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Abstract

As the increase in simulation model resolution has at times outpaced the rapid increase in

available computational power, the required effort to perform multi-query analyses, such as

optimizations, can become prohibitive. MF (multi-fidelity) methods have been introduced as

a remedy where the accurate but expensive, high-fidelity, simulation model is complemented

with a cheaper-to-evaluate but also less accurate, low-fidelity, model in a way that benefits

overall performance.

In the context of the present thesis and the appended publications, surrogate-based MF opti-

mization techniques are applied to two challenging structural applications and different modi-

fications are suggested. The two applications automotive crashworthiness and deep drawing

are chosen because they involve similar challenges in the simulation models and therefore al-

low for some degree of generalizability in the findings. A recently proposed MF extension of the

popular efficient global optimization method based on a hierarchical kriging surrogate model

and the variable-fidelity expected improvement infill criterion is used as a basis to establish the

potential of MF techniques. Beyond that, the novel contributions of this work include the inves-

tigation of various aspects of both, the algorithm and application problems and the suggestion

of different modifications to further improve optimization performance. On the application side,

the choice of low-fidelity model is investigated in the context of two examples from the automo-

tive crashworthiness field, and the importance of careful definition of the objective function is

illustrated on a deep drawing problem. It is shown that a novel modification to the initial design

of experiments can benefit the optimization performance. Finally, it is investigated how input

parameter uncertainties, which may be commonly encountered in real-world applications, can

be included into the MF optimization. Therefore, a novel MF extension for a common infill cri-

terion is suggested. Furthermore, it is shown that even optimization performance can benefit

when integrating methods to consider input parameter uncertainties into the algorithm.

In summary, the chosen MF optimization technique is established in automotive crashwor-

thiness and deep drawing here and various novel modifications to improve optimization per-

formance are proposed. Based on the promising findings, various ideas for future work are

developed.
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Zusammenfassung

Da die Detailliertheit von Simulationsmodellen bisweilen schneller zunimmt als die verfügbare

Rechenleistung, kann der erforderliche Rechenaufwand für die Durchführung von sogenann-

ten multi-query Analysen, wie beispielsweise Optimierungen, prohibitiv werden. Als Abhilfe

wurden MF (multi-fidelity) Methoden eingeführt, bei denen das genaue, aber teure, high-fidelity

Simulationsmodell durch ein günstiger auszuwertendes, aber auch weniger genaues, low-

fidelity Modell ergänzt wird, um die Gesamtleistung zu verbessern.

Im Rahmen der vorliegenden Arbeit und der beigefügten Veröffentlichungen werden Surrogat-

basierte MF-Optimierungstechniken auf zwei anspruchsvolle Strukturprobleme angewendet

und verschiedene Modifikationen vorgeschlagen. Die beiden Anwendungen automobile Crash-

sicherheit und Tiefziehen wurden ausgewählt, um ein gewisses Maß an Verallgemeinerbarkeit

der Ergebnisse ermöglichen. Eine kürzlich vorgeschlagene MF-Erweiterung der beliebten ef-

ficient global optimization Methodik, die auf einem hierarchical kriging Surrogatmodell und

dem variable-fidelity expected improvement basiert, wird als Grundlage verwendet, um das

Potenzial der MF-Techniken zu ermitteln. Darüber hinaus gehören zu den neuen Beiträ-

gen dieser Arbeit die Untersuchung verschiedener Aspekte sowohl des Algorithmus als auch

der Anwendungsprobleme und der Vorschlag weiterer Modifikationen zur Verbesserung der

Optimierungsleistung. Auf der Anwendungsseite wird die Wahl des Low-Fidelity-Modells im

Zusammenhang mit zwei Beispielen aus dem Bereich der automobilen Crashsicherheit un-

tersucht, und die Bedeutung einer sorgfältigen Definition der Zielfunktion wird anhand eines

Tiefziehproblems veranschaulicht. Es wird gezeigt, dass eine neuartige Modifikation der

anfänglichen Versuchsplanung die Optimierungsleistung verbessern kann. Schließlich wird

untersucht, wie Unsicherheiten der Eingangsparameter, die in realen Anwendungen häufig

vorkommen, in die MF-Optimierung einbezogen werden können. Daher wird eine neuartige

MF-Erweiterung für ein gängiges Infill-Kriterium vorgeschlagen. Darüber hinaus wird gezeigt,

dass sogar die Optimierungsleistung profitieren kann, wenn Methoden zur Berücksichtigung

von Unsicherheiten der Eingangsparameter in den Algorithmus integriert werden.

Zusammenfassend wird hier die gewählte MF-Optimierungstechnik in Anwendungen der au-

tomobilen Crashsicherheit und im Tiefziehen etabliert und es werden verschiedene neuartige

Modifikationen zur Verbesserung der Optimierungsleistung vorgeschlagen. Auf der Grund-

lage der vielversprechenden Ergebnisse werden verschiedene Ideen für zukünftige Arbeiten

entwickelt.
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Chapter 1

Introduction

Optimization algorithms have been successfully applied to different structural applications not

only in research work but also in industrial applications for many decades now. The rapid

increase in available computational resources was at times even outpaced by the increase in

simulation model resolution. This makes running hundreds or even thousands of simulations

per optimization run computationally prohibitive in many practical applications. This is particu-

larly true in cases where no additional information on the objective function is available. This

means that it has to be considered a black box, and, for example, gradient-based techniques

cannot be used.

There have historically been two closely related ideas on how to tackle this challenge with-

out reducing the quality of simulation models. First, black-box optimization algorithms were

tailored to reduce the number of required objective function evaluations. These techniques,

such as EGO (efficient global optimization) (Močkus, 1975; Jones et al., 1998), commonly use

surrogate models to guide the algorithms towards promising regions in the design space. Sec-

ond, the idea of MF optimization techniques was developed whereby the accurate but expen-

sive simulation model is combined with a faster to evaluate, yet less accurate LF (low-fidelity)

model, for example, a simplified simulation model. Then, both models are combined in the

optimization process in a way that is beneficial to overall optimization performance. In recent

years, as both ideas gained increasing popularity, they have also been combined to generate

highly efficient MF optimization techniques (Huang et al., 2006; Zhang et al., 2018a).

As MF methods have been widely adopted in the literature (Mainini et al., 2022; Park et al.,

2017; Fernández-Godino, 2023) and used in various different applications, they also introduce

additional challenges not encountered in ‘classical’, SF (single-fidelity), methods. One exam-

ple is the appearance of additional hyperparameters in the optimization technique, which have

to be defined in a sensible way to ensure reliable performance of the optimization. Another

example is the need to define an LF model which typically requires human interaction and

can be a time-consuming task depending on the problem at hand. Finally, it must be ensured

that when assessing optimization algorithms against each other, particularly MF with SF tech-

niques, hyperparameters are defined in a way that allows a fair comparison. These points,

together with the fact that many aspects of the MF optimization technique which is the focus
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in the present work, were only suggested very recently (e.g., Zhang et al. (2018a)); and they

are the motivating factors for the research done in the context of the present thesis.

One of the fields of structural applications considered in the present thesis is automotive crash-

worthiness. As the field in general has been active in academia and industry since at least

the 1970s, some of the first uses of optimization algorithms for this application also date back

almost 30 years at the time of writing, e.g. (Etman et al., 1996). Since then, optimization

algorithms have been extensively applied to structural crashworthiness problems (Fang et al.,

2016) and also some work on MF optimization in this field has been published (e.g., Sun et al.

(2010a); Acar et al. (2020)). Optimization problems in this field are typically characterized by

a high degree of nonlinearity in the underlying dynamic simulation models which are based

on explicit FEA (finite element analysis). Common sources of nonlinearity are highly nonlin-

ear deformations, strain-rate dependencies, (self-)contact and others. Therefore, the objective

functions are also commonly nonlinear and multimodal, usually having to be considered as

black-boxes, which currently renders gradient-based optimization algorithms unsuitable.

The other application that is investigated in the present work is the deep-drawing process,

which represents one of the most widespread sheet metal forming processes in industry. More

specifically, it is investigated here how the drawability of a component can be improved through

optimization, as this is one of the major challenges in the early design stages of new compo-

nents. As with crashworthiness, optimization algorithms have been widely used in this field of

application (see, for example, the review works by Wifi et al. (2007); Andrade-Campos et al.

(2022)). Few works have been published that apply MF optimization in deep drawing problems;

they are discussed in Section 3.2. Similar to structural crashworthiness problems, drawability

optimization problems also have an underlying nonlinear simulation model based on explicit

FEA that usually causes the objective function in the optimization problem to be multimodal.

The main sources of nonlinearity in this case are large plastic deformations in the metal sheet

and contacts.

1.1 Research Questions

The use of MF optimization techniques in challenging structural applications, such as auto-

motive crashworthiness or deep drawing raises various interesting research questions. The

focus on these two applications was chosen because, while they are different in the individ-

ual challenges and quantities involved, they both include highly nonlinear simulation models.

Therefore, common findings in both applications allow at least some degree of generalizabil-

ity of the conclusions. The research questions which initiated this research work and which

are also behind the appended publications (Kaps et al., 2022, 2023, 2024), are listed below.

Thereby, a distinction is made between the questions related to the optimization algorithm and

the questions related to the application problem at hand.

2 Multi-fidelity Optimization Methods with Applications to Automotive Crashworthiness and Deep Drawing
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First and foremost, it has to be established that modern MF optimization methods based on

the idea of EGO such as the one based on HK (hierarchical kriging) and VFEI (variable-

fidelity expected improvement) mainly applied in the present work can bring any benefit to

the chosen applications at all (Question 1). When comparing optimization algorithms, the

focus typically lies either on the quality of the optimum found or on the time / computational

resources needed to find it. The focus in the present work lies more on the latter, as it is argued

that in practical applications it matters more to find a decent optimum fast. Another essential

aspect of using stochastic algorithms such as EGO is the consistency of the results when

repeating optimization runs. This also strongly depends on the optimization problem under

investigation. In a second step, the observed benefits have to be compared with previous

publications using different optimization techniques to ensure the reliability of the assessments

and quantify potentials (Question 2). The third question is how different steps of existing

optimization algorithms, such as the initial design of experiments, can be modified to improve

the overall optimization performance (Question 3). The different aspects of the optimization

algorithm are reviewed in Chapter 2 and individual modifications of the appended publications

are highlighted. It is investigated whether the overall algorithm architecture can be adjusted in

a beneficial way (Question 4). Closely related, it is interesting to explore the question of how to

effectively integrate input parameter uncertainties into the optimization scheme (Question 5).

The latter would allow for more realistic problem definitions in real-world applications, where

typically not all parameters can be controlled, but some information on their variation may be

available.

Two further questions arise from the applications, but are also closely related to the remaining

questions. First, can the low-fidelity model be chosen in a way that is beneficial for the overall

performance of the algorithm in these two applications (Question 6)? Second, how much

impact does the choice of objective function have in the context of a drawability optimization

of a deep-drawn component (Question 7 )?

A total of seven research questions have been formulated, which are investigated in the three

appended publications (Kaps et al., 2022, 2023, 2024). An overview of how the research

questions are distributed to the publications is given in Table 1.1.

Table 1.1 Attribution of research questions to appended publications. Formulations of the questions see text above.

Research Publication I Publication II Publication III
questions (Kaps et al., 2022) (Kaps et al., 2023) (Kaps et al., 2024)

Question 1 x x x
Question 2 x x x
Question 3 x - x
Question 4 - - x
Question 5 - - x
Question 6 x - -
Question 7 - x -
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1.2 Thesis outline

The key contributions of this research work include the successful answering of research ques-

tions 1 and 2 formulated above. On the side of optimization methodology, a novel modification

to DoE (design of experiments) techniques is proposed (Komeilizadeh et al., 2022) and suc-

cessfully applied to the two fields of application in appended publications I and III (Kaps et al.,

2022, 2024). Furthermore, a novel two-stage MF technique that allows for the consideration of

input parameter uncertainties and improves the optimization performance is proposed in ap-

pended publication III (Kaps et al., 2024). Studies on the choice of LF model and the choice of

objective function are performed in appended publications I and II (Kaps et al., 2022, 2023) us-

ing application examples from the fields of crashworthiness and deep drawing, respectively.

Based on these contributions, the remainder of this thesis is structured as follows. The state of

the art for the MF optimization methods including the proposed improvements and the greater

research context is presented in Chapter 2. The two application use cases automotive crash-

worthiness and deep drawing are reviewed in Chapter 3 incorporating the mechanical chal-

lenges and previous research by others on MF optimization in these applications. The ap-

pended publications are then summarized in Chapter 4 (the full length papers can be found

in Appendix A). A discussion on the results and contributions of the appended publications

along with a critical reflection on the formulated research questions in Chapter 5 is followed by

concluding remarks and an outlook in Chapter 6.

4 Multi-fidelity Optimization Methods with Applications to Automotive Crashworthiness and Deep Drawing
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Chapter 2

Methodology

In the appended publications (Kaps et al., 2022, 2023, 2024), a multi-fidelity EGO technique

is investigated and extended in the context of automotive crashworthiness and sheet metal

forming applications. The novel contributions here include a modified initial DoE, a novel MF

infill criterion, and the study of different LF models. Therefore, a detailed overview of the

utilized optimization methods is given in this chapter. DoE as the essential first step in this

surrogate-based technique is introduced in Section 2.1. The concept of EGO is summarized

in Section 2.2 and its extensions to an MF context are presented in Section 2.3.

2.1 Design of experiments

The problem of optimally distributing a finite number of design samples in a (hyperrectangu-

lar) design space is addressed by DoE. It represents an essential first step in many modern

computer-based techniques, such as surrogate modeling, sensitivity analysis, or population-

based optimization. As such, it has been extensively investigated and covered in the literature

(Forrester et al., 2008; Montgomery, 2020; Niederreiter, 1992; Pronzato and Müller, 2011;

Saltelli et al., 2007; Santner et al., 2003). In the context of the present work, a novel modifica-

tion of popular DoE methods adapted for surrogate-based optimization techniques is proposed

(Komeilizadeh et al., 2022) and investigated in structural applications (see also Sections 4.1,

4.3 and Chapter 5). Therefore, an overview of important concepts in modern DoE is given in

the following.

Originally, deterministic methods for physical experiments or studies were developed many

decades ago (Fisher, 1936). These methods, such as full-factorial or Box-Behnken design

(Box and Behnken, 1960), usually place design samples in a regular pattern with many sam-

ples at or close to the design space boundaries. The variation over the full range of each

design variable is then estimated after running the experiments. This branch of DoE is called

classical DoE and remains relevant until today in many areas of research (Montgomery, 2020).

One major disadvantage of this type of method is that the number of required samples may

grow exponentially with the number of design variables, and, for example, with Box-Behnken

designs, the number of samples may not be specified arbitrarily.

Multi-fidelity Optimization Methods with Applications to Automotive Crashworthiness and Deep Drawing 5
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The focus in modern DoE, which may sometimes be called the design of computer experi-

ments, is more on uniformly distributing samples across the entire design space. To that end,

several space-filling criteria have been introduced to assess the quality of a sample data set.

They can be broadly categorized into distance-based and uniformity-based criteria (Garud

et al., 2017). For the latter, so-called discrepancy measures are defined that quantify the

difference between a given design and a uniform design. Various definitions have been pro-

posed and discussed in the literature (Hickernell, 1998; Fang and Ma, 2001; Fang et al., 2002).

However, these criteria are rarely used when generating an DoE in an application use case

due to their high computational costs. Efforts have been made to make them more feasible

(Jin et al., 2005). Distance-based criteria are also defined in numerous different ways (Garud

et al., 2017; Komeilizadeh et al., 2022). Two of the most popular criteria, which are very com-

mon due to their low computational cost, are PE (potential energy) (Audze and Eglais, 1977)

and Maximin (Johnson et al., 1990). The former, which is also used in OLHS (optimal Latin

hypercube sampling) throughout the present work, is defined as

ΦPE =
N−1

∑
i=1

N

∑
j=i+1

d(xxx(i),xxx( j))−2. (2.1)

Here, N is the number of samples xxx(i) in the sample set and d(xxx(i),xxx( j)) represents the Eu-

clidean distance between two sample points.

Two of the most widely used classes of DoE techniques, namely (Quasi) MC (Monte Carlo)

sampling and LHS (Latin hypercube sampling), are summarized below. MC sampling itself

is arguably the most simple DoE technique in which samples are drawn (pseudo-)randomly

from the design space. However, since samples are almost never uniformly distributed when

using this approach, more efficient methods named QMC (quasi-Monte Carlo) were developed

(Niederreiter, 1992). The idea is to place samples based on low-discrepancy sequences of

prime numbers, where low-discrepancy refers to the uniform space-filling property. Popular

examples of the sequences include Hammersley (Hammersley and Handscomb, 1964), Halton

(Halton, 1964) and Sobol (Sobol’, 1967). Following their introduction, numerous improvements

to these sequences and their initialization have been suggested over the years to remedy some

of the common problems, such as clustering of samples or poor lower-dimensional projections

(Braaten and Weller, 1979; Bratley and Fox, 1988; Joe and Kuo, 2008; Morokoff and Caflisch,

1994).

LHS is a space-filling DoE technique that extends upon the concept of Latin squares. A Latin

hypercube design for N samples in d dimensions is constructed by first dividing each dimen-

sion into N bins of equal probability, for example, uniformly. Of the total Nd cells created, N

are randomly selected such that each bin in each dimension only contains a single sample

(McKay et al., 1979). Typically, samples are placed in the center of a cell. However, other
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approaches such as random placement have been suggested (Rajabi et al., 2015). As initial

designs may suffer from problems such as sample correlations, OLHS was introduced as a

remedy. The basic idea is to optimize an initial LHS with respect to a space-filling criterion

such as PE or Maximin. An early approach utilizing a simulated annealing (Bohachevsky

et al., 1986) optimization algorithm was proposed by Morris and Mitchell (1995). Due to its

good balance between simplicity and performance, this is also the approach employed in all

publications included in the present work. However, several modifications and improvements

have been suggested over the years (Husslage et al., 2011; Jin et al., 2005; Vořechovský and

Novák, 2009; Ye, 1998; Ye et al., 2000). A more detailed overview of the developments around

OLHS is given by Viana (2015).

During the work for the present thesis, a novel modification to these DoE methods was sug-

gested and named IV (isovolumetric) sampling by our group (Komeilizadeh et al., 2022). De-

veloped for surrogate modeling and surrogate-based optimization, it is based on two ideas.

First, it is well known that as the number of dimensions increases, so does the share of vol-

ume close to the boundaries in a hypercube. Second, surrogate models generally perform

significantly better at interpolating between existing samples than at extrapolating. Based on

these two observations, the idea of IV sampling, specifically IV LHS is to redefine the bin

boundaries and sizes in a way that samples are pushed closer to design space boundaries

depending on the number of design space dimensions. Instead of bin boundaries pi =
i
N and

sizes a j =
1
N for classic LHS and uniformly distributed variables, they are defined as

pi =





0.5
(

1−
(

Nv+1−i
Nv

)1/d
)
, i ∈ [1,Nv]

0.5
(

1+
(

i−(Nv+1)
Nv

)1/d
)
, i ∈ (Nv,N +1]

, (2.2)

a j = p j+1− p j, j ∈ [1,N]. (2.3)

Here, Nv =
N
2 is introduced for clarity of notation. To illustrate the resulting pattern, an exem-

plary OIVLH (optimal isovolumetric Latin hypercube) design of eight samples in two dimen-

sions is shown together with an OLHS and a QMC sampling based on the Sobol sequence in

Figure 2.1. The concept can be straightforwardly extended to arbitrary DoE techniques and

applied there as an a posteriori transformation. More details on that, as well as a more in-

depth discussion of the approach, can be found in the original publication (Komeilizadeh et al.,

2022). The performance of IV sampling is investigated in multi-fidelity optimization problems

related to automotive crashworthiness and sheet metal forming in the appended publications I

(Kaps et al., 2022) and III (Kaps et al., 2024), respectively.

