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Abstract—This article proposes a data-driven modeling frame-
work with physically consistent Gaussian Processes (GPs), en-
abling learning-based disturbance estimation for uncertain me-
chanical systems with covariance-adaptive Momentum Observers
(MOs). We present novel error bound results in closed form,
holding with high, exactly computable probabilities, and exploit
the multidimensional, physically constrained function distribu-
tion induced by the differential equation structure of Lagrangian
systems. The inherent uncertainty quantification provided by
GPs and the derived model error bounds are then leveraged to
probabilistically guarantee exponential stability of a class of data-
driven, adaptive MOs with user-definable convergence parame-
ters. We demonstrate the performance of our proposed methods
in simulations and physical experiments, showing significant
improvements compared to the state-of-the-art from industry and
research.

Index Terms—Gaussian processes, learning and adaptive sys-
tems, probability and statistical methods, model learning for
control.

I. INTRODUCTION

W ITH the emergence of increasingly complex physical
systems for a variety of manipulation [1] and coop-

eration [2] tasks, and their deployment in increasingly uncer-
tain environments, accurate modeling, control, and estimation
are crucial yet more challenging. Particularly in the fields
of soft, variable impedance, and rehabilitation robotics [3]–
[5], dynamic interactions not only become nonnegligible but
are explicitly desired and accounted for by design, enabling
new applications and possibilities [6]. Thus, the demand for
providing reliable and accurate information on the nature of
environmental interactions is steadily rising [7]. At the same
time, performances of model-based control and observation
techniques become critically dependent on precise system
knowledge, such as in, e.g., whole-bodied control of legged
robots [8], dynamic control of soft robots [9], human-robot
interaction [10], or collision estimation [11].

We address these issues by data-driven modeling with
Lagrangian-Gaussian Processes (L-GPs), which are con-
strained to respect the relevant physical laws of our targeted
class of mechanical systems. For the estimation of external
forces, we leverage the physical consistency of our learning-
based model, allowing a natural embedding into the structure
of Momentum Observers (MOs) [12], [13]. Attributed to their
linear error dynamics, independence of accelerations and force
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directions, and avoidance of inverting the mass-inertia matrix,
MOs have been shown to be the best-performing method for
rigid-bodied robots [11]. However, due to their formulation
based on the generalized momentum as a nonmeasurable
output, they are still critically dependent on exact models and,
particularly, the inertia matrix.

In physics-informed machine learning, these same limita-
tions, revolving around uncertain momentum and inertia, are
also present in a variety of proposed methods, which are
either based on Hamiltonian models with GPs and neural
networks [14]–[17] or on exact knowledge of the mass-inertia
matrix [18]–[20]. In general, the notion of combining rigid-
body mechanics with data-driven modeling techniques holds
great promise for the control and observation of uncertain
robotic systems, improving data efficiency and reliability
via their physical integrity [21]. Also traditional parametric
identification techniques [22] profit from enforcing physical
consistency [23], [24] but are limited to dynamical systems
with low complexity since they require rigidity and thus,
linearity in the parameters. Especially for soft-bodied robots,
developing reliable yet tractable models is still a crucial
ongoing issue [9], [25].

Supervised learning techniques using GPs have become
increasingly popular due to their fundamental data efficiency
[26] and inherent uncertainty quantification [27]. Additionally,
GPs enable the derivation of prediction error bounds [28],
which can be used to provide stability guarantees for a large
number of control laws such as feedback linearization [29],
tracking [30], or robust [31], control. Moreover, their stochas-
tic construction closely relates them to Kalman filters [32],
lending them a measure of optimality for estimation. In gen-
eral, GPs do not account for physical consistency, however. An
approach based on vector-valued Reproducing Kernel Hilbert
Spaces (RKHS) is proposed in [33], using kernel regression
for the Lagrangian, but does not provide any further structure
or guarantees. Incorporating variational integrators into GP-
based learning can be advantageous when long-time numerical
integration is of interest, as shown in [34]. However, the energy
structuring of the Lagrangian and its quadratic forms are not
considered, prohibiting an application to most physical model-
based control or observation methods.

In the context of disturbance observation, few data-driven
approaches have been proposed thus far. Long Short-Term
Memory (LSTM) networks are used in [35] to estimate the
external torque without giving any guarantees, some relying on
a parallel MO for a residual-based estimate [36]. A work with
similar goals to ours is proposed in [37], combining standard
GPs with piecewise constant curvature (PCC) models [9] into
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a disturbance observer for soft robots. However, the authors
neglect Coriolis and mass-inertia forces and do not provide
closed-form results for convergence rate or steady-state error.
To the best of our knowledge, GPs have yet to be applied
to data-driven MOs, along with physically consistent learning
to disturbance observation in general. Moreover, error bound
results for GPs [28], [30], [38], [39] until now have only con-
sidered scalar functions, assume bounded observation noise,
neglect multidimensional function correlations, or suffer from
strong conservatism [40] due to probabilistic approximations.

A. Contribution

The main contribution of this article is the integration
of physically consistent L-GPs into a class of uncertainty-
adaptive, proportional (P) and proportional-derivative (PD)
gain MOs. Thus, we enable reliable learning-based estimation
of external forces acting on uncertain mechanical systems.
Compact exponential stability guarantees are provided based
on the formulation of novel prediction error bounds for GPs,
allowing user-definable convergence parameters. Theory and
methods are validated in numerical simulations and physical
experiments. In particular, comparisons with the state-of-the-
art from disturbance observation, error bounds, and modeling
and identification methods show significant improvements on
both theoretical and practical levels. Additionally, we extend
the applicability of the L-GP model, first proposed in our
previous work [41], from conservative to dissipative systems.

B. Notation

Vectors a and matrices A are denoted with bold lower and
upper case characters, respectively. I denotes the identity, 0
the zero and 1 the ones matrix. E[·] and Var[·] denote the
expectation and variance operators, λ̄(·) and λ(·) the maximal
and minimal eigenvalues, R and N the set of real and natural
numbers, respectively, | · | the cardinality of a set, N (µ,Σ) a
multivariate Gaussian distribution with mean µ and covariance
Σ, and ∥·∥ the Euclidian norm if not stated otherwise. The
operator vec(·) stacks the columns of a matrix to form a vector.
Finally, γ(n), γ(n+1/2) and Γn(ρ) denote the ordinary and
incomplete (upper) gamma functions

γ(n) = (n− 1)! , γ(n+ 1
2 ) =

(2n)!
4nn!

√
π , (1a)

Γn(ρ) =

∫ ∞

ρ

rn−1e−rdr , (1b)

evaluated at positive and nonnegative integer n, respectively,
and radius ϱ ∈ R+.

C. Physical Consistency and Euler-Lagrange Systems

Throughout this work, we will implicitly refer to the fol-
lowing model classification.

Definition 1 (Physical Consistency): A model is called
physically consistent if it is constrained to respect the physical
laws relevant to its modeling level.

A typical example of physical consistency for rigid-body
models is an inertial parameter set with positive mass and

positive definite inertia tensor satisfying the triangle inequal-
ities [23]. For finite-dimensional models of non-rigid bodies,
these parameters become state-dependent, and thus, a higher
modeling level respecting the fundamental characteristics of
Lagrangian systems [42] is required. In particular, trajectories
must satisfy the Euler-Lagrange (EL) equations in accordance
with Hamilton’s principle of Least Action, and conservative
forces must be derivable from potentials [43]. Note that an
exact model for elastic bodies necessarily leads to infinite
dimensionality [44]. A further classification into analytical and
probabilistic [41], or physical semi-consistency [23], is also
possible.

In this article, we assume the uncertain dynamics of Euler-
Lagrange (EL) systems with equations of motion [45]

M(q)q̈ +C(q, q̇)q̇ + g(q) + τf = τm + τext = τ , (2)

where q ∈ RN is the set of generalized coordinates,
M(q) ∈ RN×N the (symmetric) positive definite, inertia
matrix, C(q, q̇) ∈ RN×N the generalized Coriolis matrix
such that Ṁ − 2C is skew-symmetric, and the vector of
generalized potential forces g(q) := ∂

∂qV derived from the
potential energy V (q) ∈ R. The nonconservative torques τf ,
τm, and τext represent the dissipative friction, active motor
actuation, and external joint torques, respectively.

