triangles and
936 RWGs. © 2023 IEEE

4.3.1 Scattering from a Sphere

We begin with a study of the scattering from a sphere since a semi-analytic reference is
available. The sphere has radius rs = 1m and is excited by a plane wave, a Hertzian dipole
jHD [Jin 2015, pp. 69 f.], a magnetic dipolemFD [Jin 2015, pp. 76 ff.], an electric ring current
jrc [Jin 2015, pp. 362 ff.], and a magnetic ring currentmrc (employing duality) as depicted in
Fig. 4.8. For all of these excitations, the scattered fields can be determined semi-analytically
in form of a series expansion (see [Jin 2015, pp. 368 ff.] and [Hofmann et al. 2023e; Hofmann
2022f] for implementation details), which serves as reference solution. The error with re-
spect to this solution is determined for the FF, the electric, and themagnetic NF at a distance
of r = 5m. To this end, the fields are computed on a spherical 5◦ grid and the relative loga-
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Table 4.1: Scaling of the RHS components for k → 0. © 2023 IEEE

plane wave Hertzian
dipole

el. ring
current

mag.
dipole

mag. ring
current TEmn TMmn

‖esol‖ O(k) O(k) O(k) O(1) O(k2) O(k−n) O(k−(n−1))‖ehsol‖ O(k) O(k) O(k) O(1) O(k2) O(k−n) O(k−(n−1))‖ensol‖ O(1) O(1/k) O(k) O(1) O(1) O(k−n) O(k−(n+1))
rithmic worst case error

ℵ = max#,'
⎧⎪⎪⎨⎪⎪⎩20 log

|a(#, ') −â(#, ')|
max#,' |a(#, ')|

⎫⎪⎪⎬⎪⎪⎭ (4.25)

with a ∈ {e, ℎ, eFF} is determined.

For the plane-wave excitation, the results over frequency are shown at the top of Fig. 4.10 (a)
for the cases where PΛe

ex is evaluated in a naïve manner and where PΛe
ex is evaluated

via the scalar functions  . Clearly, for the naïve RHS evaluation, all fields are erroneous
when going below 1 × 10−4Hz. Using the RHS evaluation via  solves this for all fields.
The second plot of Fig. 4.10 (a) shows the norms of the solenoidal components of the RHS
esol,hsol = PΛHe

ex and the non-solenoidal components of the RHS ensol = PΣe
ex. From these it

can be seen that the physically correct scalings (see Table 4.1 which generalizes the findings
of [Bogaert et al. 2014]) are only obtained for the evaluation via  . Otherwise, a deviation
is observed below 1 × 10−8Hz, showing that the scalings reflect the breakdown in accuracy.
The same is true for the norms of the solenoidal and non-solenoidal components of the
solution current j as shown in the third plot of Fig. 4.10 (a).

For the Hertzian dipole, it can be seen from Fig. 4.10 (b) that the breakdown in accuracy
occurs already in the kHz region. This can be explained by the fact that the solenoidal and
the non-solenoidal component of the RHS differ in their scaling by k2 (see Table 4.1), which
is in contrast to the plane wave, where the difference is only k. Consequently, the naïve
RHS evaluation breaks down earlier. Evaluating the RHS via  leads to correct FFs and
NFs over the whole frequency range. Notably, other than the FF and the magnetic NF, the
electric NF is determined correctly also with the naïve RHS evaluation. The reason is that
the non-solenoidal current component, which represents the charge and thus determines
the electric NF, dominates asymptotically and is thus recovered sufÏciently accurately (see
third plot of Fig. 4.10 (b)). At the same time, for this specific excitation the electric NF is
dominated by the non-solenoidal current in the low-frequency regime as can be shown by
an asymptotic analysis [Hofmann et al. 2023b, Table II]. One should not jump, however, to
the conclusion that the electric NF is always recovered accurately. In fact, for the plane-
wave excitation both current components are recovered erroneous below 1×10−8Hz leading
to all fields being erroneous as well.

A similar behavior is observed for the magnetic ring current as depicted in Fig. 4.11 (a). As it
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Naïve eval. PΛHeex

This work: PΛHeex via k

esol, jsol
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ensol, jnsol

FF
4-NF
ℎ-NF

Fig. 4.9: Legend for the numerical results in this chapter including Fig. 4.10, Fig. 4.11,
Fig. 4.13, Fig. 4.15, Fig. 4.17, and Fig. 4.18.
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(b) Hertzian dipole

Fig. 4.10: Scattering from a sphere: worst case errors of the FF, the electric, and themagnetic
NF, as well as the scaling of the RHS components for different excitations with and
without stabilized RHS. © 2023 IEEE
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(a) magnetic ring current
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(b) electric ring current
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(c) spherical mode TE11
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(d) spherical mode TM11

Fig. 4.11: Scattering from a sphere: worst case errors of the FF, the electric, and themagnetic
NF, as well as the scaling of the RHS components for different excitations with and
without stabilized RHS. © 2023 IEEE
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behaves like a Hertzian dipole in the low-frequency regime, it shows the same breakdown
frequencies. Only the scalings of the RHS components are different, however, the ratio
between solenoidal and non-solenoidal components stays the same.

The results for the electric ring current shown in Fig. 4.11 (b) are particularly insightful.
In Section 4.1.1, we predicted that if O(|e|) = O(|nm ⋅ h|k), then the  -based evaluation of
the RHS is unnecessary. We observe that, indeed, there is no further improvement in the
error and the physically correct scalings for the RHS are recovered in both approaches. As
an interesting observation, we note that this is directly reflected by the scalings of the RHS
components: Considering (4.7) together with Faraday’s law and using esol,hsol = PΛHe

ex,
we find O(|nm ⋅ hex|k) = O(‖esol,hsol‖). Analogously, with ensol = PΣe

ex, we get O(|eex|) =
O(‖ensol‖). Hence, condition (4.9) can be expressed equivalently as

O(‖ensol‖) = O(‖esol,hsol‖) , (4.26)

showing that no numerical round-off errors occur if the non-solenoidal component scales
as the solenoidal components of the RHS. As the asymptotic behavior of themagnetic dipole
differs from the electric ring current only by a constant factor, we omit it here.

As another class of excitations, we consider the spherical vector waves q(3)1mn in (2.23) re-
ferred to as TEmn and q(3)2mn in (2.24) referred to as TMmn, both traveling towards the origin.
Again the scattered fields can be determined analytically by enforcing the boundary con-
ditions providing a reference solution (see also [Hofmann et al. 2023e]). From the asymp-
totic behavior of the involved spherical Hankel functions as k → 0 and leveraging that
O(‖eTE/TM,sol,hsol‖) = O(|k hTE/TM|), it can be concluded that the TE modes exhibit a scaling
of

‖eTE,nsol‖ = O(k−n) (4.27)
and ‖eTE,sol,hsol‖ = O(k−n) (4.28)

such that no problems with the RHS are expected as proven by the results in Fig. 4.11 (c).
However, the TM modes scale as

‖eTM,nsol‖ = O(k−(n+1)) (4.29)
and ‖eTM,sol,hsol‖ = O(k−(n−1)) (4.30)

as long as the scatterer is not a sphere placed in the origin. In the latter case, we have
eTM,sol,hsol = 0 as the surface curl of the TMmodes vanishes on the surface of a sphere [Hsiao
et al. 1997]. The results for a TM11 excitation in Fig. 4.11 (d) show that without the stabi-
lization scheme the error level increases already below a frequency of 10MHz. Notably,
despite eTM,sol,hsol not fully vanishing with the stabilized RHS, it is kept small enough such
that the fields are computed correctly. This property is maintained if q(1)2mn waves (with
spherical Bessel instead of Hankel function in the radial dependency) are used as TM ex-
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I

G

H

Fig. 4.12: Double torus with NH = 4 global loops discretized by 848 triangles and 1272
RWGs. © 2023 IEEE

citation modes. The increase of the error at f = 1 × 108Hz, on the other hand, stems from
the (geometrical) approximation error. Increasing the number of triangles from 624 to only
1526 restores an error level of about −80 dB.

4.3.2 Scattering from Multiply-Connected Geometries

As a first example of a multiply-connected geometry, we consider the double torus de-
picted in Fig. 4.12. The results for a plane-wave excitation are shown in Fig. 4.13 (a). The
reference solution is determined by stabilizing the RHS with a Taylor series expansion fol-
lowing [Adrian et al. 2021]. The comparison with the stabilization via scalar functions  m
shows good agreement over the whole frequency range, clearly demonstrating the correct-
ness of the proposed scalar function formulation for multiply-connected geometries. The
same applies for a Hertzian dipole excitation as depicted in Fig. 4.13 (b). For the latter, the
error is determined in form of a manufactured solution [Roache 2001; Steinberg et al. 1985]:
The dipole is placed inside the scatterer, and we leverage that the total field esc + eex = 0
outside the scatterer. The latter condition is then checked on the spherical 5◦ grid. Note,
that this is not the same approach as in [Freno et al. 2021], where the current density itself
is compared to a manufactured solution. The obtained error ℵ shows that the stabilization
of the RHS via scalar functions yields accurate solutions. The strong relevance of the stabi-
lized RHS evaluation in this case can be explained by the close proximity of the excitation
to the scatterer.

As a more challenging scatterer, the geometric model of a (PEC) Fokker Dr.I shown in
Fig. 4.14 with NH = 390 global loops excited by a Hertzian dipole is considered. In or-
der to accelerate the computation, an ACA algorithm is used [Zhao et al. 2005a; Bebendorf
2008] with compression rate 1 × 10−4. The error of the solution is determined in the same
manner as for the double torus. The results in Fig. 4.15 prove again the necessity of the
proposed scheme.

To demonstrate that also topologically challenging geometries can be successfully handled
by the proposed approach, the trefoil knot depicted in Fig. 4.16 (a) is excited by a Hertzian
dipole. The hole of the toroidal loop is closed by introducing a point in the center of the
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Fig. 4.13: Scattering from a double torus: worst case errors and scaling of the RHS compo-
nents for different excitations with and without stabilized RHS. © 2023 IEEE

Fig. 4.14: Model of a Fokker Dr.I with an approximate wingspan of 7m containingNH = 390
global loops. The model is discretized with 196 280 triangles and 294 420 RWGs.
© 2023 IEEE
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Fig. 4.15: Scattering from the Fokker Dr.I model excited by a Hertzian dipole: worst case
errors and scaling of the RHS components. © 2023 IEEE

(a) (b)

Fig. 4.16: Scattering from a trefoil knot: (a) rectangular profile swept along x(t) = sin(t) +
2 sin(2t), y(t) = cos(t) − 2 cos(2t), z(t) = − sin(3t) with t ∈ [0, 2π]; discretized
with 3580 triangles and 5370 RWGs. (b) Mesh to close the toroidal global loop of
the trefoil knot. © 2023 IEEE
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Fig. 4.17: Scattering from the trefoil knot excited by a Hertzian dipole which is placed inside
the knot: worst case errors and scaling of the RHS components. © 2023 IEEE

knot. Consequently, the resulting surface is intersecting itself as shown in Fig. 4.16 (b).
While in principle this can be avoided by introducing a more complex (Seifert) surface [Sul-
livan 1996], the results in Fig. 4.17 confirm that the correct fields are obtained. Figure 4.18
confirms that also the non-orientable Möbius strip depicted in Fig. 4.2 can be handled.
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Fig. 4.18: Scattering from the Möbius strip: worst case errors and scaling of the RHS com-
ponents for a plane wave excitation with and without stabilized RHS. © 2023 IEEE

Fig. 4.19: Self-intersecting mesh to close the global loop of the Moebius strip shown in
Fig. 4.2. © 2023 IEEE

Again, we use as reference solution a Taylor series expansion for the plane-wave exci-
tation. Similar to the trefoil knot, the cap surface closing the hole is self-intersecting as
shown in Fig. 4.19.

4.4 Conclusion

We showed how to evaluate the RHS of the quasi-Helmholtz decomposed EFIE in an excita-
tion agnostic manner such that no catastrophic round-off errors occur in the presence of a
multiply-connected geometry due to the testing of the incident field with global loops. The
numerical results show that, depending on the scattering object and the specific excitation,
without the adaptions inaccurate fields are obtained already for frequencies below theMHz
region, but with the stabilized evaluation the scattered and radiated FFs can be determined
correctly down to the static limit.
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5
An Excitation-Aware and Self-Adaptive
Frequency Normalization

“Even if rounding errors vanished, numerical analysis would remain.
Approximating mere numbers, the task of floating point arithmetic, is
indeed a rather small topic and maybe even a tedious one. The deeper
business of numerical analysis is approximating unknowns, not knowns.”

[Trefethen 1992]

A second key aspect for the accurate solution of the quasi-Helmholtz decomposed EFIEs in the
presence of arbitrary excitations is addressed in this chapter: Depending on the specific exci-
tation, the quasi-Helmholtz components of the induced current density do not have the same
asymptotic scaling in frequency, and thus, the current components are solved for with, in gen-
eral, different relative accuracies. In order to ensure the same asymptotic scaling, we propose a
frequency normalization scheme of the quasi-Helmholtz decomposed EFIEs which adapts itself
to the excitation and which is valid irrespective of the specific excitation and irrespective of
the underlying topology of the structure. Specifically, neither an ad-hoc adaption nor a-priori
information about the excitation is needed as the scaling factors are derived based on the norms
of the RHS components and the frequency. Numerical results corroborate the presented theory
and show the effectiveness of our approach.

This chapter is based on [Hofmann et al. 2023b] including substantial verbatim portions, where
preliminary results were presented in [Hofmann et al. 2022a; Hofmann et al. 2022c; Hofmann
et al. 2023d].

As demonstrated in the previous Chapter 4, ensuring that the system matrix of the
discretized EFIE is well-conditioned is insufÏcient if one desires to accurately
compute the fields, but testing the RHSwith solenoidal functions (which is needed
for the considered low-frequency stabilizations) can lead to catastrophic round-

off errors. A means to overcome this issue has been proposed in Chapter 4 and in the
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following, it is assumed that this or an equally effective stabilization is applied since all
further derivations rely on an accurately discretized RHS reflecting the physically correct
asymptotic scalings in frequency of the quasi-Helmholtz components.

A second key problem is addressed in this chapter: It has to be ensured that all quasi-Helm-
holtz components of the decomposed surface current density, that is, the solenoidal and
the non-solenoidal component, are recovered with sufÏcient accuracy to obtain accurate
scattered and radiated fields [Andriulli et al. 2013; Chhim et al. 2020]. More precisely, the
unknown vector of the LSE to be solved has two contributions (i.e, the solenoidal and the
non-solenoidal quasi-Helmholtz component), which can differ largely in their order of mag-
nitude. This is due to the, in general, different asymptotic scaling of the quasi-Helmholtz
components in the wavenumber k as k → 0, where the specific behavior is dependent on
the excitation source. Still both contributions need to be determined accurately.1

As the employed preconditioners entail a rescaling of the quasi-Helmholtz decomposed ex-
pansion and basis functions, they enforce a different scaling of the quasi-Helmholtz com-
ponents of the preconditioned current (i.e., the unknown vector) compared to the physical
(non-rescaled) one. The same is true for the RHS components. Different choices for the
corresponding scaling coefÏcients have been employed in the past. Typical choices are,
for example, given in [Mautz et al. 1984; Zhao et al. 2000; Andriulli et al. 2013; Echeverri
Bautista et al. 2014; Adrian et al. 2017]. While they are suitable for a plane-wave excitation,
it is in general not ensured that all components can be recovered correctly for arbitrary ex-
citations, since the scaling coefÏcients in these existing schemes do not reflect the scaling
of the quasi-Helmholtz components of the excitation. Yet, excitations such as voltage gaps
sources are commonly used, and thus, the EFIE should be solved accurately for these as
well. The same is true for spherical waves, which are able to represent the field radiated by
antennas, or line currents representing radiation from wire structures.

A remedy is using ad-hoc techniques as done in [Andriulli et al. 2013]. However, this ap-
proach constitutes an approximation which limits the overall accuracy and the behavior of
the quasi-Helmholtz components of the excitation needs to be known a-priori. Moreover,
in [Andriulli et al. 2013] only three types of excitations were studied (plane wave, capac-
itive gap excitation, and inductive gap excitation). For other excitations such as spherical
TM or TE waves, we find, however, that the approach is not applicable.

In this chapter, we propose a frequency normalization scheme which adapts itself to the
excitation requiring neither a-priori information nor ad-hoc adaptions. To this end, the
scaling coefÏcients incorporate the norms of the quasi-Helmholtz components of the dis-
cretized RHS in a black-box like manner. Hence, the approach is agnostic to the specific
excitation (and the topology of the structure). More precisely, the scaling coefÏcients are
determined such that all quasi-Helmholtz components of the preconditioned current and of
the RHS have the same asymptotic scaling. Thereby, all components are recovered with a

1An investigation whether similar problems occur also for other proposed low-frequency stabiliza-
tion schemes for scattering and radiation problems such as the augmented EFIE or potential-based ap-
proaches [Qian et al. 2008a; Qian et al. 2010; Epstein et al. 2009; Li et al. 2016; Vico et al. 2016] is beyond
the scope of this work.
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similar relative accuracy ensuring that all radiated and scattered fields can be computed ac-
curately. Numerical results corroborate the effectiveness of our approach both for canonical
and complex geometries.

This chapter is organized as follows: In Section 5.1, the implications of the frequency nor-
malization in quasi-Helmholtz decompositions of the EFIE are analyzed; from the gained
insights, the adaptive normalization scheme is derived for the loop-star decomposition as
well as for the quasi-Helmholtz projectors. In Section 5.2, we show how to achieve posi-
tive eigenvalues of the preconditioned system matrix, again for both decompositions, and
implementation specific aspects are addressed. Numerical studies are presented in Sec-
tion 5.3.

Again, we consider as first approach the loop-star decomposition. It allows to carry out
the analysis in a demonstrative way before adapting it to the actual decomposition of in-
terest: quasi-Helmholtz projectors. Moreover, note that in order to also cure the dense-
discretization breakdown of the EFIE (i.e., the ill-conditioning with respect to the average
edge length of the triangulation of � ), formulation (3.34) could be combinedwith a Calderón
preconditioner similar to what has been done using thechoice of scaling coefÏcients in [An-
driulli et al. 2013; Andriulli et al. 2008a]. While such a combination should be compatible
with the here proposed frequency normalization scheme, further investigations would be
necessary which are beyond the scope of this work.

5.1 Analysis of the Frequency Normalization and Self-
Adaptive Scheme

Before deriving our new formulation, we start by investigating the influence of the different
quasi-Helmholtz components of j = jsol,hsol + jnsol on the scattered or radiated near and far
fields, where we refer again to Table 3.1 for in the following frequently employed notation
conventions.

5.1.1 Relevant Current Components

To assess the influence of a surface current density component on the FF, we insert the
expansion j ≈ ∑n[jsol,hsol + jnsol]n fn into (2.19) and stabilize the evaluation by explicitly
setting the static contributions for the solenoidal current density to zero as [Adrian et al.
2021]

eFF(r) =
N∑
n=1[jsol,hsol]n ur × ur ×∬� fn(r

′)T(e−jkur ⋅ r′ − 1) dr′

+ N∑
n=1

[jnsol]n ur × ur × ∬� fn(r′) e−jkur ⋅ r
′ dr′ , (5.1)
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Table 5.1: Relevant current components required to recover NFs and FF for k → 0. © 2023
IEEE

plane wave Hertzian dipole el. ring current mag. dipole mag. ring current
e-NF jnsol jnsol jsol,hsol, jnsol jsol,hsol, jnsol jnsol
ℎ-NF jsol,hsol jsol,hsol, jnsol jsol,hsol jsol,hsol jsol,hsol, jnsol

FF jsol,hsol, jnsol jnsol jsol,hsol jsol,hsol jnsol

ind. gap cap. gap TEmn TMmn
e-NF jsol,hsol, jnsol jnsol jsol,hsol, jnsol jnsol
ℎ-NF jsol,hsol jsol,hsol, jnsol jsol,hsol jsol,hsol, jnsol

FF jsol,hsol jnsol jsol,hsol jnsol

where T(⋅) denotes a Taylor series expansion around kur ⋅ r′ = 0 as detailed in (4.4), and
where we divided by a normalization factor −jk. Since T(e−jkur ⋅ r′−1) = O(k), the combined
current component jsol,hsol is scaled with an additional factor k compared to jnsol. Adopting
the notation

O(ka) < O(kb) ⇔ a < b , (5.2)

we consider jsol,hsol relevant for the FF computation if O(kjsol,hsol) ≤ O(jnsol). Likewise, jnsol
is relevant for the FF computation if O(jnsol) ≤ O(kjsol,hsol). Analogously, we can determine
if a current component is relevant for the computation of the electric or the magnetic NF.
In the case of the electric NF, we use its stabilized evaluation

eNF(r) = −j N∑
n=1

[jnsol]n[kTAfn + k−1TΦfn] − j N∑
n=1[jsol,hsol]n kTAfn , (5.3)

which introduces a scaling of jsol,hsol with k and of jnsol with 1/k. In the case of the magnetic
NF evaluation in (2.17), both current components are weighted identically.

As an example, consider a plane-wave excitation, where we have ‖jsol,hsol‖ = O(1) and‖jnsol‖ = O(k): here, only jnsol is relevant for the electric NF, only jsol,hsol is relevant for
the magnetic NF, but both current components are relevant for the FF. Analogously, the
relevant current components that are required to recover the NFs and the FF can be derived
for the excitations shown in Table 5.1, where we used the physical current scalings given
in [Bogaert et al. 2014; Andriulli et al. 2013]. In addition, we have included the cases of the
spherical TEmn and TMmn modes (see Section 2.2.2) based on the physically correct scalings
of the current components

‖jTE,sol,hsol‖ = O(k−(n+1)) (5.4)
and

‖jTE,nsol‖ = O(k−(n−1)) (5.5)
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for TE modes as well as

‖jTM,sol,hsol‖ = O(k−n) (5.6)
and

‖jTM,nsol‖ = O(k−n) (5.7)

for TM modes. The asymptotic scalings can be derived from the RHS component scalings
given in (4.27)-(4.30) and a Schur complement analysis of j ′′ = T −1

ΛHΣQ
Teex (see also the

following sections).

Clearly, for all of the excitations in Table 5.1, both jnsol and jsol,hsol must be recovered ac-
curately if one desires to compute both FF and NFs accurately. Even more, both current
components have to be recovered with a similar relative accuracy as one component can
solely determine the accuracy of a field even though its magnitudemight be small compared
to the other current component. To ensure accurate recovery, we study, in a first step, the
frequency scalings of the loop-star decomposed system D1TΛHΣD2j ′ = D1QTeex in (3.26).