When investigating MF optimization methods, it seems reasonable to also explore the use of

MF-DoE (multi-fidelity design of experiments) techniques. The basic idea is to create a DoE

for all fidelity levels involved while considering the existence of other fidelity levels instead of
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Figure 2.1 Exemplary design of experiments for eight samples in two dimensions. For both Latin hypercube methods, the
bin boundaries are depicted as grey dotted lines. Left: Sobol’ sampling; mid: optimal Latin hypercube sampling; right:
optimal isovolumetric Latin hypercube sampling.

creating them separately for each individual fidelity level. Although it is not required for the

methods used here, many MF techniques require that the HF (high-fidelity) sample set be

a subset of the LF sample set. Various approaches have been suggested, for example, a

nearest neighbor (Le Gratiet, 2013) or an exchange approach, Forrester et al. (2007). More

information on the different available methods can also be found in one of the review articles

covering the topic (Zhou et al., 2023; Fernández-Godino, 2023; Park et al., 2017). Within the

present work, the use of MF-DoE techniques was only studied preliminarily within the scope

of a Master’s thesis (Wang (2022); see Appendix B for a summary). An in-depth assessment

of the potential of MF-DoE in MF optimization remains open for future work.

2.2 Efficient global optimization

Surrogate-based optimization methods are commonly used when some form of expensive

simulation is required to evaluate the objective function in a given optimization problem. In the

most straightforward approach, the optimization is run completely on an initially fitted surrogate

model, and the global optimum predicted by the surrogate model is then assumed to be the

desired optimum of the objective function. However, this approach strongly depends on the

quality of the surrogate model and may be very inefficient. Therefore, techniques have been

developed that iteratively add design samples to the surrogate model, thus increasing model

quality in promising areas of the design space. Throughout the present work, an optimization

method called EGO that was originally proposed by Jones et al. (1998) and Schonlau et al.

(1998) and its extensions to multi-fidelity are applied. It was originally inspired by and is

sometimes used synonymously with BO (Bayesian optimization) (Močkus, 1975, 2012).

In the following, the general workflow of EGO is presented in Subsection 2.2.1. Subsequently,

the underlying GP (Gaussian process) surrogate model and some available infill criteria for

adaptive sampling are discussed in more detail in Subsections 2.2.2 and 2.2.3, respectively.
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2.2.1 Introduction

When using adaptive surrogate-based optimization strategies, it is typically assumed that no

additional information such as gradients is available for the objective function. That is, the

objective function is treated as a black box. Other optimization techniques that take gradi-

ent information into account are available if this assumption is not valid (Kochenderfer and

Wheeler, 2019; Rao, 2019). Recently, efforts have also been made to improve surrogate mod-

els with gradient information and thus make adaptive surrogate-based optimization methods

more viable in these cases (Chen et al., 2020; Laurent et al., 2017).

The general workflow of EGO as an adaptive surrogate-based optimization algorithm is de-

picted in Figure 2.2. Initially, a sample data set (SSS,yyyS) consisting of input variable data

SSS ∈ Rm×d and the corresponding objective function values yyyS ∈ Rm for m samples in a d-

dimensional design space is constructed using DoE and then used to fit the initial GP model.

The following steps are then repeated until a termination condition of the algorithm is reached.

First, an infill criterion is optimized on the surrogate model to find the best design space lo-

cation for a new adaptive sample. Second, the termination conditions of the algorithm are

checked. Common conditions include a maximum number of adaptive iterations and a thresh-

old value for the infill criterion, either absolute or relative to the magnitude of the objective

function. The former criterion represents possible computation budget restrictions on the op-

timization, while the latter can be interpreted as convergence of the algorithm. Third, if the

algorithm has not finished, the actual objective function value for the new adaptive sample is

calculated and the sample is added to the sample data set. Finally, the surrogate model is

refitted with the updated sample data set before a new infill criterion optimization begins.

Although adaptive surrogate-based optimization algorithms can be used with any surrogate

model, EGO is defined with a GP surrogate model, which is sometimes also called kriging.

This type of surrogate or variants of it are also utilized throughout the present work. The main

reason for this is that GP surrogate models not only output a predicted response value, but also

a predicted model variance, which can be interpreted as the prediction uncertainty. Two main

search characteristics commonly required in black-box optimization techniques are exploration

and exploitation. Exploration describes the search refinement in design space regions where

little information on the objective is currently available. Exploitation refers to the improvement

of model accuracy close to the best known samples. Using the prediction and variance output

of GP models, infill criteria can be constructed that balance the exploration and exploitation

behaviors of the algorithm. More details on infill criteria are discussed in Subsection 2.2.3.

In its most basic form, the optimization problem that is solved here can be formulated as

min
xxx

f (xxx), (2.4a)

where xi ≤ xi ≤ x̄i, i ∈ [1,2, ...,d]. (2.4b)
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Figure 2.2 Schematic representation of the workflow in an adaptive surrogate-based optimization workflow.

Here, xxx is the vector of d design variables with entries xi. xi and x̄i represent the lower and

upper design space bounds of the i-th design variable, respectively. The objective function is

denoted by f (xxx). For analytical test problems, this may be a closed-form equation, while in

structural optimization problems it involves multiple substeps. A typical workflow is described

here, but details may vary, especially in a multi-fidelity context (see Section 2.3). First, the

design variable values xxx have to be translated into an individual simulation model. Then, the

simulation is performed, here typically an FEA. Subsequently, the results, e.g., the strain field

of the component, are used to determine the objective function value.

In real-world applications of the optimization methods discussed in the following sections, ad-

ditional aspects such as constraints, algorithm parallelization, multiple conflicting objectives,

or input noise may become relevant (e.g., Keane and Nair (2005); Arsenyev (2017); Duddeck

(2008); Koziel and Leifsson (2013); Antinori (2016)). These are not further considered through-

out the present work because they can be integrated into an optimization in a modular way

(Moustapha and Sudret, 2019) and due to the focus on algorithm aspects of the MF context

here (see also Chapter 5).
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2.2.2 Gaussian process surrogate

The concept of GP surrogate models was originally proposed in the geostatistics community

by Krige (1951) and Matheron (1963), which is where the synonym kriging originates. It was

later popularized for computer experiments in engineering design by Sacks et al. (1989) and

has been widely used since.

Gaussian stochastic processes can be defined as a "collection of random variables, any finite

number of which have a joint Gaussian distribution" (Rasmussen and Williams, 2005, p. 13).

As such, they are conceptually a generalization of Gaussian random distributions to functions.

A GP Z(xxx) is fully defined by its mean µ(xxx) and covariance C(xxx,xxx′) and is denoted as

Z(xxx)∼ GP
(
µ(xxx),C(xxx,xxx′)

)
. (2.5)

In the following, it is assumed that µ(xxx) is zero as is commonly done when working with GP

surrogate models. The covariance is then denoted as

C(xxx,xxx′) = σ
2
z R(xxx,xxx′), (2.6)

where σ2
z is the process variance and R(xxx,xxx′′′) is a correlation function also called kernel.

Throughout the present work, two of the most popular kernels, specifically the squared expo-

nential kernel, also named the Gaussian RBF (radial basis function) kernel, and the Matérn

kernel (Matérn, 1986) are used. They are defined as

RRBF(xxx,xxx′) = exp
(
−d2

θ 2

)
, (2.7)

RMatern(xxx,xxx′) =
21−ν

Γ(ν)

(√
2νd
θ

)ν

Kν

(√
2νd
θ

)
, (2.8)

where θ is the kernel hyperparameter, also called the length scale, d = d(xxx,xxx′) is the Euclidean

distance between the two design space locations, Γ is the gamma function and Kν is the

modified Bessel function of the second kind. ν is a separate parameter for the class of Matérn

kernels that can be used to explicitly control the smoothness of the function. For ν → ∞, the

two kernel functions above become identical. In the above equations, the hyperparameter

θ is defined globally as a scalar. In this case, the correlation function is called isotropic. If

greater flexibility with respect to different design variables is required, the correlation functions

can also be defined to have individual hyperparameters for each design variable. They are

then called anisotropic. More detailed derivations of kernel functions as well as an overview of

numerous other functions that have been proposed can be found in the literature (Rasmussen

and Williams, 2005; Duvenaud, 2014; Genton, 2002).
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For the GP surrogate model, the actual unknown function y = f (x) is represented by a GP

as

Y (xxx) = µ(x)+Z(x), (2.9)

Here, µ(x) is called the trend term and is assumed to be an unknown constant β0. Z(x) is a

stationary GP, i.e., it is invariant with respect to translation. This property is fulfilled when the

underlying GP has a constant mean, here it is zero, and a correlation function that depends

only on the distance between samples as shown above. Given a correlation function as dis-

cussed above and a training data set (SSS,yyyS) as introduced in Subsection 2.2.1, this approach

can be used to predict function values at unknown locations xxx∗. The derivation shown here fol-

lows the one presented by Keane and Nair (2005). Numerous different approaches have been

shown to essentially lead to the same predictor over the years (Sacks et al., 1989; Rasmussen

and Williams, 2005; Forrester et al., 2008; Duvenaud, 2014). Based on the assumptions of

a GP, the unknown output value y∗ predicted here has a joint Gaussian distribution with the

existing m samples yyyS. It can be written as

[
yyyS
y∗

]
∼N

([
β0111
]
,σ2

z

[
RRR rrr(xxx∗)

rrr(xxx∗)T R(xxx∗,xxx∗)

])
, (2.10)

where 111∈Rm+1 is a column vector filled with ones and R(•,•) is a correlation function such as

those defined in Equations (2.7) and (2.8). rrr(•) =
[
R(xxx∗,xxx(1)),R(xxx∗,xxx(2)), ...,R(xxx∗,xxx(m))

]
∈ Rm

is a column vector representing the correlations between the existing sample points xxx(i) and

the new location xxx∗. The matrix RRR ∈Rm×m includes the correlation values between the existing

sample points. Based on this distribution, the conditional distribution of y∗ given yyyS is given

by

y∗|yyyS ∼N
(
β0 + rrrT (xxx∗)RRR−1(yyyS−β0111),σ2

z
(
R(xxx∗,xxx∗)− rrr(xxx∗)T RRR−1rrr(xxx∗)

))
. (2.11)

The mean and variance of this distribution are exactly the surrogate model predictor ŷ(xxx) and

its MSE (mean squared error) for arbitrary design space locations that are then defined as

ŷ(xxx) = β0 + rrrT (xxx)RRR−1(yyyS−β0111), (2.12)

σ
2(xxx) = MSE(xxx) = σ

2
z
(
R(xxx,xxx)− rrr(xxx)T RRR−1rrr(xxx)

)
. (2.13)

To be able to actually predict function values at new locations, the unknown parameters of

the model, that is, the trend term β0, the process variance σ2
z , and the kernel length scale(s)

θ , have to be determined. Typically, an approach of MLE (maximum likelihood estimation) is

used to determine the set of parameters that most likely produced the sample data set. With
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this approach, β0 and σ2
z can be analytically determined as

β̂0 =
111T RRR−1yyyS

111T RRR−1111
, (2.14)

σ
2
z =

1
m
(yyyS− β̂0111)T RRR−1(yyyS− β̂0111). (2.15)

The MLE of the kernel length scale cannot be expressed analytically. Therefore, it must be

determined by performing an internal optimization when fitting a GP surrogate model. Various

strategies for this hyperparameter tuning have been discussed (Toal et al., 2008; Rasmussen

and Williams, 2005; Butler et al., 2014). One of the most popular optimization algorithms due

to the availability of gradient information from the MLE is the L-BFGS-B algorithm (Byrd et al.,

1995) that is used in popular software implementations of GP surrogates such as scikit-learn

in Python (Pedregosa et al., 2011).

It has to be noted here that the objective function and its underlying simulation model are

treated as deterministic in the context of the derivation given above. Given the same set of

input parameters, the results are assumed to be identical. Thus, the GP surrogate model in-

troduced here is exactly interpolating existing design samples. While this is consistent with the

generally deterministic nature of computer models, it may be problematic when considering,

for example, real-world experiments. There are GP surrogate models available that allow for

the regression of design samples instead of interpolation (Keane and Nair, 2005; Arsenyev,

2017; Forrester et al., 2008). Additionally, several authors (Sacks et al., 1989; Forrester et al.,

2008; Gramacy and Lee, 2010; Ranjan et al., 2011) have suggested adding a small amount of

Gaussian noise to the diagonal of the covariance matrix to improve the quality of the surrogate

model and to avoid numerical problems due to ill-conditioning of the covariance matrix. This

term, which is often called nugget, is also used throughout the present work.

2.2.3 Infill criteria

Following the fitting of an initial GP surrogate model, an infill criterion is used to iteratively

determine new sampling locations to improve the surrogate model quality and find the function

minimum. In the context of BO, infill criteria are also called acquisition functions. More in-depth

reviews of available infill criteria are also available in literature (e.g., Jones (2001); Arsenyev

(2017); Liu et al. (2017); Fuhg et al. (2020)).

Two of the most straightforward infill criteria are minimizing the surrogate predictor or maximiz-

ing the surrogate error. The former can be defined as xxxnew = argmin
x

(ŷ(xxx)) using the predictor

from Equation (2.12). This criterion uses only exploitation and thus requires a globally accu-

rate initial surrogate model to find the true optimum. Usually, the large initial DoE needed is

not affordable for structural optimization problems, making this criterion somewhat impractical.

The latter criterion is defined accordingly as xxxnew = argmax
x

(σ(xxx)). As it focuses solely on ex-
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ploration and neglects exploitation, it is usually very inefficient. Additionally, the number of infill

points required for an accurate global surrogate model grows exponentially with the number

of design variables due to what is known as the curse of dimensionality. A criterion that can

be considered a basic combination of the former two was proposed by Cox and John (1992)

and named LCB (lower confidence bound). It is defined as xxxnew = argmin
x

(ŷ(xxx)− bσ(xxx)) with

a user-defined constant b. While this approach may remedy some of the major challenges

with the previous criteria, it can also run into problems depending on the objective function as

observed by Jones (2001).

To combine the concepts of exploration and exploitation in infill criteria in a more elaborate

way, a measure called improvement is introduced using the currently best calculated objective

function value ymin and can be written as

I(xxx) = max(ymin−Y (xxx),0). (2.16)

The new sample points are then found by maximizing one of the following infill criteria. The

PI (probability of improvement) criterion (originally proposed by Kushner (1964) for a one-

dimensional problem) is defined as follows

P[I(xxx)] =





Φ

(
ymin−ŷ(xxx)

σ(xxx)

)
, if σ(xxx)> 0,

0, if σ(xxx) = 0,
(2.17)

where Φ(•) is the CDF (cumulative distribution function) of the standard normal distribution.

As the name suggests, PI estimates the probability that a new sample brings an improvement

over the best known sample.

Another very popular infill criterion that was formulated by Jones et al. (1998) for the EGO

approach with early ideas dating back to Močkus (1975) is EI (expected improvement). It is

defined as

EI(xxx) =




(ymin− ŷ(xxx))Φ

(
ymin−ŷ(xxx)

σ(xxx)

)
+σ(xxx)φ

(
ymin−ŷ(xxx)

σ(xxx)

)
, if σ(xxx)> 0,

0, if σ(xxx) = 0,
(2.18)

where Φ(•) and φ(•) are the CDF and PDF (probability density function) of the standard

normal distribution. The first term in the sum reflects the exploitation of existing good values,

as it is dominated by (ymin− ŷ(xxx)) whereas the second term represents exploration of unknown

regions in the design space because it is proportional to σ(xxx). Contrary to PI, EI can quantify

the amount of improvement expected from a new sample location and not just the probability

of any improvement.
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Over the years, several variations and extensions of the EI criterion have been proposed. Two

of the first popular variants are generalized EI (Schonlau, 1997; Schonlau et al., 1998) and

weighted EI (Sóbester et al., 2005) both of which aim to better tune the balance of exploration

and exploitation during the optimization process. Other variants include handling design con-

straints (Parr et al., 2010; Sasena et al., 2002) and the ability to utilize simulation parallelism by

adding multiple samples at once (Schonlau, 1997; Ponweiser et al., 2008; Ginsbourger et al.,

2010). A more recent in-depth review of the developments around EI and its variants is given

by Zhan and Xing (2020).

A second class of infill criteria, which is not technically used for optimization but is strongly

inspired by the EGO method, is used for reliability analysis. Here, instead of minimizing the

objective function, the aim is to improve the prediction quality along a limit state of the function

(i.e. a given threshold value) to improve the predicted probability of failure. This methodology

has been called active learning kriging or EGRA (efficient global reliability analysis) (Bichon

et al., 2008). As this class of infill criteria is used in appended publication III (Kaps et al.,

2024) to extend an optimization algorithm, two popular criteria are briefly introduced below.

In reliability analysis, these criteria are commonly defined with respect to a failure constraint

because the computation of the probability of failure is done with that constraint. Here, they

are denoted with respect to the predictor of the objective function as introduced above in

Equations (2.12) and (2.13) for consistency of notation.

First, the EFF (expected feasibility function) (Bichon et al., 2008) which is inspired by EI, can

be defined as
EFF(xxx) =(ŷ(xxx)−a)

[
2Φ(ū)−Φ

(
u−
)
−Φ

(
u+
)]

−σ(xxx)
[
2φ (ū)−φ

(
u−
)
−φ

(
u+
)]

+ ε
[
Φ
(
u+
)
−Φ

(
u−
)]
,

where ū =
a− ŷ(xxx)

σ(xxx)
,

u+ =
(a+ ε)− ŷ(xxx)

σ(xxx)
,

u− =
(a− ε)− ŷ(xxx)

σ(xxx)
.

(2.19)

Here, a represents the limit state value of the function at hand, commonly 0, and ε = 2σ(xxx) is

used to define a close region around a. Like EI, this function is maximized to determine a new

sampling location. Due to the high similarity with EI, EFF is also capable of exploration and

exploitation while improving the prediction quality of the limit state of a function.

The second criterion, which is called the U learning function, was initially proposed by Echard

et al. (2011) and can be written as

U(xxx) =
|ŷ(xxx)|
σ(xxx)

. (2.20)
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This function is minimized. To handle the case of σ(xxx) = 0 for which the above definition is no

longer valid, a large problem-dependent constant is defined to prevent that location from ever

being chosen as a new adaptive sample. This is done because σ(xxx) = 0 is mainly encoun-

tered when existing sample locations are evaluated. Contrary to EFF, the U learning function

focuses more on sample locations close to the predicted limit state rather than exploring the

design space (Echard et al., 2011).

Due to the highly multimodal nature of infill criteria in general and EI in particular, infill cri-

terion optimization is in itself a challenging problem. Different techniques have been studied

to optimize infill criteria (see, for example, Schonlau et al. (1998)). Throughout the present

work, a DE (differential evolution) algorithm (Storn and Price, 1997) is used to optimize in-

fill criteria. Although it is certainly not the most efficient algorithm in terms of the number of

required function evaluations, it shows good performance and is readily available in popular

software libraries such as scikit-learn in Python (Pedregosa et al., 2011). Also, the time spent

in infill criterion optimization in the structural application problems studied here is in the order

of magnitude of a fraction of one percent of the total optimization time.

