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Abstract

According to various statistics concerning digitization, the construction sector is listed at the
bottom. Despite current developments in other industry sectors, only little advancements
are made, resulting in risks of cost and time overruns. Multiple sources trace these
problems back to progress monitoring in the complex and dynamic on-site environments.
This thesis provides a novel approach towards automating this critical and time-consuming
task. It involves creating a new dataset of annotated site images and training semantic seg-
mentation models to recognize cast-in-place concrete walls, columns, and slabs in panel,
rebar, and concrete phases. Continuous site images are segmented and automatically
processed, including averaging techniques to detect discrete element-specific progress
timestamps. These are coupled with a BIM model or digital twin using the element’s GUID
to provide the results for further computations.
As verification, in-depth case studies are performed. Hereby, 49 semantic segmentation
models are trained, and the derived construction progress timestamps are compared
against as-built information for selected elements, resulting in reliable accuracies. Based
on a real-world project, monitoring data is coupled with a BIM model, producing promising
results and uncovering incentives for further research. Overall, this thesis’ novel approach
provides potential improvements for the construction sectors digitization.
Keywords: Progress Monitoring, Semantic Segmentation, BIM, Digitization
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Zusammenfassung

In Statistiken zur Digitalisierung landet der Bausektor oft auf den hinteren Plätzen. Trotz
der aktuellen Entwicklungen in anderen Branchen schreitet die Digitalisierung im Bauall-
tag kaum voran, was zu Risiken für Kostenexplosionen und Zeitüberschreitungen führt.
Vielfach werden diese Probleme auf die Fortschrittskontrolle in der komplexen Umgebung
von Baustellen zurückgeführt.
Diese Masterarbeit entwickelt einen neuartigen Ansatz zur Automatisierung dieser kritis-
chen und zeitaufwändigen Aufgabe. Dieser beinhaltet die Erstellung eines neuen Daten-
satzes aus annotierten Baustellenbildern und das Trainieren von Semantic Segmentation
Modellen, sodass diese Ortbetonwände, -stützen und -platten im Schalungs-, Bewehrungs-
und Betonzustand erkennen. Kontinuierliche Baustellenbilder werden segmentiert und au-
tomatisch zusammen mit Mittelungstechniken verarbeitet, um elementspezifische diskrete
Baufortschrittszeitpunkte zu bestimmen. Diese werden mit einem BIM-Modell oder einem
digitalen Zwilling unter Verwendung der GUID des Elements gekoppelt, um die Ergebnisse
für weitere Berechnung zur Verfügung zu stellen.
Zur Validierung werden eingehende Fallstudien durchgeführt. Dabei werden 49 Semantic
Segmentation Modelle trainiert und die abgeleiteten Baufortschrittszeitpunkte mit As-Built-
Informationen für ausgewählte Elemente verglichen, was zu verlässlichen Genauigkeiten
führt. Zusätzlich werden die Überwachungsresultate eines realen Projektes mit einem
BIM-Modell verknüpft. Dies erreichte gute Ergebnisse und zeigt Anstöße für weitere
Forschung auf. Zusammenfassend liefert dieser Arbeit mögliche Verbesserungen für die
Digitalisierung auf Baustellen.
Stichworte: Baufortschrittskontrolle, Semantic Segmentation, BIM, Digitalisierung
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Acronyms

2D two-dimensional

3D three-dimensional

ANN Artificial Neural Network

BIM Building Information Modeling

CNN Convolutional Neural Network

FCN Fully Convolutional Neural Network

FPS frames per second

GT ground truth

GUID globally unique identifier

IFC Industry Foundation Classes

lr learning rate

mAcc mean accuracy

mIoU mean intersection over union

ReLU rectified linar unit
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Chapter 1

Introduction

The construction industry has always been one of the least digitized industry sectors
according to the digitization index by MGI or McKinsey [1], [2]. The data from 2015 in
figure 1.1 shows that in nearly all areas of the study the construction sector was classified
to have “relatively low digitization”. Although this research was carried out nine years ago,
its findings remain true today. Despite the current developments towards Industry 4.0,
including digital twinning, virtual reality, or additive manufacturing, the processes involved in
planning and fabricating buildings often remain unchanged. Therefore, there has been little
to no increase in productivity during the past decades. When looking at the construction
sector in the US, the overall productivity is even lower than in 1968 [3]. However, multiple
sources confirm that most people employed in the sector are eager to incorporate digital
processes as they expect major enhancements to cost estimation, progress monitoring, or
schedule reliability [4], [5]. These areas in particular need improvements as construction
projects worldwide have to deal with increasing costs and delays. Said problems can be
attributed to various factors, but project management has a key influence on them [6], [7].

Construction sites are inherently complex and dynamic environments involving multiple
activities, materials, and personnel. Therefore, effective monitoring is needed to increase
efficiency and productivity while, in turn, reducing the risk of cost and time overruns. How-
ever, despite the recent developments in research fields related to Building Information
Modeling (BIM) or digital twinning, site monitoring is still done manually most of the time
[3], [8]. These procedures often involve the project management personally visiting a con-
struction site, checking each building element’s state to collect the necessary information,
and comparing it to the required state listed in a schedule. Manual work like this is tedious
and error-prone.

In some cases, surveillance cameras on construction sites are already in use, but the
pictures and videos captured by them are then manually evaluated. Similar practices
can only yield few improvements as automation approaches possible on this data are not
utilized. According to different studies, this behaviour can be attributed to the general
mindset of industry professionals towards more traditional methods. Additionally, next to
the development of new monitoring frameworks, there also is a need for more information
about the implementation of already existing software applications. Therefore, novel
approaches towards site monitoring need to be proposed, which are easy to understand
and can be use in everyday construction projects. [4], [9]

Researching and improving on automation approaches in this regard will lead to significant
improvements in the current standard practice [4], [9]. Much innovation has already
been achieved regarding BIM-based construction and digital twinning in combination

2



Figure 1.1: McKinsey Global Institute industry digitization index from 2015

with progress monitoring. In this context, a “Digital Twin” is defined as “a realistic digital
representation of assets, processes, or systems in the built or natural environment” [10].
The term “BIM model” is frequently used synonymously, despite BIM-modelling describing
only the three-dimensional (3D) geometry of a building enriched with semantic information.
The significant detail, which distinguishes a digital twin from a general BIM model, is that
it contains real-time information on the construction elements, the site, and all related
processes [10]. The availability of this information for progress monitoring is an excellent
motivation for incorporating digital twinning technologies [11].

Generating this kind of information by manual labour is very inefficient and not feasible.
Therefore, automatic data-based processes are essential for a digital twin to effectively
link the digital representation of a building to its real-world counterpart [10]. Numerous
approaches towards collecting data on construction sites regarding various objects and
purposes have already been developed and are stated in Section 3.1. However, these
recent approaches lack monitoring functionalities for certain construction objects and show
potential for improvements in regards to the integration of progress data into BIM models.
Therefore, this thesis aims to research and provide a new approach for progress data
collection on cast-in-place concrete elements (e.g. columns, walls and slabs), including
the elements’ “panel”, “rebar”, and “concrete” phases. To detect those elements in site
images, this thesis thoroughly investigates two-dimensional (2D) Semantic Segmentation
within the context of construction progress monitoring. This computer vision technique
allows the identification and classification of different objects in images and videos. Next
to the segmentation part, a workflow for extracting element-specific progress data and for
coupling these monitoring results with a BIM model or a digital twin will be discussed.

3



Chapter 2

2D semantic segmentation with
convolutional neural networks

2.1 Convolutional Neural Networks

2.1.1 Fundamentals of artificial intelligence

The basis of the monitoring approach proposed by this thesis relies on automating the
visual understanding of a construction site with the help of 2D semantic segmentation. To
understand this discipline belonging to the field of computer vision, first some theoretical
background on artificial intelligence and neural networks in general is needed.

The first mention of the term "Artificial Neural Network (ANN)" occurred in a paper from
1943 in the form of the so-called MP-Model. It was a proposal for a mathematical model of
neurons that was heavily inspired by the behaviour of neurons in the human mind [12], [13].
This initial model was further refined to a single-layer perceptron model by F. Rosenblatt
in 1958 and could later include the first stages of learning functionalities [14]. The last
step towards modern ANNs was extending the model to multiple layers and including the
so-called backpropagation. It is an algorithm that involves iteratively adjusting weights
during a training phase to improve the models performance. These changes allow for
better learning capabilities and the ability to solve nonlinear problems. [12]

Figure 2.1: Different choice for activation functions
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The basic functionality of the perceptron is still used today as the term itself is nearly
synonymous with the term neuron. It takes all input values, multiplies each with a separate
weight and adds them together, resulting in a weighted sum. While its values can lie
within an arbitrary range, this sum can already be used as an output. However, it is
usually beneficial to generate an output between 0 and 1, which is the reason for using an
activation function. A popular choice within the domain of ANNs or Convolutional Neural
Networks (CNNs) for this function is the rectified linar unit (ReLU) next to a threshold or
step function. It returns a zero output if the input is equal to or less than zero and otherwise
returns the input value. For other problems, choosing nonlinear activation functions like the
Sigmoid or TanH function can be more helpful. Figure 2.1 provides an overview of multiple
activation functions including the ones mentioned above. In conclusion, the activation
function is necessary to represent nonlinear behaviour and convert the weighted sum
to a normalized range. For some additional functionalities of neural networks, like the
backpropagation algorithm, a critical trait of the activation function is its differentiability. In
the case of the ReLU function, it is given from values upwards of zero. The last part of the
perceptron structure is the bias. It functions as a threshold that needs to be reached for
the perceptron to produce an output. A visual summary of the interaction of all parts is
shown in figure 2.2. [13], [15], [16]

Figure 2.2: Functioning of a single perceptron

Modern ANNs consist of different layers, each housing a sometimes very high number of
connected nodes called "neurons" or "perceptrons". The first layer is labeled "input layer"
because it directly receives different values of a given problem as input. The last layer is
called "output layer" and gives back the calculated solution to the problem. An arbitrary
number of "hidden layers" can be allocated between these two containing multiple nodes,
which are connected to all other nodes from the previous and following layer. They can
change their internal parameters after each iteration in the training process to improve
the calculated output from a given input. This behaviour is commonly called "learning" or
"deep learning". [13]

The learning ability is based on the so-called backpropagation algorithm. Two passes
through the model are performed over multiple epochs in the training phase. In each
iteration, a forward pass through the network in performed, generating a solution from
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the input, and a backward pass to optimize the model. In the forward pass each input is
processed, and the resulting output is passed to a loss function. The goal of each iteration
can be summarized as minimizing this function. Likewise to the activation functions, there
are different choices for loss functions. The mean squared error or the mean absolute error
function is often used for regression problems requiring the prediction of continuous values.
In the context of classification problems, including image segmentation, the cross-entropy
loss is frequently consulted. There are different sub-forms, but in general this function
penalizes the model if it confidently predicts a wrong class label and rewards it for choosing
the right one. The resulting loss values are then used in a backwards pass to optimize
the weight and bias parameters. Applying the backpropagation algorithm, the model
computes the gradient of the loss function with respect to the named parameters. Then it
uses procedures like gradient descent to minimize the loss value by updating parameters
in the direction shown by the gradient. The name "backpropagation" results from the
computation of the gradient because it is first calculated with respect to the output of the
last layer and then propagated backwards through the network. At each layer, the gradient
is calculated again using the layer’s inputs and the gradient from the previous layer. When
the first layer is reached, all weights and biases of the model are updated and the next
iteration of the training phase can begin. Different forms of learning can be distinguished
by looking at the information given to the loss function. In unsupervised learning, the ANN
does not receive a target output but only aims to decrease or increase an associated cost
function as loss value in every iteration step. For image processing problems like semantic
segmentation, supervised learning schemes emerged as best suited [13] and are used
in this thesis. Hereby prelabeled inputs with a so-called "ground truth (GT)" are used as
targets for the model’s output. The loss function than quantifies the difference between the
model’s output and the expected output stemming from the GT. Minimizing this difference
is then the training phases goal. [13], [17]

The magnitude of updates to weights and biases can be manually controlled with the
learning rate (lr) hyper-parameter, which regulates the step size in which the parameters
are changed after each iteration. This is used to influence the model’s convergence and
the training performance. Generally, it is the most useful and crucial parameter to change
when experimenting with ANNs. A too-small learning rate results in very slow convergence
and the possibility of getting stuck in local minima of the loss function. But too-big learning
rates can make the model overshoot and never reach a convergence or get stuck in
local maxima. Therefore, for each problem, an optimal setting needs to be found. Some
training frameworks utilize learning rate scheduling, which enables dynamic adaption of
the learning rate during the training process. Another significant hyper-parameter is the
weight decay, which is added to the loss function to penalize huge weights. This reduces
the risk of overfitting by discouraging the learning of very complex patterns that are only
specific to the training data. Setting this parameter too high can result in the opposite
behaviour of underfitting and rendering the model unable to grasp important patterns in the
data. Both hyper-parameters can influence the training process and the resulting trained
model crucially and, therefore, need to be chosen carefully. [18], [19]
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2.1.2 CNN-based image processing

In the common configuration of an ANN, all nodes from one layer are connected to all
nodes from the previous and following layer. These so-called "fully connected layers" result
in a rapidly increasing number of modifiable parameters with larger input sizes. In the
context of image processing, for a 28 ·28 pixel image with only black and white colours (see
also MNIST database of handwritten digits [20]), a single neuron in the first hidden layer
will contain 28 · 28 · 1 = 784 weights, which poses a significant computational challenge.
From this basic concept of ANNs, various models evolved to solve a multitude of different
problems. This includes the aforementioned computational complexity problem concerning
image processing in tasks like semantic segmentation, as shown in section 5.1.2. [13]

To remedy this, instead of fully connected layers, convolutional layers are introduced, which
are only connected to a small fraction of the input values. This area is frequently called
the receptive field of a neuron and can drastically reduce the computational complexity
of the neural network model [13]. This effect can be seen clearly when looking at the
number of weights required to process an arbitrary 4K RGB image. Typically, these
images have a size of 3840 · 2160 pixels and 3 RGB channels. A node in a traditional
ANN with fully connected layers would need to have 3840 · 2160 · 3 = 24.883.200 weights
in only the first hidden layer. In contrast to this, a node in a convolutional layer with
a receptive field size of 12 · 12 would only need 12 · 12 · 3 = 432 weights. This wast
difference in computational complexity is the biggest advantage of CNNs over ANNs in
image processing. In the context of autonomous vehicles, intelligent medical treatment or
face recognition, CNNs can, therefore, successfully be employed as these cases are all
special variants of image-processing questions. [12]

CNNs are feed-forward neural networks that can learn so-called convolutional kernels
through the backpropagation algorithm [21]. This behaviour is inspired by visual perception,
as each of these learned kernels represents a receptor, which can respond to different
features in the input image. Activation functions and biases are in this context used to
simulate a threshold that only allows signals of a specific strength to pass through these
kernels. For the backpropagation algorithm and to enable the network’s learning ability,
loss functions in the form of cross-entropy loss or similar are needed [12].

The convolutional kernels are usually quite small in their spatial dimensionality but are used
throughout the whole depth of the image. Each kernel is convolved over the input in each
convolutional layer to produce a 2D activation map (also called activation or feature map)
that represents a certain feature in the input image. From a mathematical perspective,
convolution is a function that performs a sum of products between the kernel weights and
input values while convoluting a smaller kernel over a larger image. A visual representation
of the convolution process is shown in figure 2.3. The resulting features can range from
simple vertical or horizontal lines to much more complex patterns. These can be seen
as segmentation masks of object-specific features. The kernels or, strictly speaking, the
weights inside them are the learnable parameters, which the model can change in each
iteration to improve. Throughout the process, each convolution step generates a feature
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Figure 2.3: Procedure of a 2D CNN, based on [12]

map, which is stored as a multi-dimensional array, also called a tensor. Each dimension
corresponds to an aspect of the input, such as the height, width and depth. The maps are
passed onward through the network and refined within the training to finally generate the
segmentation mask for the image. This final result is the output of the model and is called
a "prediction". [12], [13]

One disadvantage stemming from the use of convolutional kernels is that the area per-
ceived by each kernel can be relatively small. To increase it, dilated convolution was
introduced, which enlarges the receptive field size of a kernel but, in turn, decreases the
number of sampled points inside that area. Deformable convolution (or atrous convolu-
tion) can be used for irregularly shaped elements of interest to adapt the respective field
dynamically to better resemble the element’s geometry. [12], [13], [21]

The weights inside the convolutional kernels are shared between multiple nodes. This
reduces computation time further and simultaneously utilizes the fact that activations
are very likely to be useful in multiple areas of an image. Each individual kernel and
its corresponding activation map is restricted to the same set of weights and biases,
which results in each neuron directly producing an overall gradient in the backpropagation
algorithm instead of node-specific ones like it is done in conventional ANNs. This gradient
can be totaled across the whole depth of the input, meaning only a single set of weights
needs to be updated in each iteration instead of every single weight individually. This
massively reduces the number of learnable parameters and, therefore, the required training
and computation time. [13], [22]

The main parts and algorithms found in most forms of a CNN can be seen in figure 2.3 as
well as figure 2.4 and are the following: [12], [13], [22]

- Input Layer: This Layer is standard for every neural network and, in the case of
semantic segmentation, holds the pixel values of the input image.

- Padding: Most of the time, padding is used to extend the image border with zero
values to prevent the loss of information during the convolution process in these
areas.
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- Convolutional Layers: These are the main part of CNNs. Each node in the convolu-
tional layer is connected to a particular subregion of the input and uses a learnable
convolutional kernel. This kernel is convolved of the region and the scalar product
between the kernel weights and the corresponding input values is stored as an
output. The stride value determines the distance or speed at which the kernel moves
over the input image. Most models utilize the ReLU or the sigmoid function to apply
elementwise activation functions to the previous layer’s output. This procedure can
be seen in figure 2.3.

- Pooling Layers: Pooling reduces the spatial dimensions of the input volume for each
depth level by taking the maximum value (max-pooling) or average value (general
pooling) within the pooling window. This gradually reduces the dimensionality of the
representation and the computational complexity of the model. The pooling layer
operates on each activation map and usually has a size of 2 · 2 with a stride of 2,
which would reduce the map size by 25%. There are other forms of pooling, but
kernels with a size above three are usually not used due to the destructive nature of
this process. In figure 2.3, a 2 · 2-sized max-pooling layer with a stride of 2 is used,
which returns the maximum value from a 2 · 2 area of the previous layers activation
map.