II. MODELING FRAMEWORK: LAGRANGIAN-GAUSSIAN
PROCESSES (L-GPS)

In this section, we propose a framework for data-driven
modeling of mechanical systems with physically consistent
Gaussian Processes (GPs), including, but not limited to, the dy-
namics of rigid bodies derivable via classical mechanics [43].
To begin with, we provide a brief overview of GPs based on
[27]. For a complete introduction, the reader is referred to the
literature [46]–[48].

A. Gaussian Processes (GPs)

A Gaussian Process (GP) is a stochastic process extending
the Gaussian probability distribution from random variables to
functions. Therefore, it inherits the convenient properties of the
Normal distribution, such that, in particular, conditioning and
marginalization of any finite realization remains Gaussian. For
x,x′ ∈ X in a continuous domain X ⊆ RM , a GP with mean
m(x) and covariance or kernel K(x,x′) is denoted by

f(x) ∼ GP (m(x),K(x,x′)) , (3)

where we consider vector-valued functions f : RM → RN .
The kernel matrix K(x,x′) ∈ RN×N is positive semidefinite
[48] for any x,x′, quantifying the correlation or similarity be-
tween the components of f(x) and f(x′), and also determin-
ing higher-level functional properties such as smoothness. It is
parametrized by so-called hyperparameters, mostly optimized
numerically via the marginal likelihood [27] to maximize the
probability of observing the measured outputs.

Consider now D observations Y ∈ RN×D at locations X ∈
RM×D perturbed by white noise ϵ according to

yi = f(xi) + ϵi , ϵi ∼ N (0,Σϵi) , i = 1, . . . , D . (4)
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Most simply, the covariance Σϵi is a scaled identity matrix
Σϵi = σ2

ϵI , representing the case of scalar i.i.d. noise
processes with the same variance σ2

ϵ disturbing each mea-
surement component. For regression, GPs then exploit the
joint Gaussian distribution of the measurements Y and a
desired estimate f(x) by conditioning on the former, leading
to the posterior mean µf (x) ≡ E[f(x)|Y ,X] and covariance
Σf (x) ≡ Var[f(x)|Y ,X] given analytically by

µf (x)=m(x)+K(x,X)
(
K(X,X)+Σϵ

)−1
vec(Y−m(X)),

Σf (x)=K(x,x)−K(x,X)
(
K(X,X)+Σϵ

)−1
K(X,x),

where K(X,X) and Σϵ are ND times ND block matrices
denoting the multidimensional Gramian and noise covariance,
respectively.

Moreover, GPs have the key property that linear transfor-
mations remain GPs [46] due to their stochastic construction
based on the expectation. Thus, applying a transformation op-
erator Tx which is linear, such as differentiation or integration,
to (3), results in another GP given by

Txf(x) ∼ GP
(
Txm(x), TxK(x,x′)T ⊤

x′

)
. (5)

For the transformation of the covariance, T ⊤
x′ is here applied

from the right to yield an exterior product [49]. Consider
for instance a scalar process g(x) ∼ GP (mg(x), kg(x,x

′)).
Then, taking the gradient ∂g

∂x induces a multidimensional GP
according to (3) with mean vector m and kernel matrix K
given by the gradient of mg w.r.t. x and the (Sub-)Hessian of
kg w.r.t. (x,x′), such that

∂g(x)
∂x ∼ GP

(
∂mg(x)

∂x ,
∂2kg(x,x

′)
∂x∂x′

)
.

Having introduced the underlying concepts of GPs, we now
describe our modeling scheme, aiming to unify the data-driven
probabilistic framework of GPs with first-order principles from
physics. Based on [41], we extend the method’s applicability
from conservative to dissipative systems, thus making up our
first contribution.

B. Physically Consistent Learning of Mechanical Systems with
Lagrangian-Gaussian Processes (L-GPs)

The core concept of our proposed model is to constrain the
function space of the employed GP distribution to be maxi-
mally physically consistent. Firstly, we leverage the operator

Lq :=
(

∂
∂q̇⊤
q̈ + ∂

∂q⊤
q̇
)

∂
∂q̇ − ∂

∂q (6)

to deterministically satisfy Hamilton’s principle of Least Ac-
tion by embedding the differential equation structure of con-
servative Euler-Lagrange (EL) systems [43]

d
dt

∂L
∂q̇ − ∂L

∂q = τc = LqL(q, q̇) (7)

into the model (3). Then, asserting for the unknown La-
grangian function L(q, q̇) a scalar GP with mean mL, kernel
kL, and applying the linear transformation (6), we obtain

τc(x) ∼ GP
(
LqmL(q, q̇),LqL⊤

q′kL(q, q̇, q
′, q̇′)

)
(8)

due to (5) for x = (q, q̇, q̈).

Secondly, assuming the dissipative component to consist of
viscous, Coulomb, and dry-contact [50] frictional effects

τf =Dv(q̇)q̇ +Dd(q̇)h(q̇) , (9)

where Dv,Dd ⪰ 0 and h(q̇) = arctan(dsq̇), ds ≫ 1, we
model the total τ as a multidimensional composite GP

τ = τc + τf ∼ GP
(
LqmL +mf ,LqL⊤

q′kL +Kf

)
(10)

with prior mf on (9) and the dissipative covariance

Kf =diag(q̇)Kvdiag(q̇
′)+diag(h(q̇))Kddiag(h(q̇

′)) . (11)

In the simplest case, Dv,Dd and therefore also the kernel
matrices Kv,Kd are diagonal, resulting in N scalar indepen-
dent GPs each for the respective friction coefficients. Also,
note that the damping matrices in (9) and accordingly also the
kernels in (11) can straightforwardly be extended to include
dependencies on the position q.

Finally, the Lagrangian in (7)–(8) is split up into its energy
components L = T −G− U with the kinetic energy T (q, q̇)
as well as the gravitational and elastic potentials G(q) and
U(q), respectively, for each of which we consider a separate
independent GP. In particular, for the kinetic energy, we make
use of a specific kernel structure [41] given by

kT =
1

4
q̇⊤diag(q̇′)ΘM (q, q′)diag(q̇′)q̇ (12)

with the Cholesky decomposed covariance ΘM = R⊤
MRM

and upper-right triangular RM (q, q′). The elastic energy GP
U(q) is constrained analogously.

As a consequence of the structures (7)–(12), the posterior
τ̂ := µτ of the dissipative L-GP (10) can be written as

τ̂ (x) = M̂(q)q̈ + Ĉ(q, q̇)q̇ + ĝ(q) + τ̂f (q̇) . (13)

Here, M̂ : RN → RN×N is the symmetric posterior mass-
inertia estimate, guaranteed to be positive definite with high
probability [41], and Ĉ is the Coriolis estimate constructed
as Ĉ(q, q̇) := 1

2 (
∂2T̂

∂q̇∂q⊤
+

˙̂
M(q) − ∂2T̂

∂q∂q̇⊤
) [45]. These

first two terms, combined with the potential force estimate
ĝ(q) = ∂

∂q (Ĝ + Û), also comprise the posterior τ̂c := µτc

of the conservative torque GP (8), and are deterministically
guaranteed to be lossless [41], due to the differential structural
embedding (7) and the skew-symmetry of ˙̂

M − 2Ĉ.
Remark 1: The mass-inertia estimate M̂ is a matrix-valued

GP which is physically consistent since it probabilistically
preserves positive definiteness and constrains the function
space of the kinetic energy to quadratic forms; see Appendix
E for an RKHS derivation. No further restriction is imposed
on its components; in particular, no dependency on constant
inertial parameters is enforced, as is well-known to hold for
rigid bodies via the linear combination of body Jacobians
and generalized parametric inertia matrices [45]. Thus, the L-
GP guarantees physical consistency probabilistically for rigid-
body systems and deterministically for EL systems (7).
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III. MULTIDIMENSIONAL MODEL ERROR BOUNDS

Essentially, the described model in section II-B is physically
consistent yet still data-driven and, therefore, affected by
measurement disturbances due to, e.g., noise. For the safe
application of any model-based controller or observer, the
model error must be analyzed and ideally shown to be bounded
to guarantee stable closed-loop dynamics. GPs naturally enable
the quantification of uncertainty in the model through their
stochastic framework. In this section, we build on this property
and present a series of novel error bound results. We require
the following probabilistic condition to be fulfilled.