5.1.2 Self-Adaptive Normalization for Loop-Star Basis

As will be shown in the following, while for a plane-wave excitation the normalization
matrices in (3.26) can be chosen as D1 = D2 = (1, 1, k) [Mautz et al. 1984], D1 = D2 =diag(1/√k, 1/√k,√k) [Andriulli et al. 2013], orD1 = diag(1/k, 1/k, 1) andD2 = diag(1, 1, k)
[Zhao et al. 2000], for arbitrary excitations this yields, in general, wrong solutions; instead,
a more flexible approach is required. For the analysis, we useDi = diag(�i, i, �i) from (3.27),
which allows for an asymmetric normalization. Performing a Schur-complement analysis
for the inverse of D1TΛHΣD2 for k → 0, we obtain

⎡⎢⎢⎢⎢⎢⎣
O(‖j ′sol‖)
O(‖j ′hsol‖)
O(‖j ′nsol‖)

⎤⎥⎥⎥⎥⎥⎦
= (D1TΛHΣD2)−1

⎡⎢⎢⎢⎣
O(�1 ‖esol‖)
O(1 ‖ehsol‖)
O(�1 ‖ensol‖)

⎤⎥⎥⎥⎦ , (5.8)

where we note that O(‖j ′sol‖) = O(‖jΛ‖), O(‖j ′hsol‖) = O(‖jH ‖), as well as O(‖j ′nsol‖) = O(‖jΣ ‖)
since the multiplication with the mapping matrices Λ, H , and Σ does not change the scaling
in k. The blocks of the matrix (D1TΛHΣD2)−1 exhibit the scaling

⎡⎢⎢⎢⎣
O(1/(�1�2k)) O(1/(1�2k)) O(k/(�1�2))
O(1/(�12k)) O(1/(12k)) O(k/(�12))
O(k/(�1�2)) O(k/(1�2)) O(k/(�1 �2))

⎤⎥⎥⎥⎦ , (5.9)

which is a direct generalization of the findings in [Bogaert et al. 2014]. In order to obtain a
well-conditioned matrix for k → 0, we enforce that the blocks on the main diagonal scale
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as O(1); thus, the coefÏcients must obey

�1�2 = O(1/k) , 12 = O(1/k) , (5.10)

and

�1�2 = O(k) . (5.11)

Inserting (5.10) and (5.11) into (5.9) and forming the matrix-vector product in (5.8) results
in ⎡⎢⎢⎢⎢⎢⎣

O(‖j ′sol‖)
O(‖j ′hsol‖)
O(‖j ′nsol‖)

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣
O(�1 ‖esol‖ + �1 ‖ehsol‖ + �1k2 ‖ensol‖)
O(1 ‖esol‖ + 1 ‖ehsol‖ + 1k2 ‖ensol‖)
O(�1 ‖ensol‖ + �1 ‖esol‖ + �1 ‖ehsol‖)

⎤⎥⎥⎥⎥⎥⎦
, (5.12)

which shows that, dependant on the scalings of the incident field, theHelmholtz components
of j ′ will differ in their asymptotic behavior in k.
While the standard choices �1 = �2 = 1 = 2 = 1/√k and �1 = �2 = √k [Andriulli et al.
2013] or alternatively �1 = 1 = 1/k, �1 = �2 = 2 = 1, and �2 = k [Zhao et al. 2000]
satisfy (5.10) and (5.11), the resulting quasi-Helmholtz components of j ′ will, in general,
not have the same asymptotic scaling. Consequently, a large relative error in one of the
Helmholtz components remains undetected if, for example, the relative residual error of
D1QTeex−D1TΛHΣD2j ′ is studied (as done by typical iterative solvers for the LSE). As noted,
however, in Section 5.1.1, all current components must be recovered with a similar relative
accuracy when solving (3.26) in order to accurately compute all fields. These considerations
lead us to impose a second requirement on �i, i, and �i: all current components should
scale identically, where we, due to the constraints of finite-precision arithmetic, opt for an
O(1)-type of scaling.

With the aim of satisfying this additional requirement, we first note that the scalings de-
rived in (5.12) show that the solenoidal components associated with the local and the ones
associated with the global loops can be treated identically. Consequently, in all of the fol-
lowing, we set

i = �i , (5.13)

and define

‖esol,hsol‖ = √‖esol‖2 + ‖ehsol‖2 . (5.14)

Moreover, we introduce the ratio of the norms of the solenoidal components over the non-
solenoidal component

w = ‖esol,hsol‖/‖ensol‖ . (5.15)

60



5.1 Analysis of the Frequency Normalization and Self-Adaptive Scheme

Excluding the trivial case ‖esol,hsol‖ = ‖ensol‖ = 0, the scalings in (5.12) then dictate

�1 =
{1/‖esol,hsol‖ for w ≤ O(k2)
1/(k2 ‖ensol‖) for w > O(k2) (5.16)

and

�1 =
{1/‖ensol‖ for w ≥ O(1)
1/‖esol,hsol‖ for w < O(1) . (5.17)

Note that the case w > O(k2) includes ‖esol,hsol‖ = 0 when interpreting it as the result ofw → 0 and the case w < O(1) includes the case ‖ensol‖ = 0 when interpreting it as the result
of w → ∞. Moreover, definition (5.14) covers also the cases where O(‖esol‖) ≠ O(‖ehsol‖)
including the cases where not both but either esol or ehsol vanishes (e.g., as encountered for
gap excitations).

Together with (5.10) and (5.11) for the remaining coefÏcients, we find

�2 = 1/(k�1) and �2 = k/�1 , (5.18)

arriving at a scheme that adapts itself to the incident field based on the norms of the RHS
components. Hence, there is no need to have a-priori information about the nature of the
incident field.

5.1.3 Quasi-Helmholtz Projector Normalization Factors

When employing the quasi-Helmholtz projector stabilized system (3.34) instead of the loop-
star decomposition, the very same normalization factors (5.16)-(5.18) can be employed2 with
the corresponding definitions esol,hsol = PΛHe

ex and ensol = PΣe
ex. This follows from an

intrinsic relation which can be established to the loop-star decomposition, that is,

P1TP2 = QND1TΛHΣD2NQ
T (5.19)

with

N = diag((ΛT
Λ)+, (HT

H )+, (ΣT
Σ)+) . (5.20)

However, it should be verified that �i and �i in (3.33) properly take care of another aspect
only relevant for the projectors: since solenoidal and non-solenoidal components are stored
in the same vector, that is, j ′ = j ′sol,hsol + j ′nsol and P1eex = e′sol,hsol + e′nsol, significant digits
can be lost if the asymptotic scaling in k of j ′sol,hsol and j ′nsol (or e′sol,hsol and e′nsol) is different.
This is precisely the reason why an imaginary constant was included in the definition of
the projectors in [Andriulli et al. 2013], where P1 = P2 = PΛH/√k + j√kPΣ was employed.

2Note that due to (5.13) there is no need to split PΛH into PΛ and PH .
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Due to the imaginary constant, for example, for the inductive gap excitation the dominant
contribution of j ′sol,hsol was stored in the imaginary part and the dominant contribution of
j ′nsol in the real part of j ′, where we consider a component as dominant if its asymptotic
behavior O(ka) < O(kb) with kb as the scaling for the other component.3 This approach
relies on the circumstance that real and imaginary part of each quasi-Helmholtz component
often exhibit a different asymptotic scaling, so that, in fact, only one of the parts is relevant
for an accurate field computation in low-frequency scenarios. However, using the factors�i and �i as defined in (5.16)-(5.18) for Pi, the inclusion of an imaginary constant is in the
first place no longer necessary.

In order to illustrate this problem of the significant digits in more detail, we consider the
physical frequency scalings of the RHS for seven different types of excitations. Those can
be derived as shown in Appendix A.1, where the findings of [Bogaert et al. 2014] are gen-
eralized, resulting in the first three rows of Table 5.2. Note that in contrast to the analysis
so far, we study now real and imaginary part separately to show that indeed no dominant
contribution is lost. The scalings show that directly storing the components in one vector
would lead to a loss of significant digits for a Hertzian dipole or a magnetic ring current
excitation, since the solenoidal components scale differently than the non-solenoidal com-
ponents. The next three rows show the scalings using the normalization from [Andriulli
et al. 2013]. Here the real and the imaginary part of the non-solenoidal components are
interchanged, which allows to store the components in one vector for all the considered
excitations. However, for the excitation by spherical TE and TM modes, this approach fails
as shown by Table 5.2. Both, real and imaginary part have the same asymptotic scaling
such that none can be neglected. At the same time, the here proposed normalization shown
in the last rows (of Table 5.2) works independently of the specific scalings of the RHS and
without introducing an imaginary constant, since it does not rely on storing one domi-
nant component in the real and the other in the imaginary part: each dominant component
is normalized to scale as O(1), and thus, they can be added without the danger of losing
significant digits.

To complete the picture, we study also the scalings of the solution current components in
Table 5.3: the first three rows show the physical scalings as obtained by separately handling
real and imaginary part in (5.8). Evidently, storing the physical current components in one
vector fails for the electric ring current, the magnetic (Fitzgerald) dipole, and the inductive
gap excitation. From j = jsol,hsol + jnsol = P2j ′ = �2j ′sol,hsol + �2j ′nsol, it can be seen that the
solution current of the preconditioned LSE scales as

j
′sol,hsol = jsol,hsol/�2 and j

′nsol = jnsol/�2 . (5.21)

Using the normalization from [Andriulli et al. 2013], rows two to six in Table 5.3 show that,
at least for the considered excitations, all current components can be stored in one vec-
tor. However, again for the TEmn and TMmn modes this fails as, for example, ‖jTE,sol,hsol‖⋆ =
O(k−(n+1)) + jO(k−(n+1)) and ‖jTE,nsol‖⋆ = O(k−(n−1)) + jO(k−(n−1)). Even more, for all the ex-

3For the actual recovery of the relevant current components, the normalization of [Andriulli et al. 2013]
of course requires an ad-hoc technique, which is avoided by the here proposed approach.
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I

G

H

Fig. 5.1: Double torus with NH = 4 global loops: each torus with outer radius 1m and inner
radius 0.5m. Second torus at x = 1.55m. Discretized by 848 triangles and 1272
RWGs. © 2023 IEEE

citations (except for the plane wave) the dominant components of the current still scale
differently, hinting that they cannot be recovered with a similar relative accuracy in a
straightforward manner but an ad-hoc technique is required. This can be avoided when
the proposed normalization scheme is employed as shown in the last three rows.

As an example of which current components can be recovered, we consider the double torus
in Fig. 5.1 excited by a magnetic diople. Real and imaginary part of the determined current
components are depicted in Fig. 5.2 (a) for the standard normalization and in Fig. 5.2 (b) for
the proposed normalization. In order to ensure a high accuracy, a direct solver is employed.
While the standard normalization, at first glance, seems to approximate the theoretical scal-
ings (indicated by dashed lines) better, only the adaptive normalization maintains the cor-
rect scalings of the dominant components for all frequencies. This is, however, the decisive
property. The worse agreement of the non-dominant components is not relevant for the
resulting fields as the non-dominant components are (in this case 13) orders of magnitude
smaller than the dominant components. A similar behavior can be observed for an excita-
tion by an electric ring current as shown in Fig. 5.2 (c) and (d), which confirms, again, the
preceding analysis.

5.2 EigenvalueDistribution and ImplementationDetails

The definition of the normalization constants �i and �i in (5.16)-(5.18) allows for two more
improvements leading typically to faster convergence of iterative solvers. By reintroducing
an imaginary constant j and a constant C (to be defined for the loop-star basis and the quasi-
Helmholtz projectors, respectively, in the following subsections), we ultimately propose to
choose the normalization factors

�1 =
{√−jC/‖esol,hsol‖ for ‖esol,hsol‖ ≠ 0 ,√−jC/(k2 ‖ensol‖) for ‖esol,hsol‖ = 0 , (5.22)
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Fig. 5.2: Scaling of real and imaginary part of the recovered current components for a double
torus excited by a magnetic dipole and ring current. © 2023 IEEE

66



5.2 Eigenvalue Distribution and Implementation Details

and

�1 =
{1/(√−jC‖ensol‖) for ‖ensol‖ ≠ 0 ,
1/(√−jC ‖esol,hsol‖) for ‖ensol‖ = 0 , (5.23)

where the simplified conditions for the case distinctions (not involving w) are sufÏcient
for practical purposes as will be detailed in the following section. Together with (5.10)
and (5.11), we then find for the remaining coefÏcients

�2 = C/(jk�1) and �2 = jk/(C�1) , (5.24)

where still (5.13) is employed for the i in the context of the loop-star decomposition. The
motivation for these modifications will again be discussed first for the loop-star decompo-
sition and then for the quasi-Helmholtz projectors.

5.2.1 On the Simplification of the Conditions to be Checked

The suggested simplified conditions for the case distinctions in (5.22) and (5.23) are based
on the observation, that, except for the capacitive gap excitation for all standard excitations
listed in Table 5.2, the ratio in (5.15) satisfies

O(1) ≤ w ≤ O(k2) (5.25)

as can be seen from the first three rows. The capacitive gap excitation, on the other hand,
is accounted for by the case ‖esol,hsol‖ = 0. Even when combining arbitrary TEmn and TMmn
modes with arbitrary orders n, the relation (5.25) is satisfied with the sole exception when� is a sphere placed in the origin, all shown in Appendix A.2. In this particular case,‖eTM,sol‖ = 0. Consequently, if no other excitations than the ones listed are present, the
case distinctions only require to check whether one of the norms is zero. For cases not cov-
ered by (5.25), the more general conditions on w given in (5.16) and (5.17) can be checked
by evaluating the norms at least at two frequencies.

5.2.2 Loop-Star Decomposition

The idea of introducing the constant C in (5.22) and (5.23) is to improve the overall condition
number of the system matrix. Choosing it similar to the one suggested in [Adrian et al.
2021] as

C =
√ k‖ΣTTΣ ‖‖[Λ H ]TTA[Λ H ]‖ (5.26)

enforces an equal contribution of the scalar and the vector potential. The matrix norms in
this expression can be determined efÏciently as ‖Υ‖ = √�max(ΥHΥ) for a square matrix Υ
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with �max(ΥHΥ) denoting the largest eigenvalue ofΥHΥ. This eigenvalue can be estimated,
for example, via a few Arnoldi iterations or the power iteration method (which are both
compatible with matrix-free methods) [Trefethen et al. 1997; Stewart 2002].

The factor j, on the other hand, causes D1TΛHΣD2 to have only positive eigenvalues in the
static limit: For O(1) ≤ w ≤ O(k2), the matrix D1TΛHΣD2 exhibits the block structure

[AN�H×N�H BN�H×N�
CN�×N�H DN�×N� ] = [O(1) O(k2/w)

O(w) O(1) ] , (5.27)

with N�H = N� + NH and where

w = O(k�) . (5.28)

In order for C not to vanish in the static limit, � ≤ 0 has to hold. For B not to vanish, on the
other hand, � ≥ 2 has to hold. Since both conditions cannot be satisfied at the same time,
either C or B or both vanish for k → 0 independent of the RHS. For the case w > O(k2),
we find B = O(1) and C = O(k2), and for the case w < O(1), we find B = O(k2) and
C = O(1). Thus, for all possible excitation scalings, D1TΛHΣD2 is at least block triangular (if
not block diagonal). In consequence, for the determinant det(D1TΛHΣD2) = det(A) det(D)
holds, which shows that the eigenvalues are solely determined by A and D . As A and D

are known to have positive eigenvalues [Steinbach 2008], so does D1TΛHΣD2 (for k → 0).
This property is, in general, beneficial as it leads to faster convergence for typical Krylov
subspace methods [Saad 2003, pp. 205ff].

5.2.3 Quasi-Helmholtz Projectors

Similarly, for the quasi-Helmholtz projectors, we introduce [Adrian et al. 2021]

C =
√ ‖TΦ‖‖PΛHTAPΛH ‖ (5.29)

to improve the overall condition number. Since the imaginary constants were demonstrated
to be irrelevant for the significant digits in Section 5.1.3 (due to the new normalization
scheme), imaginary constants can again be placed to improve the eigenvalue distribution.
That this leads to positive eigenvalues in the static limit also for the quasi-Helmholtz pro-
jected EFIE, can be shown by using the block triangular nature of D1TΛHΣD2 for k → 0 as
starting point. Defining the matrix

G = [Λ(ΛT
Λ)−1/2 HT(HT

H )−1/2 Σ(ΣT
Σ)−1/2] (5.30)

and the matrix G i = GDi, the matrix GT1TG2 is also block triangular with positive eigenval-
ues. Furthermore, we have

P1TP2 = GG
T1TG2GT , (5.31)
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Fig. 5.3: Eigenvalues � of the projected matrix of a double torus at 10MHz (a) without and
(b) with imaginary constants. © 2023 IEEE

which allows to deduce properties about the eigenvalues �i of P1TP2. Due to the properties
of similarity transforms, we have �i(GGT1TG2GT) = �i(GTGGT1TG2GTG−T) for i = 1,… , N .
Using GTG = I and GTG−T = I, we find

�i(P1TP2) = �i(GT1TG2) ∀i = 1,… , N , (5.32)

from which the positive eigenvalues of P1TP2 follow for k → 0.
In order to illustrate the impact, the eigenvalues �i of the projected matrix P1TP2 for the
example of the double torus in Fig. 5.1 are shown in Fig. 5.3. Only if the imaginary con-
stant is included, we have Re{�i} > 0 and Im{�i} is close to being zero. If the frequency
is decreased further down to the kHz region as depicted in Fig. 5.4, we see that the clus-
tering on the real axis increases further. The influence on the number of iterations for
the generalized minimum residual (GMRES) [Saad et al. 1986] solver, the induced dimen-
sion reduction (IDR) [Sonneveld et al. 2008] solver, and the stabilized bi-conjugate gradient
(BiCGstab) [Sleijpen et al. 1993] solver are summarized in Table 5.4 for the case that the
double torus is excited by a Hertzian dipole and a relative residual of �res = 1 × 10−6 as
stopping criterion. Clearly, the iteration count (reflected by the number of matrix-vector
products) is reduced if either the imaginary constant or the constant C is included. The
best result is obtained if both constants are used simultaneously as is done in the proposed
formulation.

5.3 Numerical Results

To demonstrate the impact of the frequency normalization on the accuracy of the computed
scattered and radiated fields, several scenarios are investigated. To this end, we employ the
quasi-Helmholtz projectors and compare the standard choice of scaling coefÏcients, �1 =�2 = √C/k and �1 = �2 = j√k/C, where we have included the constant C for a fairer
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Fig. 5.4: Eigenvalues � of the projected matrix of a double torus at 1 kHz (a) without and (b)
with imaginary constants. © 2023 IEEE

Table 5.4: Number of matrix-vector products for a double torus excited by a Hertzian dipole
with and without the inclusion of

√jC in (5.16) and (5.17). © 2023 IEEE

solver f loop-star projector

none
√j √C √jC none

√j √C √jC
10MHz 945 761 1140 421 206 171 169 43

GMRES 1 kHz 945 761 1140 420 206 170 168 431Hz 945 761 1140 420 206 170 168 43
10MHz 7843 1186 2984 498 263 207 213 49

IDR(8) 1 kHz 8895 1119 2829 499 299 198 213 481Hz 9220 1142 3294 481 301 203 228 50
10MHz - 1272 - 792 488 312 384 52

BiCGstab(2) 1 kHz - 1272 - 784 476 264 372 481Hz - 1272 - 808 508 296 384 52

comparison with the adaptive ones in (5.22) and (5.23). Again, if not stated otherwise, a
GMRES solver is used without restarts and a relative residual of �res = 1 × 10−6 as stopping
criterion. For the RHS stabilization the approach of Chapter 4 is employed and in order to
accelerate the computation, an ACA algorithm is used [Zhao et al. 2005a; Bebendorf 2008]
with compression rate 1 × 10−4. The relative worst-case errors

ℵ = max#,'
⎧⎪⎪⎨⎪⎪⎩20 log

|a(#, ') −â(#, ')|
max#,' |a(#, ')|

⎫⎪⎪⎬⎪⎪⎭ , (5.33)

with a ∈ {e, ℎ, eFF} are computed based on a spherical 5◦ grid and NF distances of r = 8m.
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Fig. 5.5: Scattering from a sphere with radius rs = 1m (a) excitation with dipoles and ring
currents at position z = 2m and radius rrc = 0.5m; (b) discretized with 3214 trian-
gles and 4821 RWGs. © 2023 IEEE

5.3.1 Scattering from a Sphere

We start with scattering from the sphere shown in Fig. 5.5, where series expansions are
used as reference (see [Jin 2015, pp. 368 ff.] and [Hofmann et al. 2023e; Hofmann 2022f] for
implementation details). The results for different excitations are depicted in Fig. 5.6. For
a plane-wave excitation, the standard normalization is sufÏcient to determine all fields for
the whole frequency range correctly. Figure 5.6 (b) shows that the adaptive normalization
maintains this property. This is as expected: for the plane wave both schemes recover all
current components with a similar relative accuracy.

Considering next the excitation by a Hertzian dipole, Fig. 5.6 (c) evidences that the adaptive
frequency normalization removes an otherwise occurring breakdown in accuracy of the
magnetic NF below 1MHz. That specifically the magnetic NF is affected corresponds well
with the preceding analysis (see especially Section 5.1.1): as an incorrect solenoidal current
component is recovered, only themagnetic NF is affected in accordancewith Table 5.1. Also
depicted is the accuracy of an ad-hoc adaption technique using the projectors P = P1 = P2
from [Andriulli et al. 2013] with �1 = �2 = √C/k and �1 = �2 = j√k/C. The ad-hoc
technique requires that two LSEs are solved. More precisely, as ‖Re{PTP }‖ ≪ ‖Im{PTP }‖
for low frequencies, the two real valued systems

− Im{PTP }Im{j ′} = Re{Peex} (5.34)
and

Im{PTP }Re{j ′} = Im{Peex} (5.35)

are solved. Depending on the specific dominant components of the excitation (see Table 5.3)
only Re{j ′} or Im{j ′} is used to determine jsol,hsol and in an analogue fashion to determine
jnsol. While this approach also removes the breakdown below 1MHz it introduces a break-
down when going above that frequency. A similar behavior is observed for the electric ring
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Fig. 5.6: Scattering from a sphere: worst case errors of the FF, the electric, and the magnetic
NF, as well as the scaling of the current components. © 2023 IEEE
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Fig. 5.7: Scattering from a sphere: worst case errors of the FF, the electric, and the magnetic

NF, as well as the scaling of the current components. © 2023 IEEE
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current as depicted in Fig. 5.6 (d) and the magnetic dipole in Fig. 5.7 (b). The errors in the
current components correspond to the fields as predicted in Table 5.1, and only the adaptive
normalization (in addition to a stabilized RHS) fully removes the issues for all fields and for
arbitrarily low frequencies.