- Fully connected Layers: These Layers work the same way as in conventional ANNs
and at least one fully connected layer is necessary in a CNN. It attempts to produce
class scores using the activation maps from the convolutional layers. If there are
multiple fully connected layers, ReLU is frequently used between these layers to
improve the performance.

Figure 2.4: Different layers and operations of a 2D CNN, based on [12]

CNNs have three main advantages over conventional ANNs regarding image processing:
[12]

- Local connections: Each neuron is not connected to every neuron on the next
layer but only to a small number, which improves the training process by reducing
parameters and increasing the convergence speed.
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- Weight sharing: connected nodes share the same weights in order to further reduce
the number of trainable parameters

- Down-sampling: Using pooling-layers, the dimensionality of images is reduced while
retaining important information

Traditional ANNs are fully connected networks as they connect each neuron to every other
neuron in the adjacent layers, which can lead to an explosion in the number of parameters,
resulting in high computational costs. In contrast to this, CNNs leverage weight sharing
and local connectivity through convolutional layers, reducing the number of parameters
and enabling more efficient feature learning from images.

A further extension to CNNs are fully convolutional layers, which allow the model to work
with arbitrary-sized image inputs. These replace the few remaining fully connected layers
in CNNs (like the input or output layer). A so-called Fully Convolutional Neural Network
(FCN) works by learning a mapping from pixel to pixel without computing region proposals
beforehand. CNNs in contrast can only produce labels as outputs from specifically sized
inputs because of the remaining fully connected layers and their fixed size. The main
shortcoming with these types of neural networks is that the output is of shallow resolution
because of the high number of convolution and pooling steps. To overcome this problem,
many model architectures have included multilayer schemes and deconvolution layers with
bilinear upsampling or alternative methods like deep deconvolutional networks [23], [24].
In this thesis, both CNNs and FCNs are tested because the used images are of a fixed
size, which works for both network types.

CNNs in image processing can include aspects from other areas of applications like
natural language processing. Some examples for this are the Swin-Large [25] or ViT
[26] backbone using a vision transformer. A bockbone in this context describes the core
algorithm of an ANN or CNN. The authors of the Swin backbone [25] state in their paper
that transformers stem from network architectures used in natural language processing.
They are designed for sequence modelling and transduction tasks excelling at depicting
long-range dependencies. The use of transformers in image processing was hindered for
a long time by the fact that word tokens as fundamental elements in language processing
are of a small and fixed scale. In contrast, visual elements have bigger and varying sizes.
This can directly be transferred to the resolution required to solve both problems. The
smallest necessary element in language processing is a single word inside a passage
of text. In contrast, image processing tasks like semantic segmentation need pixel-wise
dense solutions, which would not be possible with standard transformers. Liu et al. [25]
and other research teams proposed different solutions to those problems in the form of
dedicated vision transformer backbones.

However, as for example described in a paper by W. Wang et al. [27], new takes on
traditional CNN algorithms were proposed as an answer to the rise of the aforementioned
vision transformers. Their InternImage backbone proved that classic convolutional net-
works can perform as well as or even better than networks with transformer backbones.
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To achieve this, they reiterated over the deformable convolution algorithm and combined it
with stem and downsampling layers as well as scaling rules.

There are multiple other approaches towards different segmentation algorithms and
backbones. As this specific research field does not belong within the scope of this master’s
thesis, further elaboration is omitted at this point. Specific information concerning all
semantic segmentation models used in the thesis can be found in their respective sources.

2.2 Semantic segmentation as a discipline of computer vision

Computer vision comprises various disciplines with one being image classification. It is
a fundamental task in this genre with the goal of categorizing an entire image into one
of several predefined classes or categories. This process looks at the image as a whole
and tries to recognize patterns and features in it to assign it an appropriate label. Another
discipline in this area is object detection. Hereby, objects inside an image are located and
a bounding box is drawn around them. Image segmentation aims at partitioning an image
into multiple segments or regions based on certain characteristics such as color, texture,
or shape. This is considered a very challenging problem as, in contrast to object detection,
no knowledge of the visual concepts of the objects to be segmented is known in advance
[23]. This technique divides a given image into different reasonable sections of coherent
pixels by assigning them a categorical label so that all pixels with the same label represent
a distinct element inside the image. While the segmentation task only outputs which pixels
belong together, semantic segmentation additionally classifies these groups into a finite
set of predefined labels. [21], [23]

An ANN or CNN performing semantic segmentation can work autonomously after intensive
training on the specific task, but this requires a large number of images with pixel-wise
segmentation masks as so-called "ground truth". These are needed for the backpropaga-
tion algorithm within the context of supervised learning schemes. Creating this data often
resembles the most time-consuming and expensive task in working with segmentation
models. A possible workaround for this is the use of weakly supervised learning schemes
utilizing only annotated bounding boxes or even image-level labels. Alternatively, the
implementation of various data augmentation methods to artificially increase the dataset
size can be helpful [28]. However, multiple segmentation approaches retain the problem of
generality by only producing accurate solutions for tasks very similar to their training and
fail to work successfully on different problems [23]. Therefore, better or utterly different
training images must be created for new questions, as it is the case for this master’s thesis.

During training and testing phases, the performance of a segmentation model needs to
be evaluated. For this task, two significant metrics are used most of the time. The first
and most important one is the "mean intersection over union (mIoU)" which provides a
comprehensive assessment of the models segmentation performance across all classes
comprised in one single metric. It is calculated as the ratio of the area of overlap between
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the predictions and GT masks to the area of their union. Then the mean value of this
metric over all classes is used to measure the models performance. [12], [13], [21]

mIoUclass =
area of overlap
area of union

Additionally, the "mean accuracy (mAcc)" metric is often given, which provides a similar
evaluation in comparison to the mIoU metric. But especially for datasets with imbalanced
classes like the newly created one used in this thesis, the mAcc provides a more balanced
summary of the models performance. This metric is calculated for each dataset entry as
the proportion of correctly classified pixels compared to all pixels in the image. Than once
again the mean value over all images is derived and used for the evaluation. [12], [13], [21]

mAccclass =
correctly classified pixels

all pixels

Both the mIoU and the mAcc metric can range from a value of 0 to 1. However, within this
thesis, they always will be represented as percentage values. Meaning, a mIoU score of
0,7543 will be shown as 75,43%.

The segmentation task is a significant field of research due to its many real-world appli-
cations like satellite imagery (e.g. house number or street recognition), forensics (e.g.
fingerprint, iris or face-recognition and voice recognition) or medical image process-
ing (localizing aneurysms, tumours, cancer or specifics organs). Also cultural heritage
preservation, image copy detection, on-the-fly visual search, human-computer interaction
or surveillance and autonomous driving are important use cases [21]–[23]. Especially
progress monitoring on construction sites can be enhanced using semantic segmentation,
as shown by various researchers in the following chapter.

2.3 Existing datasets for semantic segmentation

For the purpose of evaluating a newly developed segmentation algorithm, large curated
datasets exist on which those models can be trained and tested. This eliminates the need
of creating a new dataset for every model and provides a platform on which all models
can be easily compared to each other on a fair basis.

A very prominent example is the “Cityscapes” dataset for urban scene understanding [29].
It consists of 20.000 annotated images for training purposes and 1.525 testing images. All
of them were taken by a car-mounted camera while participating in everyday urban traffic
in different cities of germany and neighboring countries. The annotations consist of 19
classes including cars, pedestrian, and roads signs among other labels. The main focus
of this set is to assist in developing segmentation models, that can understand scenes in
urban traffic to help advance higher-level technologies like autonomous driving.
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Furthermore, there are other large datasets that provide a less specific training and testing
basis for segmentation models. The most common ones are the “Pascal Visual Object
Classes (VOC) Challenge” [30], the “ADE20K Dataset” [31] or the “COCO-Stuff: Thing and
Stuff Classes in Context” Dataset [32]. These consist of more than 10.000 Images each
and contain scenes from indoors as well as outdoors with over 100 annotated classes, so
that they can be used to evaluate a segmentation algorithm’s performance on a general
basis.

For comparing models without a further specific use case in mind, these aforementioned
datasets are very suitable. But for particular tasks, like in the present thesis, new datasets
need to be put together which most of the time contain less images and annotated classes
because they have a more limited scope that is tailored towards the research goal. A first
example of this procedure and also an exception to the mentioned size limitations is a
dataset of annotated construction-site images created by X. Luo et al. [33]. It contains
7.790 Images and 22 annotated classes organized in a tree like structure, focusing on
activity-specific equipment, construction materials and construction workers. As the paper
states, it is still one of the larger datasets but to achieve this, the researchers had to spend
considerable resources and time on annotating the images. Others like Z. Wang et al.[34]
created a dataset, which consists of 859 labeled images and 12 classes. In contrast
to the aforementioned one, this set exclusively focuses on construction equipment like
excavators or cranes as well as humans and therefore contains a far smaller number of
classes and images alike. Following a similar approach as the present thesis, Z.Wang et
al.[35] assembled a dataset of 660 Images that only focus on precast walls in order to train
a segmentation model to recognize the timestamp at which the installation process of a
precast element is completed.

Further explanation towards the research approaches behind these specific datasets as
well as other scientific contributions in the research fields related to this thesis are provided
in the following chapter.
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Chapter 3

Scientific background

There are many applications of computer vision and digital twinning, as the theoretical
background concerning artificial intelligence and convolutional neural networks established.
Some of them also pose significant benefits to the construction sector, which have already
been explored by different researchers. In the following paragraphs, short summaries of
publications relevant to the proposed monitoring setup of this thesis are provided.

3.1 State of the art

3.1.1 Application of computer vision in construction

Within the research field of computer vision, convolutional neural networks are a well-
established tool especially for image segmentation tasks. Multiple techniques for var-
ious particular problems in this domain often leverage deep learning approaches, as
an overview by S. Ghosh et al. shows [21]. The segmentation task has gained a lot
of prominence in computer vision because of its many applications in medical image
processing, surveillance, or satellite imagery, and in robotics, or autonomous driving.
Therefore, experts from those branches have already developed and improved on various
deep learning-based algorithms and models for semantic segmentation. Numerous better-
performing solutions rely on convolutional neural networks because of the advantages of
convolutional layers stated in chapter 2. Many examples of said models are investigated
in section 5.1.2 within the context of this masters thesis.

Progress monitoring

Next to other prominent use cases, the application of semantic segmentation models to aid
progress monitoring tasks is often discussed within the construction sector. In this regard,
Z. Wang et al. [35] proposed a method which is very similar to the procedure investigated
in this master’s thesis. The authors created and annotated a new image dataset from
construction site pictures containing precast concrete wall elements in different installation
steps. By training a Mask R-CNN model on this data, the researchers were able to
automatically detect the installation timestamps for such wall elements. This paper also
includes a self-written Revit plug-in, which attaches the results as attributes to the correct
wall elements within a BIM model.

While the last mentioned paper from Z. Wang et al. [35] focuses on a very specific
group of elements to monitor, the researchers Golpavar-Fard et al. [36] proposed a
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more general method. In their approach, unordered daily photographs are combined
with computer vision techniques to generate point cloud data enriched by dense and
volumetric reconstruction. The new algorithms proposed for that task result in their
processes coping very well with occlusions. Element detection and tracking are enabled
by machine learning techniques so that overall automatic progress monitoring is possible.
This paper also introduces the possibility of coupling the detected construction progress
with a 4D BIM model for comparisons between as-built and as-planned timestamps and
visual representations of the derived differences. This paper clearly states the benefits of
the connection between progress monitoring automation and BIM workflows, which will
also be explored within this thesis.

Another proof of a similar concept is provided by A. Pal et al. [37], who introduced an
activity-level construction progress monitoring framework that also takes construction
site images and a BIM-model as input. However, the aim of their approach is not a
binary assessment of the current state of a building element but a percentage-based
progression evaluation that can be used to dynamically update schedules. Because
segmentation models in the form of instance segmentation are used within this paper,
the authors also needed to create a custom dataset of annotated site images tailored
to their needs. The trained models then process images that are transformed into an
orthographic view in a preprocessing step. From the prediction images, a completion
percentage is then calculated. With additional information from the BIM model, a 3D point
cloud can be reconstructed to visualize the current construction progress within a modeling
environment.

While the described approaches gather site data via images, laser scanning is another
established solution for this task. One main issue with this technique is that a very high
number of points is required to reach a sufficient level of accuracy, resulting in very long
scanning and postprocessing durations. To mitigate this, S. El-Omari and O. Moselhi [38]
combined the point cloud data from a laser scanner with additional images from a digital
camera on site. The number of necessary scanning points could be decreased by using
information retrieved from the pictures. The combination of both methods, especially in
shaded and cluttered areas, resulted in an overall richer representation of the element in
the final result. This paper proves that the solution for some problems lies within more
than one specific data-capturing approach but in combining multiple suitable ones.

Next to the monitoring of building elements, photogrammetry and video analysis can
also be used to evaluate productivity and progress in earthwork operations. A paper
by Bügler et al. [39] established a framework for this task to improve security for costs
and schedules on construction sites. The researchers combined photogrammetry for soil
volume estimation and video analysis for construction activity statistics into one approach
that focuses separately at progress and resource utilization tracking. The potential benefits
of optimizing resource allocation based on productivity insights are highlighted by the
authors. A real-world case study demonstrates various difficulties in correctly assessing
productivity when dealing with potentially inaccurate computer vision results. Averaging
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and normalization methods are implemented to retrieve reliable and precise productivity
assessments, which is also a part of this thesis’ methodology.

The last five papers all propose different approaches using multiple variants of input data
for various sub-problems within construction progress monitoring. A summary of even
more methods in this research field is provided in the work of Yang et al. [40]. The
mentioned techniques take still images, time-lapse photos and video streams as input
and use computer vision algorithms to implement 3D reconstruction, object recognition,
semantic segmentation, or worker tracking. Next to progress monitoring, these processes
can also be used to aid in health assessment, accident prevention, or carbon footprint
calculation. While numerous approaches already exist, the authors emphasize the need for
better collaboration between researchers and industry professionals to create real-world
applications from the proposed theoretical concepts. As the publications by Golpavar-Fard
et al. [36] and A. Pal et al. [37] already stated, Yang et al. [40] also explain the importance
of combining multiple different sensors and data collection methods to ultimately gain
real-time data on construction progress, which can be used in further evaluations.

Construction site safety

While progress monitoring is one of the most researched use-cases for segmentation
models and computer vision in construction, applications in other construction related
areas are possible. Q. Fang et al. [41] state a framework concerning on-site health
and safety. Their proposal wants to improve the security of on-site work utilizing face-
and trade-recognition. The researchers trained a neural network to detect and extract
workers’ faces from on-site video streams. Also, the model evaluates their movements
and interactions with other site equipment to estimate the activity that they are currently
performing. After combining the obtained information, a license database is consulted to
assess whether a worker is qualified or non-certified for the concerned task.

Next to this specific approach, a more general take on on-site safety is chosen in a paper
by Z.Wang et al. [34]. Once again, a new dataset is created for their work containing 12
labelled classes such as humans, excavators, loaders, cars or fences. The segmentation
models trained on this data can then visually understand a construction site and its
activities in general by recognizing borders and moving parts. This paper aims to aid
in path-finding and obstacle-avoidance algorithms for mobile robotic systems or remote
construction activities with this functionality. Those innovations can help reduce the
workload of personnel and, in turn, mitigate on-site risk factors for them.

Damage assessment

Besides ensuring safety standards for workers on-site, deep learning approaches in
computer vision can also aid in assessing the security of buildings and bridges. The
researchers K.C. Laxman et al. [42] developed a monitoring tool based on CNN models
for this matter to surveil concrete structures. Their approach can detect cracks and
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measure their length, width and depth by segmenting and analyzing corresponding pictures
taken by cell phones. Appropriate actions for each detected damage entry are provided
automatically by the system based on the derived data so that the time spent manually
evaluating the pictures is drastically reduced. High levels of accuracy could be achieved
and the deployment of their proposed system is planned on recurring bridge examinations.
Ultimately, it should enable the remote execution of those surveys.

Table 3.1: Summary of previous research

Source Content Open questions

Progress Monitoring

Z. Wang et al. [35] Detection of precast wall
installation from video with
a Mask R-CNN Model

Extension of the dataset,
Detection of other building
elements

M. Golparvar-Fard et al.
[36]

Construction progress
monitoring and
visualization with
unordered daily images
and 4D BIM

4D volumetric
reconstruction, Progress
detection on element
surface level, Progress
sequence knowledge

A. Pal et al. [37] Activity-level completion
percentage-based
construction progress
monitoring

Expansion of the dataset,
Reality capture plan
optimization, Performance
improvement

S. El-Omari and O. Moselhi
[38]

Combining image data
collection with laser
scanning

None stated in the paper

M. Bügler et al. [39] Assessment of productivity
in earthwork processes
using photogrammetry and
video analysis

Combination of data
recorded by multiple video
cameras on-site to
decrease occlusions

J. Yang et al. [40] Summary of construction
performance monitoring via
still images, time-lapse
photos, and video streams

Combining multiple types
of computer vision
disciplines, Closing gaps
between research and
industrial application

Construction Site Safety

Q. Fang et al. [43] Detection of non-certified
work on site

Getting the software alerts
to workers on site

Z. Wang et al. [34] Segmentation of different
construction objects for
automation

More labelled data, Testing
the limits of current
segmentation models

Damage Assessment

K.C. Laxman et al. [42] Automated crack detection
in concrete bridges

None stated in the paper
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3.1.2 Digital twinning in construction

The term "digital twin" within the context of construction is ill-defined as different technolo-
gies and processes are allocated to this concept by various researchers. Digital twinning
generally builds on the existing ideas of BIM, automated data acquisition and artificial
intelligence. Sacks et al. [10] proposed a set of four core information and control sets.
These include at first a modelling and then a building phase. Third, monitoring and interpre-
tation steps are allocated and followed by a last phase of evaluations and improvements.
The key concept behind this formulation is that the researchers do not interpret "digital
twinning" as a mere extension to BIM workflows by integrating sensing and monitoring
techniques. While these data acquisition methods play a critical role, "digital twinning"
in construction focuses on closing control loops to retain vital workflows for information
storage, processing functionalities and monitoring technologies. As construction sites
are inherently complex and dynamic environments, on-site monitoring to gain real-time
information on the construction progress is crucial when working with digital twins.

