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Abstract

The states in quantum systems can be described as a wave function. Calculations on
tensor networks can approximate this function. As these approximations are not always
accurate, especially for tensor networks with large dimensions, symmetries can be exploited.
Integrating these in the tensors used for the network, can improve the approximation and
reduce the resources needed. One symmetry for this purpose is the U(1) group. We will focus
on the integration of this symmetry, specifically for sparse tensors. With this basis, four
elementary operations will be discussed, which are crucial for calculating tensor networks:
permutation of indices, reshaping tenor indices, multiplying matrices, and decomposing a
matrix. However, for the last one, we only cover the theory behind it. Additionally, to
the base implementations, we include approaches for improving the performance of these
methods. These include changes to the underlying algorithms or using multiple threads to
parallelize parts of the methods. As we see in the tests, most of these approaches were not
able to increase the performance of the base implementations and are rather decreasing it.
This happens most likely due to different reasons, one of the major ones being the overhead
that results from the approaches.
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Zusammenfassung

Die Zustände in Quantensystemen lassen sich als Wellenfunktion beschreiben. Diese
Funktion kann durch Berechnungen mit Tensornetzen approximiert werden. Da diese Ap-
proximationen insbesondere bei großen Tensornetzwerken nicht immer genau sind, können
Symmetrien ausgenutzt werden. Die Integrierung dieser Symmetrien in die für das Netz
verwendeten Tensoren, kann die Approximationen verbessern und den Ressourcenbedarf
verringern. Eine Symmetrie hierfür ist die Gruppe U(1). Wir konzentrieren uns auf die
Integration dieser Symmetrie, speziell für dünnbesetzte Tensoren. Auf dieser Grundlage wer-
den vier elementare Operationen besprochen, die für die Berechnung von Tensornetzwerken
entscheidend sind: Permutation von Indizes, Umformung von Tensorindizes, Multiplikation
von Matrizen und Matrixzerlegung. Für die Zerlegung einer Matrix decken wir jedoch
nur die Theorie ab. Zusätzlich zu den Basisimplementierungen beziehen wir Ansätze zur
Leistungsverbesserung dieser Methoden ein. Dazu gehören Änderungen an den zugrun-
deliegenden Algorithmen oder die Verwendung mehrerer Threads zur Parallelisierung der
Methoden. Wie in den Tests zu sehen ist, konnten die meisten dieser Ansätze die Performance
der Basisimplementierungen nicht erhöhen, sondern verringern sie tendenziell eher. Dies
geschieht höchstwahrscheinlich aus verschiedenen Gründen, wobei einer der Hauptgründe
der zusätzliche Overhead ist, der sich aus den Ansätzen ergibt.
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1. Introduction

1.1. Introduction and Background

The concept of quantum computers promises a significant advantage over conventional
computer systems. In comparison to the classical computers which operate using bits,
quantum computers utilize qubits. The key here is, that with qubits, a property called
”quantum entanglement” can be exploited, where multiple qubits are influenced by the same
operation. This phenomenon can offer us an exponential speed-up in solving important
problems. As a consequence of this increase in the performance of problem-solving, quantum
computers promise to have a major impact on various aspects of modern society. As they
are based on their resource-expensive calculability with conventinal computer systems, one
area involved is encryption algorithms and information security protocols.[Rah22]
On the other hand, the medical and chemical fields will also be affected, as quantum com-
puters can help with the simulation of new substances and medication. As a result, testing
on animals could be decreased and the overall development process of a drug could be
shortened.[CR23]However, the main requirement for these advantages is quantum supremacy.
It simply describes when quantum computers will exceed the computational power of current
super computers.[ZSW20][BCOT11]
Even before quantum supremacy, it is an important topic to research algorithms for quantum-
based systems, to understand the possibilities. We typically achieve this by simulating
quantum computers. To state of such computers can be represented, using a wave function.
This wave function, on the other hand, can be approximated, using tensor network decom-
positions such as matrix product states (MPS) or multi-scale entanglement renormalization
ansatz (MERA), as seen in figure 1.4. However, with the growing size of tensor network
decompositions, the approximation of the wave function is more limited. [BCOT11] Thus,
symmetries are being used, to increase the accuracy. Because of this reason, we implemented
a library for the manipulation of tensors, that are canonical in regards to a symmetry. In
this case, the symmetry included is specifically the abelian U(1) group.
Two major concerns in the practical use might be memory usage and time consumption. As
we focus on sparse tensors, we implemented a structure that concentrates on this sparse
nature to reduce memory consumption. Following, we can build operations on this basis
that approach the performance instead. That way, we cover both concerns.[SPV10][SPV11]

The following section explains the basics of tensors and the use of symmetry. Additionally,
the content of the paper will be compared with other related papers and works.
In Chapter II, we will discuss further the implementation itself. Specifically, section 3.1
focuses on the structure of the tensor class itself. Section 3.2 includes the main operations:
permutation and reshaping of indices, contraction of two tensors, and the factorization
of a tensor of rank 2. These operations are explained in section 3.3, including the basic
implementation and its optimization approaches. Chapter III will explain the results,
including the discussion and conclusion.
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1.2. Tensors

1.2. Tensors

In the following, we will cover the basics regarding tensors, that are relevant for the use in
this paper.

In general, tensors describe multi-dimensional arrays. A tensors rank refers to the amount
of the tensors indices. For example, a tensor of rank 0 does not contain an index and is
referred to as a scalar, while a tensor of rank 2 is a matrix and includes 2 indices. The size
of a tensor index win also be called the index dimension. Tensors can also be represented
graphically, as seen in figure 1.1, by a circle with legs. Each leg represents an index of the
tensor.[SPV10]

Figure 1.1.: (a) A graphical depiction of a tensor with k legs and therefore k indices. (b)
A graphical depiction of tensors with rank 0, 1 and 2. Thus, these tensors
represent a scalar, a vector and a matrix. Source: [SPV11]

A tensor may also be manipulated using different operations, such as permutation of
the indices, splitting, or fusing. Additionally, multiple tensors can also be combined to
form a tensor network, for example by contracting tensors along specific indices. Some of
these methods are depicted in figure 1.3. Additionally, in figure 1.2a, 1.2b and 1.2c are the
operations depicted in mathematical notation.