The same is true for the spherical mode excitations TE11 and TM11 as shown in Fig. 5.7 (c)
and (d), respectively. Note that the ad-hoc approach is not possible in this case but only the
adaptive normalization can overcome the problem.

As the analysis so far showed that the problem lies in an insufÏcient accuracy of the solution
components, another investigation is conducted for the sphere excited by amagnetic dipole:
we vary the relative residual �res of the GMRES solver. In this numerical experiment, the
ACA is not used and we employ C = 1 (to emphasize the effect of the residual). The results
for the standard normalization in Fig. 5.8 (a) reveal that indeed by lowering the residual, the
breakdown can be shifted to lower frequencies. However, even when employing a direct
solver (LU-decomposition), the breakdown cannot be fully avoided. For large problems, it-
erative solvers become the only option; a typical choice for �res is around 1×10−3 to 1×10−4.
This underlines the importance for using an adaptive normalization as shown in Fig. 5.8 (b),
where we see that the error in the solution is dominated by the geometric approximation
and discretization and not by the stopping criterion. Furthermore, the number of iterations
remains constant when decreasing the frequency, whereas the iteration count for the stan-
dard normalization decreases with decreasing frequency: with the standard normalization
only the solenoidal component is recovered, however, not the non-solenoidal component.
Hence, the iterative solver only determines a part of the unknowns sufÏciently accurately,
but stops too early for the remaining unknowns resulting in the erroneous electric NF. Also
note that separate residuals for solenoidal and non-solenoidal components are not possible
(as the non-solenoidal component of the RHS depends on all current components) and if
so, would lead to longer convergence times. Similarly, real and imaginary part of the RHS
depend each on the real and the imaginary part of the current, thus, preventing a separate
residual for real and imaginary part of the current without an approximation.

5.3.2 Scattering from Multiply-Connected Geometries

To validate our formulation also for multiply-connected geometries, we consider the double
torus in Fig. 5.1 for a plane-wave and a Hertzian dipole excitation. The results in Fig. 5.9
demonstrate the effectiveness of our approach.

The results for the (PEC) model of a Fokker Dr.I shown in Fig. 5.10 excited by a Hertzian
dipole in Fig. 5.11 highlight again that the breakdown in accuracy can occur at relatively
high frequencies but is fully overcome by the proposed scheme.

74



5.3 Numerical Results

LU-decomp. nres = 1 × 10
−10

nres = 1 × 10
−6

nres = 1 × 10
−4

−50

−40

−30

−20

er
ro
rℵ

in
d
B

10−20

105

1030

‖ j
‖

10−20 10−16 10−12 10−8 10−4 100 104 108
0

100

200

300

f in Hz

ite
ra
tio

ns

(a) standard normalization

−50

−40

−30

−20

er
ro
rℵ

in
d
B

10
−39

10
−5

10
29

‖ j
‖

10
−20

10
−16

10
−12

10
−8

10
−4

10
0

10
4

10
8

0

100

200

300

f in Hz

ite
ra
tio

ns

(b) this work: adaptive normalization

Fig. 5.8: Scattering from a sphere excited by a magnetic dipole using the standard
and the adaptive frequency normalization employing different solvers: an LU-
decomposition and GMRES with different relative residuals �res. Only the electric
NF error is shown, no ACA is employed and C = 1. © 2023 IEEE
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Fig. 5.9: Scattering from a double torus: worst case errors of the FF, the electric, and the
magnetic NF, as well as the scaling of the current components for different excita-
tions. The HD is placed at x = 0.8m and no ACA is used. © 2023 IEEE

Fig. 5.10: Model of a Fokker Dr.I with an approximate wingspan of 7m. The model is dis-
cretized with 196 280 triangles and 294 420 RWGs. © 2023 IEEE

5.3.3 Inductive and Capacitive Gap Excitation

As a last example, we consider the voltage gap excitation of the capacitive and the inductive
structure depicted in Fig. 5.12. The capacitive structure consists of two plates of size 1m ×
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Fig. 5.11: Scattering from the model of a Fokker Dr.I excited by a Hertzian dipole. © 2023
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Fig. 5.12: Inductive and capacitive structure excited by voltage gaps (location highlighted
in blue) (a) along positive y-axis and (b) in xy-plane. © 2023 IEEE

1m separated by 0.01m, where the non-uniformity of the mesh originates from the small
size of the strip connecting the two plates. The inductive structure is a 1m × 1m ring with0.25m width. A comparison to the radiated fields when using the standard normalization
is shown in Fig. 5.13. Clearly, for both structures only the adaptive scheme yields the phys-
ically correct scalings of the current components as given in Table 5.3. For the inductive
structure, the non-solenoidal current is incorrect resulting in a difference in the electric
NF. Dually, for the capacitive structure, the solenoidal current is incorrect resulting in a
difference in the magnetic NF, all in accordance with Table 5.1. The determined inductivity
of 964.3 nH agrees well with the 962.5 nH from a quasistatic simulation in Computer Sim-
ulation Technology Microwave Studio (CST MWS) [CST Computer Simulation Technology
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Fig. 5.13: Radiation from an inductive and a capacitive structure excited by a voltage gap
excitation: comparison between the standard and the adaptive normalization
scheme. © 2023 IEEE

2022]. Analogously, the determined capacitance of 918.05 pF agrees well with the 917.65 pF
from an electrostatic simulation in CST MWS.

5.4 Conclusion

We have shown that scaling coefÏcients in the quasi-Helmholtz preconditioners, which lead
to a well-conditioned impedance matrix, do not necessarily lead to current solutions that
allow an accurate determination of all fields. In fact, despite a well-conditioned matrix, the
current components are in general solved for with different relative accuracies, which is for
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5.4 Conclusion

general excitations not sufÏcient. The numerical results demonstrated that the proposed
adaptive frequency normalization method effectively resolves this effect for all excitations
considered and, thus, allows for the accurate computation of near and far fields. In fact,
depending on the structure and the specific excitation, standard approaches lead to inaccu-
rately computed fields already in the MHz region, whereas with the proposed method, the
scattered and radiated fields can be determined correctly with an overall reduced number of
iterations down to the static limit. Given our theoretical considerations and the wide range
of studied excitations, we conclude that our method can stabilize the EFIE in the presence
of arbitrary excitations.
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6
A Low-Frequency Stabilization for the
B-Spline-Based IsogeometricDiscretiza-
tion

“Some years ago a few researchers joked about NURBS, saying that the
acronym really stands for nobody understands rational B-splines…”

[Piegl 1995]

In order to low-frequency stabilize the EFIE when discretized with divergence conforming B-
spline based basis and testing functions in an isogeometric approach, a corresponding quasi-
Helmholtz preconditioner is proposed. To this end, we derive i) a loop-star decomposition for
the B-spline basis in the form of sparse mapping matrices applicable to arbitrary polynomial
orders of the basis as well as to open and closed geometries described by single- or multipatch
parametric surfaces (as an example non-uniform rational B-splines (NURBS) surfaces are con-
sidered). Based on the loop-star analysis, it is shown ii) that quasi-Helmholtz projectors can
be defined efÏciently. This renders the proposed low-frequency stabilization directly applicable
to multiply-connected geometries without the need to search for global loops and results in
better-conditioned system matrices compared to directly using the loop-star basis. Numerical
results demonstrate the effectiveness of the proposed approach.

This chapter is based on [Hofmann et al. 2024c] including substantial verbatim portions, where
the first two authors share the first authorship: The first author had major contributions to the
conceptual design, formal analysis, wrote the original draft of the article, created the figures
and tables, and contributed several of the results. The second author had major contributions
to the conceptual design, formal analysis, and the results. Preliminary results were presented
in [Mirmohammadsadeghi et al. 2024; Hofmann et al. 2024d].

To solve the EFIE for the induced surface current density, the in the previous chapters
employed discretization strategy to approximate the surface of the structure by a
mesh and then expand the current into basis functions defined on that mesh, is a
common approach. The divergence-conforming RWG functions (3.14) and higher-
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order versions thereof (e.g., [Peterson et al. 1995; Graglia et al. 1997; Peterson 2006]) are
widely employed.

Yet, the underlying mesh representation typically introduces a geometrical discretization
error. In order to overcome this drawback, isogeometric methods have been proposed first
in the context of structural mechanics [Hughes et al. 2005] and later also in other areas
such as flow simulations [Bazilevs et al. 2007] or shell analysis [Kiendl et al. 2010]. The
fundamental idea is to use an exact geometry description via parametric representations, for
example, by NURBS or subdivision surfaces, and to use the same or a similar representation
to approximate the unknowns of the equation to be solved.

In the context of electromagnetics, this has been analyzed first for FEMs in [Buffa et al. 2010;
Veiga et al. 2014; Buffa et al. 2014a]. Specifically for the EFIE, approaches using B-spline
representations have been proposed in [Buffa et al. 2014b; Simpson et al. 2018] with optimal
convergence rate guarantees proven in [Dölz et al. 2019; Buffa et al. 2020] and numerical
comparisons with higher-order RWG discretizations confirming the convergence behavior
of the approach in [Dölz et al. 2020]. Investigations on a formulation similar to the PEEC
method have been presented in [Nolte et al. 2023a; Nolte et al. 2023b]. An approach for the
EFIE based on subdivision surfaces and basis functions derived from them has been given
in [Li et al. 2016; Alsnayyan et al. 2023].

The latter approach directly addresses the low-frequency breakdown, where, in contrast
to the quasi-Helmholtz decompositions employed in this work, in [Alsnayyan et al. 2023]
not a quasi but a full Helmholtz decomposition is established which is facilitated by the
assumption of a C1-continuity of the employed surface description. Also for higher order
bases, approaches have been presented [Wildman et al. 2004; Jose Ma 2012]. For the B-
spline based isogeometric modeling of the EFIE, however, no low-frequency stabilization is
available.

In this chapter, such a low-frequency stable discretization of an EFIE is presented that is
discretized with B-splines of arbitrary polynomial orders via the framework of quasi-Helm-
holtz projectors. To obtain the quasi-Helmholtz projectors for a B-spline basis, we first derive
loop and star transformationmatrices as the fundamental building blocks for the projectors.
In particular, we ensure that the transformation matrices can be interpreted as incidence
matrices of an equivalent graph which, in turn, ensures that the projectors can be efÏ-
ciently computed. In doing so, and in contrast to existing quasi-Helmholtz decompositions
for higher-order bases, we maintain all the advantages known from RWG discretizations
for arbitrary polynomial orders. The presented approach is applicable to open and closed,
simply- and multiply-connected geometries, where as a description for the geometries we
consider single- and multi-patch NURBS surfaces but other parametric descriptions fit into
the employed framework as well. Numerical results for both canonical and realistic geome-
tries corroborate the effectiveness of this strategy.

To this end, this chapter is organized as follows: Section 6.1 introduces the background ma-
terial about the isogeometric discretization of the EFIE fixing the notation. In Section 6.2,
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the corresponding loop-star mapping matrices are derived for single- and multi-patch de-
scriptions of the basis. The relation to quasi-Helmholtz projectors is established in Sec-
tion 6.3 and numerical results are presented in Section 6.4 before a conclusion is given.

6.1 Isogeometric Discretization of the Electric Field In-
tegral Equation

As the discretization strategy and the considered geometry description are based on B-
splines we start by briefly repeating their definition.

6.1.1 Definition of the B-splines

The B-splines are functions of the real variable1 u ∈ [0, 1]. The partitioning of this unit
interval is fundamental for the definition of the B-splines and is called knot vector.

The Knot Vector

The M entries ui ∈ [0, 1] (the knots) of the knot vector

U = {u1,… , uM} (6.1)

are sorted in ascending order, i.e., ui ≤ ui+1 with u1 = 0 and uM = 1. Moreover, the first and
last entry are each repeated p+1 times (they have a multiplicity of r = p+1) which defines
a so called p-open knot vector [Piegl 1995, p. 66].

Recursive Definition

The ith B-spline basis functions Bpi (u) of degree p ≥ 0 is defined on the knot vector U
recursively, starting with the piecewise constant (p = 0) [Cox 1972; de Boor 1972; Piegl
1995, p. 50]

B0i (u) =
{1 ui ≤ u < ui+1
0 otherwise

(6.2)

and for p > 0 we have

Bpi (u) = u − ui
ui+p − ui B

p−1
i (u) + ui+p+1 − u

ui+p+1 − ui+1 B
p−1
i+1 (u) . (6.3)

1The restriction of u to the unit interval is not necessary, but makes the notation more concise.
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Whenever one of the contained quotients exhibits a division by zero, the quotient is by
convention defined to be zero itself. For a given knot vector withM entries, the number of
B-splines of degree p is given by [Piegl 1995, p. 66]

N = M − p − 1 . (6.4)

Each basis function has only local support, that is, it is only different from zero in the
interval [ui, ui+p] and due to the assumption of an open knot vector Bp1 (0) = BpN (1) = 1.
As a normalized version of the B-splines the Curry-Schoenberg splines are defined as [Boor
2001, p. 88]

bpi (u) = p + 1
ui+p+1 − uiB

p
i (u) , (6.5)

where again, by convention, for the case that the denominator in (6.5) becomes zero, we
define bpi (u) ..= 0.

Derivatives

The first derivative of Bpi (u) can be expressed concisely in terms of the Curry-Schoenberg
splines as [Piegl 1995, p. 59]

∂uBpi (u) = bp−1i (u) − bp−1i+1 (u) . (6.6)

In order for this expression to be meaningful, the multiplicity r of the knots in (6.1) has to
be smaller than p since at a knot, the spline Bpi is p − r times continuously differentiable
[Piegl 1995, p. 57].

6.1.2 Geometry Representation

As discussed in Section 3.1.1 the surface � of the PEC structure shall be represented by
a union of A non-overlapping surfaces �a. The mapping from the parametric space �̂a =(u, v) ∈ [0, 1]2 to the physical space �a ⊂ R

3 can now be described in terms of B-splines as
[Hughes et al. 2005], [Piegl 1995, Chapter 4.4]

sa(u, v) =
N au∑
i=1

N av∑
j=1B

a,qui (u)Ba,qvj (v)waij paij
N au∑
i=1

N av∑
j=1B

a,qui (u)Ba,qvj (v)waij
(6.7)

withN au andN av B-spline basis functionsBa,qui andBa,qvj of polynomial degree qu, qv ∈ {0, 1, 2,… },
weightswaij ∈ R+, and control pointspaij ∈ R

3 all on suitable knot vectorsU a� = {u1, u2,… , uM� }
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Fig. 6.1: Definition of the basis functions on a single patch a in the êu direction and b
in the êv direction on the knot vectors U = {0, 0, 0, 1/3, 2/3, 1, 1, 1} and V ={0, 0, 0, 0, 1/4, 1/2, 3/4, 1, 1, 1, 1} with pu = 2 and pv = 3 resulting in Nu = 5, Nv = 7
and a total of N = 38 basis functions. © 2024 IEEE

and V a� = {v1, v2,… , vM� } with ui, vi ∈ [0, 1]. Since (6.7) is a rational function of u and v de-
fined via the tensor product of B-splines, it is called NURBS surface. The computation of
the Jacobi matrix Ja(u, v) of (6.7) and the generalized determinant Da(u, v) is summarized in
Appendix B.

While, in principle, other (nonsingular and invertible) mappings sa(u, v) ∶ [0, 1]2 ↦ �a can
also be employed [Dölz et al. 2019], the rational nature of (6.7) makes it more flexible than
descriptions based on (e.g., Lagrangian or Hermitian) polynomials (see, e.g., [Peterson 2006,
pp. 9ff]). For example, the surface of spheres, ellipsoids, hyperboloids, paraboloids, circular
cylinders, and circular cones can only be described exactly, by employing rational functions
such as done by a NURBS description [Piegl 1995, pp. 333ff].

6.1.3 Discretization

As B-spline based (divergence conforming) basis functions we consider the ones introduced
in [Veiga et al. 2014, Section 5] and similar to [Simpson et al. 2018], that is, analogous
to (3.12)

fn(r) = fdij (r) = J(u, v)
D(u, v) f̂ijd(u, v) (6.8)

with the basis function2 f̂ijd(u, v) ∈ R
2 defined in the parametric domain (u, v) ∈ [0, 1]2

pointing in the unit direction êd , with the freely selectable indexmappings i = i(n), j = j(n),
and d = d(n) ∈ {u, v}. The definition of the f̂ijd(u, v)with an exemplified illustration in Fig. 6.1
is as follows:

2The reader shall be reminded, that the parametric counterpart to a vector g or a scalar g in the physical
domain is be denoted with a hat as ĝ or ĝ .
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Single-Patch Domain

For the case that � is described by a single patch (i.e., a ∈ {1} in (6.7)), we introduce Nu
B-splines Bpui (u) of polynomial degree pu ∈ {0, 1, 2,… } along the parameter u based on a
pu-open knot vector U of lengthMu and maximum multiplicity pu−1 for the internal knots
(which also for a NURBS description of � is independent of U� ). Analogously, the B-splines
Bpvj (v) of polynomial degree pv ∈ {0, 1, 2,… } are introduced on the pv-open knot vector
V = {v1, v2,… , vMv}, vi ∈ [0, 1] with maximum multiplicity pv − 1. The unique entries of U
and V form then the Bézier mesh MB as shown in Fig. 6.1. The supports of the B-splines
start and end always at an edge of MB. In addition, the Curry-Schoenberg splines bpui (u)
and analogously bpvj (v) are defined on the same knot vectors U and V , respectively. The
incorporation of the Curry-Schoenberg splines into the definition of the basis functions will
lead to a particularly simple form of the loop and star mapping matrices as further detailed
in Section 6.2 (similar to the special edge length normalization of RWG functions [Rao et al.
1982] as employed in [Andriulli et al. 2013]).

The actual basis functions f̂ijd(u, v) with d ∈ {u, v} are then defined via

f̂iju(u, v) = Bpui (u)bpv−1j (v)êu i = 2, 3,… , Nu − 1
j = 2, 3,… , Nv

(6.9)

along the u-direction as well as

f̂ijv(u, v) = bpu−1i (u)Bpvj (v)êv i = 2, 3,… , Nuj = 2, 3,… , Nv − 1 (6.10)

along the v-direction with pu ≥ 1 and pv ≥ 1. Note that via the indexing limits, we have
removed basis functions which would correspond to current flowing off the boundaries of
� as well as basis functions that are zero due to the definition of B-splines of polynomial
degree p − 1 on an open knot vector for degree p. In consequence, there are a total of

N = (Nu − 2)(Nv − 1) + (Nu − 1)(Nv − 2) (6.11)

basis functions. The entries of the discretized EFIE matrix T in (3.2) can again be obtained
as described in Section 3.1.3.

Multi-Patch Domain

For the case that � is described by a union of A patches, we still introduce basis functions
as defined in (6.9) and (6.10) on each patch. In addition, across each interface between two
patches, basis functions normal to the interface are introduced such that normal continu-
ity is ensured based on the requirement that the knot vectors of both patches along the
interface are identical [Simpson et al. 2018]: the non-zero basis functions that we have re-
moved in (6.9) and (6.10) by our choice of indexing limits are now used by combining on
each interface the “twin” pairs of normal basis functions (while the tangential ones are not
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Fig. 6.2: Example of the merging process for functions at the interface of two patches: all
(for the single patch excluded) functions normal to the interface are merged, and
the tangential functions are left unaltered. © 2024 IEEE

merged) as depicted in Fig. 6.2. In terms of implementation, it has to be ensured that the
contributions to the basis function across the interface have the same orientation which can
be achieved, for example, via connectivity arrays [Simpson et al. 2018]. The overall number
of basis functions can then be expressed as

N = A
∑
a=1

N a + L
∑
l=1

N lni (6.12)

where N a denotes the number of basis functions on the ath patch as determined in (6.11),
N lni denotes the number of basis functions f̂ lni,i across the lth interface, and L denotes the
total number of interfaces.

Greville Mesh

A geometric interpretation of the basis functions, which we will make frequent use of in
the following, can be given in terms of the so-called Greville mesh MG depicted in Fig. 6.3.
The Greville mesh is defined by the Greville sites [Boor 2001, p. 96]

ui = ui+1 +⋯ + ui+pu
pu i = 1,… , Nu (6.13)

along the parametric direction u and analogously vj along the parametric direction v. As
detailed in [Buffa et al. 2014a; Evans et al. 2020], each interior edge of MG is associated with
exactly one basis function f̂m (since the Greville sites uniquely correspond to one Bpui or Bpvj
and since the Curry-Schoenberg splines bpui and bpvj have their polynomial degree reduced
by precisely one).
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Fig. 6.3: Associating the basis functions to the Greville mesh MG with the Greville sites di
illustrating the connectivity. © 2024 IEEE

6.2 Loop-Star Decomposition for the Isogeometric Dis-
cretization

In order to address the low-frequency breakdown of (3.2), we first derive a corresponding
loop-star decomposition (3.26). In consequence, the goal of the following two subsections
is to derive the mapping matrices Λ and Σ for the B-spline discretization in analogy to
RWG discretizations. Some properties of the found decomposition and the matrix H will
be addressed afterwards. A fundamental relationship we are leveraging to do so is the fact
that [Peterson 2006, p. 88]

∇� ⋅ g = D−1∇�̂ ⋅ ĝ . (6.14)

Hence, functions that are (not) divergence free in the parametric domain are also (not)
divergence free in the physical domain. Consequently, it sufÏces to find the loop and star
functions in the parametric domain, and the so found corresponding mapping matrices will
be the same in the physical domain.