However, to utilize the full potential of this concept in everyday monitoring, large amounts
of data need to be collected. Schlenger et al. [44] provide a summary of the state of the art
concerning data collection and information processing on different construction sites. The
monitoring frameworks include image-based ones, and laser scanning, or Bluetooth Low
Energy based approaches. The paper also highlights the importance of structuring and
evaluating the wast amounts of available data. Only then can it successfully be used for
higher-level monitoring tasks or other evaluations. However, the authors concluded that, in
addition to other elements, generic methods for management and evaluation processes
are still lacking.

Pfitzner et al. [45] propose a knowledge graph-based approach to enable insight into
various construction processes. This contribution can be directly linked to the need for
better data management approaches, as described by Schlenger et al.’s work. With
their object detection-driven framework, the researchers achieved high accuracies in
automatically processing image data. Using a graph database, numerous data analysis
methods are possible. An example of investigating the correlation between temperatures
and worker activities was showcased in a case study. In line with previous contributions,
tha authors state, that the lack of open-source datasets hinders the development of further
on-site investigations.

Another monitoring approach for data mining and understanding specific on-site activities
was proposed by the same authors Pfitzner et al. [46]. In their work, they again emphasize
the need for automated monitoring techniques and combining diverse data sources to
gain insights into construction processes. The researchers focused on modern data
analysis methods to process data from various sources like BLE sensors, crane cameras,
or laser scanners. The publication aims at capturing detailed information and knowledge
about construction activities and processes. For this task, they present a data pipeline
to integrate different data sources in the context of digital twin construction. The authors
could verify these claims in case studies at construction sites in Germany. However, they
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also emphasize the need for further research into integrating additional data sources so
that a comprehensive understanding of the as-performed construction process can be
built.

A primary image-based source of information in monitoring frameworks is semantic
segmentation, making it an essential part of digital twin construction. In the modelling
phase, elements are represented as accurately as possible and ultimately need to be linked
to their real-world counterparts by real-time data. Combining artificial intelligence and big
data analytics, H.H. Hosamo and M.H. Hosamo [47] showed a workflow of automatically
creating a digital model of simple bridges based on points clouds stemming from laser
scanning. The specific aim of this approach was chosen because bridges are the most
crucial element of the road infrastructure, and their continuous maintenance is essential.
Digital twins of bridges would be very beneficial in enabling efficient decision-making over
the whole life-cycle of the structure. However, due to the high average age of most of them,
next to no digital data is available, so alternative ways of gathering the required information
for modelling them are necessary. With the possibility of automatically generating a digital
model from raw point cloud data, maintenance and surveillance information stemming
from Laxmans [42] or other monitoring systems can easily be integrated into a digital twin
of the bridge.

In its most helpful form, a digital twin should contain not only the building itself but also the
surroundings, including the construction site before, during and after the manufacturing
phase. Only comprehensive information in this regard enables other new deep learning-
based applications. M. Kamari and Y. Ham [48] developed an AI-based approach working
on this information to evaluate constructing site disaster preparedness. Their proposed
framework was researched in response to the high damages hurricanes inflicted on
construction sites. The workflow relies on image-based scene reconstruction and the
semantic segmentation of site images to detect potential wind-borne debris at a 2D level.
With this information as a basis, risk-associated heatmaps can be generated by projecting
the calculated results into the 3D BIM model. This can eliminate the need for construction
workers to manually check the whole site before hurricane events, resulting in time and
especially cost savings.
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Table 3.2: Summary of previous research concerning digital twin construction

Source Content Open questions

Digital Twinning

J. Schlenger et al. [44] Review of data collection
frameworks, data
structuring and processing

generic data evaluation
algorithms; relations
between workers and
materials or equipment

Pfitner et al. [45] Object Detection Based
Knowledge Graph Creation

Lack of open datasets;
on-site activity investigation

Pfitner et al. [46] Heterogeneous data
acquisition and fusion for
data mining on
construction sites;
Integration of additional
data sources

H. H. Hosamo and M. H.
Hosamo [47]

Creating a digital twin
model for bridges based on
3D point clouds

Focus on Building
inspection, modelling and
data management with
digital twins

M. Kamari and Y. Ham [48] Construction site disaster
preparedness

Further systematic
assessment of other
disasters apart from
hurricanes

3.2 Research gap and contribution of this thesis

This thesis aims to revisit the semantic segmentation-based approaches proposed by
Z. Wang et al. [35], A. Pal et al. [37] or Laxman et al. [42]. These papers proved the
viability of such monitoring frameworks but lacked the required functionality to work with
cast-in-place concrete slabs, walls and columns. As the installation of these elements
consists of multiple steps needing different personnel and equipment, efficient monitoring
promises to significantly increase on-site productivity and reduce delays.

Therefore, in the first stage, it needs to be tested, whether 2D image segmentation is
possible with site pictures captured by crane-mounted cameras. The goal is to extract
accurate predictions regarding the aforementioned concrete elements and their different
construction phases. The accuracy in detecting those three states, including a panel, rebar
and lastly a concrete phase for each element type needs to be studied with sufficient gran-
ularity. A continuous stream of such segmented images is then utilized in the second stage
to evaluate element-specific construction progress timestamps in real-time. This seamless
monitoring framework can work faster and less computationally extensive compared to 3D
laser scanning-based approaches. In contrast to other, more established ways of on-site
data collection, this is the main advantage of segmentation-based approaches. With the
high speed, real-time data agglomeration, combined with less computational complex-
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ity, is possible. As this is a crucial part of successfully working with digital twin-based
approaches, like J. Yang [40] described, a possible workflow for coupling the progress
monitoring results with a BIM model is presented in the third stage of this thesis. The main
focus lies on this part of the monitoring framework, as the connection between on-site
monitoring and digital project representations poses multiple benefits stated in papers by
M. Golparvar-Fard et al. [36] and Z. Wang et al. [35].

To test the proposed algorithms and workflows of all three stages, in accordance with
other approaches, first, a new dataset of annotated images tailored to the segmentation
of cast-in-place concrete slabs, walls, and columns is put together. Different semantic
segmentation models that have already been established and perform well on curated
datasets are trained and tested. Secondly, algorithms for extracting element-specific con-
struction progress timestamps, including two averaging functionalities, are implemented.
The accuracy of them is evaluated in a case study with six building elements from two
real-world construction sites. Also, the proposed workflow for coupling the monitoring
results with a BIM model is thoroughly tested on one project. Finally, the whole monitoring
framework is deployed on a real-world construction site. In this case study, the required
computation time of all necessary steps is recorded. Additionally, the accuracy of the
monitoring results is evaluated by comparing them against as-built timestamps of selected
elements.

In summary, this thesis contributes a new dataset for the segmentation of cast-in-place
building elements as well as workflows for extracting element-specific progress timestamps
from segmented site images, that are coupled with a BIM model of the project.
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Chapter 4

Proposed approach

This master’s thesis aims to provide a novel approach towards automating construction
progress monitoring. This includes using semantic segmentation models and further
processing of the resulting prediction images. The goal is to automatically detect element-
specific construction progress timestamps and ultimately couple them with a BIM model
or other digital twin representation of the project. Figure 4.1 provides an overview of this
general outline and shows that the proposed approach consists of three main components.
The first of them handles the segmentation of site pictures by creating a new dataset
of annotated images and the training of segmentation models on it. In the second part,
element-specific construction progress timestamps are extracted from a continuous stream
of segmented site images. Finally, in the third part, a possible workflow for coupling these
timestamps with a project’s BIM model is presented.

Figure 4.1: General workflow proposed in this thesis

4.1 Dataset creation and model training

In the first part of the intended framework the segmentation of construction site images is
dealt with. The underlying process for it is further subdivided into different steps shown in
figure 4.2. Because no trained segmentation models for this exact task are available, a
custom semantic segmentation dataset as training and testing basis must be created at
the start of this research.

The required pictures for it are sourced from an existing monitoring framework continuously
capturing images of construction sites. For the dataset to be used for semantic segmen-
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tation models, a so-called "ground truth" is created for each image during an extensive
annotation phase. Multiple different semantic segmentation algorithms are then sourced
for the task at hand. To find the best suited one available, all of them are trained on the
newly created dataset and their performance is evaluated. Next to the finished dataset,
which can be used to further aid in developing new segmentation algorithms, multiple
trained models capable of confidently recognizing cast-in-place concrete elements are the
result of this part of the proposed framework.

Figure 4.2: Part 1: Creation of a semantic segmentation dataset as well as training and
testing of segmentation models

4.2 Construction progress monitoring

The trained semantic segmentation models are used to create prediction images from a
continuous stream of construction site pictures. These images are captured by multiple
crane-mounted cameras and closely resemble the data used in the custom dataset created
in the first step. Additionally, a key attribute of those images is, that they retain a fixed
camera viewpoint over the construction site during the whole monitored timespan. The
goal of this part is to extract element-wise construction progress data from the prediction
files.

For the proposed process shown in figure 4.3, additional GT style images are needed,
which only contain one element of interest as annotated mask. In the figure an example
is provided in the form of a single slab element, whose construction progress shall be
evaluated. As the cameras viewpoint doesn’t change, a single GT style annotation per
camera is sufficient. The annotations are created manually for each element in this part of
the thesis.
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Figure 4.3: Proposed procedure for the extraction of element-specific construction progress
from site images

In the evaluation process, each prediction image is compared against one element-specific
GT style image and the segmented pixels within the mask area of the element are class-
wise summed up. Before that, the bounding box of the GT mask area is calculated so that
the comparison function only has to loop over the reduced bounding box area instead of
the whole image to save on computational resources and time. The following code snippet
as well as figure 4.3 show the intermediate result of this part of the evaluation:

{ . . .
" Reol ink −013_00_20230513074712_RGB " : {

" background " : 240314 ,
" column_concrete " : 7014 , " column_panel " : 0 , " column_rebar " : 0 ,
" s lab_concrete " : 0 , " s lab_panel " : 0 , " s lab_rebar " : 0 ,
" wa l l_concre te " : 327520 , " wal l_pane l " : 12425 , " wa l l_ rebar " : 0 } ,

" Reol ink −013_00_20230513074742_RGB " : {
" background " : 257643 ,
" column_concrete " : 6406 , " column_panel " : 0 , " column_rebar " : 0 ,
" s lab_concrete " : 0 , " s lab_panel " : 0 , " s lab_rebar " : 0 ,
" wa l l_concre te " : 311945 , " wal l_pane l " : 11279 , " wa l l_ rebar " : 0}

. . . }

For each prediction image one data-entry is generated holding the class-wise count of
detected pixels within the elements’ mask area. The proposed framework calculates the
percentage-based share of perceived pixels for all classes in relation to the whole GT
area’s pixels. This intermediary result is also shown in figure 4.3. Then, it applies a user-
chosen threshold to decide, at which point a particular construction progress milestone
has been reached. In general, there are six timestamps evaluated including a starting
point, which is flagged after reaching a low threshold value, and an ending point marked
with a high threshold for the three construction states of a building element being "panel",
"rebar" and "concrete".
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Because the on-site cameras take a new picture every 30 seconds, a new data-entry
needs is created at this frequency. Everyday construction progress could, therefore,
be evaluated with very high accuracy in 30-second intervals. However, achieving this
granularity is not necessary for determining construction progress in everyday monitoring,
as evaluating timestamps in larger intervals of several minutes still provides sufficiently
more data than manual monitoring. Additionally, evaluating every frame on its own may
lead to incorrect conclusions as errors within the image generation or segmentation can not
be compensated in this way. Therefore, a vital part of this framework is the incorporation
of two different averaging techniques.

In a first step, all entries within a specified interval (called "averaging interval" in the
upcoming case studies) are collected and a mean value for each class’s pixel count over
the interval is used in the evaluation. This decreases the number of necessary evaluations
and the tendency to produced errors.

The initial evaluation generating the raw data shown in the code snippet needs to be
performed separately for each camera because of the fixed but different viewpoints. The
results of the final evaluation, however, can be produced by taking all cameras into
consideration at once. Suitable functionality for this is also included within the proposed
approach as a second averaging technique. A test of this procedure with six examples is
provided in section 5.2.2.

A visual summary of the proposed process is shown in figure 4.4. It depicts the segmented
site images and element-wise annotated ground truth pictures being used as inputs for the
mapping process shown in figure 4.3. The raw data and progress timestamps received
from this frame-wise evaluation are than passed along to averaging functions to produce
accurate and at best error-free construction progress timestamps. Additionally, a potential
evaluation of this framework is shown, which consist of comparing the derived timestamps
against as-built ones for selected elements.

Figure 4.4: Part 2: Extraction from construction progress data from a site-image input
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4.3 Coupling of resulting data with a BIM model

The monitoring workflow proposed in the second part of the intended framework is capable
of evaluating element-specific construction progress timestamps from continuous site
images but needs annotated GT style pictures for each element of interest. The third part
of this thesis focuses on a way of automatically generating these GT style images from a
BIM model. Then the evaluation results can be coupled with the digital representation of
the building object. An overview of the proposed method is depicted in figure 4.5.

Figure 4.5: Part 3: Coupling of the construction progress data with a BIM model

Generation of GT images from a BIM model

For generating these GT style images, the workflow in figure 4.6 is proposed. The open-
source Python library IFCOpenShell [49] is used in combination with a configuration file.
The user specifies data paths as well as other parameters for the upcoming calculations,
including the building floor, camera name and the Industry Foundation Classes (IFC)-type
of interest within this file. At first, geometric information for all model objects from the
selected building floor is extracted from the specified IFC-file containing the project’s BIM
model. In order to only work on elements, that match the criteria on which the segmentation
models are trained, all objects within the IFC model are filtered to exclusively allow slabs,
walls and columns to be processed. This is possible with BIM conform projects, as the
model contains semantic information in the form of attributes attached to the geometric
model objects [50].

To choose the elements of interest for this thesis, a selection can be performed by only
allowing the IFC-types "IfcSlab", "IfcWall" and "IfcColumn". Additionally, the resulting
subset of model elements is filtered using the following regular expression "stb" within
their name attribute. In this way, aluminium or steel walls and columns as well as other
elements not matching this prerequisite are eliminated.

The geometric information of all remaining model objects is plotted element-wise in a
top-down perspective, resulting in only the ground floor area of the element being coloured
red in an otherwise black image. The element’s rotation in the plot is directly extracted
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Figure 4.6: Overview of the model-based GT image generation
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from the IFC file. This corresponds to the global cardinal directions of the building, which
in most cases has the north direction facing upwards.

The size of those pictures matches the size of the site images to enable a pixel-wise
comparison later on. Additionally, the bounding box of the BIM model is calculated and
invisible markers for each corner of it are included in the element GT images. With this
procedure, all elements are plotted true to their location relative to each other and can be
transformed at once in a single step further down the line.

For the final coupling between progress data and the BIM model, another essential attribute
called globally unique identifier (GUID) is used. As the name states, this attribute is unique
to each model element and can be used to confidently identify it. For this reason, each
element-specific GT image is stored with the corresponding elements GUID as filename.

Perspective transformation of the images

The GT images must be transformed to match the site cameras perspective, so that they
can be used successfully in the proposed monitoring framework. However, the site pictures
must be slightly preprocessed at first. Because of camera-specific parameters like focal
length, optical center and lens distortion, the captured images contain some perspective
and radial distortion, resulting in straight lines not appearing completely straight in the
picture. Those parameters can be obtained by geometric calibration processes and then
be used in correction functions to undistort and rectify the images [51], [52].

Figure 4.7: BIM model generated GT style image on the left, site image on the right;
corresponding points for the calculation of the transformation matrix are marked in both

Separately for each building level and camera, the proposed framework needs user-input
in the form of four corresponding points in the model-generated GT image and a random
site image taken by the crane-mounted cameras. An example of this is provided in figure
4.7. With this input, a perspective transformation matrix is calculated. Hereby, at first,
the pixel coordinates are transformed into homogeneous coordinates so each 2D point is
represented by a 3D vector:

(
x

y

)
→

 x

y

1
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Then, the transformation matrix H is constructed with these points using the least squares
approach or the Direct Linear Transformation algorithm shown here [51]. At first, the points
are collected in two matrices with X denoting the original and X ′ the transformed points.
Often, a normalization step is included at this point to scale and shift points to improve the
algorithm’s accuracy.

X =


x1 y1 1

x2 y2 1

x3 y3 1

x4 y4 1

 , X’ =


x1 y1 1

x2 y2 1

x3 y3 1

x4 y4 1


A linear equation system can be constructed and solved from those two sets of points to
obtain the transformation matrix.



x′1 = h11x1 + h12y1 + h13

y′1 = h21x1 + h22y1 + h23

x′2 = h11x2 + h12y2 + h13

y′2 = h21x2 + h22y2 + h23

x′3 = h11x3 + h12y3 + h13

y′3 = h21x3 + h22y3 + h23

x′4 = h11x4 + h12y4 + h13

y′4 = h21x4 + h22y4 + h23


, X’ = HX

This transformation matrix can then be applied to each pixel of an element’s GT image,
thus transforming it to match the camera’s perspective. For that, each pixel needs to be
multiplied with H and then normalized:

x
′

y′

w′

 = H

xy
1

 , xfinal =
x′

w′ , yfinal =
y′

w′

This procedure needs to be performed once per building level and camera to cover all
possible perspectives, but the resulting matrices can be used for all elements in the IFC
file. The collection of the required user input as well as the necessary calculations are
performed within the open-source OpenCV python library [53].

Including the third dimension

The resulting transformed GT images were created by plotting the element geometry in a
top-down perspective. Therefore, information concerning the element’s height still needs
to be included. However, the GT images are already usable for slab elements because
their height (or thickness) is much smaller than the length and width. As a result, the
inclusion of this third dimension within the GT images of slabs can be omitted at this point.
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The proposed approach needs to decouple the geometry on the XY-plane from the third
dimension so that the proposed perspective transformation can be applied in 2D space
instead of the 3D space. This requires at least two sets of six points from user input and
results in more complicated computations with higher impact of inaccuracies. Therefore,
the element’s height is added to the transformed GT images in a second step. For that,
the vanishing point of each camera is calculated first. This point is defined as the horizon
at which parallel lines appear to converge inside of a pictures [51]. Within this thesis, the
computation again relies on user input in the form of two sets of two points with each one
describing a line, which is vertical in reality and thus converges at the vanishing point in
the image. An example of this procedure is provided in figure 4.8.