(a) The permutation of
the indices of Tensors
R and S with indices
a,b,c,d and c,f,b,h

(b) The fusing of the in-
dices of Tensors R’
and S’ from (a)

(c) The contraction of Tensors R”
and S” from (b) along index y

Figure 1.2.: Different tensor operations in mathematical notation.Source: [SPV11]
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1. Introduction

Figure 1.3.: The different operations permutation of indices (a), and fusing and splitting of
indices (b).
Source: [SPV11]

Figure 1.4.: Visualized examples of tensor network states: (a) matrix product state (MPS),
(b) tree tensor network (TTN), (c) multiscale entanglement renormalization
ansatz (MERA), (d) projected entangled-pair state (PEPS), and (e) 2D TTN
Source: [SPV11]

1.3. Symmetry

Different kinds of symmetries might be used to improve the approximation accuracy of a
wave function. However, we will focus on the abelian symmetry of the U(1) group. To
include this symmetry in the concept of the tensors, we add two additional attribute of the
tensor’s indices. Firstly, we add to each index a tuple of particle numbers, also referred
to as charges or quantum numbers, with the same dimension as the index. That way, we
have a quantum number for every coordinate of an index. These quantum numbers are
used to describe a specific state of a system. In our case, the quantum numbers can be
used to describe the symmetry.[Pfe17] Additionally, we assign the directions ”incoming” or
”outgoing” to each index (figure 1.6). To preserve the quantum numbers, we only allow
elements in the tensor to be non-zero, if the sum of the corresponding quantum numbers of
the incoming indices equals the sum the ones of the outgoing indices (figure 1.5). (TODO:
Add further explanation through graphics) [SPV11]
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1.3. Symmetry

Figure 1.5.: A matrix with quantum numbers along the sides (purple). Consistent with
the symmetry, the matrix only contains non-zero values, where the quantum
numbers match.

Figure 1.6.: (a) a grapical representation of a tensor with one incoming and two outgoing
indices. (b) The representation of a tensor network, with directions.
Source: [SPV11]

Given a specific index, we can accumulate the elements with the same quantum number to
a block. Furthermore, in case we have a tensor of rank 2 with this symmetry, we can assign
each non-zero element a block, as the corresponding quantum numbers in both indices have
to be equal. An example of a block can be seen in figure 1.7.

Figure 1.7.: (a) A matrix with quantum numbers along the sides (purple).
(b) A submatrix of the matrix in (a), corresponding to the block of the quantum
number with value 4.
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1. Introduction

1.4. Related Work

The work in the implementation is in major parts based on the knowledge from the two
papers [SPV11] and [SPV10]. These papers focus on discussing the theory behind the
calculation of tensors in the presence of symmetries from a physics point of view. While
covering the basics of tensors, the authors explain how to integrate the symmetries in them
and their operations. While the first paper does not specify one symmetry only, the second
paper focuses on the U(1) group symmetry. The latter also explains that the contraction of
multiple tensors, a fundamental step for the building of tensor networks, can be broken into
elementary steps, given as permutation of a tensors indices, reshaping the indices by fusing
them, multiplying to matrices to obtain a new one, reshaping the resulting matrix again by
splitting the indices and lastly permutating the resulting indices again. The manipulation of
a tensor network can then be described based on four different operations: 1. permutation of
the indices of a tensor, 2. reshaping the indices of a tensor, 3. multiplication of two matrices,
and 4. decomposition of a matrix. Contrary to these two papers, we will just include the
theory, where needed for the understanding of this project.[SPV11][SPV10]
The paper ”Implementing global Abelian symmetries in projected entangled-pair state

algorithms” by B Bauer et al. also takes an approach for implementing symmetries in tensor
networks but focuses on projected entangled-pair state (PEPS) algorithms. Additionally, it
is not specified, whether the relying tensors, used for the calculation, are mostly dense or
sparse.[BCOT11]
Similar projects may include ”TensorFlow” [AAB+15] or ”TensorNetwork” [RMG+19],

which are both implemented and applicable in Python. However, while TensorNetwork
supports tensors with symmetry and charges similar to this project, TensorFlow does not.
While these projects focus on the work with the Python programming language, this project
is implemented and supports its use in C++.
In comparison to these different projects, we will discuss a practical implementation. It

focuses on the calculation with sparse tensors, that include the U(1) symmetry. For this
purpose, we concentrated on implementing the four different operations on tensor networks,
discussed in the paper ”Tensor network states and algorithms in the presence of a global
U(1) symmetry” above. [SPV11]
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Implementation
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2. Methods

2.1. Class Structure

1 class Tensor {
2 private :
3 int rank ;
4
5 vec to r <bool> i s IndexOutgoing ;
6 vec to r <vector<int>> quantumNumbers ;
7
8 vector<vector<int>> pos i t i onTab l e ;
9 vec to r <complex<double>> tensorElements ;
10
11 . . .
12
13 }

Listing 2.1: The attributes of the tensor class

The Tensor class consists of multiple basic attributes. Firstly, even though the value could
be derived from other attributes, the rank of the tensor is stored on its own. This adds
helpful redundancy to the attributes. Especially during some methods, the other attributes
that could be used to calculate the rank might be changed and therefore unreliable during
these periods. With the rank saved separately, we don’t depend on the correctness of said
variables and can use the attribute without calculating or temporarily saving it.

