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Abstract

Systems with enzymatic cascade reactions are promising alternatives to complex chem-

ical syntheses or microbial bioreactors. A large number of enzymatic cascade reactions

have been developed in the past years. Generally, the enzymes of the cascade are dis-

solved in the aqueous phase in which the reactions occur or they are immobilized inside

the pores of solid particles, which are brought in contact with the aqueous phase that

contains the substrates and cofactors. Designing and optimizing enzymatic cascade

reaction processes solely based on laboratory experiments is challenging. There are

numerous decisions to be made and parameters to be selected. Kinetic modeling can

help make these decisions in a systematic way. In the present work, enzymatic cascade

reaction systems are modeled and analyzed.

For a system with dissolved enzymes that produces α-ketoglutarate, model-based, multi-

objective, dynamic optimization is applied. Pareto-optimal process schedules, which

are best compromises between space-time yield, enzyme consumption, and cofactor con-

sumption, are determined and visualized. Depending on the importance of the individual

objectives, the optimal process schedules vary. It is demonstrated, that multi-objective

optimization is a valuable tool for the development of enzymatic cascades. It provides

decision support for making further experiments, �nding bottlenecks in the cascade, and

choosing an optimal process schedule for production.

Further, a phenomenon called boosting by intermediates, where adding intermediates of

an enzymatic cascade reaction at the start of the reaction process increases the space-

time yield signi�cantly is explained using kinetic models. The phenomenon was studied

with mathematical models and several theorems are proven. The dynamics of four

chemical reaction networks that exhibit boosting by intermediate are studied under the

quasi steady state approximation and numerical solutions. A novel graphical method

that can be used to deduce which intermediates boost linear, redox enzymatic cascades

is presented.

Systems with immobilized enzymes are also studied. Enzymes can be immobilized in

porous particles using di�erent spatial immobilization distributions (SIDs). A theoret-

ical framework for modeling enzymatic cascade reactions catalyzed by enzymes immo-
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bilized in porous particles is developed. The developed framework is used to study and

characterize four di�erent SIDs for a two-step enzymatic cascade reaction. Individual im-

mobilization, homogeneous co-immobilization, and two heterogeneous co-immobilization

strategies. Through analytical solutions of the model equations and Monte Carlo sam-

pling of parameters, general conclusions are derived for the conditions under which the

di�erent SIDs are advantageous.

Finally, for �ow systems with immobilized enzymes, the comparison of spatial immobi-

lization distributions is combined with the comparison of di�erent designs of catalyst

zones. General theoretical insights into the selection of di�erent spatial immobilization

distributions and catalyst zones are derived through analytical solutions and a mathe-

matical proof.
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Kurzfassung

Systeme mit enzymatischen Kaskadenreaktionen sind vielversprechende Alternativen

zu komplexen chemischen Synthesen oder mikrobiellen Bioreaktoren. In den letzten

Jahren wurde eine Vielzahl enzymatischer Kaskadenreaktionen entwickelt. Im Allge-

meinen sind die Enzyme der Kaskade in der wässrigen Phase, in der die Reaktionen

statt�nden, gelöst oder in den Poren fester Partikel immobilisiert, die mit der wässri-

gen Phase in Kontakt gebracht werden, die die Substrate und Cofaktoren enthält. Die

Entwicklung und Optimierung enzymatischer Kaskadenreaktionsprozesse ausschlieÿlich

auf der Grundlage von Laborexperimenten ist eine Herausforderung. Es sind zahlreiche

Entscheidungen zu tre�en und Parameter auszuwählen. Die kinetische Modellierung

kann dabei helfen, diese Entscheidungen systematisch zu tre�en. In der vorliegenden

Arbeit werden enzymatische Kaskadenreaktionssysteme modelliert und analysiert.

Für ein System mit gelösten Enzymen, das α-Ketoglutarat produziert, wird eine modell-

basierte, mehrobjektive, dynamische Optimierung angewendet. Pareto-optimale Prozess-

pläne, die den besten Kompromiss zwischen Raum-Zeit-Ausbeute, Enzymverbrauch

und Cofaktorverbrauch darstellen, werden ermittelt und visualisiert. Je nach Bedeu-

tung der einzelnen Ziele variieren die optimalen Prozesspläne. Es wird gezeigt, dass

die Mehrzieloptimierung ein wertvolles Werkzeug für die Entwicklung enzymatischer

Kaskaden ist. Sie bietet Entscheidungsunterstützung für die Durchführung weiterer

Experimente, das Au�nden von Engpässen in der Kaskade und die Auswahl eines op-

timalen Prozessplans für die Produktion.

Darüber hinaus wird mithilfe kinetischer Modelle ein Phänomen namens Boosting by In-

termediates erklärt, bei dem die Zugabe von Intermediaten einer enzymatischen Kaskaden-

reaktion zu Beginn des Reaktionsprozesses die Raum-Zeit-Ausbeute deutlich erhöht.

Das Phänomen wurde mit mathematischen Modellen untersucht und mehrere Theo-

reme wurden bewiesen. Die Dynamik von vier chemischen Reaktionsnetzwerken, die eine

Verstärkung durch Zwischenprodukte zeigen, wird unter der quasi-stationären Näherung

und numerischen Lösungen untersucht. Es wird eine neuartige gra�sche Methode vorgestellt,

mit der abgeleitet werden kann, welche Zwischenprodukte lineare Redox-Enzymkaskaden

ankurbeln.
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Es werden Systeme mit immobilisierten Enzymen untersucht. Enzyme können mithilfe

verschiedener räumlicher Immobilisierungsverteilungen (SIDs) in porösen Partikeln im-

mobilisiert werden. Es wird ein theoretischer Rahmen für die Modellierung enzyma-

tischer Kaskadenreaktionen entwickelt, die durch in porösen Partikeln immobilisierte

Enzyme katalysiert werden. Das entwickelte Framework wird verwendet, um vier ver-

schiedene SIDs für eine zweistu�ge enzymatische Kaskadenreaktion zu untersuchen und

zu charakterisieren. Individuelle Immobilisierung, homogene Co-Immobilisierung und

zwei heterogene Co-Immobilisierungsstrategien. Durch analytische Lösungen der Mod-

ellgleichungen und Monte-Carlo-Probenahme von Parametern werden allgemeine Schlussfol-

gerungen für die Bedingungen abgeleitet, unter denen die verschiedenen SIDs vorteilhaft

sind.

Schlieÿlich, wird für Strömungssysteme mit immobilisierten Enzymen der Vergleich

räumlicher Immobilisierungsverteilungen mit dem Vergleich verschiedener Designs von

Katalysatorzonen kombiniert. Durch analytische Lösungen und einen mathematischen

Beweis werden allgemeine theoretische Erkenntnisse zur Auswahl unterschiedlicher räum-

licher Immobilisierungsverteilungen und Katalysatorzonen abgeleitet.
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1 Introduction

1.1 State of the art

Systems with enzymatic cascade reactions are promising alternatives to complex chem-

ical syntheses or microbial bioreactors. A cascade reaction is the combination of two

or more reaction steps in one pot without isolating the intermediates. In an enzymatic

cascade, an enzyme catalyzes at least one reaction step [1]. Enzymatic cascade reactions

are advantageous because they avoid the need for puri�cation of the intermediates and

bypass unfavorable equilibria [1�3]. Moreover, they enable higher yield and improved

atom economy [2, 3] and produce less waste, since less chemicals are used [2].

A large number of enzymatic cascade reactions have been developed in the past years

[3�7], e.g., for the conversion of D-glucose into isobutanol or ethanol [4], D-xylose or D-

glucuronate into α-ketoglutarate [8, 9], and D-glucose into L-alanine [10]. The reaction

networks of in vitro cascades often have similar structures with their in vivo counterparts

but di�erent challenges exist in modeling and model-based optimization for the two. The

task in in vivo systems is the genetic modi�cation of the cells to direct the metabolic �ux

towards the wanted products by preventing certain pathways and allowing others. The

in vivo cascades are most often modeled to be in steady state. On the other hand, in

vitro cascades often display complex non-linear dynamics, and the challenge in designing

their reaction processes lies in the selection of process parameters (e.g., titers of enzymes

or cofactor) to optimize one or more objectives. Redox, in vitro cascades often reach a

quasi steady state and are an exception.

Generally, the enzymes of the cascade are dissolved into the aqueous phase, in which the

reactions occur, or they are immobilized inside the pores of solid porous particles, which

are brought in contact with the aqueous phase that contains substrates, intermediates,

and products [11�16]. While the immobilization approach is more challenging in prepa-

ration, it promises improved enzyme stability [17�22], facilitated catalyst separation,

and, not least, allows for continuous/repeated catalyst use [23, 24]. Furthermore, it can

improve enzyme activity [25, 26] and help with enzyme puri�cation [27]. Speci�cally for

immobilization, many experimental studies have been published on the topic of immo-
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1 Introduction

bilizing and comparing and characterizing enzyme spatial immobilization distributions

(SIDs) in the past few years [28�32]. By contrast, little work has been done in comparing

SIDs using modeling approaches.

Increasing the productivity of enzymatic cascades is an important task [33]. A lot of

success has been found to this end in the areas of enzyme engineering and enzyme im-

mobilization [13, 16, 34�42]. However, attention must be also given to the optimization

of the reaction processes themselves. Straightforward thinking implies increasing the

titers of enzymes and cofactors to increase space-time yield. However, there is often an

upper limit to the amount of enzymes that can be used. Even when no other physical

limitations exist, eventually the solubility limit of each enzyme is reached [43, 44]. Fur-

ther, both enzymes and cofactors are expensive, and not recycling them is prohibitive

[45, 46]. Finally, the complex dynamics of cascade reaction systems might often require

that certain cofactor-dependent enzymes be kept at low titers to avoid cofactor depletion

and the termination of the cascade reaction.

Designing enzymatic cascade reaction processes solely based on laboratory experiments

has challenges. There are numerous parameters in an enzymatic cascade reaction pro-

cess, e.g., the titers and addition schedule of substrates, several enzymes, and cofactors,

the used spatial immobilization distribution when the enzymes are immobilized, etc.

Only a limited set of experiments can be done, so when the design of the reaction

processes is only based on experiments, a large part of the parameter space remains

unexplored. Kinetic modeling and model-based optimization is, therefore, an essential

step, commonly done in the scienti�c community. Modeling in vitro cascades has been

studied also by other researchers in the past few years [9, 47�54]. Notable contribu-

tions to the topic are the works of Shen et al. [9] and Johannsen et al. [51]. Shen et al.

demonstrated that a reliable kinetic model can be developed for a multi-enzyme cascade

and used to study its dynamics. Johannsen et al. demonstrated how kinetic models of

multi-enzyme cascades can be used to design and optimize a real process carried out

in a mini-plant. This dissertation goes beyond the already achieved tasks and provides

novel results both in model-based optimization and the theoretical analysis of enzymatic

cascade reaction processes. The goal and contents of the dissertation are discussed in

the following section.

1.2 Thesis and structure of the work

The goal of the work is to demonstrate that:

2



1 Introduction

� the design of enzymatic cascade reaction systems can be done using parameterized,

kinetic models through model-based, multi-objective optimization and,

� that when the parametrization of models requires too many experiments or other

resources, design decisions can be made based on the structure of the equations of

the kinetic models.

The present work deals with both dissolved and immobilized enzyme systems. Also, both

dynamic and continuous reaction processes are studied. When studying real reaction

processes, experimental data provided by our collaborators in the Chair of Biogenic

Resources of the Technical University of Munich are used to parameterize the models.

For systems with dissolved enzymes, it is demonstrated how a dynamic process can

be designed through model-based, multi-objective optimization. As an application, the

production of α-ketoglutarate via the oxidative pathway of C6 uronic acids is chosen [8].

Pareto-optimal process schedules which are best compromises between space-time yield,

enzyme consumption, and cofactor consumption are determined, visualized, and dis-

cussed for a batch reaction process that produces α-ketoglutarate. The applied method-

ology and the results are presented in Section 2.

Further, a theoretical analysis of systems with dissolved enzymes is carried out. The

focus of our analysis is the reaction networks of four redox, cofactor-balanced cascade

reactions, three of which were developed by Gargiulo et al., Sutiono et al. and Gutterl

et al. [2, 4, 55, 56]. As demonstrated by Sutiono et al. [56] experimentally, the cofactors

and intermediates of redox cascades often reach a quasi steady state during batch pro-

cesses. The dynamics of the reaction networks were studied with mathematical models,

via the quasi steady state approximation and numerical solutions of the model equa-

tions. A phenomenon called boosting by intermediates, which was �rst observed and

discussed by Sutiono et al. [56], was explained and analyzed using mathematical models

and several theorems about boosting by intermediate were prooven. A graphical method

was developed to answer the question of which intermediates boost or delay linear redox

cascades. The applied methodology and the results are presented in Section 3.

For systems with immobilized enzymes, some fundamental theoretical questions about

the optimal way to distribute enzymes in the pores of porous particles are tackled for

dynamic processes. During the immobilization of several enzymes in porous particles,

one could wonder what is the best spatial immobilization distribution (SID) to �x the

enzymes relative to each other distributed over particles, and inside the pores [34]. A

mechanistic modeling framework is developed for immobilized enzymatic cascades in

porous particles based on �rst principles. The framework is versatile enough to model

3



1 Introduction

and compare various SIDs. The performance of di�erent SIDs is compared against each

other in parametric studies to elucidate when certain SIDs are better. When possible,

analytical solutions for the macro-kinetics are derived. Otherwise, Monte Carlo sampling

is used to check parameter sensitivities. Based on the results of the parametric studies,

some general guidelines from our theory are derived. The applied methodology and the

results are presented in Section 4.

For known parameter values (i.e., di�usivities, kinetic parameters, etc.) model-based

optimization can be applied to the design of systems with immobilized enzymes. It

is demonstrated how such systems can be designed with model-based optimization in

an application example. The optimal SID and enzyme ratio is selected for a two-step

cascade reaction. The applied methodology and the results are presented in Section 4.

Finally, for continuous processes with immobilized enzymes, the theoretical analysis of

spatial immobilization distributions is combined with the selection of conceptual zone

designs of di�erent porous particles inside the reactors. Where possible analytical solu-

tions are derived. A theorem about the optimal way to distribute catalysts (enzymes)

in di�erent zones in a plug-�ow reactor is prooven. The applied methodology and the

results are presented in Section 4. An overview of the studied problems as well as their

organisation inside the thesis is given in Figure 1.

Cascade 
reaction 
systems

Model-based 
optimization

Theoretical 
analysis

Theoretical 
analysis

Model-based 
optimization

Theoretical 
analysis

Model-based 
optimization

Theoretical 
analysis

Model-based 
optimization

Continuous 
processes

Dynamic 
processes

Dissolved 
enzymes

Immobilized 
enzymes

Continuous 
processes

Dynamic 
processes

Section 2

Section 3

Section 4

Figure 1: An overview of organization of topics within the dissertation. The gray
dashed lines indicate topics that are not covered in the dissertation.
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2 Model-based optimization of

dynamic processes with dissolved

enzymes

2.1 Motivation

Numerous enzymatic cascades were researched and successfully carried out in the labo-

ratory scale in the last years [2, 3, 47, 57�63]. In this section, how kinetic modeling and

model-based optimization can be applied for the design of enzymatic cascade reaction

system with dissolved enzymes is demonstrated.

Multiple con�icting objectives must be taken into account during the design of an enzy-

matic cascade reaction process. There is not such a thing as one optimal cascade sched-

ule. Instead, there is a multitude of schedules representing best compromises between

the objectives. Cascade developers are aware of these compromises: e.g., improving the

space-time yield has to be often paid by increasing the enzyme consumption. A sys-

tematic way to deal with con�icting objectives is multi-objective optimization (MOO),

also known as multi-criteria optimization or Pareto optimization. It avoids the need

for weighing/prioritizing the single objectives and instead identi�es a set of best com-

promises. MOO has been applied throughout process engineering [64�67], including

the design of microbial bioreactors [68�71], and enzymatic reactors [51]. In this section

MOO is applied to the design of enzymatic cascade batch reactors and the underly-

ing scheduling problem. It is shown that MOO provides advanced decision support

for making further experiments, �nding bottlenecks, and choosing an optimal process

schedule.

The production of α-ketoglutarate via the oxidative pathway of C6 uronic acids is chosen

as an application [8]. Kinetics models were �t to the experimental results of Beer et al.

[8], enzyme deactivation kinetics were added, and the kinetic model was combined with

a reactor model. It will be shown that the combined simulation model provides time

pro�les agreeing with the respective experimental pro�les. Using dynamic optimization,

5



2 Model-based optimization of dynamic processes with dissolved enzymes

process schedules for the production of α-ketoglutarate are identi�ed. Thereby, three

con�icting objectives are considered: space-time yield, enzyme consumption, and co-

factor consumption. The optimization parameters comprise the initial concentrations

of substrates, enzymes and cofactors, the batch time, as well as the dosing times and

amounts of supplemented substrates and enzymes. The set of Pareto-optimal process

schedules is determined and serves as decision support for further process design.

2.2 Methodology

2.2.1 Studied system

An in vitro metabolic engineering approach for the production of α-ketoglutarate through

the oxidative pathway of C6 uronic acids was developed and published by Beer et al.

[8]. As shown in Figure 2 a), this enzymatic cascade includes four enzymatic reactions

and one non-enzymatic chemical step. First, D-glucuronate is oxidized in a cofactor-

dependent manner by uronate dehydrogenase (UDH) from Agrobacterium tumefaciens

to yield glucaro-1,4-lactone. The heterocyclic ring structure of glucaro-1,4-lactone then

opens to yield D-glucarate. D-glucarate is then dehydrated by glucarate dehydratase

(GlucD) from Actinobacillus succinogenes to yield 5-keto-4-deoxyglucarate. 5-keto-4-

deoxyglucarate then reacts with a reaction catalyzed by 5-keto-4-deoxyglucarate dehy-

dratase (KdgD) from Acinetobacter baylyi to form ketoglutaric semialdehyde. The �nal

step is another cofactor-dependent oxidation by α-ketoglutaric semialdehyde dehydro-

genase (KgsalDH) from Pseudomonas putida to yield α-ketoglutarate.

The non-enzymatic reaction (II) has not been described by Beer et al. [8] and was added

in the present work because its kinetics are relevant. In the next section, experimental

justi�cation is described. In two other similar studies, the kinetics of lactone opening

steps were found to be relevant in the work of Shen et al. and Sutiono et al. [9, 72].

The reduced cofactor (NADH) is regenerated by the enzyme NADH oxidase (NOX)

from Lactobaccilus pentosu to yield its oxidized form (NAD+), as shown in Figure 2

b). In this reaction, oxygen is required as a second substrate and water is formed as a

byproduct.
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Figure 2: a) The enzymatic cascade reaction for the sythesis of α-ketoglutarate through
the oxidative pathway of C6 uronic acids. b) The cofactor regeneration
reaction. Each reaction is assigned a Roman nummeral, each substrate is
assigned an Arabic nummeral, and each enzyme is assigned an abbreviation
of its name.
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2 Model-based optimization of dynamic processes with dissolved enzymes

2.2.2 Assumptions

Before giving the model equations the major assumptions are discussed. An ideal,

perfectly mixed, isothermal, batch reactor is assumed. A steady supply of air through

the reactor is assumed. The mass transfer of oxygen is modeled with a lumped kLa

parameter as explained below. All enzymes are assumed to be stable over the entire

batch time with the exception of NOX. Regarding the kinetics of the enzymes it is

assumed that they behave in the cascade as they do in the kinetic assay experiments of

the individual enzyme.

2.2.3 Model equations

Di�erential balances for the molar concentrations of all substrates, enzymes and cofac-

tors are formulated following the stoichiometry given in Figure 2. With the exception of

the cofactor regeneration reaction, the stoichiometry of all reactions is 1:1. The material

balances for all substrates are presented with a compact matrix notation in Equation

(1). The substrates and reactions are assigned Arabic indices and Roman indices, re-

spectively, while the enzymes are assigned abbreviations of their names as indices. All

indices are given in Figure 2. The substrate concentrations, Si with i = 1, 2, ..., 9,

are included in vector s. The stoichiometric coe�cients are included in matrix U. The

reaction rates vk with k = I, II, ..., VI, are included in vector v. The oxygen mass

transfer rate, NO2 , is included in vector n.

ds

dt
=U ⋅ v + n (1)

where

s =

⎡
⎢
⎢
⎢
⎢
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⎢
⎢
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⎥
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2 Model-based optimization of dynamic processes with dissolved enzymes

The concentration of enzyme j in its active form is denoted with Ej. It is assumed that

UDH, GlucD, KdgD and KGSA do not deactivate during the reaction batch. Thus,

they can be fed right at the start and their activity stays constant.

dEUDH

dt
=
dEGlucD

dt
=
dEKdgD

dt
=
dEKGSA

dt
= 0 (2)

For NOX, deactivation is observed [73, 74]. For this reason, supplementation of active

NOX might be optimal. The material balance for active NOX is

dENOX

dt
= −kNOX ⋅ENOX + rNOX

s (3)

The deactivation is modeled with a �rst order decay with constant kNOX. rNOX
s denotes

the supplementation rate of active NOX.