Figure 4.8: Calculation of the vanishing point

The element height is extracted from the IFC file using IFCOpenShell [49]. As these values
are in metric units, a conversion step is needed to retrieve the height in pixels. For this
purpose, a reference value is defined for each camera, which is then used to convert all
element-height attributes. In combination with the vanishing point, this information is used
to convert the element’s GT image. The proposed workflow iterates over each pixel within
the image and draws a line if the current pixel is coloured red and, therefore, belongs
to the elements segmentation mask. The direction of this line is computed as a vector
between the vanishing point and the current pixel so that the resulting line is parallel to
other vertical lines within the image in reality. The length of the line is determined as the
element height in pixels.
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After this last step, the element GT style images are used in the progress evaluation
algorithm proposed in the second part of this thesis and the resulting data is coupled to
the BIM model or a digital twin using the elements GUID saved as the images filename.
An example of these images before and after this lasts step is shown in figure 4.9

Figure 4.9: left: Transformed BIM model generated GT style image, right: additional site
image as background

For all three parts of the proposed methodology in-depth case studies are performed in
chapter 5 to evaluate all aspects, including the overall computation time and accuracy on
a real-world construction site.
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Chapter 5

Implementation

5.1 Dataset and model training

The proposed monitoring framework in this thesis aimed at automatically extracting
element-specific construction progress timestamps from continuous site images. A sample
picture together with the expected and actual segmentation result is provided in figure 5.1.
This task started with the search for the best suited model capable of segmenting these
images.

Figure 5.1: Sample site image with annotated ground truth in the middle and segmentation
result on the right

However, to train said models for the task at hand and determine, which algorithms
performed best, a curated dataset was needed. These typically contain a training and
testing split, so that the model can be trained only on a certain subset of the data. After
changing its internal parameters and thus improving its performance, it can be tested
and evaluated on a different subset of unknown data. For both processes the program
needed not only the image files to be segmented as an input but also a so called GT files
containing the correct results. The latter was used to determine, how close the models
predicted result came to the desired one. Based on that difference, metrics were calculated
that can later be used to compare the overall performance to those of other models.

32



5.1.1 Dataset creation

The thesis at hand aimed at training and finding the most suitable semantic segmentation
model to identify cast-in-place concrete elements in their respective construction phases.
Because no other available research in this field has dealt with this exact subset of
construction elements, in accordance to the mentioned papers in chapter 3, a new
dataset needed to be created. It than functioned as training and testing basis for different
segmentation algorithms.

The first step for creating a dataset was to gather raw data. In this case, existing data
from a publication by F. Colins et al. [54] was used. In their described framework, up
to three cameras were be mounted on each available crane on a construction site and
RGB pictures with a 4K resolution of 3840 · 2160 pixels were captured in a continuous
30 second interval. Characteristics of these photos were, that the cameras view point
didn’t change apart from smaller movements during crane operations or stronger winds.
Also a large portion of the construction site was viewable within one image because of
the high mounting point of the cameras. This methodology has been tested on multiple
projects and, therefore, large amounts of site pictures were available. For this masters
thesis, images from a total of two larger and two smaller construction sites were used.
Pictures from the larger projects called "Project A" and "Project B" were collected within
the training and testing set. Additionally, fewer images form Projects "C" and "D" were
used in an alternative second test set.

From all projects, images from two months of monitoring were initially considered. This
large amount of data was then first reduced automatically by selecting 1% of all images
for each monitored day in a normal distribution. In this way, more images from the middle
of each day were preserved and less ones from the morning and evening hours. In a
second selection step, viable images were sorted out manually so that a dataset was
formed, which was comprised of a good distribution of images from diverse stages of each
construction project containing different states of building elements, lighting conditions
and camera angles.

To be able to use this dataset in an end-to-end trainable CNN framework with supervised
learning, the "ground truth" for every image was created. This process is commonly
referred to as "annotation" and can be done in two ways. Some datasets, like parts of
the cityscapes dataset [29], use very coarse annotations containing only vague masks or
bounding boxes for elements, whereas others contain pixel-wise precise masks, so that
each pixel inside the image has a correct class label associated to it. The first approach is
considerably faster than the second but yields worse results during model training which
is often compensated with a larger number of annotated images. This thesis followed
the second approach of precise annotations but, therefore, resulted in a overall smaller
dataset considering the limited research time. For the creation of the annotation files, the
open-source program called CVAT.ai was used [55]. The annotations were saved and
structured in close relation to the Pascal VOC Dataset [30] as well as the ADE20k dataset
[31].
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Class Label Color

column_concrete

column_panel

column_rebar

slab_concrete

slab_panel

slab_rebar

wall_concrete

wall_panel

wall_rebar

Figure 5.2: Sample image with class labels and corresponding colors

In total, nine different classes were annotated within the images. Those consist of three
states named "panel", "rebar" and "concrete" for each of the three different element types
"slabs", "walls" and "columns". All classes and the corresponding colors chosen for them
are listed in figure 5.2 together with an annotated sample picture. For each site image,
all visible elements were annotated while following the subsequent guidelines, so that a
consistent GT basis was established:

1. Small strips of walls or columns that were visible between the formwork of slab-
elements were annotated as part of the “slab_panel” class.

2. Concrete slab elements were only marked as “slab_concrete” during or immediately
after the concreting process. As soon as they were used as storage or working
area and were highly occluded, they were no longer annotated and belonged to the
“background” class.

3. Connected elements of all classes that were intermittently obscured were marked
as one instance.

4. Connection-reinforcement-elements were annotated as “column_rebar”, “slab_rebar”
or “wall_rebar” if they appeared dense enough in the image. Rebar elements
that were only barely visible were therefore not annotated and belonged to the
“background” class.

5. Formwork elements on walls and columns that were not removed after concreting
were still marked as “column_panel” or “wall_panel”.

6. Stockpiled formwork was not annotated.
7. Larger elements like fall-protection or waste containers that were resting on formwork

elements of panels were left out of the “slab_panel” mask (see figure 5.3).
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Figure 5.3: Annotation of a slab with
larger elements on top of it

Figure 5.4: Annotation of precast wall
elements

8. Pre-cast wall elements were not annotated as “wall_concrete” elements, because
only cast-in-place elements were of interest for this dataset. Figure 5.4 provides an
example.

9. Elements heavily obscured by scaffolding were not annotated and belonged to the
“background” class (see figure 5.5).

Figure 5.5: Annotation of obscured ele-
ments

Figure 5.6: Annotation of buildings in the
background

10. Only elements of buildings in the foreground were annotated. Buildings too far in the
background were counted towards the “background” class, as shown in figure 5.6.

11. Oftentimes multiple vertical elements comprising columns and walls were cast to-
gether in one large wall formwork and therefore were annotated with the “wall_panel”
label. However, after the formwork has been removed, slim column elements were
annotated as “column_concrete” and walls as “wall_concrete”, because their load-
bearing behavior and geometry still resembled that of the respective element. An
example is provided in figure 5.7.
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Figure 5.7: Annotation of elements, that are cast together in one formwork during their
panel phase (on the left) and their concrete phase (on the right)

The last step of the dataset creation was to structure all images into different subsets. From
Projects A and B a total 390 images were annotated and divided into a training subset
with 350 images as well as a testing subset with 40 images which closely resembles a
1:10 split. Other established datasets often use a 1:20 split but considering the limited
amount of annotated images, a smaller size for the testing set was chosen so more data
was available for training purposes. To evaluate the segmentation models performance on
unknown construction sites, 30 additional images from Projects C and D were annotated
and formed a second alternative testing subset. The resulting distribution of annotated
instances and the average mask area per class are shown in figure 5.8 separately for each
subset of the dataset.

Figure 5.8: Statistics of the custom dataset
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5.1.2 Training and evaluation of various semantic segmentation models

Training phase

The newly created dataset with pixel-wise annotated GT information was used to train
and test various semantic segmentation models. But for this task, a pipeline was needed,
which loaded the model architectures, batch-wise fed images to the models and compared
the model’s output against the expected result using the GT annotations. It also needed to
calculate the error (or loss) after each iteration for the backpropagation algorithm to change
the necessary parameters in the segmentation model. The pipeline used here was created
on top of the “MMSegmentation” repository [56], which provides a customizable framework
for training different segmentation models on standard datasets mentioned in section 2.3.
To enable using the newly created image dataset within the “MMSegmentation” structure,
new configuration files for the dataset itself as well as its interaction with different models
were created.

In total, 49 models performing well on other standard datasets were trained and tested on
the new dataset. Apart from models with an “Internimage”, “BeiT” and “ViT” backbone, all
architectures were directly accessible within the “MMSegmentation” library. For the other
backbones mentioned above, additional repositories were used [57], [58].

The training procedure was performed on one Nvidia Quadro RTX 8000 GPU in a virtual
docker container running on a Linux server with an AMD Ryzen Threadripper 3990X
64-Core Processor. Each model was trained over 40.000 Iterations while using the
data augmentation methods “resize”, “random crop”, “random flip” and “photometric
distortion”[56] with a crop size of 512x512 pixels. The learning rate and weight-decay
parameters used for all models resembled a configuration that has already worked well
for the specific algorithm and backbone combination during the evaluation of different
datasets. Changes to these parameters were only made in a second training phase to
finetune two very promising model architectures.

All in the evaluation included semantic segmentation models are shown in table 5.1
including their sources as well as their best scores on the “Cityscapes” [29] and “ADE20K
Dataset” [31], if the respective data was available. Additionally, the learning rate and weight
decay parameters are stated for each model next to the score of their best validation
epoch, with validations performed in 4.000 iteration intervals.

During the training and later in the testing phase, two important metrics were evaluated
for each model. As stated in section 2.2, the "mIoU" and "mAcc" metrics were used to
comprise the segmentation performance over all classes into singular values. Both metrics
are listed in tables 5.1, 5.2 and 5.3.
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Table 5.1: Training parameters and validation results

Model other datasets Parameters Validation
Algorithm Backbone CC [29] ADE [31] lr decay mIoU mAcc
APCNet [59] R50-D8 [60] 78.02 42.20 0.01 0.0005 48.65 53.53

DaNet [61]
R101-D8 [60] 80.52 43.64 0.01 0.0005 86.51 92.04
R50-D8 [60] 78.74 41.66 0.01 0.0005 86.18 92.05

DeepLabV3plus [62]
R101-D8 [60] 80.21 44.60 0.01 0.0005 44.34 47.61
R50-D8 [60] 79.61 42.72 0.01 0.0005 46.54 53.63
S-101-D8 [63] 79.62 46.47 0.01 0.0005 49.62 54.80

DPT [64] ViT-Base [26] - 46.97 0.0006 0.01 76.49 81.49

EMANet [65]
R101-D8 [60] 79.10 - 0.01 0.0005 52.04 60.06
R50-D8 [60] 77.59 - 0.01 0.0005 48.28 55.01

ENCNET [66]
R101-D8 [60] 75.81 42.11 0.01 0.0005 52.76 62.57
R50-D8 [60] 75.67 39.53 0.01 0.0005 51.00 58.02

FastFCN [67]
ENC [66] 79.92 40.88 0.01 0.0005 47.33 54.17
PSP [68] 79.26 41.40 0.01 0.0005 48.27 57.63

FCN [69]

HRNetV2p-W18 [70] 77.19 36.27 0.01 0.0005 48.83 56.72
HRNetV2p-W48 [70] 80.65 42.02 0.01 0.0005 49.75 58.03
R101-D8 [60] 75.45 39.61 0.01 0.0005 41.27 50.93
R50-D8 [60] 72.25 35.94 0.01 0.0005 50.12 60.02

FPN [71]
Twins-Large [72] - 46.55 0.0001 0.0001 86.63 91.51
Twins-Small [72] - 43.26 0.0001 0.0001 89.41 93.72

ISANET [73]
R101-D8 [60] 79.58 43.51 0.01 0.0005 51.42 57.69
R50-D8 [60] 78.49 41.12 0.01 0.0005 54.74 61.78

Knet [74] + DeepLab R50-D8 [60] - 45.06 0.0001 0.0005 43.61 49.59
Knet [74] + UperNet Swin-Large [25] - 52.05 0.00006 0.0005 74.32 81.26

Mask2Former [75]
InternImage-H [27] - 62.6 0.00001 0.05 85.26 91.5
R50-D8 [60] 80.44 47.87 0.0001 0.05 46.48 59.34
Swin-Large [25] 83.52 52.44 0.0001 0.05 79.72 85.35

OCRNet [76]
HRNetV2p-W18[70] 77.72 37.79 0.01 0.0005 45.33 51.51
HRNetV2p-W48[70] 80.58 43.00 0.01 0.0005 53.16 62.13
R101-D8 [60] 80.30 - 0.01 0.0005 52.49 59.83

PIDNet [77]
PIDNet-Large [77] 80.89 - 0.01 0.0005 84.09 89.08
PIDNet-Medium [77] 80.22 - 0.01 0.0005 82.39 88.70
PIDNet-Small [77] 78.74 - 0.01 0.0005 86.95 91.18

PSANet [78] R50-D8 [60] 79.31 41.67 0.01 0.0005 46.06 53.61
PSPNet [68] R50-D8 [60] 79.59 42.48 0.01 0.0005 51.36 57.55

Segformer [79]
MIT-B0 [79] 76.54 37.41 0.00006 0.01 77.09 81.94
MIT-B5 [79] 82.25 49.62 0.00006 0.01 85.52 91.00

Segmenter [80] ViT-Base [26] - 49.60 0.001 0.00 58.47 66.71
SegNeXT [81] MSCAN-Base [81] - 48.03 0.00006 0.01 73.00 79.50
SETR [82] MLA [82] 77.00 47.39 0.001 0.0 50.46 57.93

UPerNet [83]

Beit-Base [84] - 56.33 0.00003 0.05 24.62 32.36
ConvNeXt-Base [85] - 52.13 0.0001 0.05 48.69 52.31
InternImage-L [27] - 53.90 0.00002 0.05 79.84 85.08
InternImage-T [27] - 47.90 0.00006 0.05 77.88 83.44
MAE [86] - 48.13 0.0001 0.05 51.27 61.08
R50-D8 [60] 79.39 42.05 0.01 0.0005 77.54 85.52
Swin-Base [25] - 50.13 0.00006 0.01 69.69 75.93
Twins-Large [72] - 49.65 0.00006 0.01 83.56 88.38
Twins-Small [72] - 46.04 0.00006 0.01 76.69 81.64
ViT-Base [26] - 48.13 0.00006 0.01 86.97 91.94
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Testing phase

All models were tested once on the standard test set comprised of unknown images from
the construction sites of Projects A and B, on which the models were trained, and once on
an alternative test set consisting of images from two other construction sites. Additionally,
the inference speed of each model was tested. It resembles a value for the time needed to
segment one image, calculated as an average out of 25 Iterations over a batch size of 30
images taken from the test set. All resulting scores are stated in table 5.2 and figure 5.9.

Figure 5.9: Correlation of the results on the test-set and alternate test-set; bubble size
depends on the FPS; for the model names refer to table 5.2

Parameters for the learning rate and weight decay were set in accordance to each models
performance on other datasets in the first training procedure. But because this can
have significant influence on the models performance, for two promising models these
parameters were closer studied in a second training and testing iteration. Most of the
results in figure 5.9 showed a correlation of results in the standard and alternate testset.
However, the combination of the Mask2Former [75] algorithm with the InternImage-H [27]
backbone (Index 24) poses an exception with its very good performance on the alternate
testset. Additionally, the same algorithm in combination with the Swin-Large [25] backbone
was closer examined, because this model managed to achieve the overall best result in
the standard test set (see also index 26 in figure 5.9).