2.3 Multi-fidelity optimization

The rapid increase in computational cost and complexity of simulation models may render

even optimization algorithms specifically designed for expensive black box functions, such as

EGO infeasible. As a potential remedy, multi-fidelity methods were introduced many years ago.

Their main idea is to complement the accurate but expensive simulation model, which is then

called the HF model, with a cheaper but also less accurate, so-called LF, model. Both of these

models are then used, for example, in an adaptive surrogate-based optimization algorithm, to

gain a benefit either in result quality or in computational cost over a classical SF technique.

Most MF optimization algorithms and surrogate models, including all the approaches intro-

duced in the following, allow the use of an arbitrary number of fidelity levels by design. In the

present work and in most published research works, problems are limited to the bi-fidelity case

with two levels of fidelity for the purpose of practicability. Recently, there have also been a few

works in which three or more levels of fidelity were utilized (Fischer, 2021; Baheri, 2023). It

should be noted here that the classical EGO method introduced in Section 2.2 above can be

classified as an MF method with the GP surrogate as the LF model and the simulation model

as the HF model (see, for example, Peherstorfer et al. (2018)). In the context of the present

work, the term multi-fidelity is used with respect to the input models of the optimization algo-

rithm. Therefore, the classical EGO method is referred to here as an SF method. This has the

additional benefit of making the distinction between EGO and its multi-fidelity variants explored

in the present work significantly easier.
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The general workflow of a multi-fidelity adaptive surrogate-based optimization is the same as

that shown in Figure 2.2 for the SF case. The primary difference is that each individual step

gains some complexity due to the existence of LF and HF models. For example, this requires

either the generation of two separate DoEs or the use of an MF-DoE technique. As discussed

in Section 2.1, the former is done in the appended publications (Kaps et al., 2022, 2023, 2024)

while some early investigations of the latter were performed within the scope of a Master’s

thesis (Wang (2022); see Appendix B for a summary) based on previously published methods.

A review of available MF surrogate models that are an essential component of this type of

optimization algorithm is given in Subsection 2.3.1 below. This also includes a discussion on

the choice of LF model depending on the application problem (compare appended publication

I (Kaps et al., 2022)). Finally, an overview of different multi-fidelity infill criteria is given in

Subsection 2.3.2.

2.3.1 Multi-fidelity surrogate models

MF surrogate models can be broadly categorized into hierarchical and non-hierarchical ap-

proaches (Zhou et al., 2023). The latter generally refers to all cases where some of the models

involved on the input side cannot be hierarchically ordered, such as when a single HF model is

combined with multiple LF models. This category is not considered further in the present work.

For hierarchical MF surrogate models, it is generally assumed that the LF and HF models can

be clearly identified and that the LF model is cheaper to evaluate and less accurate than the

HF model. The general idea of hierarchical surrogate models is then to use a high number of

LF evaluations to capture the general trend in the response function, and then to use a lower

number of HF evaluations to correct the LF predictions. Below, the term hierarchical is skipped

when discussing MF surrogates but it is implied unless explicitly stated otherwise.

Another aspect of the classification of MF surrogate models is with respect to how the models

of the different fidelities are combined to generate the MF model. Different taxonomies for

categorizing approaches that may be similar and somewhat overlapping have been suggested.

Peherstorfer et al. (2018) suggest three categories named adaptation, fusion and filtering,

which are used for uncertainty propagation, surrogate modeling, and optimization methods.

Two separate groups named multi-fidelity surrogate modeling and multi-fidelity hierarchical

modeling are proposed by Fernández-Godino (2023) whereby the first is comparable to the

fusion category and the second integrates adaptation and filtering from Peherstorfer et al.

(2018). Another division that has been suggested for MF surrogate models (Zhou et al., 2023)

makes a distinction between scaling-function-based methods, space-mapping-based methods

and cokriging methods. Because the focus in the present work lies on surrogate modeling,

the latter classification is used as an orientation below when discussing different types of MF

surrogate models. It should be mentioned that regardless of how the methods are categorized,

hybrid methods and combinations of methods from different categories are possible.
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In the following, a brief discussion of different options for the definition of the LF model is

followed by a more in-depth overview of the different available MF surrogate models. Subse-

quently, cokriging and HK are introduced in more detail.

Throughout the appended publications (Kaps et al., 2022, 2023, 2024), HK is used as the

MF surrogate model. Reasons for this choice are discussed at the end of this section after

introducing HK and cokriging. The latter is introduced in detail here to illustrate the differences

between the two models and because it was studied in the scope of a Master’s thesis (Krivacic

(2023); see Appendix B for a summary) during the present research work.

Choice of low-fidelity model

The definition of the LF model is an essential part of MF surrogate modeling, although it

is generally independent of the choice of surrogate model. LF models can be assigned to

one of three categories, simplified models, projection-based methods, and data-fit models

(Peherstorfer et al., 2018). The last two have been subsumed into the term surrogate models

by Fernández-Godino (2023). Both works also list various publications that use LF models

from the different categories.

The first category, simplified models, refers to the simplification of the simulation model which

in structural applications is typically an FEA. Typical simplifications that can be integrated

include a coarser mesh, a larger time step size, or the linearization of nonlinear phenomena.

This type of LF is applied in the appended publications II and III (Kaps et al., 2023, 2024) and

used as a reference in appended publication I (Kaps et al., 2022). It is also the type of LF

model most commonly used in literature.

The second category, projection-based methods, refers to the use of MOR (model order re-

duction) techniques to project an HF simulation model into a lower-dimensional subspace that

is significantly less expensive to evaluate but still captures the essential phenomena of the

model. Depending on the knowledge required about the problem structure, the MOR methods

are classified as intrusive or non-intrusive, where the latter is essentially a data-driven ap-

proach and the former requires knowledge of the problem structure (e.g., the stiffness matrix).

A review of the developments around non-intrusive methods is given by Yu et al. (2019). While

methods were initially developed for linear(ized) problems (compare, for example, the review

by Benner et al. (2015)), MOR methods have only recently been extended to nonlinear prob-

lems (Rutzmoser, 2018; Guo and Hesthaven, 2018; Swischuk et al., 2019) and in particular

to automotive crashworthiness (Bach et al., 2019b,a; Kneifl et al., 2021; Czech et al., 2022).

In the appended publication I (Kaps et al., 2022) a non-intrusive ROM (reduced order model)

obtained by using an incremental SVD (singular value decomposition) (Baker et al., 2012) is

studied as an LF model in two MF crash problems.
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The last category, data-fit models, refers to surrogate models that are fitted directly from exist-

ing DoE data from the HF model. Some methods available for surrogate modeling in general

include polynomial regression, k-nearest neighbor regression, GP surrogate models / kriging,

and support vector regression. For more details on available surrogate modeling techniques,

readers are referred to one of the textbooks on the topic (Forrester et al., 2008) or popular soft-

ware libraries such as scikit-learn in Python (Pedregosa et al., 2011) that include numerous

different techniques.

Types of multi-fidelity models

One of the first MF surrogate models was proposed in the early 1990s (Haftka, 1991). In it,

the author proposes to model the HF predictor through a multiplicative correction factor ap-

plied to the LF surrogate model. The approach was then successfully applied, for example, to

aerospace structures or composite design (McQuade et al., 1992; Chang et al., 1993; Mason

et al., 1998; Balabanov et al., 1998). A variation using an additive correction factor was intro-

duced a few years later (Balabanov et al., 1998; Lewis and Nash, 2000). Gano et al. (2005)

proposed a hybrid scaling approach that combines additive and multiplicative scaling factors.

Although some modifications have been proposed from the methods originally developed,

these techniques have been widely and successfully applied in different fields of application

(see, for example, Viana et al. (2014); Peherstorfer et al. (2018); Zhou et al. (2023) for an

overview).

Space-mapping methods were originally proposed by Bandler et al. (1994). The idea here

is to project the input parameter space of the HF model onto the parameter space of the LF

model while keeping the output characteristics of the two models similar. This allows the LF

and HF models to have a different number of input dimensions. Although this class of methods

is less prevalent in structural design optimization, it has been widely used in electromagnetic

optimization, and various review articles documenting its development and popularization are

available (Bandler et al., 2004; Koziel et al., 2008; Rayas-Sanchez, 2016).

Cokriging-type surrogate models represent an MF extension to the kriging or GP surrogate

model. Originating from the geostatistics community (Journel and Huijbregts, 1978) the co-

kriging technique was popularized for computer experiments by Kennedy and O’Hagan (2000).

The general idea is to combine the available sample data from the LF and HF models by mod-

eling their combined covariance matrix. Although its mathematical formulation is somewhat

different, HK (Han and Görtz, 2012), which is used throughout the present work, is conceptu-

ally very similar to cokriging as it also represents an MF extension of kriging. Both cokriging

and HK are discussed in more detail in separate sections below.

Cokriging

The presentation of cokriging in the present work loosely follows the one given by Forrester

et al. (2007), which is very close to the model originally proposed by Kennedy and O’Hagan
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(2000). As with many multi-fidelity models, it is assumed that there are two sample data sets

(SSSLF ,yyyS,LF) and (SSSHF ,yyyS,HF) consisting of mLF and m samples available for LF and HF models,

respectively. For cokriging, it is commonly assumed that the HF sample data set is a subset

of the LF set with respect to the sample input locations. The reason for this assumption is

discussed below. The cokriging model is then built using the following Gaussian processes

Y (xxx) = ZHF(xxx) = ρZLF(xxx)+Zd(xxx), (2.21)

where ZLF(xxx) and ZHF(xxx) are Gaussian processes representing the LF and HF model, respec-

tively. ρ denotes an unknown scaling factor, and Zd(xxx) is a Gaussian process representing the

difference between the scaled LF model ρZLF(xxx) and the HF model ZHF(xxx). To obtain the

difference model, the two sample sets are merged as follows

SSS =

(
SSSLF
SSSHF

)
=
[
xxx(1)LF ,xxx

(2)
LF , ...,xxx

(mLF )
LF ,xxx(1)HF ,xxx

(2)
HF , ...,xxx

(m)
MF

]T
(2.22)

yyyS =

(
yyyS,LF
yyyS,HF

)
=
[
y(1)LF ,y

(2)
LF , ...,y

(mLF )
LF ,y(1)HF ,y

(2)
HF , ...,y

(m)
HF

]T
. (2.23)

Thus, the structure of the covariance matrix of the difference model Zd(xxx) is different from that

in standard GP surrogate models (compare Equation (2.6)). It can be written as

CCC =

(
σ2

ZLF
RRRLF(SSSLF ,SSSLF) ρσ2

ZLF
RRRLF(SSSLF ,SSSHF)

ρσ2
ZLF

RRRLF(SSSHF ,SSSLF) ρ2σ2
ZLF

RRRLF(SSSHF ,SSSHF)+σ2
d RRRd(SSSHF ,SSSHF)

)
∈ R(mLF+m)×(mLF+m),

(2.24)

where σZLF and σd are the process variances of the LF and difference GPs, respectively.

RRR(XXX ,XXX ′) represents the correlation function evaluated on the input sample data sets XXX and XXX ′.

Subscripts are added to these terms to illustrate that the correlation function can be defined

independently for the two GPs.

The model is fitted using MLE as for the SF case, whereby the LF model can be fitted as de-

scribed in Subsection 2.2.2. For the difference model, the MLE of process mean and variance

can be determined as

ŷd =
111T RRRd(SSSHF ,SSSHF)

−1ddd
111T RRRd(SSSHF ,SSSHF)−1111

, (2.25)

σ
2
z =

1
m
(ddd− ŷd111)T RRRd(SSSHF ,SSSHF)

−1(ddd− ŷd111). (2.26)

Here, ddd = yyyHF −ρyyyLF(XHF) contains the LF function values at the HF sample locations and

therefore illustrates why it is helpful for cokriging if the HF sample data set is a subset of the

LF set. As for SF kriging, the correlation function hyperparameters cannot be determined ana-

lytically and must be found through internal optimization. Furthermore, the scaling parameter

ρ is also found by maximizing an MLE.
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Over the years, various modifications to cokriging have been suggested. Among others, a scal-

ing factor ρ that can vary across the design space was proposed (Qian and Wu, 2008), Han

et al. (2012) introduced a different approach to construct the covariance matrix and a recursive

formulation of cokriging that is computationally more efficient than the original formulation was

proposed by Le Gratiet (2013) and Le Gratiet and Garnier (2014).

Hierarchical kriging

HK is an MF extension to kriging that was originally proposed by Han and Görtz (2012). While

the model is introduced here for two levels of fidelity, it can be readily extended to more levels

as was shown by the authors in the original publication. As before, it is assumed that two

sampling data sets (SSSLF ,yyyS,LF) and (SSSHF ,yyyS,HF) evaluated using the low- and high-fidelity

models, respectively, are available. The first step is then to fit a normal kriging model (see

Subsection 2.2.2) to the LF data set. The result is the LF predictor ŷLF(xxx) as defined in

Equation (2.12). To obtain the HK predictor, the following random process is considered

Y (xxx) = β0ŷLF(xxx)+Z(xxx), (2.27)

where the LF predictor scaled by an unknown factor β0 represents the trend term and Z(xxx) is

a stationary random process with zero mean and a covariance matrix of the same structure as

introduced for the normal GP surrogate model in Equation (2.6). The HK predictor can then

be written as

ŷ(xxx) = β0ŷLF(xxx)+ rrrT (xxx)RRR−1(yyyS,HF −β0FFF) (2.28)

Here, FFF =
[
ŷLF(xxx(1)), ŷLF(xxx(2)), ..., ŷLF(xxx(m))

]T
is the LF prediction on the HF sample locations

xxx(i) ∈ SSS, rrr(xxx) and RRR are the correlations between the new point and the existing points and

the correlations between the existing points, respectively (compare Equation (2.10)). β0 is

identified as a scalar factor that indicates the correlation between the LF and HF models. It is

determined together with the process variance σz through an MLE approach analogous to the

one applied in classical SF kriging (compare Subsection 2.2.2) to be

β̂0 = (FFFT RRR−1FFF)−1FFFT RRR−1yyyS,HF , (2.29)

σ̂z =
1
m
(yyyS,HF − β̂0FFF)T RRR−1(yyyS,HF − β̂0FFF). (2.30)

As with SF kriging models, the MLE for the correlation function hyperparameter(s) cannot

be analytically expressed and an internal optimization must be performed when fitting the

model.

The MSE of the HK prediction is then defined as

σ
2
HK(xxx) = MSEHK(xxx) = σ

2
z (1− rrrT (xxx)RRR−1rrr(xxx)+

[
rrrT (xxx)RRR−1FFF− ŷLF(xxx)

]2 (
FFFT RRR−1FFF

)−1
). (2.31)
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The derivation of HK is not shown in full detail here, as it is very similar to the one presented for

the classical kriging model (see Subsection 2.2.2) but it can be found in the original publication

(Han and Görtz, 2012).

It should be noted that the only terms in Equations (2.28) and (2.31) that depend on the new

design space location xxx are rrr(xxx) and ŷLF(xxx). Therefore, all other terms and products can be

precalculated at model fitting time to increase the efficiency of the HK predictor.

When comparing cokriging with HK there are two main reasons why HK is used in the ap-

pended publications (Kaps et al., 2022, 2023, 2024) of the present work. First, cokriging

in its original formulation is more expensive to compute because of the larger covariance

matrix and has additional assumptions, e.g., regarding the input sample data sets. These

points have been somewhat alleviated by the modifications suggested by Le Gratiet (2013)

and Le Gratiet and Garnier (2014). The second and arguably more important point is that HK

can provide more reasonable estimates of the prediction uncertainty compared to cokriging

(Han and Görtz, 2012; Zhou et al., 2023). This is beneficial for the multi-fidelity infill crite-

ria used in optimization problems which are introduced below (see Subsection 2.3.2). More

discussions on the optimization performance and the various influence parameters on MF

surrogate models can be found in Chapter 5.

2.3.2 Multi-fidelity infill criteria

When considering MF surrogate-based optimization techniques, there are generally two op-

tions available with respect to the infill criterion. First, an SF infill criterion (see Subsec-

tion 2.2.3) can be applied after the initial MF surrogate model is fitted to iteratively add samples

to the data set. That way, the newly added samples can only come from one fidelity level, typ-

ically HF, and it has to be decided before the start of optimization which fidelity level it is.

As this restricts the MF context to the initial surrogate modeling only and not the optimization

itself, it could be argued, depending on exact definitions, that this should not even be called

MF optimization. Therefore, it is not further considered in the following. The second option

involves the use of MF infill criteria, which determine not only the location of a new design

sample but also the fidelity level. Typically, these criteria are extensions of popular SF criteria

that can also distinguish different fidelity levels. In the following, an overview of some MF infill

criteria is presented, including the ones used in the appended publications.

One of the first MF infill criteria is based on the original EI function and was named AEI (aug-

mented expected improvement) in the original publication (Huang et al., 2006). It is defined

as

EIa(xxx,L) = EI(xxx,1)α1(xxx,L)α2(L), (2.32)

where L∈ {0,1} represents the fidelity level whereby 0 for LF and 1 for HF are used throughout

the present work. EI(xxx,1) therefore represents the EI criterion (see Equation (2.18)) calculated
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at the highest fidelity level. The correction factor α1(xxx,L) models the reduction in improvement

of the HF model when an LF sample is added. In the original publication, it is defined as the

correlation between LF and HF surrogate models. Here, α2(L) denotes the cost per evaluation

relative to an HF evaluation, that is, α2(1) = 1. A third scaling factor that is introduced in the

original publication to account for random errors in the model output is skipped here because

the models are assumed to be deterministic in the present work. In its original form, AEI works

best when combined with a cokriging surrogate model because the model already includes

the correlation needed for the α1 factor. A modified formulation for α1 that also works for

other surrogate models has been proposed (Reisenthel and Allen, 2014). The AEI criterion is

slightly modified by Di Fiore et al. (2021) to include another correction factor that allows the

inclusion of engineering knowledge about the design space into the adaptive sampling.

Another MF extension to EI that is somewhat different from AEI is called VFEI (Zhang et al.,

2018a). It can be written in a similar form to EI (compare Equation (2.18)) as

EIv f (xxx,L) =




(ymin− ŷ(xxx))Φ

(
ymin−ŷ(xxx)
σv f (xxx,L)

)
+σv f (xxx,L)φ

(
ymin−ŷ(xxx)
σv f (xxx,L)

)
, if σv f (xxx,L)> 0,

0, if σ(xxx,L) = 0.
(2.33)

The primary difference to the EI lies in the prediction uncertainty σv f (xxx,L) that is defined

depending on the fidelity level here. It is used to model the expected improvement in the HF

function through a new LF sample point and is defined using the correction factor β0 in the HK

model as

σv f (xxx,L) =





β 2
0 ·σLF(xxx), L = 0,

σHK(xxx), L = 1,
(2.34)

with σLF(xxx) the prediction uncertainty of the LF kriging model and σHK(xxx) the HK prediction

uncertainty (see Equation (2.31)). This criterion is used in all the appended publications (Kaps

et al., 2022, 2023, 2024) as it was designed for use with HK surrogate models and was found

to work well. Additionally, it does not require external or empirical parameters to be specified

prior to optimization.

Similarly to EI, MF extensions have also been suggested for other popular infill criteria. LCB

has been extended in two different ways with both approaches named variable-fidelity LCB

in the original publications (Jiang et al., 2019; Ribeiro et al., 2023). Extensions to PI are

named extended PI (Ruan et al., 2020) and variable-fidelity PI (Ribeiro et al., 2023). For both

criteria, the former MF extensions suggested by Jiang et al. (2019) and Ruan et al. (2020) are

somewhat inspired by the AEI extension to EI, whereas the latter ones by Ribeiro et al. (2023)

are inspired by the VFEI extension to EI.