6.2.1 Solenoidal Basis—Loop Mapping Matrix

Recalling that the mapping matrix Λ describes how the original basis functions f̂n = f̂ijd are
superimposed to form loop functions �̂ij with ∇�̂ ⋅ �̂ij = 0, we have

�̂r = �̂i�(r),j�(r) =
N
∑
n=1

[ΛT]rnf̂n , (6.15)

with the freely selectable index mappings i�(r) and j�(r). To find the corresponding Λ we
start with a single patch.
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Fig. 6.4: Example of a scalar function  ̄pupvij on the Bézier mesh MB of a single patch. © 2024
IEEE

Single-Patch Domain

Since by definition ∇�̂ ⋅ �̂r = 0, every (local) loop can be expressed by the surface gradient
of a scalar function  r as [Bladel 1993; Bladel 2007, (A1.65)]

�̂r = n̂ × ∇�̂ r = [
−∂v  r(u, v)
∂u  r(u, v)] (6.16)

with the patch unit normal vector n̂. At the same time, the relation to the f̂n implies that
 r has to be a superposition of B-splines on the same knot vectors U and V , that is,

 r =
Nu−1∑
g=2

Nv−1∑
ℎ=2

�ijgℎBp1g (u)Bp2ℎ (v) ..= Nu−1∑
g=2

Nv−1∑
ℎ=2

�ijgℎ ̄p1p2gℎ (6.17)

with an illustration of  ̄2346 shown in Fig. 6.4. Performing the derivatives in (6.16) using (6.6),
comparing with (6.9), and identifying p1 = pu and p2 = pv we see that

−∂v r =
Nu−1∑
g=2

Nv−1∑
ℎ=2

�ijgℎ(f̂g,ℎ+1u − f̂gℎu) ⋅ êu (6.18)

as well as

∂u r =
Nu−1∑
g=2

Nv−1∑
ℎ=2

�ijgℎ(f̂gℎv − f̂g+1,ℎv ) ⋅ êv . (6.19)

In consequence, the loops with the smallest support are associated with the  ̄pupvgℎ , which
are continuous (i.e., are zero on the boundary of the patch), and the corresponding loops
can be expressed as

�̂ij = f̂i,j+1u − f̂iju + f̂ijv − f̂i+1,jv i = 2, 3,… , Nu − 1
j = 2, 3,… , Nv − 1 (6.20)
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where by the indexing limits it is ensured that all four basis functions are different from
zero, a necessary requirement to form a valid loop. Choosing loops with larger support is
possible, but the Λ that we are constructing would become less sparse. Specifically, (6.18)
and (6.19) can be understood as a motivation for defining the basis functions in the para-
metric domain via the Curry-Schoenberg splines as done in (6.9) and (6.10) resulting in the
particularly simple representation in (6.20) with the �ijgℎ ∈ {−1, 0, 1}. Otherwise, the �ijgℎ
would have to carry the factors in (6.5). From the indexing limits of �̂ij , it can be seen that
there are

N� = (Nu − 2)(Nv − 2) (6.21)

loops. That the so obtained loops in combination with the (yet to be determined) star func-
tions form a valid basis transformation will be shown in Section 6.2.3.

For the sake of simplicity, we assume without loss of generality that the current vector j is
sorted such that it first contains the coefÏcients of the f̂iju and then of f̂ijv. Then, consider-
ing (6.20), the mapping matrix Λ in (3.28) can be expressed as

Λ
T = [ΛTu ΛTv ] ∈ Z

N�×N (6.22)

with the matrix ΛTu ∈ Z
N�×(Nu−2)(Nv−1) relating the functions f̂iju to the loops as

[ΛTu]rs = ⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if i(s) = i�(r) and j(s) = j�(r) + 1

−1 if i(s) = i�(r) and j(s) = j�(r)
0 else

(6.23)

where the index mappings i(s) and j(s) relate the indices i and j of f̂iju to the sth basis
function and the mappings i�(r) and j�(r) relate the indices i and j of �̂r = �̂ij to the rth
loop depending on the chosen orderings in the coefÏcient vectors j and jΛ, respectively.
Analogously, the matrix ΛTv ∈ Z

N�×(Nu−1)(Nv−2) relates the functions f̂ijv to the loops as

[ΛTv ]rt = ⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if i(t) = i�(r) and j(t) = j�(r)

−1 if i(t) = i�(r) + 1 and j(t) = j�(r)
0 else

(6.24)

for the chosen index mappings.

Sorting, for example, the current coefÏcients as j = [ju jv]T with

ju = [j u22 j u23 … j u2Nv j u32 … j uNu−1,Nv] (6.25)

and

jv = [j v22 j v23 … j v2,Nv−1 j v32 … j vNu,Nv−1] (6.26)
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Fig. 6.5: Examples of loops associated with the vertices of the Greville mesh on a single
patch. © 2024 IEEE
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Fig. 6.6: Example of a loop formed at an interface using the additional normal basis func-
tions across the interface between two patches. © 2024 IEEE

the matrices can be expressed as

Λ
Tu = [B ⋱

B] (6.27)

with the auxiliary matrix

B = [−1 1⋱ ⋱−1 1] ∈ Z
(Nv−2)×(Nv−1) (6.28)

being repeated Nu − 2 times on the diagonal and[ΛTv ]rt = δrt − δr ,t−(Nv−2) (6.29)

with δrt denoting the Kronecker delta.

A particularly intuitive interpretation of the composition of the loop functions �̂ij with
respect to the f̂m can be given by considering the Greville mesh MG as depicted in Fig. 6.5.
The loops in (6.20) formed by four basis functions can be identified to circulate around
each inner vertex of MG involving two consecutive basis functions in u-direction and two
consecutive basis functions in v-direction.

Multi-Patch Domain

The interpretation via the Greville mesh directly implies the extension of the loop functions
to the multi-patch case: As illustrated in Fig. 6.6 at the interfaces between two patches, we
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Fig. 6.7: Examples of patch configurations where a loop can be formed around a corner
vertex and not. © 2024 IEEE

can form (N lni−1) additional loops due to theN lni additional basis functions f̂ lni,i across the lth
interface. Furthermore, at each of the four corner vertices of a patch an additional loop can
be formed, however, only if all the patches sharing the corresponding vertex are attached
to each other as illustrated in Fig. 6.7. Hence, there are a total of

N� = A∑
a=1

N a� + L∑
l=1

(N lni − 1) + Nc (6.30)

loops, where Nc denotes the number of corner vertices of the patches around which a loop
can be formed. The so-obtained loops give rise to a valid basis transformation, as will be
shown in Section 6.2.3.

In order to determine the loop mapping matrix for the multi-patch case, we assume that the
multi-patch current vector is sorted as

j = [j 1u j
1v j

2u j
2v ⋯ j

Av jni]T (6.31)

with the current coefÏcient vectors of the ath patch j au and j av as defined in (6.25) and (6.26),
respectively, and jni contains the current coefÏcients of all Nni = ∑L

l=1 N lni normal basis
functions on the first up to the Lth interface. In consequence, the multi-patch loop matrix
can be expressed as

Λ =
⎡⎢⎢⎢⎣
Λ1 Λ1ti⋱ ⋮

ΛA ΛAti
Λni Λc

⎤⎥⎥⎥⎦ ∈ Z
N×N� (6.32)

where in accordancewith (6.30) the first∑A
a=1 N a� columns correspond to the loop basis func-

tions residing completely on single patches expressed by the loopmappingmatrix of the ath
patch Λa defined in (6.22). The next∑L

l=1(N lni−1) columns correspond to the additional loop
basis functions across interfaces represented by the submatrices Λati ∈ Z

N a×∑l(N lni−1) superim-
posing the basis functions tangential to the interfaces and the submatrix Λni ∈ Z

Nni×∑l(N lni−1)
superimposing the normal basis functions. The last Nc columns of Λ correspond to the
loop basis functions around the corner vertices represented by the submatrix Λc ∈ Z

Nni×Nc
superimposing only normal basis functions.
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6.2.2 Non-solenoidal Basis—Star Mapping Matrix

In analogy to the loop functions, the mapping matrix Σ describes how the basis func-
tions f̂n = f̂ijd are superimposed to form star functions �̂ ij , that is,

�̂ r = �̂ i�(r),j�(r) =
N∑
n=1

[ΣT]rnf̂n (6.33)

with the freely selectable indexmappings i�(r) and j�(r). The star functions �̂ r have to com-
plement the loop functions such that in total the same space is spanned as by the original
basis f̂n. In addition, a defining property of star functions is (in contrast to, e.g, co-tree func-
tions [Eibert 2004; Andriulli 2012]) that the corresponding mapping matrix is a discretized
version of the divergence operator on the coefÏcient space such that ΣTΛ = 0 [Vecchi 1999].
To obtain such a basis, we start again with the single-patch case.

Single-Patch Domain

As the matrix Σ is related to the charge, we generalize the analysis of [Vecchi 1999] and
expand the divergence of the current in the parametric domain �̂ (which is proportional to
the charge) as

�̂(u, v) = ∇�̂ ⋅ ĵ = Q∑
q=1

[σ]q 'q(u, v) (6.34)

with the scalar functions

'q = 'i(q),j(q) = bpu−1i (u)bpv−1j (v) i = 2,… , Nuj = 2,… , Nv
. (6.35)

The latter are chosen to expand the charge since the divergence of the basis functions f̂n
can be expressed with the same 'q and leveraging (6.6) we have

∇�̂ ⋅ ĵ = ∑
n
[ju]n('ij − 'i+1,j) +∑

n
[jv]n('ij − 'i,j+1) . (6.36)

Equating (6.36) and (6.34), it can be seen that both representations constitute a different lin-
ear combination of the same basis functions 'q . By comparison, we find that the expansion
vector of the current j = [ju jv]T is related to the expansion vector of the charge σ by

σ = Σ
T
j (6.37)

where the matrix ΣT ∈ Z
N�×N consists of the entries[ΣT]mn = �m(∇�̂ ⋅ f̂n) (6.38)
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with �m denoting the indicator function (w.r.t. the set {'m})
�m(') =

{±1 if ' = ±'m
0 else

(6.39)

with �m(' +  ) = �m(') + �m( ) as well as (dictated by the indexing limits in (6.35))

N� = (Nu − 1)(Nv − 1) . (6.40)

ThatΣ as defined in (6.38) is suitable to complementΛ follows from it having rankN�−1 and
the orthogonality ΣTΛ = 0. Before giving a proof for these two properties in Section 6.2.3,
we first note that the N� star functions implied by (6.38) can be explicitly expressed as

�̂ ij = f̂iju − f̂i−1,ju + f̂ijv − f̂i,j−1v i = 2, 3,… , Nuj = 2, 3,… , Nv
(6.41)

where all f̂ijd not in the sets defined by the indices in (6.9) and (6.10) vanish. An intuitive
interpretation of the stars �̂ ij can again be given considering the Greville mesh MG: Each
star function can be uniquely associated with one face of MG. More precisely, the up to
four basis functions (at the boundaries of the patch, one or two of the basis functions can
vanish) attached to each face form a star, that is, they are directed to point away from the
face.

Based on this interpretation the Euler characteristic � for open simply-connected surfaces
(in analogy to the RWG discretization on triangles) implies that (excluding the boundary
of the patch) the number of inner vertices VG, inner edges EG, and faces FG is related by
� = 1 = VG − EG + FG [Richeson 2012, p. 182]. Hence, the number of basis functions
N associated with the number of inner edges EG is the number of loops N� associated
with VG plus the number of stars associated with FG minus one, that is, there is one star
basis function too many. This is, however, in accordance with the requirement of charge
neutrality: since the star functions represent the charge (the divergence of the current) and
the total charge has to be zero, the degrees of freedom are reduced by one [Vecchi 1999].

A more explicit form of the mapping matrix Σ (compared to (6.38)) follows from (6.41) as

Σ
T = [ΣTu Σ

Tv ] ∈ Z
N�×N (6.42)

with the matrix ΣTu ∈ Z
N�×(Nu−2)(Nv−1) relating the functions f̂iju to the stars as

[ΣTu ]rs = ⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if i(s) = i�(r) and j(s) = j�(r) ,

−1 if i(s) = i�(r) − 1 and j(s) = j�(r) ,
0 else,

(6.43)

with the index mappings i(s), j(s), i�(r), and j�(r) depending on the chosen ordering in
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Fig. 6.8: Example of a star being completed by basis functions across the interface between
two patches. © 2024 IEEE

the coefÏcient vectors j and jΣ . Analogously, the matrix ΣTv ∈ Z
N�×(Nu−1)(Nv−2) relating the

functions f̂ijv to the stars is

[ΣTv ]rt = ⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if i(t) = i�(r) and j(t) = j�(r)

−1 if i(t) = i�(r) and j(t) = j�(r) − 1
0 else

(6.44)

for the chosen index mappings. Sorting, for example, the current coefÏcients as in (6.25)
and (6.26), the matrices in (6.42) can be expressed as[ΣTu ]rs = δrs − δr−(Nv−1),s (6.45)

and

Σ
Tv = [−BT ⋱ −BT] (6.46)

where BT as defined in (6.28) is repeated Nu − 1 times on the diagonal.

Multi-Patch Domain

Again the interpretation via the Greville mesh directly implies how to handle multi-patch
scenarios. As shown in Fig. 6.8, star basis functions in the multi-patch scenario are obtained
by supplementing the stars on the individual patches across the interfaces with the corre-
sponding (merged) normal basis functions (i.e., the otherwise vanishing terms in (6.41) are
replaced with the interface basis functions). Consequently, we get a total of

N� = A∑
a=1

N a� (6.47)

stars with N a� denoting the number of stars on the ath patch as determined in (6.40). Fol-
lowing the sorting of the basis functions as (6.31), we can represent the multi-patch star
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matrix as

Σ =
⎡⎢⎢⎢⎣
Σ 1 ⋱

ΣA
Σ 1ni … ΣAni

⎤⎥⎥⎥⎦ ∈ Z
N×N� (6.48)

where the matrices Σ ani ∈ Z
Nni×N a� can be expressed as

[Σ ani]sr = ⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if f̂ lni,s complements �̂

a
r−1 if −f̂ lni,s complements �̂
a
r0 else
. (6.49)

6.2.3 Complete Decomposition—Properties of the Mappings

To verify that the obtained loop-star decomposition constitutes a valid basis transformation,
we discuss some of its properties.

Single-Patch Domain

For a single patch, the transformation matrix Q ∈ Z
N×N reduces to Q = [Λ Σ] in (3.24) as

there are no global loops. In this context, one arbitrary column of Σ has to be removed
in accordance with the Euler characteristic and charge conservation as discussed in Sec-
tion III-B. It can also be seen by summing up the number of loop functions in (6.21) with
the number of star functions in (6.40) and comparing this with the total number of original
basis functions in (6.11) resulting in

N� + N� = N + 1 . (6.50)

Correspondingly, Λ = [ΛTu ΛTv ]T has full rank, that is rank(Λ) = N� as can be seen from
ΛTv in (6.29) which is already in row echelon form with all entries on the main diagonal
being minus one. Similarly, from the row echelon form of Σ (or from its underlying graph
theoretical properties), it can be seen that rank(Σ) = N� − 1 with the one-dimensional
nullspace spanned by the all ones vector of length N� , that is, Σ1 = 0. Finally, it can be
verified that the matrices Λ and Σ are indeed mutually orthogonal, that is,

Λ
T
Σ = Σ

T
Λ = 0 . (6.51)

More precisely, any superposition of Q loop functions is solenoidal and can be written as

ĵsol =
Q∑
q=1

[jΛ]q �̂q =
N∑
n=1

[ΛjΛ]nf̂n . (6.52)
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Taking the divergence of ĵsol (which is zero) can be expressed via Σ as

∇�̂ ⋅ ĵsol = NΣ∑
q=1

[ΣT
jsol]q'q = NΣ∑

q=1
[ΣT

ΛjΛ]q'q = 0 . (6.53)

This is only true for general jΛ if and only ifΣTΛ = 0 showing property (6.51). Together with
the ranks of Λ and Σ , this ultimately implies that Q is full rank verifying that a valid basis
transformation has been derived. Note that property (6.51) (by the choice of representing
the non-solenoidal part by the star functions) is also a key for the definition of the quasi-
Helmholtz projectors as detailed in Section 6.3.

Note also that some of the considerations so far are related to the interpretation in the
framework of a spline de Rahm complex discussed in [Veiga et al. 2014; Dölz et al. 2019;
Buffa et al. 2020] relating the spaces spanned by the functions  ij , f̂ijd , and 'ij for closed
simply-connected geometries.

Multi-Patch Domain

In the case of multiple patches (i.e., � = ∪Aa=1�a), additional aspects have to be considered
since, in contrast to the single patch case, the resulting surface � can be closed or be multi-
ply connected. For a multiply-connected surface with GH handles and GO holes, the global
loop mapping matrix H ∈ R

N×(2GH+GO) can in principle be constructed such that chains of
basis functions f̂ijd and f̂ lni,i are formed around the handles and holes of the surface �̂ . Al-
ternatively, H can be determined as a solution to

[Λ Σ]TH = 0 . (6.54)

This can be done, for example, by randomized projections as detailed in [Andriulli et al.
2011]. However, it can be avoided altogether when resorting to the quasi-Helmholtz pro-
jectors discussed in the following Section 6.3.

For each body, the matrix Σ has a one-dimensional nullspace, independent of the topology
of the underlying geometry. Instead Λ is full rank for open geometries and has a rank one
deficiency for closed geometries. That the right amount of basis functions is obtained (i.e.,
that the transformation matrix Q is full rank) also in the multi-patch case can be verified
by graph theory considering the mesh M� spanned by the patches: Using (6.30) and (6.47),
the sum of the number of loop basis functions N� and the number of star basis functions
N� adds up to

N� + N� = A∑
a=1

N a� + A∑
a=1

N a� + L∑
l=1

(N lni − 1) + Nc . (6.55)
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Due to (6.50) on each patch, this is equivalent to

N� + N� = A∑
a=1

N a + A + L∑
l=1

N lni − L + Nc , (6.56)

and by (6.12), we obtain

N� + N� = N + F� − E
in� + V

in� , (6.57)

where F� = A is the number of faces (patches) forming � , E in� = L is the number of interior
edges, and V in� = Nc the number of interior vertices. Leveraging that in the rectangular
network of patches forming � , the number of boundary edges E ex� is always equal to the
number of boundary vertices V ex� , we can add V ex� − E ex� = 0 to (6.57) and obtain

N� + N� = N + � (6.58)

where � is the Euler characteristic of the rectangular network of patches. This verifies that
all cases are covered correctly: for example, for open simply-connected surfaces, � = 1,
since one star should be removed; for closed simply-connected surfaces, � = 2, as in addi-
tion to one star also a loop function should be removed; and for closed multiply-connected
surfaces with GH handles (also called genus) � = 2 − 2GH as 2GH global loops have to be
added.

6.3 Quasi-Helmholtz Projectors

Instead of directly using the loop-star decomposition, it is advantageous to employ the
quasi-Helmholtz projectors PΣ = Σ(ΣTΣ)+ΣT and PΛH = I−PΣ as discussed in Section 3.2.2.
This is in the first place possible, since by the way of constructing Λ and Σ we have ensured
that property (6.51) holds.

Moreover, in order for the low-frequency stabilization via the projectors to be efÏcient, the
pseudoinverse in PΣ = Σ(ΣTΣ)+ΣT should be computable in an efÏcient manner. By the
way of constructing Σ , however, this has been ensured as well: the product

Σ
T
Σ (6.59)

is a graph Laplacian since ΣT is an incidence matrix associated with the graph dual to the
Greville mesh. Consequently, the product of (ΣTΣ)+ with a vector can be computed it-
eratively with a constant number of iterations independent of N� by employing an AMG
preconditioner [Livne et al. 2012; Ruge et al. 1987]. The treatment of the one dimensional
nullspace of ΣTΣ depends on the specific AMG approach (see also [Andriulli 2012, Sec-
tion IV], [Andriulli et al. 2013, Section V]). We note that also ΛTΛ is a graph Laplacian so
that, if needed, PΛ = Λ(ΛTΛ)+ΛT could be efÏciently used.

To illustrate this we consider a single patch where we vary the number of basis functions
and correspondingly the number of starsN� from 1×102 to 1×106. The number of iterations
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Fig. 6.9: Number of iterations for the iterative computation of the pseudoinverse in the pro-
jector PΣ via CG for a single patch and the 30-patch torus. © 2024 IEEE
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z

Fig. 6.10: Torus with major radius R = 2m and minor radius r = 0.5m described by A = 30
NURBS patches. © 2024 IEEE

for CG to compute the pseudoinverse with a relative accuracy of 1 × 10−12 when evaluating
PΣe

ex is depicted in Fig. 6.9. Clearly, when employing an AMG (in particular a Ruge-Stüben)
preconditioner [Ruge et al. 1987], the number of iterations remains asymptotically bounded.
The same is true for the torus described by A = 30 NURBS patches shown in Fig. 6.10.