The enzyme-catalyzed reaction steps (III) and (IV) are modeled with a Michaelis-Menten

kinetic [75].

vIII =
EGlucD ⋅ V GlucD

max ⋅ S3

KGlucD
3 + S3

(4)

vIV =
EKdgD ⋅ V KdgD

max ⋅ S4

KKdgD
4 + S4

(5)

The enzyme-catalyzed steps (I) and (V), which involve a cofactor, are modeled with a

Ping-Pong Bi Bi kinetic [76].

vI =
EUDH ⋅ V UDH

max ⋅ S1 ⋅ S7

KUDH
7 ⋅ S7 +KUDH

1 ⋅ S1 + S7 ⋅ S1

(6)

vV =
EKgsalDH ⋅ V KgsalDH

max ⋅ S5 ⋅ S7

KKgsalDH
7 ⋅ S7 +K

KgsalDH
5 ⋅ S5 + S7 ⋅ S5

(7)

In the above and the following equations, vk are the reaction rates, Si are the substrate

concentrations, Ej are the active enzyme concentrations, V j
max is the speci�c maximum

reaction rate of enzyme j, and Kj
i are the kinetic parameters. The rate of the opening

of the glucaro-1,4-lactone is modeled with �rst order kinetics with rate constant kII.

vII = kII ⋅ S2 (8)
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2 Model-based optimization of dynamic processes with dissolved enzymes

The rate of the cofactor regeneration step is modeled with a Michaelis-Menten kinetic

[75].

vVI =
ENOX ⋅ V NOX

max ⋅ S8

KNOX
8 + S8

(9)

An alternative cofactor regeneration system was also investigated. Sudar et al. [77] has

suggested a di�erent NOX enzyme from Lactococcus lactis for cofactor regeneration and

have given its rate by

v
′

VI =
ENOX′ ⋅ V NOX′

max ⋅ S8 ⋅ S9

(KNOX′
8 + S8 ⋅ (1 +

S7

KNOX′
7

)) ⋅ (KNOX′
9 + S9)

(10)

vVI (Equation (9)) is used in the parametrization using lab scale experiments of Beer et

al. [8]. v′VI (Equation (10)) is used in the process optimization.

The mass transfer of oxygen is modeled assuming that transport through the liquid-

phase �lm of the air bubbles to be rate limiting:

NO2 = kLa ⋅ (S
∗
9 − S9) (11)

kLa is the volumetric mass transfer coe�cient and S∗9 is the equilibrium solubility of

oxygen in the reaction solution. The solubility is calculated from Henry's law. Henry's

constant for oxygen in pure water at 25○C and 1 atm was used [78].

pO2 = (0.774 m
3 atm gmol−1) ⋅ S∗9 (12)

pO2 is the partial pressure of oxygen, in the air bubbles. In the simulation the partial

pressure pO2 was �xed to 0.2099 atm.

2.2.4 Numerical implementation

The model was implemented in Pyomo (Version 5.1) [79�81], a symbolic simulation and

optimization toolbox for Python. The �nite di�erence discretization scheme (implicit

Euler) [79, 82] and the IPOPT solver (Version 3.11.1) [83] were used. NOX supplemen-

tation was modeled using smooth functions instead of sharp impulses or steps:

rNOX
s =

3

∑
l=1
{Ak ⋅ [tanh(

100 ⋅ (t − tl)

tf
) − tanh(

100 ⋅ (t − (tl + 4min))

tf
)]} (13)
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Up to 3 additions were allowed. The additions start at time point tl, have a duration of

4 minutes, and a magnitude of Al. tl and Al are optimization variables. 100 is a shape

factor.

2.2.5 Parametrization

The parameters of the enzymatic reaction rate equations (4)-(7) and (9) were �tted to

the data of individual enzyme assay experiments from Beer et al. [8] minimizing the

least squares of the deviations in the rates. Plots comparing the experimental data with

the �tted curves are given in the supplementary material. The kinetic parameters are

presented in Table 1.

Table 1: The kinetic parameters of the enzymatic reactions and their 95% con�dence
interval.

j V j
max/(U/mg) i Kj

i /mM

UDH 221.331 ± 7.254 1 0.0780 ± 0.0447

7 0.5884 ± 0.0052

GlucD 8.876 ± 0.651 3 0.2945 ± 0.0695

KdgD 5.109 ± 0.457 4 0.4652 ± 0.1333

KgsalDH 40.701 ± 2.360 5 0.4812 ± 0.0342

7 0.1760 ± 0.0952

NOX 38.872 ± 2.992 8 0.0375 ± 0.0090

NOX' 16.409 ± 0.717* 7 0.1420 ± 0.0450*

8 0.0050 ± 0.0010*

9 0.0045 ± 0.0019*

* The kinetic parameters for NOX' were taken from Sudar
et al. [77].

The parameter kNOX quantifying the deactivation of NOX was �tted to an experiment

in a bench scale bubble reactor, c.f. Appendix A for details, and resulted in 0.03 ±

0.01 min−1. The rate constant kII was �tted to a cascade experiment (Figure 5 (B) in

[8]) from Beer et al. [8]. Before used in the �t, the experimental data were reconciled

as described in the supplementary material. kII was determined to be 0.013 ± 4 ⋅ 10−8

min−1. A comparison of reconciled experimental data and the �nal simulated model is

shown in Figure 3. A good �t between model and experiment is observed.
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Figure 3: Comparison of the the experimental data and the model for a cascade exper-
iment conducted in the bench scale batch reactor. The experimental data
points: ● D-glucuronate, ● glucaro-1,4-lactone, ● D-glucarate, ● 5-keto-4-
deoxy-glucarate, ● α-ketoglutarate semialdehyde, ● α-ketoglutarate, ● NAD+,
● NADH. The substrate concentration trajectories calculated by the model:

D-glucuronate, glucaro-1,4-lactone, D-glucarate, 5-keto-4-deoxy-
glucarate, α-ketoglutarate semialdehyde, α-ketoglutarate, NAD+,

NADH.

2.2.6 Multi-objective optimization

The focus of this section is a technical, dynamic process that produces α-ketoglutarate

using the cascade presented above. The process is done in a stirred-tank reactor with

air gassing at pH 7, 25○C, and 1 bar. Two simplifying assumptions are used at this early

stage of process design. The air gassing system is not speci�ed in detail. Instead, it is

assumed that kLa values in the range 1.2-15 min−1 are technically attainable [78] and

consider both limits in separate cases studies. Further, the product space-time yield

is maximized and the raw material costs are minimized while neglecting investment

and �xed operating costs. Under these assumptions, the size of the reactor becomes

irrelevant, and focusing on titers instead of absolute amounts of substrates and enzymes

is possible.

Control variables of the process are the titers of D-glucuronate, cofactor, and the �ve

enzymes and their supplementation schedules. Except for NOX, these compounds do

neither deactivate nor inhibit any step. Thus, the respective compounds are added at

the beginning of the process without any caveats. For NOX, both initial addition or

later supplementation at up to three freely chosen time points is allowed, cf. Equation

(13). Further, the running time tf of the batch is a control variable. It is assumed that

cofactors and enzymes can be used only in one batch and not recycled. Between two

12



2 Model-based optimization of dynamic processes with dissolved enzymes

batches, a preparation time tp of 30 min is needed, during which the batch reactor is

not available.

Three con�icting objectives Φw are considered in the optimization:

ΦSTY =
S6(tf)

tf + tp
(14)

ΦEC =

∑
j
{Ej(0)} + ∫

tf
0 r

NOX
p dt.

tf + tp
(15)

ΦCC =
S7(0)

tf + tp
(16)

ΦSTY quanti�es the space-time yield as the �nal product titer divided by the total

duration of one batch, including running and preparation time. It shall be maximized.

The enzyme consumption ΦEC quanti�es the space-time consumption of enzymes. Due

to a lack of reliable data, all enzymes are treated as equally costly. ΦCC quanti�es the

space-time consumption of cofactor NAD+. ΦEC and ΦCC shall be minimized. Instead

of prioritizing or weighing the objectives, the set of best compromises between them

is determined. Such a best compromise is a Pareto-optimal solution that is de�ned

as follows: an improvement in one of the objectives is only possible by accepting a

deterioration in at least one other objective. There are several methods and algorithms

to determine Pareto-optimal solutions systematically [64]. In the present work, the

epsilon constraint method is used. One Pareto-optimal solution is obtained by solving

the following single objective optimization problem:

max ΦSTY (17)

ΦEC ≤ ϵEC

ΦCC ≤ ϵCC

The single objective ΦSTY is maximized. The other objectives (which have to be min-

imized) are constrained by some limit ϵm from above. The solution to the problem

(17) is guaranteed Pareto-optimal [64]. Multiple Pareto-optimal solutions are obtained

through systematic variation of the ϵm bounds in problem (17). They are members of

the Pareto-optimal set, also called Pareto frontier.
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2 Model-based optimization of dynamic processes with dissolved enzymes

During all optimizations, additional inequality constraints are imposed to limiting the

considerations to practically relevant operations. The solubility of the substrates should

not exceed their solubility limit.

Si(0) ≤ 1, 000 mM (18)

Further, the running time of the batch is limited to practically reasonable values:

tf ≤ 50, 000 min (19)

Finally, the yield is also constraint:

S6(tf) − S6(0)

S1(0)
≥ 95% (20)

2.3 Results and discussion

2.3.1 Pareto-optimal process schedules

The results of the design of a dynamic reaction process for the production of α- ketoglu-

tarate via model-based optimization are presented and discussed here. Pareto-optimal

reaction process schedules were determined using the methodology previously described.

The results are based on the developed model and were derived by solving the discussed

optimization problem.

Results for two cases were determined (kLa = 1.2 min−1 in Figure 4 and kLa = 15

min−1 in Figure 5). For every case, 28 Pareto-optimal solutions that serve as sampling

points of the Pareto frontier were calculated. The numerical values for objectives and

all control variables are listed in tables in Appendix A. The trade-o�s between the

objectives are shown in Figures 4a) and 5a) for the kLa = 1.2 min−1 and kLa = 15 min−1

cases, respectively. The Pareto frontiers are 2D surfaces in the 3D objective space. The

Pareto frontiers are visualized as a contour plot using ΦCC as the level parameter. The

Pareto frontier divides the objective space into two regions: an infeasible region (top

left in Figures 4a) and 5a)) and a dominated region (lower right in Figures 4a) and 5a))

that contains feasible solutions that are not best compromises. For kLa = 1.2 min−1

(Figure 4a)), the trade-o�s between all three objectives are visible. The more enzymes

are consumed, the higher the space-time yield gets. This can be seen when, for example,

comparing points A and B. Even in an extreme compromise, where an unlimited supply

14



2 Model-based optimization of dynamic processes with dissolved enzymes

of enzymes is allowed, there is a limit for the space-time yield. In these solutions, the

oxygen transfer becomes rate-limiting. Further addition of enzymes does not improve

the situation signi�cantly.
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values for the control variable tf for each point in the ΦCC = 0.005 mM/min
Pareto frontier. c) The optimal values for the control variable S1(0) for
each point in the ΦCC = 0.005 mM/min Pareto frontier. d) The optimal
values for the total enzyme titers for each point in the ΦCC = 0.005 mM/min
Pareto frontier. NOX titers are read on the right axis. The titers of all other
enzymes are read on the left axis.
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In the kLa = 1.2 min−1 case (Figure 4a)), the space-time yields are signi�cantly lower

than in the kLa = 15 min−1 case (Figure 5a)). Due to limited oxygen supply, the

regeneration of the cofactor is slow, and the initial provision of the cofactor measured

by ΦCC is decisive for high space-time yields. Tha maximum space-time yield that can be

reached in this case is 0.35 mM/min. If the oxygen transport increases (kLa = 15 min−1

in Figure 5a), then much higher space-time yields are feasible. In the kLa = 15 min−1

case, changing the initial cofactor concentration has a minor e�ect. The regeneration is

more critical for the availability of the cofactor than the initial cofactor concentration.

The maximum space-time yield that can be reached in this case is 2.88 mM/min.

The optimal values of some selected control variables are presented beneath the Pareto

frontiers in Figures 4 and 5. All of these values correspond to the ΦCC = 0.005 mM/min

Pareto solutions. In Figures 4b) and 5b) the optimal running times, tf are shown. In

Figures 4c) and 5c), the optimal initial D-glucuronate titers, S1(0) are shown. Finally,

in Figures 4d) and 5d), the optimal initial enzyme titers, Ej(0), for UDH, GlucD, KdgD

and KgsalDH and the total NOX titer, including supplementation are shown. The initial

titers for the �rst four enzymes are read on the left y-axis while the total NOX titer is

read on the right y-axis.

In Figure 4b), the times initially decrease and then increase again with rising ΦEC. The

initial decrease is because when more enzymes speed up the reactions the required 95%

yield is reached in a shorter time. The increase at high ΦEC is a result of the slow oxygen

mass transfer rate. When ΦEC become larger than 0.075 mM/min it is advantageous

to allow the reaction process to run for longer times to allow enough oxygen to be

transferred back to the reaction solution in order to convert more D-glucuronate. This

is shown bellow in more detail. By contrast, in Figure 5b), the running times keep

decreasing at higher enzyme consumption. Gradually, a minimum value is approached.

This minimum value is a result of the �rst order kinetic of the lactone opening step and

it can not be improved by adding more enzymes.

In Figure 4c), the optimal initial D-glucuronate titers are a lot less than the maximum

allowed concentration (1,000 mM). This is once again due to the slow oxygen transfer

rate. When, a higher enzyme consumption is allowed more substrate is converted. In

Figure 5c), the optimal initial D-glucuronate titers are equal to the solubility limit in all

solutions. The large rate of oxygen mass transfer allows for conversion of high amounts

of substrates quickly and it's always advantageous to convert the maximum amount of

substrate possible.

In Figure 4d), as higher enzyme consumption is allowed the titers of UDH, KgsalDH

and NOX rise. This is because cofactor regeneration is a limiting factor due to slow
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2 Model-based optimization of dynamic processes with dissolved enzymes

oxygen transfer. Therefore the optimizer compensates by adding more NOX and UDH,

KgsalDH respectively. The titers of GlucD and KdgD remain unchanged after an enzyme

consumption of 0.075 mM/min. Since oxygen transfer and cofactor regeneration are the

rate limiting steps, the optimizer selects all enzymes that accelerate these two steps

to supplement. Instead of adding more of GlucD and KdgD it allows them to act for

a longer time by increasing the running time of the batch reactor. In Figure 5d), all

enzyme titers increase as a larger enzyme consumption is allowed except for KgsalDH,

which decreases after 0.4 mM/min. This decrease is because the optimizer applies a

di�erent strategy after 0.4 mM/min. This is discussed further in Appendix A.

The results of the optimizations also include the process schedules (when to add NOX

etc.) and simulated time pro�les of every single Pareto-optimal solution. Detailed

inspection yields that solutions from the Pareto frontier di�er not only quantitatively

but also qualitatively from one another. This is shown in Figures 6 and 7, in which the

simulations of solutions A and B of Figure 4 are compared (respective pro�les for the

solutions C and D of Figure 5 are given in the Appendix A).

In solution B, in Figure 7, the oxygen concentration is close to zero for the most part.

This means that the oxygen transfer, and therefore the cofactor regeneration, is the

rate limiting step for the enzymatic cascade. This is quite di�erent in solution A, in

Figure 6, where the oxygen concentration is signi�cantly larger for most of the time.

When the reaction rate is limited by the reaction kinetics, the pro�les of the substrates

are generally curved as in Figure 6. On the other hand, when oxygen transfer is rate

limiting, the pro�les of the substrates are generally straight lines, as in Figure 7. This

is because the reaction kinetics are modeled with the Michaelis-Menten kinetics, while

the oxygen transfer is modeled with a linear equation.

While the oxygen concentration is low in solution B, the optimizer chose to invest

more NOX enzyme than in solution A, cf. higher spikes in the NOX time pro�les.

Consequently, B has a higher enzyme consumption than A, cf. Figure 4, but also a

higher space-time yield.
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Figure 6: Time pro�les of solution A of Figure 4a) (ΦEC = 0.025 µM/min and ΦCC

= 0.005 mM/min). First plot: The substrate concentration pro�les,
D-glucuronate, glucaro-1,4-lactone, D-glucarate, 5-keto-4-deoxy-
glucarate, α-ketoglutarate semialdehyde, α-ketoglutarate, NAD+,

NADH. Second plot: The enzyme concentration pro�les, UDH,
GlucD, KdgD, KgsalDH, NOX. Third plot: The oxygen concentra-
tion pro�le.
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Figure 7: Time pro�les solution B of Figure 4a) (ΦEC = 0.100 µM/min and ΦCC = 0.005
mM/min. First plot: The substrate concentration pro�les, D-glucuronate,

glucaro-1,4-lactone, D-glucarate, 5-keto-4-deoxy-glucarate, α-
ketoglutarate semialdehyde, α-ketoglutarate, NAD+, NADH. Second
plot: The enzyme concentration pro�les, UDH, GlucD, KdgD,
KgsalDH, NOX. Third plot: The oxygen concentration pro�le.
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2.3.2 Discussion of the applied method

The Pareto frontier o�ers great decision support for the selection of a process sched-

ule. For example, consider the solutions marked D and E in Figure 5a). If one would

maximize only the single objective space-time yield, then E would be better than D.

However, since the Pareto frontier is relatively �at in that region, solution D is also

very attractive. It saves a decent amount of enzymes at a slight - and thus possibly

acceptable - deterioration of the space-time yield. Without the overview provided by

the Pareto frontier, the designer would have no feeling for these trade-o�s.

Even though all solutions on the Pareto frontier represent best compromises, they may

di�er signi�cantly from one another as seen in Figures 6 and 7. Di�erent process strate-

gies are applied in di�erent Pareto optimal solutions. The strategies are adjusted each

time to maximize the space-time yield under the kLa, ΦEC and ΦCC constraints in e�ect.

Comparing the di�erent strategies provides insight in the cascade itself and helps better

understand the Pareto frontier. Without the systematic and automated way as done in

this study, obtaining these information by experiment and simulation alone, would be

rather tedious and incomplete.

The optimization results are based on the model, thus their validity depends on the

models uncertainty. To evaluate the impact of the uncertainty, an analysis was per-

formed, where the sensitivity of our parametrization was quanti�ed on the space-time

yield calculated by our model. The details are described in the supplementary material.

In some cases, the space-time yield varied between -75% and +2% of the space-time

yields presented in Figures 4 and 5. This shows that once a process schedule and a

process technology (sparging system, stirrer, etc.) are selected, the model parameters

should be validated again. Even though -75% sounds like a lot, one should bear in

mind that the space-time yield could be optimized again for the changed parameter set

damping the deterioration in the space-time yield. In future work, robust multi-objective

optimization as presented by Bortz et al. [84] could be considered.

The results described above provide an excellent base for the subsequent steps of pro-

cess design. On the one hand, the Pareto frontier implicitly provides an experimental

design for further validation and tuning of the model. By focusing on multiple best

compromises between the objectives, the resulting model is expected to be accurate

right where it matters and robust even if priorities or prices change. In particular, a

validation/improvement of the model would be interesting in a large scale technical reac-

tor. With the updated model the frontier could be updated leading to a target-focused

iteration. Such an iteration with larger technical reactors was however out of the scope

for the cascade studied in the present work.
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2 Model-based optimization of dynamic processes with dissolved enzymes

On the other hand, the Pareto frontier supports the decision-maker in the follow-up

steps toward realizing the process. Even though detailed cost functions might not be

available yet, the decision-maker can select a solution in the knee of the Pareto frontier

(i.e., the region of strong curvature and not in the �at parts of the frontier) and move

on. Even if the Pareto frontier shows no sharp knee, it provides a robust set of optimal

compromises to focus. The optimization does not have to be repeated from scratch

when the objectives are concretized, e.g., by introducing monetary cost functions.
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3 Theoretical analysis of dynamic

processes with dissolved enzymes

3.1 Cofactor regeneration and boosting by

intermediates

Some steps of enzymatic cascades are cofactor-dependent, i.e., they require a cofactor to

exhibit catalytic activity. The cofactor exists either in an oxidized or a reduced form, e.g.,

NAD+ and NADH. During a reductive, cofactor-dependent, enzyme-catalyzed reaction,

the oxidized form of the cofactor is reduced to yield the reduced form of the cofactor.

During an oxidative cofactor-dependent catalyzed reaction, the opposite happens. The

price of the cofactors is usually high, and using them in stoichiometric amounts is not

possible. Therefore, often, an e�ective cofactor regeneration system must be in place.