In recent years, MF extensions have also been suggested to the infill criteria used for reliability

analysis. An MF variant of EFF that appears to be conceptually inspired by the AEI criterion
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was named augmented EFF (Yi et al., 2020). The original EFF is combined with a new infor-

mation gain criterion to determine the fidelity level of new samples by Chaudhuri et al. (2021).

A modified MF approach called collective learning function that is somewhat independent of

the specific infill criterion is proposed by Zhang et al. (2022). The U learning function was

first applied in an MF setting by Dhulipala et al. (2022) with cokriging surrogate models as a

basis. In appended publication III (Kaps et al., 2024), a novel MF extension to the U learning

function is proposed and combined with VFEI in a two-stage optimization approach to improve

optimization performance in a deep-drawing application problem. The novel MF U learning

function is defined as

UMF(xxx,L) =
|ŷ(xxx)|

σv f (xxx,L)
, (2.35)

with the prediction uncertainty as defined in Equation (2.34).

As discussed for the SF infill criteria in Subsection 2.2.3 above, DE is also used for MF infill

criteria optimization throughout the present work.
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Chapter 3

Applications

MF optimization techniques are developed for and studied in two fields of structural design

in the appended publications, automotive crashworthiness and deep drawing. In the follow-

ing sections, the most relevant aspects of the respective fields are outlined. Additionally, an

overview of recent research by others on structural optimization methods in these applica-

tions is presented to contextualize the contributions of the appended publications, which are

summarized in Chapter 4 and further discussed in Chapter 5. While the applications are very

different with respect to the processes and objectives, the relevant mechanical phenomena

are similar between the two. Both crashworthiness assessment and sheet metal forming are

transient dynamics problems usually solved using explicit FEAand are driven by highly non-

linear deformations, contacts as well as plastic material behavior. These two applications are

therefore chosen over other structural problems due to their highly challenging nature and to

ensure reliability of findings.

Automotive crashworthiness, which is studied in appended publication I (Kaps et al., 2022) is

covered in Section 3.1. In Section 3.2, an overview of sheet metal forming, or more specifically,

deep drawing, which is the structural application in appended publications II and III (Kaps et al.,

2023, 2024) is given.

3.1 Automotive crashworthiness

The study of crashworthiness dates back many decades. While the following overview is

about road vehicles, the underlying mechanics in crash scenarios are obviously similar for

other types of vehicles such as trains, ships or aircraft. For automotive crashworthiness, the

development process of new components, and thus the setup of optimization problems, are

typically driven by two sets of requirements. First, there are legal regulations such as the UN-

ECE (United Nations Economic Commission for Europe) in the EU (European Union) or the

FMVSS (Federal Motor Vehicle Safety Standard) in the USA (United States of America) which

are mandatory for any new model. Second, consumer test programs such as Euro NCAP

(New Car Assessment Programme) in the EU and NCAP in the USA may define additional

tests going beyond the legal requirements. These test programs were established worldwide
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starting in the late 1970s to improve road vehicle safety. Deriving from these regulations, a

number of different categories of scenarios that have to be considered in the development

process can be identified. Popular examples include frontal impact, side impact, or vulnerable

road user protection. The number of different scenarios, the sometimes conflicting require-

ments especially when considering manufacturing costs, and the fact that all these regulations

vary slightly between different countries makes the development of a globally sold car model

a highly complex process.

Early overview works from the 1970s and 1980s focus mainly on analytical description of

the involved mechanics, experimental results and early numerical simulations, e.g. Johnson

and Mamalis (1978); Pifko and Winter (1981); Jones and Wierzbicki (1983); Davies and Mor-

ton (1984). Some of the key mechanics phenomena in an automotive crash setting are highly

nonlinear deformations, plastic material behavior, (self-)contact and strain-rate dependent ma-

terial characteristics due to the small timescales involved. With the rapid increase in available

computational power, numerical simulations increased in popularity. One of the earliest stud-

ies of optimization algorithms in a crashworthiness application was published in 1996 (Etman

et al., 1996). Here, the authors use a sequential linear programming technique to optimize a

restraint system in a frontal impact. The development in the following years is best summa-

rized by some of the earlier comparative and overview works on both the method side (Fang

et al., 2005; Forsberg and Nilsson, 2006) and the industrial application side (e.g., Duddeck

(2008)). A more recent review work (Fang et al., 2016) illustrates the variety of approaches

in structural crashworthiness. This extends to both the initial question of how to define the

optimization problem and how to quantify the crashworthiness of a component, as well as the

optimization methodology.

Arguably the most-used components for crashworthiness studies are so-called crashboxes.

These, in their most classical form, hollow rectangular metal tubes are part of the frontal load

paths of a vehicle. In a frontal impact, a crashbox is crushed to absorb the kinetic energy

of the vehicle and protect the passenger cell of the vehicle. In the past years, variants of

crashboxes with different shapes, materials, or fillings, such as foam, have been extensively

studied (compare Fang et al. (2016); Abdullah et al. (2020); Yao et al. (2023)). An exemplary

crashbox as it is studied in appended publication I (Kaps et al., 2022) is depicted in Figure 3.1,

where the component would be crushed from the top left.

When optimizing a component, such as a crashbox for its crashworthiness, there are numer-

ous different metrics that have been used both in literature and in industrial applications of

optimization. They may be included as objective functions or as constraints. One obvious

example that can usually not stand without either other objective functions or constraints is

the component mass (see also the first application example in appended publication I (Kaps

et al., 2022)). The remaining measures can be divided into two categories, injury-based and
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Figure 3.1 Exemplary crashbox geometry (adapted from Kaps et al. (2022)). The removed corner elements are used in the
original publication to initiate folds during the crushing of the component.

energy-based criteria (Fang et al., 2016). For the former, three of the simplest criteria are

the peak acceleration, the peak crash force, and the intrusion into the occupant compartment

of the vehicle, as they are correlated with a high risk of injury for vehicle occupants. Other

metrics, such as the head injury criterion, which is also assessed by regulatory and consumer

tests, are derived from biomechanical observation with respect to injury mechanisms in the

human body. Energy-based metrics are focused on the energy absorption characteristics of

the component or system under investigation. One of the most straightforward criteria is to

maximize the energy absorption of the investigated part(s). This measure can be a bit mis-

leading though, as the total energy absorption at least on component level is typically equal

to the kinetic energy in the system prior to impact. To ameliorate this potential shortcoming,

specific energy absorption can be used, whereby the total energy absorption is divided by

the component mass. Another popular metric considers the force displacement curve of, for

example, a crashbox. It is also desirable with respect to vehicle occupants if this curve is as

uniform as possible. Two reciprocal measures that have been defined here are the load unifor-

mity which is defined as the mean crushing force divided by the maximum crushing force and

its inverse the crash load efficiency. The former is used in the second application example in

appended publication I (Kaps et al., 2022).

Relatively few works have been published on the use of MF optimization techniques in the

context of crashworthiness. In one of the first works, a hybrid scaling factor approach (see

Subsection 2.3.1) is combined with particle swarm optimization (Eberhart and Kennedy, 1995)

to optimize the specific energy absorption of a honeycomb structure (Sun et al., 2010a). A
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bumper system under frontal impact was studied by Acar et al. (2020) utilizing a very similar

surrogate modeling technique (Zhang et al., 2018b) in combination with a genetic algorithm

for optimization. An MF technique for the crashworthiness discipline within a multidisciplinary

optimization was studied by Anselma et al. (2020). More recently, an extension to cokriging

(Perdikaris et al., 2017) was combined with DE for global search and a trust region approach

for local fine-tuning to optimize a crashbox bumper problem (Lualdi et al., 2023). As part of the

present dissertation, two crash examples are studied in appended publication I (Kaps et al.,

2022) in the context of an MF optimization scheme. The contributions of the publication are

summarized in Section 4.1 and discussed in more detail in Chapter 5.

Another relevant aspect of MF techniques is the choice of LF model (compare Subsection 2.3.2).

Some overviews of LF modeling techniques in crash scenarios have been given in literature

(Lange et al., 2018; Noorsumar et al., 2021). In the works on MF optimization in crashworthi-

ness, simplified simulation models are utilized as LF models in most publications (Sun et al.,

2010a; Acar et al., 2020; Lualdi et al., 2023). This type of LF model is compared with a

non-intrusive MOR approach in appended publication I (Kaps et al., 2022). An analytical for-

mulation is used as an LF model by Anselma et al. (2020).

3.2 Deep drawing

Deep drawing is one of the most popular metal forming processes and has been used for many

decades. As such, it has been widely covered in textbooks, e.g. Banabic (2010); Tschaetsch

(2006); Siegert (2015), and review articles are published rather regularly such as by Tiwari

et al. (2022); Takalkar and Chinnapandi (2018). In the following, an overview of the deep

drawing process in general is given. Initially, the individual process steps are introduced to

motivate the subsequent overview of different measures of drawability some of which are also

studied in appended publication II (Kaps et al., 2023). Finally, the existing literature on opti-

mization with deep drawing problems and, in particular, MF optimization is summarized.

A typical deep drawing setup consists of several components, for example, blank, die, punch,

and blankholder. The components along with the most relevant process steps are shown in

Figure 3.2. Initially, the blank is placed in between the die and the blankholder. The drawing

process then begins with the blankholder holding the blank in the place with a predefined force,

the so-called BHF (blankholder force), and the punch moving into contact with the blank. As

the punch moves further downward, the blank is plastically deformed into its shape. The

required material originates either from a thickness reduction in the blank, technically called

stretch forming, or by material flowing in from the outside, which is called deep drawing and

is thus where the name of the process originates. So-called drawbeads may be added to the

blankholder and die to control the flow of material into the component more accurately. Once
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the punch reaches its final position, it moves back out. This, in combination with the removal

of the blank holder, leads to an elastic springback in the component.

(a) Initial state. (b) During forming

(c) Final state.

Figure 3.2 Schematic of a deep drawing process. Initially (top left), the blank is placed on the die before it is fixed by the
blankholder while the punch is brought in contact with the blank. The punch then deforms the blank into the desired shape
(top right) and moves back up (bottom).

One of the major challenges in the product development cycle directly related to the deep

drawing process is to ensure as early as possible in the development process that the com-

ponent is drawable. The drawability of an exemplary deep-drawn component is used as an

application problem in appended publications II and III (Kaps et al., 2023, 2024). As is com-

monly done for problems of formability, the elastic springback at the end of the process is not

considered further in the following. Although it is highly relevant for manufacturing a geometri-

cally accurate part, it is not relevant in the consideration of drawability.

Two of the major phenomena in limiting the drawability of a component are fracture and wrin-

kling. Both can be visualized in an FLD (forming limit diagram) which was originally introduced

(then without the wrinkling component) in the 1960s (Goodwin, 1968; Keeler, 1968). An ex-

emplary FLD is shown in Figure 3.3. Each dot represents an element in the simulation model.

The red and pink lines are the FLC (forming limit curve) and WLC (wrinkling limit curve), re-

spectively, which mark the limits of fracture and wrinkling as the name suggests. The black
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line shows the limit of principal strain definitions, that is ε1 ≥ ε2. Cracked and wrinkled ele-

ments are colored accordingly in the figure. Due to their widespread use, the determination

of FLCs has also been standardized for example internationally in ISO 12004-2 (ISO, 2021).

Many modifications and improvements have been suggested for FLD to address some of the

limitations in the original concept, such as the assumption of linear strain paths for each ele-

ment (for example, Stoughton and Zhu (2004); Volk and Suh (2013)). This assumption may

be somewhat reasonable for components manufactured in a single step of drawing such as

the cross-die investigated in appended publications II and III (Kaps et al., 2023, 2024). In in-

dustrial applications, where there are commonly multiple drawing steps with other processing

steps in between, it does not hold. Other developments and influencing factors in FLDs have

been reviewed fairly regularly in literature (Obermeyer and Majlessi, 1998; Stoughton and Zhu,

2004; Paul, 2013, 2021).

Figure 3.3 Exemplary forming limit diagram. Each dot represents an element in the simulation model. The black line
represents the strain definition limit, that is ε1 ≥ ε2. The red and purple lines represent the FLC and WLC, respectively.
(Kaps et al., 2024)

There are many ways to simulate the deep drawing process as described above (compare, for

example, Ablat and Qattawi (2016)). Two particular approaches are described further here,

because they are used both in previous MF optimization literature and in appended publica-

tions II and III (Kaps et al., 2023, 2024). First, an incremental explicit simulation can be used,

whereby the process and the involved components are modeled. Due to the involved nonlin-

earities in contact, deformations, and material models as well as the required mesh resolution,

these simulations may be very expensive to run for real-world components. The second option

is to use an inverse approach, where the final component geometry and deformation theory

are used to derive stresses, strains, and thickness in the final component (Guo et al., 1990;

Lee and Huh, 1997; Guo et al., 2000). Other components and effects, such as blankholder,
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drawbeads, or friction, are not directly included in the simulation model here and are commonly

modeled by equivalent restraining forces to increase the accuracy of the model.

Optimization techniques have been studied for deep drawing problems since the 1990s. Some

overviews of different works have been published (for example, Wifi et al. (2007); Andrade-

Campos et al. (2022)). When running an optimization, the definition of drawability measures

as an objective function is an essential part of the process. In literature, different quantities

have been used for optimizing the drawability of deep-drawn components. A very common

definition involves the average of either the thinning over the drawing process or thickness

variation in the final component (Ohata et al., 1998; Guo et al., 2000; Padmanabhan et al.,

2007; Sattari et al., 2007; Manoochehri and Kolahan, 2014). These definitions are somewhat

closely related to strain-based FLDs but do not make direct use of them. The FLD was first

used by Naceur et al. (2004) in the definition of an objective function. Here, the authors define

the objective as the sum of vertical distances of all failed elements to the FLC. The definition

was extended to the wrinkling elements by Chengzhi et al. (2004). Later, it was applied in a

very similar form (Sun et al., 2010b). The measure was extended to drawable elements by

our group (Lehrer et al., 2023) to decrease mesh dependency and avoid potential numerical

issues during optimization and surrogate modeling. A separate, partially FLD-based objective

function was introduced by Jakumeit et al. (2005), where the number of cracked and wrinkled

elements is combined with two other criteria in the process design of two academic deep draw-

ing problems. Other objective functions such as the minimization of earing (Kishor and Kumar,

2002), the minimization of trimmed material (Hino et al., 2006), or a user-defined combination

of failure mechanisms (Gantar et al., 2005) have been proposed. Three different measures of

drawability based on average thinning and the two FLD-based functions are applied in an MF

context and compared with each other in appended publication II (Kaps et al., 2023).

Similar to automotive crashworthiness, relatively few works using MF optimization in the con-

text of deep drawing have been published. Space mapping techniques are one of the first

MF surrogate modeling methods that were applied to deep drawing problems (Jansson et al.,

2005; Hu et al., 2007). Another approach for a deep drawing blank design problem was pro-

posed by Hino et al. (2006). The authors combine a finer and coarser mesh for HF and LF

models, respectively, in a scaling factor approach and use a multipoint approximation method

for optimization to illustrate a benefit over an SF optimization. Another scaling factor approach

combining a moving least squares regression model with particle swarm optimization is used

for the optimization of drawbead holding forces by Sun et al. (2010b). The authors later ex-

panded the study to other surrogate models such as kriging and support vector regression

using an artificial bee colony algorithm (Sun et al., 2012). An inverse one-step simulation

model is used as an LF model and an explicit incremental simulation as an HF model in both

publications. The same model combination for the two fidelity levels is utilized in appended

Multi-fidelity Optimization Methods with Applications to Automotive Crashworthiness and Deep Drawing 31



Arne Kaps

publications II and III (Kaps et al., 2023, 2024). The contributions of all appended publications

are summarized in Chapter 4 and discussed together with the results in Chapter 5.
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Chapter 4

Summary of appended publications

In the following, the appended publications are summarized and contributions to the research

context outlined. The contributions of all individual authors are listed. The full length papers

can be found in Appendix A. A more detailed discussion of the results and contributions of the

papers is given in Chapter 5 below.

4.1 Publication I

As previously illustrated, MF optimization schemes have gained popularity in recent years and

have also sometimes been applied to automotive crashworthiness problems. In the appended

publication, an HK surrogate model is combined with the VFEI infill criterion as the basic MF

technique. The novelty of this publication lies in the two modifications that are proposed to the

optimization scheme. First, the IV sampling, or more specifically OIVLH, (compare Section 2.1

and Komeilizadeh et al. (2022)) is applied as the first step of an optimization for the first time.

Second, instead of the very commonly used simplified simulation model, a projection-based

non-intrusive MOR technique is proposed to simplify the LF model generation.

The proposed techniques are assessed on two application problems from automotive crash-

worthiness. One is a size optimization problem for a simplified side sill under lateral impact,

and the other is a shape optimization problem for the triggers of a crashbox under frontal im-

pact. The MF techniques are compared with a baseline SF EGO method. All optimizations

are repeated ten times to ensure the reliability of the assessments.

For the lateral impact example, it is found that both tested methods SF, the baseline, and a

version with OIVLH as the initial DoE method, reliably converge to the same optimum, which

is therefore considered the global optimum. While the basic MF technique also finds this opti-

mum in some repetitions, results are a little more inconsistent. Here, the proposed modifica-

tions individually and especially combined improve result quality to the point, that the technique

with both modifications yields essentially the same results as the SF methods. The findings for

the second application example are essentially the same except that results vary considerably

more throughout, which is presumably caused by a more nonlinear objective function used
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here. It is observed that all MF approaches save between 35% and about 55% in optimization

time across both examples, whereby higher savings are observed for the novel modifications

individually and especially combined.

Contributions of Authors
• Arne Kaps

Conceptualization, Methodology, Software, Investigation, Writing - original draft, Writing -

review and editing
• Catharina Czech

Methodology, Writing - original draft, Writing - review and editing
• Fabian Duddeck

Writing - review and editing, Supervision

4.2 Publication II

Previous publications on MF optimization in the context of drawability of deep-drawn parts so

far have been using either space mapping or scaling factor type techniques for the surrogate

model (see also Section 3.2). Therefore, the contributions of this appended publication are

twofold. First, it represents one of the first times that an EGO-type MF optimization tech-

nique based on an HK surrogate model and the VFEI infill criterion is applied to a drawabil-

ity optimization problem. Second, from the application side it appears to be one of the first

publications, where different drawability measures are compared to each other on the same

optimization problem.

Investigations in this publication are performed on a cross-die geometry that is also applied

by Lehrer et al. (2023) in a metamodeling context. Three different drawability measures are

selected for comparison, which include the share of bad elements in the FLD, the average

violation of bad elements in the FLD and the average thickness reduction in the blank over

the drawing process (compare also the overview given in Section 3.2). A total of six design

variables including the initial sheet thickness, die radius, a form of drawing depth, the BHF as

well as a friction coefficient and the Lankford coefficient are chosen.

The results of this study depend significantly on the objective function which illustrates the

need for careful selection when using optimization techniques. The first function that uses

the share of bad elements in FLD is found not to be well-suited for optimizing the drawability

of the component. The best explanation is the limited influence of design variables on the

objective function. The other two objective functions show the potential of the MF technique.

For the distance-based FLD function, MF optimization requires significantly less computation

time with comparable result quality. For the average thickness reduction function, the MF
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technique even outperforms the reference SF approach while also needing more computation

time.