Assumption 1: The unknown vector-valued function f(x)
is drawn from a GP according to (3) of which D ∈ N noisy
observations have been collected according to (4).

The restrictiveness of this assumption depends on the kernel
K(x,x′) in (3) since it defines the space of functions which
can be represented according to Mercer’s decomposition the-
orem [51]. For instance, diagonal covariances consisting of
scalar universal [52] kernels k(x,x′) permit the regression
of continuous functions up to arbitrarily high precision [38].
Also, we allow Gaussian measurement noise without any
boundedness assumptions as in, e.g., [28], [30], [39].

The functional probability distribution defined by the mul-
tidimensional GP in Assumption 1 is now explicitly leveraged
to bound the model error, thus leading us to one of the main
contributions of this article. At first, we consider the unknown
vector-valued function f : X → RN on a finite set |X | < ∞.

Lemma 1: Pick a δ ∈ (0, 1) and set β ∈ R+ such that

β(δ) =

√
2Γ−1

N/2

(
δγ(N/2)

|X |

)
, (14)

where Γ−1
N/2(·) denotes the inverse of (1b) with n = N

2 . Then,
for f : X → RN satisfying Assumption 1 and λ(·) indicating
the minimal eigenvalue, the probabilistic bound

Pr
{
∥f(x)− µf (x)∥ ≤ β(δ)λ

1
2 (Σf (x))

}
= 1− δ (15)

holds exactly ∀x ∈ X on a finite set |X | < ∞.
Proof: The proof is given in Appendix A. ■
With this result, we have circumvented the inaccuracy of

bounding the probability (15) from below by using (1b) along
with an adequate coordinate transformation, cf. the proof in
Appendix A. This exact computation leads to significantly
tighter guarantees, as demonstrated in the following. Before,
however, we extend the support of (15) from a finite |X | < ∞
to a compact set X ⊆ RM . Purely for analysis purposes,
we consider a discretization Xd ⊂ X as done in [28]. Also,
similar to the scalar approach [38], the continuity of the
multidimensional function space and the GP-related estimates
are leveraged to bound the error for a general x ∈ X .

Lemma 2: Pick a violation probability δ ∈ (0, 1), a
discretization constant d ∈ R+, and set

β(δ, d) =

√
2Γ−1

N/2

(
δγ(N/2)
Md(X )

)
(16)

with the covering number Md(X ). Then, for f : X → RN

satisfying Assumption 1, and compact X ⊆ RM ,

Pr
{
∥f(x)−µf (x)∥≤β(δ, d)

√
λ(Σf (x))+s(d)+Ltotd

}
=1− δ

(17)
holds exactly ∀x∈X . Here, s(d) is the modulus of continuity

s(d) = 2dLK

(
1+D∥K−1

y ∥F max
x,x′∈X

∥K(x,x′)∥F
)

(18)

of the covariance Σf , where Ky =K(X,X) +Σϵ, and

∥K(x, ·)−K(x′, ·)∥F ≤ LK∥x− x′∥ , (19)

along with the Lipschitz constants of the function Lf , the
posterior mean Lµ = LK

√
D∥K−1

y ∆y∥, where ∆y =
vec(Y−m(X)), and their sum Ltot = Lf+Lµ.

Proof: See Appendix B. ■
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Fig. 1: Comparison of the proposed (blue) and approximative
(red) bounds of Lemma 2 and [38], respectively, via their
scaling factors β(δ, d), shown over the discretization d, for
different probabilities 1− δ with δ = 10−x, x = 1, 2, . . . , 10.
Here, the 3N -dimensional unit hyperball X = {x ∈ R3N |
∥x∥ ≤ 1} with N = 7 is used as the supporting set.

The covering number Md(X ) introduced in Lemma 2 is the
cardinality of a finite discretization |Xd| < ∞, needed to d-
cover X ⊆ RM such that, for any x ∈ X , there exists x′ ∈ Xd

with ∥x− x′∥ ≤ d. For c = maxx∈X ∥x∥, it can be bounded
for 0 < d ≤ 2c

√
M according to [53]

Md(X ) ≤
(

2c
√
M

d

)M

.

The Lipschitz constant Lf can be estimated analytically for
Lagrangian systems, as shown in Appendix D. A probabilistic
estimation based on Assumption 1 is also possible for general
f(x), as demonstrated in [38] for the scalar case. The matrix
kernel LK can easily be estimated numerically, or even
analytically by exploiting, if available, a kernel structure such
as (6) and (11). Finally, given a set of observations, the last
remaining Lipschitz constant Lµ of the posterior mean directly
follows from LK .
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However, as can be seen by the bias term (Lf +Lµ)d
in the bound (17), the discretization in Lemma 2 introduces
a constant approximation error. Therefore, it is desirable to
let the grid constant d tend to zero to reduce the bias and,
moreover, the impact of the unknown function’s Lipschitz
constant, which can only be bounded from above. The vi-
sualization in Fig. 1 demonstrates the efficacy of our bound
compared with [38]. Despite small magnitudes of the grid
constant d, the scaling factor β(δ, d) from (16) remains in a
feasible region and is already significantly lower. Note that our
proposed scale always remains well beneath [38], separated by
a factor of up to 40. Although practically less relevant, this
also holds for larger discretization constants, and all the way
up to the maximal d = 2

√
21 ≈ 9.17 corresponding to a single

discretization grid point. Since β(δ, d) is independent of the
training data and the hyperparameters, Fig. 1 clearly indicates
the theoretical superiority of the proposed bounds. These
bounds are tightened even further in contrast to [30], which
is restricted to uncorrelated and independent scalar functions
for each dimension, by our leveraging of the joint functional
distribution, leading to a dependence of (15) and (17) on
the square root of the smallest eigenvalue of the covariance
instead of the maximum (or all separate) standard deviation(s).
Note that the latter are inherently larger, especially in regions
outside the training domain, since correlations are neglected.

Remark 2: Contrary to [28], [30], [38], [39], probabilities
are computed exactly in closed form up to dependence on
gamma functions (1). The closed-form derivation of exact
probabilities instead of their bounding from below [28], [38]
keeps the resulting error bound significantly less conservative,
even for d → 0 and thus |Xd| → ∞ such that the discretization
Xd desirably converges to the compact set X . Note that a
variety of different software tools, e.g., Python’s SciPy or
Matlab, are readily available for the numerical evaluation
of the gamma functions and their inverses in Lemmas 1–
2, as opposed to the bounds proposed in [28], [39], which
depend on hardly computable constants such as the maximum
information gain.

IV. DISTURBANCE OBSERVATION WITH L-GPS

In this section, we now leverage the uncertainty quantifi-
cation of the model and its error bound in the design and
stability analysis of our proposed data-driven and physically
consistent disturbance observers. The following observer gains
are proposed based on the posterior L-GP covariance Στ (x)
with kernel matrix Kτ = LqL⊤

q′kL +Kf from (10).
Lemma 3: The uncertainty-adaptive gain

KO(Στ (x)) =K3(K2 +Στ (x))
−1K3 +K1 (20)

with constant 0 ≺ kiI ≺ Ki ≺ k̄iI , where ki, k̄i ∈ R+ for
i = 1, 2, 3, is always guaranteed to fulfill the bounds

k1I ≺KO(Στ (x)) ≺
(

k̄2
3

k2
+ k̄1

)
I . (21)

Proof: Directly follows from Weyl’s inequality [54, III.2.1]
for the eigenvalues of the sum of symmetric matrices and
Lidskii’s corollary [54, III.4.6] for the eigenvalues of the
product of positive definite matrices. ■

1
s

η(q, q̇)

M−1 1
s

τext

τm ṗ p q̇ q

−

η̂(q, q̇)

1
s M̂(q)q̇

KO

1
s K̇O

˙̂p− p̂ −

r

−

L-GP-MO

Fig. 2: Block diagram of the L-GP-based momentum observer
(23b) for ṗ with virtual measurement p = M̂(q)q̇.