6.4 Numerical Results

In order to verify that the derived preconditioners can indeed low frequency stabilize the
isogeometrically discretized EFIE, several scenarios are studied. In all of these, a GMRES
solver is employed without restarts and a relative residual of � = 1 × 10−4 as stopping
criterion. The implementation itself is based on [Vázquez 2016; Hofmann 2023f] and the
singularities in the integrals in (3.15) and (3.16) are treated by employing the regularizing
coordinate transforms of [Sauter et al. 1997; Sauter et al. 2011, pp. 289ff]. To overcome
the catastrophic round-of errors when evaluating the RHS PΛHe

ex, we employ the Taylor
series expansion approach given in (4.4). The approach of Chapter 4 should be applicable as
well (in principle, the scalar functions  r for the loops were already part of the derivation
in (6.17)) but further investigations are necessary.
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x
y

z

'

#

puv Mauv N auv N a Nni N N� N�
1 11 9 112 96 768 386 384
2 12 9 112 96 768 386 384
3 13 9 112 96 768 386 384

Fig. 6.11: Sphere of radius rs = 1m described exactly by A = 6 NURBS patches of degrees
qu = qv = 4, involving L = 12 interfaces between patches and Nc = 8 corner
vertices. The table summarizes the employed discretization of the surface current
density per patch. © 2024 IEEE

6.4.1 Scattering from a Sphere

As a first scenario, we consider the scattering from a sphere since a reference in terms of
a series expansion is available (see, e.g., [Jin 2015, pp. 368ff] and [Hofmann et al. 2023e;
Hofmann 2022f]). The sphere has a radius of rs = 1m described exactly (i.e., there is no
approximation of the geometry) by A = 6 NURBS patches as depicted in Fig. 6.11 and is
excited by a plane wave. The error with respect to the reference is determined for the FF,
the electric, and the magnetic NF at a distance of r = 5m. To do so, the fields are computed
on a spherical grid with # and ' in steps of 5◦, and the relative logarithmic worst-case error

ℵa = max#,'

⎧⎪⎪⎨⎪⎪⎩20 log |a(#, ') −â(#, ')|
max#,' |a(#, ')| ⎫⎪⎪⎬⎪⎪⎭ (6.60)

is computed with a ∈ {e, ℎ, FF}. Starting with the loop-star stabilized EFIE in (3.26), we
consider three different discretizations summarized in the table in Fig. 6.11 where we set
on each patch the polynomial degrees

pu = pv = puv (6.61)

with uniform open knot vectors Ua = Va (i.e., equidistant spacing between the knots) of
lengths M ∈ {11, 13, 15} resulting in {64, 49, 36} elements per patch and N = 786 total num-
ber of basis functions for each case which can be decomposed into N� = 386 loop and
N� = 384 star basis functions. The results over frequency for the worst-case errors in
the fields are shown in Fig. 6.12. Clearly, the proposed loop-star decomposition cures the
low-frequency breakdown of the EFIE for all three polynomial degrees, where for higher
degrees a higher accuracy is obtained with the same number of basis functions. While the
stabilization via projectors following (3.34) yields virtually the same accuracy, a lower con-
dition number is achieved resulting in fewer iterations for GMRES to converge as shown in
Fig. 6.13.
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Fig. 6.12: Worst case errors for the FF, the electric, and the magnetic NF for the scattering
from the sphere with and without stabilization for different polynomial degrees
puv and same number of the basis functions. © 2024 IEEE

6.4.2 Scattering from Open Geometries

To show that also open geometries can be handled as well as different knot vectors and
polynomial degrees on a patch, we consider the curved band shown in Fig. 6.14, which is
described by a single patch. The discretization of the induced surface current density on
this scatterer is chosen in a way to account for the shape of the geometry. Specifically,
with Mu = 27, a fine discretization is chosen along the direction that exhibits a greater
elongation, while along the other direction a coarser discretization is chosen with Mv = 9
with puv = 2. The results for a # = 90◦ cut of the electric NF at the frequencies f =1×108 Hz and f = 1×10−8Hz are depicted in Fig. 6.15, where the quasi-Helmholtz projectors
are employed to overcome the low-frequency breakdown. For comparison, a reference
solution is obtained by triangulating the geometry with an average edge length of ℎ =0.014m and correspondingly discretizing the EFIE with 11 975 RWG functions, stabilized
by the quasi-Helmholtz projector approach of [Andriulli et al. 2013]. The low deviation
from this reference solution confirms the correctness of the proposed stabilization also for
different knot vectors. To show that also different polynomial degrees can be employed
with our stabilization scheme (even though this no longer constitutes a mixed discretization
scheme [Peterson 2006, pp. 33ff], [Nédélec 1980]), we set pu = 5 and pv = 2while leaving the
number of basis functions unaltered. The comparison with the RWG solution in Fig. 6.15
shows a low deviation also in this case.
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Fig. 6.13: Condition numbers and number of iterations for GMRES to converge for the
sphere with different stabilizations, different polynomial degrees, and a fixed
number of basis functions. © 2024 IEEE

6.4.3 Scattering from Multiply-Connected Geometries

As an example of a multiply-connected (and open) geometry, we consider next the flat
folded ring shown in Fig. 6.16, which is described by 12 NURBS patches. The magnetic NF
of this ring is obtained based on a third-order discretization. at the frequencies 1 × 108 Hz
and 1×10−50 Hz. The result for a ' = 90◦ cut is shown in Fig. 6.17. Again, the quasi-Helmholtz
projectors are employed for the stabilization avoiding an explicit construction of the global
loop. The comparison with a stabilized RWG discretization using 5994 basis functions and
an average edge length of the triangulation of ℎ = 0.02m shows a good agreement below−40 dB at both frequencies.

For the 50-patch rectangular double-torus shown in Fig. 6.18, we compute the FF at the
frequency of 1 × 10−50Hz using three different discretizations summarized in the table in
Fig. 6.18. The results for a ' = 0◦ cut are shown in Fig. 6.19, where the reference solution
employs 16 494 RWG functions. Clearly, for increasing polynomial degrees, we can again
observe an improved agreement with the reference. As a second means of verification, we
check howwell the condition eex+esc = 0 is fulfilled inside the torus. We do so on a circular
path surrounding one of the holes inside the geometry as indicated in Fig. 6.20, which also
verifies an improvement of the accuracy with increasing polynomial degrees.
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x

y

z

pu pv Mu Mv Nni N N� N�
2 2 24 9 0 175 76 100
5 2 27 9 0 175 76 100

Fig. 6.14: Curved band of width lv = 0.45m and curved length lu = 3.12m described by 1
patch of degrees qu = qv = 2. The table summarizes the employed discretization
of the surface current density. © 2024 IEEE
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Fig. 6.15: Normalized NF cuts at # = 90◦ with 1.15◦ angular sampling for the scattering from
the curved band at the frequencies of 1 × 108 Hz and 1 × 10−8 Hz. © 2024 IEEE
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puv Mauv N a Nni N N� N�
3 11 60 6 × 12 = 72 792 361 432

Fig. 6.16: Flat folded ring of size 0.88m× 1.13m consisting of A = 12 patches each of degree
qu = qv = 1. There are L = 12 interfaces and Nc = 0 corner vertices in the
geometry. © 2024 IEEE
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Fig. 6.17: Normalized magnetic NF cut at ' = 90◦, r = 5m scattered from the folded flat ring
at the frequencies of 1 × 108 Hz and 1 × 10−50 Hz. © 2024 IEEE
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puv Mauv N a Nni N N� N�
1 7 24 4 × 100 = 400 1600 798 800
2 9 40 5 × 100 = 500 2500 1248 1250
3 11 60 6 × 100 = 600 3600 1798 1800

Fig. 6.18: Rectangular double-torus with 50 NURBS patches of degrees qu = qv = 1 located at(3.5, 1.5, 0.5). The geometry extends from x = 1m to x = 6m,y = 0m to y = 3m
and z = 0m to z = 1m in a Cartesian coordinate system. It involves L = 100
interfaces and Nc = 48 corner vertices. © 2024 IEEE
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Fig. 6.19: Normalized FF cut at ' = 0◦ for the scattering from the rectangular-double torus
at 1 × 10−50Hz. © 2024 IEEE
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Fig. 6.20: Total electric field sampled over a circle of radius 1m centered at (2.5, 1.5, 0.5)with1.15◦ angular sampling, inside the rectangular-double torus at 1×10−50Hz. © 2024
IEEE
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1 5 4 3 × 828 = 2484 3312 1654 1656
2 7 12 4 × 828 = 3312 7452 3724 3726

Fig. 6.21: Model of an airplane with a total length of about 7m described byA = 414NURBS
patches each of degree qu = qv = 3, involving L = 828 interfaces between patches
and Nc = 412 corner vertices. The geometry contains two handles (on the en-
gines), that is, four global loops. © 2024 IEEE
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Fig. 6.22: Relativeworst-case errors of the scatteredmagnetic NF for the airplane discretized
with 7452 unknowns. © 2024 IEEE

As a last and more realistic scatterer, we consider the NURBS model of a tail-mounted
engine airplane depicted in Fig. 6.21 employing A = 414 patches. The deviation from the
condition hex + hsc = 0 inside the plane is shown in Fig. 6.22 attesting a good accuracy.
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6.5 Conclusion

An efÏcientmethod to low-frequency stabilize the EFIEwhen discretized in an isogeometric
approach via B-splines of arbitrary polynomial degrees has been given. Especially, the
employed definition of the basis functions by using the Curry-Schoenberg splines allows to
express the involved quasi-Helmholtz decomposition concisely via sparse mappingmatrices
with advantageous properties. The provided interpretation on the Greville mesh explains
the underlying structure of the basis transformation on single- and multi-patch domains
and allows for a reasoning based on topological arguments as familiar from mesh based
discretizations.
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Part III

Paradigms for Equivalent Source
Reconstructions
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7
ALow-Frequency Stable Equivalent Sur-
face Current Reconstruction Scheme

“Simulation is better than reality!”
[Hamming 1994]

A low-frequency stabilizing scheme for the reconstruction of equivalent surface currents based
on the EFIO and the boundary element method (BEM) is investigated. In order to overcome the
observed low-frequency breakdown, a stabilization scheme is studied based on a quasi-Helm-
holtz decomposition including an analysis of the required field sampling via probe antennas.
The scheme incorporates the self-adaptive normalization and the stabilized RHS evaluation
which are found of critical importance to determine all fields accurately as shown by the sim-
ulation of different inverse surface source reconstructions.

This chapter is based on [Hofmann et al. 2022e; Hofmann et al. 2023c] including verbatim
portions.

Reconstructing equivalent electric surface currents frommeasurements of the fields
radiated by a DUT, that is, performing a field transformation, involves the under-
lying EFIO. As discussed in Section 1.1.1, the latter is known to suffer from low-
frequency issues in the context of scattering from PEC bodies [Wilton et al. 1981;

Mautz et al. 1984]. The corresponding EFIE has a condition number that grows as O(1/k2),
with the wavenumber k [Andriulli et al. 2013]. In addition, significant round-off errors
occur and prevent accurate solutions as discussed in Chapter 4 and Chapter 5. As a con-
sequence, similar problems can be encountered for the equivalent source reconstruction
as shown in [Mitharwal et al. 2015], where a Calderón identity based preconditioner was
proposed.

In order to stabilize the inverse surface source field transformation based on the EFIO over
a wide frequency range, we study a scheme that adapts the quasi-Helmholtz decomposi-
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7 A Low-Frequency Stable Equivalent Surface Current Reconstruction Scheme

tions introduced in Section 3.2. This allows to remove the ill-conditioning in k when the
frequency is decreased. To ensure that all components of the equivalent currents are recov-
ered, we employ the adaptive normalization scheme of Chapter 5. Moreover, the evaluation
of the sampled field is stabilized by the approach of Chapter 4. Via the simulation of dif-
ferent reconstruction scenarios, we investigate the accuracy of the transformed fields and
verify our approach.

To this end, this chapter is organized as follows: In Section 7.1 the field transformation
formulation is introduced including an analysis of the role of the field sampling via a probe
antenna. The low-frequency stabilizing scheme is described in Section 7.2 and numerical
results are discussed in Section 7.3 before a conclusion is given.

7.1 Field Transformation Formulation

To transform the time-harmonic fields measured by a probe antenna, we assume equivalent
electric currents j on a Huygens’ surface �H around the DUT to be characterized. The
electric field e radiated by the currents can be computed through the EFIO T as

e = −T j = −jkTAj − jk−1TΦj (7.1)

as discussed in Section 2.2.1. In contrast, to the scattering and radiation scenarios consid-
ered in Part II, not a boundary condition at a material interface is enforced to discretize the
equation, but the radiated field is sampled at m locations by a probe antenna. More pre-
cisely, a general way to express the signal [b]m received by themth probe antenna is [Eibert
et al. 2015]

[b]m = ∬�P
wm ⋅ e dr′ , (7.2)

where wm is the weighting function of the probe defined on the surface �P. This weighting
function can be any equivalent current density in free space which radiates the same field
as the probe antenna [Eibert et al. 2015]. Comparing (7.2) with the discretization of the
EFIE in (3.6), it can be seen that the weighting functions wm and, hence, the probe anten-
nas, take the role of the testing functions. There are different ways to evaluate (7.2). For
example, in [Eibert et al. 2015] it is reformulated to directly use the FF pattern of the probe
antenna, that is, the Fourier transform of wm. Since we are interested in a potential quasi-
Helmholtz decomposition of the testing functions as done for the EFIE, we consider instead
an expansion of the wm into RWG functions [Rao et al. 1982].

7.1.1 Equivalent Current Description of the Probe

Similar to the EFIE, we triangulate the surface �H and model the equivalent surface current
density j representing the DUT with RWG functions fn as j = ∑N

n=1 [j ]nfn . The surface �P,
on the other hand, can be described by a union of disjoint surfaces �m, each representing
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a probe antenna at a certain location rm. In practice, the surfaces �m are often shifted and
rotated versions of one surface. Each of the surfaces �m is triangulated and the weighting
functions wm described by

wm = Pm∑
p=1

[wm]pfmp (7.3)

employing Pm RWG functions. The expansion coefÏcients [wm]p need to be determined sep-
arately of the equivalent current reconstruction problem to be solved (e.g., by a simulation)
and are assumed to be known in the following. Inserting (7.3) into (7.2) and using (7.1),
the mth received signal (i.e., the output signal of a probe antenna at position rm) can be
expressed as

[b]m = w
Tmem = w

TmTmj , (7.4)

where the vector em consists of the entries

[em]p = ∬�m
fmp ⋅ e dr (7.5)

and the matrixTm consists of the entries

[Tm]pn = −∬�m
fmp ⋅ T fn dr . (7.6)

In other words, the receive signal of a probe at one position, is the linear combination of
several rows of a discretization as known from the EFIE, however, with non-intersecting
surfaces for basis and test functions. Collecting all M receive signals (from all probe posi-
tions) into the vector b , the LSE

b =
⎡⎢⎢⎢⎢⎣
b1b2⋮
bM

⎤⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎣
wT1

wT2 ⋱
wTM

⎤⎥⎥⎥⎥⎦⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
W

⎡⎢⎢⎢⎢⎣
T1
T2⋮
TM

⎤⎥⎥⎥⎥⎦⏟⏞⏞⏟⏞⏞⏟
T

j (7.7)

is obtained, where we have collected all weighting coefÏcients into the matrix W and all
the matricesTm into the matrixT such that the LSE can be expressed more compactly as

b =We =WT j . (7.8)

This relationship shows that due to the probes, the RWG functions describing the testing
process, are not accessible to be quasi-Helmholtz decomposed: the matrix is, in general, of
size M × P with P > M and, thus, not invertible. Hence, the testing process via probes
constitutes a crucial difÏculty. At the same time, the matrixW can be understood as a left
preconditioner and choosing the wm to directly superimpose the RWG functions to form
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solenoidal and non-solenoidal functions, might be a possible solution. One set of probes
which do precisely this are dipole probes, as detailed in the following Section 7.1.2.

7.1.2 Dipole Probe Antennas

The equivalent current describing a Hertzian dipole (HD) at position rm and orientation uHDm
can be expressed explicitly as

wHDm = uHDm δ(r − rm) (7.9)

with the Dirac delta distribution δ. Inserting wHDm into (7.2) one obtains for the received
signal

[bHD]m = uHDm ⋅ e(rm) . (7.10)

Consequently, using HDs at the locations rm as probe antennas the LSE

b
HD = T

HD
j (7.11)

can be set up, with the matrix T HD = jkT HDA + jk−1T HDΦ consisting of the entries

[T HDA ]mn = uHDm ⋅ TAfn|||rm (7.12)

for the vector potential contributions and

[T HDΦ ]mn = uHDm ⋅ TΦfn|||rm (7.13)

for the scalar potential contributions. As a dual to the HD there is the magnetic dipole, also
known as Fitzgerald dipole (FD), which can be expressed explicitly at location rm as

vFDm = uFDm δ(r − rm) (7.14)

with the orientation uFDm . In order to use it as probe antenna, by employing reciprocity
relations, a dual to the relation in (7.2) can be derived: the receive current of a general
probe antenna satisfies

im = ∬�m
vm ⋅ h dr , (7.15)

where vm is an equivalent magnetic current density radiating the same field as the probe
antenna. Since a FD with dipole moment jk can be equivalently described by an electric
ring current, we have

[bFD]m = jkuFD ⋅ h(rm) , (7.16)
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that is, the FD measures the magnetic field along the dipole or perpendicular to the equiv-
alent ring current describing the dipole. In consequence, the signal received by a FD, cor-
responds to a testing of the electric field with a solenoidal electric current (of infinitesimal
diameter) and agrees with the relation ∬� ���m ⋅ eex dr = jk∬�  mnm ⋅ hex dr for testing the
electric field with a loop current ���m as derived in (4.10). Taking several samples with FDs
the LSE

b
FD = jkK FD

j (7.17)

can be formed, where the relation between the current j and the magnetic field h is given
by (2.17) such that matrix K consists of the entries

[K FD]mn = uHDm ⋅∬�
∇g(r, r′) × fn(r′) dr′|||rm . (7.18)

As a result with (7.11) and (7.17) two LSEs for the equivalent source reconstruction problem
have been obtained, which by the nature of the probe antennas already include a testing
with non-solenoidal and solenoidal functions.

7.2 Low-Frequency Stabilization

To low-frequency stabilize the system (7.8) we consider two cases: dipoles and single RWG
functions as test antennas. Although less realistic, the latter has the advantage that it de-
viates from the EFIE stabilization solely in that the surfaces for test and basis functions
are separated. Consequently, we can study the effect this has separately from splitting up
the test surface into a union of disjoint surfaces and receiving a single output signal per
probe.

7.2.1 Testing with RWG Functions

Assuming that the test surface �P is a single surface enclosing the Huygens’ surface �H
and each probe consists of a single RWG defined on the triangulated �H, the system (7.8)
simplifies to

b = T j = (jkTA + jk−1TΦ)j (7.19)

with [TA]mn = ∬�P fm ⋅ T Afn dr and [TΦ]mn = ∬�P fm ⋅ T Φfn dr. To stabilize (7.19), the surface
current density and the weighting functions are decomposed into solenoidal and a non-
solenoidal components by the decomposition operators

P
s = �sP s

ΛH + �sP s
Σ (7.20)

with s ∈ {H, P} and the orthogonal projectors P s
Σ = Σs(ΣTs Σs)+ΣTs and P s

ΛH = I−P s
Σ . Note, that

in contrast to (3.34) the projectors for basis and test functions are different ones. MatricesΣs
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as defined in (3.20) denote the star to RWG expansion coefÏcient mappings of the surfaces
�s and (⋅)+ denotes the Moore-Penrose pseudoinverse. The coefÏcients �s and �s are defined
in analogy to Chapter 5 as

�P = √j/‖bsol‖ and �P = 1/(√j ‖bnsol‖) (7.21)

where bsol = P P
ΛHb and bnsol = P P

Σb . The remaining coefÏcients are determined as

�H = 1/(jk �P) and �H = jk/�P , (7.22)

which overall ensures analogous to Chapter 5 that all components of j are recovered with a
sufÏcient relative accuracy. Applying the so defined projectors (7.20) to the system in (7.19),
we obtain the stabilized system

P
P
b = P

P
TP

H
j
′ = (jkP P

TAPH + j�P�H
k TΦ) j

′ (7.23)

with j = PHj ′. As detailed in Chapter 4, special care has to be taken for the evaluation of
P P
ΛHb . Computing it as P P

ΛHb = b − P P
Σb leads to significant round-off errors. Instead we

evaluate the product as P P
ΛHb = ΛP(ΛTPΛP)+ΛTPb . Especially, the relations (4.14) and (4.16) are

used: for instance, for a simply connected �P,
[ΛTPb]m = −jk∬�P

 mnm ⋅ h dr (7.24)

is employed, which leverages the scalar potential  m defined in (4.11) and the radiated mag-
netic field h of the device to be characterized. By nm the normal vector of the surface �P
is denoted. As the stabilized system matrix Tstab = P PTPH ∈ C

M×N in (7.23) is rectangular
(i.e., there is a different number of samples than there are unknowns), we solve the normal
system

T
HstabP P

b = T
HstabTstab j ′ (7.25)

iteratively, where (⋅)H denotes the Hermitian (transpose complex conjugate) of the ma-
trix.

7.2.2 Testing with Dipole Probe Antennas

As second scenario, we consider the case of HDs and FDs as probe antennas. To obtain a
low-frequency stabilized LSE, we introduce a loop-star decomposition of the basis functions
and leverage that testing with a FD corresponds to testing the electric field with a solenoidal
electric current. More precisely, the stabilized system

DPT DP
ΛHΣDHj ′ = DPbDP (7.26)
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is formed, consisting of the RHS vector

b
DP = [bFDbHD] (7.27)

(containing the vectors from (7.10) and (7.16)) as well as the matrix

T
DP
ΛHΣ = [jkK FDΛ jkK FDH jkK FDΣjkT HDA Λ jkT HDA H T HDΣ ] . (7.28)

Notably, the blocks in (7.28) scale in k the same as the blocks ofTΛHΣ given in (3.25). Conse-
quently, the coefÏcients of the diagonal matrices Ds can bechosen analogously to Chapter 5
as

�P = √j/‖bFD‖ and �P = 1/(√j ‖bHD‖) (7.29)

together with (7.22) for the remaining �H and �H. Moreover, the stabilized RHS evaluation is
already evaluated via (7.16) which directly samples the magnetic field. As in (7.25) a normal
system of (7.26) is formed, since the number of samples and the number of unknowns are,
in general, not the same.

7.3 Results

For both stabilized equivalent surface current reconstruction problems introduced in Sec-
tion 7.3, simulation examples are considered to study the effects of the low-frequency issues
of the EFIO. To this end, we start with the case of single RWG functions as probe antennas
on a single surface.

7.3.1 Reconstruction of Fields Scattered by a Sphere

As a first inverse reconstruction scenario, we sample the field that is scattered by a sphere
of radius 1m when excited by an electric ring current of radius 0.5m placed 2m above the
sphere. For the Huygens’ surface and the sampling surface we choose spheres with radii
rH = 1.1m and rP = 1.2m, which are discretized with 945 and 1209 RWG functions, respec-
tively. This setup has the advantage that it is not overly simple, yet an absolute reference
is available in terms of a series expansion [Hofmann et al. 2023e; Jin 2015, pp. 368 ff.].

The reconstruction is then performed in a frequency range from 1 × 10−10 Hz to 1 × 108 Hz
and the NFs are evaluated at a distance of 3m from the origin on a spherical grid with 5◦
resolution in # and '. On this grid we determine the worst case reconstruction error

ℵ = max#,'

⎧⎪⎪⎨⎪⎪⎩20 log
|a(#, ') −â(#, ')|
max#,' |a(#, ')|

⎫⎪⎪⎬⎪⎪⎭ , (7.30)
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Fig. 7.1: Worst case errors of the reconstructed fields for the scattered fields from a sphere
when excited by an electric ring current. The equivalent sources are placed on a
spherical Huygens’ surface of radius rH = 1.1m. The spherical sampling surface1209 RWG functions has a radius of rP = 1.2m. © 2023 IEEE

where a ∈ {e, ℎ}, that is, for the electric and magnetic NF. The result is depicted in Fig. 7.1,
where we compare the unstabilized evaluation of b = T j with the stabilized one according
to (7.23). For the latter, we furthermore distinguish between the symmetric normalization
�P = �H = 1/√k and �P = �H = √k, which is a popular choice for stabilizing quasi-Helm-
holtz decompositions in the context of the EFIE, and the adaptive normalization in (7.21)
and (7.22). Clearly, without stabilization a breakdown occurs when going below 1MHz,
that is, the error for both, the electric and the magnetic NF increases abruptly. Using the
stabilization via projectors the breakdown is prevented for the h-field. However, the e-
field shows that only the adaptive normalization can ensure accurate fields. Employing the
standard normalization shifts the breakdown only down to the kHz region.