Contributions of Authors
• Arne Kaps

Conceptualization, Methodology, Software, Formal analysis and investigation, Writing -

original draft, Writing - review and editing
• Tobias Lehrer

Software, Writing - review and editing
• Ingolf Lepenies

Software, Writing - review and editing
• Marcus Wagner

Writing - review and editing, Supervision
• Fabian Duddeck

Writing - review and editing, Supervision

4.3 Publication III

In appended publication III, a novel two-stage MF optimization approach is proposed and

evaluated on the same cross-die deep drawing part that is also used in appended publication

II. The novel approach is inspired by a previous publication (Pei et al., 2023) that introduces

a similar approach for a reliability-based optimization example in an SF setting. The key idea

is to perform a global enrichment phase between the initial DoE and the iterative infill criterion

optimizations. The enrichment phase uses a different infill criterion from reliability analysis (see

also the overview given in Subsection 2.2.3) to improve the surrogate model quality around a

certain limit state. In the case of the drawability optimization used in this publication, the limit

state is clearly defined as the drawability limit but other (arbitrary) definitions could be used.

To facilitate the enrichment phase inside an MF optimization, a novel MF extension to the

popular U learning function is proposed here. In addition, the OIVLH sampling strategy that

was already successfully applied in appended publication I is investigated here as another

modification to the optimization technique.

The application example in this publication is very similar to the one in appended publication

II, except that fewer design variables are used and two noise variables, the material yield

strength and the static friction coefficient, are defined to illustrate the simplicity of extending

the proposed methodology to a context of optimization under uncertainty. As an objective

function, the extension of the FLD-based average violation distance measure proposed by

Lehrer et al. (2023) is utilized. Compared to the distance-based function studied in appended
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publication II, this function can distinguish drawable components from each other but is the

same for non-drawable components.

The optimization results show that the novel two-stage approach reduces the computation time

by between 12% and 33% at minor impact on result quality compared to a classic single-stage

method. The combination of the two-stage approach with the IV sampling is found to reduce

the computation times by about 64% with also minor impact on result quality compared to the

SF reference. Overall, the results again highlight the potential of MF techniques in structural

optimization problems. Additionally, it is illustrated in this publication how the proposed two-

stage approach can be used to consider input uncertainties in the optimization process.

Contributions of Authors
• Arne Kaps

Conceptualization, Methodology, Software, Formal analysis and investigation, Writing -

original draft, Writing - review and editing
• Tobias Lehrer

Software, Writing - review and editing
• Ingolf Lepenies

Software, Writing - review and editing
• Marcus Wagner

Writing - review and editing, Supervision
• Ser Tong Quek

Writing - review and editing, Supervision
• Fabian Duddeck

Writing - review and editing, Supervision
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Chapter 5

Discussion of contributions

In the following, the contributions of the appended publications (Kaps et al., 2022, 2023, 2024)

that are summarized in Chapter 4 are discussed in more detail and the results are compared

to previous works in the literature. Furthermore, it is assessed how the appended publications

contribute to answering the research questions formulated in Chapter 1. Therefore, the pub-

lications are first discussed individually before a wider context is given. The limitations and

remaining open questions of the present work and possible opportunities for future work are

presented along with them.

5.1 Publication I

In appended publication I (Kaps et al., 2022), the novelty is twofold with an investigation of the

modified DoE method named OIVLH and the integration of a non-intrusive ROM as LF into the

MF optimization scheme. Additionally, it represents the first time that a surrogate model based

on HK is combined with VFEI for MF optimization in this application. Both modifications are

investigated using two application examples from the field of automotive crashworthiness. The

first two research questions related to the benefit of the MF technique (compare Chapter 1)

can be answered in this case. All four MF optimization techniques provide a computation time

benefit that is approximately consistent between both application examples, while also main-

taining the result quality at an acceptable level compared to the SF baseline. The observed

computation time reductions for the baseline MF scheme match well with values previously

reported in the literature for the same field of application (e.g., Acar et al. (2020)) as well as in

the publication originally proposing the VFEI infill criterion (Zhang et al., 2018a). The findings

are more differentiated with respect to the algorithm and LF model modifications investigated

here (compare Questions 3 and 6 formulated in Chapter 1).

The OIVLH sampling alone has a limited impact in terms of optimization run time, which is

reduced by a maximum of 14% for one method but remains similar for the others and even

increases by about 10% in one case (the MF baseline for the lateral impact example) compared

to OLHS. Interestingly, the use of OIVLH in MF techniques appears to improve the consistency

of the results between repetitions of the same method. The likely reason is that OIVLH focuses
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sampling on the design space boundaries where the optimum is found in both application

examples. Therefore, it likely provides a higher initial surrogate model quality in the relevant

regions of the design space, leading to slightly more consistent results compared to OLHS. In

the present work, the same DoE method is used on both fidelity levels. One potential for future

work is to use different methods for the fidelity levels, e.g., OIVLH for the HF model and OLHS

for the LF model, or to use an MF-DoE technique in the first place. In particular, the latter

approach has not been adapted in application examples in the literature even though various

different MF-DoE methods have been proposed (compare Section 2.1).

The use of a non-intrusive ROM as LF model is found to have a similar effect in that it slightly

reduces average optimization run times with little impact on the result. A slight improvement

in the consistency of the results is observed compared to the use of a simplified simulation

model as LF model. These findings are attributed to the higher model quality of the non-

intrusive ROM (compare Tables 2 and 3 in Kaps et al. (2022)) and the higher simulation speed

compared to the simplified simulation model. For the latter, the ROM achieves a speed-up

factor of about 50 to 150 across the application examples as opposed to about four to six for the

reference LF model compared to the HF model, respectively. The speed-up factor of the ROM

appears to be low in the present study compared to what has been reported in the literature

where values in the (ten)thousands are found (e.g., Le Guennec et al. (2018); Czech et al.

(2022)). The best explanation is the comparatively small size of the application examples in

the present study, where even the HF model is computed in less than ten minutes. A potentially

interesting question for future research is regarding the quality of the ROM. In the version of

the optimization algorithm proposed in the appended publication, the ROM is calculated on

the initial DoE of the HF model and then used as LF model for the remainder of the iterative

improvement phase of the optimization. At the same time, more HF evaluations are available

as more adaptive samples are added. For future work, it appears very reasonable to try to

update the ROM with each new HF data point that becomes available. That way, the quality

of the LF model should increase as the optimization progresses and potentially bring further

performance improvements compared to the technique shown in the appended publication.

5.2 Publication II

As previously summarized, the novelties in appended publication II (Kaps et al., 2023) are

twofold. On the one hand, it is the first publication using an MF extension of EGO with a

cokriging-type surrogate model, specifically HK, in the context of drawability optimization of

deep-drawn components. On the other hand, it is one of the first works comparing different

drawability measures in optimizations. The three objective functions are chosen here for their

intuitiveness in the sense of comprehensibility by a human and their use in previous works on

drawability optimization of deep-drawn components (compare Sections 3.2 and 4.2). The find-
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ings in this publication vary significantly between the different objective functions and therefore

illustrate the importance of careful consideration when setting up an optimization problem.

The first objective function, which is based on the share of cracked and wrinkled elements

in the FLD is found to not be suitable for optimization. The results vary significantly between

repetitions of the same technique and there is almost no real objective function improvement

in the iterative phase of the optimization. These findings are attributed to the fact that the

influence of design variables on the objective function values is potentially limited because the

objective function cannot quantify the degree of violation for individual elements. Interestingly,

a similar objective function that was previously used in the literature (Jakumeit et al., 2005)

produced reasonable results for two different deep drawing examples. The best explanation is

that the authors defined the objective function consisting of four components of which the first

two are the shares of the cracked and wrinkled elements used as the first objective function

in the appended publication. The remaining two consider springback and thinning. A variant

of the thinning factor is chosen as the third objective function in the appended publication and

found to work well. Details are discussed below.

The second objective function uses the average Euclidean distance of all ‘bad’ elements to

their respective limit curve. Results for this function are very similar to the ones in appended

publication I discussed above. The MF technique produces results that are slightly less con-

sistent but of essentially the same quality as the HF reference but does so in about 46% less

run time. These results fit into what was previously reported for MF techniques in literature al-

though other authors have reported even greater time savings for the MF approach than what

is found here, e.g. a factor of about four (Hu et al., 2007), about six (Jansson et al., 2005)

or even about ten (Hino et al., 2006). As a caveat, it should be noted that in all the previous

publications, it appears that the respective optimizations were only run once and not repeated.

Therefore, it is assumed that there is some variation to these numbers.

Interestingly, the focus in other previous works on MF optimization for drawability of deep-

drawn components is less on a reduction in optimization run time and more on an improve-

ment of the obtained results (Sun et al., 2010b, 2012). For example, it is reported by Sun et al.

(2012) that the optimization time remains roughly unchanged while the result quality improves.

This is also the observation made for the third objective function in appended publication II,

which is the average thinning in the blank over the drawing process. It is found here that the

MF approach both improves result quality and finds the better optimum more consistently than

the SF reference. At the same time, the MF technique actually takes on average about 31%
longer here to terminate. Although this behavior does not seem excessively unusual in the

context of other publications, it is the only example in the scope of the present work where the

MF technique takes longer and improves results compared to the SF reference. While some

reasonable assumptions for the reasons for this phenomenon are discussed in the appended
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publication (Kaps et al., 2023), an in-depth analysis that could include an exploratory land-

scape analysis of the objective function goes beyond the scope of the publication and remains

open for future work.

5.3 Publication III

The focus in appended publication III lies on proposing a novel two-stage MF optimization

technique for a very similar optimization problem to the one applied in appended publication II.

Additionally, the OIVLH sampling method that was shown to be promising in appended pub-

lication I is assessed here. The idea is to add an adaptive enrichment phase after the initial

DoE to improve the surrogate model prior to the following global optimization. Specifically, the

surrogate model is sampled around the drawability limit using a newly proposed infill criterion

which is an MF extension to the U learning function which is popular in reliability analysis. It

is found that the two-stage approach and particularly the IV sampling bring a benefit to the

MF optimization technique and in the best case speeds optimizations up by a factor of almost

three. This makes the observed benefits again fall in the same order of magnitude as in pre-

vious appended publications and literature as discussed above. This appended publication

therefore contributes to the state of research and to answering the previously formulated re-

search questions (see Chapter 1) in two ways. First, it illustrates the potential for improvement

in optimization performance by changing the architecture of the algorithm similarly to what was

suggested by Pei et al. (2023) in an SF optimization of a different application problem. The

global enrichment phase increases the resolution of the surrogate model around the drawa-

bility limit. Therefore, the actual adaptive improvement phase of the algorithm using VFEI has

a smaller region of the design space to search for the desired optimum and the algorithm

converges faster. Second, the novel two-stage approach represents the first step towards

fully integrating input parameter uncertainties into the MF optimization. MF reliability analy-

ses which are the inspiration for the novel infill criterion proposed here, have been applied in

literature in recent years (for example, by Chakroborty et al. (2023); Chaudhuri et al. (2021);

Dhulipala et al. (2022); Yi et al. (2020)). However, the full integration into an optimization re-

mains open, particularly in challenging structural applications. One example could be to use

the drawability measure defined here as a failure constraint and define a different objective

function for the optimization. Similarly, a more in-depth investigation into the MF extension to

the U learning function which is inspired by the VFEI extension to EI remains open for future

work.
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5.4 Synthesis

Having discussed and contextualized the individual contributions of the appended publications,

there are a few points of discussion that apply to two or all three appended publications. All

these are discussed in the following.

The use of multiple levels of fidelity in the input simulation models introduces several additional

hyperparameters compared to a ‘classical’ SF optimization. Especially in the initial DoE step

and the surrogate modeling these can play a significant role. Two of the most relevant ones

are the cost ratio between the HF and LF models as well as the quality of the LF simulation

model, for example, in the form of the correlation between the LF and HF objective functions.

The latter is usually not known a priori so it can generally not be considered in the optimization

setup. However, MF surrogate models and infill criteria usually model the covariance between

the fidelity levels, for example using the covariance matrix (compare Subsection 2.3.1). The

cost ratio is directly included in some infill criteria such as AEI to balance the addition of LF

and HF samples. The influence of both the cost ratio and the correlation between fidelity levels

on optimization performance has also been studied in literature (Ruan et al., 2020). In that

work, the authors find that the performance of different infill criteria varies and, for example,

VFEI appears to perform better with weak correlations between the LF and HF models. The

influence of these quantities adds to the need to report, for example, the cost ratio of the

different models for better contextualization of results. This point of reporting for MF surrogate

modeling is also discussed in more details in the review work by Fernández-Godino (2023).

Another part of this lies in the sensible definition of the initial DoE size and the distribution

of samples to the LF and HF models. In the appended publications, the common rule of

thumb 10d with d the number of design space dimensions which was established by Jones

et al. (1998); Loeppky et al. (2009) is used to determine the DoE size for the SF reference

optimization. For the MF methods, the approximately same computation budget as for the SF

methods is distributed somewhat evenly between the LF and HF levels to determine the initial

DoE size. When comparing MF methods, the same initial DoE size is used. Different ways

of distributing samples between the fidelity levels were studied via a Master’s thesis (Wang

(2022); see Appendix B for a summary) in the context of MF-DoE methods. The findings are

transferable to the cases studied in the appended publications. They illustrate the need to

balance the LF and HF samples in the initial DoE, as too many LF or HF samples lead to a

deterioration in both surrogate model quality and optimization performance. This is particularly

the case, when a priori information on the quality of the LF model is not available.

The choice of LF model is another essential aspect of the MF optimization process. Two of the

three LF model categories proposed by Peherstorfer et al. (2018) and summarized in Subsec-

tion 2.3.1 are utilized in the appended publications. Even though the non-intrusive ROM that is
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integrated into the optimization in appended publication I, contains a surrogate model on the

projected space, it is counted here as a projection-based LF model. The category of data-fit

models is not investigated in the present work as the optimization itself is already surrogate-

based. Therefore, using a surrogate model as the LF model appears somewhat redundant.

Nevertheless, it should be mentioned that data-fit models are potentially the type of LF model

with the lowest computation time required, maybe comparable with projection-based models

depending on the specific methods used. There is however also a second reason, that only

simplified models and projection-based models are investigated here and that is explainability.

Both of these types of models allow for a full reconstruction of, for example, the displacement

field in the component. The calculated objective function values can therefore be checked

for numerical or other errors if that is deemed necessary. Data-fit models do not inherently

provide this option. While simplified models are currently the most widespread approach used

in literature for the applications considered here (compare Chapter 3) the author believes that

projection-based models have great potential as already discussed with the results of ap-

pended publication I.

An added benefit of using the ROM as an LF model is that it removes the need to create

a simplified simulation model, which in practical applications may not be needed elsewhere.

Steps like remeshing, particularly of more complex geometries, are usually not only time-

intensive but also require some form of human interaction. Using an intrusive ROM can lead

to very good model predictions with very few training simulations, as the model follows the

underlying physical laws. On the other hand, intrusive ROMs require access to the source

code of the finite element solver and the speed-up factors they can achieve compared to non-

intrusive models are often limited (Bach et al., 2019a; Czech et al., 2022). Mostly for these

two reasons, a non-intrusive ROM was chosen in appended publication I. There are also a few

limitations when using non-intrusive ROMs in optimization techniques. The ROM is commonly

used to approximate the displacement field of the simulation model (e.g., Le Guennec et al.

(2018); Gstalter et al. (2020); Czech et al. (2022)). This is because the displacement field is

typically smooth and, therefore, can be well-approximated in a lower-dimensional subspace.

Other fields calculated in the simulation model, such as the stress field do not necessarily

have this property. Therefore, care must be taken if the objective function of the optimization

problem requires stress values to be evaluated.

An argument can be made that the optimization problems defined in the appended publications

are too far away from real-world examples to give any meaningful insights beyond the exam-

ples themselves. There are different aspects to this potential argument that are discussed

here to make it clear, that the author believes it to not be substantiated.

First, regarding the chosen components and the HF simulation models, it is clear that the

examples considered in the appended publications are academic examples and not necessar-
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ily real-world components. As such, they represent simplified versions of potentially realistic

application problems. These types of problems have also been used very commonly in the

literature (compare, for example, Hino et al. (2006); Sattari et al. (2007); Manoochehri and

Kolahan (2014)). They include the most relevant mechanical phenomena, such as nonlinear

deformations and self-contact in the crashbox example of appended publication I (Kaps et al.,

2022) while simplifying others, such as the addendum of blankholder and drawbeads in the

cross-die example of appended publications II and III (Kaps et al., 2023, 2024). Therefore,

while the exact location of the optimum and the exact individual simulation results would vary

with higher model resolution, the fundamental landscape of the defined objective function likely

would not change too significantly. Therefore, the observed comparisons between SF and MF

optimization techniques are likely to be transferable with the limitations of the other influence

factors for MF methods, which are discussed above.

The second aspect is the definition of the optimization problems itself. As already mentioned

previously (compare Subsection 2.2.1), the optimization problems defined in the appended

publications do not include constraints (except for the lateral impact example in appended

publication I), algorithm parallelization, multiple objective functions, etc. It has been well-

established that all or most of these aspects are relevant in actual industrial applications (e.g.,

Keane and Nair (2005); Duddeck (2008); Koziel and Leifsson (2013); Antinori (2016); Arsenyev

(2017)). It is argued here, that it makes more sense to first establish the potential of MF-

EGO techniques in an application as is done in the appended publications and then extend

the scope of the problems considered, which is left open for future work here. A benefit of

EGO as an algorithm is that it is inherently modular in that, for example, the infill criterion

can be straightforwardly extended to include constraints or to allow for the parallel addition

of multiple samples (compare Zhan and Xing (2020)). Another point here is that the number

of design variables used here is rather low with between four and six design variables in the

published examples. While this is realistic for some real-world problems, there are certainly

others where a significantly higher number of design variables is required. However, the same

reasoning from before still holds that it makes more sense to first establish the potential of the

MF techniques by themselves and then increase the complexity of the considered problems.

In this second step, the extensive research that has been put into extending EGO to higher-

dimensional problems in SF settings (e.g., Raponi et al. (2020)) can then be used as a basis

for further work.

Overall, the majority of the research questions formulated in Chapter 1 can be answered here.

It is established, that MF EGO techniques can be beneficial in challenging structural applica-

tions, such as automotive crashworthiness and deep drawing simulations (Question 1). Ad-

ditionally, the optimization time reduction observed is in the same order of magnitude as in

previous publications on MF optimization in various applications (Question 2). A modified DoE

technique called IV sampling is proposed and successfully applied in two of the appended
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publications. Extensive research already done in literature has shown that the infill criteria

also have a major impact on optimization performance. In appended publication III, it is shown

that the addition of a second phase of adaptive improvement to the optimization inspired by

reliability analysis techniques and the existence of a limit state in the investigated objective

function(s) can also increase the quality of the result. (Questions 3 and 4). And while the

effective integration of input parameter uncertainties into the optimization problem is only ex-

emplarily established, the optimization scheme proposed in appended publication III marks

the first steps in this direction (Question 5). It is found that the use of non-intrusive ROM as LF

models inside the MF optimization can be beneficial compared to the commonly used simpli-

fied simulation models (Question 6). Finally, it is again established with appended publication

II that the choice of objective function has a major impact on computational resources required

and results going beyond the difference between SF and MF techniques (Question 7 ).
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Chapter 6

Conclusions and outlook

Different aspects of MF optimization in two challenging structural applications are investigated

in the context of this thesis, including the three appended publications and surrounding work.

In the first appended publication, two application examples from the field of automotive crash-

worthiness, a lateral side-sill impact and a frontal crashbox impact, are evaluated. The remain-

ing two publications are focused on the drawability optimization of a deep-drawn component.