39



Table 5.2: Test results

Model
Index

Test Alternative Test Speed
Algorithm Backbone mIoU mAcc mIoU mAcc FPS
APCNet [59] R50-D8 [60] 1 42.88 48.23 18.03 21.06 0.75

DaNet [61]
R101-D8 [60] 2 67.29 75.37 26.80 32.95 2.75
R50-D8 [60] 3 67.47 75.46 29.75 35.56 2.04

DeepLabV3plus [62]
R101-D8 [60] 4 43.91 49.47 19.89 24.81 0.58
R50-D8 [60] 5 42.38 49.74 19.50 23.90 0.53
S-101-D8 [63] 6 38.34 41.92 16.66 20.05 0.85

DPT [64] ViT-Base [26] 7 56.69 63.26 17.68 20.11 1.23

EMANet [65]
R101-D8 [60] 8 45.81 54.18 19.80 27.33 0.62
R50-D8 [60] 9 43.03 49.70 18.01 24.03 0.97

ENCNET [66]
R101-D8 [60] 10 47.02 57.10 19.46 28.44 0.62
R50-D8 [60] 11 45.18 52.51 20.50 25.49 0.95

FastFCN [67]
ENC [66] 12 43.23 52.73 19.41 26.84 1.39
PSP [68] 13 43.29 50.26 18.58 25.25 1.24

FCN [69]

HRNetV2p-W18 [70] 14 38.30 47.91 18.32 26.18 3.46
HRNetV2p-W48 [70] 15 45.81 55.62 18.02 28.47 1.41
R101-D8 [60] 16 44.80 53.24 18.58 24.84 0.59
R50-D8 [60] 17 42.67 50.13 19.22 24.49 0.87

FPN [71]
Twins-Large [72] 18 67.62 75.18 26.91 31.16 2.55
Twins-Small [72] 19 66.80 73.88 28.23 32.53 6.43

ISANET [73]
R101-D8 [60] 20 48.52 56.08 21.41 28.11 0.62
R50-D8 [60] 21 45.55 52.08 19.23 22.74 0.94

Knet [74] + DeepLabV3 R50-D8 [60] 22 32.77 44.48 12.85 20.78 0.55
Knet [74] + UperNet Swin-Large [25] 23 63.69 71.50 29.94 39.17 0.37

Mask2Former [75]
InternImage-H [27] 24 65.79 74.09 41.00 46.11 0.56
R50-D8 [60] 25 40.10 53.18 15.03 24.81 1.39
Swin-Large [25] 26 69.10 76.04 34.29 41.57 0.46

OCRNet [76]
HRNetV2p-W18 [70] 27 41.56 48.04 18.69 23.96 1.85
HRNetV2p-W48 [70] 28 47.45 55.34 20.14 27.10 0.93
R101-D8 [60] 29 47.18 56.49 20.98 28.53 0.65

PIDNet [77]
PIDNet-Large [77] 30 65.42 72.99 21.53 26.51 5.52
PIDNet-Medium [77] 31 67.42 74.72 24.97 29.05 7.26
PIDNet-Small [77] 32 65.48 74.20 24.62 32.17 18.68

PSANet [78] R50-D8 [60] 33 42.57 50.31 20.09 25.12 0.66
PSPNet [68] R50-D8 [60] 34 46.52 53.21 20.07 25.24 0.91

Segformer [79]
MIT-B0 [79] 35 61.60 68.12 20.96 24.05 11.66
MIT-B5 [79] 36 65.97 72.81 28.05 32.22 2.18

Segmenter [80] ViT-Base [26] 37 52.28 61.05 25.68 33.31 0.36
SegNeXT [81] MSCAN-Base [81] 38 60.00 68.12 25.02 33.28 1.88
SETR [82] MLA [82] 39 44.08 51.85 22.21 29.11 0.16

UPerNet [83]

Beit-Base [84] 40 23.02 31.25 10.94 13.48 0.08
ConvNeXt-Base [85] 41 60.01 67.21 29.18 36.39 0.24
InternImage-L [27] 42 65.38 72.04 32.01 35.51 3.63
InternImage-T [27] 43 61.14 68.43 23.09 26.79 9.75
MAE [86] 44 44.86 54.73 23.82 30.65 0.12
R50-D8 [60] 45 42.15 46.50 16.85 20.33 0.81
Swin-Base [25] 46 65.53 72.47 30.71 38.80 0.55
Twins-Large [72] 47 67.96 75.44 29.07 34.48 1.58
Twins-Small [72] 48 65.02 71.89 27.47 31.18 2.53
ViT-Base [26] 49 57.41 63.87 20.70 23.44 0.99
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Fine-tuning phase

Table 5.3: Training parameters and validation results

Parameters Validation results Test results Alternate test results
Schedule learning rate decay mIoU mAcc mIoU mAcc mIoU mAcc

Mask2Former [75] & Swin-Large [25]
40.000 0.00005 0.05 81,36 87,54 69,50 77,59 32,93 42,00
40.000 0.0001 0.05 79,72 85,35 69,10 76,04 34,29 41,57
40.000 0.0002 0.05 85,52 90,28 70,35 77,87 34,52 43,11
40.000 0.0004 0.05 50,02 60,57 44,64 54,80 21,50 31,29
40.000 0.0008 0.05 20,24 32,95 19,80 33,01 11,63 21,08

Mask2Former [75] & InternImage-H [27]
40.000 0.00001 0.05 85,26 91,50 65,79 74,09 41,00 46,11
40.000 0.00002 0.05 86,55 98,86 70,26 78,60 36,70 41,41
40.000 0.00004 0.05 87,23 98,93 70,21 79,01 39,88 44,09
40.000 0.00008 0.05 87,39 98,94 66,89 75,59 34,16 37,77
40.000 0.0001 0.05 86,60 91,78 67,53 76,02 34,22 38,07

The model architecture consisting of the Mask2Former [75] algorithm and the Swin-
Large [25] backbone achieved the overall best result in the standard test set with a mIoU
score of 70,35. This success can be traced back to the core element of this backbone,
which is their general-purpose transformer generating hierarchical feature maps with
linear computational complexity in relation to image size. This is achieved by partitioning
the image into windows with a fixed number of patches inside them, resulting in linear
complexity. Between consecutive self-attention layers, these window partitions are shifted
so that they bridge the windows of the preceding layer. Those connections among them
significantly enhance the modelling power [25]. The resulting feature maps resolution
is the same as in other prominent CNN backbones like ResNet [60] making the new
transformer backbone easily integratable into existing pipelines. However, despite that, the
model’s performance on the given dataset was by far better, with a mIoU score of 70.35
for the Swin-Large backbone [25] compared to a score of 40.10 for the ResNet backbone
[60], while both combinations used the same algorithm.

The Mask2Former [75] algorithm was also coupled with an InternImage-H [27] backbone
in this case study, which resulted in a slightly worse score on the standard test-set but,
more importantly, in the best score on the alternative test-set. This considerably higher
score could imply that, given more diverse training data, this model can evolve into a tool
capable of correctly segmenting images from unknown construction sites. However, more
testing is needed to generate a confident opinion on this matter.
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5.2 Extraction of construction progress data

5.2.1 Implementation

In the second part of this thesis, the trained segmentation models were used to process a
continuous stream of images. These stemmed from the monitoring setup described by F.
Colins et al. [54] resulting in images taken every 30 seconds by multiple crane-mounted
cameras on two exemplary construction sites. The reviewed sites were also the sources
for all images used in the training and standard testing subset of the newly created dataset
in section 5.1. For the evaluated elements in the following subsection, a time window
of two months was considered, resulting in approximately 163.000 images from three
cameras at the site of project A and 178.000 images from two cameras of project B. All
pictures were segmented by the PidNet-S model [77] (Index 32 in table 5.2) because of its
exceptionally high frames per second (FPS) value and promising mIoU score on the test
set. This resulted in a very high computation speed in combination with good prediction
results.

For each monitored day at Project A, site images were available from 06:00 a.m. to 9:00
p.m. and at Project B from 00:00 a.m. to 9:00 p.m. Not all of those images could be
considered in the upcoming evaluations. While the segmentation models could produce
usable results in varying weather conditions, they still relied on apt lighting so that images
taken during nighttime were not segmented correctly. Figure 5.10 shows an image taken
at roughly 06:18 a.m. and its corresponding prediction results to illustrate the problem. In
reaction to this, only pictures taken between 07:00 a.m. and 07:00 p.m. were taken into
account for the evaluation of construction progress timestamps.

Figure 5.10: Image from Project A taken at 06:18:28 (left) and segmentation (right)

As stated in the elaboration on the proposed framework of this thesis in section 4.2, next
to the trained segmentation model, some additional input was required for this part. A GT
style image for each building element and camera was needed in order to evaluate the
raw prediction images. One of those pictures for each upcoming example is shown at the
start of each subsection with a suitable site image as background.

The segmented pictures were compared against those element-specific GT style image
generating class-wise counts of detected pixels within the elements’ mask area. Applying
user-chosen thresholds, the program evaluated this raw data to produce start- and end-
points for "panel", "rebar" and "concrete" states of the surveilled element. Within this
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evaluation, the proposed framework included two averaging techniques introduced in
section 4.2. These first combined raw data from singular images over longer time-frames
and secondly over multiple cameras to reduce the number of necessary evaluations and
improve the final result.

In the following examples the described methodology was tested on a total of six elements
including two for each element type. As-built timestamps were compared against the
derived timestamps to evaluate the procedure’s accuracy. Because no other sources were
available, the as-built timestamps were collected manually be visual inspection of the
construction site image data at hand. The difference between the two recorded dates was
calculated purely as a time interval not considering working hours or weekends. A negative
entry corresponded to the derived timestamp being earlier than the as-built timestamp
and a positive one to the derived timestamp being later than the as-built one. The error
was also converted into frames corresponding to the specified averaging interval. This
generated a better representation of the procedures performance in some cases. For
example, when a certain timestamps was detected 15 minutes after its as-built pendant,
the error as time value would be 15 minutes. However, if an averaging interval of 20
minutes was used to produce this result, the program could only output results in 20-
minute intervals. As this deviation of 15 minutes then resides within one averaging interval,
the program technically generated the best possible result with an error of zero frames. At
the end of each example, the absolute values of errors for all timestamps were summed
up to get an overall resulting accuracy.

For all six elements, the proposed averaging techniques were tested. Therefore, the whole
evaluation process was performed once for each camera separately and once using the
combined data from all cameras. For each scenario, the lower threshold for starting points
was varied between 0% and 50%, and the threshold for endpoint was changed between
50% and 100%, both with a step size of 5%. As shown in figure 5.11, this resulted in
11 · 11 = 121 possible combinations. All of them were tested for each averaging interval
with its duration changed from 0 to 30 minutes in one-minute intervals. A 0 minute setting
corresponded to not using this technique at all. In total, varying these three parameters
resulted in 11 · 11 · 31 = 3751 possible combinations. For each one, the total error over all
evaluated timestamps was recorded. However, in the following tables and plots only the
best-scoring combination is shown.

Figure 5.11: Visualization of tested threshold values and averaging intervals

43



5.2.2 Examples

Slab - Project A

Table 5.4: As-built timestamps

Formwork
Start 16.05.2023 11:18:02
End 17.05.2023 11:43:32

Rebar
Start 17.05.2023 16:05:25
End 23.05.2023 09:10:38

Concrete
Start 23.05.2023 09:10:38
End 23.05.2023 15:23:16

Table 5.5: Evaluation for the slab of Project A

Camera 1 Camera 2 Camera 3 All cameras
Parameters

Averaging Interval 1min 20min 11min 10min
Upper threshold 90% 85% 85% 85%

Lower threshold 5% 5% 5% 5%

Results
Formwork start 16.05. 11:25:00 16.05. 11:20:00 16.05. 11:22:00 16.05. 11:20:00

Error
time 6min 58sec 1min 58sec 3min 58sec 1min 58sec
frames 6 frames 0 frames 0 frames 0 frames

Formwork end 17.05. 11:46:00 17.05. 11:40:00 17.05. 12:00:00 17.05. 11:40:00

Error
time 2min 28sec - 3min 32sec 16min 26sec - 3min 32sec
frames 2 frames 0 frames 1 frame 0 frames

Rebar start 17.05. 16:14:00 17.05. 16:00:00 17.05. 16:11:00 17.05. 16:10:00

Error
time 8min 35sec - 5min 25sec 5min 35sec 4min 35sec
frames 8 frames 0 frames 0 frames 0 frames

Concrete start 23.05. 09:33:00 23.05. 09:40:00 23.05. 09:33:00 23.05. 09:40:00

Error
time 22min 22sec 29min 22sec 22min 22sec 29min 22sec
frames 22 frames 1 frame 2 frames 2 frames

Concrete end 23.05. 15:05:00 23.05. 15:00:00 23.05. 15:00:00 23.05. 15:00:00

Error
time - 18min 16sec - 23min 16sec - 23min 16sec - 23min 16sec
frames 18 frames 1 frame 2 frames 2 frames

Overall Error
time 58min 39sec 1h 03min 33sec 1h 11min 37sec 1h 02min 43sec
frames 56 frames 2 frames 5 frames 4 frames

From the evaluation of this first slab element, a problem came to light that persisted for all
other elements alike. A timestamp for completing rebar-works could only be detected by
the segmentation models as the point at which the visible element area was fully covered
with rebar elements. This is the case as soon as only a single layer of rebar has been
constructed. However, four layers are usually necessary, consisting of two directional
layers for each side of the element. As this is the only useful timestamp for the endpoint of
rebar works and the stated problem within the context of a segmentation-based approach
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could not be solved within this framework, the timestamp "rebar end" was not further
considered in this and the upcoming examples.

Figure 5.12: Results of all cameras without averaging

Figure 5.13: Results of all cameras with a averaging interval of 10min

When comparing the detected timestamps based on the evaluation of the combined data
of all cameras using an averaging interval of 10min (figure 5.12) and without using an
averaging interval at all (figure 5.13), the start- and endpoints for concrete work and
the endpoint for rebar works were detected differently. The latter stemmed from minor
occlusions of the panel elements due to them being used as storage space for rebar
elements. The segmented rebar pixels in few frames could not be compensated without
averaging and resulted in the detection of the end-timestamp for rebar works. The problem
concerning the concrete progress estimation could be traced back to one singular image,
which got corrupted sometime between the generation at the construction site and the
processing steps for this thesis. The image in question is shown on the left in figure
5.14 with its corresponding prediction on the right. Due to the missing bottom half, the
segmentation model categorized all its pixels as "slab_concrete", which resulted in the
lower and upper threshold for concreting works being reached at once. This and the other
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problem mentioned first could be compensated using a reasonably high averaging interval,
as the plot in figure 5.13 proofs.

Faulty images like this could also be sorted out with additional checks performed before the
segmentation process. However, this example shows, that the proposed framework for the
evaluation of construction progress can handle such errors, when choosing a sufficiently
high value for the averaging functionality.

Figure 5.14: original (left) and segmented picture (right)

Slab - Project B

Table 5.6: As-built timestamps

Formwork
Start prior to recording
End 26.04.2022 12:18:53

Rebar
Start 27.04.2022 07:34:26
End 28.04.2022 09:57:57

Concrete
Start 04.05.2022 12:23:20
End 04.05.2022 18:30:26

The panel phase for this element started before the considered timeframe of this case
study. Therefore, if the program detected this timestamp as the first entry in the surveilled
window, the result was classified as correct. Furthermore, the endpoint of panel and
concrete works in this example perfectly illustrated the importance of selecting adequate
thresholds for the detection of timestamps. Right after the concreting process, the slab
area was at first covered to aid the curing process of the concrete and later used as
storage space for rebar elements rending the corresponding timestamp very hard to detect
correctly. In figure 5.15, the resulting plot of the first camera with an averaging interval
of 24 minutes and thresholds of 5% and 55% is shown along with the combined result of
all cameras averaged over 10min with 5% and 90% thresholds in figure 5.16. The low
upper threshold of 55% in evaluating the first camera’s data enabled the detection of the
endpoint of concreting works. However, it produced a wrong timestamp for the endpoint of
the panel state. Contrary to that, the high threshold of 90% for processing the combined
data generated a better estimation for the panel phase but did not allow the endpoint of
the concreting phase to be picked up. Generally, a moderate upper threshold lead to more
usable results because for most cases, generating an incorrect estimation for a relevant
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event was less destructive to superior processes of progress monitoring than missing a
notable milestone entirely.

Table 5.7: Evaluation for the slab of Project B

Camera 1 Camera 2 All cameras
Parameters

Averaging Interval 24min 5min 10min
Upper threshold 55% 90% 90%

Lower threshold 5% 5% 5%

Results
Formwork start 01.04. 07:00:00 01.04. 07:00:00 01.04. 07:00:00

Error
time 0sec 0sec 0sec
frames 0 frames 0 frames 0 frames

Formwork end 21.04. 15:48:00 26.04. 12:00:00 26.04. 12:00:00

Error
time - 4d 20h 30min 53sec - 18min 53sec - 18min 53sec
frames 291 frames 3 frames 1 frames

Rebar start 27.04. 09:48:00 27.04. 09:45:00 27.04. 09:50:00

Error
time 2h 13min 34sec 2h 10min 34sec 2h 15min 34sec
frames 5 frames 26 frames 13 frames

Concrete start 04.05. 14:00:00 04.05. 14:00:00 04.05. 14:00:00

Error
time 1h 36min 40sec 1h 36min 40sec 1h 36min 40sec
frames 4 frames 19 frames 9 frames

Concrete end 04.05. 18:24:00 - -

Error
time - 6min 26sec - -
frames 0 frames - -

Overall Error
time 5d 0h 27min 33sec 4h 06min 07sec * 4h 11min 07sec *
frames 300 frames 48 frames * 23 frames *

Figure 5.15: Results of camera 1
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Figure 5.16: Results of all cameras

Wall - Project A

Table 5.8: As-built timestamps

Rebar
Start 24.05.2023 12:16:12
End 24.05.2023 13:24:28

Formwork Start 26.05.2023 09:09:09
End 26.05.2023 13:50:23

Concrete
Start 27.05.2023 08:28:12
End 27.05.2023 08:33:15

While the concreting process was easily detectable for most slab elements, it was impossi-
ble for wall or column elements within this approach, because for those vertical elements,
the concrete itself was only visible in a small opening at the top of the formwork. Full
visibility and therefore a confident detection within the segmentation-based approach only
was possible after the removal of all formwork elements. This discrepancy became very
apparent, when looking into other percentage-based monitoring approaches like A. Pal
[37] proposed. While this thesis does not aim to include such a functionality, the examples
provided in figure 5.17 illustrated its connection to the stated problem. For slab elements
or horizontal elements in general, a gradual change between the states of rebar and
concrete was visible inside the resulting plots. The left image in figure 5.17 shows an
excerpt from the resulting plot of a slab element from the day of its concreting to illustrate
this. It clearly depicts a procedural transition from pixels being labeled as slab_panel to
slab_concrete. Contrary to that, in the wall or column examples, only a sudden state
change was recorded, shown in the right image of figure 5.17 with a zoomed-in section
of the resulting plot for the following wall element. Therefore, because the detection of
concrete pixels only happened when the formwork was removed several days after the
actual concreting, this action was used as the target timestamp in the evaluation of the
subsequent wall and column examples.
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Figure 5.17: Comparison of the behavior when changing between two different states

Table 5.9: Evaluation for the wall of Project A

Camera 1 Camera 2 Camera 3 All cameras
Parameters

Averaging Interval 1min 13min 15min 7min
Upper threshold 55% 80% 65% 50%

Lower threshold 5% 5% 5% 5%

Results
Rebar start 24.05. 12:16:00 24.05. 12:13:00 24.05. 12:15:00 24.05. 12:14:00

Error
time - 12sec - 3min 12sec - 1min 12sec - 2min 12sec
frames 0 frames 0 frames 0 frames 0 frames

Rebar end 24.05. 12:36:00 24.05. 13:00:00 24.05. 12:45:00 24.05. 12:35:00

Error
time - 48min 28sec - 24min 28sec - 39min 28sec - 49min 28sec
frames 48 frames 1 frame 2 frames 7 frames

Formwork start 26.05. 09:25:00 26.05. 09:26:00 26.05. 09:30:00 26.05. 09:28:00

Error
time 15min 51sec 16min 51sec 20min 51sec 18min 51sec
frames 15 frames 1 frame 1 frame 2 frames