Remark 3: Assuming perfect model knowledge, the MO
can be shown to converge to a virtual sensor for disturbances
with increasing correction gain [11]. Thus, contrary to the
scalar GP-based, adaptive control law [30], we follow the
inverse goal of decreasing the gain in areas where model
confidence is low and vice versa. The uncertainty-adaptive
gain KO always remains between user-definable lower and
upper bounds (21). Different covariance-based adaptations are
also possible, for example, with integrated covariance over
time.

The next theorem introduces our proposed observer struc-
ture, depicted in Fig. 2, for estimating external disturbances
acting on joint level. For compactness, we define [11]

η(q, q̇) := g(q) +C(q, q̇)q̇ − Ṁ(q)q̇ + τf (q, q̇)

= g(q)− CT(q, q̇)q̇ + τf (q, q̇) . (22)

We are now ready to formulate the first main result.
Theorem 1 (L-GP-MO): Consider for p = M̂(q)q̇ the

L-GP-based momentum observer given by

˙̂p = τm − η̂(q, q̇) + r (23a)

ṙ =KO(Στ )(ṗ− ˙̂p) (23b)

with L-GP means M̂(q), η̂(q, q̇), and covariance-based
KO(Στ ) according to (20). Then, for constant τ̇ext = 0 and
any initial e0 ∈ RN , t0 ∈ R, the observation error e = r−τext
converges exponentially to a ball with probability

Pr
{
∥e(t)∥ ≤ ϱ(∆) + c(e0)e

−α(t−t0)
}
= 1− δ (24)

and violation probability δ ∈ (0, 1), radius ϱ(∆) = ∆k̄/k with
error bound ∆ ∈ R+, convergence rate α = k/2, eigenvalue
bounds k := k1 and k̄ := k̄23/k2 + k̄1 from (21), and scale

c(e0) =

{
0 , ∥e0∥ ≤ ϱ√

∥e0∥2 − ϱ2(∆) , ∥e0∥ > ϱ
. (25)
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Proof: For the proof of Theorem 1, we utilize a standard
Lyapunov function and bound its derivative along the trajecto-
ries of the error dynamics of (23) from above, using the model
error bound derived in Lemma 2, and the exponential stability
theorem from [55]. To begin with, we reformulate (23b) by
differentiating ṗ =

˙̂
Mq̇ + M̂q̈ and using (2) such that

ṙ =KO(Στ )(τ̂ (q, q̇, q̈)− τm − r) . (26)

Plugging τm = τ − τext from (2) into (26) and introducing
the model error τ̃ = τ − τ̂ , we obtain the error dynamics

ė+KO(Στ )(e+ τ̃ ) = 0 , (27)

for τ̇ext = 0. Next, we consider the standard unweighted, time-
invariant Lyapunov energy function

V (e) = 1
2e

⊤e (28)

and compute its time derivative along trajectories of (27) as

V̇ = −e⊤KO(Στ )(e+ τ̃ ) .

Then, using the eigenvalues (21) from Lemma 3, we obtain

V̇ ≤ − k1︸︷︷︸
=k

∥e∥2 +
(

k̄2
3

k2
+ k̄1

)
︸ ︷︷ ︸

=k̄

∥τ̃∥∥e∥ .

Exploiting Young’s inequality in the form of ab ≤ a2

2ϵ + ϵb2

2
for nonnegative a, b ≥ 0 and positive ϵ ∈ R+, we bound the
second term which is linear in ∥e∥ and get

V̇ ≤ −2
(
k − ϵ

2 k̄
2
)

1
2∥e∥

2 + ∥τ̃∥2

2ϵ ≤ −2α(ϵ)V + ∥τ̃∥2

2ϵ

with convergence rate α(ϵ) = k − ϵ
2 k̄

2. Finally, we apply
Lemma 2 and arrive at the probability

Pr
{
V̇ ≤ −2α(ϵ)

(
V − ϱ2(ϵ)

2

)}
= 1− δ

guaranteeing uniform ultimate boundedness and exponential
convergence [55] to the closed ball

B(∆) =
{
e ∈ RN

∣∣∣∥e(t)∥ ≤ ϱ(∆) ,∀t ≥ t0

}
(29)

with radius

ϱ(∆) = ∆√
2ϵα(ϵ)

= ∆√
ϵ(2k−ϵk̄2)

. (30)

The dynamics (27) are also exponentially stable to within
B(∆) with the same probability. Here, we have used ∀x ∈ S
the model error bound ∆ ∈ R+ such that

S = {β(δ, d)
√
λ(Στ (x))+s(d)+(Lτ+Lµτ )d ≤ ∆} . (31)

Optimizing (30) by minimization over ϵ, we set ϵ = k/k̄2,
leading to the radius ϱ(∆) = ∆k̄/k of the ball (29) and the
convergence rate α = k/2. ■

Theorem 1 presents, for a high probability 1− δ, a uniform
ultimate bound for the error dynamics (27) of the observer
(23), proven to be exponentially stable with provided con-
vergence rate α. In contrast to [11], uncertainties in the mass-
inertia matrix and momentum are explicitly accounted for. The
radius ϱ of the ball (29) depends linearly on an upper bound on
the model error (31). Therefore, ϱ decreases with the minimal
eigenvalue of the L-GP posterior covariance Στ . Note that,

1
s

η(q, q̇)

M−1 1
s

τext

τm ṗ p q̇ q

−

η̂(q, q̇)

1
s M̂(q)q̇

KD

1
s KP

1
s K̇P

˙̂p− p̂ −

s

r

−

L-GP-PD-MO

Fig. 3: Block diagram of the L-GP-based PD momentum
observer (34) for ṗ with uncertainty-adaptive P-feedback and
virtual measurement p = M̂(q)q̇.

from (29), it might seem optimal to enforce an identical and
constant correction via k̄ = k and let k̄ → ∞. However,
the performance of such a high-gain observer, essentially an
approximate differentiator, is practically limited by measure-
ment noise and uncertain dynamics [56]. Thus, let us consider
the instantaneous model error bound ∆(t) by allowing the set
S to include only the current state x(t), thus leading to a
direct scaling of the radius ϱ(t) by the bound in Lemma 2.
Then, extending the upper eigenvalue bound of the gain (21)
to k̄(t) = k̄23(k2 + λ(Στ ))

−1 + k̄1 with k = k1, it becomes
clear that the finite adaptation (20) is advantageous since it
compensates an increase of the radius (29) through the model
error bound, which is scaled by λ(Στ ).

Moreover, note that the observer output signal r(t), also
called residual vector, follows from integration by parts
of (23b), resulting in

r =KO (p− p̂)−
∫ t

t0

K̇O (p− p̂) dτ (32)

with

p̂(t) = p(0) +

∫ t

t0

(τm − η̂(q, q̇) + r) dτ . (33)

Also, note that the MO (23) enables estimating the accelera-
tions q̈ via ¨̂q = M̂−1(τm+r− n̂), where n̂ = Ĉq̇+ ĝ+ τ̂f .
Next, we introduce a PD observer structure based on [57].