The MF optimization technique used as a baseline for comparisons in the present work is an

MF extension of the popular EGO approach which is one of the most efficient optimization

methods for expensive black-box functions. Instead of kriging as a surrogate model and EI as

the infill criterion, HK and VFEI are utilized here, respectively.

In all investigations, the quality of the optimization algorithms is assessed in three ways. First,

the result quality in the sense of location and objective function value of the final optimum

is considered. Second, the computational resources required for finding the optimum are

taken into account, as it is arguably also valuable to find the same optimum faster rather than

finding a better optimum. Third, due to the stochastic nature of the optimization algorithm, the

reliability of the assessments is ensured by repeating all optimization runs.

The appended publications include various novel contributions, which are summarized in the

following.

The type of MF optimization scheme employed here has not been applied in either of the two

applications investigated. Therefore, the observation that the baseline MF-EGO technique can

already be beneficial in the two fields of application is a contribution in itself. Furthermore, the

observed benefits in terms of optimization run time at comparable result quality for the baseline

MF technique are in the same order of magnitude as previously reported values. This is true

for both other MF optimization methods in the same applications and the same optimization

technique applied in different fields of application.

In a second step, different novel modifications to the algorithm are suggested and imple-

mented. A novel modification to DoE technique that aims at better resolving design space

boundaries in surrogate models is first proposed in Komeilizadeh et al. (2022) and then suc-

cessfully applied in an optimization context in appended publications I and III. It is found to be
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beneficial on its own but particularly when combined with other modifications such as in the

two-stage approach proposed in appended publication III. A non-intrusive ROM is integrated

into the optimization scheme as the LF model in appended publication I and shown to be

beneficial both in terms of result quality and optimization run times. The ROM is found to be

both higher quality and faster to evaluate compared to a reference LF model that is the most

commonly used simplified simulation model.

Appended publication II creates the basis for the latter work done in appended publication III

by establishing the general usability of the MF-EGO optimization technique in drawability opti-

mization problems. Additionally, it represents one of the first works where different drawability

measures are directly compared to each other in the same application problem. The very

differentiated findings for different drawability measures again highlight the need for careful

consideration in the definition of an optimization problem.

In appended publication III, a novel two-stage MF optimization is proposed, whereby the initial

surrogate model is adaptively enriched prior to the actual optimization stage. The enrichment

phase is inspired by methods from reliability analysis where the investigated functions share

the feature of having a limit state with the objective function in the deep drawing application

problem assessed in the appended publication. It is found that the two-stage approach cannot

only reduce the optimization run times further at limited impact on result quality. Furthermore,

it enables the inclusion of input parameter uncertainties, for example through uncontrollable

noise variables, and as exemplarily illustrated in the appended publication, the surrogate-

based estimation of their influence on optimization results.

Based on the promising results throughout the present work, numerous ideas for interesting

future work are identified, which are also detailed in the outlooks of the appended publications

(Kaps et al., 2022, 2023, 2024) and in Chapter 5 of the present thesis. A generally interesting

idea is to extend the somewhat small application examples used here to more realistic larger

examples. Depending on the exact nature, this may necessitate the use of algorithm paral-

lelization techniques as well as methods to remedy the influence of the curse of dimensionality

encountered in higher-dimensional problems. Much work has already been done on both as-

pects in SF settings, but previous work is very limited for MF techniques and in the fields of

application investigated here. Future work could also build upon the algorithm modifications

suggested here and, for example, include the IV sampling into an MF-DoE technique, which

also on its own might be a very interesting subject of investigation. In addition, the integration

of the non-intrusive ROM as an LF model can be extended by updating the model during the

optimization run or by exploring different MOR techniques to improve model quality. Finally,

the inclusion of input parameter uncertainties into the MF optimization appears very promising.

Little previous work has been done, and especially in real-world applications there are always
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some uncertain parameters that have to be considered to ensure the reliability of the obtained

results.
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Abstract
Multi-fidelity optimization schemes enriching expensive high-fidelity functions with cheap-to-evaluate low-fidelity func-
tions have gained popularity in recent years. In the present work, an optimization scheme based on a hierarchical kriging 
is proposed for large-scale and highly non-linear crashworthiness problems. After comparison to other multi-fidelity tech-
niques an infill criterion called variable-fidelity expected improvement is applied and evaluated. This is complemented by 
two innovative techniques, a new approach regarding initial sampling and a novel way to generate the low-fidelity model for 
crash problems are suggested. For the former, a modified Latin hypercube sampling, pushing samples more towards design 
space boundaries, increases the quality of sampling selection. For the latter, a projection-based non-intrusive model order 
reduction technique accelerates and simplifies the low-fidelity model evaluation. The proposed techniques are investigated 
with two application problems from the field of automotive crashworthiness—a size optimization problem for lateral impact 
and a shape optimization problem for frontal impact. The use of a multi-fidelity scheme compared to baseline single-fidelity 
optimization saves computational effort while keeping an acceptable level of accuracy. Both suggested modifications, inde-
pendently and especially combined, increase computational performance and result quality in the presented examples.

Keywords  Kriging · Efficient global optimization · Multi-fidelity optimization · Crashworthiness · Model order reduction · 
Isovolumetric Latin hypercube

1  Introduction

As computational power has increased exponentially in 
recent years, also Finite Element (FE) models reached a 
higher level of detail and complexity—e.g. modern day car 
models for crash simulations may contain more than ten mil-
lion elements. This balances out such that simulation times 
are not significantly decreasing. Especially in multi-query 
analysis such as optimization or robustness applications a 
high number of evaluations is required, which increases the 
computational effort to an infeasible level.

One possible remedy is the use of specifically designed 
optimization approaches such as Efficient Global Optimiza-
tion (EGO) that was first proposed by Jones et al. (1998). 

The idea is to build a surrogate model from an initial design 
of experiments (DoE) and adaptively improve it utilizing a 
so-called infill criterion (Jones 2001; Forrester and Keane 
2009). In this context, mostly kriging models (Krige 1951; 
Matheron 1963; Sacks et al. 1989) are exploited as surrogate 
models as their inherent error approximation features are 
especially beneficial.

More recently, these types of surrogate models were inte-
grated in a multi-fidelity scheme, whereby the high-fidelity 
FE-analysis is complemented with an additional low-fidelity 
model: The corresponding multi-fidelity kriging schemes 
can be categorized into two variants. One class of techniques 
considers correction-based methods, where a “bridge func-
tion” or “scaling function” models the differences between 
high- and low-fidelity models (Chang et al. 1993; Gano et al. 
2006; Han et al. 2013). The second type of multi-fidelity 
approaches are named cokriging. The idea of the latter is 
to enhance the low-fidelity surrogate model by utilizing the 
covariance matrix between low- and high-fidelity model. 
Originally proposed in the geostatistics community (Jour-
nel and Huijbregts 1978), this approach was extended to 
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computer experiments by Kennedy and O’Hagan (2000) 
and called KOH autoregressive model. Due to its success, 
numerous extensions and modifications have been added to 
cokriging since its introduction: Han et al. (2012) proposed 
an alternative approach for creation of the covariance matrix 
between low- and high-fidelity models. Moreover, Gratiet 
and Garnier (2014) reformulated the cokriging algorithm in 
a recursive manner to reduce computational complexity. An 
extension considering complex cross-correlations between 
varying fidelity models can be found in Perdikaris and Kar-
niadakis (2016). The present work is based on hierarchical 
kriging (HK), suggested by Han and Görtz (2012), whereby 
the low-fidelity surrogate model represents the trend term in 
the multi-fidelity predictor. It is beneficial in the context of 
multi-fidelity optimization as it provides better error estima-
tion capabilities compared to other cokriging models.

As surrogate models were adapted to multi-fidelity appli-
cations, so were infill criteria. A criterion named Augmented 
EI, capable of adaptively sampling low- and high-fidelity 
models by considering coefficients for cross-correlations and 
cost ratios between models was suggested by Huang et al. 
(2006). Moreover, Zhang et al. (2018a) proposed the vari-
able-fidelity expected improvement (VF-EI) criterion that 
implements a similar idea but with an analytical derivation 
and free from external coefficients. Therefore, the latter is 
used in the present work.

A common approach in multi-fidelity optimization is to 
combine FE models with varying levels of mesh sizes for 
high and low-fidelity models, such as realized by Zhang 
et al. (2018a) for an airfoil shape optimization. In combi-
nation with a cokriging adaptation presented by Gratiet 
and Garnier (2014), a hydrofoil shape optimization with 
varying mesh size levels was performed by Bonfiglio et al. 
(2018). Similar approaches are investigated in the applica-
tions of crashworthiness for honeycomb structures and sheet 
metal forming in Sun et al. (2010) and Sun et al. (2010), 
respectively. Alaimo et al. (2018) proposed a multi-fidelity 
approach where an adaptive functional principal component 
analysis (PCA) model is utilized with a simulated anneal-
ing (SA) algorithm applied to linear elastic structural topol-
ogy optimization. Anselma et al. (2020) published a multi-
fidelity scheme for the crashworthiness discipline inside a 
multidisciplinary optimization. The authors use analytical 
equations as a low-fidelity model and propose to only evalu-
ate the FE high-fidelity model if the former predicts infeasi-
ble results. Also a cokriging-based multi-fidelity version of 
EGO was exploited for inverse problems in haemodynamics 
(Perdikaris and Karniadakis 2016).

In automotive crashworthiness, optimization has been 
performed for many years (Redhe et al. 2004; Duddeck 2008; 
Hunkeler et al. 2013). More recently, multi-fidelity schemes 
have also been applied in this field (Sun et al. 2010). Acar 
et al. (2020) investigated a multi-fidelity optimization for a 

frontal impact problem of a bumper system with the multi-
fidelity surrogate modeling approach suggested by Zhang 
et al. (2018b). Results show that multi-fidelity approaches 
are capable of yielding significant time-savings while main-
taining acceptable accuracy. Other mechanics-based low-
fidelity models available for crashworthiness applications 
are listed in Lange et al. (2018). The authors begin with 
lumped mass-spring models and subsequently motivate 
the introduction of the so-called component solution space 
approach that can be applied in early phase component 
development for crashworthiness analyses.

Recently, model order reduction (MOR) techniques 
have been introduced also for non-linear problems (Guo 
and Hesthaven 2017; Swischuk et al. 2019) and applied 
in crashworthiness (Kneifl et al. 2021). The non-intrusive 
approaches are based on the results of training simulations—
here named snapshots—which are utilized to compute a 
reduced subspace. In addition, a regression model is trained 
that combines the basis vectors of the subspace to represent 
the physical behavior of the system (Guo and Hesthaven 
2019). The non-intrusive MOR has been integrated into 
a multi-fidelity training scheme by Kast et al. (2020) and 
related projection-based approaches for crashworthiness 
applications and optimization have been conducted (Le 
Guennec et al. 2018; Assou et al. 2019; Gstalter et al. 2020; 
Ren et al. 2020). A summary of recent developments in the 
field of non-intrusive MOR is presented in Yu et al. (2019) 
for fluid mechanics application. Moreover, principal compo-
nent-based surrogate models can also be found in the field of 
structural topology optimization (Alaimo et al. 2018; Xiao 
et al. 2020; Choi et al. 2019).

In the present work we aim to develop enhanced multi-
fidelity optimization schemes in crashworthiness applica-
tions. To that end, we propose to integrate an incremental 
projection-based MOR approach as low-fidelity model into 
a multi-fidelity EGO algorithm. In a second step to reduce 
computational effort, our recently developed isovolumetric 
sampling approach placing samples closer to design space 
boundaries is adapted (Kaps et al. 2021). When assessing 
algorithm performance, two main criteria can be established. 
The primary goal is to find an optimization approach with 
reduced computational effort produced by the high number 
of expensive evaluations of the objective function during 
the optimization. Secondly, an acceptable level of accuracy 
must be maintained; i.e. a multi-fidelity optimization scheme 
should not lead to inferior results compared to an optimiza-
tion based using only high-fidelity simulations.

This work is structured as follows. Initially, the novel 
design of experiments approach is introduced in Sect. 2, 
followed by the optimization scheme based on HK and 
VF-EI in Sect. 3. The MOR approach used for low-fidelity 
model generations is presented in Sect. 4. Subsequently, 
the proposed optimization scheme and its implementation 
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are explained in Sect. 5. The performance of the complete 
set of methods is illustrated by a lateral impact example 
and a crashbox design problem in Sect. 6, and final results 
are summarized together with an outlook into future work 
in Sect. 7.

2 � Isovolumetric design of experiments

The first step of any population-based optimization is to 
determine an initial set of sample points by means of DoE. 
Covering the full design space with a small amount of 
samples is the general aim. As there is no unique criterion 
for this vaguely formulated goal, DoE is still an active 
field of research. An overview of popular criteria and 
approaches is given in Garud et al. (2017).

In the present work, a modified optimal Latin hypercube 
(OLH) approach is used. The standard construction of a 
Latin hypercube design (LHD) for N samples in d dimen-
sions is described in the following. In each dimension the 
space is divided into N strata of equal probability, i.e. the 
design space then consists of Nd cells. Randomly, N cells 
are selected such that each stratum of a dimension may 
only contain a single sample. Each sample can be placed in 
the center of its cell or randomly located within it (Rajabi 
et al. 2015), whereby the centered case is considered in 
the present work.

Initial Latin hypercube samples are incrementally opti-
mized with a Simulated Annealing algorithm that con-
sists of random pairwise- and coordinate-wise swaps. In an 
iterative process new samples are accepted if they improve 
a space-filling criterion or accepted with a certain prob-
ability if they do not bring an improvement (Morris and 
Mitchell 1995). Other approaches with deterministic sam-
ple selection, e.g. (Ye et al. 2000) or more elaborate opti-
mization schemes such as the Enhanced Stochastic Evo-
lutionary algorithm (Jin et al. 2003) have been suggested.

Recently, we proposed an adaptation to Latin hypercube 
sampling, named isovolumetric LHD, that places samples 
closer to design space boundaries (Kaps et al. 2021). The 
idea is to rethink the uniform strata that are created in each 
coordinate dimension for standard Latin hypercube sam-
pling as nested hypervolume shells in the design space. 
These are created as shown with the colored regions in 
Fig. 1. Here, all shells are required to have identical vol-
ume, which is especially advantageous for higher dimen-
sions, i.e. higher number of design variables. Applying 
this condition to a d-dimensional unit hypercube, with 
strata boundaries pi =

i

N
 and sizes aj =

1

N
 for standard 

LHS, yields the following new equations

Here, N is the number of samples to be drawn and Nv =
N
2  

the number of nested hypervolume shells. An exemplary 
isovolumetric Latin hypercube design for six samples in 
two dimensions is depicted in Fig. 1. The adaptation is easy 
to implement and does not increase computational require-
ments; however, it has been shown to increase the quality 
of DoEs in popular space-filling criteria such as potential 
energy (Audze and Eglais 1977) in mid- to high-dimensional 
situations, i.e. five and more dimensions (Kaps et al. 2021). 
One expected advantage in the current application is that 
training points associated to the surrogate models are closer 
to the design space boundaries. Thereby, the prediction of 
surrogate models will be more based on interpolation of 
samples as opposed to extrapolation.

This approach, named optimal isovolumetric Latin hyper-
cube (OIVLH), is transferred to the context of optimization 
in crashworthiness applications in the present work.

3 � Multi‑fidelity efficient global optimization

In the following, a multi-fidelity EGO approach is intro-
duced. In general, EGO techniques are based on kriging 
models, which have first been introduced by (Krige 1951; 

(1)

pi =

⎧⎪⎨⎪⎩

0.5

�
1 −

�
Nv+1−i

Nv

�1∕d
�
, i ∈ {1, 2, ...,Nv}

0.5

�
1 +

�
i−(Nv+1)

Nv

�1∕d
�
, i ∈ {Nv + 1, ...,N + 1}

(2)aj = pj+1 − pj, j ∈ {1, 2, ...,N}.

Fig. 1   Exemplary design of experiments for the isovolumetric Latin 
hypercube adaptation for six samples in two dimensions. Differently 
colored regions have the same area. (Kaps et al. 2021)
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Matheron 1963; Sacks et  al. 1989) and are nowadays a 
popular choice for surrogate models. The idea of adaptively 
improving an initially created kriging model by means of an 
infill criterion was proposed by Jones et al. (1998). Common 
early variants of the approach are compared in Jones (2001).

Over the years, many surrogate models of variable 
fidelity have been suggested. Overviews can be found for 
example in Forrester et al. (2007) or Park et al. (2016). 
In the present work, hierarchical kriging is applied as the 
approach has been shown to yield better error estimations 
than other cokriging methods (Han and Görtz 2012). The 
relevant aspects of creating an HK model are summarized 
below, readers are referred to the original publication for 
detailed derivations (Han and Görtz 2012).

The idea is to first create a kriging model of the low-
fidelity function that is subsequently used in the hierarchical 
kriging model for high-fidelity prediction. Based on these 
surrogate models, new sample points can be evaluated. The 
models are then adaptively improved. To that end, an infill 
criterion is introduced that can be maximized to determine 
the best location and fidelity level for a new adaptive sample.

Following, all steps of the outlined process are 
explained in details. The low-fidelity function is repre-
sented by a normal kriging model. Consider a random 
process for the low-fidelity (LF) function

with �0,lf  an unknown constant and Zlf (x) a stationary 
random process. For a d-dimensional problem, the low-
fidelity kriging model is based on a set of sampling data 
(Slf , yS,lf ) consisting of mlf  samples with input variable data 
Slf ∈ ℝmlf×d and corresponding output yS,lf ∈ ℝmlf .

To be able to construct the kriging predictor for new 
points, a correlation function, also named kernel, is needed 
to model the correlation between given sample points and 
new points. An overview of popular choices is for example 
given in Rasmussen and Williams (2005). In the present 
work, a squared-exponential kernel, also called Gaussian 
radial-basis function (RBF) kernel is utilized due to its 
smoothness and infinite differentiability:

Here, �k denotes the kernel length scale. The kernel is called 
anisotropic, if there is a separate length scale for each design 
space dimension as in the equation above. In the present 
work, an isotropic kernel is chosen, where the hyperpa-
rameter �k = � is a scalar, i.e. independent of coordinate 
dimension. In fact, many different RBF kernels with similar 
properties than the Gaussian kernel exist. The focus in the 
present work lies solely on the latter for the sake of clarity.

(3)Ylf (x) = �0,lf + Zlf (x),

(4)R(x(i), x(j)) =

d∏
k=1

exp
(
−�k|x(i)k − x

(j)

k
|2
)
.

The low-fidelity predictor for a new point x can then be 
written as

where rlf  is the correlation vector between the sample data 
and the new point, Rlf ∈ ℝmlf×mlf  the correlation matrix 
representing correlation between sample data points and 
1 ∈ ℝmlf  a column vector filled with ones.

Following the calculation of the initial sample data set, 
the kriging model is fitted by separately optimizing the ker-
nel hyperparameter � . Differential evolution (Storn and Price 
1997) is selected for the optimization of the hyperparameters 
in the present work due to its simplicity and its good global 
search characteristics. More on hyperparameter optimiza-
tions can be found in Toal et al. (2008).