This is often achieved by having the same number of reduction and oxidation steps in

the cascade. This type of cascades are often referred to as redox cascade reactions.

Many redox cascades have been developed in the past few years [4, 10, 56, 85�89].

Sutiono et al. developed a method that increases the productivity of redox enzymatic

cascades called boosting by intermediates (BBI). Small amounts of intermediates were

added at the start of the reaction process to increase the space-time yield and reduce

the amount of cofactor in a six-step, redox enzymatic cascade [56]. It was demonstrated

that BBI has the potential to increase the productivity of systems of redox enzymatic

cascade reactions and decrease their cost by reducing the titer of enzymes or cofactors

required to reach the same space-time yield.

In the present work, we study the theory behind the phenomen BBI along more examples

of redox cascades and explain in detail how BBI works. We uncover which intermediates

boost and which do not. Further, we quantify the boosting e�ect and answer the question

how much intermediate has the same e�ect as adding a certain amount of cofactor. In

this section, the fundamentals and used methods are presented. All results, including

a formal de�nition of BBI and several theorems on BBI are given in the results. The

proofs of the theorems are given in the Appendix B.
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3.2 Theorems on BBI

We study the chemical reaction networks (CRN) of four exemplary redox enzymatic

cascades, which are illustrated in Figure 8. CRN a) corresponds to the enzymatic

cascade developed by Gargiulo et al. for the production of cyclohexanol, b) to the

one developed by Sutiono et al. for the production of 1,2,4-butanetriol, and c) to one

developed by Guterl et al. for the production of ethanol [2, 4, 55, 56]. The fourth

example, CRN d) does not correspond to any developed in vitro cascade (to the best

of our knowledge) but might be developed in the future. Note that we limit our study

to cascades with one educt and one product, that start with a cofactor-dependent step

and require only one type of cofactor with two forms (oxidized and reduced).

We de�ne BBI along the simplest possible redox neutral cascade shown by CRN a).

Suppose we initially add 250 mM of substrate S1 and 4 mM of cofactor c1, which is the

oxidized form NAD+ of the cofactor. If the enzymes have Michaelis-Menten-like kinetics,

then it is reasonable to assume that the kinetic of the �rst step is of zeroth order with

respect to S1 (titers larger than the respective Km lead to saturation) and �rst order

with respect to c1. The subsequent steps, where only small substrate concentrations

are present, can be approached with �rst-order kinetics with respect to the respective

substrates and cofactors. Solving the resulting di�erential material balances for typical

values of kinetic constants yields the time pro�les as shown in Figure 9. The qualitative

pro�le is very typical of redox neutral cascades: the �rst substrate is consumed almost

linearly, the �nal product rises also almost linearly. The intermediate (here S2) assumes

a small and nearly constant concentration after a short initial phase. The intermediate

and the cofactors (oxidized and reduced form) reach a quasi steady-state soon after the

start of the reaction period and stay there until small concentrations of raw material

are left.
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Figure 8: Chemical reaction networks (CRN) and cofactor trajectory graphs (CTG)
studied in the present work. For clarity, protons and molecules of CO2 and
H2O that are acquired or released in the reactions are not shown.
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Figure 9: Simulation of the concentration pro�les of CRN a) The model equations and
kinetic parameters for the model of CRN a) are given in the Appendix B.
The lower panel shows a zoom in the y-axis. The dashed lines show the quasi
steady state period. S1, S2, S3, c1, c2.

Simulations and experiments (e.g., see [56]) with other redox neutral cascades reveal

similar qualitative behavior. (We show simulations of the other CRNs in the Appendix

B.) The intermediates can be seen as a "bottleneck" in the overall reaction progress.

Their concentration cannot surpass the initial cofactor concentration for stoichiometric

reasons. Further, their small concentration slow all reaction steps that have them as

substrate. Adding intermediates will increase their concentration in quasi steady-state

and thus accelarate the overall cascade. It will also increase the quasi steady-state

concentration of the cofactor to a more favorable level, e.g., for a cascade that starts

with a reductive step it will increase the quasi steady-state concentration of the oxidized

form of the cofactor. Note that the amount of intermediates added at time zero will not

be converted to product but will rather stay in one of the intermediate chemical forms.

We de�ne boosting by intermediates as follows.
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De�nition 1: Boosting by intermediates.

Given is an enzymatic cascade reaction that includes at least one intermediate.

The cascade reaction is carried out twice, the initial conditions (i.e., initial enzyme

titers, titer of the �rst substrate, and cofactor titers) are kept the same. The �rst

time, no intermediates are added. The second time, some intermediate is added in

some amount at the start of the cascade. We de�ne that the intermediate boosts

if

∫

tf

0
−
dS1

dt
dt

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
no intermediate added

< ∫

tf

0
−
dS1

dt
dt

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
intermediate added

(21)

Therein, dS1

dt (a negative number) is the rate of change of the concentration of the

�rst substrate S1 that participates in a cofactor-dependent reaction. Its integral

over time t from time 0 till �nal time tf yields the totally consumed titer of S1 till

time tf . Boosting by intermediate happens when S1 is consumed faster.

The decision to integrate the rate of change of the initial substrate of the cascade and not

that of the product is not arbitrary. To illustrate this, imagine a cascade independent

of cofactors. Adding intermediates to the reaction will - at least for a short time - boost

the productivity of the cascade in a trivial way: The added intermediate will react

to the product boosting its production. Such an e�ect is not what we understand as

BBI. We de�ne BBI only if adding the intermediate has a feedback e�ect on the rate of

consumption of another substrate upstream.

Even if one intermediate boosts an enzymatic cascade, another might not. In some cases,

an intermediate might even delay a cascade reaction. The key to understanding which

intermediates boost and which do not is the characteristic equation, which is de�ned as

follows.

De�nition 2: Characteristic equation.

The characteristic equation is an equation derived from the material balance con-

necting the rate of change of the concentration of the oxidized form of the cofactor
dc1
dt with a linear combination of the concentrations of intermediates dSi

dt . For a

cascade with one educt and one product that contains n substrates in total, let

I = {2, ..,n − 1} be the set of all intermediates of the cascade and xi an integer

number, the characteristic equation can then be written as follows:

dc1
dt
= ∑

i∈I
xi ⋅

dSi

dt
(22)
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The characteristic equations of the four CRNs in Figure 8 are shown in Equations (23)

- (26):

dc1
dt
= −

dS2

dt
(23)

dc1
dt
= −

dS2

dt
−
dS3

dt
−
dS4

dt
−
dS5

dt
(24)

dc1
dt
= −

dS2

dt
−
dS3

dt
−
dS5

dt
−
dS6

dt
−
dS7

dt
(25)

dc1
dt
= −

dS2

dt
+
dS5

dt
(26)

The characteristic equations show the dependence of the rate of change of the cofactor

concentration on the rate of change of the concentration of certain intermediates. When

all intermediates appear with negative coe�cients, then all intermediates are constrained

and cannot exceed the initial cofactor concentration during the reaction process if BBI

is not used. If some interemdiates do not appear in the characteristic equation they

are not constrained in the same way. When some intermediates appear with positive

and some with negative coe�cients in the characteristic equation, the behavior of the

cascade is more complex and whether intermediates accumulate depends on the kinetic

parameters. The characteristic equation can be used to deduce which intermediates

boost as follows.
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Theorem 1: Identi�cation of intermediates that boost for any redox

neutral cascade.

For a redox neutral cascade that reaches a quasi steady-state, �nding which in-

termediates boost can be done through the characteristic equation. If the cascade

starts with a cofactor-reducing step and the characteristic equation contains all in-

termediates with negative coe�cients xi then all intermediates boost the cascade.

If the characteristic equation contains both intermediates with positive, negative

and/or zero coe�cients the answer depends on the relative value of the kinetic

parameters. In the case that an oxidative or neutral step whose educt appears in

the characteristic equation is rate limiting, all intermediates with a coe�cient of

the same (opposite) sign as the coe�cient of that educt boost (delay) the cascade.

In the case that a reductive step whose educt appears in the characteristic equa-

tion is rate limiting, all intermediates with a negative (positive) coe�cient boost

(delay) the cascade.

Note that the characteristic equation does not include the �rst substrate or the product

of the cascade, it only includes intermediates. Obtaining the characteristic equation for

a certain redox neutral cascade is the task of �nding the coe�cients xi. A method for

deriving the coe�cients is given below.

Method 1: Obtaining the characteristic equation.

Let the di�erential material balance for all substrates except the �rst one of a cas-

cade reaction with n substrates be written as follows: dp
dt =Q ⋅v, where, p includes

the concentrations of all substrates except the �rst one, Q is a stoichiometry ma-

trix and v includes the reaction rates. The material balance for the oxidized form

of the cofactor can be written as follows: dc1
dt = q ⋅v, where, c1 is the concentration

of the oxidized form of the cofactor and q a stoichiometry vector. Vector x con-

taining the coe�cients of the characteristic equation xi with i ∈ {2, ..,n} is found

by solving the following matrix equation: x ⋅Q = q

For linear cascades, without branching points, and the same number of oxidizing and

reducing steps, method 1 can be replaced by a simple graphical method which includes

the cofactor trajectory graph (CTG). The cofactor trajectory graph is a simple graph,

comprising arrows and levels, constructed directly from the stoichiometry of the CRN.

The y-axis gives the cumulative change in oxidation number αi of the cofactor from step

to step in the cascade. The graph starts at α1 = 0 for substrate S1. Every step that

reduces (oxidizes) the cofactor leads to a decrease (increase) in the oxidation number
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by one. All steps not depending on the cofactor leave the oxidation number the same.

The oxidation numbers in the CTG, equal the coe�cients of the characteristic equation.

Three examples of the CTG are given in Figure 8 for the studied CRNs. The cofactor

trajectory graph can be used to understand which intermediates boost linear redox

neutral cascades according to theorem 2.

Theorem 2: Graphical identi�cation of intermediates that boost for

linear redox neutral cascades.

For linear redox neutral cascades as we study in the CRNs a), b) and d), the

identi�cation of boosting intermediates is easily done with the cofactor trajec-

tory graph (CTG). If all intermediates in the cofactor trajectory graph are below

(above) or on the x-axis, all intermediates boost the cascade. If there are inter-

mediates both below and on/above the x-axis, which intermediates boost depends

on the relative value of the kinetic parameters. When the rate limiting step is

reductive, all intermediates above the x-axis delay and all intermediates below the

x-axis boost. When the rate limiting step is neutral or oxidative and is above the

x-axis, intermediates above the line boost and below the line delay. When the

rate limiting step is neutral or oxidative and is below the x-axis, the opposite is

true. When the rate limiting step is on the x-axis no intermediate boosts.

Note that for CRN c) no solution is given. This network is non-linear and therefore

can not be solved using 2. Still, theorem 1 can be used. Applying theorems 1 and

2 one can tell that in CRNs a) and b) all cascades boost, while in cascades c) and

d) which intermediates boost depends on the kinetic parameters. After knowing the

intermediate(s) that boost the cascade, it is also interesting to know how strongly they

boost. As illustrated in Figure 9, the cofactors and the intermediates enter a quasi

steady-state which determines the duration of the cascade. Larger quasi steady-state

concentrations for the oxidized form of the cofactor (for cascades that start with a

cofactor-reducing step) and the intermediates lead to faster overall kinetics in the cascade

reaction. The quasi steady- state reaction rates and concentrations can be calculated

using Method 2.
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Method 2: Quasi steady-state analysis

For known kinetic parameters and initial titers, and the kinetics of the �rst step

saturated and independent of the raw material concentration the quasi steady-

state concentrations of cofactors and intermediates as well as the quasi steady-

state reaction rate can be calculated by solving the system of equations vqssI =

vqssII = ... = vqssk for cascades of k steps together with the characteristic equation

of the redox neutral cascade and the equation dc1
dt = −

dc2
dt that is derived from the

material balance. After the quasi steady-state concentrations are estimated, the

runtime tf till high conversion can be estimated by the equation tf = S0
1/v

qss
I .

Though adding intermediates can signi�canly increase the space-time yield, there are

limitations as described in Theorem 3.

Theorem 3: Maximum space-time yield. In a redox enzymatic cascade

reaction with one educt and one product and a 1:1 stoichiometry, the quasi steady-

state space-time yield never exceeds the smallest maximum reaction rate Vmax of

the enzymes regardless of how much substrate, intermediate or cofactor is added.

Of course, the space-time yield might not reach this limit for several reasons, e.g., be-

cause not enough intermediates or cofactors are used to accelerate the cascade, due to

inhibition or because enzymes deactivate. Since cofactor costs are high, it is interesting

to study the case where the reaction rates of cofactor-dependent steps are further con-

strained because not enough cofactor is added. Let us look at the simplest cascade in

Figure 8 CRN a). An upper limit to the quasi steady-state cofactor concentration can

be calculated as follows. Suppose Michaelis-Menten type kinetics like:

vI =
Vmax,I ⋅ S1 ⋅ c1

(Km,S1 + S1) ⋅ (Km,c1 + c1)
(27)

vII =
Vmax,II ⋅ S2 ⋅ c2

(Km,S2 + S2) ⋅ (Km,c2 + c2)
(28)

During the quasi steady-state, the educt concentration S1 is much larger than the re-

spective Km,S1 also it is reasonable to assume that the cofactor concentration is much

smaller than the respective Km. Therefore, S1 >> Km,S1 and c1 << Km,c1 Equation (27)

simpli�es to:
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vI ≈
Vmax,I

Km,c1
´¹¹¹¹¸¹¹¹¹¹¶

kI

⋅c1 (29)

For the second step of CRN a), when no or small amounts of intermediate are added in

the start of the reaction, the reaction rate can be approximated as follows (when S2 <<

Km,S2 and c2 << Km,c2) by simplifying Equation (28):

vII ≈
Vmax,II

Km,c2⋅Km,S2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
kII

⋅c2 ⋅ S2 (30)

Equation (30) is just an approximation and is only valid when small amounts of sub-

strates S2 and c2 are present. If a large amount of intermediate S2 is added to boost the

cascade, the kinetics of the second reaction step will eventually become large enough

to ignore the dependence on S2. Therefore, when S2 >> Km,S2 and c2 << Km,c2 then

Equation (28) simpli�es to:

vII ≈
Vmax,II

Km,c2
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶

kII
′

⋅c2 (31)

Of course, both Equation (30 and 31) are approximations, for an accurate description of

the reaction rate Equation (28) has to be used. Applying method 2 (taking vqssI = v
qss
II )

with the kinetic model of Equations (29) and (30), one can calculate the quasi steady-

state concentrations and reaction rates by solving the resulting second order polynomial.

Using Equation (29) and (31) an upper limit can be calculated that looks as follows:

cqss1,max = c
0
1 ⋅

k′II
kI + k′II

(32)

From here an upper limit for the maximum space-time yield can be calculated from vqssI

as follows:

vqssI,max = c
0
1 ⋅

kI ⋅ k′II
kI + k′II

(33)

The minimum total cascade duration is:
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tf,min =
S0
1 ⋅ (kI + k

′
II)

c01 ⋅ kI ⋅ k
′
II

(34)

The quasi steady-state cofactor concentration is plotted for di�erent initial intermediate

concentrations (S0
2) in Figure 10 by applying method 2 for CRN a) with selected pa-

rameter values. The red line shows the limit emposed by Equation (32). The doted line

shows the quasi steady-state cofactor concentration that is reached when S0
2 = Km,S2 .

S0
2  / (mM)

cqs
s

1
 o

r  
vqs

s
I

Figure 10: cqss1 or vqssI as a function of S0
2 . The red line shows an approximation of the

upper limit imposed by Equations (32 and 33). The red dot corresponds to
the case where S0

2 = Km,S2 .

3.3 Numerical studies

3.3.1 Boosting e�ect on the simplest chemical reaction network

Kinetic modeling as demonstrated in multiple works the past years [51�54, 90] can ef-

fectively describe the boosting e�ect of intermediates. Let us start with the simplest

chemical reaction network. Simulations for CRN a) (using a kinetic model with param-

eters chosen to be in typical ranges) demonstrate the e�ect of boosting by intermediates

for di�erent initial intermediate titers in Figure 11. In the �rst panel, no intermediate

is added, and therefore intermediate S2 is constrained to be under the initial cofactor

titer. This can be shown by integrating the characteristic equation of CRN a) (Equation

23) from time t = 0 to time t = tqss and rearranging:

Sqss
2 = c

0
1 − c

qss
1 + S

0
2 (35)

Therefore, when S0
2 = 0:
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Sqss
2 < c

0
1 (36)

Due to the small concentrations of the intermediate and cofactor during quasi steady-

state, the second reaction, the rate of which depends on the concentration of the inter-

mediate, acts as a bottleneck on the space-time yield. When adding the S0
2 = 20 mM

(≈ Km,S2) of intermediate at the start of the reaction process in the second panel, full

conversion is reached much faster, since now the constraint on the quasi steady-state

cofactor concentration is relaxed by 20 mM.

Sqss
2 < c

0
1 + 20 mM (37)

Note that the magnitude of the boosting e�ect depends on the kinetic parameters and

not only on the structure of the reaction network. Adding S0
2 = 80 mM of intermediate

(>> Km,S2) in panel three does not boost the cascade much further, since what is now

rate limiting is the cofactor concentration which is still much lower than the respective

Km,c.
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Figure 11: CRN a) simulated with and without the addition of intermediate S2. The
black dashed line shows the approximation obtained for the duration of the
cascade by method 2 using the simpli�ed kinetic models shown in Equations
(29 and 30). The model equations and kinetic parameters for the model of
CRN a) are given in the Appendix B. In the �rst panel no intermediate is
added (S0

2 = 0 mM) . In the second panel S0
2 = 20 mM. In the third panel

S0
2 = 80 mM. All other parameters are kept constant.
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The value of boosting by intermediates as a method becomes apparent when studying

how much cofactor one can potentially substitute for the same amount of intermediate.

In Figure 12 di�erent combinations of the initial amounts of intermediate and cofactor

that can be used to achieve the same space-time yield are compared. The x- and y-

axis show the initial intermediate and cofactor amounts respectively, while the di�erent

space-time yields are given with the three di�erent levels. For a space time yield of 1

mM/min, 2 mM of cofactor can be exchanged for 10 mM of intermediate, this exchange

might be very favorable economically, considering that the cofactor has a much larger

molecular weight than most cascade intermediates, but also a much higher price per

unit weight than most, if not all, cascade intermediates.

Figure 12: The initial cofactor concentration that must be added to achieve the same
space time yield for di�erent initial intermediate concentrations for CRN
a). The model equations and kinetic parameters for the model of CRN a)
are given in the SI.

3.3.2 Model-based optimization of the production of

(S)-1,2,4-butanetriol

The design of enzymatic cascade reaction systems can be achieved through model-based

optimization by solving optimal-control problems [51�54, 90, 91]. A model was devel-

oped and parameterized for the enzymatic cascade of Sutiono et al. [56] (c.f. Figure 8).

Michaelis-Menten type reaction kinetic models were �tted to assay experiments and were

used to model the cascade. The complete model, including parameter values, is given

in Appendix B. The model demonstrated a decent �t to experiment (c.f. Appendix B)

and multi-objective optimization was applied [90]. In industrial processes, decisions are
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made by comparing pro�ts or costs per unit time so objectives connected with revenue

or cost per unit time where used. Namely, the space-time yield which is connected to

revenue and the cofactor and intermediate consumptions which are connected to costs

were used.

ΦSTY =
S6(tf)

tf + tp
(38)

ΦCC =
c01

tf + tp
(39)

ΦIC =

∑
i∈I
S0
i

tf + tp
(40)

Where tf is the �nal reaction time, tp is the preparation time between batches and I

is the set of all intermediates of the cascade. Note that according to theorem 1 and

the corresponding CTG, all intermediates can potentially boost this cascade, the choice

between all intermediates is given to the optimizer and the optimizer chooses based

on which intermediate gives the biggest kinetic advantage. Of course, if information is

known about the price (or other criteria) of the intermediates, those can be added to

the model and the optimizer can make an informed decision. The �rst objective, space-

time yield, is to be maximized, while the other two objectives have to be minimized.

The yield was constrained to be larger or equal to 95%, all substrate titers were kept

below the solubility limits and the total reaction process duration was constrained to

be smaller or equal to 48 h. Further, the enzyme consumption was constrained to be

smaller or equal to 0.1 µM/min as shown below.

∑
j
{E0

j }

tf + tp
≤ 0.1 µM/min (41)

Where E0
j are the enzyme titers. The results are presented in Figure 13. The objectives

shown in Equations (38) and (40) are shown in the x and y axis respectively while

the objective shown in Equation (39) is shown with the di�erent levels. The space-

time yield rises quite rapidly at �rst. A small amount of intermediate can increase the

space-time yield signi�cantly i.e., from roughly 0.5 mM/min to roughly 1.1 mM/min

for an intermediate consumption equal to 0.0005 mM/min. At higher intermediate

consumption the Pareto front �attens out. When designing such reaction processes, the

trade-o�s between the prices can be compared with this method.
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Figure 13: Pareto optimal process schedules for the cascade developed by Sutiono et
al.