Formwork end 26.05. 13:46:00 26.05. 13:52:00 26.05. 13:45:00 26.05. 13:49:00

Error
time - 4min 23sec 1min 37sec - 5min 23sec - 1min 23sec
frames 4 frames 0 frames 0 frames 0 frames

Concrete start 27.05. 08:28:00 (29.05. 07:00:00) (29.05. 07:00:00) 27.05. 08:28:00

Error
time - 12sec - - - 12sec
frames 0 frames - - 0 frames

Concrete end 27.05. 08:37:00 (29.05. 07:00:00) (29.05. 07:00:00) 27.05. 08:35:00

Error
time 3min 45sec - - 1min 45sec
frames 3 frames - - 0 frames

Overall Error
time 1h 12min 51sec 46min 08sec * 1h 06min 54sec * 1h 13min 51sec
frames 70 frames 2 frames * 3 frames * 9 frames

Because there was no data from the 27th for camera 2 and camera 3, the correct times-
tamps of the concreting processes could not be detected while only using data from one of
those cameras as the example in figure 5.19 shows. Including data from the first camera
remedied this problem resulting in the correct detection of this timestamp when using data
from this camera alone or from all cameras combined, which is depicted in figure 5.18.
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Figure 5.18: results of camera 1

Figure 5.19: results of camera 2

Wall - Project B

Table 5.10: As-built timestamps

Formwork Start 11.04.2022 16:05:37
first side End 12.04.2022 08:50:10

Rebar
Start 12.04.2022 10:57:06
End 13.04.2022 16:57:33

Formwork 22.04.2022 11:21:47
second side
Concrete 26.04.2022 08:17:15
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Table 5.11: Evaluation for the wall of Project B

Camera 1 Camera 2 All cameras
Parameters

Averaging Interval 2min 1min 1min
Upper threshold 85% 90% 85%

Lower threshold 10% 10% 10%

Results
Formwork 1st side start 11.04. 17:00:00 11.04. 15:31:00 16.05. 16:53:00

Error
time 54min 23sec - 34min 37sec 47min 23sec
frames 27 frames 34 frames 47 frames

Formwork 1st side end 12.04. 09:00:00 12.04. 09:00:00 12.04. 09:48:00

Error
time 9min 50sec 9min 50sec 57min 50sec
frames 4 frames 9 frames 57 frames

Rebar start 12.04. 10:56:00 12.04. 10:57:00 12.04. 10:57:00

Error
time - 1min 06sec - 6sec - 6sec
frames 0 frames 0 frames 0 frames

Formwork 2st side 22.04. 11:22:00 22.04. 11:21:00 22.04. 11:21:00

Error
time 13sec - 47sec - 47sec
frames 0 frames 0 frames 0 frames

Concrete 26.04. 08:24:00 26.04. 08:32:00 26.04. 08:32:00

Error
time 6min 45sec 14min 45sec 14min 45sec
frames 3 frames 14 frames 14 frames

Overall Error
time 1h 12min 17sec 1h 00min 05sec 2h 00min 57sec
frames 34 frames 57 frames 118 frames

This second wall example did not only perform very well, but also highlighted the possibility
of introducing more then one phase of a certain construction stage including a start and
end point. In this case, two panel phases were evaluated because the rear formwork
elements were placed and detected before the installation of rebar elements. All remaining
formwork in front of the element was positioned later shortly before concreting. Concerning
the evaluation algorithm, this change was accomplished by introducing a rule, that allows
the program to search for a third and possibly fourth timestamps of one class once at least
one timestamp of another class has been found. In the example at hand, the evaluation of
the timestamp for the second formwork installation was possible from the point in time on,
at which the starting point of the rebar works has been detected.
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Figure 5.20: Results of camera 2

Figure 5.21: Results of all cameras

Column - Project A

Table 5.12: As-built timestamps

Rebar
Start 24.05.2023 12:25:17
End 24.05.2023 15:00:00

Formwork Start 25.05.2023 08:10:28
End 25.05.2023 14:40:46

Concrete 26.05.2023 08:31:45

As described in the wall example of Project A, the correct timestamp for the end point
of concreting works for this and the next column could not be derived correctly due to
the segmentation approach only detecting concrete-labeled pixels after the removing of
formwork. Therefore, again this action was used as correct timestamp for the upcoming
evaluations.
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Because column elements in general have a smaller volume compared to walls or slabs,
they also contain less pixels in their GT mask used in the progress estimation algorithm.
Because of slight variances in the camera angle due to the swaying of the crane while the
GT images does not change, more fluctuations in the resulting data could be observed.
Looking back at the first example of a slab element, there was not much of a difference
concerning inconsistencies in the data between using one camera as shown in figure 5.12
and using all cameras combined, which is depicted in figure 5.13. Contrary to that, figures
5.22 and 5.23 demonstrate notable improvements when switching from using one camera
to multiple ones.

Table 5.13: Evaluation for the column of Project A

Camera 1 Camera 2 Camera 3 All cameras
Parameters

Averaging Interval 2min 5min 1min 2min
Upper threshold 65% 50% 75% 60%

Lower threshold 10% 5% 5% 5%

Results
Rebar start 24.05. 12:26:00 24.05. 13:45:00 24.05. 12:25:00 24.05. 12:26:00

Error
time 43sec 1h 19min 43sec - 17sec 43sec
frames 0 frames 15 frames 0 frames 0 frames

Rebar end 24.05. 15:04:00 24.05. 15:35:00 24.05. 14:56:00 24.05. 15:04:00

Error
time 4min 00sec 35min 00sec - 4min 00sec 4min 00sec
frames 2 frame 7 frames 4 frames 2 frame

Formwork start 25.05. 08:10:00 25.05. 08:10:00 25.05. 08:10:00 25.05. 08:10:00

Error
time - 28sec - 28sec - 28sec - 28sec
frames 0 frames 0 frames 0 frames 0 frames

Formwork end 25.05. 13:06:00 25.05. 14:35:00 25.05. 14:39:00 25.05. 14:38:00

Error
time - 1h 34min 46sec - 5min 46sec - 1min 46sec - 2min 46sec
frames 47 frames 1 frame 1 frame 1 frame

Concrete 26.05. 08:30:00 26.05. 08:30:00 26.05. 08:31:00 26.05. 08:30:00

Error
time - 1min 45sec - 1min 45sec - 45sec - 1min 45sec
frames 0 frames 0 frames 0 frames 0 frames

Overall Error
time 1h 41min 42sec 2h 02min 42sec 7min 16sec 9min 42sec
frames 49 frames 23 frames 5 frames 3 frames

53



Figure 5.22: Results of camera 2

Figure 5.23: results of all cameras

Column - Project B

Table 5.14: As-built timestamps

Rebar
Start 06.04.2022 14:43:17
End 06.04.2022 15:01:29

Formwork
Start 12.04.2022 12:24.02
End 12.04.2022 13:27:46

Concrete 13.04.2022 07:24:41

In contrast to the column example from Project A, which was mainly viewed by all cam-
eras from the side, this column from Project B was monitored nearly from a top-down
perspective. This reduced the number of detectable pixels for this element and, therefore,
increased the influence of inaccuracies due to movements of the crane-mounted cameras.
Additionally, the first column was only obstructed by stationary scaffolding in an otherwise
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uncluttered environment, while the second one was located in the middle of a crowed
storage space oftentimes occluded by moving parts on the construction site. The result
plots in figures 5.24 and 5.25 reflect this by showing high inconsistencies in the detected
pixels and corresponding timestamps. For the second camera, these effects were of less
influence because it was mounted lower than the first camera and thus had a slightly
higher number of detectable pixels in the elements GT mask. The overall error in the
evaluation process showed the notably better performance when using only the second
camera. Also only a slight decline in accuracy occurred, when combining the data from
both cameras, which proofed the importance of the implemented averaging techniques.

Table 5.15: Evaluation for the column of Project B

Camera 1 Camera 2 All cameras
Parameters

Averaging Interval 0min 2min 2min
Upper threshold 60% 55% 50%

Lower threshold 45% 40% 40%

Results
Rebar start 06.04. 15:11:36 06.04. 14:46:00 06.04. 15:00:00

Error
time 28min 19sec 2min 43sec 16min 43sec
frames 56 frames 1 frame 8 frames

Rebar end 06.04. 16:41:37 06.04. 15:00:00 06.04. 15:06:00

Error
time 1h 40min 08sec - 1min 29sec 4min 31sec
frames 200 frames 0 frames 2 frames

Formwork start 09.04. 13:38:01 12.04. 13:28:00 12.04. 13:28:00

Error
time - 2d 22h 46min 01sec 1h 03min 58sec 1h 03min 58sec
frames 8.492 frames 31 frames 31 frames

Formwork end 12.04. 13:29:17 12.04. 13:28:00 12.04. 13:28:00

Error
time 1min 31sec 14sec 14sec
frames 3 frames 0 frames 0 frames

Concrete 13.04. 07:32:16 13.04. 07:24:00 13.04. 07:32:00

Error
time 7min 35sec - 41sec 7min 19sec
frames 15 frames 0 frames 3 frames

Overall Error
time 3d 01h 03min 34sec 1h 09min 05sec 1h 32min 45sec
frames 8.766 frames 32 frames 44 frames
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Figure 5.24: Results of camera 1

Figure 5.25: Results of camera 2
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Summary

Table 5.16: Summary of the case study examples

Camera Averaging Interval Upper threshold Lower threshold

Slab

Project A

Camera 1 1min 90% 5%

Camera 2 20min 85% 5%

Camera 3 11min 85% 5%

All cameras 10min 85% 5%

Project B
Camera 1 24min 55% 5%

Camera 2 5min 90% 5%

All cameras 10min 90% 5%

Average 12min 85% 5%

Wall

Project A

Camera 1 1min 55% 5%

Camera 2 13min 80% 5%

Camera 3 15min 65% 5%

All cameras 7min 50% 5%

Project B
Camera 1 2min 85% 10%

Camera 2 1min 90% 10%

All cameras 1min 85% 10%

Average 6min 75% 5%

Column

Project A

Camera 1 2min 65% 10%

Camera 2 5min 50% 5%

Camera 3 1min 75% 5%

All cameras 2min 60% 5%

Project B
Camera 1 0min 60% 45%

Camera 2 2min 55% 40%

All cameras 2min 50% 40%

Average 2min 60% 20%

Overall average 7min 75% 10%

The examples showed, that in general a smaller averaging interval of 5 to 10 minutes
generated the best results, because errors like the one shown in figure 5.14 could be
eradicated but a certain level of accuracy was maintained. The applied upper threshold
varied highly between the different studied elements. Considering, that a high number of
them were at least partially occluded for example by scaffolding as it was the case with the
column and wall example from project A, a conservative threshold seemed more practical.
A possible example is the median of all examples which amounts to 75 percent. With the
last column sample as an exception, all other studied elements worked very well with a
small lower threshold of 5-10 percent. The parameters shown in the last row of table 5.16
pose a likely combination to work on arbitrary construction elements within this scheme.
An other test of this hypothesis is conducted in section 6.
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5.3 Coupling of the extracted data with a BIM model

5.3.1 Generation of ground truth images

The proposed frameworks ability to evaluate element-specific construction progress from
segmented site images has been successfully tested in the last section. Therefore,
according to the method elaborated in chapter 4, only the intended functionality to couple
the monitoring results with a BIM model remained to be tested. Hereby, a BIM model
and images of the construction site for Project B were used. As this project also was the
source of a large part of images contained in the newly annotated dataset in section 5.1,
good segmentation results of other unseen images from this site could be expected from
the trained models.

Following the workflow of this part of the procedure proposed in chapter 4, the BIM model
was opened with the open-source Python library IFCOpenShell [49] in combination with a
configuration file. The necessary specifications inside it included the building floor, camera
name and the IFC-type of interest. For this study, two different floors, two cameras and
the three IFC-types "IfcSlab", "IfcWall" and "IfcColumn" were considered. The geometric
information of all filtered model objects was first plotted element-wise in a top-down
perspective. A combination of all element images from one floor is shown in figure 5.26.
Notably, this image has been recoloured to show slabs in the original red, wall elements in
blue and columns in green for better readability. Although, each singular GT image only
contained the element’s ground floor area in red pixels for all IFC-types alike. As stated in
chapter 4, the orientation of elements was extracted from the IFC file corresponding to the
global cardinal directions of the building, with the north direction facing upwards.

Figure 5.26: Combined element GT images

For the transformation of these GT style images, the collected site images were corrected
before the segmentation process to remove perspective and radial distortions. Then,
a perspective transformation matrix was calculated for each camera and building floor.
According to the explanation in chapter 4, two sets of four points in the image shown in
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figure 5.26 and one site image were collected for each one. One example of them and the
computed transformation matrix H are shown in the following equations:

X =


1140 290 1

2385 795 1

1755 1320 1

1145 1240 1

 , X’ =


415 1500 1

1475 550 1

2120 940 1

2085 1520 1

 , X’ = HX,

H =

 1.86472808 3.9259376 −2345.9302138

−1.13685646 0.08580612 4590.58451609

0.00105986 0.00001629 1.00


The third row of the transformation matrix should contain the values (0, 0, 1) if the selected
points in both images correspond perfectly. Because slight inaccuracies are unavoidable
with this form of user input, the first two values were only close to zero. When applying
the matrix to all pixels within the untransformed GT images, the newly created picture
did not match the camera-taken site images exactly but very closely. This new combined
image is shown in figure 5.27 and an evaluation of the achieved accuracy of this process
is conducted later on.

Figure 5.27: Combined transformed element GT images

As stated in the proposed approach of this thesis, the elements’ geometry in the XY plane
and the height are considered separately in this workflow to simplify the calculations and
reduce the effect of inaccuracies. Therefore, the elements height information now had to
be added to the transformed GT images for walls and columns.

After computing each cameras vanishing point from user input and extracting the height
information from the IFC file, all element images were processed accordingly. For the
unit conversion from meters to pixels, fixed reference values were used. Concerning the
second camera of the surveilled project, this value was set to 25.5 pixels/m resulting in an
3.58m high element appearing 92 pixels tall in the image.
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With this step, finished GT images have been created, which were used in the progress
estimation processes proposed in section 5.2.1. A combination of all element images from
one building floor is shown in figure 5.28.

Figure 5.28: Combined transformed element GT images included height information

While the finished images were compatible with the estimation algorithm for a single
element implemented in section 5.2.1, the process was relatively slow when applied to
evaluate multiple elements at once. To reduce the computation time, a postprocessing
step was added at this point, which converted the GT images into arrays containing the
coordinates of all red pixels. All resulting arrays were saved in one JSON file per IFC-
type so that during the evaluation process only three files had to be read per prediction
image instead of one image file per element. This reduced the overall computation time
from 30 seconds per prediction image to 4.5 seconds when evaluating 290 elements
simultaneously. Further elaboration on the durations of different processes is provided
in section 6.2. The resulting timestamps of the progress evaluation were coupled with
the elements GUIDs saved within the GT images filenames. With this information, the
deducted data could be saved as element attributes within a BIM model or used in other
computations in the context of a digital twin [87].

5.3.2 Validation

After implementing the proposed methodology, the element GT images were created for
all elements of the first and second building floor for the construction site of Project B. In
this section, the model-generated images of all second-floor elements were compared
to manually created ones to validate this approach’s accuracy. In figures 5.29, 5.30 and
5.31, the model-generated results were stacked on top of the manual ones with common
pixels coloured in red. Then, two different kinds of errors were marked within the images.
All pixels that were part of the manually drawn segmentation masks but not the model-
generated ones were called "missing pixels" and coloured in green. If pixels were marked
within the model-generated pictures but not the manual ones, they were labelled "wrong
pixels" and coloured in blue. The value of both errors was calculated as a fraction of wrong
to correct pixels in percent.
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Figure 5.29: Slab elements: 1,67% missing pixels, 1,86% wrong pixels

The combined overlay of all slab elements in figure 5.29 showed a very high accuracy with
only 1,67% missing and 1,86% wrong pixels. However, there was one exception in the
form of a small slab in the middle staircase of the building. Because this element was the
middle platform at the turning point of the stairs, it was not on the same height level as all
other slabs. As the perspective transformation technique applied in the image generation
works on a 2D basis, this difference in height resulted in a distorted display of the element
in the final GT image.

Figure 5.30: Wall elements: 5,06% missing pixels, 13,45% wrong pixels

The overall comparison of wall elements shown in figure 5.30 resulted in acceptable
errors of 5,06% missing and 13,45% wrong pixels. A high fraction of the errors could
be located within the walls at the bottom of the image, which were drawn too high in
the model-generated segmentation masks. A possible cause for this problem was the
implementation of the conversion from metric units to pixels using a fixed reference value.
In reality, this relation between the actual dimension and the corresponding number of
pixels in the picture varied over the image based on the different distances of objects
towards the camera. For this thesis, a more dynamic approach to this problem has
not been implemented as it often requires complex camera calibrations, which were
unavailable for this data [51]. Furthermore, a fraction of the pixels attributed to the error of
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wrongfully marked ones could be attributed to another part of the algorithm for generating
the element’s height. Because this process worked on every pixel of the ground floor area,
openings for doors or windows could not be included, as this would have required further
postprocessing of the images.

Figure 5.31: Column elements: 23,73% missing pixels, 37,39% wrong pixels

When comparing both segmentation mask generation methods for column elements shown
in figure 5.31, considerably higher errors of 23,73% missing and 37,39% wrong pixels
were detected. While a certain fraction of those could be attributed to the same problems
concerning height generation stated in context with the wall example, the remaining portion
of the error laid in the fact that a column’s mask area is vastly smaller than of a slab or
wall element. Therefore, inaccuracies due to the swaying of the crane or stemming from
the transformation and height generation processes resulted in a higher fractions of wrong
pixels. Additionally, many of the missing pixels did not result from the computation process
proposed in this thesis but from modelling errors in the IFC-file. As figure 5.31 shows, a
total of five columns were wholly coloured in green. They were entirely missing in the
model-generated images, because they were either not contained in the BIM-model or
had wrong attributes. Therefore, these elements have not been considered by the filter
conditions stated at the beginning of this section.