Theorem 2 (L-GP-PD-MO): Consider for p = M̂(q)q̇ the
L-GP-based PD momentum observer given by

˙̂p = τm − η̂(q, q̇) + r (34a)

ṡ =KP (Στ )(ṗ− ˙̂p) (34b)

ṙ = s+KD(ṗ− ˙̂p) (34c)
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with L-GP mean estimates M̂(q) and η̂(q, q̇), constant deriva-
tive gain KD ≻ I , and covariance-based KP (Στ ) according
to (20). Then, for constant velocity disturbances τ̈ext = 0 and
any initial conditions e0, ė0 ∈ RN , t0 ∈ R, the estimation
error e = r − τext vanishes exponentially with probability

Pr
{
∥[e(t), ė(t)]∥ ≤ ϱ(∆, ∆̃) + c(e0, ė0)e

−α(t−t0)
}
≥ 1− δ

for δ ∈ (0, 1) with model error and derivative bounds ∆, ∆̃ ∈
R+ and scale c(·) analogously to (25). Radius ϱ(∆, ∆̃) and
exponential rate of convergence α(ϵ, φ) are given by

ϱ(∆, ∆̃) =

√(
ϵ
φ+

1
ϑ+ϵφ

)
k̄P∆2+

(
ϵ
φ+

1
ϵ(ϑ+φ)

)
k̄D∆̃2

2(1−ϵ)α(ϵ,φ) (35a)

α(ϵ, φ) = 1
1+ϵ

(
kD − ϵ− 1

2ϑ − ϵϑ+φ
2 k̄D − ϑ+ϵφ

2 k̄P
)

(35b)

and specified by ϵ, φ ∈ R+ and fixed ϑ ∈ R+ satisfying

0 < ϵ < min

(
1,

kD−1
kP+1 ,

2kD− 1
ϑ−ϑk̄P

1+ϑk̄D+φ(k̄P+k̄D)

)
, (36a)

ϑ = kD − ϵ(kP +1)±
√
[kD−ϵ (kP +1)]

2−1 . (36b)

Here, kP = λ(KP ) and k̄P = λ̄(KP ) denote the minimal and
maximal eigenvalues of KP , respectively, bounded by (21).

Proof: Firstly, we differentiate the last line of (34) and get

r̈ = −KP (Στ )(r − τext + τ̃ )−KD(ṙ − τ̇ext + ˙̃τ ) ,

where we have again used ṗ− ˙̂p = −τ̃+τ̇ext−r analogously to
the derivation of (26). The error dynamics of (34) then follow
from e = r − τext and ë = r̈ according to

ë+KD(ė+ ˙̃τ ) +KP (Στ )(e+ τ̃ ) = 0 (37)

with model error τ̃ = τ − τ̂ . Next, we consider the following
time-invariant Lyapunov energy function

V (e, ė) = 1
2

(
∥e∥2 + ∥ė∥2

)
+ ϵe⊤ė (38)

with positive 0 < ϵ < 1. Thus, using Young’s inequality in
the form of ab ≤ a2

2φ + φb2

2 for nonnegative a, b ≥ 0, we can
derive that (38) is bounded ∀e, ė ∈ RN by

1−ϵ
2 (∥e∥2+∥ė∥2) ≤ V ≤ 1+ϵ

2 (∥e∥2+∥ė∥2) .

Next, we differentiate (38) w.r.t. time t, leading to

V̇ = e⊤ė+ ė⊤ë+ ϵ(∥ė∥2 + e⊤ë)
= −ϵe⊤KPe− ė⊤(KD − ϵI)ė

−e⊤ (KP +ϵKD−I) ė− (ϵe+ė)⊤(KD
˙̃τ+KP τ̃ ) .

Then, making use of the Cauchy-Schwarz and Weyl’s [54,
III.2.1] inequalities, we upper bound V̇ by

V̇ ≤− ϵkP ∥e∥2 − (kD−ϵ)∥ė∥2 + (k̄P +ϵk̄D−1)∥e∥∥ė∥

+ (ϵ∥e∥+ ∥ė∥)
(
k̄P ∥τ̃∥+ k̄D∥ ˙̃τ∥

)
.

Again, exploiting Young’s inequality, we follow that

V̇ ≤− (kD−ϵ− 1
2ϑ−ϵϑ+φ

2 k̄D− ϑ+ϵφ
2 k̄P )(∥e∥2+∥ė∥2)

+ ( ϵ
φ + 1

ϑ+ϵφ )
k̄P ∥τ̃∥2

2 + ( ϵ
φ + 1

ϵ(ϑ+φ) )
k̄D∥ ˙̃τ∥2

2 ,

having newly introduced the parameter φ ∈ R+ and the fixed
constant ϑ given by (36b), requiring additionally that ϵ ≤

kD−1
kP+1 such that ϑ ∈ R+. Finally, we apply Lemma 2 along
with its derivative extension in Appendix C to get

Pr
{
V̇ ≤ −2α(ϵ, φ)

(
V − 1−ϵ

2 ϱ2(∆, ∆̃)
)}

≥ 1− 2δ (39)

with radius ϱ and convergence rate α from (35a) and (35b),
respectively [55]. Here, we have leveraged De Morgan’s law
and the union bound ∀(x, ẋ) ∈ S such that

S =
{
β(δ, d)l(x, d) ≤ ∆ ∩ β(δ, d)l̃(x, d)∥ẋ∥ ≤ ∆̃

}
(40)

with l(x, d) =
√
λ(Στ (x))+s(d)+(Lτ+Lµ)d and l̃(·) defined

analogously for vec(∂τ∂x ). Lastly, setting δ̃ = 2δ in (39), we
finish the proof. ■

Theorem 2 extends the observer (23) by a derivative cor-
rection, leading to the structure (34), and also provides for
a high probability 1 − δ a uniform ultimate bound for its
exponentially stable, second-order error dynamics (37). The
convergence rate (35b) and radius (35a) are now specified
by parameters ϵ, φ from (36), permitting a larger measure
of design freedom. Essentially, the observer outputs s(t), r(t)
follow from integration. To see this, we express the derivative
output s by integration in parts of the second line of (34) as

s =KP (p− p̂)−
∫ t

t0

K̇P (p− p̂) dτ , (41)

Here, p̂ is computed subsequently by integration

p̂(t) = p(0) +

∫ t

0

(τm − η̂(q, q̇)− τ̂f (q, q̇) + r) dτ . (42)

Finally, the output signal r then follows by integrating the last
line of (34) and reformulating according to

r =

∫ t

t0

s(τ)dτ +KD (p− p̂) (43)

with s and p̂ from (41) and (42), respectively.
Remark 4: The reduced MO (23) from Theorem 1 can be

recovered from (34) of Theorem 2 by setting KP = 0 and
KD =KO.

V. EXPERIMENTAL EVALUATION

In this section, we illustrate the efficacy of our modeling
approach in numerical simulation and demonstrate the perfor-
mance and effectiveness of our proposed error bounds and L-
GP-augmented momentum observers in a series of experiments
on a 7-DOF KUKA IIWA [58]. Additionally, we compare with
state-of-the-art linear-parametric modeling and identification
schemes based on Least Squares (LS) [9], [23], [59], and
with the standard black-box GP with squared exponential (SE)
kernel [26], [27].

A. Numerical Simulations

To begin with, we validate the physical consistency of our
model based on the two-link manipulator from [45, p. 164]
with gravitation, as described in detail in [41]. Here, we have
additionally included unit damping elements at each joint and
extended the training data set to D = 34 noisy measurement
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Fig. 4: L-GP estimate of the mass-inertia matrix for the two-
link manipulator: eigenmanifolds for q ∈ [−π/2, π/2]2.

Fig. 5: L-GP gravity estimate for the two-link robotic manipu-
lator and numerically simulated trajectories of the unforced es-
timative dynamics for different initial conditions q(0) = a01.

pairs by including an equidistant 3× 3 grid for q̇i ∈ [−1, 1]2

with fixed qi = q̈i = 0.
The accurate approximation of the positive definite sub-

functional kinetic energy space is shown in Fig. 4 w.r.t. the
eigenvalues of the mass-inertia estimate, evaluated over the
domain q ∈ [−π/2, π/2]2, which is significantly larger than
the training domain qi ∈ [−1, 1]2. Physical consistency in
terms of positive semi-definiteness of the gravitational estimate
is illustrated in Fig. 5, along with the passivity of the L-
GP-based dynamics simulated for different initial conditions
q(0) = a01, q̇(0) = 0.