Model-based optimization is especially useful when designing reaction processes with

complex redox neutral cascades where BBI can be applied. Simultaneously selecting the

titers of substrates, intermediates, enzymes and cofactors is a di�cult task even when

all enzymes are kinetically characterized. The optimizer can systematically make that

selection to study tradeo�s and maximize productivity. Further, the selection of which

intermediates should be added can be done by the optimizer.

3.4 Fundamentals and Proofs

3.4.1 Material balance

We focus on reactions carried out in discontinuous batch processes. The concentrations

of the di�erent chemical species of the biochemical reaction networks change with time

according to the stoichiometry of the reactions and the reaction rates. Di�erential

material balances are written to express the change in the substrate concentrations. For

example, for CRN a) these are written as follows:

dS1

dt
= −vI (42)

dS2

dt
= vI − vII (43)
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dS3

dt
= vIII (44)

dc1
dt
= −vI + vII (45)

dc2
dt
= vI − vII (46)

Where, Si with i = 1, 2, 3 are the concentrations of the substrates of the reaction

network of the cascade. c1 and c2 are the concentrations of the oxidized and reduced

forms of the cofactor respectively and vk with k = I, II are the rates of reactions I and

II. Material balances can be written in compact matrix form. We include the �rst-order

derivatives with respect to time of the substrate concentrations, Ṡi with i = 1, 2, ..., n

together with the cofactor concentrations c1 and c2, in the concentration rate vector ṡ.

The stoichiometric coe�cients are included in the stoichiometry matrixU. The reaction

rates vk with k = I, II, ..., z are included in the reaction rate vector v. The material

balances for the substrates are then expressed by Equation (47).

ds

dt
=U ⋅ v (47)

For CRN a) the matrices are:

s =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

S1

S2

S3

c1

c2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, U =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1 0

+1 −1

0 +1

−1 +1

+1 −1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, v =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

vI

vII

⎤
⎥
⎥
⎥
⎥
⎥
⎦

The matrices s,U, and v for CRNs b), c) and d) are given in the supporting information.

Note that for any CRN the stoichiometry matrix U can be rewritten according to the

de�nitions given in Chapter 2 as follows. Where UR1 =U[1; 1, 2, ..., z] is the �rst row of

U.

U =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

UR1

Q

q

-q

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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3.4.2 Reaction rate models and appropriate simpli�cations

In the absence of inhibition e�ects, the reaction rate of both single- and double-substrate,

enzyme-catalyzed reactions are usually modeled with Michaelis-Menten type reaction

rate models as shown in Equation (48 and 49) respectively.

v =
Vmax ⋅ S

(Km,S + S)
(48)

v =
Vmax ⋅ S ⋅ c

(Km,S + S) ⋅ (Km,c + c)
(49)

It is well known that, the single-substrate Michaelis-Menten kinetic model approximates

�rst-order kinetics for small substrate concentrations and zero-order kinetics for larger

substrate concentrations. Steps that are not cofactor dependent are modeled with single

Michaelis-Menten kinetics. If these steps are exposed to a large substrate concentration

(i.e, S >> Km,S), e.g., if they are the �rst step of the cascade or if a lot of the respective

intermediate is present, the following simpli�cation can be made:

v ≈ Vmax (50)

On the other hand, if only a small amount of substrate is present (i.e., S << Km,S) the

following simpli�cation can be made:

v ≈
Vmax

Km,S

²
k

⋅S (51)

The kinetic parameters can be combined in one named k. For cofactor dependent

steps, double substrate Michaelis-Menten kinetic models are used. The single substrate

Michaelis-Menten kinetic is only appropriate if either large amount of substrate or co-

factor are present (i.e, S >> Km,S or c >> Km,c). For example, when the �rst step of the

cascade is cofactor dependent and a large amount of raw material but small amount of

cofactor is used then the reaction rate of the �rst reaction can be approximated with a

single substrate Michaelis-Menten kinetic model as shown below:

v ≈
Vmax ⋅ c

(Km,c + c)
(52)
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For the resulting single-substrate Michaelis-Menten kinetic model the simpli�cations

shown in Equations (50 and 51) apply when the respective conditions are met. Moreover,

in intermediate steps both the substrate and the cofactor concentrations might be very

small (i.e, S << Km,S and c << Km,c). For example, in intermediate cascade steps that

are cofactor dependent. Then the following simpli�cation applies:

v ≈
Vmax

Km,S ⋅Km,S

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
k

⋅S ⋅ c (53)

These approximations are useful when studying the CRNs of redox neutral cascades

under quasi steady-state conditions. In model-based optimization of the cascades, such

approximations are not necessary and complex reaction rate models, e.g., including

inhibition e�ects, can be easily handled by numerical solvers.

3.4.3 Fundamentals of quasi steady-state analysis

Studying redox neutral cascade reaction networks under the quasi steady-state assump-

tion can reveal useful insights and help debottleneck them. As described in method 2,

the quasi steady-state concentrations of all intermediates can be estimated. Further,

quasi steady-state analysis gives a tool or debbotlenecking the cascades to experimen-

talists that are not interested in simulating or optimizing kinetic models that comprise

systems of di�erential equations. To demonstrate this we will look at CRN b). It has

the same structure as the CRN a) and only di�ers due to the extra intermediate steps

between the two cofactor-dependent steps. One could wonder what the e�ect of these

additional intermediate steps could be. When S2, S3, S4, c1 and c2 are in quasi-steady

state the following equation holds true (using simpli�ed kinetic models):

vqssI = v
qss
II = v

qss
III = v

qss
IV = v

qss
IV (54)

Using simpli�ed kinetic models we get:

kI ⋅ c
qss
1 = kII ⋅ S

qss
2 = kIII ⋅ S

qss
3 = kIV ⋅ S

qss
4 = kV ⋅ S

qss
5 ⋅ c

qss
2 (55)

When reaction II has a much larger kinetic constant than the other reactions the con-

centration of S2 approaches zero as shown in the following equation.
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Sqss
2 =

kI
kII
⋅ cqss1 (56)

On the other hand, when reaction II has a much smaller kinetic constant than the

other reactions then S2 accumulates, c1 goes to zero and the cascade stops. Futher,

if we run an experiment and learnt that it took tf = 300 min for S0
1 = 100 mM of

raw material to be consumed we could calculate the quasi steady-state cofactor (or any

other) concentration as follows:

cqss1 =
S0
1

(tf ⋅ kI)
(57)

This type of analysis can also show us the circumstances under which a cascade reaction

would stop. Let's look at CRN c). The material balance for the cofactor is:

dc1
dt
= −kI ⋅ c1(t) − kIV ⋅ c2(t) ⋅ S4(t) + kVII ⋅ (c

0
1 − c1(t)) ⋅ S7(t) (58)

When the quasi-steady state is reached ċ1(t) = 0 and Equation (59) can be derived by

rearranging Equation (58):

cqss1 =
kVII ⋅ S

qss
7 ⋅ c

0
1

kI + kIV ⋅ S
qss
4 + kVII ⋅ S

qss
7

(59)

If in the assumed quasi-steady state the concentration of S7 is zero the cascade will stop.

3.4.4 Fundamentals of the characteristic equation

In redox neutral cascades, the rate of change of the cofactor concentration depends on

the rate of change of a number of intermediates of the cascade. This relationship can be

derived from the material balance and is speci�c to redox neutral cascades and will not

be found in cascades that require a second independent reaction network for cofactor

regeneration like the cascade of Beer et al. [8, 90]. The general form of the characteristic

equation is shown in the following equation.

dc1
dt
= ∑

i∈I
xi ⋅

dSi

dt
(60)

Where xi is a real number and I = {2, ..,n − 1}. Note that the characteristic equation

does not include the concentration of the educt or the product. It only includes the
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concentrations of intermediates and one of the cofactor forms, and therefore, only the

concentrations of things that are added at relatively low concentrations at the start of

the reaction process (compared to the educt). This is a crucial feature. Naturally, by

applying the conservation of mass we can also write this equation in a di�erent form

which includes the educts or products. The characteristic equation can also be written

in compact matrix form as follows:

dc1
dt
= x ⋅

dp

dt
(61)

where p is a vector comprising the concentrations of all substrates except S1. And x is

de�ned as shown in Equation (62).

x = [x2,x3, ...xn]. (62)

Even though, xn (corresponding to the product) is included in vector x it always equals

zero for cofactor balanced cascades with one educt and one product (i.e., with the same

number of oxidation as reduction steps).

3.4.5 Proof of theorem 1

Lemma 1.1: The characteristic equation can be derived by solving x ⋅Q = q

Material balances can be written in compact matrix form as shown in Equation (63).

ds

dt
=U ⋅ v (63)

We now rerwite Equation (63) excluding the �rst substrate and the two cofactor forms:

dp

dt
=Q ⋅ v (64)

We include the �rst order derivatives with respect to time of all substrate concentrations

(except S1)
dSi

dt with i = 2, ..., n in vector dp
dt . Q and v are de�ned as already discussed.

We also de�ne the material balance for the oxidized form of the cofactor, c1 as follows:

dc1
dt
= q ⋅ v (65)

Where q is de�ned as already discussed. Rearanging Equations (64) and (65) we get:
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v =Q−1 ⋅
dp

dt
(66)

and,

v = q−1 ⋅
dc1
dt

(67)

Combining these two equations we get:

Q−1 ⋅
dp

dt
= q−1 ⋅

dc1
dt

(68)

and rearanging we get:

Q−1 = q−1 ⋅
dc1
dt
⋅ (
dp

dt
)

−1
(69)

The characteristic equation can be written in matrix form as follows:

dc1
dt
= x ⋅

dp

dt
(70)

or equivalently:

x =
dc1
dt
⋅ (
dp

dt
)

−1
(71)

Combining Equation (69) with (71) we get:

Q−1 = q−1 ⋅ x (72)

or,

Q−1 ⋅ x−1 = q−1 (73)

which means that:

x ⋅Q = q (74)
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Lemma 1.2: The characteristic equation shows which intermediates boost or

delay linear cascades

We are dealing with three types of reaction rate models: cofactor-neutral, cofactor-

oxidizing and cofactor-reducing. In this proof, simpli�ed kinetic models are used to

approximate the behaviour of Michelis-Menten type models in typical concentration

ranges for each step of the cascade as described in previous sections. As already stated,

the coe�cients of the intermediates are positive or negative, or when they do not appear

at all, they are equal to zero. The intermediates that appear in the characteristic equa-

tion also appear in the reaction rate models (cofactor-neutral, oxidizing or reducing).

Let's look at the case that all intermediates appear in the characteristic equation with

negative signs, and therefore they all reach a quasi steady-state, the reaction rates of all

steps of the cascade are equal to each other and equal to the reaction rate of the �rst

step.

For a cofactor-neutral reaction step including intermediate Si (since we are only dealing

with linear cascades we can use roman numerals to designate the kinetic parameters, ki

will be the kinetic parameter of the reaction step that has Si as an educt):

k1 ⋅ c
qss
1 = ki ⋅ S

qss
i (75)

which means that:

Sqss
i =

k1 ⋅ c
qss
1

ki
(76)

For a cofactor-reducing reaction step including intermediate Si:

k1 ⋅ c
qss
1 = ki ⋅ S

qss
i ⋅ c

qss
1 (77)

which (for cqss1 > 0) means that:

Sqss
i =

k1
ki

(78)

For a cofactor-oxidizing reaction step including intermediate Si:

k1 ⋅ c
qss
1 = ki ⋅ S

qss
i ⋅ c

qss
2 (79)

which (for cqss1 < c
0
1) means that:
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Sqss
i =

k1 ⋅ c
qss
1

ki ⋅ (c01 − c
qss
1 )

(80)

Note that in all three cases, Sqss
i rises monotonously with the quasi steady-state concen-

tration of cofactor cqss1 . Integrating the general form of the characteristic equation from

time t = 0 to time t = tqss we get:

cqss1 − c
0
1 = ∑

i∈I
xi ⋅ (S

qss
i − S

0
i ) (81)

Rearranging Equation (81) we get:

cqss1 − c
0
1 −∑

i∈I
xi ⋅ S

qss
i = −∑

i∈I
xi ⋅ S

0
i (82)

Substituting Equations (76), (78) and (80) to Equation (82) we get:

cqss1 − c
0
1 − ∑

i∈N
xi ⋅

k1 ⋅ c
qss
1

ki
− ∑

i∈R
xi ⋅

k1
ki
−∑

i∈O
xi ⋅

k1 ⋅ c
qss
1

ki ⋅ (c01 − c
qss
1 )
= −∑

i∈I
xi ⋅ S

0
i (83)

Where, N is the set of all cofactor-neutral steps, R is the set of all cofactor-reducing

steps and O is the set of all cofactor-oxidizing steps. Let us study the monotonicity of

the left hand side term of the above equation. To do so, we will take the �rst order

derivative with respect to cqss1 :

DER = 1 − ∑
i∈N

xi ⋅
k1
ki
−∑

i∈O
xi ⋅

k1 ⋅ c01
ki ⋅ (c01 − c

qss
1 )

2
(84)

When all xi are negative the derivative is always positive and therefore the term on

the left hand side of Equation (83) is monotonously rising with cqss1 . The right hand

side of Equation (83) contains the initial titers of all intermediates that appear in the

characteristic equation. Therefore, increasing the initial titers of all intermediates that

appear in the characteristic equation will increase cqss1 (since -xi is a non-negative num-

ber for i ∈ I) and for this reason also increase vqssI = −Ṡ1
qss

and lead to boosting by

intermediates.

When the characteristic equation does not include all intermediates with negative co-

e�cients but some of them appear with coe�cients positive, negative and/or equal to

zero, which intermediates boost depends on the relative values of the kinetic paramaters

and no easy answer can be given unless a rate determining step exists.
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Let's look at the case were there is a rate determining step, i.e., an oxidizing, neutral

or reducing step for which krds<<ki. In this case, in quasi steady-state the reaction rate

of all steps will equal the reaction rate of the rate determining step and the derivative

can be approximated one of Equations (85-87). For cofactor-oxidizing:

DER ≈ −xrds ⋅
k1
krds

(85)

For cofactor-neutral:

DER ≈ −xrds ⋅
k1 ⋅ c01

krds ⋅ (c01 − c
qss
1 )

2
(86)

For cofactor-reducing:

DER ≈ 1 (87)

This means that when the rate determing step is cofactor-oxidizing or cofactor-neutral,

the intermediates with a coe�cient that has the same sign as the intermediate that

reacts in the rate determining step boost. Those with the opposite sign delay. When

the rate determing step is cofactor-reducing, intermediates with negative coe�cients

boost and with positive coe�cients delay. If the rate determining step corresponds to

the reaction of a substrate that has a characteristic coe�cient equal to zero, then no

boosting or delaying e�ect can be achieved.

The exact opposite procedure can be carried out for a cascade that starts with a cofactor-

oxidizing step to �nd out under which conditions cqss2 increases.

3.4.6 Proof of theorem 2

Lemma 2.1: Each coe�cient ai, with i > 1, of the CTG is equal to: ai = ∑
i−1
j=1 qj

Proof: From the de�nition of the CTG. We start at row ai = 0 (a1 is forced to be 0)

and go down a row for each reductive step, stay on the same row for each neutral step,

and go up a row for each oxidizing step. Therefore, a step will change the value of ai as

follows: ai+1 = ai + qi where qi is the ith entry of vector q and is -1 for reductive steps, 0

for neutral steps, and +1 for oxidizing steps. n consecutive steps will make the value of

an = 0 + q1 + ... + qn−1 which proves that:
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ai =
i−1
∑
j=1
qj (88)

Lemma 2.2: For linear cascades, with 1:1 stoichiometry, Q is an upper bidi-

agonal matrix where the �rst entry of each row is +1 and when there is a

second it is -1. Each one of the substrates S2 - Sn−1 of a linear cascade is produced

by one reaction and consumed by another reaction. The second substrate is always

produced by reaction I and consumed by reaction II. Therefore the �rst row of matrix

Q has the form [+1, -1, 0, ... 0]. The third substrate is always produced by reaction II

and consumed by reaction III. Therefore the second row of matrix Q has the form [0,

+1, -1, ... 0]. This continues until the last substrate, which is only produced by the last

reaction. Therefore the last row of matrix Q has the form [0, ... +1]. The general form

of matrix Q for a linear cascade is:

Q =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

+1 −1 0 ... 0

0 +1 −1 ... 0

⋮ ⋮ ⋮ ⋱ ⋮

0 0 0 ... +1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Lemma 2.3: For linear cascades, with 1:1 stoichiometry, QT is a lower bidi-

agonal matrix where the �rst entry of each column is +1 and when there is

a second it is -1.

It is proven from the de�nition of the transpose matrix and Lemma 2.3. The general

form of matrix QT for a linear cascade is:

QT
=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

+1 0 ... 0 0

−1 +1 ... 0 0

0 −1 ... 0 0

⋮ ⋮ ⋱ ⋮ ⋮

0 0 ... −1 +1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Lemma 2.4: The coe�cients of the characteristic equation can be read on

the CTG, i.e., xi = ai for i > 1.

As shown in Lemma 1.1 to derive the coe�cients xi the following system of equations

must be solved.
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x ⋅Q = q (89)

or equivalently,

QT
⋅ xT = qT (90)

The above system of equations can be solved by Gauss-Jordan elimination. Since QT

has the form described in Lemma 2.3. The system can be solved by adding each row of

the augmented matrix to the next one as shown below:

Ri +Ri+1 Ð→ Ri+1

When the augmented matrix reaches the reduced row echelon form the solution will look

like:

x2 = q1 (91)

x3 = q1 + q2 (92)

x4 = q1 + q2 + q3... (93)

Or in general, for i > 1:

xi =
i+1
∑
j=1
qj (94)

For example, the augmented matrix for CRN d) would be:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

+1 0 0 0 0 ∣ −1

−1 +1 0 0 0 ∣ +1

0 −1 +1 0 0 ∣ 0

0 0 −1 +1 0 ∣ +1

0 0 0 −1 +1 ∣ −1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

And after carrying out the operation Ri + Ri+1 Ð→ Ri+1 ∀ i ∈ {1, 2, 3, 4} we get the

following reduced row echelon form matrix:
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⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

+1 0 0 0 0 ∣ −1

0 +1 0 0 0 ∣ 0

0 0 +1 0 0 ∣ 0

0 0 0 +1 0 ∣ +1

0 0 0 0 +1 ∣ 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

And therefore the coe�cients xi would be the same as the ones read from the CTG:

x2 = −1 = ∑
1
j=1 qj

x3 = 0 = ∑
2
j=1 qj

x4 = 0 = ∑
3
j=1 qj

x5 = +1 = ∑
4
j=1 qj

x6 = 0 = ∑
5
j=1 qj

3.4.7 Proof of theorem 3

In quasi steady-state all reaction rates are equal to each other. The maximum reaction

rate that can be reached by an enzyme is constrained by the respective Vmax. Therefore,

when a cascade operates in quasi steady-state the overal reaction rate (space-time yield)

will never exceed the smallest Vmax.
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4.1 Selection of spatial immobilization distributions

and zones

In both batch and packed-bed reactors, enzymatic cascades are often achieved by im-

mobilizing enzymes inside porous particles with di�erent spatial immobilization dis-

tributions (SID). For example, the enzymes can be immobilized individually on dif-

ferent supports (individual immobilization) or all together on the same support (co-

immobilization). Further, in packed bed reactors in particular the porous particles can

be arranged in the same zone inside the packed-bed reactor or in di�erent zones [15].

Since enzymatic cascades require co-factors and e�cient co-factor regeneration, a num-

ber of strategies, both chemical and technical, have been developed in the past few years

to make the use of cofactor-dependent enzymes possible in �ow systems. The design

of porous particles that have both enzymes and co-factors immobilized in them or the

engineering of enzymes to attach cofactors [92, 93] are some examples.

When it comes to the design of systems with immobilized enzymes, questions relating

to the selection of a SID inside the particle pores arise. In packe-bed reactors these

questions are connected with questions about the selection of catalyst zones. Consider

a system of a two-step enzymatic cascade reaction. One could wonder what the best

way to distribute the enzymes inside the particle pores is. E.g., should the two enzymes

be co-immobilized and therefore positioned inside the pores of the same particle? If

they are immobilized individually, should the porous particles be mixed in one zone

or separated into two separate zones? Note that in practical implementations, there

is often a small number of degrees of freedom. E.g., the multiple enzymes might need

di�erent reaction conditions (pH, temperature) and can therefore not be placed in the

same reactor. In addition, it might not be possible to immobilize certain enzymes on

the same support [34]. Nevertheless, it is interesting to study the idealized scenarios in

which the enzymes can be freely placed, as a limiting case.