The elements of the tensor are saved in two different structures. Firstly, the complex
values themselves are stored in a vector, called tensorElements, without a specific order. The
position of the values in the tensor is stored in another structure, the matrix positionTable.
Each row, later also referred to as an element of the table, contains the coordinates based on
the indices and an additional value at the end. The last value points to the position of the
complex value in the tensorElements structure. Therefore, if we have a specific row in the
matrix, we can access the corresponding complex number in O(1). Nevertheless, the overall
access of an element over the coordinates would be in O(n). In this structure, only non-zero
values are stored. A similar approach is conventionally used for sparse matrices or vectors,
to not store all elements. We exploit the same principle here as well. The separation of the
values and their coordinates has the background that the result is a simpler data structure
and multiple operations only need to modify the positionTable.
The next variables describe the attributes specific to the U(1) symmetry. Firstly, the

class contains a structure for the quantum numbers. This is achieved by building a vector of
vectors, which represents a list of each index’s quantum numbers. As the quantum numbers
of an index have the same dimension as the index itself, we can derive the index sizes from
this variable. Theoretically, we could also calculate the rank of the tensor based on this
structure. Lastly, we have a vector, called isIndexOutgoing, that describes for each of the

8



2.2. Primary Operations

indices the direction. The value true indicates, that the index is outgoing and otherwise
incoming.
This is the foundation that is used for further calculations. During the development,

other attributes were considered. Another vector previously included the current order of
the indices, naming them with the numbers from 0 to rank-1. However, this would add
unnecessary complexity to the calculations. Furthermore, the user would need to know the
current order of the indices to permute them based on that order. The two variables for the
complex values in the tensor were also changed to the current state. The positionTable was
intended as a hashmap with the coordinates as keys and the pointer to the correct complex
number in the other structure as values. With this approach, acccessing the value to specific
coordinates would be in O(1) instead of O(n). However, during further development, this
also proved to be not suitable, as the access would be fast, but the different operations on
the structure would be more complex and time-consuming.

2.2. Primary Operations

To simulate tensor networks, we need multiple different operations. These operations can be
summed up in four different groups. Firstly, we can permute the order of the tensor indices.
Secondly, the indices can be reshaped. More specifically, multiple indices can either be fused
into one, or one can be split into multiple ones again. Furthermore, two tensors of rank 2
can be contracted along different indices. The result will be a new tensor with the indices of
both preceding tensors combined. Lastly, we can use matrix factorization to decompose a
tensor of rank 2 into multiple others.[SPV11]
These operations can be combined in different ways to achieve desired states. How the

operations can or should be combined in this library, will be discussed within the description
of the specific methods.

2.2.1. Base Implementation

This subsection will discuss the basic idea behind the implementation of the method. It
won’t include any further optimizations, such as multithreading or further algorithmic
improvements, as this is described in the following segments. Furthermore, the description
will not include error checks at the beginning of each method for checking the correctness of
the parameters. These versions of the different operations will later be used for building
the different optimization approaches. In the implementation and the result section of this
paper, the base implementation versions can be recognized by the included ” V0” in the
method name.

Consistency

All methods are designed, to have a consistent tensor before and after the operation. In
detail, this means that the resulting tensor will not have non-zero elements, whereas the
quantum numbers would not allow it. Even though this may limit our options for modifying
tensors, we have the advantage of only handling tensors that are consistent, according to the
symmetry. Due to this consistency, we can sometimes disregard checks for the correctness of
the tensors in the operations themself.

9



2. Methods

Permute

1 bool permute V0 ( vec to r <int> newOrder ) { . . . }

Listing 2.2: The header for the fuse method

For this method, we use a parameter that will define the new order of the indices. This
order will be the desired outcome. Originally, another approach intended, to use a global
variable for the order of the indices, so that it can be remembered inside the tensor. However,
a user would need to remember it as well. For this reason, the order of the indices after a
permute operation, in case it is successful, will be the same as before the operation. This
means, we always refer to the indices in ascending order, starting from ”0” to ”rank-1”.


0 1 0 0
0 0 2 4
0 −3 0 0
1 0 0 0

 positionTable :

(0, 1, 0)
(1, 2, 1)
(1, 3, 2)
(2, 1, 3)
(3, 0, 4)

(2.1)

Example: Given a tensor T̂ of rank 2 with indices i1, i2 and the corresponding quantum
numbers qn1, qn2 and index directions dir1, dir2. After calling permute({1,0}), the symmetry-
related variables will change according to 2.2. If we visualize the matrix as in 2.1, the
operation would switch the coordinates of i1 and i2 in the positionTable, as depicted in 2.3.

(qn1, qn2)→ (qn2, qn1), (dir1, dir2)→ (dir2, dir1) (2.2)

(0, 1, 0)
(1, 2, 1)
(1, 3, 2)
(2, 1, 3)
(3, 0, 4)

→

(1, 0, 0)
(2, 1, 1)
(3, 1, 2)
(1, 2, 3)
(0, 3, 4)

(2.3)

In the implementation, we iterate over the positionTable variable and build up the
coordinates of each entry in the new order. The new order of the entry will be stored back
into the structure. Afterward, the variables specific to the symmetry, quantumNumbers
and isIndexOutgoing, will be restructured as well. This happens in the same manner as the
coordinates for the entries in positionTable. Due to the specific structure of the tensor, there
is no need to change something in the tensorElements variable.
Another approach, instead of building up the coordinates in the right order and saving

them back to the structure again, would be to switch the coordinate numbers. At the start
of the method, a sequence could be calculated for what index coordinates to switch, in order
to get to the new order. This sequence could be applied on all entries of the positionTable,
as well as on the quantumNumbers- and isIndexOutgoing-variables. This approach would
result in a more in-place process. However, in addition to the calculation of the sequence,
we would still have to apply the procedure to each element. Therefore, even though this
approach would be in place, it would add a calculation overhead to the overall operation.
As we already use sparse tensors, we decided to use the faster approach, rather than the
in-place one.

10



2.2. Primary Operations

Fuse

1 bool fuse V0 ( int s tar tWithPos i t ion , int amountOfIndices , bool makeOutgoing )
{ . . . }

Listing 2.3: The header for the permute method

The Fuse method expects three parameters, the position of the first index for fusing, the
amount of indices that will be fused and whether the resulting index will be outgoing or not.
The method will fuse the defined amount of indices consecutive, starting with the index
according to the first parameter. However, we can not fuse non-consecutive indices with this
approach. In order to still be able to do this, a tensor can first be manipulated with the
permute operation to put the indices that should be fused in a row. Afterwards fuse can be
called and if needed permute again.