Instead of testing with RWG functions we now place 2000HDs and 1000 FDs on the surface
of a sphere of radius rP = 1.2m as probes: 1000 points are placed on a spiral approximating
a uniform distribution of points over the sphere following [Saff et al. 1997]. At each point
two HDs are placed along u# and u' and one FD is placed along ur (i.e., normal to the
surface). The worst case errors for the reconstructed fields are shown in Fig. 7.2. Also for
this setup only the stabilized system (7.26) ensures accurate results when combined with
the adaptive normalization. Notably, the overall error level is about 15 dB worse compared
to testing the field with RWG functions. Moreover, at a frequency of about f = 1 × 108 Hz
the error level increases notably. Both effects can potentially be attributed to the reduced
sampling of the field: when testing the field with RWG functions, the field is evaluated at
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Fig. 7.2: Worst case errors of the reconstructed fields for the scattered fields from a sphere
when excited by an electric ring current. The equivalent sources are placed on a
spherical Huygens’ surface of radius rH = 1.1m. The 2000 HD and 1000 FD probes
are placed on a spiral grid with radius rP = 1.2m.

all quadrature points, which are about five time as many as for the dipoles.

To highlight the importance of the RHS evaluation in (7.24), we consider as a second recon-
struction example the field that is scattered by the 1m sphere when excited by a Hertzian
dipole placed along the z-axis at z = 2m. The worst case errors in the reconstructed fields
for testing with RWG functions are depicted in Fig. 7.3. For the electric field, it can be seen
that without the RHS stabilization both normalization strategies lead to a breakdown in
accuracy, but with the RHS stabilization the breakdown is avoided. As the normalization
coefÏcients of the adaptive normalization depend on the norms of the RHS, it is even more
important to accurately determine the RHS components. The error in the h-field reveals
that problems occur already in the kHz region without the evaluation via scalar potentials.
Again, only the adaptive normalization can ensure a low error level over the whole fre-
quency range. A similar behavior can be observed in case the dipole probes are employed
as shown in Fig. 7.4. Note that since the dipoles implicitly already evaluate the RHS in a
stable manner, only standard and adaptive normalization are distinguished.

7.3.2 Reconstruction of a Ring Current

As a last and somewhat more realistic example, we excite the structure in Fig. 7.5 (a) by a
voltage-gap source at f = 1 kHz. The fields are sampled on a box around the structure at
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Fig. 7.3: Worst case errors of the reconstructed electric and magnetic NF for the scattered
field from a sphere when excited by a HD. The equivalent sources are placed on a
spherical Huygens’ surface of radius rH = 1.1m. The spherical sampling surface1209 RWG functions has a radius of rP = 1.2m. © 2023 IEEE

a distance of 4 cm, where the box is represented by 969 RWGs or by 3050 dipoles. For the
stabilized reconstruction, the plate shown in Fig. 7.5 (b) discretized by 9506 RWGs is chosen
as Huygens’ surface. Clearly, the original currents can be identified well for both, the RWG
and the dipole testing scheme. Notably, the dipole testing yields a more focused image, but
contains more artifacts than when testing with RWG functions.

7.4 Conclusion

The investigations have shown that the low-frequency stabilization via quasi-Helmholtz
projectors lead to accurate results. However, the adaptive normalization as well as a stable
evaluation of the RHS (via a scalar potential) are substantial. As the latter requires the
measurement of the magnetic field, it agrees with the circumstance that at low frequencies
electric and magnetic field decouple. Consequently, it is advisable to measure both.

The process of sampling the fieldwith probe antennas has been shown to constitute a crucial
difÏculty since it renders the necessary testing of the fields inaccessible to a quasi-Helm-
holtz decomposition. As a possible solution, a combination of special probe antennas has
been investigated: one type of probe antenna corresponds to solenoidal testing functions
and another type corresponds to non-solenoidal testing functions. The studied FD and HD
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Fig. 7.4: Worst case errors of the reconstructed fields for the scattered fields from a sphere
when excited by a HD. The equivalent sources are placed on a spherical Huygens’
surface of radius rH = 1.1m. The 2000 HD and 1000 FD probes are placed on a
spiral grid with radius rP = 1.2m.

indicate that this strategy is at least worth of further investigation with more realistic an-
tennas.
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(a) original

(b) no stabilization

(c) stabilized employing dipole probes

0

20

40

A m
−1

(d) stabilized employing RWG probes

Fig. 7.5: Stabilized reconstruction of the magnitude of the surface current density of struc-
ture (a) when excited by a voltage gap source on the Huygen’s surface (b) at a
frequency of 1 kHz. © 2023 IEEE
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8
On the Minimum Number of Samples
for Sparse Recovery

“Measure what should be measured.”
[Strohmer 2012]

A thorough picture is presented on the capability of compressed sensing to reduce the number
of measurement samples that are required for a near-field to far-field transformation NFFFT,
based on the spherical vector wave expansion of the radiated field of an antenna under test.
To this end, the minimum number of samples for a sparse recovery is determined such that
a predefined far-field accuracy can be achieved. As no suitable sampling theorem exists, this
is done by performing extensive numerical simulations, considering possible deviations from
exact sparsity, the influence of measurement noise, the sampling scheme, and the probe cor-
rection. Particularly, the influences are determined not only qualitatively but quantitatively.
The resulting modified phase transition diagrams (PTDs) show that a reconstruction by the
quadratically constraint basis pursuit strategy is sufÏciently stable and robust for practical
purposes. Simulation and measurement results of NFFFTs show that the predictions for the
required number of samples hold true. Consequently, the presented approach using modified
PTDs allows to reduce the number of measurement samples with predictable accuracy, when
the sparsity level is known.

This chapter is based on [Hofmann et al. 2019d] including substantial verbatim portions, where
preliminary results were presented in [Hofmann et al. 2018b; Hofmann et al. 2019c; Hofmann
et al. 2019a; Hofmann et al. 2019b; Hofmann et al. 2020].

A major drawback of field transformations, is the long measurement time resulting
from the large number of sampling points. A theory allowing to reduce the num-
ber of measurements for all antennas while keeping the accuracy is CS. It has its
origin in the area of information theory, dealing with the reconstruction of a sig-

nal from incomplete frequency information [Candes et al. 2006a; Donoho 2006a; Candes
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8 On the Minimum Number of Samples for Sparse Recovery

et al. 2006b]. It can be interpreted as a new sampling theorem, defining the framework to
uniquely solve an underdetermined LSE by incorporating prior knowledge on the structure
of the vector of unknowns and the system matrix. More specifically, the expansion coefÏ-
cients are required to be sparse, that is, only a fraction of the coefÏcients is allowed to be
considerably different from zero. In addition, the matrix of the LSE has to exhibit certain
characteristics in order to guarantee that a unique solution exists. In the area of antenna
and radar theory reviews of possible ways to apply CS are given in [Massa et al. 2015; Ender
2013; Migliore 2014]. However, concerning antenna measurements the focus was on array
diagnosis from FF observations. In [Migliore 2015] different random sampling strategies for
the more general problem of sampling the electromagnetic field radiated by sparse sources
were compared.

A successful application to noisy FF antenna measurements has been reported in [Fuchs
et al. 2017], where the FF was expanded as a linear combination of spherical harmonics.
Indeed, in the context of cosmic microwave background radiation (CMB) a sparse spheri-
cal harmonics recovery with simulation data was already conducted in [Abrial et al. 2008].
However, in both cases neither the minimal required number of measurements nor the
influence of noise or the sparsity (defects) have been investigated. Theoretical bounds con-
cerning the minimum amount of measurements for the spherical harmonics recovery were
initially determined in [Rauhut et al. 2011] and further improved by introducing different
probability measures for the sampling locations in [Burq et al. 2012; Alem et al. 2014] and
[Alem et al. 2013], where the latter was an empirical approach. Still, all these bounds turn
out to be overly pessimistic, that is, it can be shown empirically that significantly less mea-
surements sufÏce.

A first survey of possiblechallenges arisingwhen applying CS to antenna NFmeasurements
was given in [Cornelius et al. 2016], where the considered expansion basis was formed by
the spherical vector waves. Yet, conclusions on the potential of CS in antenna NF measure-
ments could only be conjectured. In [Löschenbrand et al. 2016] a modification of the basis
was proposed by shifting the origin of the expansion to the phase center in order to increase
the sparsity level. A theoretical investigation of the spherical vector wave expansion was
performed in [Bangun et al. 2016] with a similar approach as the one used for the spherical
harmonics. More precisely, sparse recovery in a Wigner-D expansion was treated. Again,
however, the determined bounds on the number of measurements are overly pessimistic
with virtually no hope for improvement (as will be further explained in Section 8.2).

As there are no approaches so far to establish a precise CS undersampling theorem as
in [Donoho et al. 2010b] for the matrices occurring in the context of a spherical NFFFT,
the idea developed in this chapter is to employ empirical investigations to determine the
minimum number of samples for a sparse recovery. More specifically, inspired by the inves-
tigations in [Donoho et al. 2009], several phase transition diagrams (PTDs) are determined
by simulations, however, in a modified form. They provide the number of measurements
depending on the sparsity level and the desired accuracy of the reconstructed FF. In contrast
to [Donoho et al. 2009] we investigate also the influences of measurement noise, deviations
from exact sparsity, the sampling scheme, and the probe correction. The PTDs can further-
more be interpreted as a characterization of the system matrix of the NFFFT, showing that
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Fig. 8.1: Considered measurement setup: the probe coordinate system (x′, y′, z′) always
points to the origin of the AUT coordinate system (x, y, z). © 2019 IEEE

CS can be applied with predictable accuracy. As recovery strategy, basis pursuit (BP) and
its quadratically constrained version are considered. Hence, a thorough picture is given on
the capabilities of CS in the area of spherical NFFFTs. Some preliminary results using this
approach have already been presented in [Hofmann et al. 2019a].

Thischapter is organized as follows: Section 8.1 introduces the required principles of spher-
ical antenna NF measurements. The applicability of CS to these is assessed in Section 8.2
by reviewing the relevant theoretical and practical aspects of CS. In Section 8.3 the mini-
mum number of measurements is determined that is required for a successful NFFFT with
CS. The influence of all relevant factors on this minimum, such as the sampling strategy
and the probe correction, are considered qualitatively and quantitatively. Simulation and
measurement results of NFFFTs by using CS are presented in Section 8.4, showing that the
predictions for the amount of samples for a certain accuracy hold true.

8.1 Spherical Near-Field Measurements

The considered measurement setup for the spherical near-field to far-field transformation
NFFFT is shown in Fig. 8.1. The antenna under test (AUT) is placed in the origin of the
unprimed (AUT) coordinate system while the probe antenna and its primed coordinate
system are assumed to always point to this origin. The position of the probe with respect
to the AUT coordinates is defined by the spherical coordinates (rp, #p, 'p) summarized in
the position vector rp and the rotation around the z′-axis by the angle � p with respect to
the unit vector e'.

Assuming the AUT radiates a signal into free space, the fields exterior to the minimum
sphere of the AUT can be expressed as a linear combination of the (power normalized)
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8 On the Minimum Number of Samples for Sparse Recovery

spherical vector wave functions q(4)amn as defined in Section 2.2.2, that is,

eAUT = k√� L∑
n=1

n∑
m=−n

2∑
s=1

xamnq(4)a,m,n (8.1)

with the expansion coefÏcients xamn ∈ C
√W and the summation limit L → ∞ (commonly

referred to as the number of modes). Setting L in (8.1) to a finite value, leads to an acceptable
error in the field representation if for an AUT of minimum sphere diameter D, it is chosen
as [Hansen 1988, pp. 15ff]

L ≥ kD
2 + � , (8.2)

where � (often chosen in the order of 10) is introduced empirically to increase the accuracy
(see [Hansen 1988, pp. 20ff] for the impact). The signal y received by the probe antenna can
be related to the expansion coefÏcients by (the transmission formula)

y(rp, � p) = L∑
n=1

n∑
m=−n

2∑
s=1

xamnAamn(rp, � p) , (8.3)

where the influence of the probe and its position is captured in the coefÏcients

Aamn(rp, � p) = 1
2

n∑
�=−n

2∑
�=1

∞∑
�=|�|�≠0

D�nm(#p, 'p, � p)C���sn(krp)Rp��� . (8.4)

Here, D�nm = e−jm'pd�nm(#p)e−j�� p are the Wigner-D functions with d�nm as defined in
[Hansen 1988, pp. 343ff] and C���sn constituting translation functions as defined in [Hansen
1988, pp. 355ff]. The coefÏcients Rp��� capture the receiving characteristic of the probe
antenna based on the multimode scattering matrix description derived in [Hansen 1988,
pp. 27ff]. Moreover, for (8.3) to be valid multiple reflections between probe and AUT should
be negligible.

The summations in (8.3) can be expressed in vector notation with an arbitrary ordering
of the coefÏcients. Collecting M measurements and stacking the received signals y into
the measurement vector y ∈ C

M , sorting the corresponding Aamn into the sensing matrix
A ∈ C

M×N and calling the vector with the expansion coefÏcients x ∈ C
N , the LSE

y = Ax (8.5)

can be formulated. The number of coefÏcients can be determined as N = 2L(L+2). Solving
(8.5) for x allows one to compute the field of the AUT by evaluating (8.1) or alternatively the
FF by using the limit given in (2.30). A full rank LSE leading to a unique solution of (8.5)
can be obtained by taking M = N measurement samples. However, often more samples
are taken in order to average out noise. Furthermore, and in contrast to the here proposed
approach, often two orthogonal polarizations are measured at each point.
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8.2 Applicability of Compressed Sensing

As mentioned in the introduction CS allows one to uniquely solve the LSE in (8.5) for M ≤
N , that is, although the LSE is underdetermined. Requirement for this unique solution is
that x is sparse or compressible.

8.2.1 Sparsity and Compressibility

The vector x is referred to as s-sparse, if at most s of its entries are different from zero. More
formally,

‖x ‖0 ..= card(supp(x)) ≤ s (8.6)

has to hold, with supp(x) = {i ∈ {1, 2,… , N } | xi ≠ 0} denoting the support of x and card(S)
denoting the cardinality of a set S .

Since real world signals, represented by the vector x , are rarely exactly s-sparse, a relaxation
to compressible signals can be considered. A common approach is to approximate x by
an s-sparse vector x̂ such that the introduced �p error �s is minimized, that is, �s(x)p =minx̂∈Ss ‖x − x̂ ‖p , where Ss = {x ∈ C

N | ‖x ‖0 ≤ s} defines the set of all s-sparse vectors
(see, e.g., [Foucart et al. 2013, p. 42]). Without further specification the signal is then called
compressible, if �s decays quickly with increasing s. However, in this thesis a more practical
measure for the level of sparsity defects is introduced. With

� = max |xdefect|
maxamn |xamn| (8.7)

the ratio of the maximummagnitude of a coefÏcient xdefect considered as defective (i.e., close
to but not exactly zero) to the maximum of all coefÏcients xamn is measured. This definition
will be used in Section IV to investigate the influence of deviations from exact sparsity.

8.2.2 Recovery Strategy

For the actual recovery of an s-sparse vector x different approaches (see, e.g., [Duarte et
al. 2011] for an overview) have been proven to give the exact solution to the underdeter-
mined LSE (under additional conditions outlined in the following subsection). The strategy
considered in this thesis is to solve the optimization problem

x̂ = argmin
z∈CN ‖z ‖1 s.t. y = Az , (8.8)

which is called basis pursuit (BP). For the case that the measurements are contaminated
with noise, such that (8.5) becomes y = Ax + n , it might be advantageous to generalize the
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8 On the Minimum Number of Samples for Sparse Recovery

minimization in (8.8) to

x̂ = argmin
z∈CN ‖z ‖1 s.t. ‖Az − y ‖2 ≤ � , (8.9)

what is referred to as quadratically constrained basis pursuit and abbreviated in this thesis
as BP�. The choice of the parameter � depends on the noise level (e.g., for bounded noise‖n‖2 ≤ �) and will be addressed in more detail in Section IV. Note that the strategies (8.8)
and (8.9) were also the ones considered in [Abrial et al. 2008; Rauhut et al. 2011; Burq et al.
2012; Alem et al. 2014; Alem et al. 2013; Cornelius et al. 2016; Löschenbrand et al. 2016; Fuchs
et al. 2017]. While other approaches like greedy or thresholding based methods [Duarte
et al. 2011] can be less computationally demanding (see [Foucart et al. 2013, p. 73] for a
discussion), BP and BP� usually require less measurements for a successful recovery [Eldar
et al. 2012, pp. 358f].

8.2.3 The Required Number of Measurements

Themost intricate aspect of CS is to determine recovery guarantees stating an exact number
of measurements required for successful recovery. Ideally, for the underdetermined LSE in
(8.5) and a specific recovery algorithm, a sampling theorem would give the exact minimum
M as a function of s, N and A for a known sparsity s, that is,M > f (s, N ,A). Preferably, also
noise and sparsity defects are considered. With the intention to do so, different approaches
either classify the matrix A or capture its relevant properties in a characteristic value.

Null Space Property, Coherence and RIP

The first recovery guarantee for an arbitrary sensing matrix was given by characterizing its
null space. This characterization is, however, non-deterministic polynomial-time hard (NP-
hard) to compute and therefore not relevant for practical purposes [Eldar et al. 2012, p. 24].
In contrast, the coherence of a matrix (see [Donoho et al. 2001; Tropp 2004]) is feasible to
compute but leads (necessarily) to guarantees in the form of M ≥ C s2 with a universal
constant C [Foucart et al. 2013, p. 125]. Due to the contained quadratic dependency this
approach is only suited for very sparse vectors x , which can not be expected for general
antennas.

The probably most dominant tool used to determine recovery guarantees in CS is the re-
stricted isometry property (RIP) originally introduced in [Candes et al. 2005]. Despite the
attention the RIP experienced, it has two major drawbacks making it uninteresting for an-
tenna NF measurements (and other practical purposes). Like the null space property it is
NP-hard to compute [Tillmann et al. 2014]. As a workaround only random matrices (e.g.,
Bernoulli, Gaussian and sub-Gaussian distributed) have been considered [Strohmer 2012].
For these it can be shown that the RIP holds with high probability. The second drawback is
that even if the RIP constant can be determined, the lower bounds on the minimal number
of required measurements are overly pessimistic. According to [Donoho et al. 2010b] the
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most precise bound in terms of the RIP has been given by [Blanchard et al. 2011]. Still, it
can be shown by numerical experiments that far fewer measurements sufÏce for a reliable
recovery [Donoho et al. 2009]. This can partially be explained by the fact that the RIP is only
a sufÏcient condition for the basis pursuit (BP) to be successful [Eldar et al. 2012, p. 310].

Bounded Orthonormal Systems

The only recovery guarantee given so far for antenna NF measurements is based on associ-
ating the sensing matrix to a bounded orthonormal system (BOS) [Bangun et al. 2016]. This
means that the entries of the sensing matrix are linked to a set of orthonormal functions{�1,… , �N } which are uniformly bounded with some constant B as ‖�‖∞ ≤ B in the form of(A)lq = �q(t l) , where t l are the sampling points distributed according to a probability mea-
sure (see [Fornasier 2010, pp. 19ff]). Since for the Wigner-D functions D�nm in (8.4) such
a uniform bound can be found, this approach seems to be appropriate. However, the de-
rived recovery guarantees are linked to the RIP and consequently overly pessimistic with
virtually no hope for significant improvement [Donoho et al. 2010b].

Precise Undersampling Theorems

Due to the empirical observation of a phenomenon called phase transition in [Donoho
2006b; Donoho et al. 2005] new approaches have arisen. According to this phenomenon,
if for a certain number of measurements the sparsity is below a certain threshold, the BP
strategy will recover x with overwhelming probability, above the threshold the recovery
fails with high probability. Theoretically, the phase transition was explained in [Donoho
2006b; Donoho et al. 2005; Donoho et al. 2008], summarized in [Donoho et al. 2010b].

Key feature of the projected polytope approach is that it gives a necessary and sufÏcient
condition for successful recovery and consequently establishes a precise undersampling
theorem. While the analysis is asymptotic in the first place (i.e., N → ∞), it is shown
in [Donoho et al. 2010a] that for finite N the number of samples has to be increased with
decreasing N . Drawbacks are that the approach is limited to the real valued case and more
importantly to Gaussian random matrices. The same limitations hold for the nullspace
Grassmann angle approach proposed in [Xu et al. 2011], which, however, indicates that (as
put in [Donoho et al. 2010b]) no “qualitative gap” occurs between the exact sparse case
and compressible signals. With increasing deviations from exact sparsity the number of
measurements have to be increased continuously for a recovery.

Observed Universality

Since in the considered field transformation the sensing matrix is complex valued and has
no random Gaussian distribution, none of the available precise undersampling theorems is
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8 On the Minimum Number of Samples for Sparse Recovery

fitting. (Note that there are also other but less sharp approaches aiming at a precise un-
dersampling theorem, such as [Zhang 2013; Stojnic et al. 2008a; Stojnic et al. 2008b; Stojnic
2010].) Even though, they provide some insights, the perhaps most promising results are
the ones obtained by extensive numerical simulations in [Donoho et al. 2009]. The idea was
to determine the phase transition of different kinds of (random) matrices by simulating sev-
eral combinations of sparsity s and number of samples M . The simulations reveal that all
considered matrices exhibit the same phase transition. Furthermore, the results show that
the asymptotic theory works accurately already at moderate N . This leads the authors of
[Donoho et al. 2009] to the hypothesis that there has to be a larger class of matrices, which
all obey the Gaussian phase transition. Although, up to now this class has not been iden-
tified, the results suggest that sparse recovery with a moderate amount of samples M is
possible for a large variety of sensing matrices.

Uniform and Nonuniform Recovery

An important distinction made by the above approaches is between strong (uniform) and
weak (nonuniform) recovery guarantees [Foucart et al. 2013, pp. 48ff]. In terms of antenna
measurements the strong one can be interpreted as choosing the sampling points once at
random (determining the sensing matrix) and using them for all AUTs. Theweak guarantee
corresponds to choosing the sampling points at random for each AUT anew. In the latter
case considerably less measurements should be required to guarantee a successful recovery.
A possible interpretation of this circumstance is that the probability that one distribution
of sampling points is suitable for all AUTs is much smaller than the probability that a set
of (random) points fits for only one AUT. However, as it turns out in the next section, even
for a deterministic set of sampling points recovery guarantees very close to the weak ones
can be achieved.