Moving on to higher system complexity, we consider the
planar soft robot from [9], [60] simulated by a FEM model.
For this, we employ a discretization of a continuum rod as
a series of infinitesimal links [61], where we consider a total
of NFEM = 100, subsequently connected by linear torsional-
spring-damper elements, and thus equally dividing the con-
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Fig. 6: Numerically simulated L-GP-based step response of the
soft robot [9] for a = 1 Nm. Left: continuous orientations of L-
GP (solid lines) and FEM (dotted) for different time instances.
Right: inertia matrix eigenvalues of the equivalent L-GP-based
system discretizing into N = 4 constant curvature segments.

tinuous rod with unit mass and length. The stiffnesses and
dampings are set to 10 Nm rad−1 and 1 Nm s rad−1, respec-
tively. For training, we consider the system’s step response to a
constant torque with amplitude a = 1 Nm acting on each FEM
element, starting from equilibrium, i.e., the orientation aligned
with gravity along the x-axis, cf. the dotted line in Fig. 6 (left),
and measurement noise ϵ ∼ N (0, σ2

ϵI), σϵ = 0.01a. The L-
GP uses D = 24 equidistant training data pairs and discretizes
the system into N = 4 constant curvature (CC) segments, as
done in the parametric model proposed in [9] equivalent to a
constrained rigid body with 4N = 16 DOFs. The evolution
of the inertia matrix’s eigenvalues, obtained by resimulating
the L-GP-based dynamics for the same step input, is shown in
Fig. 6 (right), whereas the resulting curvature angle trajectories
are visualized in Fig. 7, respectively. As a comparison, we
identified the inertial, damping, and stiffness parameters of the
CC model proposed in [9] via Least Squares (LS), showing
inferior modeling accuracy. The L-GP’s performance is vali-
dated dynamically in Fig. 8 for various step inputs. The results
show that trajectories can be predicted accurately despite the
additional presence of discretization errors due to numerical
integration.

B. Elastic Joint Robot: KUKA LBR IIWA 14 R820

In the remaining sections, we validate the proposed mul-
tidimensional error bound as well as the L-GP-based mo-
mentum observers directly in experiments, using a KUKA
IIWA [58], a fully actuated, lightweight, elastic joint robot
with 7 DOFs. Additionally, we compare our performance
with KUKA’s built-in external torque observer. Position and
torque measurements are obtained from KUKA’s Fast Robot
Interface (FRI) sampled at 1 kHz. Velocities and accelerations
are computed by successive differentiation and filtering.

For the L-GP, we use only D = 100 equidistant samples
{qi, q̇i, q̈i, τi} of a 20 s excitation trajectory. We account
for uncertainty in acceleration and torque measurements by
setting noise covariances to Στ = σ2

τI and Σq̈ = σ2
q̈I with

variances στ = 0.1 Nm and σq̈ = 0.1 rad s−2, respectively,
thus leading to standard deviations of

√
0.1 ≈ 0.32. A total of

45 hyperparameters are optimized based on the least-squares
approximation of another set of 3D equidistant samples. All
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Fig. 7: Resimulated training trajectory of the models showing
the bending angles of the CC segments for a = 1 Nm. RMS
errors of L-GP and LS are 1.65 and 3.86 deg, respectively.
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Fig. 8: Simulated validation trajectories of the L-GP-based
dynamical model for different step inputs. Solid lines indicate
the L-GP trajectories, dashed the FEM simulation.

hypervariances are identically initialized by ones, and the
kinetic mass-inertia hypermetric, cf. [41], is reduced to a
constant Euclidian form with identical length scale initial-
ized by π. In addition to the L-GP, we model transmission
nonlinearities in the motor to joint gearing of the IIWA [62]
by compositely employing independently structured GPs with
periodic kernels for joints 2-4.

As a benchmark, we compare with the physically consistent
parameter identification method in [23] based on Linear Matrix
Inequalities (LMIs), using the convex optimization solver
MOSEK and a total of 50 base parameters. This identified
model is passed to the L-GP and used as its prior mean
mτ , where gravity is modeled identically. Also, comparing
with a standard unstructured GP with squared exponential
kernel [27], we validate the different models based on a
validation trajectory, which is significantly distinct from the
excitation trajectory, shown in Fig. 9. Error norms of both are
plotted over time as well, along with the proposed probabilistic
bound from Lemma 2 applied to standard GP and L-GP,
as well as the standard bound from [30], [38], for violation
probability δ = 10−10 and discretization constant d = 10−15,
cf. Tab. II. Note that the latter cannot be applied to the L-
GP since [38] is constrained to scalar functions, and the
extension [30] requires an uncorrelated functional distribution,
i.e., the covariances must be diagonal. Our proposed bound,
however, cannot only deal with functional correlations but
also explicitly leverages these, leading to several orders of
magnitude improvements for both GP models. The standard
GP displays an inferior estimation accuracy paired with an
overly confident uncertainty measure compared to the L-GP.

The estimated contributions of inertial, gravitational, and

Disturbance τext = 0 τext(t)
Observer STD (Nm) RMS (Nm) STD (Nm) RMS (Nm)
KUKA 0.7785 0.8567 0.8986 1.0104
Parametric MO 0.6330 0.8062 0.7151 0.9109
Static L-GP-MO 0.5699 0.7624 0.6475 0.8753
Static L-GP-PD-MO 0.4879 0.6941 0.5575 0.7046
Σ-adapt. L-GP-MO 0.4672 0.6525 0.5697 0.7810
Σ-adapt. L-GP-PD-MO 0.4864 0.6783 0.5330 0.6878

TABLE I: Numerical evaluation of the disturbance estimation
errors for each considered MO variant on the KUKA IIWA.

friction effects, along with the transmission nonlinearity com-
ponent, are shown in Fig. 10. The efficiency of the investigated
models w.r.t. prediction accuracy and computation timings
are compared in Fig. 12. All computations were performed
on a standard notebook in Matlab with 3.2 GHz CPU and
16 GB RAM. In particular, the standard GP shows a strong
overtraining effect, leading to a limited validation accuracy,
while the L-GP shows a high data efficiency. Furthermore,
due to the high dimensionality of the system, the L-GP
is computationally faster than the MEX-compiled reference
implementation of the standard GP modeling approach until a
cardinality of D = 80. For D = 40, 100, its average prediction
timings and validation errors are 364, 722µs and 2.50, 2.45
Nm, respectively. Also, comparing with the C-implementation
of the standard GP method from [30] promises a further
computational performance increase achievable for the L-GP
by moving to a more efficient platform than Matlab.

C. Disturbance observation on the KUKA IIWA

Two scenarios are considered to validate the disturbance
observers experimentally on the IIWA: firstly, we use the
trajectories of the undisturbed robot from Fig. 9. Since no
external torques are disturbing the system in this case, the
observers should converge to τext = 0, assuming error-free
models. Secondly, we perform new measurements mounting
a Schunk gripper to the end-effector of the robot and treat-
ing its inertial forces as a time-variant disturbance τext(t)
acting upon the system, cf. Fig. 11. As a reference for the
actual disturbance, we use the difference between the rigid-
body model estimates with and without gripper, identified
via physically consistent Least Squares (PC-LS) with LMIs
and validated in the previous subsection. The performances of
KUKA’s built-in, the classical parametric, and the proposed
L-GP-based static- and uncertainty-adaptive-gain disturbance
observers are evaluated numerically for both cases in Tab. I,
showing the standard deviation averaged per dimension and
the overall RMS error. Parameter values are given in Tab. II;
in particular, we use identical gain matrices for both scenarios.
Compared with KUKA’s external torque observer provided by
the FRI, we are able to achieve relative improvements of up
to 66.61% and 68.60% in the free and disturbed scenarios,
respectively, w.r.t. the error’s averaged standard deviation.

The evaluations show that the L-GP-based modeling ap-
proach and the uncertainty-based adaptation each lead to sub-
sequent performance increases relative to the parametric and
static-gain observer variants, respectively. Note that the matrix
gains K1−3 were chosen such that the resulting uncertainty-
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Fig. 9: Model identification of the KUKA IIWA (first 20 s) and validation using the next 30 s of an aggressively optimized
excitation trajectory. Top: regression errors after identification. The proposed L-GP model has an overall RMS error of 1.0429
Nm, superior to 1.1208 Nm and 2.9108 Nm of LS-ID with LMIs [23] and standard GP, respectively. Bottom: model error
norms and probabilistic bounds (GPs) evaluated for training (shaded red) and validation trajectories (shaded green).