Example: Given a tensor T̂ of rank 2 with indices i1, i2 and the corresponding quantum
numbers qn1, qn2 and index directions dir1 = false, dir2 = true. After calling fuse(0,2,
false), the resulting symmetry-related variables are calculated as in 2.4. The new quantum
numbers are calculated similarly to a Kronecker product of two vectors. However, instead
of multiplying the two values, we subtract or add them (this depends on the directions of
the indices). If we visualize the matrix as in 2.1, the positionTable would change with the
operation as seen in 2.5.

qnnew = {qn0
1 − qn0

2, qn
0
1 − qn1

2, ..., qn
m
1 − qn0

2, ..., qn
m
1 − qnn

2}, dirnew = false (2.4)

(0, 1, 0)
(1, 2, 1)
(1, 3, 2)
(2, 1, 3)
(3, 0, 4)

→

(1, 0)
(6, 1)
(7, 2)
(9, 3)
(12, 4)

(2.5)

In the base implementation, we again iterate over all elements in positionTable. For
each element, the coordinate for the new index is calculated, based on the previous indices.
Afterwards, the quantumNumbers for the fused index will be calculated. For each position
in the index, a sum is used. If the direction of the desired index is the same as the preceding
index, the quantum number will be added to the sum and subtracted otherwise. The
quantum numbers of the old indices will then be removed and replaced with the newly
calculated ones. The isIndexOutgoing and rank attributes of the tensor will be adjusted
accordingly. After the method, the resulting index will be at the position of the first index
for the fusing.

11



2. Methods

Split

1 bool s p l i t V0 ( int indexToSpl i t , vector<int> qnA , vector<int> qnB , bool
makeAout , bool makeBout ) { . . . }

Listing 2.4: The header for the split method

The split method serves the same purpose as fuse, reshaping the indices of the tensor by
splitting an index into two new ones. The method expects five different parameters. Firstly,
the position of the index that should be split. Furthermore, for each of the new indices
the new quantum numbers and the direction. The reason to define these symmetry-specific
variables is mainly that there are multiple possibilities to split an index into two new ones.
These parameters are then used to define the chosen option and to check if it is valid.

Example: Given the same tensor T̂ of rank 2 as in 2.2.1 ”Fuse”, with indices i1, i2 and
the corresponding quantum numbers qn1, qn2 and index directions dir1 = false, dir2 = true.
If we execute the fuse operation as in 2.2.1 ”Fuse”, the result would be a vector. We could
then split the one index of the vector back into two by applying split(0, qn1, qn2, dir1, dir2).
When the method has checked the correctness of the quantum numbers, the values can just
be replaced. The positionTable would change back again, as depicted in 2.5.

(1, 0)
(6, 1)
(7, 2)
(9, 3)
(12, 4)

→

(0, 1, 0)
(1, 2, 1)
(1, 3, 2)
(2, 1, 3)
(3, 0, 4)

(2.6)

The first major part of the method checks, whether the index can be split into two new
indices with the given parameters. Specifically, the two new indices would, if fused, result in
the current index that is to split. After the check, the quantum numbers and index direction
attributes can be changed to the specified values. The two indices will be consecutive,
starting at the position of the previous origin index. Even though the elements of the tensor
do not have to be modified, the coordinates in the positionTable variable must be changed
to fit the new indices.
Another possible approach to the split method would be to only split an index into two

or more indices, which were fused in previous operations to create the current one. However,
this would need a documented history, in which order the indices were fused, and additionally,
the quantum numbers of the original indices. Moreover, it would limit the user’s possibilities.
With the implemented approach, a user of the framework could split an index into previously
existing ones, but also into two indices with completely new quantum number combinations.

12



2.2. Primary Operations

Contract

1 Tensor mult iply V0 ( Tensor bTens ) { . . . }

Listing 2.5: The header for the multiply method

This method is used to contract two tensors of rank 2, or matrices, along specific indices
to get a new one. In the implementation, this method is also called multiply. The method
expects one parameter. Specifically, the second tensor used for the contraction. The first
tensor that is used, will be the one from which the method is called. Additionally, the
operation expects a direction of flow in the contraction, meaning one of the indices should
be outgoing and the other one incoming. The method also expects the indices that should
be contracted to be last in each tensor. Lastly, the sizes of the indices that are contracted
should be the same.

Because the indices for the operation are expected to be last, the user may use the permute
method to achieve this state. Additionally, if multiple indices should be contracted, the fuse
method can be used to get them combined in one index for the multiplication and another
index that will not be changed.

Firstly, the entries in the positionTable variables of each tensor are ordered ascending
based on the element’s quantum numbers in the last index.
The algorithm itself is illustrated in algorithm 1 and works as follows. With two pointer
on the entries of each sorted positionTable, we start comparing the quantum numbers. If
the quantum numbers match, the coordinates of the last index itself are compared. If these
match as well, the multiplicated result of both elements is added to the entry of the new
tensor with the given coordinates. Afterward, we increase the pointer in the second tensor.
If the quantum numbers in the second tensor do not match anymore, but the next entry in
the first tensor contains the same number, we jump back to the position where they first
matched in the second one and increase the pointer in the first tensor. Otherwise, we just
increase the pointer in the first tensor and do not jump back. This will be done until both
pointers are at the end of each positionTable variable.

Afterward, the first tensor is used to create the resulting tensor of the contraction. The
last index is removed in all variables and the indices of the second tensor, except the last
one, are added. Lastly, the structure of the tensor that saves the elements is adjusted.

An attribute of this operation that we can utilize later on is that each of the quantum
number blocks can be calculated on their own.