Next, the hierarchical kriging model can be constructed 
including the predictor of the low-fidelity model. Therefore, 
consider a random process corresponding to the high-fidelity 
function

Here, the low-fidelity predictor scaled by an unknown con-
stant �0 is a trend term and Z(x) is a stationary random pro-
cess. Given a d-dimensional sampling data set (S, yS) con-
taining m samples with input variable data S ∈ ℝm×d and 
corresponding output yS ∈ ℝm , the HK predictor for the 
high-fidelity function can be written as

where �0 is a scaling factor indicating the correla-
tion between high- and low-fidelity functions and 
F = [ŷlf (x

(1))...ŷlf (x
(n))]T ,∀x(i) ∈ S represents the low-fidel-

ity prediction at high-fidelity sample points. r ∈ ℝm and 
R ∈ ℝm×d are defined the same way as for the low-fidelity 
predictor above. The factor R−1(yS − �0F) , named VHK in the 
original publication, does not depend on the untried point x 
and can thus be calculated at model fitting time. The mean 
squared error (MSE) of the HK prediction is given with �2 , 
the process variance of Z(x)

Once the initial HK model is built, it is adaptively improved 
using an infill criterion to determine the ideal position of 
new samples. In multi-fidelity applications two options 
exist: a ‘classic’ single-fidelity infill criterion or a multi-
fidelity criterion. Among the former, expected improvement 

(5)

ŷlf (x) = 𝛽0,lf + rT
lf
(x)R−1

lf
(yS,lf − 𝛽0,lf 1),

with 𝛽0,lf = (1TR−1
lf

1)−11TR−1
lf
yS,lf ,

and rlf = [R(x, x(1)), ...,R(x, x(m))] ∈ ℝmlf

(6)Y(x) = 𝛽0ŷlf (x) + Z(x).

(7)
ŷ(x) = 𝛽0ŷlf (x) + rT (x)R−1(yS − 𝛽0F)

with 𝛽0 = (FTR−1F)−1FTR−1yS,

(8)
MSE(ŷ(x)) = 𝜎2(1.0 − rTR−1r +

[
rTR−1

F − ŷlf
]2(

F
T
R
−1
F
)−1

).
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(Jones et al. 1998) is the most popular method. The inter-
ested reader is referred to Jones (2001) for other common 
techniques. The disadvantage of a single-fidelity criterion is 
that only high-fidelity samples can be considered adaptively. 
Hence, they are not further discussed here. In the present 
work, the so-called variable-fidelity expected improvement 
criterion (Zhang et al. 2018a) is utilized. It is defined at loca-
tion x and fidelity level L as

where u =
ymin−ŷ(x)

s(x,L)
 and ymin as the currently best observed 

feasible high-fidelity function value. The term s(x, L) denotes 
the uncertainty of the HK model. The previously introduced 
scaling factor between fidelity levels �0 is used here to model 
the uncertainty in high-fidelity prediction caused by the low-
fidelity predictor

Here, MSE(ŷ(x)) and MSE(ŷlf (x)) are the MSEs of the high- 
and low-fidelity kriging predictors, respectively. �(∙) and 
�(∙) in Eq. (9) represent the cumulative distribution and 
probability density functions of the standard normal distri-
bution, respectively. The two summands in Eq. (9) can be 
identified with exploration and exploitation. The first term (
ymin − ŷ(x)

)
𝛷(u) is dominated by improving the solution 

ŷ(x) and thus represents exploitation, while the second term 
s(x, L)�(u) represents exploration because it is dominated by 
the solution uncertainty s(x, L).

Due to the highly multi-modal nature of the EI functions, 
differential evolution (Storn and Price 1997) is selected for 
optimization of the infill criterion in the present work.

Notably, the VF-EI formulation is similar to the original 
EI definition (Jones et al. 1998); however, in addition the 
dependency on the fidelity level is introduced. In terms of 
multi-fidelity optimization the VF-EI criterion is comparable 
to the augmented EI criterion proposed by Huang et al. (2006). 
Both describe the expected improvement of the high-fidelity 
function with respect to adaptive samples on both fidelity lev-
els. To that end, augmented EI contains two factors that are 
multiplied with a standard EI for the high-fidelity function. A 
more detailed discussion about the differences between VF-EI 
and augmented EI can be found in Zhang et al. (2018a). Here, 
we use VF-EI as it is free of empirical parameters and is as 
such more intuitive.

(9)EIvf (x, L) =

{
s(x,L)[u𝛷(u) + 𝜙(u)], if s(x,L) > 0

0, if s(x, L) = 0
,

(10)s2(x, L) =

{
𝛽2
0
⋅MSE(ŷlf (x)), L = 0 low-fidelity

MSE(ŷ(x)), L = 1 high-fidelity
.

4 � Model order reduction

The proposed multi-fidelity approach exploits a data-driven 
model order reduction (MOR) technique to create the low-
fidelity model. As an analytical simplification is not avail-
able for non-linear problems, a data-driven approach is 
commonly used (Sirovich 1987). Therefore, an online and 
offline phase are introduced, whereby the offline phase can 
be understood as the counter part to the DoE. In particu-
lar, the surrogate model is created during the offline, also 
called training phase. Afterwards the simplified model can 
be evaluated for multi-fidelity analysis in the online phase.

4.1 � Training phase

Within the training phase, a set of full order simulations 
is created, whereby all resultants are stored as snapshots 
xi ∈ ℝN with N degrees of freedom. Combining the training 
simulations to a so-called snapshot matrix A ∈ ℝN×n , with n 
the number of collected snapshots, a reduced subspace and 
its projection matrix can be computed. Through the Sin-
gular Value Decomposition (SVD), also referred to as thin 
SVD (Golub and Van Loan 2013) the snapshot matrix A can 
be represented by the left-singular vectors U ∈ ℝN×n , the 
diagonal matrix Σ ∈ ℝn×n containing non-negative singular 
values �i in descending order and the right-singular matrix 
Z ∈ ℝn×n . Thus, the columns of the matrix U are the eigen-
vectors of AAT.

Moreover, the matrix A is approximated by truncating its 
parts to a rank k ≤ n,m , such that Uk ∈ ℝN×k , Σk ∈ ℝk×k and 
Zk ∈ ℝk×N , respectively. To define the reduced basis of the 
subspace, V ∶= Uk ∈ ℝN×k is further utilized as the projec-
tion matrix. In practice, the optimal rank k is not known 
beforehand and k = min k̃ with

can be found for an error threshold � . In other words, the 
matrices are truncated by k̃ such that an energy cutoff ratio 
� is maintained:

For large-scale matrices the evaluation of the full SVD is 
cost intensive as its complexity is in the range O(n2) with n 
as the number of snapshots. Therefore, multiple approaches 
(Bach et  al. 2019; Phalippou et  al. 2020) to efficiently 

(11)A = UΣZT ≈ UkΣkZ
T
k
= VΣkZ

T
k
.

(12)
‖A − Uk̃Σk̃Z

T

k̃
‖F

‖A‖F =

����
∑k

i=k̃+1
𝜎2
i∑k

i=1
𝜎2
i

≤ 𝜖

(13)� =
∑k

i=1 �
2
i∑n

i=1 �
2
i

.
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compute the truncated projection matrix, such as randomized 
or incremental SVD techniques, e.g. (Oxberry et al. 2017), 
can be applied. Here, an incremental SVD algorithm (Baker 
et al. 2012)1 is utilized. To save computational resources, 
the snapshot matrix A is built up incrementally. Therefore, 
A is divided into batches, which are added to the projection 
matrix V . The SVD is computed within every iteration via 
QR decomposition and its truncation rank k is evaluated. 
The batch is added to the global V and Σ before the algo-
rithm steps into the next iteration with new snapshots. Read-
ers are referred to Baker et al. (2012) for a detailed algorithm 
description. In summary, a complexity of O(mnk) with m full 
order unknowns can be reached.

After the construction of the reduced subspace a regres-
sion or interpolation approach is introduced. The meta-
model represents the unknown in the reduced space and is 
therefore restricted to the physical solution spanned in the 
subspace. In addition, the number of unknowns n is dras-
tically reduced, as k << n . Within this work the k-nearest 
neighbor (kNN) approach is utilized as an interpolation 
technique, but any other machine learning approach such as 
polynomial regression function, Gaussian process regression 
or neural networks could be used (Swischuk et al. 2019). 
k-nearest neighbor is mainly known as a classification tech-
nique, but can also be applied as a regression model. The 
function y = f (x) is interpolated by the k-nearest neighbors 
of x as shown in Fig. 2 for a one-dimensional example. Here, 
three neighbors of x and their distances are evaluated to esti-
mate f(x).

4.2 � Online phase

After the construction of the low-fidelity model is com-
pleted, it is evaluated in the online phase. Recalling the 
truncated singular value decomposition, the columns of the 
matrix V ∈ ℝN×k can be interpreted as the basis vectors v of 
the subspace.

The full displacement vector is estimated by the linear 
combination of the basis vectors v , whereby every basis is 
weighted by a scalar value �i.

The kNN approach provides an estimation for each �i , the 
degrees of freedoms of the subspace.

5 � Proposed optimization scheme

In the present work the performance of multi-fidelity opti-
mization schemes in crashworthiness applications is investi-
gated. To that end, a multi-fidelity optimization method that 
integrates a non-intrusive reduced order model into the hier-
archical kriging surrogate is proposed. The schematic pro-
cess of this approach is shown in Fig. 3 following the base-
line multi-fidelity scheme proposed by Zhang et al. (2018a). 
Initially, DoE is performed as described in Sect. 2 on both, 
the high- and the low-fidelity level separately, usually gen-
erating significantly more low- than high-fidelity samples. 
OLH and OIVLH are both applied in the present work, to 
assess the impact on optimization performance. All high-
fidelity samples are then calculated. For memory efficiency, 
a reduced order model is incrementally created during the 
high-fidelity evaluations as introduced in Sect. 4. Following 
all initial high-fidelity simulations and as the main adapta-
tion to the originally proposed scheme, the reduced basis is 
evaluated and the k-nearest neighbor regression model is 
trained for predictions. The reduced order model is evalu-
ated on the initially created low-fidelity DoE points. From 
the results, the initial low-fidelity kriging model and subse-
quently the hierarchical kriging model are fitted. For adap-
tive improvement, the infill criterion (i.e. VF-EI) is maxi-
mized separately on both fidelity levels. Depending on which 
level yields the better results the next adaptive sample can 
be either low-fidelity (L=0 in Fig. 3) or high-fidelity (L=1). 
The objective function is evaluated for the respective new 
adaptive sample and the kriging model(s) are updated. Then, 
another infill criterion optimization is started and the itera-
tive improvement continues.

(14)V =
[
v
1
v
2
⋯ vk

]

(15)x ≈

k∑
i=1

vi�i

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y
=

f(
x)

Data

k = 3 Neighbors

Predicted Value

Fig. 2   One-dimensional example of regression based on k-nearest 
neighbors with k = 3. The ‘X’ marks the prediction at x = 0.5 accord-
ing to the three nearest previously known points marked with black 
dots

1  Implemented in IncPACK library.
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Three different criteria determine the termination of 
the algorithm. First, a minimum allowable value for the 
maximized infill criterion is specified (here ICth = 10−5 ). 
Second, a maximum number of high-fidelity evaluations 
is specified. Third, a maximum total number of objec-
tive evaluations can be specified, which in single-fidelity 
optimizations is equivalent to the second criterion. Val-
ues specified for the criteria are given in Sect. 6 with the 
respective examples. The first criterion can be interpreted 
as convergence of the algorithm to an optimal point with 
little improvement possibilities. The other two criteria 
are used to represent time restrictions on the optimization 
runs, i.e. an estimation of the maximum run time.

The proposed scheme is implemented in an in-house 
Python code. The DoE part of the algorithm is based on 
Kaps et al. (2021). The implementation of the incremental 
SVD technique in the present work is adjusted from Baker 
et al. (2012) and Bach et al. (2019). HK model generation 
and kernel implementation are based on the scikit-learn 
library in Python (Pedregosa et al. 2011).

6 � Crashworthiness application problems

In the following, the presented optimization scheme is 
compared to a baseline multi-fidelity scheme proposed by 
Zhang et al. (2018a) as well as a single-fidelity scheme based 
on a high-fidelity model and EI. Additionally, each of the 
techniques is assessed with a standard OLH sampling as 
well as the OIVLH method that places samples closer to 
design space boundaries. These overall six approaches are 
each evaluated for two crashworthiness problems in terms 
of result quality and computational requirements. Each opti-
mization run is repeated ten times to ensure reliability of 
the assessment. An overview of the compared methods and 
nomenclature is given in Table 1. All analyses are performed 
on the identical hardware using the explicit finite element 
software LS-Dyna in its MPP version distributed on eight 
cores. All objective function values referred to below are 
based on the high-fidelity model unless explicitly stated 
otherwise.

6.1 � Side sill impact problem

The initial problem is a crash model representing the side sill 
of a car under side pole impact as depicted in Fig. 4. Both 
ends of the side sill are fixed, and the pole represented by 
a cylindrical rigid body with radius 35mm has a prescribed 
initial velocity of 36 km/h and a mass of 86 kg. Further 
modeling information as well as all material parameters are 
summarized in “Appendix A”. The simulation is terminated 
when the impactor stops or—as a backup—after 40 ms.

The design variables of the optimization problem are the 
thicknesses ti of the five horizontal reinforcement ribs in the 
interior of the side sill (compare detail in Fig. 4). The objec-
tive is to minimize the mass of the side sill, i.e. the mass of 
the horizontal ribs, while keeping the lateral intrusion below 
uallow = 50 mm. Applying the penalty method with a penalty 
factor p = 3.75 , the deformation constraint is included into 
the objective function. The complete optimization problem 
can then be formulated as 

Fig. 3   Schematic representation of the proposed optimization scheme 
to integrate reduced order model (ROM) into a multi-fidelity optimi-
zation based on hierarchical kriging and variable-fidelity expected 
improvement (compare Fig. 2 in Zhang et al. (2018a)). The main dif-
ference to the originally proposed scheme is the utilization of initial 
high-fidelity sample data for ROM creation (marked by the grey box). 
Not shown is the varying method of the design of experiment per-
formed in the present work

Table 1   Overview of different optimization schemes applied in the 
following crashworthiness examples. All techniques are referred to by 
the abbreviation given in the first column

Method DoE LF Surr. Infill
Name Method Model Model Crit.

SF (base) OLH – Kriging EI
SF + OIVLH OIVLH – Kriging EI
MF (base) OLH Coarse FE HK VF-EI
MF + OIVLH OIVLH Coarse FE HK VF-EI
MF (MOR) OLH ROM HK VF-EI
MF (MOR) + OIVLH OIVLH ROM HK VF-EI
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The model depicted in Fig. 4 represents the high-fidelity 

model with an element size of approximately 5mm in each 
direction. For comparison, the low-fidelity model with the 
element size doubled to 10mm is depicted in “Appendix 
A”. Thus, the speed-up factor of the low-fidelity model is 
about five to six. The number of initial high-fidelity samples 
for the single-fidelity case is set to 50. For all multi-fidelity 
approaches, the number of initial samples is 20 and 120 for 
high- and low-fidelity models, respectively. In this example, 
the only termination criterion specified is a threshold value 
for the respective infill criterion, i.e. EI for SF methods and 
VF-EI for MF methods, of ICth = 10−5.

The reduced order model is constructed with 20 train-
ing simulations sampled by the respective method. With 
the truncation energy of � = 0.9999 a subspace containing 
approximately k = 4 basis vectors is computed. Moreo-
ver, the kNN regressor using 5 neighbors is trained for the 
unknowns in the reduced subspace. Eventually, a single 
evaluation of the reduced order model has a speed-up factor 
of 150 in comparison to the high-fidelity simulation.

In Fig.  5, optimization results for the six different 
approaches are compared with a parallel coordinates plot. 
On the x-axes all five design variables are listed while the 
y-axes represent their normalized ranges. Each curve illus-
trates an optimized design, whereby the color indicates the 
respective objective function value. The problem seems to 

(16a)min
t

f (t) = mribs + p ⋅max(c(t), 0), with p = 3.75,

(16b)subj. to c(t) =
umax

uallow
− 1 ≤ 0, uallow = 50mm,

(16c)where 0.5mm ≤ ti ≤ 3.0mm, i = 1, ..., 5.

have a clear global optimum with t1 = t3 = t5 = 3.0 mm and 
t2 = t4 = 0.5mm. Distributing three horizontal ribs with the 
maximum allowable thickness across the whole height of 
the component and having the two ribs in between vanish 
results in the best compromise between low weight and suf-
ficiently low impactor intrusion. The respective objective 
value f (t) = 1.898 is found in the majority of single-fidelity 
and MF (MOR) repetitions independent of the chosen DoE 
method. For this set of input variables, the maximum impac-
tor displacement of the high-fidelity model is umax = 50.6

mm. The specified constraint uallow = 50 mm is violated by 
1.2%, which is considered acceptable in this exemplary 
problem. All compared results have a similar level of con-
straint violation, which is not further investigated to focus 
on the multi-fidelity optimization itself.

Individual results for single-fidelity, i.e. high-fidelity, 
EGO show a low variation for different DoE methods and the 
majority of repetitions terminate at the global optimum. For 
MF (base) and MF + OIVLH, results vary quite significantly 
and only three of the overall 20 runs converge to the global 
optimum. Many of the evaluations terminate at points rather 
close to the global optimum so that the objective function 
value is only a few percents of the optimal value. Notably, 
more MF + OIVLH analyses get close to the global optimum 
than MF (base). The MF (MOR) approaches yield more con-
sistent results than MF (base) and MF + OIVLH, converg-
ing to the optimum for a total of 14 out of 20 assessments 
across both DoE methods, with two more runs being very 
close to the optimum. Overall, the OIVLH-based approaches 
yield a higher consistency within the multi-fidelity schemes. 
OIVLH places samples significantly closer to design space 
boundaries. Therefore, the reduced order low-fidelity model 
being created from the high-fidelity samples is based more 
on interpolation between samples than on extrapolation.

In a further step, the quality of the two varying types of 
low-fidelity models is assessed. To that end, the low-fidelity 

Fig. 4   Side sill impact problem: Both ends of the component are 
fixed and the impactor represented by a cylindrical rigid body has a 
prescribed velocity and mass. Detail in the bottom right shows the 
five design variables of the optimization

Fig. 5   Side sill impact problem: Parallel coordinates plot comparing 
results of ten repetitions for six different approaches. Design variable 
values on the y-axis are normalized. The color scale indicates objec-
tive value of the respective results (lower is better)
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models are evaluated at the respective determined optimum. 
The maximum displacement of the impactor dmax is con-
sidered as a metric to compare high- (HF) and low-fidelity 
(LF) models. This metric is chosen as it directly represents 
the constraint and—because the mass of the component can 
analytically be calculated from the given design variables—
it also implies the objective function of the optimization 
problem. As such it estimates the accuracy of the low-fidel-
ity models in the present example. The error metrics are 
defined as

for the absolute difference eabs and the relative difference erel 
between fidelity levels, respectively. Results for all methods 
are listed in Table 2. Each of the listed values represents 
the mean value of ten evaluations. For MF (base) and MF 
+ OIVLH the low-fidelity model is identical for all evalu-
ations, while for the MOR based methods, the low-fidelity 
model depends on the initial high-fidelity samples (compare 
Fig. 3). Both types of low-fidelity models approximate the 
(maximum) impactor displacement sufficiently well with an 
error of 4-6% . The error indicators for the reduced order low-
fidelity models are slightly better, i.e. lower, compared to 
those of the coarse simulation models. For the latter, the use 
of OIVLH sampling does not significantly impact the low-
fidelity result quality. However, for MF (MOR) + OIVLH 
the low-fidelity model is slightly more accurate than for 
MF (MOR) which may explain the performance difference 
between the two methods. It also indicates that the increased 
interpolation share for OIVLH sampling can in fact increase 
the ROM quality.