62



Chapter 6

Results of an end-to-end approach

6.1 Data and methods

The proposed monitoring framework consists of multiple different parts working together,
with the accuracy of each one being separately evaluated in the respective section in
this thesis. An overall quantification of the framework’s accuracies can, however, not
be produced. Therefore, in this chapter, the interaction of all components, including
the element-wise achievable accuracy and the required computation speed, was eval-
uated. For this task, another real-world case study was performed on the construction
site of Project B, whose site images were already used in the newly created semantic
segmentation dataset.

The data at hand for this project consisted of a stream of continuous site images taken by
the camera setup proposed by F. Collins et al. [54]. Two months from the overall monitored
period were extracted and used for the case study, comprising images of two cameras.
While both were mounted on the same crane, one had a higher vantage point over the
construction site than the other. Both cameras monitored 47 days out of the total of 61
days within the two months. However, as figure 6.1 shows, the surveilled days of both
cameras dd not overlap completely. Approximately 163.000 pictures were taken during
the two-month period and were used for the evaluation at hand.

Figure 6.1: Available data from each camera for the case study

Additionally, an IFC-conform BIM model was available for the building of Project B. Because
just a portion of all elements was constructed within the set timespan of two months, only
the first and second floor were of interest for this case study. From all model objects within
these two levels, 290 elements were selected by applying the filter conditions stated in
section 5.3 concerning their IFC-type and name attribute.

As-built information was needed to compare the accuracy of the proposed setup in
detecting construction progress timestamps. Because no other sources were available
for this data, the required information was extracted via a manual inspection of the
site images. As this process was considerably time-consuming, an evaluation of the
procedure’s accuracy was not conducted on all 290 elements but on eight representative
ones later on.
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In the first step of the case study, all 163.000 images were preprocessed outside of the
scope of this master’s thesis to remove all radial and perspective distortions, as it is also
described in section 5.3. The corrected images were then segmented by the PidNet-S [77]
model and the resulting prediction files were further processed. Before that, the projects
BIM model was used to generate GT images for all 290 elements. Because those were
spread over two building floors and the image data at hand stemmed from two cameras,
this process included the calculation of four different perspective transformation matrices
and two vanishing points from user input. As a result, 580 individual GT images were
created. With these, the construction progress extraction algorithm was performed, which
was already elaborated in section 5.2. For this part, the parameters retrieved in section
5.2.2 were used, resulting in an averaging interval of 7 minutes and thresholds of 75%
and 10%, respectively. The evaluation process included the optimization step described in
section 5.3 to save on computational resources and time. Lastly, the generated progress
timestamps of eight selected elements were compared against their manually derived
as-built timestamps to verify the overall accuracy of the combined framework. But before
that, the durations of all included steps were recorded and are discussed in the following
section.

6.2 Computation time

In this section, the computation time needed for each part was evaluated, apart from
all steps needed in the creation of the custom dataset reviewed in section 5.1.1 as
well as the training and testing of different semantic segmentation models shown in
section 5.1.2. These parts have been omitted, as they were performed only once and
generated a universal segmentation tool as output intended to be used on multiple different
construction sites. However, the goal of this section was to evaluate the monitoring speed
of the proposed setup. Hence, only the individual computation steps needed for every
construction site were considered in this summary.

The procedure was tested on the construction site of Project B on all elements from the
first and second building floors. For the upcoming evaluation, the available data stated in
section 6.1 including all 290 elements over the whole timespan of two month was used.
All operations in the first three steps stated in table 6.1 can be summarized as preparation
procedures and were performed on a Surface Laptop Studio with a 11th Gen Intel Core i7
processor with 16 GB RAM and a Nvidia GeForce RTX 3050 Ti Laptop GPU. Summing all
of those parts together, the total computation time amounted to 1h 29min 46sec for two
building floors, two cameras and 290 elements. For this sum, a duration of five minutes
was allocated for the collection of user input within the calculation of the perspective
transformation matrix and two minutes for the computation of the vanishing point. Also,
the 9.2 seconds needed to generate the finished GT images within the third step only
needed to be applied to 270 elements as slabs were excluded from this processing part.
Although this method needed some time to be set up initially, all those operations can
be scheduled and carried out before work on the construction site begins. In conclusion,
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Table 6.1: Summary of computation durations

Process Duration Frequency

Step 1: Generating ground truth images in cardinal direction

Calculation of the IFC models bounding box 3min 28sec per project

Generation of single element images in cardinal direction 3.3sec per element

Combination of all images into one for the next steps 36sec per project

Step 2: Transforming images to match the cameras perspective

Calculation of the transformation matrix (user input) ca. 5min per camera and floor

Transformation of the single element images 0.2sec per element and camera

Step 3: Adding height to images for column and wall elements

Calculation of the vanishing point (user input) ca. 2min per camera

Generation of the finished GT image 9.2sec per element and camera

Conversion of images into arrays of coloured pixels 0.5sec per element and camera

Step 4: Evaluation of construction progress

Segmentation of the site image (18.68 FPS) 5.4sec per frame

Processing a prediction image to obtain raw data 0.016sec per frame and element

Calculation of progress timestamps 0.001sec per frame and element

only the durations of algorithms in the fourth step stated in table 6.1 were of interest in
order to determine, how fast the proposed workflow could analyze construction progress.
For the problem at hand, each segmented prediction image was compared against all
290 element GT images and the resulting raw data was processed in order to generate
the required construction progress timestamps. The following values were calculated in
reference to one processed frame:

0.016sec · 290elements + 0.001sec · 290elements + 5.4sec = 10.33sec

Evaluating one image in summary took close to 10 seconds on average. When using
the image capturing setup described by by Colins F., Pfitzner F. and Schlenger J. [54] in
section 5.1 every 30 seconds a new picture is taken by each camera. Assuming that some
of the required processes in the fourth step can slightly overlap, three cameras could be
used simultaneously to process all images in real-time.

6.3 Accuracy

Summary of findings

Before the accuracy of the proposed approach could be thoroughly evaluated, some
data clean-up had to be carried out. This involved excluding 84 elements from the list
of 290 objects, because they were installed before or after the two-month surveillance
period. Therefore, their construction progress was not represented within the used image
data. Furthermore, four elements were removed because they were not visible within the
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viewpoint of either of the two cameras. Seven more elements needed to be excluded, as
their bounding box was occluded by cranes or other construction site equipment during the
whole observation timespan. The remaining 195 elements were processed accordingly.
Some walls and columns did not fit into the proposed method while passing the element
filters applied in section 5.3 as well as the clean-up process. This was due to errors
within the BIM model because a total of 17 elements were classified as IfcWalls while
having a very small cross-section and a high length. These would better be categorized as
IfcBeams, resembling their load-bearing behaviour and optical appearance. Therefore, the
segmentation model could not recognize those elements, which is the reason for excluding
them from this evaluation. Additionally, two further elements had been removed because
their height attribute was not set correctly, resulting in their GT image only containing the
ground floor area.

After these clean-ups, 176 samples remained to be evaluated. With closer inspection
of the program’s output, twelve did render unusable results, while the underlying errors
can be traced back to the element’s GT images. For ten columns and two wall elements,
the inaccuracies of all preceding processing steps combined with additional ones due
to the swaying of the crane in some frames resulted in the GT map of these elements
being shifted too far away from the actual element area. Additional elaboration on this
phenomenon is provided later in this chapter. Figure 6.2 shows four columns from this
subset of the twelve elements, whose GT images do not overlap with the correct element
area at all. While the frame shown in the figure was an extreme case of the problem
that did not represent the whole number of evaluated frames, this clearly shows that
sometimes the sum of inaccuracies could exceed a certain threshold, above which a
successful evaluation of progress timestamps was no longer possible.

Figure 6.2: Four columns of the first building floor whose GT maps were generated very
badly

For multiple wall and column elements, a problem arose that did not have any effect in the
evaluations of section 5.2.2. Here, all elements were monitored over the whole timespan
of two months in contrast to a duration roughly matching the time of their construction.
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This resulted in some walls and columns on the second floor having pixels attributed to
them, which should correctly be counted towards other elements. The reason for this
could be found within their GT images again. Because all pixels overlapping with the mask
area of each element were counted within every frame, the program could not distinguish
between different elements or building levels, as this information was not contained within
the segmented prediction files. Figure 6.3 depicts one of the wall elements in question,
showing many concrete labelled pixels in the first half of the evaluation. However, these
pixels belonged to wall elements below and behind the actual one, constructed before
the duration of the surveillance. This occlusion problem could happen for every element
on the second floor, as actions happening on the first floor prior to the construction of
the element in question were compared with its GT mask area. Currently, no solution
is implemented within this thesis’s scope, but possible approaches are provided in this
section and chapter 7.

Figure 6.3: Evaluation of a wall in the second building floor

The proposed methodology stated in chapter 4 evaluated the construction progress of
each building object in the BIM model fitting the selection filters. Within this workflow,
the complete area of each singular model element was evaluated at once, as the whole
element geometry was present in the model-generated GT image. Especially for slabs,
this posed a problem when big elements were modelled as one object but were then
constructed in multiple concreting steps. For this reason, the proposed methodology
assumed that the BIM model only contains elements that have been installed in one part.
However, some slabs were modelled contrary to this assumption within the surveilled
samples. Figure 6.4 shows one slab element on the second floor as an example of this
problem.

Figure 6.4: Slab element of the second building floor covering most of the floor area
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When looking at slab elements like that, the proposed algorithm resulted in wrong conclu-
sions for the construction progress timestamps, as the whole element area was evaluated
at once. The procedure then failed to categorize the slab into a "panel", "rebar" or "con-
crete" class. As the shown slab element spans most of the building’s floor area, a certain
portion of the slab was entirely constructed and even occluded by numerous elements that
are already installed on top of it, while other areas were only in the "rebar" or "panel" phase.
The resulting evaluation shown in figure 6.5 is therefore very noisy and no reasonable
evaluation for the whole element could be deducted by the program.

Figure 6.5: Evaluation of a slab in the second building floor with noisy results

As stated at the beginning of this section, no sources for as-built timestamps were available
other than manually extracting them from the site images. Therefore, eight representative
building elements were thoroughly inspected and their derived construction progress
timestamps were compared against the as-built ones. The calculated differences are
stated in table 6.2 and the result plots can be seen in appendix A. While a segmentation-
based approach could often produce no correct estimate for the endpoint of the rebar
installation due to reasons stated in section 5.2.2, the results were still included in the
upcoming evaluation.
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Table 6.2: Examples for determining the accuracy

Panel Start Panel End Rebar Start Rebar End Concrete Start Concrete End

Slab 1: 1zKYFF6k97s9zxpqalau9j, 2nd floor, plot in figure A.1

as-built 27.04. 15:54:57 28.04. 07:20:13 04.05. 17:22:49 04.05. 17:52:40 11.05. 10:58:14 11.05. 11:05:50
derived 27.04. 16:06:00 27.04. 16:54:00 28.04. 07:00:00 04.05. 17:44:00 03.05. 08:06:00 11.05. 11:06:00
error 00:11:03 -14:36:13 > 1 day -00:08:40 > 1 day 00:00:10

Slab 2: 19fYLvxgf8suiIdEnYtMFv, 2nd floor, plot in figure A.2

as-built 01.04. 07:00:00 26.04. 12:18:53 27.04. 07:34:26 28.04. 09:57:57 04.05. 12:23:20 04.05. 18:30:26
derived 01.04. 07:00:00 23.04. 11:46:00 27.04. 10:42:00 27.04. 11:18:00 04.05. 14:04:00 04.05. 14:04:00
error 00:00:00 > 1 day 03:07:34 -22:39:57 01:40:40 –

Wall 1: 0$t85hqrT7yOpjG8x4qx6K, 2nd floor, plot in figure A.3

as-built 10.05. 12:48:54 10.05. 12:48:54 occluded occluded 16.05. 13:41:20 16.05. 13:41:20
derived 01.04. 09:48:00 10.05. 12:50:00 11.05. 12:40:00 – 01.04. 07:00:00 16.05. 13:42:00
error > 1day 00:01:06 – – > 1day 00:00:40

Wall 2: 3UuBFrtqLBgRqko$UrITge, 2nd floor, plot in figure A.4

as-built 12.05. 12:39:39 12.05. 12:48:45 occluded occluded 19.05. 09:29:10 19.05. 09:40:17
derived 28.04. 08:44:00 12.05. 12:40:00 27.04. 12:50:00 – 01.04. 07:00:00 19.05. 09:48:00
error > 1day -00:08:45 – – > 1day 00:07:43

Wall 3: 2rbZufm2L6SvoLNj_lChwC, 2nd floor, plot in figure A.5

as-built 11.04. 16:06:08 12.04. 08:50:10 12.04. 10:57:06 13.04. 08:16:46 26.04. 08:17:45 26.04. 08:17:45
derived 11.04. 19:56:00 12.04. 09:48:00 12.04. 10:56:00 12.04. 11:50:00 12.04. 08:32:00 26.04. 08:32:00
error 03:50:08 00:57:50 -00:01:06 -20:26:46 > 1day 00:14:15

Column 1: 3Qex4CRQj7zBu0Bf66FEnU, 1st floor, plot in figure A.6

as-built 12.04. 12:24:04 12.04. 13:57:06 06.04. 14:43:47 06.04. 14:51:22 13.04. 07:24:41 13.04. 07:31:15
derived 04.04. 16:44:00 – 06.04. 14:44:00 – 13.04. 07:24:00 –
error > 1day – -00:00:13 – -00:00:41 –

Column 2: 3Qex4CRQj7zBu0Bf66FEpZ, 1st floor, plot in figure A.7

as-built 07.04. 12:02:25 07.04. 12:02:25 06.04. 11:21:58 06.04. 11:37:09 13.04. 11:58:44 14.04. 08:15:44
derived 06.04. 12:00:00 07.04. 12:18:00 06.04. 11:28:00 – 13.04. 11:58:00 –
error -23:57:45 00:15:35 00:06:02 – -00:00:44 –

Column 3: 0G8O_QWTj0oB1llP5cRKJC, 2nd floor, plot in figure A.8

as-built 21.04. 14:50:24 21.04. 15:03:33 21.04. 14:42:20 21.04. 14:47:22 16.05. 16:39:48 16.05. 16:39:48
derived 21.04. 13:06:00 28.04. 15:58:00 21.04. 12:36:00 – 16.05. 16:38:00 –
error -01:43:36 > 1day 02:06:20 – -00:01:48 –

Analysis of the outcomes

The accuracy in both slab examples did not match the results of the studies in section
5.2.2. While construction progress milestones could be detected reasonably accurate for
both previous examples, except for the concrete phase for the last one, the results from
these samples varied heavily. This was especially unexpected, as the element for the
second example in this case study was the same one used in section 5.2.2. While the
endpoint of the concrete state could not be detected in both tests, the program deducted
the end timestamp for the panel phase correctly in section 5.2.2. This could be attributed
to the higher value for the upper threshold of 85% in the first test compared to the 75%
used here.

When looking at the first slab sample of this case study and its result in figure A.1, it is not
apparent, why the timestamps for the beginning of rebar and concrete works was detected
in the middle of numerous panel pixels. Consulting the construction site images directly
also revealed no apparent reasons for this behaviour. However, the prediction images
contained small patches of "panel_rebar" and "panel_concrete" labelled pixels at these
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timestamps. Figure 6.6 shows one image and its corresponding prediction result for the
time of the detected endpoint for the concrete phase. These wrong segmentation results
only occurred for one camera and a small number of frames. However, at these two points,
the implemented averaging techniques were not able to mitigate its effects on the final
evaluation. The reason for this is, that the ground floor area of the slab in question is only
6.2m2. Seemingly small patches with incorrectly segmented pixels could, therefore, not
be compensated by the few remaining correct pixels.

Figure 6.6: Examples of a wrong segmentation result

Both the first and second wall examples posed the same problems. First, the starting
point of panel and concrete works was placed at the beginning of the considered period
because of the occlusion problem stated in the beginning. Here, pixels from the walls of
the first floor were counted towards the wall of interest on the second floor, fulfilling the
10% threshold of both classes immediately. In contrast to that, the ending timestamp for
both classes was correctly derived with only little inaccuracies. Secondly, all rebar works
should not be visible in the plot, considering that the formwork side facing the camera was
placed first, thereby occluding all rebar elements of the object. The detected start of rebar
works in the first example resembled the point in time at which the first rebar pieces were
put into place in the wall in front of the wall element of interest. Because the segmentation
approach did not differentiate between multiple instances of walls, these errors stemming
from occlusions could not be avoided in the current state of the proposed framework.

In contrast to both examples, the last wall sample generated better results. Only the
detected starting point of concrete works contained a higher error, with all other points
derived reasonably accurate. The only exception was the ending timestamp for rebar
works. However, this problem was already discussed in section 5.2.2 and its cause lied
within the fact that a segmentation approach will always detect an area as fully filled with
rebar elements when one layer is finished. But actually, the rebar process is only complete
when all four layers are completed, which can hardly be detected by a segmentation-based
approach. Hence, this timestamp is not as relevant to the overall accuracy as others.

The first column example revealed an interesting problem in relation to the number of used
cameras and the overlap of monitored days. When switching from the 09the to the 10th of
April, in figure A.6 it seems as if the detected pixels for rebar works jumped suddenly by
about 20 percent. As this change occurred directly within the first frame of this monitored
day, it could hardly be attributed to site progress. Instead, the reason for this is shown in
figure 6.1 as only the second camera recorded any data on the 10th of April.
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{ " timestamp " : " 20220409195600 " , " panel " :0 .0792 , " rebar " :33.0471 ,
" concrete " : 0 . 0 , " tota l_mask " :4538 .0 }

{ " timestamp " : " 20220409195800 " , " panel " :0 .3651 , " rebar " :29.2958 ,
" concrete " : 0 . 0 , " tota l_mask " :4538 .0 }

{ " timestamp " : " 20220410070000 " , " panel " : 0 . 0 , " rebar " :55.5423 ,
" concrete " : 0 . 0 , " tota l_mask " :4416 .0 }

{ " timestamp " : " 20220410070200 " , " panel " : 0 . 0 , " rebar " :67.6630 ,
" concrete " : 0 . 0 , " tota l_mask " :4416 .0 }

This excerpt of the raw data generated by the evaluation algorithm shows not only the
sudden change in the percentage of detected rebar pixels, but also different total mask
areas for the first and last shown entries. This alone indicated a change in the used
cameras, as the GT mask area of the element was different for each camera because of
their alternate viewpoints. The jump in the detected rebar pixels could be attributed to a
different quality in the segmentation results for each camera. The images in figure 6.7
show the overlap of each camera’s predicted pixels (yellow for column_rebar) coloured in
orange with the element’s GT map (red). A significantly smaller overlap was achieved for
the first camera than for the second camera. If data for both was available, like on the 9th
of April, the average of both values were taken into account for the evaluation. However,
as one camera did not record images on the 10th of April, no averaging was performed. A
higher percentage of detected pixels was calculated, resulting in the sudden jump shown
in figure A.6.