13



2. Methods

Algorithm 1: Multiply base implementation algorithm

Input: Two Tensors Â and B̂ with indices a1, a2 and b1, b2
Output: The new Tensor Ĉ with indices c1 and c2

1 Â.positionTable ← Â.positionTable sorted by quantum numbers of a2

2 B̂.positionTable ← B̂.positionTable sorted by quantum numbers of b2

3 for i ← 0 to size of Â.positionTable do

4 attach quantum number of a2 to Â.positionTable[i]

5 for i ← 0 to size of B̂.positionTable do

6 attach quantum number of b2 to B̂.positionTable[i]

7 countera ← 0
8 counterb ← 0
9 jumpBack ← 0

10 jumpBackalready set ← false

11 while countera < size of Â.positionTable & counterb < size of B̂.positionTable do
12 if quantum number of a2 and b2 are equal for the entries to which the countera

and counterb point then
13 if not jumpBackalready set then
14 jumpBackalready set ← true
15 jumpBack ← counterb

16 if coordinates of a2 and b2 are equal for the entries at countera and
counterb then

17 add Â.positionTable[countera] × B̂.positionTable[countera] to entry in Ĉ

18 if element after counterb in B̂ has the same quantum number then
19 counterb ← counterb + 1

20 else if element after countera in Â has the same quantum number then
21 countera ← countera + 1
22 counterb ← jumpBack

23 else
24 countera ← countera + 1
25 counterb ← counterb + 1

26 else if quantum number of a2 at countera > quantum number of b2 at counterb
then

27 jumpBackalready set ← false
28 counterb ← counterb + 1

29 else
30 jumpBackalready set ← false
31 countera ← countera + 1

32 set the isIndexOutgoing and quantumNumbers of Ĉ to the corresponding values of
a1 and b1

Figure 2.1.: The algorithm, used in the base implementation of multiply (multiply V0(...)).
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Factorization

The last important operation is the factorization of matrices. The most common factorizations
are Singular Value Decomposition (SVD) and Spectral Decomposition. In this section, we
will discuss the theory behind the idea of using SVD with quantum numbers. The current
implementation includes some basic functionality for these operations but does not contain
the complete and correct factorization yet.

A = U · Σ · V T (2.7)

Firstly, we have to check, whether the Tensor is of rank 2 or not. Because of this requirement,
we will from now on call the tensor a matrix. We then can calculate the SVD for the given
tensor. The result will be the three matrices U, Σ and V T (2.7). Similar to the contraction
method above, we can divide our matrix into different quantum number blocks. However,
we can first calculate the left- and right-symmetric matrix (2.8). When the original tensor
has the dimension M x N, the symmetric matrices will have the dimensions M x M and
N x N. Additionally, these matrices will have the corresponding quantum numbers. The
Matrix U and the Matrix V, which will be transposed, will have the same dimensions and
quantum numbers as the left- and right-symmetric matrices. As the Matrix Σ has the same
dimensions as the origin matrix according to convention, this will also be the case for our
tensor class. Furthermore, Σ will have the same quantum numbers as the origin matrix.

SymL = A ·AT , SymR = AT ·A (2.8)

After calculating the symmetric matrices and setting up the quantum numbers for the
resulting matrices, we can divide the two symmetric matrices into the different blocks. These
two groups of blocks can be divided into three different classes, blocks that only exist in
the left-symmetric matrix, blocks that only exist in the right-symmetric matrix, and blocks,
that exist in both. For the first two classes, the blocks will always be empty, as the quantum
numbers previously only existed along one index.
For the last class, we calculate for each of the two groups the eigenvalues. Based on these
eigenvalues the eigenvectors, and then write these vectors into the corresponding result
matrix, We can see the decomposition for a specific block in 2.9. The positions of the values
in the resulting matrices will only be in the corresponding block. Additionally, we compare
the eigenvalues of both groups afterward and calculate the singular values. These can then
be inserted into the diagonal of the blocks in the Σ matrix.
Lastly, we transpose the V matrix and have 3 resulting matrices as the output of the
operation. Unfortunately, this procedure will result in a non-diagonal matrix Sigma, which
does not comply with the usual convention for SVD of matrices without quantum numbers.
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Eigenvalues eL to SymL, Eigenvalues eR to SymR

Eigenvectors vL to eL, Eigenvectors vR to eR

Singular values σ

Ux =

 | | |
v1L ... vmL
| | |

 , Σx =

σ
1

. . .

σi

 , V T
x =

— v1R —
— ... —
— vnR —

 (2.9)

In detail, we need different functionality in our program for this process. Firstly, we need
a way to approximate the eigenvalues efficiently and afterward calculate the eigenvectors to
these values. For the approximation of the eigenvalues, the QR algorithm was used. Based
on this algorithm, a matrix can be factorized via the QR decomposition. These matrices
can then be combined in reverse order. This step will then be repeated until we achieve an
acceptable approximation of eigenvalues on the diagonal. For the QR decomposition, three
different methods were tested. Firstly, the standard Gram-Schmidt process did approximate
the QR decomposition to a specific extent, but because of the normalizations of the vectors
during the process, the resulting eigenvalues in the QR algorithm converged to values
that were off by a few hundredths. Afterwards, the Modified Gram-Schmidt process was
implemented. However, even with this process, we were not able to get reliable results for
the tests. After testing the approximation with Householder transformations to find the QR
decomposition, we were able to get reliable and precise results.
The eigenvectors were calculated based on the eigenvalues. The values were sorted and each
eigenvalue was subtracted from the corresponding diagonal elements in the block matrix.
The resulting linear system of equations was solved using Gaussian elimination.
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2.2.2. Algorithmic Improvements

Contract

The algorithm of the contraction method can be changed slightly in this version, from now
on also referred to as ”multiply V0 2”. As we know from the base implementation, both,
the quantum numbers and the coordinates of the contracted index need to match. The
algorithm could be divided based on both requirements. However, dividing it based on the
quantum number blocks is not only more intuitive but will also result in a less complex
implementation. Furthermore, dividing the algorithm by the coordinates might likely result
in a high amount of relatively small blocks.