In the present section, a mechanistic modeling framework for immobilized enzymatic

cascades in porous particles based on �rst principles is developed. The framework is
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versatile enough to model and compare various SIDs and can be applied to both dy-

namic and continuous processes. The model includes geometric parameters (for describ-

ing the porous particles), physical property parameters (for mass transfer/di�usion),

kinetic parameters (for reactions) and parameters related to the reactor. Both dynamic

and continuous processes are studied. It is demonstrated how, due to the analogy be-

tween time and residence time in batch and plug-�ow reactors these two systems can

be treated analogously. The performances of di�erent SIDs are compared against each

other in parametric studies to elucidate when certain SIDs are better. Further, for con-

tinuous systems in plug-�ow reactors we combine the selection of spatial-immobilization

distributions with the selection of catalyst zones. When possible, analytical solutions

for the macro-kinetics are derived. Otherwise, Monte Carlo sampling is used to check

parameter sensitivities. Based on the results of the parametric studies, some general

guidelines are derived from the theory. In addition, for �ow systems a theorem is proved.

Finally, it is demonstrated how to use the framework to determine the best SID between

four options and the optimal enzyme surface densities for a speci�ed reaction process.

4.2 Methodology

4.2.1 Studied systems

Both dynamic and continuous, heterogeneous reaction processes that take place either

in a batch or a plug-�ow reactor are studied. The reactors contain porous particles that

catalyze the following two step enzymatic cascade reaction. Note that the restriction

to two steps is not a limitation of the method, but su�ces here to obtain speaking

quantitative results.

S1
A
ÐÐ→ S2

B
ÐÐ→ S3

The enzymes A and B are immobilized inside the pores of the particles with some spatial

immobilization distribution. For batch reactors, four di�erent SIDs are considered (α,

β, γ, δ), while for plug-�ow reactors two SIDs are considered (α, β), see Figure 14.
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Batch reactor

Porous particle

Pore

Individual immobilization (α)

(α-B)(α-A)

Co-immobilization, homogeneous (β)

(β)(β)

Co-immobilization, heterogeneous, A first (γ)

(γ)(γ)

Co-immobilization, heterogeneous, B first (δ)

(δ)(δ)
Packed-bed 

reactor

or

Figure 14: The considered geometry and the studied spatial immobilization distribu-
tions. Enzymes A and B are represented with blue and red colour, respec-
tively. The analysis focuses on the cylindrical pores. The particles can have
any shape. They are displayed as spherical for illustration purposes.

SID α is individual immobilization in which, each particle, and therefore each pore, only

contains either enzyme A or enzyme B. SID β is the ideal homogeneous co-immobilization

strategy, in which both enzymes are immobilized together in every pore. The surface

densities of both enzyme A and B remain constant in the pores. Finally, two hetero-

geneous co-immobilization strategies are also considered. In SID γ, both enzymes are

immobilized in all pores but A has a higher surface density at the entry of the pore

while B has a higher surface density at the end of the pore. In SID δ, the opposite

distribution is considered. When comparing the SIDs, the same number of total pores

is always considered. Within the SIDs β-δ, all pores are identical. In SID α, there are

two di�erent types of pores: α-A and α-B cf. Figure 14.

The changes of substrates and products within the batch reactor depend on the macro-

kinetics. The macro-kinetics are the rates resulting from the mass transfer steps and

reaction steps around and inside the particle, which are shown in Figure 15 and named

in Figure 15's caption. For the sake of illustration, Figure 15 shows the situation of a

single immobilized enzyme. When several enzymes of one cascade are co-immobilized

inside the pore, the intermediates in the cascade might, of course, adsorb and react

on another enzyme's reactive site before di�using out of the pore. For quantitative

modeling and comparison of di�erent SIDs, it is important to explicitly model the rates

of both mass transfer and reaction kinetics. Whether mass transfer or whether reaction
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kinetics are rate-determining is decisive for di�erences between the performances of the

SIDs.

Liquid 
bulk

Liquid 
film

Solid 
particle

0 L x

4
5

6

89 7

1 2 3

Figure 15: An overview of the considered mass transfer, adsorption-desorption and re-
action steps. 1, 9: Convection and di�usion in the bulk; 2, 8: Di�usion in
the liquid �lm around the particle; 3, 7: Di�usion inside the pores; 4: Ad-
sorption onto the enzyme's active site; 5: Chemical reaction; 6: Desorption
from the enzyme's active site.

4.2.2 Zone designs

For the packed-bed reactor three conceptual designs are studied, c.f. Figure 16 In the

�rst design, particles with individually immobilized enzymes are mixed in the same

zone. In the second design, the particles are separated into two zones, i.e., one that only

contains particles with individually immobilized enzyme A and one that only contains

particles with individually immobilized enzyme B. In the third design, particles with

co-immobilized enzymes are mixed in one zone. When comparing the three designs, the

same number of total pores and total enzyme molecules of A and B is always considered.

Design I: One zone 

mixed individually 

Immobilized enzymes 

0

zf

z

Design II: Two zones 

separated individually 

immobilized enzymes 

0

zf

z

zf/c

Design III: One zone 

co-immobilized enzymes 

0

zf

z

Figure 16: The considered conceptual reactor designs.
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4.2.3 Assumptions

Some assumptions are introduced to ease the analysis and keep the problem manageable.

This is done carefully, in order not to lose the key characteristics relevant to discriminate

the SIDs. The pores are assumed to be open from one side and closed from the other.

All pores have a uniform cross area A and length L. Further, it is assumed that the

enzymes are immobilized irreversibly, therefore their position does not change with time

[94]. It is also assumed that the surface densities of the enzymes and the concentrations

of the substrates vary only in one direction inside the pore, the x-axis shown in Figure

15.

An ideal batch reactor and an ideal plug-�ow reactor are considered. Mixing inside the

reactors is assumed to be perfect, therefore mass transfer through the bulk of the liquid,

steps 1 and 9 (cf. Figure 15), are considered instantaneous. It is also assumed that

the resistance of the liquid �lm is negligible compared to the resistance due to di�usion

inside the pores. Therefore, steps 2 and 8 are also considered instantaneous [95�98]. Due

to these two assumptions, the concentrations at the entry of the pore are the same as the

ones in the bulk of the liquid. It is assumed that mass transfer inside the pore takes place

only by di�usion following Fick's law. Either �rst-order or Michaelis-Menten kinetics

are used in the analysis. When �rst-order kinetics are used, the adsorption/desorption

steps are considered instantaneous. By using Michaelis-Menten kinetics, the rates of the

adsorption/desorption steps are taken implicitly into account.

The processes inside the pores are assumed to be signi�cantly faster than the changes

of the concentrations at the bulk of the liquid. From the viewpoint of the bulk, the

pores themselves are assumed to be in quasi-steady state, a common assumption when

studying porous particles [95�98]. This assumption is equivalent to assuming that there

is little enzyme catalyst compared to the amount of substrate in the bulk of the reactor.

Under these conditions, the apparent reaction rates of the macro-kinetics equal the

rates of substrates di�using into/out of the pores. This makes it possible to model the

system with two decoupled systems of ordinary di�erential equations. One system is

the material balances for the reactors. The other is the material balance along the pore,

from which the apparent reaction rates are calculated.

4.2.4 Model equations

The molarity of substrate i (i ∈ {1, 2, 3}) in the bulk (index "0") is denoted with Si,0.

The respective molarity inside the pores is denoted Si,n with n ∈ {α-A, α-B, β, γ, δ}
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denoting the type of pore. The molarities inside the pores are a function of the depth x

which ranges from 0 (entry) to L (pore length). To de�ne di�erential material balances

for the bulk molarities Si,0 in the batch reactor, the well-known ideas of Thiele (1939)

[95, 99] are followed. Applying Fick's law at the entry of the pore, one obtains the

di�usive molar �ow-rates nD
i of the substrates into/out of a single pore as shown in

Equation (95):

nD
i = A ⋅Di ⋅

dSi,n

dt
∣
x=0 ∀ i ∈ {1, 2, 3} (95)

In the above equation, A is the area of the cross section of the pores and Di is the

di�usivity of substrate i.
dSi,n

dt is the gradient of substrate i's molarity along the pore.

To obtain the change of substrate i in the bulk of the batch reactor, the di�usive molar

�ow rates over all pores are summed up as shown in Equation (96):

dSi,0

dt
= ∑

n

Nn ⋅A ⋅Di ⋅
dSi,n

dx
∣
x=0 ∀ i ∈ {1, 2, 3} (96)

Thereby it must be taken into account that these might be di�erent types of pores

(cf. Figure 14). In Equation (96), Nn is the total number of pores of type n in the

reactor. The di�erential material balances in Equation (96) are solved over time t = 0 to

t = tf , the total batch time. The initial molalities of substrates 2 and 3 are set to zero:

S2,0∣t=0 = S3,0∣t=0 = 0. The initial molality S1,0∣t=0 of substrate S1 is treated as a parameter

in the parametric study, cf. below.

Similarly, the change of substrate i in the bulk of the plug-�ow reactor is calculated

with Equation (97).

u ⋅
dSi,0
dz
= ∑

n

Nn ⋅A ⋅Di ⋅
dSi,n
dx
∣
x=0
∀i ∈ {1, 2, 3} (97)

In the above equation u is the average speed of the reaction solution while, z is the

distance from the start of the packed-bed reactor. In cases where multiple zones are

considered (cf. Figure 16), Equation (97) must be solved piece-wise for each zone.

The gradients of the molarities at the entry of the pore are calculated by solving the

di�erential material balances for the cylindrical pores as follows. The material balances

for the pores of type n, are given with compact matrix notation in Equation (98). The

boundary conditions are given in Equations (99) and (100) and visualized in Figure 17.

D ⋅
d2sn
dx2
=U ⋅ rn (98)

58



4 Systems with immobilized enzymes

sn∣x=0 = s0 (99)

dsn
dx
∣
x=L = 0 (100)

where,

D =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

D1 0 0

0 D2 0

0 0 D3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, sn =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

S1,n

S2,n

S3,n

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, U =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

+1 0

−1 +1

0 −1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, rn =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

rA,n

rB,n

⎤
⎥
⎥
⎥
⎥
⎥
⎦

and, s0 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

S1,0

S2,0

S3,0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

In Equation (98), a second order di�erential equation along the spatial coordinate x

is considering di�usion and reaction. D is the matrix of di�usivities considering only

entries on the main diagonal in the present work. That means that di�usion is assumed

to be driven only by molarity gradients of the same substrate (this is a simplifying

assumption and not a restriction of the method). The stoichiometry of the reactions A

and B is given in matrix U. The reaction rates rj,n with j = A, B, are included in vector

rn. Equation (99) links the substrate molarities at the entry of the pore to the substrate

molarities in the bulk. Equation (100) ensures that the gradients of molarities, and thus

the di�usion processes, come to zero at the dead end of the pore (cf. Figure 17).

x = 0 x = L x

S1,α-Α

Lx

dS1,α-Α

dx
0

x 0S1,α-Α S1,0

Boundary conditions

Figure 17: The concentration pro�le and the boundary conditions for substrate S1
inside pore a −A.

The micro-kinetics of the enzyme catalyzed reactions are modeled either with �rst-

order kinetics (Equation (101)) or with Michaelis-Menten kinetics (Equation (102)).

The equations show the rates of reaction A as an example. Reaction B is analogous.

rA,n = EA,n ⋅ kA ⋅ S1,n (101)
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rA,n =
EA,n ⋅ V max

A ⋅ S1,n

KA + S1,n

(102)

EA,n is the surface density of the immobilized enzyme A, kA is the �rst-order kinetic

constant, V max
A is the maximum reaction rate and KA is the Michaelis-Menten constant

for the enzyme catalyzed reaction.

4.2.5 Spatial immobilization distributions

The enzyme surface densities Ej,n are functions of the depth x inside the pore. The

individual pro�les used for the SIDs shown in Figure 14 are presented in Table 2. They

are normalized so that the total amount ej of enzyme j in the reactor is equal for all

SIDs, as shown in Equation (103).

ej = ∑
n

(Nn ⋅
√
4πA ⋅ ∫

L

x=0
Ej,n(x)dx) (103)

Table 2: Equations describing the spatial immobilization distributions.

Pore Enzyme A Enzyme B

α-A EA,a−A(x) = Emax
A EB,a−A(x) = 0

α-B EA,a−B(x) = 0 EB,a−B(x) = Emax
B

β EA,b(x) =
1
2 ⋅E

max
A EB,b(x) =

1
2 ⋅E

max
B

γ EA,g(x) = −Emax
A ⋅ xL +E

max
A EB,g(x) = Emax

B ⋅ xL

δ EA,d(x) = Emax
A ⋅ xL EB,d(x) = −Emax

B ⋅ xL +E
max
B

4.2.6 Objectives and model parameters

The performances of di�erent SIDs are compared against each other. As a measure of

performance, the yield of the cascade's product S3, Ym (m ∈ {α, β, γ, δ}) at the end of

the batch run is de�ned:
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Ym =
Sm
3,0(t = tf)

Sm
1,0(t = 0)

(104)

For continuous systems, this is calculated at the end of the reactor zf .

Ym =
S3,0(z = zf)

S1,0(t = 0)
(105)

When comparing two SIDs, the ratio of the achieved yields is calculated. For example,

when comparing individual immobilization and co-immobilization, the ratio Rα/β is

calculated as shown in Equation (106).

Rα/β =
Yα
Yβ

(106)

The same is done for continuous systems, but this time comparing di�erent conceptual

designs.

RI/II =
YI
YII

(107)

The SIDs' performances- and thus their relative performances - depend on the values

of the model parameters. When using �rst-order kinetics (Michaelis-Menten kinetics),

there are 16 (18) parameters. Table 3 gives an overview of all parameters along with

physically reasonable bounds. Those bounds are either compiled from literature (if

source is given) or based on experimental experience. Monte Carlo sampling is used in

a parametric study to compare the SIDs. 2,000 sets of parameter values are sampled

uniformly within the bounds using logarithmic scaling of the parameter interval to ensure

that parameter values of all orders of magnitude will have the same probability to

be selected. Each time, the reactor problem is simulated for all SIDs to determine

Ym. Exceptions are the cases of �rst-order kinetics for individual immobilization (α)

and homogeneous co-immobilization (β) for which even analytical solutions for Ym as a

function of the parameters could be obtained.
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Table 3: Parameter units and boundaries.

Variable Units Min Max

Geometric parameters

A dm2 3 ⋅ 10−16 2 ⋅ 10−13 [100]

L dm 10−6 10−3 [101]

Emax
j µmol dm−2 1 10

Kinetic parameters

kj dm2 µmol−1 min−1 0.1 1000

V max
j mM min−1 dm2 µmol−1 0.1 1000

Kj mM 0.1 50

Physical property parameters

Di dm2 min−1 10−8 10−5[102]

Batch reactor parameters

S1,0(t = 0) mM 1 1000

tf min 1 2000

Nn - 1012 1016

4.2.7 Numerical implementation

Two separate systems of di�erential equations were solved using the SciPy package

in Python. The �rst corresponds to the dynamic material balance inside the batch

reactor. The second corresponds to the material balance in the pore. To solve the

material balances for the batch reactor computationally, the solver LSODA was used.

The second order di�erential equations representing the material balances in the pores

were decoupled and solved as systems of �rst-order di�erential equations. The shooting

method was applied for the solution and the solver solve_bvp was used. The gradient

at the entry of the pore is calculated through solving the material balance for the pores.

This gradient is then used to calculate the time pro�les inside the batch reactor or the

concentrations pro�les inside the plug-�ow reactor, as shown in Equations (96) and (97).
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4.2.8 Application example

To demonstrate how the developed methodology can be applied to design the porous

particles, an optimization problem is solved. Since no reliable experimental data were

available, a synthetic example is studied. Parameter values are chosen to be inside

bounds reported in literature (cf. Table 3). Therefore, for known values of all other

parameters (given under Figure 26) the optimal SID inside the particles and the optimal

enzyme surface densities are determined. The objective is to maximize the yield after

8 h. To achieve a fair comparison, the total amount of enzyme in the reactor (both

enzyme A and B, eA + eB) is kept constant and smaller or equal to 158493 µmol. This

is equivalent to keeping the sum Emax
A + Emax

B smaller or equal to 10 µmol dm2. The

problem is solved by a brute-force search.

4.3 Results and discussion

4.3.1 Analytical solutions for dynamic processes

To start, the individual immobilization (SID α) is compared against the homogeneous

co-immobilization (SID β) for �rst-order kinetics. Despite simple kinetics, qualitative

statements are expected to be transferable to more complex kinetic expressions. An

analytical solution was obtained for the time pro�les inside the batch reactor when

using �rst-order kinetics. The expressions representing the time pro�les inside the batch

reactor as well as their derivation are given in the supplementary material. The ratio

Rα/β results to:

Rα/β(t) =
1 − e−p1,α−A⋅t − p1,α−A

p2,α−B−p1,α−A ⋅ (e
−p1,α−A⋅t − e−p2,α−B⋅t)

1 − e−p1,β⋅t − p1,β−p3,β
p2,β−p1,β ⋅ (e

−p1,β⋅t − e−p2,β⋅t)
(108)

where,

p1,n = Nn ⋅A ⋅D1 ⋅m1,n ⋅ tanh(m1,n ⋅L), (109)

m1,n =

√
EA,n ⋅ kA
D1

, (110)

p2,n = Nn ⋅A ⋅D2 ⋅m2,n ⋅ tanh(m2,n ⋅L), (111)

63



4 Systems with immobilized enzymes

m2,n =

√
EB,n ⋅ kB
D2

(112)

and,

p3,β =
Nβ ⋅A ⋅D1 ⋅m2

1,β ⋅m
2
2,β

m2
1,β −m

2
2,β

⋅ [
tanh(m2,β ⋅L)

m2,β

−
tanh(m1,β ⋅L)

m1,β

] (113)

It is interesting to note that the products m1,n ⋅ L and m2,n ⋅ L in the above equations

are the Thiele moduli for the �rst and second steps of the cascade respectively. The

value of Rα/β is independent of S1,0∣t=0 and, D3. Thus, the extent of the advantage of co-

immobilization during the reaction processes is independent of the initial concentration

of substrate or the di�usivity of the product. Equation (108) is plotted in a contour plot

in Figure 18 to display the dependence of Rα/β and of Yβ on the di�usivities D1 and

D2. The reaction kinetics are chosen fast in Figure 18. Under these conditions, Rα/β
depends on both di�usivities D1 and D2. The dependence on di�usivity D2 is stronger.

The smaller the di�usivities, the more signi�cant the advantage of co-immobilization

becomes.
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Figure 18: Contour plot of Rα/β and Yβ for di�erent di�usivity values. A = 10−13 dm2,
L = 5 ⋅ 10−4 dm, Emax

A = 6 µmol dm−2, Emax
B = 6 µmol dm−2, kA = 1000

dm2 µmol−1 min−1, kB = 998 dm2 µmol−1 min−1, tf = 250 min, Nα−A = 2.5
⋅ 1012 -, Nα−B = 2.5 ⋅ 1012 -, Nβ = 5 ⋅ 1012 -. Rα/β is shown with colors
while Yβ is shown with the white dashed lines.

The ratio Rα/β and Yβ as a function of time for di�erent values of D2 is presented

in Figure 19. For su�ciently large time horizons, individual immobilization always
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catches up with co-immobilization. However, some di�erentiation can be made: for fast

di�usivities of the intermediate S2 (D2 = 10−5 dm2 min−1), single optimization catches

up (Rα/β tending to 1) while the yields are still quite low (60%-80%) . For very slow

di�usivities though, a high yield Yβ could be obtained with co-immobilization while the

individual immobilization has made no signi�cant yield yet (Rα/β tending to 0).
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Figure 19: Contour plot of Rα/β and Yβ for di�erent di�usivity values and at di�erent
times. A = 10−13 dm2, L = 5 ⋅ 10−4 dm, Emax

A = 6 µmol dm−2, Emax
B = 6

µmol dm−2, kA = 1000 dm2 µmol−1 min−1, kB = 998 dm2 µmol−1 min−1,
D1 = 5 ⋅ 10−6 dm2 min−1, Nα−A = 2.5 ⋅ 1012 -, Nα−B = 2.5 ⋅ 1012 -, Nβ = 5 ⋅
1012 -. Rα/β is shown with colors while Yβ is shown with the white dashed
lines.