δ d β Md Lτ LKτ ∥K−1
y ∥F max∥Kτ ∥F ∆ Kstatic

O,P KD,1−3 ϱ α ϱPD αPD

10−10 10−15 40.32 10335 1.63e3 6.24e3 64.7289 3.3730e4 21.86 40I 20I 43.71 10 39.45 10.08

TABLE II: L-GP and MO parameter values.

adaptive observer gains are always lower than their static
versions since 20I ≺ KO,P (Στ ) ≺ 40I holds, cf. Tab. II.
In practice, the variable L-GP-based PD-MO exhibits the
highest precision for the disturbed scenario, which can also
be confirmed theoretically by its smaller ultimate bound, or
radius, ϱPD, and its slightly higher convergence rate αPD, cf.
Tab. II. For the undisturbed, free scenario, each MO variant
also demonstrates incremental improvements as excepted, ex-
cept for the P- versus PD-versions of adaptive L-GP-MOs. In
this case, the presence of the additional derivative gain KD

seems to increase the MO’s sensitivity to noise, an effect also
discussed after Theorem 1, Sec. IV, in the context of high-
gain observers, confirming the legitimation of the proposed
adaptation scheme of decreasing the correction gain in areas
of higher uncertainty.

VI. CONCLUSION

This article presents a probabilistic approach to disturbance
observation with Momentum Observers (MOs) for uncertain
mechanical systems. The framework is based on Lagrangian-
Gaussian Processes (L-GPs), providing a data-driven yet phys-

ically consistent model whose covariance matrix estimate is
leveraged to adapt the correction gain such that model errors
are compensated by adapting to the uncertainty. Based on the
derivation of probabilistic closed-form bounds of the error,
exponential stability guarantees with user-definable conver-
gence rates are provided. Various numerical and experimental
results are presented, demonstrating the efficacy of the pro-
posed methods. We are currently working on the experimental
validation of our algorithms on soft robotic and rehabilitation
systems. Furthermore, our future theoretical work will focus
on unifying passivity-based control concepts with physically
consistent machine learning.
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Fig. 10: L-GP model components for the KUKA IIWA eval-
uated over the validation trajectory. The model additionally
includes another composite GP for each of the joints 2, 3,
and 4, which have a periodic structure with velocity-dependent
amplitude modulation.
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APPENDIX A
PROOF OF LEMMA 1: PROBABILISTIC MULTIDIMENSIONAL

ERROR BOUND ON A FINITE SET

Fixing x ∈ X and conditioning on the noisy observations
yi from (4), the inputs xi become deterministic and we can
follow that f(x) ∼ N (µf (x),Σf (x)). Now, for multivariate
standard ϵ ∼ N (0, I), we compute with ρ > 0 that

Pr{∥ϵ∥ > ρ} = (2π)−
N
2

∫
∥ϵ∥>ρ

e−
∥ϵ∥2

2 dϵ

= (2π)−
N
2

∫ ∞

ρ

∫ 2π

0

∫ π

0

e−
r2

2 |Jϕ|dϑdφdr

=
ΓN/2(

ρ2

2 )

γ(N2 )
:= Γ̃N/2(

ρ2

2 ) , (44)

where we have transformed to N -dimensional spherical co-
ordinates by ϵ = ϕ(r, φ,ϑ) with radius r, azimuth φ and
elevation angles ϑ, and also used the identity∫ π

0

sinn(ϑi)dϑi =
√
π

Γ(
n+1
2 )

Γ(
n
2 +1)

, ∀n ∈ N .

The Jacobian Jϕ = ∂ϕ/∂(r, φ,ϑ) is required for the trans-
formed differential volume element

dϵ = rN−1 sinN−2 ϑ1 · · · sinϑN−2drdϑdφ .

Using (44) for ρ = β and choosing ϵ = R−⊤
f (f−µf ), where

Rf stems from the Cholesky decomposition of the covariance
Σf = R⊤

fRf , we obtain

Pr
{
∥f − µf∥ > βλ

1
2 (Σf )

}
= Γ̃N/2(

β2

2 ) .

Here, we have utilized ∥ϵ∥2 ≤ λ̄(Σ−1
f )∥f −µf∥2 along with

λ̄(Σ−1
f ) = λ−1(Σf ). Finally, applying the union bound and

taking the complement of the set, we conclude that

∥f(x)− µf (x)∥ ≤ βλ
1
2 (Σf (x)) ∀x ∈ X

holds with a probability of exactly 1− |X |Γ̃N/2(β
2/2). Since

Γ̃N/2(β
2/2) = δ/|X | due to (14), we arrive at (15).

APPENDIX B
PROOF OF LEMMA 2: EXTENSION OF THE ERROR BOUND

TO A COMPACT SET

To begin with, we prove Lipschitz continuity of the posterior
mean µf and the bounded spectrum of the covariance matrix
Σf . The Euclidian distance between the estimate evaluated at
two different points can be written as

∥µf (x)− µf (x
′)∥ = ∥(K(x,XD)−K(x′,XD))α∥

with α = K−1
y (y − m). Using ∥Ax∥2 ≤ ∥A∥F ∥x∥2

due to the Cauchy-Schwarz inequality, along with ∥A∥F =√
tr(AA⊤) and (19), we follow that

∥µf (x)− µf (x
′)∥ ≤ LK

√
D∥α∥∥x− x′∥ ,

proving Lipschitz continuity of the multidimensional mean
estimate µf (x) with Lµ = LK

√
D∥α∥. Next, we investigate

the continuity of the covariance Σf . Applying the triangle
inequality along with other fundamental properties of vector
norms, we can write

∥Σf (x)−Σf (x
′)∥F ≤ ∥K(x,x)−K(x′,x′)∥F

+ ∥K(x, ·)−K(x′, ·)∥F ∥K−1
y ∥F ∥K(·,x)+K(·,x′)∥F .

Here, we have abbreviated K(x, ·) = K(x,XD) for nota-
tional compactness. Due to Lipschitz continuity of the matrix
kernel K according to (19), one can conclude that

∥Σf (x)−Σf (x
′)∥F ≤ s(∥x− x′∥) (45)

with s(d) given by (18). Now, consider any discretization
Xd ⊂ X of X by a finite number of |Xd| points. The distance
for every x ∈ X to the closest point x′ ∈ Xd is bounded by

max
x∈X

min
x′∈Xd

∥x− x′∥ ≤ d . (46)

As a consequence, we can apply the result of Lemma 1 for
β(δ, d) =

√
2Γ−1

N/2 (δγ(N/2)/|Xd(d)|) and follow that

∥f(x′)− µf (x
′)∥ ≤ β(δ, d)λ

1
2 (Σf (x

′))

holds ∀x′ ∈ Xd with a probability of 1 − δ. Since Γn(ρ) is
monotonically decreasing, the covering number Md(X ) can
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Fig. 11: MO estimates for a disturbance caused by the inertial forces of a Schunk gripper mounted to the robot’s end-effector,
illustrated for joints n=4−7. RMS values of estimation errors for joints n=1−3 of KUKA, parametric, static L-GP (PD-)
and Σ-adapt. L-GP (PD-)MO are 1.379, 1.303, 1.275 (1.000), and 1.131 (0.975) Nm with averaged STDs 1.147, 0.941, 0.883
(0.741), and 0.765 (0.695) Nm, respectively. The overall estimation accuracies are evaluated numerically in Tab. I.

Fig. 12: Efficiency evaluation of LS, GP, and L-GP w.r.t. pre-
diction errors in training (top left) and validation domains (top
right), and computation timings (bottom) over data sizes. Solid
lines depict mean values, shaded areas standard deviations.

be used w.l.o.g. to bound the minimum number of points
needed to fulfill (46) on a grid. Finally, we leverage Weyl’s
inequality [54, Theorem III.2.1] along with the continuity of

f(x), µf (x) and Σf (x) to write

∥f(x′)−µf (x
′)∥+ ∥f(x)−f(x′)∥+ ∥µf (x)−µf (x

′)∥

≤β(δ, d)
√
λ(Σf (x))+λ̄(Σf (x′)−Σf (x))+(Lf+Lµ)d .