Figure 6.7: Left: Prediction image for camera 1, Right: Prediction image for camera 2

While this observation is interesting, it did not influence the other estimated progress
timestamps for the surveilled samples. The missing or only very inaccurately detected
results for all column examples could traced back to another problem. Its root was that
column elements are very slim and, therefore, contained fewer pixels in their GT masks
compared to walls or slabs. This increased the risk of the GT images no longer overlapping
with the predicted element pixels when multiple sources of inaccuracies combined. The
case study in section 5.3 showed that the model-generated GT images could already
contain considerable defects compared to manually drawn ones. Within the evaluation
process, another source of inaccuracies was then added. While the cameras retained a
fixed point of view over the surveillance period, they could move slightly due to the swaying
of the crane in stronger winds or during different crane operations. To understand this
factor, 10% of all images taken on one day were manually evaluated. In every picture, the
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same point was marked and its movement over time was recorded. Figure 6.8 illustrates
the results for two points relativity close to the camera location. Figure 6.9 shows one
point further away from the crane. The included plots of deviations from a middle value for
each point show considerable variations throughout the day. Moreover, the studied point
further away from the camera in the right image shows a nearly twice as strong maximum
movement compared to the points closer to the camera.

Figure 6.8: 1st example of camera viewpoint movement

Figure 6.9: 2nd example of camera viewpoint movement
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When construction progress was evaluated in times of high crane movement, the GT mask
of an element could, therefore, be shifted up to 40 pixels away from its original location.
This can result in no pixels being detected for the slim column elements, as the GT masks
did not overlap at all with the actual element in the prediction image. Therefore, the
resulting plot for the third column example A.8 shows multiple spikes and valleys, making
a reasonable progress estimation impossible.

Limitations

The success of the proposed workflow is limited by some factors with one of them
lying within the BIM model. As the derived algorithms to compute the model-generated
GT images work with several attributes, namely the IFC-type, height, and object name,
the attributes must be set correctly. Therefore, corresponding guidelines for the model
generation need to be included in projects, on which the proposed workflow is intended to
be tested. Another addition to these modelling rules is based on the assumption that all
elements modelled as one object are also installed in one part. As every singular model
object’s real-world construction progress is evaluated as a whole at once, slabs or walls
that are concreted in multiple sections also need to be divided into the respective parts in
the BIM model.

While these limitations can be easily overcome by following the stated modelling rules,
others need further research. One of those is the problem of occlusion occurring with
elements in higher building floors. Their GT masks overlap with other elements constructed
in floors below or behind and in front of them. Pixels belonging to those objects are then
counted towards wrong elements. Because this results in incorrect conclusions for some
progress milestones, a solution for this limitation would be beneficial. A possible approach
is the implementation of checks, which, for example, only enable the monitoring a wall
element as soon as the slab underneath it is finished. However, as this requires knowledge
of the sequence in which all elements are constructed, this approach is not part of the
scope of this master’s thesis.

The same conclusion can be transferred to the accuracy problem caused by crane move-
ments. The extensive influence of this on different points within the site images is shown
in figures 6.8 and 6.9. However, an approach towards solving this problem can not be
presented within this thesis. A possible way to remedy this limitation is the inclusion of
markers on the construction site, which are also referenced in the BIM model. As this
approach can eliminate the need for user input in calculating the model-generated GT
images, these markers can be used to not only generate a perspective transformation ma-
trix once but dynamically for each singular site image. This or other dynamic approaches
within the transformation process could mitigate the crane-induced movements and, in
turn, increase the accuracy of the generated element GT images. However, this lies
beyond the scope of this master’s thesis.

A further shortcoming of the proposed methodology in creating the model-generated GT
images is that no openings of model elements can be included. The reason for this can
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be found within the geometric representation of openings in the IFC file structure. These
are stored in the form of separate model objects linked to the respective building element.
The derived algorithm adds the height information for walls and columns homogeneously
over the complete ground floor area of the element. Openings for doors, windows or other
installations would then need to be cut out in a second step, which is not implemented in the
proposed framework. As a result, this approach adds an additional source for inaccuracies
within the GT images, which becomes more prominent with a higher proportion of openings
in an element. However, while this particular influence was expected to be seen in the case
study, no problems seem to have come to light in the surveilled samples. Nonetheless,
further research and optimization in this regard can be done by other researchers, as this
is not part of this work’s scope.

The stated limitations, especially considering occlusions and inaccuracies due to crane
movements, reduce the proposed approach’s performance, as seen in the reviewed
examples within this section. Besides the highlighted issues, the presented approach
consistently yields strong results across most cases, demonstrating robust performance.
A thorough discussion is presented in the following chapter to summarize the successful
achievements of all parts of the proposed workflow, contrast them with their shortcomings,
and provide incentives for further research.
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Chapter 7

Discussion

The implementation of the in chapter 4 proposed methodology and its thorough part-wise
and combined testing are complete and many potential contributions to aid in advancing
digitization within the construction sector have been achieved. However, next to these
successful achievements, some shortcomings of the elaborated procedures have come to
light. Both are contrasted to each other in this chapter.

Dataset creation

The first part of this master’s thesis focused on creating a new semantic segmentation
dataset tailored to the needs of this research approach. After the required raw data in the
form of site images captured by crane-mounted cameras had been collected and sorted,
pixel-wise dense annotations of nine labelled classes were authored. These included
three construction phases with a panel, rebar and concrete state for slabs, walls and
columns. All resulting GT images were structured into one training and two testing subsets.
Pictures from two real-world construction sites were used in all of them apart from the
second testing set, which included images from two different projects. The dataset can be
used to train segmentation models to confidently detect the listed cast-in-place concrete
elements in environments similar to those found on the projects used in the training subset.
Additionally, the alternate second testing set helps to determine the model’s performance
on other unknown construction sites that do not resemble the training projects’ conditions.

However, due to the limitation of available research time within a master’s thesis, the
dataset consists of only 420 annotated images summed up over all training and testing
sets. These numbers lack behind those of other datasets created in papers by Z. Wang
et al. [35], X. Luo et al. [33] or by A. Pal et al. [37] with 660, 7.790 and 2.458 images
respectively. Nevertheless, the small dataset still enabled the trained segmentation models
to perform reasonably well on data from unknown and known construction sites.

Adding new reviewed and annotated data would render the dataset more homogeneous,
balancing the class-wise metrics (number of instances per class and annotated mask area
per class) shown in figure 5.8. If these images additionally stem from different construction
sites, the trained models’ performance on unknown projects can be significantly increased.
The metrics on the alternate test set in correlation with the standard test set shown in
table 5.2 currently suggest a significantly worse performance on data from unknown sites.
However, it can not be confidently stated, how many new images and sites need to be
included in the dataset and whether segmentation models trained on it can ultimately
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evaluate images from arbitrary construction sites confidently. These questions remain to
be solved by future research.

The dataset can already be used in combination with other discipline-specific datasets
for detecting all building elements as it is proposed in different papers [34], [35], [37].
In this regard, the dataset contributed by this thesis can aid in generating a semantic
segmentation model capable of understanding and detecting all elements present on a
construction site and, therefore, evolve into a monitoring tool usable for all forms of on-site
work.

Training and testing of semantic segmentation models

Further, within the first part of the proposed methodology, a training pipeline was created
based on the MMSegmentation repository [56], and the newly conceived dataset was
integrated into its workflow. With this proposition, the well-readable MMSegmentation
documentation can be consulted, making this pipeline easily accessible and extendable to
new datasets or segmentation models. In total, 49 different combinations of backbones
and algorithms as model architectures have been trained on the new dataset with fixed
learning rate and weight decay parameters. After an extensive evaluation of all models on
both available testing sets including the computation of the segmentation speed, additional
fine-tuning was conducted on two top-performing architectures. The resulting trained
semantic segmentation models achieved good accuracies with a maximum mIoU metric
of 70,35 on the standard and 41,00 on the alternate test set.

The list of evaluated models presents a comprehensive but not finite overview of seg-
mentation approaches, leaving room for further testing of other model architectures or
developing new ones. Consulting the evolution of best scores for established datasets like
the Cityscapes or ADE20k dataset, a continuous increase in performance over the last
years emerges [29], [31]. When transferred to the dataset of this thesis, future segmenta-
tion algorithms can possible achieve even better performances than the 49 already tested
ones. Additionally, all included algorithm and backbone combinations are trained using
a fixed combination of hyper-parameters, which worked well on other curated datasets.
While a closer inspection of those parameters was not possible within the time limit of
this thesis, other research approaches can focus on this very part. However, only little
improvements can be expected from such efforts, as the fine-tuning section in this the-
sis shows, that the evaluated metrics only increase slightly when changing the learning
rate. Therefore, the list of tested models provides a close insight into which fusion of
currently available algorithms and backbones works best concerning the segmentation of
cast-in-place concrete elements on construction sites.

Evaluation of construction progress timestamps

Using the predictions stemming from a trained semantic segmentation model as raw data,
algorithms were proposed within this thesis to evaluate a continuous stream of images
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and extract element-specific construction progress timestamps. A case study on two
real-world construction projects proved the viability of this approach alongside its ability to
compute accurate progress estimations for sample elements. For each of the six evaluated
examples, optimal parameters for the detection thresholds and averaging techniques were
derived. From these results, an overall applicable combination of settings was extracted
to be used for observing other construction sites. Nevertheless, the values provided in
table 5.16 clearly show that highly varying setting combinations for different element types
must be used to get optimal results. Because of the inhomogenity inherent to construction
sites and their elements, the chosen average of the three parameters is unlikely to work
perfectly on every monitored element, as the studies in chapter 6 proved.

Alongside these surveilled building objects, the importance of using multiple cameras at
once and implementing averaging techniques to combine a set number of frames emerged
(see figure 5.12 and 5.13). These methods are also proven to be capable of handling
faulty images and wrong segmentation results reasonably well.

While these tests obtained good results, one deficit of the segmentation-based approach
came to light. The prediction results are only usable when generated from images with
apt lighting conditions. Therefore, the proposed framework can not be used in projects
with shift operation, as images taken during the night would not be segmented correctly.
Hence, only frames between 07:00 a.m. and 07:00 p.m. were taken into consideration for
the evaluations within this thesis.

Furthermore, the elaborated methodology could not detect two other progress events
correctly. The first one in question is the completion milestone of rebar works because
a segmentation-based approach will only identify an area as 100% completed in this
regard as soon as one whole layer has been installed. However, naturally four different
layers with two directional ones per side are needed on top of each other to complete
the installation for one object. The second event concerns the concreting stage for walls
and columns. This one is not detectable because the emerging concrete areas are not
visible within the segmentation-based approach, as the proposed camera setup mainly
looks at the vertical formwork sides of those elements. After the concreting is finished,
some concrete-labelled pixels are visible at the top of the element, but this is insufficient
to guarantee a confident detection of the event. A possible solution for this and the latter
problem is the combination of a segmentation-based approach with other surveillance
techniques like activity monitoring or infrared sensors as proposed by J. Yang [40] among
other researchers. In a paper by Pfitzner et al. [45], the monitoring of concrete pouring with
graph-enhanced computer vision is proposed. Their approach combines a YOLOv8 model
for objects detected to monitor progress as well as activities with an ontological model
for process reasoning. This method’s fusion of computer vision and knowledge graphs
achieves high accuracy rates in identifying concrete pouring states, as demonstrated
in a case study from an active construction site in Munich. Therefore, this approach,
combined with the one proposed in this thesis, could possibly remedy the problem of
confidently detecting concrete pouring stages for walls and columns. Similar procedures
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are conceivable for evaluating the installation of rebar elements to mitigate the elaborated
problem.

Coupling of the progress data with a BIM model

After successfully evaluating the site images to get element-specific progress timestamps,
the next step in the proposed procedure was linking this data to a digital representation in
the form of a BIM model or digital twin. This was achieved by automatically generating
the GT style images needed for each element to extract its progress advancements. The
necessary information was obtained from a IFC-file containing a BIM conform representa-
tion of the building geometry. Using one of the projects included in the new segmentation
dataset as an example, a case study was performed and the resulting accuracy was
evaluated. For bigger slab and wall elements, excellent results emerged, but for smaller
objects, the inaccuracies mainly stemming from utilizing user input and from modelling
faults in the BIM model, added up to more significant errors in the resulting GT images.
Furthermore, openings for windows, doors or other installations in model elements could
not be represented with the proposed algorithms so that they posed an additional source
of inaccuracies.

A primary area in need of further research in this part of the proposed methodology lies in
the generation of the 2D transformation matrix and the inclusion of the element’s height
in the GT images, as both steps need user input in the current configuration. But there
are possibilities for automating this part. Most promising is the introduction of markers on
the construction site, which are also referenced within the BIM model and could replace
the points now given by user input. This method and similar approaches are already
widely used for point cloud registration in the context of laser scanning [88] but need to be
investigated for segmentation-based approaches.

End-to-end approach in real-world scenarios

In the last part of this thesis, the procedure was tested as a whole to determine overall
accuracy and computation time. The resulting durations of all necessary steps, excluding
the generation of the dataset and the training of segmentation models, amounted to 10.33
seconds. Therefore, this performance is sufficient to run a setup with three cameras under
the assumption that the singular processes can overlap with each other slightly. However,
according to the proposed monitoring framework by F. Collins et al. [54], more cameras
on different cranes are needed, to fully surveil a construction site and reduce the risk
of occlusions for some elements. To achieve this, it is possible to run more cameras
simulatinously while outsource the necessary computation to a server running 24h per
day, because construction progress is usually only advanced during working hours from
06:00 am to 19:00 pm. Another way to remedy this problem is the implementation of
parallelization techniques, as the derived computation durations are calculated with the
program using one CPU core. So for every additional used core, the number of cameras
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can increase accordingly. Nonetheless, these proposed features are past the scope of this
theses and therefore not implemented.

To determine the accuracy, all 290 elements of two building floors from an example project
were surveilled over a two-month period. Alongside multiple excellent results, some
elements were found, which could not be processed due to errors and circumstances that
were out of the control of this thesis. A small number of those elements can be included in
the workflow if specific modelling rules are followed within the BIM model. For example,
one slab object could not be monitored successfully because the digital element was
not modelled according to the actual schedule of its construction as concreting sections
were not included in the model. Also, elements with incorrect height and wrong IFC-type
attributes rendered false results since the algorithm for generating the GT images can not
process those elements correctly.

Furthermore, a small number of elements received wrong progress timestamps because
other elements below or in front of them were constructed beforehand. Pixels belonging to
those objects were then attributed to the surveilled elements in question. Some of these
occlusion-based problems can be remedied by implementing certain checks based on
the as-planned construction schedule proposed by M. Golparvar-Fard et al. [89]. Then,
the evaluation of a particular object would only start if the required preceding elements
are finished. An example of this is to check for the completion of a slab element before
evaluating the wall constructed on top of it. Another approach worth pursuing is combining
semantic segmentation with additional instance segmentation to enable the segmentation
model to allocate pixels to the correct element automatically.

Another problem, that came to light in this section, concerns lacking surveillance data. For
one column example, a sudden change in detected pixels was recorded as one of two
used cameras did not capture images for one day. Ultimately this lead to the detection
of a wrong progress timestamp. A possible way to remedy this situation is to either
ensure, that all available cameras a switched on and off simulatinously or accomplish more
redundancy by using a higher number of cameras overall. The latter would also benefit the
overall accuracy of the proposed framework, as more available viewpoints could help with
problems concerning occlusion. Further studies in this regard are not contained within
the scope of this thesis and can be conducted in real-world deployments of the proposed
monitoring framework.
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Chapter 8

Conclusion

The overall goal of this master’s thesis was to provide a novel approach towards automat-
ing progress monitoring of cast-in-place concrete slabs, walls, and columns to help raise
the low digitization level of the construction sector. For this task, a custom-made dataset
of annotated site images and trained semantic segmentation models have been created,
which can confidently segment said elements in pictures from different sites. Addition-
ally, algorithms for evaluating element-specific construction progress timestamps and
procedures for coupling the obtained information with digital building models have been
proposed. With the integration of different averaging approaches, robust performance with
high levels of accuracy could be proven in case studies concerning the specific parts of
the elaborated framework and the whole end-to-end approach. Also, the viability of the
proposed methodology on real-world construction sites has been established in those
studies. Next to those contributions, additional incentives for future research to enhance
specific parts of the procedure were demonstrated.

This proposed tool to aid the construction monitoring processes needs to be tested
during real-world construction projects to gain insights into its abilities to help in everyday
surveillance tasks. Its desired influence on reducing cost and time overruns can be
evaluated in a test run like that. Nonetheless, this master’s thesis managed to produce a
vital contribution to elevate the digitization level of the construction sector, with the hope
that it will no longer stay at the bottom end of nearly every survey regarding this problem.
After all, the benefits of digitized processes reported in other industry sectors can only help
boost the stagnated productivity of the construction branch with innovations and research
proposals as well as their application to real-world projects.
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Appendix A

Plots for the end-to-end approach

Figure A.1: Results for the slab with guid: 1zKYFF6k97s9zxpqalau9j

Figure A.2: Results for the slab with guid: 19fYLvxgf8suiIdEnYtMFv

Figure A.3: Results for the wall with guid: 0$t85hqrT7yOpjG8x4qx6K

Figure A.4: Results for the wall with guid: 3UuBFrtqLBgRqko$UrITge
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Figure A.5: Results for the wall with guid: 2rbZufm2L6SvoLNj_lChwC

Figure A.6: Results for the column with guid: 3Qex4CRQj7zBu0Bf66FEnU

Figure A.7: Results for the column with guid: 3Qex4CRQj7zBu0Bf66FEpZ

Figure A.8: Results for the column with guid: 0G8O_QWTj0oB1llP5cRKJC
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