The dependence of the ratio Rα/β and Yβ on the pore dimensions is represented in

Figure 20. The advantage of co-immobilization is more pronounced for long pores and

small cross sections. Therefore, as expected, the advantage is larger when conditions for

di�usion are hard. Only for pores longer than 10−4 dm, high yields of co-immobilization

are obtained while the yields in individual co-immobilization are still low. Note that the

given numbers are subject to change if the kinetic parameters / di�usivities change.
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Figure 20: Contour plot of Rα/β and Yβ for di�erent pore dimensions. A = 10−13 dm2,
L = 5 ⋅ 10−4 dm, Emax

A = 6 µmol dm−2, Emax
B = 6 µmol dm−2, kA = 500dm2

µmol−1 min−1, kB = 500 dm2 µmol−1 min−1, D1 = 5.5 ⋅ 10−6 dm2 min−1, D2

= 5 ⋅ 10−6 dm2 min−1, tf = 250 min, Nα−A = 2.5 ⋅ 1012 -, Nα−B = 2.5 ⋅ 1012

-, Nβ = 5 ⋅ 1012 -. Rα/β is shown with colors while Yβ is shown with the
white dashed lines.

The Equations (108)- (113), are greatly simpli�ed under two assumptions: a) the prod-

ucts m1,n ⋅ L and m2,n ⋅ L (i.e. the Thiele moduli for steps one and two of the cascade)

are larger than one, which is true for the majority of combinations in our parametric

study, and, b) when D = D1 = D2. Assumption b) is plausible if cases are considered

where the substrates S1 and S2 are of similar molecular structure. The results is shown

in Equation (114). Rα/β is a function of two moduli µ1 andµ2 (cf. Equations (115) and

(116)). The complete derivation is given in the Appendix C.

Rα/β(t) =
1 − e−µ1 −

µ1

µ2−µ1
⋅ (e−µ1 − e−µ2)

1 − e−
√
2⋅µ1 −

µ2
1

µ2
2−µ2

1
⋅ (e−

√
2⋅µ1 − e−

√
2⋅µ2)

(114)

where,

µ1 = Nα−A ⋅A ⋅ t ⋅
√
EA,α−A ⋅ kA ⋅D (115)

µ2 = Nα−B ⋅A ⋅ t ⋅
√
EB,α−B ⋅ kB ⋅D (116)

The ratio Rα/β and Yβ as a function of µ1 and µ2 is presented in Figure 21. For small

values of the moduli, Rα/β takes a small value, while for large values of the moduli,
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Rα/β takes a large value. This means that co-immobilization mostly has a comparative

advantage for low values of the moduli. However, for these small values of the moduli

only small yields, Yβ can be achieved. Therefore, for the simpli�ed case, with m1,n ⋅ L

and m2,n ⋅L larger than one and D1 =D2 =D it is impossible to have a large advantage

of co-immobilization and a large yield achieved with co-immobilization simultaneously.

Under these conditions co-immobilization, provides no signi�cant kinetic advantage.
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Figure 21: Contour plot of Rα/β for di�erent values of moduli µ1 and µ2 for D1 =D2 =

D and omitted tangent hyperbolicus terms. Rα/β is shown with colors while
Yβ is shown with the white dashed lines.

4.3.2 Analytical solutions for continuous processes

The model equations are solved analytically to derive equations that describe the concen-

tration pro�les inside the packed-bed reactor achieved with the three di�erent designs.

The yields that are achieved with the three di�erent designs as a function of all the

model parameters are presented as follows.

YI = 1 − e
−p1,α-A −

p1,α-A
p2,α-B − p1,α-A

⋅ (e−p1,α-A − e−p2,α-B), ∀τ ∈ [0, τf] (117)

YII =

⎧⎪⎪
⎨
⎪⎪⎩

0 ∀τ ∈ [0, τfc ]

(1 − e−p1,a-A⋅τ) ⋅ (1 − e−c⋅p2,a-B⋅(τ−
τf
c
)) , ∀τ ∈ [ τfc , τf]

⎫⎪⎪
⎬
⎪⎪⎭

(118)

YIII = 1 − e
−p1,β −

p1,β − p3,β
p2,β − p1,β

⋅ (e−p1,β − e−p2,β ), ∀τ ∈ [0, τf] (119)
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where,

τ =
z

u
(120)

p1,n = Nn ⋅A ⋅D1 ⋅m1,n ⋅ tanh(m1,n ⋅L) (121)

m1,n =

√
EA,n ⋅ kA
D1

(122)

p2,n = Nn ⋅A ⋅D2 ⋅m2,n ⋅ tanh(m2,n ⋅L) (123)

m2,n =

√
EB,n ⋅ kB
D2

(124)

p3,β =
Nβ ⋅A ⋅D1 ⋅m2

1,β ⋅m
2
2,β

m2
1,β −m

2
2,β

⋅ [
tanh(m2,β ⋅L)

m2,β

−
tanh(m1,β ⋅L)

m1,β

] (125)

Note that YI, YII and YIII depend on all considered parameters and exhibit a strong

dependency on the di�usivities and the reaction kinetic parameters. In order to calculate

the product yields the parameter values have to be known. For known values of all

parameters the product yield is plotted against the residence time for an arbitrary case

in Figure 22.
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Figure 22: The yields achieved with designs I-III plotted against the residence time.
The parameters have values: D1 = 10−5 dm2 min−1, D2 = 10−7 dm2 min−1,
kA = 2000 dm2 µmol−1 min−1, kB = 2000 dm2 µmol−1 min−1, L = 10−4 dm,
Nα−A = 1013 dm−3, Nα−B = 1013 dm−3, Nβ = 2 1013 dm−3, EA,α−A = 10
µmol dm−2, EB,α−B = 10 µmol dm−2, EA,β = 5 µmol dm−2, EB,β = 5 µmol
dm−2, c = 2. Note that in the above case study, the intermediate has a
much lower di�usivity than the �rst substrate.

Note that the presented case corresponds to the selected parameter values and will

look quantitatively di�erent for other parameter values. Design III reaches large yields

signi�cantly faster than designs I and II. Design I gets ahead of design II at small

resident times, since for τ < 50 min, the reaction solution in design II has not yet

come in contact with α-B porous particles and therefore no product has been produced.

Design II catches up and slightly surpasses design I before the �nal residence time (100

min) is reached. Note that if a �nal residence time smaller than 100 min was chosen,

the second zone, containing α-B porous particles, would have started earlier in design

II and the solid black curve would look di�erent. A comparison of the three designs

evaluated at di�erent �nal resident times, τf is given in the Appendix C.

Generally, it can be proven (c.f. Appendix C for the complete proof), that design

II (i.e., two separated zones) is always better than design I (i.e., one mixed zone of

individually immobilized enzymes) for any positive order reaction kinetics (i.e. the

reaction rate increases monotonically with increasing substrate concentrations). For

such kinetic models, design II will always reach a higher product yield than design I

when the �nal residence time, τf is reached. This proof is not restricted to two steps

and extends, by induction, to any number of reaction steps. This observation can be

written as a theorem like shown below.
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Theorem 4: Zone design.

For any positive order kinetic model, the achieved conversion is always higher

when seperating the two catalysts of a two-step sequential (cascade) reaction in

two separate zones instead of mixing them in one in a plug-�ow reactor.

The substrates often have a similar chemical structure and di�usivities. Further, in

cases where reaction is su�ciently faster than di�usion and the pores are su�ciently

long, the Thiele moduli become larger than one and the tangent hyperbolicus of these

product becomes equal to one. The algebraic equations representing the yield for the

third design simplify greatly under these two assumptions, i.e.: a) the products m1,n

⋅L, and m2,n ⋅L (i.e., the Thiele moduli for steps one and two of the cascade) are larger

than one, which is true for the majority of combinations in the parametric study, and,

b) when D =D1 =D2. Under these conditions, Equations (-) can be rewritten as follows

(for τ=τf):

YI = 1 − e
−µ1 −

µ1

µ2 − µ1

⋅ (e−µ1 − e−µ2) (126)

YII = (1 − e
−µ1) ⋅ (1 − e−µ2) (127)

YIII = 1 − e
−√2⋅µ1 −

µ2
1

µ2
2 − µ

2
1

⋅ (e−
√
2⋅µ1 − e−

√
2⋅µ2) (128)

where,

µ1 = Na-A ⋅A ⋅
√
EA,a-A ⋅ kA ⋅D ⋅ τf (129)

µ2 = Na-B ⋅A ⋅
√
EB,a-B ⋅ kB ⋅D ⋅ τf (130)

Next designs I and II are compared. In design I, particles containing individually im-

mobilized enzymes are mixed together in one zone of the reactor. In design II, particles

containing individually immobilized enzymes are separated to two separate zones. As

mentioned earlier, design II always outperforms design I for positive order kinetics.

Here, the results obtained by analytical solutions are presented, when �rst-order micro-

kinetics and consequently �rst-order macro-kinetics are considered. The ratio RI/II and

YII as a function of µ1 and µ2 are presented in Figure 23. For small values of µ1 and
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µ2, RI/II takes a small value, while for large values of µ1 and µ2, RI/II approaches unity.

This means that design II has mostly an advantage for low values of the moduli. A

large advantage of design II and a high yield of design II can however not be achieved

simultaneously. Though using separated zones is advantageous over using one mixed

zone, the kinetic advantage is relatively small for �rst-order macro kinetics. Note that

when the reaction micro-kinetics follow higher order kinetic models, design II might

exhibit a stronger advantage.

Figure 23: Contour plot of Rα/β for di�erent values of moduli µ1 and µ2 for D1 =D2 =

D and omitted tangent hyperbolicus terms. Rα/β is shown with colors while
Yβ is shown with the white dashed lines.

Then designs I and III are compared. The ratio RI/III and YIII as a function of the

moduli µ1 and µ2 is presented in Figure 24. For small values of µ1 and µ2, RI/III takes

a small value, while for large values of µ1 and µ2, RI/III takes a large value. This means

that design III (i.e., co-immobilization) has mostly an advantage for low values of the

moduli. However, for these small values of the moduli only small yields, YIII can be

achieved. Therefore, for the simpli�ed case, with m1,n ⋅ L and m2,n ⋅ L larger than one

and D = D1 = D2 it is impossible to have a large advantage of co-immobilization and

a large yield achieved with co-immobilization simultaneously. Under these conditions

design III, provides only a small kinetic advantage.
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Figure 24: Contour plot of Rα/β for di�erent values of moduli µ1 and µ2 for D1 =D2 =

D and omitted tangent hyperbolicus terms. Rα/β is shown with colors while
Yβ is shown with the white dashed lines.

Finally, designs II and III are compared. In design II, particles containing individually

immobilized enzymes are separated into two separate zones. In design III, particles

containing co-immobilized enzymes are mixed together in one zone of the reactor. The

ratio RII/III and YIII as a function of µ1 and µ2 is presented in Figure 25. Again, large

advantages only exist for relatively small yields.

Figure 25: Contour plot of Rα/β for di�erent values of moduli µ1 and µ2 for D1 =D2 =

D and omitted tangent hyperbolicus terms. Rα/β is shown with colors while
Yβ is shown with the white dashed lines.
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4.3.3 Monte Carlo sampling for dynamic processes

Monte Carlo sampling allows us to compare also other SIDs and kinetics. Here this is

applied to compare SIDs for the batch reactor system. Randomly sampled scenarios

of individual immobilization with co-immobilization for both �rst-order and Michaelis-

Menten kinetics and 2,000 randomly sampled sets of parameters were compared. The

results for the yields that are achieved in the batch reactor are then plotted in parity

plots in Figure 23a) and 24a). Both for �rst-order and for Michaelis-Menten kinetics,

all points fall either above or on the diagonal, which indicates that co-immobilization is

always better or equal to individual immobilization for the studied problem.

Let us assume, that it is not possible to achieve homogeneous co-immobilization due to

experimental restrictions. E.g., because the enzymes A and B are immobilized one after

another, the enzyme surface densities are a function of pore depth as in SIDs γ and δ (cf.

Table 2). If A (B) is immobilized �rst, obtain SID γ (δ) is obtained. Figures 23b) and c)

tell how much worse these heterogeneous distributions are compared to the homogeneous

ideal. Figure 23d) shows the direct comparison between the SIDs γand δ(the respective

results for Michaelis-Menten kinetics are qualitatively similar and shown in 24b), c) and

d)). In Figures 23b) and c), most points fall above the diagonal while a small number of

points falls bellow it. The points that fall above the diagonal correspond to cases where

the yield achieved with homogeneous co-immobilization is better than the one achieved

with heterogeneous co-immobilization. Each point is color-coded based on the modulus

fFOK.

fFOK =
Emax

A ⋅ kA ⋅D1

Emax
B ⋅ kB ⋅D2

(131)

Modulus fFOK relates the overall rates (combining di�usion and reaction) of cascade

steps A and B. A large value of fFOK indicates that the reaction of step A is fast (large

amount of enzyme A and fast kinetic constant) and/or the di�usion of the respective

substrate is fast, compared to step B. Under these conditions, SID δ with A immobilized

deeper in the pores is generally better, cf. Figure 23d). For large values of fFOK, SID

δis sometimes even outperforming the homogeneous co-immobilization, cf. Figure 23c).

For small values of fFOK the opposite results are obtained, cf. Figure 23b) and d). To

sum up: if there is one step in the cascade that has a handicap (e.g., mass transfer

limitations, slow kinetics, expensive enzymes), the respective enzymes should be put

rather at the entry of the pore. The same trend is not observed for Michaelis-Menten

kinetics. The same comparisons were executed for Michaelis-Menten kinetics (Figures

24b)-d)) and the points were color-coded based on a similar modulus fMMK.
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fMMK =
Emax

A ⋅ V max
A ⋅D1

Emax
B ⋅ V max

B ⋅D2

(132)

The trends observed for �rst-order kinetics are not as clear but also seen in the plots

of the Michaelis-Menten kinetics (MMK). Most of the points are close to the diagonal

indicating that the order of immobilization inside the pore is not so decisive. This

can be explained by the generally slower reaction kinetics observed in MMK through

consideration of the adsorption/desorption steps compared to faster �rst-order kinetics.

In the Michaelis-Menten comparison plots, the reaction kinetics are almost never faster

than di�usion. For this reason di�erences between the SID is observed in very few cases.

4.3.4 Model-based optimization

It is demonstrated how the developed model can be applied to solve a combinatorial

optimization problem. The yields that can be achieved with SIDs α, β, γ and δ are

presented in Figure 26. SID γoutperforms the other strategies for all considered enzyme

ratios. The optimal solution was found to be 8.8 µmol dm−2 of enzyme A and 1.2 µmol

dm−2 of enzyme B while using SID γ. In the studied problem, individual immobilization

(SID α) outperformed heterogeneous co-immobilization with B at the entry of the pore

(SID δ).

0 2 4 6 8 10
Emax

A  / ( mol dm 2)
0.0

0.2

0.4

0.6

0.8

1.0

Y m
 / 

(-)

10 8 6 4 2 0
Emax

B  / ( mol dm 2)

Figure 26: Yields achieved with three di�erent immobilization strategies plotted
against time. ��: SID α, ��: SID β, ��: SID γ, ��: SID δ. The
star shows the optimal solution. Parameter values: A = 8 ⋅ 10−15 dm2, L
= 2 ⋅ 10−4 dm, kA = 30 dm2 µmol−1 min−1, kB = 80 dm2 µmol−1 min−1,
D1 = 10−8 dm2 min−1, D2 = 5 ⋅ 10−6 dm2 min−1, D3 = 5 ⋅ 10−6 dm2 min−1,
S1,0(t = 0) = 1000 mM, tf = 480 min, Nα−A = 2.5 ⋅ 1014 -, Nα−B = 2.5 ⋅ 1014

-, Nβ = 5 ⋅ 1014 -, Nγ = 5 ⋅ 1014 -, Nδ = 5 ⋅ 1014 -.
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Figure 27: Results of the parametric study for the comparison of the di�erent co-
immobilization SIDs using �rst-order kinetics. a) Comparison of α to β.
b) Comparison of β to γ. c) Comparison of β to δ. d) Comparison of γ to
δ. All parameters are varied inside the bounds presented in Table 3.
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Figure 28: Results of the parametric study for the comparison of the di�erent co-
immobilization SIDs using Michaelis-Menten kinetics. a) Comparison of α
to β. b) Comparison of β to γ. c) Comparison of β to δ. d) Comparison of
γ to δ. All parameters are varied inside the bounds presented in Table 3.
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5 Conclusions

The present work developed and applied methodologies for modeling, theoretical analysis

and model-based optimization for several problems that arise in the design of enzymatic

cascade reaction processes. Firstly, model-based optimization was applied to a reac-

tion process that produces α-ketoglutarate. How such a reaction process is designed

through multi-objective optimization (MOO) and the determination of Pareto frontiers

was demonstrated. A simulation model to run the cascade in a batch reactor was derived

and used in process optimization. This dynamic process has many control parameters,

which would be very expensive to vary experimentally. The simulation-based approach

enables the evaluation of a large number of conceivable process schedules. Space-time

yield, enzyme consumption, and cofactor consumption were used as separate objectives

in the MOO problem. The space-time yield in the studied process reached a maximum

value of up to 2.88 mM/min, however only for very high enzyme consumption. Enzyme

consumption can be signi�cantly lowered to 0.4 µM/min while keeping the space-time

yield as high as 2.44 mM/min.

Further, the dynamic bevavior of redox cascade reactions was analyzed and a phe-

nomenon called boosting by intermediates was explaned based on kinetic models. It

was demonstrated that studying complex enzymatic cascade reaction networks under

the quasi-steady state approximation can help debottleneck them without the need for

simulations. Further, it was shown that combining information from the material bal-

ance with the quasi steady state approximation which intermediates might boost or

delay a cascade can be deduced. For linear cascades this can be achieved graphically

with a novel graphical method.

For systems with immobilized enzymes, a mechanistic modeling methodology for het-

erogeneous reaction processes catalyzed by enzymes immobilized inside porous particles

was developed. The developed method was used to answer some theoretical questions

about co-immobilization in dynamic batch processes. Algebraic equations describing

the amount of product produced with individual immobilization and homogeneous co-

immobilization were derived by solving the system of di�erential equations analytically.

The e�ect of di�erent parameters on the ratio of the yields achieved with individual im-

mobilization and co-immobilization was studied for the �rst time. For co-immobilization,
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5 Conclusions

three di�erent co-immobilization spatial distributions were studied and compared. Also,

an optimization problem was solved to demonstrate how the developed methodology can

be applied to design the porous particles in such reaction processes.

Finally, the mechanistic modeling methodology for immobilized enzyme systems was

extended to continuous processes and �ow reactors. Di�erent designs of multi-zone

reactors that contain particles with immobilized enzymes were compared and the con-

ditions under which the di�erent designs are adventageous were deduced.

Overall, the thesis demonstrates the advantages of using kinetic models in decision

making processes on the design of enzymatic cascade reactors. Both parameterized and

non-parameterized models can help design such processes either through model-based

optimization or by studying the kinetic models themselves and extracting theoretical

insights.

Future work could develop theory and model-based optimization approaches for contin-

uous systems with dissolved enzymes. In particular, systems with disolved enzymes in

membrane reactors are of interest. A membrane reactor can help retain the enzymes and

separate the products of the cascade. Furthermore, parameterized models for systems

with immobilized enzymes can be developed to design both dynamic and continuous

processes. Finally, testing whether boosting by intermediates can be used in systems

with immobilized enzymes is of interest.
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A Appendix: Model-based

optimization of dynamic processes

with dissolved enzymes

A.1 Reaction model �ts

The reaction models were �tted to experimental data from Beer et al. [8]. Comparisons

of the reaction models and the experimental data are presented in Figures 29-35.

0 10
S1 / (mM)

0

50

100

150

200

v I
 / 

(m
M

/m
in

)

50 100

Figure 29: The reaction rate of the reaction catalyzed by UDH for di�erent D-
glucuronate concentrations, with a constant concentration of NAD+ of 1
mM. Model, ● Experiment.
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Figure 30: The reaction rate of the reaction catalyzed by UDH for di�erent NAD+

concentrations, with a constant concentration of D-glucuronate of 10 mM.
Model, ● Experiment.

0 5
S3 / (mM)

0.0

2.5

5.0

7.5

10.0

v I
II /

 (m
M

/m
in

)

40 50

Figure 31: The reaction rate of the reaction catalyzed by GlucD for di�erent D-
glucarate concentrations. Model, ● Experiment.
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Figure 32: The reaction rate of the reaction catalyzed by KdgD for di�erent 5-keto-4-
deoxy-glucarate concentrations. Model, ● Experiment.
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Figure 33: The reaction rate of the reaction catalyzed by KgsalDH for di�erent α-
ketoglutarate semialdehyde concentrations, with a constant concentration
of NAD+ of 4 mM. Model, ● Experiment.
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Figure 34: The reaction rate of the reaction catalyzed by KgsalDH for di�erent NAD+

concentrations, with a constant concentration of α-ketoglutarate semialde-
hyde of 2 mM. Model, ● Experiment.
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Figure 35: The reaction rate of the reaction catalyzed by NOX (used by Beer et al.
[8]) for di�erent NADH concentrations. Model, ● Experiment.
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A.2 NOX deactivation �t

The deactivation of the NOX used by Beer et al. in a bubble reactor is presented in

Figure 36 .
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Figure 36: The deactivation of NOX used by Beer et al. [8] in a bubble reactor.
Model, ● Experiment.