(47)

Applying the triangle inequality to the left and using (45)
combined with λ̄(·) ≤ ∥·∥F on the right, we finish the proof.

APPENDIX C
MULTIDIMENSIONAL DERIVATIVE ERROR BOUND

For a bound on the time derivative of the estimation error,
we first make use of the chain rule to write

ḟ(x)− µ̇f (x) =
∂(f−µf )

∂x ẋ . (48)

Taking the norm and applying the Cauchy-Schwarz and trian-
gle inequalities gives

∥ḟ − µ̇f∥ ≤
∥∥∥∂(f−µf )

∂x

∥∥∥
F
∥ẋ∥ ≤ (Lf + Lµ)∥ẋ∥ . (49)

Thus, we have already arrived at a conservative deterministic
bound based on Lipschitz continuity. For a more precise
probabilistic bound, we leverage the linearity of GPs as well
as that of differentiation to denote

vec
(
∂f
∂x

)
∼GP

(
vec

(
∂m
∂x

)
, vec

(
∂
∂x

)
K(x,x′)vec⊤

(
∂

∂x′

))
.

Using ∥·∥F = ∥vec(·)∥2 as well as the result of Lemma 2, we
follow ∀x ∈ X that

Pr
{
∥ḟ(x)− µ̇f (x)∥ ≤ ϱ(x, δ, d)∥ẋ∥

}
= 1− δ , (50)

having introduced for f̃(x) := vec(∂f/∂x) the radius scale

ϱ(x, δ, d) = β(δ, d)
√
λ(Σf̃ (x))+s̃(d)+(Lf̃+Lµ̃)d . (51)
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APPENDIX D
LIPSCHITZ APPROXIMATION OF LAGRANGIAN SYSTEMS

For a compact derivation of a Lipschitz constant Lτ for
Lagrangian systems such that

∥τ (x)− τ (y)∥2 ≤ Lτ∥x− y∥2 , (52)

we use the following approximate multidimensional extension
of the mean value theorem

∥f(x)− f(y)∥2 ≤
(

max
z∈[x,y]

∥∂f
∂z ∥F

)
∥y − x∥2 (53)

with differentiable f : RM → RN on an open set containing
the two points x,y ∈ RM . Applying (53) to the total torque
acting upon the system, we first compute

τ̇ =M
...
q + (Ṁ +C +D)q̈ + (Ċ + ∂2V

∂q2 + Ḋ)q̇ . (54)

Rewriting τ̇ = ∂τ
∂x ẋ and reformulating (54), we obtain Lτ =

maxz∈[x,y]∥∂τ
∂z ∥F with

∂τ
∂x =

[
Ċ + ∂2V

∂q2 + Ḋ Ṁ +C +D M
]
. (55)

Note that Lτ can be estimated and simplified even further
by exploiting fundamental properties of vector norms such as
submultiplicativity and the triangular inequality.

APPENDIX E
QUADRATIC FUNCTION SPACE

The deterministic preservation of the quadratic form of
kinetic and elastic energy GPs can be shown by analyzing
the covariance kernel structures as in [41, Lemma 1], or via
the RKHS associated with the kernel (12). Let us reformulate

T (·, q̇) = 1
2 tr

(
Mq̇q̇⊤

)
= 1

2vec(M)⊤vec(q̇q̇⊤)

= 1
2vec(M)⊤(q̇ ⊗ q̇) ,

where we have subsequently exploited the cyclic trace prop-
erty, the compatibility of vectorization with inner products,
and finally, the relationship between Kronecker and matrix
products via vectorization. Consider now the Hilbert space
Hquad comprised of real quadratic functions, defined on the
index set Ξ = RN , and constructed via the linear combination
of N2 basis functions

Hquad=
{
F ∈RN×N ∣∣f(q̇)=vec(F )⊤ϕ(q̇) , ∀q̇∈RN

}
(56)

with feature map ϕ : Ξ → F chosen as ϕ(q̇) = 1
2 (q̇ ⊗ q̇).

We endow Hquad with the inner product ⟨·, ·⟩Hquad defined as

⟨f, g⟩Hquad
= vec(F )⊤diag−1 [vec(ΘM )] vec(G) ,

with the function g(q̇) = vec(G)⊤ϕ(q̇), which always exists
since vec(ΘM ) = (I ⊗R⊤

M )vec(RM ) > 0 holds element-
wise, i.e., since RM > 0. Also, using the trace and vector-
ization operators as well as the mixed product property of
Kronecker and Hadamard products, we transform (12) to

kT (·, q̇, ·, q̇′) = ϕ(q̇)⊤diag(vec(ΘM (·, ·)))ϕ(q̇′) .

Let the feature space F be a Hilbert space with inner product

⟨ϕ, ψ⟩F = ϕ⊤diag(vec(ΘM ))ψ .

Thus, the inner product of the feature map with itself con-
structs the kernel kT = ⟨ϕ(q̇), ϕ(q̇′)⟩F . For every q̇, kT as
a function of q̇′ belongs to Hquad since

kT (·, ·, ·, q̇′) = 1
2 q̇

′⊤Kq̇′ = vec(K)⊤ϕ(q̇′)

with K = 1
2 q̇q̇

⊤ ◦ Θ(q, q′). Furthermore, the inner product
of f ∈ Hquad with kT (·, ·, ·, q̇) gives

⟨f(·), kT (·, ·, ·, q̇)⟩Hquad
= vec(F )⊤vec( 12 q̇q̇

⊤) = f(q̇) ,

showing the reproducing property of the kernel. Thus, we con-
clude that the Hilbert space Hquad of real quadratic functions
(56) is an RKHS spanned uniquely by (12).

REFERENCES

[1] N. Hogan, “Impedance control: An approach to manipulation,” in 1984
American Control Conference, 1984, pp. 304–313.

[2] A. De Santis, B. Siciliano, A. De Luca, and A. Bicchi, “An atlas of
physical human–robot interaction,” Mechanism and Machine Theory,
vol. 43, no. 3, pp. 253–270, 2008.

[3] C. Della Santina, M. G. Catalano, and A. Bicchi, Soft Robots. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2020, pp. 1–15.

[4] B. Vanderborght et al, “Variable impedance actuators: A review,”
Robotics and Autonomous Systems, vol. 61, no. 12, pp. 1601–1614, 2013.

[5] K. Anam and A. A. Al-Jumaily, “Active exoskeleton control systems:
State of the art,” Procedia Engineering, vol. 41, pp. 988–994, 2012,
international Symposium on Robotics and Intelligent Sensors 2012.

[6] D. Rus and M. T. Tolley, “Design, fabrication and control of soft robots,”
Nature, vol. 521, no. 7553, pp. 467–475, 2015.

[7] L. Marchal-Crespo and D. J. Reinkensmeyer, “Review of control strate-
gies for robotic movement training after neurologic injury,” Journal of
NeuroEngineering and Rehabilitation, vol. 6, no. 1, p. 20, 2009.

[8] L. Sentis, J. Park, and O. Khatib, “Compliant control of multicontact
and center-of-mass behaviors in humanoid robots,” IEEE Transactions
on Robotics, vol. 26, no. 3, pp. 483–501, 2010.

[9] C. D. Santina, R. K. Katzschmann, A. Bicchi, and D. Rus, “Model-based
dynamic feedback control of a planar soft robot: trajectory tracking and
interaction with the environment,” The International Journal of Robotics
Research, vol. 39, no. 4, pp. 490–513, 2020.

[10] A. Bicchi, M. A. Peshkin, and J. E. Colgate, Safety for Physical Human–
Robot Interaction. Berlin, Heidelberg: Springer Berlin Heidelberg,
2008, pp. 1335–1348.

[11] S. Haddadin, A. De Luca, and A. Albu-Schäffer, “Robot collisions: A
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