Because we want to divide our space of elements based on the quantum numbers, we
create a map for each tensor to put the different blocks in. Afterward, if a block exists for a
number in both maps, we can apply a routine on the corresponding blocks and combine the
results of all of these routines. We have multiple options for this routine.

Option 1: We can implement the routine similar to the base implementation algorithm.
With this approach, we would have to order the elements based on their coordinate.
Afterward, we can again use two pointers to the elements of each tensor. We iterate
over the elements in the same way as we do in the base implementation. However,
instead of moving the pointers based on the quantum numbers, we do it based on the
coordinates of the elements. The disadvantage of this option is the need for sorting.
Although, the advantage of having sorted elements could make up for it. A more
detailed description of the algorithm is depicted in algorithm 3.

Option 2: The second option would be less complicated. Instead of sorting the two element
groups, we ignore the order and for each element in the first group, we iterate over all
elements of the second group. Depending on the number of elements in these blocks, it
might even be more efficient to not have the overhead of sorting the groups beforehand.
The algorithm is illustrated in algorithm 2.

After the routines, we add the elements of all blocks, which have the same coordinates in
the resulting tensor, and continue to build the new tensor in the same way as in the base
implementation.
The algorithm currently used for version ” V0 2” is depicted in algorithm 4.
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Algorithm 2: Subroutine option 1

Input: Two blocks blockA and blockB with indices a1, a2 and b1, b2
Output: A map tableC

1 countera ← 0
2 counterb ← 0
3 jumpBack ← 0
4 jumpBackalready set ← false
5 blockA ← blockA sorted by coordinates of a2
6 blockB ← blockB sorted by coordinates of b2

7 while countera < size of blockA & counterb < size of blockB do
8 if coordinates of a2 and b2 are equal for the entries at countera and counterb

then
9 if not jumpBackalready set then

10 jumpBackalready set ← true
11 jumpBack ← counterb

12 add blockA.[countera] × blockB.[counterb] to entry in tableC
13 if element after counterb in blockB has the same quantum number then
14 counterb ← counterb + 1

15 else if element after countera in blockA has the same quantum number then
16 countera ← countera + 1
17 counterb ← jumpBack

18 else
19 countera ← countera + 1
20 counterb ← counterb + 1

21 else if quantum number of a2 at position countera > quantum number of b2 at
position counterb then

22 jumpBackalready set ← false
23 counterb ← counterb + 1

24 else
25 jumpBackalready set ← false
26 countera ← countera + 1

Figure 2.2.: The algorithm describes the first option for the subroutine for multiplying two
blocks.
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Algorithm 3: Subroutine option 2

Input: Two blocks blockA and blockB with indices a1, a2 and b1, b2
Output: A map tableC

1 for entrya in blockA do
2 for entryb in blockB do
3 if coordinates of a2 for entrya = coordinates of b2 for entryb then
4 add entrya × entryb to entry in tableC

Figure 2.3.: The algorithm describes the second option for the subroutine for multiplying
two blocks.

Algorithm 4: Multiply improved implementation algorithm

Input: Two Tensors Â and B̂ with indices a1, a2 and b1, b2
Output: The new Tensor Ĉ with indices c1 and c2

1 block mapA ← Â.positionTable entries hashed by quantum number of a2

2 block mapB ← B̂.positionTable entries hashed by quantum number of b2
3 for blockA in block mapA do
4 if block mapB contains correspondence to blockA then
5 blockB ← block mapB with same key as blockA

6 while countera < size of Â.positionTable & counterb < size of

B̂.positionTable do
7 for entrya in blockA do
8 for entryb in blockB do
9 if coordinates of a2 for entrya = b2 for entryb then

10 add entrya × entryb to entry in Ĉ

11 set the isIndexOutgoing and quantumNumbers of Ĉ to the corresponding values of
a1 and b1

Figure 2.4.: The overall algorithm, used for the version multiply V0 2(...)
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2.2.3. Multithreading Improvements

Permute

In the permute operation, we can add multithreading, when we iterate over the elements
of the positionTable. For each entry, we have to apply the same operation and change the
values of the coordinates. As we change different areas of the positionTable in each entry,
the calculation does not require a specific order of the elements. Therefore, the entries can
be modified in different threads.

The first and simple approach, from now on called permute V1, is to create a new thread
for each element. However, as we will see later in the result section, this creates a massive
overhead. There are possibly many entries in a tensor and therefore many threads that we
would create. Moreover, the number of calculations for each element is rather small.

Instead, in the version permute V1 2 we do not create threads for each entry, but divide
the space of the positionTable into multiple subareas. If we have less than 16 entries, we
handle the table the same way as in the base implementation. When there are more or
equal to 16 and less than 64 entries in positionTable, the table is split into two equal parts.
In bigger cases, which will be mostly the case, the table is split into four parts. In these
examples, we only create a thread for each subspace. This should reduce the overhead of
the thread handling.

Fuse

The fuse method includes multiple loops over different variables. However, in all of these
loops, some kind of variable is modified. This mostly excludes them from multithreading,
as we can not safely access the variables at the same time and would need to implement a
locking mechanism for the variable. Even though the implementation of such a mechanism
would not be problematic, threads would try to access the variable frequently and therefore
spend a significant amount of waiting.

Split

The split method does not offer much opportunity for improvements with multithreading
either. The first possibility would be the check, whether the quantum numbers combined,
result in the current quantum number values. However, every iteration only needs a
constantly small amount of operations. Therefore, the overhead for the multithreading will
most likely exceed the benefits of the parallelization itself.

The second loop over the positionTable adds coordinates to the structure. For this reason,
the loop should not access this variable in multiple threads at the same time. The result is
an unsuitable loop for our multithreading approach.