A.3 Data reconciliation

The data for the cascade experiment conducted by Beer et al. [8] (Figure 5B in Beer

et al. [8]) are presented in Table 4. Xi,t are the measured molar concentrations for

substrate i and time point t.

Table 4: The original cascade experiment data.

t X1,t X2,t+X3,t X4,t X5,t X6,t X7,t

/(min) /(mM) /(mM) /(mM) /(mM) /(mM) /(mM)
0 49.95 0.89 0.00 0.00 0.10 4.42
10 31.13 15.33 0.00 0.00 1.23 0.94
20 10.97 21.94 0.00 0.00 3.91 1.20
30 2.03 27.15 0.00 0.00 7.14 4.59
40 0.00 24.93 0.00 5.82 11.03 4.58
50 0.00 24.33 0.00 0.00 16.09 4.57
60 0.00 22.46 0.00 0.00 18.75 4.43
70 0.00 20.65 0.00 0.00 21.33 4.31
80 0.00 18.76 0.00 0.00 24.40 4.34
90 0.00 16.81 0.00 2.07 26.61 4.46
120 0.00 15.26 0.00 0.00 32.72 4.40
300 0.00 5.73 0.00 0.00 45.97 4.26
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The sum of the measured molar concentrations of substrates 1-6, λt, is calculated as

shown in Equation (133).

λt =
6

∑
i=1
Xi,t (133)

The relative errors, ϵreli for each substrate measurement are shown in Table 5.

Table 5: The relative errors of the HPLC instrument for each substrate.

i ϵreli

/(mM/mM)
1 0.01
2 0.02
3 0.02
4 0.10
5 0.10
6 0.02

The absolute errors, ϵabsi,t , are calculated for each measurement from the relative errors

of the HPLC instrument as shown in Equation (134).

ϵabsi,t = ϵ
rel
i,t ⋅Xi,t (134)

The HPLC instrument has a detection limit for the measured substrates. When Xi,t

= 0 mM, it is not clear whether the measured value is indeed 0 or if there is a small

amount of the chemical that goes undetected. Therefore, for all measurements, with λt

≤ 50.00 mM and with Xi,t = 0 mM, the corresponding detection limit is added to the

absolute error. The detection limits for S1 is 0.50 mM while the detection limit for S4

and S5 is 2 mM. The resulting absolute errors are presented in Table 6.
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Table 6: The absolute errors of the HPLC measurments.

t ϵabs1,t ϵabs2,t +ϵ
abs
3,t ϵabs4,t ϵabs5,t ϵabs6,t

/(min) /(mM) /(mM) /(mM) /(mM) /(mM)
0 0.50 0.02 0.00 0.00 0.00
10 0.31 0.31 2.00 2.00 0.02
20 0.11 0.44 2.00 2.00 0.08
30 0.02 0.54 2.00 2.00 0.14
40 0.50 0.50 2.00 0.58 0.22
50 0.50 0.49 2.00 2.00 0.32
60 0.50 0.45 2.00 2.00 0.38
70 0.50 0.41 2.00 2.00 0.43
80 0.50 0.38 2.00 2.00 0.49
90 0.50 0.34 2.00 0.21 0.53
120 0.50 0.31 2.00 2.00 0.65
300 0.00 0.11 0.00 0.00 0.92

The sum of all absolute errors for each time point is calculated as shown in Equation

(135).

ψt =
6

∑
i=1
ϵabsi,t (135)

Since the stoichiometry of all reactions is 1:1, λt should remain constant and equal to

50.00 mM during the experiment. However, as shown in Figure 37, this is not the case.
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Figure 37: Comparison of λt with the theoretical concentration of 50.00 mM. The red
error lines show ψt.

A factor fi,t, is calculated from the absolute errors as shown in Equation (136).
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fi,t =
ϵabsi,t

ψt

(136)

Finally, all data were reconciled as shown in Equation (137):

Xrec
i,t =Xi,t + fi,t ⋅ (50mM − λt) (137)

The reconciled data are presented in Table 7. The sums of the reconciled data for

substrates 1-6 remain constant and equal to 50.00 mM during the experiment.

Table 7: The reconciled cascade experiment data.

t Xrec
1,t Xrec

2,t +X
rec
3,t Xrec

4,t Xrec
5,t Xrec

6,t Xrec
7,t

/(min) /(mM) /(mM) /(mM) /(mM) /(mM) /(mM)
0 49.04 0.86 0.00 0.00 0.10 4.42
10 31.28 15.48 1.00 1.00 1.24 0.94
20 11.29 23.19 5.70 5.70 4.13 1.20
30 2.09 28.73 5.82 5.82 7.56 4.59
40 1.08 26.00 4.32 7.08 11.51 4.58
50 0.90 25.21 3.61 3.61 16.67 4.57
60 0.83 23.20 3.30 3.30 19.37 4.43
70 0.75 21.28 3.00 3.00 21.97 4.31
80 0.64 19.24 2.55 2.55 25.02 4.34
90 0.63 17.24 2.52 2.33 27.28 4.46
120 0.18 15.37 0.74 0.74 32.97 4.40
300 0.00 5.54 0.00 0.00 44.46 4.26

A.4 Sensitivity analysis

A sensitivity analysis was conducted to study the uncertainty of the output of the

developed mathematical model. Two cases were de�ned. In the �rst case, the values for

the V j
max and kII were selected to be on the lower bound of their 95% con�dence interval,

while the values of Kj
i and k

NOX were selected to be on the corresponding upper bounds.

In the second case the parameter values were selected on the opposite bounds. This way

a worst and best case scenario are de�ned. The process schedules A, B, C, D, and E

from Figures 4 and 5 of the main part of the dissertation were simulated again, but

this time with the parameters of cases one and two. The resulting space-time yields are

presented in Table 8.
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Table 8: Results of the sensitivity analysis.

Process schedule ΦSTY,Case 1 ΦSTY ΦSTY,Case 2

/ (mM/min) / (mM/min) / (mM/min)
A 0.047 0.161 0.164
B 0.126 0.287 0.289
C 0.609 2.351 2.403
D 0.926 2.789 2.802
E 1.186 2.837 2.844

As shown in Table 8, the space-time yield decreases signi�cantly when using the param-

eter values of case one. A very small improvement is achieved to the already calculated

space-time yields when using the values of case two.

A.5 Solutions C and D

As shown in Figures 38 and 39 the optimizer uses two di�erent strategies in solutions C

and D. In solution C, α-ketoglutarate starts being produced right from the beginning of

the batch process. In solution D, α-ketoglutarate starts accumulating only after all of

the D-glucuronate has been consumed. In both cases, the optimizer �nds the optimal

pro�les for the substrate concentrations to ensure that the enzyme concentrations are

used in the most productive way.

A.6 Optimization results

In this section the results for each Pareto-optimal process schedule are presented. Eight

tables are presented in total and they correspond to the eight di�erent Pareto solution

sets. Tables 9-12 correspond to the results presented in Figure 4a) of the main article.

Tables 13-16 correspond to the results presented in Figure 5a) of the main article. In

these tables the values of the objectives and control variables are included.
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Figure 38: Time pro�les for ΦEC = 0.4 µM/min and ΦCC = 0.005 mM/min and for the
Sudar et al. [77] cofactor regeneration system with kLa = 15 min−1. First
plot: The substrate concentration pro�les, D-glucuronate, glucaro-
1,4-lactone, D-glucarate, 5-keto-4-deoxy-glucarate, α-ketoglutarate
semialdehyde, α-ketoglutarate, NAD+, NADH. Second plot: The
enzyme concentration pro�les, UDH, GlucD, KdgD, KgsalDH,

NOX. Third plot: The oxygen concentration pro�le.
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Figure 39: Time pro�les for ΦEC = 0.6 µM/min and ΦCC = 0.005 mM/min and for the
Sudar et al. [77] cofactor regeneration system with kLa = 15 min−1. First
plot: The substrate concentration pro�les, D-glucuronate, glucaro-
1,4-lactone, D-glucarate, 5-keto-4-deoxy-glucarate, α-ketoglutarate
semialdehyde, α-ketoglutarate, NAD+, NADH. Second plot: The
enzyme concentration pro�les, UDH, GlucD, KdgD, KgsalDH,

NOX. Third plot: The oxygen concentration pro�le.
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B Appendix: Theoretical analysis of

dynamic processes with dissolved

enzymes

B.1 Kinetic models for CRNs a), c) and d) for the

theoretical analysis

The four studied chemical reaction networks were modeled with the following matrices

and reaction rate models.

CRN a)

s =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

S1

S2

S3

c1

c2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, U =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1 0

+1 −1

0 +1

−1 +1

+1 −1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, v =

⎡
⎢
⎢
⎢
⎢
⎣

vI

vII

⎤
⎥
⎥
⎥
⎥
⎦

vI =
Vmax,I ⋅ S1 ⋅ c1

(Km,S1 + S1) ⋅ (Km,c1 + c1)
(138)

vII =
Vmax,II ⋅ S2 ⋅ c2

(Km,S2 + S2) ⋅ (Km,c2 + c2)
(139)
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CRN c)

s =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

S1

S2

S3

S4

S5

S6

S7

S8

c1

c2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, U =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1 0 0 0 0 0 0

+1 −1 0 0 0 0 0

0 +1 −1 0 0 0 0

0 0 +1 −1 0 0 0

0 0 0 +1 −1 0 0

0 0 +1 0 +1 −1 0

0 0 0 0 0 +1 −1

0 0 0 0 0 0 +1

−1 0 0 −1 0 0 +1

+1 0 0 +1 0 0 −1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, v =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

vI

vII

vIII

vIV

vV

vVI

vVII

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

vI =
Vmax,I ⋅ S1 ⋅ c1

(Km,S1 + S1) ⋅ (Km,c1 + c1)
(140)

vII =
Vmax,II ⋅ S2

(Km,S2 + S2)
(141)

vIII =
Vmax,III ⋅ S3

(Km,S3 + S3)
(142)

vIV =
Vmax,IV ⋅ S1 ⋅ c1

(Km,S1 + S1) ⋅ (Km,c1 + c1)
(143)

vV =
Vmax,V ⋅ S5

(Km,S5 + S5)
(144)

vVI =
Vmax,VI ⋅ S6

(Km,S6 + S6)
(145)

vVII =
Vmax,VII ⋅ S7 ⋅ c2

(Km,S7 + S7) ⋅ (Km,c2 + c1)
(146)
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CRN d)

s =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

S1

S2

S3

S4

S5

S6

c1

c2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, U =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1 0 0 0 0

+1 −1 0 0 0

0 +1 −1 0 0

0 0 +1 −1 0

0 0 0 +1 −1

0 0 0 0 +1

−1 +1 0 +1 −1

+1 −1 0 −1 +1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, v =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

vI

vII

vIII

vIV

vV

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

vI =
Vmax,I ⋅ S1 ⋅ c1

(Km,S1 + S1) ⋅ (Km,c1 + c1)
(147)

vII =
Vmax,II ⋅ S2 ⋅ c2

(Km,S2 + S2) ⋅ (Km,c2 + c2)
(148)

vIII =
Vmax,III ⋅ S3

(Km,S3 + S3)
(149)

vIV =
Vmax,IV ⋅ S4 ⋅ c2

(Km,S4 + S4) ⋅ (Km,c2 + c2)
(150)

vV =
Vmax,V ⋅ S5 ⋅ c1

(Km,S5 + S5) ⋅ (Km,c1 + c1)
(151)
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B.2 A parameterized model for CRN b)

A model was developed for CRN b) using kinetic data from Sutiono et al. [56] The

material balance for the 1,2,4-butanetriol cascade is as follows:

ds

dt
=U ⋅ v (152)

where,

s =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

S1

S2

S3

S4

S5

S6

c1

c2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, U =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1 0 0 0 0

+1 −1 0 0 0

0 +1 −1 0 0

0 0 +1 −1 0

0 0 0 +1 −1

0 0 0 0 +1

−1 0 0 0 +1

+1 0 0 0 −1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, v =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

vI

vII

vIII

vIV

vV

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

The same reaction rate models chosen and reported in Sutiono et al. were used in the

model [56]. The molecular weights for the enzymes were also taken from the same work

[56]. The second reaction step, was not kinetically characterized by Sutiono et al. [56]

and instead large amount of enzymes were used to ensure that that the step is not rate

limiting. This reaction step is described in our model with a �rst-order kinetic with a

large kinetic parameter to model this behaviour.

vI =
Vmax,I ⋅ c1

K1 + c1 ⋅ (1 +
K2

S1
) ⋅ (1 + S1

K3
)

(153)

vII = 10000 ⋅ S3 (154)

vIII =
Vmax,III ⋅ S3

K4 + S3

(155)

vIV =
Vmax,IV ⋅ S4

K5 + S4

(156)

vV =
Vmax,V ⋅ S5 ⋅ c2

K6 ⋅K7 +K7 ⋅ S5 + S5 ⋅ c2
(157)
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where, Vmax,j = kcat,j ⋅Ej.

Table 17: The turnover numbers for the enzymes.

j kcat,j/(s−1)
I 20.4
II N/A
III 11.9
IV 0.9
V 12.0

Table 18: The kinetic parameters for the enzymes.

i Ki/(mM)
1 0.2
2 1.4
3 524.5
4 0.5
5 7.5
6 16.8
7 1.5

A simulation of the model using the same initial conditions as in Figure 2 of Sutiono

et al. [56] is given in Figure 40. The model follows the characteristic linear patern of

redox balanced cascades (also observed experimentally in Figure 2 of Sutiono et al). The

model predicts full conversion of D-xylose after 35 hours for the experiment presented in

Figure 2 of Sutiono et al. In the actual experiment full conversion was achieved after 45

hours. Therefore, compared to that experiment our model underestimates the reaction

time required by 22%. This model �t to experiment was considered su�cient and our

model was used to demonstrate how multi-objective optimization can be applied.
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Figure 40: Simulation of the model for the following titers: S0
1 = 180 g/l, c01 = 3.3 g/l,

EI = 0.2 g/l, EII = 0.1 g/l, EIII = 0.3 g/l, EIV = 2 g/l, EV = 0.5 g/l
. S1, S6, c1, c2, the rest of the substrates stay at very low concentrations.

B.3 Supporting evidence for the quasi steady-state

approximation

In the following �gures we simulate CRNs c) and d) with parameter values selected to

be in typical ranges to demonstrate that certain intermediates and the cofactors reach a

quasi-steady state. Note that in CRN c) not all intermediates reach a quasi steady-state.

S4 does not appear in the characteristic equation and therefore is not constrained to be

below the cofactor concentration like the rest of the intermediates.
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0
100
200
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400
500

S i
 / 
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)

Figure 41: Simulation of the concentration pro�les of CRN c) for selected parameter
values: S0

1 = 250 mM, c01 = 4 mM, c02 = 0 mM, S0
2 = 0 mM, S0

3 = 0 mM,
S0
4 = 0 mM, S0

5 = 0 mM, S0
6 = 0 mM, S0

7 = 0 mM, S0
8 = 0 mM, all Vmax,j

= 20 mM min−1 and, all Km,j = 15 mM. S1, S4, S8, the rest of the
substrates and cofactors are kept at very low concentrations.
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Figure 42: Simulation of the concentration pro�les of CRN d) for elected parameter
values: S0

1 = 250 mM, c01 = 4 mM, c02 = 0 mM, S0
2 = 0 mM, S0

3 = 0 mM, S0
4

= 0 mM, S0
5 = 0 mM, Vmax,I = 2 mM min−1, all other maximum reaction

rates Vmax,j = 20 mM min−1 and, all Km,j = 15 mM. S1, S6, c1,
c2, the rest of the substrates stay at very low concentrations.

A simulation for CRN a) was given in the main article. The parameter values used there

were: Vmax,I = 45 mM min−1, Vmax,II = 50 mM min−1, Km,S1 = 15 mM, Km,c1 = 25 mM,

Km,S2 = 30 mM, Km,c2 = 10 mM.
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C Appendix: Systems with

immobilized enzymes

C.1 Analytical solutions for the concentration pro�les

inside pore α-A and α-B

Using the methodology �rst established by Professor Ernst Thiele [95] and presented

in detail in Professor Octave Levenspiel's book [99] we derive material balances for the

pores. For substrate S1, we derive the following material balance around pore α-A.

d2S1,α−A
dx2

=
kA ⋅EA,α−A

D1

⋅ S1,α−A (158)

The following two boundary conditions are considered:

S1,α−A∣x=0 = S1,0 (159)

dS1,α−A
dx

∣
x=L = 0 (160)

Equation (158) is a second order, linear and homogeneous di�erential equation with

constant coe�cients. The general solution is:

S1,α−A = c1 ⋅ em1,α−A⋅x + c2 ⋅ e−m1,α−A⋅x (161)

with

m1,α−A =

√
kA ⋅EA,α−A

D1

(162)

c1 =
S1,0 ⋅ e−m1,α−A⋅L

em1,α−A⋅L + e−m1,α−A⋅L (163)
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c2 =
S1,0 ⋅ em1,α−A⋅L

em1,α−A⋅L + e−m1,α−A⋅L (164)

For substrate S2, we derive the following material balance around pore α-A.

d2S2,α−A
dx2

= −
kA ⋅EA,α−A

D2

⋅ S1,α−A (165)

Substituting the solution we obtained for S1,α−A in Equation (165) we get:

d2S2,α−A
dx2

= −
kA ⋅EA,α−A

D2

⋅ c1 ⋅ e
m1,α−A⋅x −

kA ⋅EA,α−A
D2

⋅ c2 ⋅ e
−m1,α−A⋅x (166)

The following two boundary conditions are considered:

S2,α−A∣x=0 = S2,0 (167)

dS2,α−A
dx

∣
x=L = 0 (168)

Equation (166) is a second order, linear and heterogeneous di�erential equation with

constant coe�cients. The general solution is:

S2,α−A = c3 ⋅ x + c4 + c5 ⋅ em1,α−A⋅x + c6 ⋅ e−m1,α−A⋅x (169)

with

c3 = −c5 ⋅m1,α−A ⋅ em1,α−A⋅L + c6 ⋅m1,α−A ⋅ e−m1,α−A⋅L (170)

c4 = S2,0 − c5 − c6 (171)

c5 = −
kA ⋅EA,α−A ⋅ c1
D2 ⋅m2

1,α−A
(172)

c6 = −
kA ⋅EA,α−A ⋅ c2
D2 ⋅m2

1,α−A
(173)

For substrate S2, we derive the following material balance around pore α-B.
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d2S2,α−B
dx2

=
kB ⋅EB,α−B

D2

⋅ S2,α−B (174)

The following two boundary conditions are considered:

S2,α−B∣x=0 = S2,0 (175)

dS2,α−B
dx

∣
x=L = 0 (176)

Equation (174) is a second order, linear and homogeneous di�erential equation with

constant coe�cients. The general solution is:

S2,α−B = d1 ⋅ em2,α−B⋅x + d2 ⋅ e−m2,α−B⋅x (177)

with

m2,α−B =

√
kB ⋅EB,α−B

D2

(178)

d1 =
S2,0 ⋅ e−m2,α−B⋅L

em2,α−B⋅L + e−m2,α−B⋅L (179)

d2 =
S2,0 ⋅ em2,α−B⋅L

em2,α−B⋅L + e−m2,α−B⋅L (180)

For substrate S3, we derive the following material balance around pore α-B.

d2S3,α−B
dx2

= −
kB ⋅EB,α−B

D3

⋅ S2,α−B (181)

Substituting the solution we obtained for S2,α−B in Equation (181) we get:

d2S3,α−B
dx2

= −
kB ⋅EB,α−B

D3

⋅ d1 ⋅ e
m2,α−B⋅x −

kB ⋅EB,α−B
D3

⋅ d2 ⋅ e
−m2,α−B⋅x (182)

The following two boundary conditions are considered:

S3,α−B∣x=0 = S3,0 (183)
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dS3,α−B
dx

∣
x=L = 0 (184)

Equation (182) is a second order, linear and heterogeneous di�erential equation with

constant coe�cients. We applied the appropriate methodology by �rst solving the cor-

responding homogeneous equation and then solving for the heterogeneous terms. The

general solution is:

S3,α−B = d3 ⋅ x + d4 + d5 ⋅ em2,α−B⋅x + d6 ⋅ e−m2,α−B⋅x (185)

with

d3 = −(d5 ⋅m2,α−B ⋅ em2,α−B⋅L − d6 ⋅m2,α−B ⋅ e−m2,α−B⋅L) (186)

d4 = S3,0 − d5 − d6 (187)

d5 = −
kB ⋅EB,α−B ⋅ d1
D3 ⋅m2

2,α−B
(188)

d6 = −
kB ⋅EB,α−B ⋅ d2
D3 ⋅m2

2,α−B
(189)