8.3 The Minimum Number of Samples for CS in Spher-
ical NFFFT

Despite the lack of compressed sensing (CS) theories fully fitting to antenna measurements,
their insights reveal that useful recovery guarantees can also be achieved for the matrices
employed in antenna NF measurements. Therefore, it is proposed to determine the mini-
mumnumber of samples by simulations yielding phase transition diagrams (PTDs). Beyond
that, and for the first time, the impact of all potential influence factors is quantified with
the PTDs.

8.3.1 Setting up the PTDs

The general concept of PTDs is to perform several reconstructions for all possible combina-
tions of sparsity s and the number of measurementsM for a certain sensing matrix A and to
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record the percentage of success. To this end, the vector x of size N is generated by setting
s random entries (chosen uniformly at random) of x to random complex numbers drawn
from the standard normal distribution, all other entries are zero. After the selection of the
sampling locations rp and the probe orientation angles � p the sensing matrix is constructed
following (8.4) with an implementation following the approach described in [Mauermayer
et al. 2018]. The number of modes is fixed to L = 8 resulting in N = 160 coefÏcients. While
this would be a very small number of modes for actual antennas, it can be assumed that the
results also hold for any larger L. This assumption is based on the results of [Donoho et al.
2010a] (for increasing N the results hold even better) and verified in the following Subsec-
tion E. For the values ofM = 16, 48, 80, 112, 144 and 160 the sparsity s is varied and for each
combination (M, s), R = 150 problem instances are considered. Usually, the sparsity is var-
ied from 1 toM . However, in order to reduce the computation time, s is only increased until
the percentage of success drops below 1 %. The remaining values for s are not simulated,
since it can be expected that all reconstructions in this parameter regime are not successful.
Furthermore, at each M the last s is recorded for which the recovery success is 100 %. This
is then the first s to be simulated for the next M . Hence, only the area around the phase
transition is simulated. For each problem instance, the BP or its quadratically constrained
version BP� is solved. To this end, the CVX MATLAB package is used [Grant et al. 2014;
Grant et al. 2008] together with the solver from Mosek [MOSEK 2015]. (Note that a fast
solution of the BP or the BP� problem can be achieved by using, for example, the solution
approach described in [Berg et al. 2009]. This approach does not require the sensing matrix
explicitly, but only products of the form Ax (see also [Mauermayer et al. 2018]).) A success
for the reconstructed solution is recorded if the maximum occurring reconstruction error
ℵ is below a certain threshold.

To verify that a phase transition occurs at all, the sampling points are initially distributed
uniformly at random over the surface of a sphere with radius rp = 5m (i.e., ' = 2π u and
# = arccos(2v − 1) with u and v chosen randomly from ]0, 1[) and the polarization angles
� p are selected uniformly at random from the interval [0,π/2]. (The sampling locations
are generated for each reconstruction anew, i.e., a weak transition bound is simulated). As
probe antenna a HD is used. The determined PTD is depicted in Fig. 8.2. The number of
measurementsM and the sparsity s are related to the number N of entries in x by � = M/N
as well as � = s/N . The domain (�, � ) ∈ [0, 1]2 is called phase space. For a successful
recovery by the BP strategy ‖x−x̂ ‖∞ ≤ 10−6 is demanded. The colors indicate the percentage
of success, from yellow 0 % to blue 100 %. The parameters in the white areas were not
simulated. With the occurring steep change from 100 % to 0 % a phase transition can be
identified.

8.3.2 Comparison with Theoretical Bounds

For a better comparison also with other bounds, the largest s are extracted for which 10 %
and 100 % recovery success is achieved. The corresponding curves together with the the-
oretical bounds from the bounded orthonormal systems (BOS) and the projected polytope
approach are depicted in Fig. 8.3. For interim values a cubic interpolation is performed (the
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Fig. 8.2: PTD: The sampling points are distributed uniformly at random over the surface of
a sphere with radius rp = 5m. The polarization angles are selected uniformly at
random from the interval [0,π/2]. For a successful recovery by the BP ‖x − x̂ ‖∞ ≤10−6 is demanded. The depicted lines are in ascendig order from top to bottom form10 % to 100 %. © 2019 IEEE

markers highlight the actually simulated points). It can be seen that not only a phase tran-
sition is occurring, but it is also close to the theoretical bound � (�,weak) known from the
projected polytope approach. This is quite notable, as the sensing matrix is not a random
Gaussian matrix (but has considerable structure), N = 160 is of moderate size and the set-
ting (sensing matrix, expansion coefÏcients and measurements) is complex valued. (Note
that the numerical computation of � (�,weak) and � (�, strong) is described in [Donoho et al.
2010a] and tabulated values are provided in Matlab format in [Tanner 2012].) Furthermore,
the empirical bounds excel the prediction of the theoretical curve � (�,weak) for M = N .
Consequently, a reconstruction in antenna NF measurements can be even successful for
all levels of sparsity (i.e., also for s = N ). The curve for the BOS method was determined
according to the result of [Bangun et al. 2016], requiring

M ≥ C N 1/6 s log3(s) log(N ) , (8.10)

where the universal constant C was chosen such that the bound is in all points not larger
than the empirical 100 % curve (since no explicit values are available for C). Also note that
while the bound given in [Bangun et al. 2016] was classified as strong, the same bound is
achieved for weak recovery. This is due to the same functional dependency on s in the the-
orems for strong (see [Fornasier 2010, pp. 26ff]) and weak (see [Foucart et al. 2013, p. 393])
recovery, whereas all other dependencies are compensated by the universal constant. Com-
pared to the (weak) empirical 100 % bound the BOS bound is far from being optimal.
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8.3.3 The Error Definition

Before investigating different influences on the reconstruction performance the question
arises how to properly define the reconstruction error for antenna NF measurements. Cer-
tainly, the so far used requirement ‖x−x̂ ‖∞ ≤ 10−6 for a successful recovery is too restrictive
when noise is included. The theorems for robust recovery suggest to consider errors of the
form ‖x − x̂ ‖p ≤ C � for bounded noise ‖e‖2 ≤ �. For the spherical harmonics recovery in
[Fuchs et al. 2017] the mean squared error MSE(x̂) = E[(x − x̂)2] was put forward with E

denoting the expected value. However, it is difÏcult to impose requirements on the error
of the reconstructed coefÏcient vector (e.g., require that ‖MSE(x̂)‖∞ is smaller than some
bound). In antenna measurements the quantity of interest is usually the FF pattern, for
which requirements on the accuracy are defined. A common (logarithmic) definition of a
relative error ℵ is

ℵ = max#,'

⎧⎪⎪⎨⎪⎪⎩20 log
||eFF(#, ') − êFF(#, ')||max#,' |eFF(#, ')|

⎫⎪⎪⎬⎪⎪⎭ , (8.11)

which is then required to stay below a certain level (e.g., ℵ ≤ −60 dB). Here, eFF and êFF
denote the magnitude of the reference and the reconstructed FF, respectively. In order to
transfer such a definition to the coefÏcient vectors x and x̂ a kind of propagation of error
would be necessary based on the relationship in (8.1) together with (2.30). However, since
no recovery guarantees of the form ‖x −x̂ ‖p ≤ C � are at hand, it seems more natural to just
evaluate the error in the FF pattern. To this end, eFF(#, ') and êFF(#, ') are determined from
x and x̂ on a grid with a resolution of approximately 5.6◦ in # and ' (32 values in # and 64
values in ') and the worst case error (8.11) is determined.

Having defined the error ℵ it is useful to introduce a modified PTD as the one shown in
Fig. 8.4. Instead of the success rate (for a certain required error), the average of the R
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reconstruction errors ℵ for the combinations (s, M) is depicted. In this way the required
number of measurements can be determined for a certain sparsity and a desired error from
the diagram. In the following mostly extracted transition bounds from such PTDs are used
for comparisons. The choice of ℵ ≤ −60 dB for the noiseless case is somewhat arbitrary, but
is in a practical range and well suited for the comparisons. As can be seen from Fig. 8.4 far
smaller errors can be achieved.

8.3.4 Influence of the Sampling Grids

As a next step the influence of different sampling grids is investigated. The corresponding
transition bounds are depicted in Fig. 8.5 (still for a Hertzian dipole (HD) as probe antenna).
Again for interim values between the markers cubic interpolation is used. Firstly, grids
are compared where the polarization angles were selected uniformly at random from the
interval [0,π/2] (pol. 1). As can be expected (from the classical PTD in Fig. 8.3), distributing
the M sampling points uniformly at random over the surface of a sphere yields a useful
transition bound. In contrast, when using an equiangular grid the bound shifts downwards
considerably. It might be conjectured that, when using so few samples, it is detrimental
to have areas where the sampling locations are concentrated more densely. This is also
confirmed by the ”igloo” distribution introduced in [Fuchs et al. 2017] with a spacing of
�' = �#/ sin # and �# = const. The scheme reduces the density at the poles but does not
achieve a uniform distribution. Consequently, the bound is closer to the one with random
sampling but still slightly worse. Almost identical to the random sampling is the bound of
a spiral grid which is designed to approximate a uniform distribution of the sample points
over the sphere. In particular, the used spiral grid is the one presented in [Saff et al. 1997].
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Fig. 8.5: Transition bounds corresponding to ℵ ≤ −60 dB for different sampling grids using
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Introducing the auxiliary parameters

ℎm = −1 + 2(m − 1)
M − 1 (8.12)

for 1 ≤ m ≤ M , the measurement positions are computed as

#m = arccos(ℎm) (8.13)

and

'm = ('m−1 + 3.6√M 1√1 − ℎ2m) mod 2π (8.14)

for 2 ≤ m ≤ M − 1, where '1 = 'M = 0. Since the spiral grid is better suited for measure-
ments than a random grid, it is used for all further investigations. While there are other
grids which could work well with CS, each has to be checked individually with the proposed
approach.

Concerning the selection process of the polarization angles two more options are consid-
ered. When the � p are randomly chosen to be either 0 or π/2 the transition bound is vir-
tually the same as for polarization 1. Finally, if for consecutive points the polarization is
alternately 0 and π/2 the transition bound shifts down slightly. However, the bound is still
in a useful range despite no more randomness is involved in the measurement process. This
is quite notable, since the predictions of strong transition bounds (to which it now has to
be compared) are usually considerably more pessimistic.
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coefÏcients N using the BP recovery strategy. © 2019 IEEE

8.3.5 Influence of the Problem Size

Using the spiral grid with pol. 1 it is verified in Fig. 8.6 that the number of expansion coefÏ-
cients N can be increased without having influence on the transition bound. Consequently,
the determined bounds are also valid for large antennas.

8.3.6 Influence of Sparsity Defects—Stability

In order to investigate the stability, that is, the influence of deviations from exact sparsity,
sparsity defects are added to the coefÏcient vector x . More precisely, scaled Gaussian noise
such that the maximum value is equal to � maxamn |xamn| is added to the vector x (see (8.7)
for the definition of �). However, it is added only to the N −k coefÏcients which are initially
zero. The resulting coefÏcients in x are the ones to be reconstructed and based on them the
measurement samples are created (y ← Ax ).

The resulting transition bounds for different �-values and the reconstruction approach ba-
sis pursuit (BP) are shown in Fig. 8.7. In general with increasing � the transition bound
is shifted downwards. For M = N all sparsity levels can always be reconstructed, which
is evident from the fact that at most N coefÏcients can be different from zero and conse-
quently, there is no difference for different �-levels at � = 1. Important is that (as put in
[Donoho et al. 2010b]) no “qualitative gap” occurs between the exact sparse case (� = 0)
and compressible signals. The transition bounds shift downwards continuously. However,
and in contrast to [Xu et al. 2011] the here presented approach can quantify the shift. Note,
that the chosen values for � appear to be in a practical range considering the expansion
coefÏcients of different antennas (see also Section V).
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8.3.7 Influence of Noise—Robustness

Besides the stability against sparsity defects also the robustness against measurement noise
is of interest. In order to examine such an influence, complex white Gaussian noise is added
to the measurement vector in the form of y = Ax + n . A certain signal to noise ratio (SNR)
is achieved by measuring the maximum power of the signal Psig = max |yi|2 and scaling the
noise level such that max |n i| = √Psig/SNR.
As can be seen in Fig. 8.8 for an SNR of 60 dB, when the BP strategy is used, the bound
in general shifts downwards compared to the noiseless case. While reconstruction errors
of ℵ ≤ −55 dB are still achievable the bounds for ℵ ≤ −45 dB are depicted since otherwise
the transition bounds shift downwards quite far. However, from a practical perspective an
error of ℵ ≤ −45 dB is still in a useful range. For � & 0.8 the allowed sparsity level for a
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successful reconstruction even decreases when the number of measurements is increased.
A possible explanation for this decrease could be that the BP assumes all measurements to
be exact due to the side condition in (8.8). Consequently, when more (noisy) measurements
are added also more defective information is added.

As a remedy the quadratically constrained version of the BP, BP� (see (8.9)) is used. For a
fixed (empirically determined) � = 2 × 10−4 the transition bound also increases for � & 0.8,
but is otherwise worse than the BP bound. The right choice of � is crucial, as is also shown
theoretically in [Brugiapaglia et al. 2018]. However, since the measurement noise is not
bounded by a fixed � (i.e., ‖n‖2 ≤ �) but rather Gaussian distributed there is no ultimate
choice. One approach could be to leverage a tail bound which states that ∃ c > 0 such that
for any � > 0

P(‖n‖2 ≤ (1 + �)�√M) ≥ 1 − e−c�2M , (8.15)

where P(E) denotes the probability of the event E and � is the variance [Eldar et al. 2012, p.
32]. Consequently, the parameter should be chosen depending on the number of measure-
ments as � = �√M , where � has to be increased with an increasing noise level. This is also
verified numerically by the improved bound (compared to � = 2 × 10−4) shown in Fig. 8.8.
Note, however, that the empirically chosen � = 1.975 × 10−5 might not be optimal yet.

Using the approach with � = �√M transition bounds for different noise levels are deter-
mined. The results are depicted in Fig. 8.9. They show that the bound shifts downwards
with decreasing SNR. While the bound for an SNR of 50 dB shifts down considerably, a re-
laxation of the requirement for the error to ℵ ≤ −40 dB (also depicted in Fig. 8.9) sufÏces to
shift the transition bound back to a useful area. Since such an error level is still reasonable
for an SNR of 50 dB it can be concluded that the sparse recovery in the spherical NFFFT is
sufÏciently robust against measurement noise.
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8.3.8 Influence of Probe Correction

To investigate a last possible influence on the transition bounds, the HD probe is replaced
by a higher-order probe. Firstly, a 2-dimensional array of HDs as shown in Fig. 8.10 is used
as a probe [Schmidt et al. 2011]. From the analytical FF expression the probe receiving
coefÏcients Rp��� (see (8.4)) are determined. Furthermore, the NSI-RF-WR284 open-ended
waveguide (OEWG) [NSI-MI 2018] is used as a probe antenna1. Its probe receiving coefÏ-
cients are determined from the FF computed by FEKO [FEKO 2017]. The resulting transi-
tion bounds are shown in Fig. 8.11 together with the bound for the HD probe. As all three
bounds are almost identical, it can be concluded that the previous results are also valid for
the considered higher-order probes, at least for the noiseless case. As shown in the fol-
lowing, when measurement noise is present and BP� is used, it appears that � needs to be
increased.

1Note, that OEWGs are sometimes considered as first-order probes. However, this is only an approxima-
tion.
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8.3.9 Practically Relevant Case

After investigating the different influences on the recovery guarantees separately, the com-
bination of sparsity defects and noise is of interest. To this end, a level of sparsity defects of
� = 2×10−4 and noise levels of 60 dB, 50 dB, 40 dB, and 30 dB are simulated for a HD and the
OEWG higher-order probe. The resulting PTDs (for the HD probe) and extracted bounds
(for HD and OEWG probe) for different FF errors ℵ are shown in Fig. 8.12. In general, the
higher the requirements are on the error level, the more samples are required. As can be
seen especially for the SNRs of 40 dB and 30 dB in Fig. 8.12, only for extremely low sparsity
levels an error below the SNR can be achieved. Furthermore, for all noise levels the tran-
sition bound slightly depends on the probe. Particularly, � has to be increased (using an
empirical value) compared to the case using the HD probe. An explanation for this might
be that a larger probe collects more noise. However, the determined bounds are still close to
the ones using the HD probe, both lying in a useful range for NFFFTs based on simulation
or measurement data of antennas.

In consequence, a practical approach could be to first of all determine the sparsity level of
the spherical expansion coefÏcients of an AUT, for example, via simulation. Then the PTD
with the fitting SNR, �, probe, and sampling grid can be used (if not available it can be
set up according to Subsection A) to deduce the minimum number of samples in order to
achieve the desired error level.

8.4 NFFFT Results Using CS

In order to verify that the determined transition bounds hold for actual antennas, NFFFTs
are performed with the number of sampling points predicted by the determined PTDs.

8.4.1 Simulation of a Horn Antenna

As a first example, a pyramidal horn antenna is considered. The NF data of the antenna is
computed by FEKO, which determines a MoM solution based on the EFIE. Based on a rect-
angular WR90 waveguide as feeding structure, the antenna geometry is defined as shown
in Fig. 8.13. Excited is only the fundamental (TE10) mode at a frequency of 11GHz. The
diameter of the minimum sphere of the antenna is D = 124mm ≈ 4.6�. With an � = 11 the
number of spherical modes is determined from (8.2) as L = 26, which leads to N = 1456
expansion coefÏcients. The sampling points are again placed on a spiral grid as defined in
(8.12)-(8.14) with a fixed radius of 0.1m. The magnitude of the spectrum of the expansion
coefÏcients xamn is shown in Fig. 8.14 (can be directly determined by FEKO). While there is
no actual zero entry, only 29% of the coefÏcients are larger in magnitude than 0.02 % of the
largest coefÏcient, that is, for � = 2 × 10−4 the sparsity level is � ≈ 0.29. Consequently, for
an error of ℵ ≤ 60 dB it follows from Fig. 8.7 that � ≥ 0.6 has to hold. This corresponds to a
minimum amount of samples of M = 874.
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Fig. 8.12: PTDs for a HD probe as well as transition bounds for the HD probe and the
OEWG higher-order probe (dashed). All for a level of sparsity defects of � =2 × 10−4. As recovery strategy the BP� is used with � = �√M , where � =1.975 × 10−5, 6.24 × 10−5, 1.975 × 10−4, 6.24 × 10−4 for the HD probe and � =5.139 × 10−5, 1.925 × 10−4, 5.639 × 10−4, 3.125 × 10−3 for the OEWG probe for an
SNR = 60 dB, 50 dB, 40 dB, 30 dB, respectively. © 2019 IEEE
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Fig. 8.13: Geometry of the simulated pyramidal horn antenna. The walls are PEC and in-
finitely thin. © 2019 IEEE
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Fig. 8.14: Magnitude of the expansion coefÏcients of the simulated pyramidal horn antenna
shown in Fig. 8.13. © 2019 IEEE

An H -plane and an E-plane cut of the reconstructed FF by the BP is shown in Fig. 8.15
together with a regularized least-squares (LS) solution using the same measurements. The
regularization is achieved by solving the normal equation system AHy = AHAx associated
with (8.5) with the iterative GMRES [Saad 2003], which stops at a relative residual of 1×10−7.
Both results are compared to the FF computed by FEKO. While the CS solution achieves the
predicted FF error, the regularized LS solution shows only a coarse resemblance with the
correct antenna pattern (be reminded that only one polarization per sample is used).

Also shown in Fig. 8.15 are the reconstructed patterns for the case when noise with an SNR
of 60 dB and 40 dB is added to the measurements. With a reconstruction error of ℵ ≤ −45 dB
and ℵ ≤ −30 dB the predictions of the (HD) transition bounds given in Fig. 8.12 are shown
to hold. The bounds require at least M = 0.7N ≈ 1020 sampling points in order to achieve
the corresponding error levels.

The error level for different numbers of samples is depicted in Fig. 8.16. In the noiseless case
for � < 0.6 the predicted ℵ ≤ −60 dB from Fig. 8.7 can no longer be achieved by CS, however,
above � = 0.6 even better error levels can be reached. In contrast, the regularized LS solution
only leads to an acceptable accuracy for � = 1.0. For the noisy cases the predictions of the
PTDs in Fig. 8.12 hold true, as well. Interestingly, for � < 0.6 the encountered errors are
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Fig. 8.15: Comparison of the reconstructed radiation characteristic C of the pyramidal horn
antenna with the one from FEKO. The CS solutions use in the noiseless case the
BP and in the noisy cases BP� with � = �√M . Top: H -plane (' = 0); Bottom:
E-plane (# = π/2). © 2019 IEEE

better than predicted by the PTDs in Fig. 8.12. Consequently, one could conclude that the
determined bounds are too pessimistic. However, the bounds have to hold for all antennas
and not only this specific one. Hence, in order to make to bound even closer to the absolute
minimum of samples, presumably more information about the specific antenna would have
to be included in some form.

8.4.2 Concerning the Absolute Minimum of Samples

As already indicated by the previous results, it should be noted that the presented approach
does not necessarily determine the absolute minimum of samples for the spherical NFFFT.
First of all, for certain configurations (antennas, sampling locations) CS might find a so-
lution with the same error level from even less measurements. However, in contrast to
the predictions by the PTDs there is no guarantee to achieve this error level. Also, the least
squares solution could work sufÏciently well, but again there is no guarantee. Finally, there
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Fig. 8.16: Achieved error ℵ for the pyramidal horn antenna for different numbers of samples
M using in the noiseless case CS with BP and the regularized LS solution, as well
as CS with the BP� in the noisy cases. © 2019 IEEE

is no definite way to choose � in (8.2) and consequently the number of modes L. Selecting,
for example, for the simulated horn antenna � = 0, a full rank LSE can be achieved with
onlyM = 510measurements. This would be less than the previously usedM = 874 samples
for CS. However, solving the corresponding LSE only an error of −30 dB can be achieved
as shown in Fig. 8.17. Increasing the number of samples to M = 1600 and taking two or-
thogonal polarizations improves the error to only about −55 dB, showing that the solution
accuracy is limited due to the degrees of freedom of the model. In contrast, when choosing
� = 3 (N = 720) a sparsity level of about 50% can be observed (� = 2 × 10−4). According
to the PTD in Fig. 8.7 a CS reconstruction requires N = 650 samples. That the predicted
error of about −60 dB is achieved can be seen from Fig. 8.17. The overdetermined solution
for � = 0 using alsoM = 650 samples achieves only an error of −45 dB. Consequently, after
choosing � and L sufÏciently large to represent the radiated fields of the AUT, the PTDs can
predict the minimum amount of samples required for CS in order to achieve a certain error
level.