Contract

The contraction method offers multiple different opportunities for multithreading. The
reason behind it is the attribute of the operation itself, that we can look at the different
blocks separately.
However, one might realize that this does not seem suitable for the base implementation.
Therefore, we use the already algorithmic optimized implementation as a basis.
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We also include a mutex for the threads, so that the elements can be saved in one
structure throughout all threads. For each quantum number block, we create one thread.
In the threads itself, we went back to apply a similar process to the block as in the base
implementation, except we do not compare quantum numbers anymore. Specifically, the
versions multiply V1 and multiply V1 2 implement the algorithm 3 in the subroutine and
only differ in detail when the calculated elements are added to the element structure across
the threads. In the first one, each element that is calculated is immediately added to the
structure. The mutex should therefore only be blocked for a short period by one thread
but locked many times. In the second version, the calculated elements are stored in the
thread temporarily. When all calculations for the block are done, the mutex is locked once
and all calculated elements are added to the overall structure. For this reason, the mutex is
locked longer by one thread but only once. The version multiply V1 3 on the other hand
implements the algorithm 2 in the subroutine. Here, the overall structure is also accessed
immediately after calculating an element.

2.2.4. Utilizing OpenMP

As an alternative to handling the threads manually, versions were added that use OpenMP
to parallelize some parts of the operations. We apply the parallelization at the same places,
where we used the manual multithreading previously.

For the permute method, we use ”#pragma opm parallel for” for the loop, where we
iterate over the positionTable and calculate the new coordinates.
We also add a version with OpenMP parallelization to the fuse and split methods. For fuse,
we add ”#pragma omp parallel for” for the loop, when iterating over the positionTable and
calculating the coordinates to the new format. Additionally, we mark the section where we
change the structure of positionTable with ”#pragma omp critical”. The same will be done
for the split method. We add ”#pragma omp parallel for”, when iterating over the quantum
numbers to check for equality with the current quantum numbers. Furthermore, we again
limit the section where a variable from outside the loop is changed with ”#pragma omp
critical”.

For the contraction method, we use the algorithm, where we already distinguish between
the quantum number blocks. With this base, we add again ”#pragma omp parallel for” to
the loop, where we iterate over the blocks to calculate the subroutines.

All of the versions that use OpenMP, will from this part be marked with ” V3” in the
name of the method.

2.2.5. SIMD Improvements

Single instruction, multiple data (SIMD) could also offer some advancement in performance.
The overhead when using SIMD intrinsics may not be as big, compared to using multithread-
ing. However, due to the structure of the tensor class, it does not seem suitable for usage
in the four primary operations. In the permute method, the same routine is performed on
all elements of positionTable. However, the values that the steps are performed on are not
consecutive in the memory. This is similar to the fuse method, where we additionally change
the structure of the positionTable variable itself in each step.
The split method would be suitable to include SIMD functionality. The quantum numbers
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that we check are aligned in the memory. The overhead of using SIMD in this situation,
even if small, may minimize its advantage though.
Contrary, the contraction method does not offer the visible opportunity for using this
principle in this class structure. Especially, the fact that the complex values are separated
from the coordinates complicates possible use.
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Results and Discussion
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3. Results

3.1. Benchmarking

3.1.1. Testing details

Hardware environment

The tests in this chapter were run on a computer with the following specifications. During
the testing, no other major tasks were executed.

CPU: AMD Ryzen 9 5900X 12-Core Processor, 3.70 GHz
RAM: 32 GB, 3.6 GHz
OS: Windows 10 Pro

Software environment

All operations were applied on tensors of rank 2. The value for the non-zero elements is set
to 2.0 for the tests. Additionally, the quantum numbers for both indices were generated
with the srand() function and additional seeds. These pseudo-random quantum numbers are
all integers between -10 and 10.
Additionally, the results of the tests are the average execution time over 15 runs of the

same method for each tensor that is included. Even though, we look at this limited fraction
of tensors, it is used to represent the different performances of the operations versions. As
we also use CMake to compile the project, we will use the release mode for compiling the
files for the tests.

Figures

In all the given figures of this chapter, the vertical axis describes the average execution
time of the runs in µs. The horizontal axis shows the possible amount of elements in the
Matrix, not taking the symmetry into account. A value of 2500 for example, would mean
the calculation is done with a 50 x 50 Matrix.
The figures 3.3, 3.5, 3.9 and 3.10 additionally include error bars for the data points,

representing the standard error of the runs.
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3.1.2. Permute

Figure 3.1.: The results from testing the OpenMP version of permute (permute V3(...))
with different numbers of threads.

As described, we have four different versions of the permute method. The base implementa-
tion, two implementations with manual multithreading and one with the use of OpenMP.
In the first figure 3.1, we see how the method using OpenMP performs with different numbers
of threads. We choose 24 as the maximum, as the processor has 24 logical processors. We
can observe in the graphic, that the more threads are used, the faster the method is. In the
second figure 3.2, we compare all the different alternatives of the permute method. However,
we already see that the second version needs immensely more time to execute than the other
versions. This is most likely due to the overhead of creating threads for every iteration in
the loop. For this reason, we disregard it. Lastly, in the third figure 3.3, to get a better
comparison between the other methods, the second version is excluded. We can see that the
second multithreading version performs better for large tensors. Even though this option is
similar to the first multithreading one that we excluded, this time we only have a maximum
of four simultaneous threads. This does not create as huge of an overhead as the second
version. Lastly, the OpenMP version performs best on large tensors, which indicates that
the multiple threads can be utilized properly.
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Figure 3.2.: The results from testing the base implementation (permute V0(...)), the first
and second multithreading versions (permute V1(...) and permute V1 2(...)),
and the method using OpenMP with 24 threads permute V3(...). The graphs of
the base implementation and the second multithreading can not be seen in the
picture, as they overlap with the OpenMP version.

Figure 3.3.: The comparison of the base implementation (permute V0(...)), the second
multithreading (permute V1 2(...)) and the OpenMP version (permute V3(...)),
excluding the first multithreading option(permute V1(...)).
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3.1.3. Fuse

Figure 3.4.: The results from testing the OpenMP version of fuse (fuse V3(...)) with different
numbers of threads.