C.2 Macro kinetic expressions for the single

immobilization case

The macro kinetics or apparent reaction rates, vk, for the single immobilization case

can then be calculated by applying Fick's law at the start (x = 0) of the corresponding

pore. Since the concentration pro�les were calculated analytically, we can also derive

analytical expressions for the concentration gradient at the beginning of the pores and

use this to get an analytical expression of the apparent reaction rates. For the single

immobilization case, these are presented below.

vI = p1,α−A ⋅ S1,0 (190)

vII = p2,α−B ⋅ S2,0 (191)
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with

p1,α−A = Nα−A ⋅A ⋅D1 ⋅m1,α−A ⋅ tanh(m1,α−A ⋅L) (192)

p2,α−B = Nα−B ⋅A ⋅D2 ⋅m2,α−B ⋅ tanh(m2,α−B ⋅L) (193)

C.3 Analytical solutions for the concentration pro�les

inside pore β

For substrate S1, we derive the following material balance around pore β.

d2S1,β

dx2
=
kA ⋅EA,β

D1

⋅ S1,β (194)

The following two boundary conditions apply:

S1,β∣x=0 = S1,0 (195)

dS1,β

dx
∣
x=L = 0 (196)

Equation (194) is a second order, linear and homogeneous di�erential equation with

constant coe�cients. The general solution is:

S1,β = e1 ⋅ e
m1,β⋅x + e2 ⋅ e−m1,β⋅x (197)

with

m1,β =

√
kA ⋅EA,β

D1

(198)

In order to �nd the particular solution we use the two boundary conditions given in

Equations (195) and (196).

e1 =
S1,0 ⋅ e−m1,β⋅L

em1,β⋅L + e−m1,β⋅L (199)

e2 =
S1,0 ⋅ em1,β⋅L

em1,β⋅L + e−m1,β⋅L (200)
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For substrate S2, we can write the following material balance around pore β.

d2S2,β

dx2
−
kB ⋅EB,β

D2

⋅ S2,β = −
kA ⋅EA,β

D2

⋅ S1,β (201)

Substituting the solution we obtained for S1,β in Equation (201) we get:

d2S2,β

dx2
−
kB ⋅EB,β

D2

⋅ S2,β = −
kA ⋅EA,β

D2

⋅ e1 ⋅ e
m1,β⋅x −

kA ⋅EA,β

D2

⋅ e2 ⋅ e
−m1,β⋅x (202)

The following two boundary conditions are considered:

S2,β∣x=0 = S2,0 (203)

dS2,β

dx
∣
x=L = 0 (204)

Equation (202) is a second order, linear and heterogeneous di�erential equation with

constant coe�cients. We applied the appropriate methodology by �rst solving the cor-

responding homogeneous equation and then solving for the heterogeneous terms. The

general solution is:

S2,β = e3 ⋅ e
m2,β⋅x + e4 ⋅ e−m2,β⋅x + e5 ⋅ em1,β⋅x + e6 ⋅ e−m1,β⋅x (205)

with

m2,β =

√
kB ⋅EB,β

D2

(206)

e3 = S2,0 − e4 − e5 − e6 (207)

e4 =
m2,β ⋅ em2,β⋅L ⋅ (S2,0 − e5 − e6)

m2,β ⋅ em2,β⋅L +m2,β ⋅ e−m2,β⋅L +
m1,β ⋅ (e5 ⋅ em1,β⋅L − e6 ⋅ e−m1,β⋅L)
m2,β ⋅ em2,β⋅L +m2,β ⋅ e−m2,β⋅L (208)

e5 = −
kA ⋅EA ⋅ e1

D2 ⋅ (m2
1,β −m

2
2,β)

(209)
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e6 = −
kA ⋅EA ⋅ e2

D2 ⋅ (m2
1,β −m

2
2,β)

(210)

For substrate S3, we derive the following material balance around pore β.

d2S3,β

dx2
= −

kB ⋅EB,β

D3

⋅ S2,β (211)

The following two boundary conditions are considered:

S3,β∣x=0 = S3,0 (212)

dS3,β

dx
∣
x=L = 0 (213)

Equation (211) is a second order, linear and heterogeneous di�erential equation with

constant coe�cients. We applied the appropriate methodology by �rst solving the cor-

responding homogeneous equation and then solving for the heterogeneous terms. The

general solution is:

S3,β = e7 + e8 ⋅ x + e9 ⋅ e
m2,β⋅x + e10 ⋅ e−m2,β⋅x + e11 ⋅ em1,β⋅x (214)

with

e7 = S3,0 − e9 − e10 − e11 − e12 (215)

e8 =m2,β ⋅ (−e9 ⋅ e
m2,β⋅L + e10 ⋅ e−m2,β⋅L) +m1,β ⋅ (−e11 ⋅ e

m1,β⋅L + e12 ⋅ e−m2,β⋅L) (216)

e9 = −
kB ⋅EB ⋅ e3
D3 ⋅m2

2,β

(217)

e10 = −
kB ⋅EB ⋅ e4
D3 ⋅m2

2,β

(218)

e11 = −
kB ⋅EB ⋅ e5
D3 ⋅m2

1,β

(219)
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e12 = −
kB ⋅EB ⋅ e6
D3 ⋅m2

1,β

(220)

C.4 Macro kinetic expressions for the

co-immobilization case

The macro kinetics or apparent reaction rates, vk, for the co-immobilization spatial

immobilization distribution can then be calculated by applying Fick's law at the start

(x = 0) of the corresponding pore. Since the concentration pro�les were calculated

analytically, we can also derive analytical expressions for the concentration gradient at

the beginning of the pores and use this to get an analytical expression of the apparent

reaction rates. For the co-immobilization case, these are presented below.

vI = p1,β ⋅ S1,0 (221)

vII = p2,β ⋅ S1,0 + p3,β ⋅ S2,0 (222)

with

p1,β = Nβ ⋅A ⋅D1 ⋅m1,β ⋅ tanh(m1,β ⋅L) (223)

p2,β = Nβ ⋅A ⋅D2 ⋅m2,β ⋅ tanh(m2,β ⋅L) (224)

p3,β =
Nβ ⋅A ⋅D1 ⋅m2

1,β ⋅m
2
2,β

m2
1,β −m

2
2,β

⋅ [
tanh(m2,β ⋅L)

m2,β

−
tanh(m1,β ⋅L)

m1,β

] (225)

C.5 Time pro�les for the single and co-immobilization

cases

The following system of �rst order di�erential equations represents the dynamic ma-

terial balances for the batch reactor when single immobilization is used as a spatial

immobilization strategy (α):
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dS1,0

dt
= −p1,α−A ⋅ S1,0 (226)

dS2,0

dt
= +p1,α−A ⋅ S1,0 − p2,α−B ⋅ S2,0 (227)

dS3,0

dt
= −p2,α−B ⋅ S2,0 (228)

with the following initial conditions:

S1,0∣t=0 = S0
1,0 (229)

S2,0∣t=0 = 0 (230)

S3,0∣t=0 = 0 (231)

This is a system of �rst order, linear di�erential equations. The solution is:

S1,0 = S
0
1,0 ⋅ e

−p1,α−A⋅t (232)

S2,0 = S
0
1,0 ⋅

p1,α−A
p2,α−B − p1,α−A

⋅ (e−p1,α−A⋅t − e−p2,α−B⋅t) (233)

S3,0 = S
0
1,0 − S1,0 − S2,0 (234)

The following system of �rst order di�erential equations represents the dynamic material

balances for the batch reactor when co-immobilization is used as a spatial immobilization

strategy (β):

dS1,0

dt
= −p1,β ⋅ S1,0 (235)

dS2,0

dt
= +p1,β ⋅ S1,0 − p2,CI ⋅ S1,0 − p3,CI ⋅ S2,0 (236)
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dS3,0

dt
= p2,CI ⋅ S1,0 + p3,CI ⋅ S2,0 (237)

with initial conditions:

S1,0∣t=0 = S0
1,0 (238)

S2,0∣t=0 = 0 (239)

S3,0∣t=0 = 0 (240)

This is a system of �rst order, linear di�erential equations. The solution is:

S1,0 = S
0
1,0 ⋅ e

−p1,β⋅t (241)

S2,0 = S
0
1,0 ⋅

p1,β − p3,β
p2,β − p1,β

⋅ (e−p1,β⋅t − e−p2,β⋅t) (242)

S3,0 = S
0
1,0 − S1,0 − S2,0 (243)

C.6 Case-speci�c simpli�cation

The ratio Rα/β can be calculated by the following expression:

Rα/β =
Sα
3,0

Sβ
3,0

=
1 − e−p1,α−A⋅t − p1,α−A

p2,α−B−p1,α−A ⋅ (e
−p1,α−A⋅t − e−p2,α−B⋅t)

1 − e−p1,β⋅t − p1,β−p3,β
p2,β−p1,β ⋅ (e

−p1,β⋅t − e−p2,β⋅t)
(244)

When the productsm1,n⋅L andm2,n⋅L are larger than one, all tangent hyperbolicus terms

become roughly equal to one. In addition, when considering cases where D1 = D2 = D,

Equation (244) can be simpli�ed. The terms p1,n, p2,n and p3,n will now be as follows:

p1,α−A = Nα−A ⋅A ⋅D ⋅m1,α−A (245)
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p2,α−B = Nα−B ⋅A ⋅D ⋅m2,α−B (246)

p1,β = Nβ ⋅A ⋅D ⋅m1,β (247)

p2,β = Nβ ⋅A ⋅D ⋅m2,β (248)

p3,β =
Nβ ⋅A ⋅D ⋅m2

1,β ⋅m
2
2,β

m2
1,β −m

2
2,β

⋅ [
1

m2,β

−
1

m1,β

] (249)

They can be expressed in terms of p1,α−A and p2,α−B as follows:

p1,α−B = p1,α−A (250)

p1,β =
√
2 ⋅ p1,α−A (251)

p2,β =
√
2 ⋅ p2,α−B (252)

p3,β =

√
2 ⋅ p1,α−A ⋅ p2,α−B
p1,α−A + p2,α−B

(253)

We de�ne two moduli, µ1 and µ2 as follows:

µ1 = p1,α−A ⋅ t (254)

µ2 = p2,α−B ⋅ t (255)

Equation (244) can then be reformulated as follows:

Rα/β =
1 − e−µ1 −

µ1

µ2−µ1
⋅ (e−µ1 − e−µ2)

1 − e−
√
2⋅µ1 −

µ2
1

µ2
2−µ2

1
⋅ (e−

√
2⋅µ1 − e−

√
2⋅µ2)

(256)
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C.7 Analytical solutions for design II

The derivation of the analytical solutions for designs I and III can be found in Appendix

C. In this section we derive the analytical solutions for design II:

For τ in [0, τf/c]:

dS1,0

dτ
= −c ⋅ p1,a-A ⋅ S1,0 (257)

Integrating from 0 to τ :
τ

∫
0

dS1,0

S1,0

= −c ⋅ p1,a-A ⋅

τ

∫
0

dτ (258)

The analytical solution is:

S1,0 (τ) = S1,0 (0) ⋅ e
−c⋅p1,a-A⋅τ (259)

From the material balance:

S2,0 (τ) = S1,0 (0) − S1,0 (0) ⋅ e
−c⋅p1,a-A⋅τ (260)

For τ in [τf/c, τf ]:

dS2,0

dτ
= −c ⋅ p2,a-B ⋅ S2,0 (261)

Integrating from τf/c to τ :

τ

∫

τf/c

dS2,0

S2,0

= −c ⋅ p2,a-B ⋅

τ

∫

τf/c
dτ (262)

The analytical solution is:

S2,0 (τ) = S2,0 (τf/c) ⋅ e
−c⋅p2,a-B⋅(τ−τf/c) (263)

From the material balance:

S3,0 (τ) = S2,0 (τf/c) − S2,0 (τf/c) ⋅ e
−c⋅p2,a-B⋅(τ−τf/c) (264)
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Rearranging the terms we get:

S3,0 (τ) = (S1,0 (0) − S1,0 (0) ⋅ e
−p1,a-A⋅τf) − (S1,0 (0) − S1,0 (0) ⋅ e

−p1,a-A⋅τf) ⋅ e−c⋅p2,a-B⋅(τ−τf/c)

(265)

Finally, we get:

S3,0 (τ) = S1,0 (0) ⋅ (1 − e
−p1,a-A⋅τf) ⋅ (1 − e−c⋅p2,a-B⋅(τ−τf/c)) (266)

For τ = τf :

S3,0 (τ) = S1,0 (0) ⋅ (1 − e
−p1,a-A⋅τf) ⋅ (1 − e−p2,a-B⋅τf) (267)

C.8 Rate determining liquid-�lm resistance

In this paragraph, we will compare the three designs for the case where mass transfer

through the liquid �lm around the porous particles is much slower than the reaction

and di�usion processes taking place inside the pore (c.f. Figure (15)). Mass transfer

through the �lm can be modeled with Equation (268):

ṅFi = kL,n ⋅An ⋅ (Si,0 − Si,n (x = 0)) (268)

Where kL,n is the liquid side �lm transfer coe�cient. When mass transfer through the

�lm is much slower than the processes inside the pore Equation (269) holds:

Si,n (x = 0) = 0 (269)

Therefore, the following material balances can be written for the three conceptual de-

signs:

u ⋅
dSi,0
dz
= −∑

n

Nn ⋅ kL ⋅A ⋅ Si,0, ∀i ∈ {1, 2, 3} (270)

In the above equation, n symbolizes the di�erent types of pores that participate in

the reaction. Further, in design II, where multiple zones are considered, the material
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balance must be solved separately for each zone. Analytical solutions representing the

yields achieved with the three di�erent conceptual designs when di�usion through the

�lm is the rate-limiting step are given below. These analytical solutions are derived in

an analogous way as the analytical solutions for the reaction/di�usion limited cases and

for this reason the derivation process is not presented here.

For,

Kn = Nn ⋅ kL,n ⋅An ⋅ τf (271)

the analytical solutions are:

YI = 1 − e
−Kα-A −

Kα-A

Kα-B −Kα-A

⋅ (e−Kα-A − e−Kα-B) (272)

YII = (1 − e
−Ka-A) ⋅ (1 − e−Ka-β ) (273)

YIII = 1 − e
−Ka-A (274)

The respective comparison contour plots are presented below:

Figure 45: Contour plot of RII/III and YIII for di�erent values of moduli Ka−A and
Ka−B. RII/III is shown with a �lled contour while YIII is shown with the
white dashed lines.

It's interesting to note that, when mass transfer through the �lm is the rate-limiting
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Figure 43: Contour plot of RI/II and YII for di�erent values of moduli Ka−A and Ka−B.
RI/II is shown with a �lled contour while YII is shown with the white dashed
lines.

Figure 44: Contour plot of RI/III and YIII for di�erent values of moduli Ka−A and Ka−B.
RI/III is shown with a �lled contour while YIII is shown with the white dashed
lines.
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step, for small values of modulus Kα−B, design III (co-immobilization) has a signi�cant

advantage (also at high product yield) over the other two designs.

C.9 Case study solved for di�erent �nal residence

times

The case study solved in the main part of the dissertation is solved again. This time

we plot the yields achieved with the three di�erent conceptual designs against the �nal

residence time. Notice that separated zones of individually immobilized enzymes always

give slightly better yields than a mixed zone of individually immobilized enzymes. The

advantage might become more pronounced for higher-order kinetic models.

Figure 46: The yields achieved with designs I-III plotted against the �nal residence
time. The parameters have values: D1 = 10−5 dm2 min−1, D2 = 10−7 dm2

min−1, kA = 2000 dm2 µmol−1 min−1, kB = 2000 dm2 µmol−1 min−1, L =
10−4 dm, Nα−A = 1013 dm−3, Nα−B = 1013 dm−3, Nβ = 2 1013 dm−3, EA,α−A
= 10 µmol dm−2, EB,α−B = 10 µmol dm−2, EA,β = 5 µmol dm−2, EB,β = 5
µmol dm−2, c = 2. Note that in the above case study, the intermediate has
a much lower di�usivity than the �rst substrate.

C.10 Proof of theorem 4

Let us consider again a case with individually immobilized enzymes. Consider two types

of porous catalyst particles that catalyze two sequential reaction steps. The �rst particle

type containing A enzymes catalyzes the �rst step and the second particle containing B

enzymes catalyzes the second step. As shown below:
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S1
A
Ð→ S2

B
Ð→ S3 (275)

In this subsection, we will prove that positioning a certain total number of A and

B catalyst particles in separate zones inside the packed-bed reactor always results in

higher product yields than if we were to mix them in one zone when positive or-

der kinetic models are considered, i.e. the reaction rate increases monotonously with

the substrate concentration (e.g., non-equilibrium �rst-order, non-equilibrium and non-

inhibitory Michaelis-Menten). The proof is in two parts. First, it is proven that the

total conversion of S1 in the reactor is independent of the distribution of catalyst and

only depends on the total mass of catalyst A in the reactor. The second part proves that

the maximum product yield is reached when the maximum conversion of S1 is already

reached before catalyst B is reached. Let us de�ne the conversion of S1 as follows:

X1 =
S1(0) − S1(τ )

S1(0)
= 1 −

S1(τ )

S1(0)
(276)

We can rearrange Equation (276):

S1(τ ) = S1(0) ⋅ (1-X1) (277)

For the di�erential of S1 the following holds:

dS1 = −S1(0) ⋅ dX1 (278)

Let's consider the volume dV (c.f. Figure 47), which contains a mass dwA of catalyst

particles A and inside which reaction 1 takes place with rate v1.
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Figure 47: The plug-�ow reactor geometry and the considered di�erential volume ele-
ment.

The material balance for S1 in the control volume dV is:

V̇ ⋅ dS1 = −v1(S1) ⋅ dwA (279)

Combining Equation 279 with 278 it follows:

V̇ ⋅ S1(0) ⋅ dX1 = +v1(S1(0) ⋅ (1-X1)) ⋅ dwA (280)

By integrating from 0 to X1,f we get:

X1,f

∫
0

1

v1(S1(0) ⋅ (1-X1))
dX1 =

wtotal
A

V̇ ⋅ S1(0)
4 (281)

X1,f is only dependent on the total mass of catalyst wAtotal and not on its distribution

in the reactor. We now need to show that positioning catalyst A as early as possible in

the packed-bed reactor is advantageous for the second reaction. We de�ne the conversion

of the second reaction:

X3 =
S3(τ )

S1(0)
(282)
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The reaction stoichiometry gives the material balance of S2:

S2(τ ) = S1(0) − S1(τ ) − S3(τ ) (283)

Combining Equation (283) with Equation (282) and Equation (277) we get:

S2(τ ) = S1(0) ⋅X1 − S1(0) ⋅X3 (284)

Which we can simplify to:

S2(τ ) = S1(0) ⋅ (X1-X3) (285)

The di�erential of Equation (285) is:

dS2(τ ) = S1(0) ⋅ (dX1-dX3) (286)

The material balance for S2 in dV , which contains dwA and dwB of catalyst and inside

which reactions 1 and 2 take place with rates v1 and v2, respectively, is:

V̇ ⋅ dS2 = v1(S1) ⋅ dwA − v2(S2) ⋅ dwB (287)

Combining Equation (287) with Equation (286), Equation (285) and Equation (277) we

get:

V̇ ⋅ S1(0) ⋅ (dX1 − dX3) = v1(S1(0) ⋅ (1-X1)) ⋅ dwA − v2(S1(0) ⋅ (X1-X3)) ⋅ dwB (288)

Combining with Equation (287):

V̇ ⋅ S1(0) ⋅ dX3 = v2(S1(0) ⋅ (X1-X3)) ⋅ dwB (289)

Rearranging Equation (289):

dX3 =
1

V̇ ⋅ S1(0)
⋅ v2(S1(0) ⋅ (X1-X3)) ⋅ dwB (290)
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For all X3:

S1(0) ⋅ (X1-X3) ≤ S1(0) ⋅ (X1,f
-X3) (291)

And thus,

v2 (S1(0) ⋅ (X1-X3)) ≤ v2 (S1(0) ⋅ (X1,f
-X3)) (292)

This means that we get the maximum X3 at the outlet if X1 = X1,f for all dwB. In

other words, to maximize the product yield, a maximal conversion of substrate S1 has

to be achieved before positioning the B catalyst in the packed-bed reactor. There-

fore, regardless of the type of monotonically rising kinetic model (i.e., positive order,

non-equilibrium, without inhibition e�ects) followed by two sequential heterogeneously

catalyzed reactions, positioning the catalysts in separate zones, with catalyst A only in

the �rst zone and catalyst B only in the second zone, is better than mixing the two cat-

alysts together. The above proof can be extended for any number of sequential reaction

steps.

130