8.4.3 Simulation of an Antenna Array

As a second example a 21 × 23 rectangular Dolph-Chebychev (in phase, amplitude tapered)
array of z-directed Hertzian dipoles in the yz-plane is considered. At a frequency of 1GHz
the distances and amplitudes are determined according to [Dolph 1946; Safaai-Jazi 1994]
such that a side lobe level of −30 dB is achieved. With a minimum sphere diameter of
D = 27.9� and � = 11 the order of the spherical mode expansion is L = 99 resulting in N =19 998 expansion coefÏcients. The spectrum of the expansion coefÏcients is determined
by taking two orthogonal polarizations at 22 000 sample locations and obtaining the LS
solution. Using � = 2×10−4 a sparsity level of � ≈ 18% is found. According to the transition
bound in Fig. 8.7 M = 0.49N ≈ 9800 samples should sufÏce to achieve an error of ℵ ≤−60 dB. The results shown in Fig. 8.18 verify this. When measurement noise with an SNR
of 50 dB is added, it follows from Fig. 8.12 that M = 0.55N ≈ 10 999 and M = 0.45N ≈ 9000
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Fig. 8.19: Measured double-ridged DRH400 antenna from RFspin mounted in the anechoic
chamber. © 2019 IEEE
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Fig. 8.20: Magnitude of the expansion coefÏcients of the measured double-ridged DRH400
antenna shown in Fig. 8.19. In order to visualize that none of the coefÏcients is
zero, the large coefÏcients are cut off. The largest coefÏcient has a magnitude of11 × 10−2 √W. © 2019 IEEE

samples are required for an error of ℵ ≤ −40 dB and ℵ ≤ −25 dB, respectively. That both
predictions hold true, is verified in Fig. 8.12, as well.

The half power bandwidths HPBW = 3.22◦ in the E-plane and HPBW = 2.91◦ in the H -
plane are reproduced in all cases at least up to the third decimal place. The directivity
Ddir = 26.92 dB is reproduced with a relative error of −156 dB, −18.12 dB, and −16.76 dB for
the setups with � = 0.49 (noiseless), � = 0.55, and � = 0.45, respectively.

8.4.4 Measurement of a Double-Ridged Horn Antenna

Finally, the double-ridged DRH400 horn antenna [RFspin 2017] as shown in Fig. 8.19 is mea-
sured in an anechoic chamber at a frequency of 3GHz with the NSI-RF-WR284 open-ended
waveguide [NSI-MI 2018] as probe antenna. Initially, two orthogonal polarizations are ob-
tained for M = 16 380 samples on an equiangular grid. With a diameter of the minimum
sphere of D ≈ 1.6m ≈ 16� the number or spherical modes is determined as L = 79, leading
to N = 12 798 expansion coefÏcients. The magnitude of the spectrum of the expansion
coefÏcients is depicted in Fig. 8.20. The spectrum is determined by using both polarizations
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Fig. 8.21: Comparison of the reconstructed radiation characteristic C of the DRH400 an-
tenna with a reference solution obtained by using two orthogonal polarizations
for each of the M = 16 380 sampling points. The reconstruction by CS uses for
� = 0.8 corresponding to M = 10 239 samples the BP� (� = 2.5 × 10−3) and for
� = 0.7 corresponding to M = 8959 samples the BP to reconstruct the N = 12 798
expansion coefÏcients. The regularized LS solution uses also the M = 8959 sam-
ples.Top: H -plane (' = 0); Bottom: E-plane (' = π/2). © 2019 IEEE

at all M = 16 380 sampling points and solving the normal equation system AHy = AHAx
associated with (8.5) with the iterative GMRES [Saad 2003]. However, also a simulation of
the antenna could be used. Using � = 2 × 10−4 a sparsity level of � ≈ 0.33 is determined.
Since the SNR of the measurement is approximately 60 dB it follows from the transition
bound in Fig. 8.12 that at least M = 0.7N ≈ 8959 measurements are required in order to
achieve an error level of ℵ ≤ −45 dB.
In Fig. 8.21 the reconstructed FF in the H -plane and E-plane are depicted. For the recon-
struction using CS, a spiral grid with the desired number of points is defined and the closest
points of the equiangular grid are selected. For each selected point one of the two polariza-
tions ischosen randomly. The deviation of the CS solution (using the BP) to the reference so-
lution (using theM = 16 380 sampling points) is forM = 8959 (� = 0.7) for all angles below
the predicted −45 dB. Again, the regularized LS solution shows only a rough resemblance
with the reference. If the number of measurements is increased toM = 10 239 (� = 0.8) the
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Fig. 8.22: Achieved error ℵ for the measured DRH400 antenna for different numbers of sam-
ples M using CS and the regularized LS solution. © 2019 IEEE

worst case deviation of CS decreases as expected to a level lower than −50 dB.
Investigating the error for different numbers of measurements M as shown in Fig. 8.22
verifies that BP� achieves ℵ ≤ −45 dB only for � ≥ 0.7. Similar to the simulated horn
antenna the encountered error is for � < 0.7 better than predicted by the PTD in Fig. 8.12.
Furthermore, the insights from Fig. 8.8 concerning the performance of BP in the noisy case
are confirmed. From about � ≥ 0.7 on (note that a different probe is used) the error increases
again.

8.5 Conclusion

It has been shown how to predict the minimum number of samples required for a CS recon-
struction in the spherical NFFFT by using PTDs. The latter depend on the required error
level in the FF. Consequently, CS can be applied to the spherical NFFFT in a reliable man-
ner. This allows reducing the number of samples if prior knowledge about the sparsity of
the spherical expansion coefÏcients can be obtained. The investigation of several influence
factors showed that a deterministic spiral gird is well suited. Furthermore, measurement
noise and sparsity defects increase the minimum number of measurements and decrease
the achievable error level, but within a range which is still useful for antenna near-field
measurements. For noisy measurements in combination with the quadratically constrained
basis pursuit (BP�) different probes require careful adjustment of the constraint.

For the considered antennas, the number of sampling points was reduced by up to 55%.
Relaxing the requirements on the FF error can lead to a further reduction. Considering
that only one polarization has to be measured at each sampling point and that most other
approaches so far usually acquire more samples than there are unknowns (e.g., in order to
average out noise), the achieved reduction of sampling points is even higher.

The used approach with PTDs could also be adapted for other applications, where the pos-
sible influences can each be captured in one parameter.
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9
Conclusion

“There are no solved problems; there are
only problems that are more or less solved.”

Herni Poincaré

Several paradigms have been presented in this thesis to low-frequency stabilize the
EFIE and to advance the reconstruction of equivalent sources from field measure-
ments: The proposed RHS stabilization for the quasi-Helmholtz decomposed EFIE
in combination with the proposed self-adaptive frequency normalization enable the

handling of arbitrary excitations without any ad-hoc adaptions or the need for any a-priori
information about the excitation. Especially, in the context of equivalent current recon-
struction, both of the proposed schemes are crucial, since a-priori information about the
radiating source is difÏcult to obtain and preferably not incorporated: After all, the radi-
ation behavior of the DUT shall be determined as much as possible by the measurements
and not by assumptions. Moreover, ad-hoc adaptions such as the subtraction of static con-
tributions appear not feasible for measurement data.

The derived quasi-Helmholtz decomposition for the B-spline based discretization of the
EFIE constitutes a fundamental step to transfer the low-frequency stabilizing precondi-
tioners known from the low-order mesh-based approaches to the curvilinear higher-order
B-spline representations, while keeping the advantageous properties of the low-order pre-
conditioners. This is of interest since geometrical approximation errors can be avoided and
higher-order basis functions are known to be more efÏcient in terms of time and memory
consumption than low-order basis functions [Donepudi et al. 2001; Valdés et al. 2011].

The determined capabilities of CS to reduce the number of samples for spherical NFFFTs
have shown that CS can, in principle, be applied in a reliable manner. However, knowledge
about the sparsity of the spherical expansion coefÏcients has to be obtained. This can,
for example, be achieved by simulations, but deviations of the simulation models from the
manufactured antenna can make the approach not fully reliable. Still, for the considered
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9 Conclusion

AUTs (simulated and measured) considerable reductions in the number of the required
samples could be achieved without sacrificing accuracy in the determined field patterns.

While the presented paradigms successfully address several problems in the area of CEM,
they call for further research in intimately related areas. Concerning boundary integral
scattering and radiation formulations, issues that call for further investigation are:

• The RHS stabilization scheme for the quasi-Helmholtz decomposed EFIE needs to be
extended also to the MFIE such that a stabilized CFIE can be formed [Merlini et al.
2020]. In order for the MFIE to be discretized conformingly, Buffa-Christiansen (BC)
testing functions are required [Buffa et al. 2007; Andriulli et al. 2008a; Cools et al.
2011], for which a RHS stabilization analogous to the proposed one for the RWG
discretization needs to be derived.

• Analogously, the proposed self-adaptive normalization for the quasi-Helmholtz de-
composed EFIE needs to be extended to address the MFIE. To this end, a scheme has
been proposed in [Hofmann et al. 2023d], but further investigations are necessary to
address the CFIE and formulations such as the PMCHWT or the MUIE for penetrable
bodies.

• A conformingly B-spline based discretization of the MFIE needs to be established.
To find one, a set of suitable dual basis functions in analogy to the BC functions
is required. This also enables to define an optimal Calderón preconditioner [Buffa
et al. 2007; Andriulli et al. 2008a] for the B-spline based discretization of the EFIE
overcoming the dense-discretization breakdown and leading to a fast convergence of
iterative solvers. A candidate set of dual basis functions is proposed in [Hofmann
et al. 2024a; Hofmann et al. 2024b], but further investigations are necessary.

• Lately, adaptive mesh refinement strategies gained interest since they allow to main-
tain optimal convergence behavior for multiscale geometries [Kim et al. 2018; Tobon
Vasquez et al. 2020]. To obtain a counterpart for a spline-based discretization, more
flexibility needs to be introduced to the tensor-product structure of the B-spline basis
functions for the EFIE, that is, a strategy for local refinement is of interest. To this
end, so called analysis-suitable T-splines are interesting candidates [Bazilevs et al.
2010; Scott 2011; Veiga et al. 2013; Buffa et al. 2014a]. However, more investigations
on possible capabilities and limitations for the EFIE are necessary.

Concerning equivalent sources reconstructions, further aspects to be addressed are:

• The influences of a realistic measurement setup need to be investigated carefully and
taken into account when further designing the low-frequency stabilized field trans-
formation algorithms: Limitations to the sensitivity of the probe antennas and the
presence of noise are potentially crucial factors to whether enough information can
be obtained for the field transformation to yield accurate results. Moreover, the in-
fluence of the coupling between the DUT and the probe antenna needs to be studied,
since commonly the probe is placed in close proximity to the DUT. Similarly, the
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shielding from reflections and surrounding signals needs to be taken into considera-
tion.

• While the determined PTDs give a good quantification of the applicability of CS to
spherical NFFFTs it would be desirable to have a precise undersampling theorem at
hand (similarly to the ones known for certain random matrices [Donoho et al. 2009;
Donoho et al. 2010b]), preferably taking parameters such as noise or the influence of
the probe into account. This would allow to rapidly determine the required number of
samples andmakeCSmore practical, also for other equivalent source representations.
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A
Asymptotic Scalings
In this appendix the asymptotic scalings in the sense of wavenumber k → 0 of solenoidal
and non-solenoidal components esol,hsol and ensol, respectively, as defined in Table 3.1 are de-
rived. The obtained scalings are central to the lines of argument in Chapter 4 and especially
to the lines of argument in Chapter 5.

A.1 Right-Hand Side Scalings

In order to derive real and imaginary part of the solenoidal and non-solenoidal components
of the RHS for the excitations in Table 5.2, the approach of [Bogaert et al. 2014] is general-
ized. More precisely, the corresponding excitation fields eex are expressed via their electric
currents jex and magnetic currentsmex and the Green’s function representation

∬�
t ⋅ eex dr = −j!�∬�

t ⋅∭V
gjex dr′ dr − jc�! ∬�

t ⋅∭V
∇′ ⋅ jex ∇g dr′ dr

+∬�
t ⋅∭V

∇g ×mex dr′ dr (A.1)

where V is the volume enclosed by � . Using a Taylor series expansion of the Green’s
function

g(r, r′) = e−jkR
4πR = 1

4πR
∞∑
q=0

(−jkR)q
q! (A.2)

with the distance R = |r − r′| between source point r′ and observation point r, as well as a
Taylor series expansion of the gradient of the Green’s function

∇g(r, r′) = R

4πR3
∞∑
q=0

q − 1
q! (−jkR)q (A.3)
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Appendix A Asymptotic Scalings

with R = r − r′, we obtain the tabulated values by observing the dominant term (of the
real and of the imaginary part) in the series expansion as k → 0. In addition, we have to
consider that certain contributions vanish: the scalar potential contribution vanishes when
tested by a solenoidal function, that is,

∬�
t ⋅∭V

∇′ ⋅ jex ∇g r′ dr = 0 if ∇� ⋅ t = 0 , (A.4)

a constant vector tested by a solenoidal function vanishes, that is,

∬�
t ⋅ c dr′ = 0 if ∇� ⋅ t = 0 and c = const , (A.5)

a solenoidal excitation current tested by a solenoidal function vanishes, that is,

∬�
t ⋅∭V

jex dr′ dr = 0 if ∇ ⋅ jex = 0 , (A.6)

we have [Chen et al. 2001]

∬�
t ⋅∭V

R

R3 ×mex dr′ dr = 0 if ∇� ⋅ t = 0 and ∇ ⋅mex = 0 , (A.7)

and we have

∬�
t ⋅∭V

R ×mex dr′ dr = 0 if ∇� ⋅ t = 0 and ∇ ⋅mex = 0 . (A.8)

A.2 Scaling of TE and TM Modes

Relevant to Section 5.2.1 we have that for a combination of TEmn modes with largest appear-
ing order n = NTE and TMmn modes with largest appearing order n = NTM, the ratio w of
solenoidal and non-solenoidal tested field vectors as defined in (5.15) scales in accordance
with Table 5.2 as

w = ‖esol,hsol‖‖ensol‖ = O(k−(NTM−1) + k−NTE)
O(k−(NTM+1) + k−NTE) for k → 0 . (A.9)

For NTE ≥ NTM + 1, we clearly have

w = O(1) . (A.10)

For NTE < NTM + 1 we have

w = O(k−(NTM−1) + k−NTE)
O(k−(NTM+1)) . (A.11)
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A.2 Scaling of TE and TM Modes

In the case NTE = NTM, this leads to w = O(k) and for all NTE = NTM − g with g ≥ 1, it leads
to w = O(k2). In consequence, we have

O(1) ≤ w ≤ O(k2) (A.12)

for all possible combinations of NTE and NTM.
For the special case of scattering from a sphere placed in the origin, we have

w = ‖esol,hsol‖‖ensol‖ = (k−NTE)
O(k−(NTM+1) + k−NTE) . (A.13)

Again, for NTE ≥ NTM + 1, this leads to w = O(1). On the other hand, for NTE < NTM + 1,
we have the case NTE = NTM leading to w = O(k) and the cases where NTE = NTM − g with
g ≥ 1 resulting in

w = O(k(g+1)) , (A.14)

which is a case not satisfying (A.12).
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B
Derivatives of NURBS Surfaces
This appendix briefly summarizes how to compute the derivatives of a NURBS surface

s(u, v) = ⎡⎢⎢⎣
x(u, v)
y(u, v)
z(u, v)

⎤⎥⎥⎦ =
Nu∑
i=1

Nv∑
j=1B

qui (u)Bqvj (v)wij pij
Nu∑
i=1

Nv∑
j=1B

qui (u)Bqvj (v)wij
(B.1)

with control points pij ∈ R
3, weightswij ∈ R+, and B-splines Bi defined in Section 6.1.1 with

polynomial degrees qu, qv ∈ {0, 1,… }, to obtain the in Chapter 6 employed Jacobi matrix

J(u, v) = [∂us ∂vs] = ⎡⎢⎢⎣
∂ux ∂vx∂uy ∂vy∂uz ∂vz

⎤⎥⎥⎦ (B.2)

of s(u, v) and the generalized determinant D(u, v) = √det(JTJ) which can be equivalently
expressed as

D(u, v) = ‖)us × )vs‖2 =√(∂uy ∂vz − ∂uz ∂vy)2 + (∂uz ∂vx − ∂ux ∂zv)2 + (∂ux ∂vy − ∂uy ∂vx)2 . (B.3)

Following [Piegl 1995] and defining

�(u, v) = Nu∑
i=1

Nv∑
j=1

Bqui (u)Bqvj (v)wij pij (B.4)

as well as

!(u, v) = Nu∑
i=1

Nv∑
j=1

Bqui (u)Bqvj (v)wij (B.5)
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corresponding to the numerator and denominator in (B.1), the derivatives ∂dswith d ∈ {u, v}
can be computed as [Piegl 1995, pp. 136ff]

∂ds(u, v) = ∂d�(u, v) − s(u, v)∂d!(u, v)
!(u, v) (B.6)

where the derivatives of � and ! can be computed, for instance, with respect to u as

∂u�(u, v) = Nu∑
i=1

Nv∑
j=1

∂uBqui (u)Bqvj (v)wij pij (B.7)

and

∂u!(u, v) = Nu∑
i=1

Nv∑
j=1

∂uBqui (u)Bqvj (v)wij . (B.8)

The contained derivatives of the B-splines B can be computed as described in (6.6). While
not employed in this work, higher order derivatives of s(u, v) can be expressed in closed
form as well [Piegl 1995, pp. 136ff].
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BNomenclature
List of Symbols

Symbol Description

Accents and Operations
â Vector a is in the parametric domain
AT Transpose of the matrix A

AH Conjugate complex transpose of the matrix A

A−1 Inverse of the matrix A

A+ Moore-Penrose pseudo-inverse of the matrix A

Physical Quantities
" Permittivity in A sV−1 m−1
"0 Permittivity of free space in A sV−1 m−1
"r Relative permittivity
� Permeability in V sA−1m−1
�0 Permeability of free space in V sA−1m−1
�r Relative permeability
� Wave impedance in 

f Frequency in Hz
k Wavenumber in m−1, see (2.2)
! Angular frequency in Hz
j Normalized electric surface current density in Vm−1, see Section 2.1
jV Normalized electric volume current density in Vm−2, see Section 2.1
� Electric surface charge density in A sm−2
�V Electric volume charge density in A sm−3
e Electric field in Vm−1
h Normalized magnetic field in Vm−1, see Section 2.1
r Position vector in R

3
r′ Source position vector in R

3
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Nomenclature

Symbol Description

Operators and Constants
T Electric field integral operator, see (2.16)
TA Vector potential operator, see (2.11)
TΦ Scalar potential operator, see (2.13)∂u (u) Partial derivative with respect to u of a scalar function  (u)∇ Gradient of a scalar function  ∇� Surface gradient of a scalar function  defined on �∇ ⋅ f Divergence of a vector function f ∈ R

3
∇� ⋅ f Surface gradient of a vector function f ∈ R

2 defined on �∇ × f Curl of a vector function f ∈ R
3

Δ Laplace operator
� Vector Laplace operatorj Imaginary unit with j2 = −1e Euler’s number

Matrices
I Identity matrix
T Discretized T operator, see (3.3)
TA Discretized TA operator, see (3.15)
TΦ Discretized TΦ operator, see (3.16)
e Discretized RHS, see (3.18)
j Vector of expansion coefÏcients for j (unknown vector)
Λ Loop mapping matrix, see (3.21)
Σ Star mapping matrix, see (3.20)
H Global loop mapping matrix, see Section 3.2.1
Q Loop star mapping matrix, see (3.24)
PΛ Solenoidal projector, see (3.31)
PH Quasi-harmonic projector, see (3.32)
PΣ Non-solenoidal projector, see (3.30)
PΛH Solenoidal projector, see (3.36)
J Jacobi matrix, see (3.10)

Further Conventions
qamn Spherical vector wave functions, see (2.23) and (2.24)
fm mth Basis/testing function
n Normal vector
ℵ Worst-case error, see (6.60)
ur Unit vector in spherical coordinates in r-direction
u' Unit vector in spherical coordinates in '-direction
u# Unit vector in spherical coordinates in #-direction
�m mth loop function function, see (3.22)
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Symbol Description

�m mth star function function, see (3.23)
g(r, r′) Scalar Green’s function of free space, see (2.9)
Bpi ith B-spline of degree p, see (6.3)
D Generalized Jacobi determinant, see (3.11)

Abbreviations

ACA adaptive cross approximation
AMG algebraic multigrid
AUT antenna under test
BC Buffa-Christiansen
BEM boundary element method
BiCGstab stabilized bi-conjugate gradient
BOS bounded orthonormal systems
BP basis pursuit
CEM computational electromagnetics
CFIE combined field integral equation
CG conjugate gradient
CMB cosmic microwave background radiation
CS compressed sensing
CSIE combined source integral equation
DUT device under test
EFIE electric field integral equation
EFIO electric field integral operator
EMC electromagnetic compatibility
FD Fitzgerald dipole
FDTD finite-difference time-domain
FEM finite element method
FF far field
FFT fast Fourier transform
FIT finite integration technique
GMRES generalized minimum residual
GTD geometrical theory of diffraction
HD Hertzian dipole
IDR induced dimension reduction
LSE linear system of equations
MFIE magnetic field integral equation
MLFMM mulitlevel fast multipole method
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Nomenclature

MLMDA multilevel matrix decomposition algorithm
MoM method of moments
MUIE Müller integral equation
NF near field
NFFFT near-field far-field transformation
NFNFT near-field near-field transformation
NURBS non-uniform rational B-splines
PDE partial differential equation
PEC perfectly electrically conducting
PEEC partial element equivalent circuit
PMCHWT Poggio-Miller-Chang-Harrington-Wu-Tsai integral equation
PO physical optics
PTD phase transition diagram
PWTD plane-wave time-domain
QED quantum electrodynamics
RCS radar cross section
RHS right-hand side
RIP restricted isometry property
RWG Rao-Wilton-Glisson
TLM transmission-line matrix
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