Firstly, we tested the OpenMP version with different amounts of threads again (figure 3.4).
This time, the method is more efficient the fewer threads we use. As two threads are our
minimum, this can already imply, that the method would perform better with only one
thread. For this reason, we compare in figure 3.5 the performance of the OpenMP version
with just two threads and the base implementation. As we can see, the method works best
without any multithreading. This is most likely due to the threading overhead, for the
relatively small amount of calculations per loop iteration, where the threads are used.

Figure 3.5.: The comparison of the base implementation (fuse V0(...)) and the OpenMP
version (fuse V3(...)) with two threads.
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3.1.4. Split

Figure 3.6.: The results of comparing the base implementation with the OpenMP version.
The OpenMP version is divided into five options, corresponding to the used
number of threads. Graphs that are not visible, are overlapping with the other
ones.

For the split method, we included all options in figure 3.6. As we can observe, there is no
significant difference in the performance of the different versions.
The OpenMP method also performs the same, no matter what amount of threads are used
in our example. This indicates, that even though multiple threads are available, they are
not used by the program. The reason for this is most likely the structure of the for-loop
that should be parallelized. Therefore, we again regard the base implementation as the best
option.
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3.1.5. Contract

Figure 3.7.: The results from testing the OpenMP version of multiply (multiply V3(...))
with different numbers of threads.

Firstly, we test again how the OpenMP version performs with different numbers of threads.
In figure 3.7, we see similar results to the permute method using OpenMP, the more threads
are used the more efficient the operation is. Again, this indicates that the different threads
can be utilized properly and do not seem to have a problematic overhead.

Figure 3.8.: The results from testing the base implementation (multiply V0(...)), the block
utilizing one (multiply V0 2(...)), the multithreading versions(multiply V1(...),
multiply V1 2(...) and multiply V1 3(...)), and the method using OpenMP with
24 threads multiply V3(...).
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Figure 3.9.: The results from testing the multithreading version of multiply (multiply V1(...)
and multiply V1 3(...)), as they implement the different subroutines 3 and 2.

Afterward, we can compare all the different versions of the multiply operation in figure
3.8. The worst-performing option is the algorithmic improved method. Even though we
divide the operation into different blocks, the subroutine used is fairly bad and we need to
use multiple threads to decrease the execution time.
The OpenMP version is not performing as badly but also seems to be a bad option for
larger tensors. In figure 3.9, we can compare the two subroutines, discussed in more detail
in algorithms 3 and 2. We see that the first version is more efficient in comparison. The
second option may be simple in the implementation, but we do not use any algorithm to
our advantage and iterate over all elements. It utilizes a similar algorithm of the base
implementation and is therefore more complex, but also more efficient.
Lastly, we can compare the versions multiply V0(...), multiply V1(...) and multiply V1 2(...)
in figure 3.10, to get a better contrast between the best versions so far. As seen in the
graphic, the first and second multithreading versions perform nearly the same. This is
expected, as they implement the same algorithm and only differ in the access of the shared
variable as discussed in section 2.2.3. Lastly, the base implementation still performs the
best.
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Figure 3.10.: The comparison between versions multiply V0(...), multiply V1(...) and mul-
tiply V1 2(...). The graph of the first multithreading version is not visible
clearly, as it overlaps with the graph of the second multithreading option.

31



4. Discussion

After looking into the testing results, we see, that the base implementations are still the
best performing in nearly all of the methods.

With two very common optimization techniques in mind, using single instruction, multiple
data (SIMD) functionality, or creating multiple threads, we tried to improve the base
implementations. However, using SIMD seemed not suitable for most operations due to
the underlying structure, constructed for sparse tensors. In these cases, the data for which
we could apply the same instructions, was not as well aligned as we might want it to be.
Moving the data into a bigger vector to perform a given instruction, might be less effective
than just applying the instructions to the different values separately. Especially, because we
did not use complex calculations in these operations. Using multiple threads at the same
time, on the other hand, is more convenient to implement with the specific structure of the
tensor class. However, depending on the decisions on how to implement the multithreading,
the overhead varies and therefore, the outcome of the specific results will be different. Using
OpenMP to simplify the parallelization process may be a good idea, on the other hand,
using manual multithreading has been more efficient in the multiply operation, as we were
able to better cut it to the requirements of the different operations.
Even though the implementation might build a solid base for future improvement, there

are also limitations to it currently. One of them is the missing support of rank 0 tensors or
scalars. For many of the operations, this would require additional functionality, specifically
for this edge case. Regardless, most, if not all calculations would be based on tensors
of a higher rank. Additionally, as discussed in section 2.2 ”Factorization”, the current
implementation still needs a reliable and suitable approach for calculating singular value
decomposition and spectral decomposition.

Despite the current limitations, the library offers a good approach to the calculation with
sparse tensors with quantum number conservation. It provides users of C++, with the
opportunity to implement algorithms based on the tensors with underlying U(1) symmetry.
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In conclusion, we implemented a well-suited library for sparse tensors with quantum number
conservation, which includes major functionalities for algorithms in a tensor network. Even
though the operations on the tensors may be suitable for even further improvements, our
tests showed that the resulting profit depends heavily on how the optimizations are designed
and implemented.
While the outcome of some performance tests may seem discouraging, it indicates that we
have built a good basis to improve the current methods and add new functionality.
Overall, during the development process, one goal was to create a library that is simple and
intuitive to use, which will be an advantage during the use and future improvements.
However, even though this project offers a good basis, there are still many opportunities for
further developments, tests, and changes. Firstly, one major aspect would be the elimination
of the current limitations. Furthermore, after receiving feedback from users, other methods
could be added that are helpful for the use of the tensor class. The improvements in the
different methods also need to be extended and tested. Especially the multiplication and
decomposition operations are expensive in regards to computation time.
Even though this would be a major change to the project, the performance of the program
could be tested, if we slightly change the structure of the tensor class. That way, SIMD use
could be more suitable.
Lastly, other symmetries could also be added to the projects, e.g. the SU(2) group. These
changes, despite going in different directions, could contribute positively to these functional-
ities, implemented in the project.
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