Keeping in mind the quality of the results, the computa-
tional requirements for all approaches are evaluated. Average 
run times along with their respective standard deviations are 
listed in Fig. 6 for all techniques. The larger standard devia-
tions for SF (base) and SF + OIVLH compared to the other 
four methods are explained by a single outlier in each of the 

(17)eabs = |dmax,hf − dmax,lf |,

(18)erel =
|dmax,hf − dmax,lf |

|dmax,hf | ,

methods. In both cases, the algorithm finds the global opti-
mum in a reasonable number of iterations but then requires 
many adaptive samples to reach the specified termination 
criterion. So both outliers can be explained by the somewhat 
unrealistic definition of termination criterion here, where no 
maximum allowed number of iterations was specified. As 
the standard deviations in all methods are similar apart from 
that, the following comparisons are focused on the average 
times. SF (base) is taken as a baseline for all comparisons. 
Without changing the optimization itself, switching the DoE 
to OIVLH reduces 14% of computation time in this problem, 
while maintaining result quality.

Using an MF approach with a coarser low-fidelity model 
lowers the computational cost about 47% and 35% for OLH 
and OIVLH, respectively. In fact, this is the only case in 
the present work, where OIVLH requires more computa-
tional time than OLH. The reason here is the same as for the 
outliers outlined above. Both MF (base) and MF + OIVLH 
find the respective optimum after a similar number of high-
fidelity iterations, but the latter variant requires a few more 
adaptive iterations than the former to reach the termination 
criterion. The work load to create the low-fidelity model is 
not considered here, however for complex models this is an 
additional time intensive step. Especially, when considering 
that the low-fidelity model may not be needed otherwise. 
Contrary to that, both MF (MOR) options do not require 
the manual creation of a low-fidelity model. They reduce 
computation times by about 51% and 56% for MF (MOR) 
and MF (MOR) + OIVLH, respectively. The speed-up of 
MF (MOR) compared to the other MF techniques can be 
explained by the significantly faster evaluation times of the 
reduced order low-fidelity models compared to the coarse 
simulation model. In comparison the MF (MOR) + OIVLH 
approach yields the best overall improvement for the side 
sill impact problem. It saves on average more than 50% com-
putation time compared to SF (base) while maintaining an 
acceptable level of accuracy.

Table 2   Side sill impact problem: Evaluation of low-fidelity model 
quality. For all optimization runs, low-fidelity models are evaluated 
for the respective optimum and maximum impactor displacements are 
compared to those of the high-fidelity model [see Eqs. (17) and (18)]

Method e
abs

e
rel

[mm] [%]

MF (base) 3.22 6.3
MF + OIVLH 3.43 6.5
MF (MOR) 2.76 5.3
MF (MOR) + OIVLH 2.15 4.1

Fig. 6   Side sill impact problem: Average run times for all compared 
optimization approaches in seconds. Also shown is the standard devi-
ation of the optimization run time
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6.2 � Frontal impact problem

A shape optimization problem of the frontal impact of a 
crash box, as depicted in Fig. 7 is presented as a second 
application problem for the suggested multi-fidelity scheme. 
For the high-fidelity model, an element length of about 
4 − 5 mm is specified, while for the low-fidelity model, the 
element length is in the region of 10mm. This yields a high-
fidelity model with 4,928 elements and a low-fidelity model 
with 1,296 elements. The planar impactor crushing the com-
ponent from the top has a prescribed mass of 300kg and an 
initial velocity of 30 km/h. The impactor is modeled as a 
rigid body, and the crash box is constructed as a tube with a 
steel-like material and a piecewise linear plasticity model. 
Exact material parameters are listed in “Appendix B”. 
For the contact formulation, the LS-Dyna ’*CONTACT_ 
AUTOMATIC_SINGLE_SURFACE’ is applied. The simu-
lation is terminated when the impactor stops or after 45ms.

The crash box of the optimization study and its design 
variables are depicted in Fig.  7. The first three design 

variables are the vertical positions of the triggers in the 
model. The corner elements of the triggers are deleted to 
increase numerical stability. Three additional design varia-
bles are the depths of the triggers, i.e. the respective element 
rows are shifted in or against the arrow directions indicated 
in the figure next to the variables x4 , x5 and x6 . The configu-
ration depicted in Fig. 7 represents the setup for x = 0 for 
all design variables. Model generation features are realized 
using ANSA preprocessor.

Throughout the optimization analyses, the mass of the crash 
box remains approximately constant as the effect of design vari-
ables is negligibly small. The objective function is chosen as the 
load uniformity, also called peak amplification, of the force-dis-
placement curve. It is defined as the peak force Fmax divided by 
the mean force Fmean of the complete force-displacement curve 
measured at the rigid body impactor. The optimization problem 
can then be formulated as 

The processing time of the classical low-fidelity model is one 
fourth of the high-fidelity computation time. The number of ini-
tial samples is accordingly set to 60 in single-fidelity analysis, and 
30/90 for high-/low-fidelity samples in the multi-fidelity meth-
ods. For this problem, all possible termination criteria presented 
in Sect. 5 are specified and respective values are listed in Appen-
dix Table 7. To construct the snapshot matrix for the reduced 
order model, 30 initial high-fidelity samples are utilized. With the 
truncation energy of � = 0.9999 , a subspace with approximately 
k = 15 bases is computed. Moreover, the kNN regressor using 5 
neighbors is trained for the unknowns in the reduced subspace. 
A single evaluation of the reduced order model has a speed-up 
factor of 50 to 100 in comparison to the high-fidelity simulation.

To investigate the convergence of the optimization schemes, 
Fig. 8 shows the best current objective values in each iteration for 
all (high-fidelity) evaluations of SF (base) (grey lines) and MF 
(MOR) + OIVLH (black lines). These two methods are repre-
sentatively chosen from all investigated methods for the purpose 
of clarity. The adaptive phase of the algorithm starts after 60 
evaluations for the single-fidelity case and 30 evaluations for the 
multi-fidelity case. Both approaches reach objective values below 
3.4, i.e. close to the final optimum, mostly within ten adaptive 
high-fidelity evaluations. Afterwards only slight improvements 
are achieved.

In addition, the termination criteria can give valuable 
insights to the performed optimization studies. Here, the 
observations are contrary to those of the previous lat-
eral impact example, where all optimization analyses are 

(19a)min
x

f (x) =
Fmax

Fmean

,

(19b)where −10mm ≤ xi ≤ 10mm, i = 1, 2, 3,

(19c)−4mm ≤ xi ≤ 4mm, i = 4, 5, 6.

Fig. 7   Frontal impact problem of a crash box impacted by a planar 
rigid wall: The lower end is fixed, the impactor moving from the top 
downwards has a prescribed mass and velocity. Design variables are 
the vertical trigger positions as well as depths of the three triggers 
in the crashbox. The latter are realized by shifting the respective 
element rows in or against the direction indicated by the respective 
arrows next to x

4
 , x

5
 and x

6



A hierarchical kriging approach for multi‑fidelity optimization of automotive crashworthiness…

1 3

Page 11 of 15  114

terminated by the threshold infill criterion. A majority of 
analyses for the crash box example terminate after reach-
ing the maximum number of allowed iterations. Of course, 
there is an argument to be made that these optimization runs 
may not be fully converged. However, as seen in Fig. 8 and 
because some runs do actually terminate due to ICth , the 
authors believe that this is not the case. A maximum allow-
able number of iterations also represents a situation more 
akin to a practical application case. It matters more to find 
an acceptable result in a given time as opposed to the best 
result in as much time as necessary.

A comparison of the optimization results for the pre-
sented methods is depicted in Fig. 9. Low objective function 
values of slightly below 3.3 depend on x1 on its upper limit 
of 10mm, x2 around its lower limit of −10 mm and x3 in a mid 
region albeit slightly above 0mm. Only the first of the trigger 
depths x4 , x5 and x6 , which is found close the maximum of 
4mm throughout all methods, seems to significantly impact 
the optimization results. A significant share of the crash 
energy is absorbed in the first fold, i.e. the one controlled 
by x1 and x4 . It usually also contains the total maximum in 
the force-displacement curve Fmax . To that end, it appears 
reasonable that those two design variables appear to always 
converge to similar values, while the others, especially x5 
and x6 , may vary between optimizations.

All compared methods yield rather similar results in 
terms of objective function values except for a total of three 
runs in MF (base) and MF (MOR). In these, the best objec-
tive value is up to 10% off the best overall result because 
the algorithm terminates in a local optimum. For the SF 
approaches, OIVLH appears to not affect result quality or 
consistency. In the multi-fidelity setups however, OIVLH 
sampling reduces the number of outliers compared to MF 
(base) and MF (MOR), respectively. All variants utilizing 

OIVLH sampling as well as the baseline single-fidelity EGO 
yield very similar results.

In a further step the quality of low-fidelity models is evalu-
ated as done for the previous example. Here the same error 
metric is chosen mainly for two reasons. First, as the impac-
tor kinetic energy remains constant, the maximum impactor 
displacement is directly related to the mean force Fmean which 
is part of the objective function. Second, having the same com-
parison metric as in the previous example allows for compari-
sons of low-fidelity model accuracy between the two exam-
ples. Table 3 lists mean values for the differences in maximum 
impactor displacement between low- and high-fidelity models 
in the different methods [compare Eqs. (17) and (18)]. In this 
example, the coarse simulation model of MF (base) and MF + 
OIVLH has a significantly larger error value compared to the 
ROMs. Due to the highly nonlinear nature of frontal impact 
simulation, the mesh size has a high impact on the crushing 
behaviour of the component. As the ROM-based low-fidelity 
models utilize the high-fidelity model mesh for learning and 
predictions, they are not affected and show better accuracy 
compared to the coarse low-fidelity model. The present exam-
ple confirms that the application of OIVLH for reduced order 
models increases the prediction accuracy. The results of MF 
(base) and MF + OIVLH, as listed in Table 3 differ mainly due 

Fig. 8   Frontal impact problem: Convergence comparison for SF 
(base) and MF (MOR) + OIVLH. Depicted is the best current objec-
tive function value over the number of high-fidelity evaluations for 
each separate optimization run. Grey and black lines represent SF 
(base) and MF (MOR) + OIVLH versions, respectively

Fig. 9   Frontal impact problem: Parallel coordinates plot comparing 
results of ten repetitions for six different approaches. Design variable 
values on the y-axis are normalized. The color scale indicates objec-
tive value of the respective results (lower is better)

Table 3   Frontal impact problem: Evaluation of low-fidelity model 
quality. For all optimization runs, low-fidelity models are evaluated 
for the respective optimum and maximum impactor displacements are 
compared to the high-fidelity model [see Eqs. (17) and (18)]

Method e
abs

e
rel

[mm] [%]

MF (base) 16.03 11.0
MF + OIVLH 22.28 15.4
MF (MOR) 8.72 6.0
MF (MOR) + OIVLH 4.29 3.0
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to one single outlier in MF + OIVLH, where the low-fidelity 
model predicts a significantly earlier stop of the impactor, thus 
inflating the error measure. Overall, the low-fidelity accuracy 
of the two methods is similar, which is expected as the choice 
of DoE should not have an impact on the simulation model.

Computational requirements are again compared for all dif-
ferent methods using the mean run time of each optimization. 
The averaged processing times for all techniques are plotted in 
Fig. 10. Regarding the varying EGO approaches, the findings 
here are highly similar to those of the previous problem. Com-
pared to SF (base), MF (base) and MF + OIVLH yield about 
30-45% speed-up while MF (MOR) and MF (MOR) + OIVLH 
result in 50-55% time reduction. Here, the use of OIVLH over 
OLH shows slight time benefits across all variants. Notably, the 
time benefit SF + OIVLH yields over SF (base) is significantly 
smaller than for the previous example (compare Fig. 6). This is 
due to the difference in applied termination criterion between 
the examples.

Overall, results for the present application example closely 
match those for the side sill impact example presented above. 
The MF (MOR) + OIVLH scheme performs best with time-
savings of more than 50% compared to SF (base). Here, all 
approaches utilizing OIVLH perform better than respective 
OLH variants.

7 � Conclusions

In the present work, a multi-fidelity efficient global opti-
mization based on recently proposed hierarchical kriging 
and variable-fidelity expected improvement is applied to 
crashworthiness examples and its performance is investi-
gated. Additionally, two adaptations to the scheme regard-
ing initial design of experiments and the choice of low-
fidelity model are proposed. For the former, a recently 
developed variant of Latin hypercube sampling is chosen 
that places samples closer to design space boundaries and 

thus allows for more interpolation instead of extrapola-
tion in surrogate models. For the latter, a non-intrusive 
model order reduction scheme is applied as low-fidelity 
model as it integrates nicely into the existing multi-fidelity 
optimization scheme. All different optimization schemes 
are investigated on two crashworthiness application exam-
ples: one side sill impact size optimization and one frontal 
impact shape optimization. Already with the rather small 
problems presented here, results show that multi-fidelity 
optimization is capable of reducing computational costs 
of the optimizations significantly while not compromising 
result quality. Both proposed adaptations independently 
and especially combined further reduce computation times 
and also increase result quality compared to the baseline 
multi-fidelity optimization. Especially the use of non-
intrusive reduced order modeling techniques is promising 
as it removes the need to (manually) create an additional 
low-fidelity model. Together, a speed-up factor of two in 
the optimization with next to no influence on result qual-
ity is observed.

The problems shown in the present work represent rather 
small examples with a low number of design variables. Based 
on the works introducing OIVLH (Kaps et al. 2021) and previous 
investigations on the projection of large-scale systems (Bach et al. 
2019), it seems reasonable to assume that the advantages of the 
proposed schemes grow as the model size and number of design 
variables increase.

Multi-fidelity optimization is a wide topic with a variety 
of different applications and many imaginable adjustments 
to be explored. Based on the promising results of the pre-
sent work we have collected some topics and questions that 
we believe to be interesting for future work:

–	 In the present work all DoEs are performed separately 
for different fidelity levels and with no connection 
between levels. It seems only reasonable to use a multi-
fidelity DoE scheme if the initial samples are combined 
into a multi-fidelity surrogate. Multi-fidelity sampling 
approaches proposed so far, require the high-fidelity 
DoE to be a subset of the low-fidelity DoE. It could be 
investigated, how these approaches perform for multi-
fidelity optimizations shown here and if methodologi-
cal improvements can be achieved.

–	 We believe the potential of the proposed multi-fidelity 
scheme(s) should be confirmed in further studies on more 
complex larger crashworthiness application problems and 
other fields of applications.

–	 A big challenge in practical applications is robustness 
with regards to both the method as well as the objective 
function. An optimization method should produce con-
sistent results for given inputs, as in practice, repeating 
runs is often infeasible. Moreover, an optimum highly 
sensitive to small perturbations of the inputs is also not 

Fig. 10   Frontal impact problem: Average run times for all compared 
optimization approaches in seconds. Also shown is the standard devi-
ation of the optimization run time



A hierarchical kriging approach for multi‑fidelity optimization of automotive crashworthiness…

1 3

Page 13 of 15  114

desirable. To that end, an effort has to be made to inte-
grate robustness into the optimization framework seam-
lessly.

Appendix A

See Tables 4 and 5 (Figs. 11, 12). 

Appendix B

See Tables 6 and 7.

Table 4   Side sill impact problem: general modeling properties

Parameter Value

Component width 800 mm
Component height 120 mm
Component depth 80 mm
No. vertical ribs 3 (evenly distributed)
No. horizontal ribs 5 (evenly distributed)
Element formulation Belytschko-Lin-Tsay
Contact formulation *CONTACT_AUTOMATIC_
(LS-Dyna) SURFACE_TO_SURFACE

Table 5   Side sill impact problem: material properties used for mod-
eling the aluminum component

Parameter Symbol Value

Young’s modulus E 70GPa
Poisson’s ratio � 0.33
mass density � 2700

kg

m3

yield strength �y 180MPa
plasticity See Figs. 11, 12 below

Fig. 11   Side sill impact problem: Piecewise linear plasticity curve 
used in the aluminum material model

Fig. 12   Low-fidelity model for side sill impact problem with a cylin-
drical rigid body representing a pole. Both ends are fixed, the impac-
tor has a prescribed velocity

Table 6   Frontal impact problem: material properties used for mod-
eling the steel component

Parameter Symbol Value

Young’s modulus E 200 GPa
Poisson’s ratio � 0.3
Mass density � 7830

kg

m3

Yield strength �y 360 MPa
Strainrate model Cowper-Symmonds
Strainrate parameters C 40

p 5
Plasticity See Fig. 13 below

Fig. 13   Frontal impact problem: Piecewise linear plasticity curve 
used in the steel material model
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Abstract
Multi-fidelity optimization, which complements an expensive high-fidelity function with cheaper low-fidelity functions, 
has been successfully applied in many fields of structural optimization. In the present work, an exemplary cross-die deep-
drawing optimization problem is investigated to compare different objective functions and to assess the performance of a 
multi-fidelity efficient global optimization technique. To that end, hierarchical kriging is combined with an infill criterion 
called variable-fidelity expected improvement. Findings depend significantly on the choice of objective function, highlight-
ing the importance of careful consideration when defining an objective function. We show that one function based on the 
share of bad elements in a forming limit diagram is not well suited to optimize the example problem. In contrast, two other 
definitions of objective functions, the average sheet thickness reduction and an averaged limit violation in the forming limit 
diagram, confirm the potential of a multi-fidelity approach. They significantly reduce computational cost at comparable 
result quality or even improve result quality compared to a single-fidelity optimization.

Keywords  Multi-fidelity optimization · Efficient global optimization · Sheet metal forming · Deep drawing

1  Introduction

Sheet-metal forming is one of the essential manufacturing 
processes for structural and body parts in various indus-
tries, for example, the automotive industry. Essentially, a 
thin metal sheet is plastically deformed into its desired shape 
by means of forming tools. Not only the process of forming 
itself is subject to a number of process parameters, but also 
material and shape parameters of the component influence 
the success of the forming process. Numerical methods such 
as finite element (FE) methods have been developed since 
the 1960s and have been applied in industrial use since about 
the 1980s. An early overview can, for example, be found in 

Makinouchi (1996). More recently, inverse methods have 
been proposed to save computational resources while still 
being able to predict the manufacturability of components 
(Lee and Huh 1997, 1998; Guo et al. 2000). For an overview 
of more recent developments in simulation methods for sheet 
metal forming, interested readers are referred to some of the 
nice review articles on the topic, such as by Ablat and Qat-
tawi (2016) or by Andrade-Campos et al. (2022).

Along with the development of improved simulation 
methods, new optimization methods for structural problems 
were suggested. One common challenge in applying such 
multi-query algorithms to structural problems is the often 
infeasible amount of computational resources required for 
running an FE simulation with every evaluation. Modern 
optimization approaches, such as efficient global optimi-
zation [EGO; Jones et al. (1998)], which were specifically 
designed to reduce the required evaluations, can partially 
solve this problem. The idea of EGO is to first fit a surrogate 
model from the initial design of experiments (DoE). Typi-
cally, a kriging model (Krige 1951; Matheron 1963; Sacks 
et al. 1989) is used due to its inherent error approximation. 
Subsequently, this surrogate model is iteratively improved 
using an infill criterion that determines new sample loca-
tions. The most popular criterion is the originally proposed 
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expected improvement [EI; Jones et  al. (1998)], while 
several other options can be found, for example, in Jones 
(2001). A more detailed review of this type of surrogate-
based optimization is given in Forrester and Keane (2009).

More recently, in an effort to further reduce computa-
tional requirements on the optimization scheme, EGO and 
kriging were extended to so-called multi-fidelity schemes. 
Here, the accurate, high-fidelity simulation model is com-
plemented by some form of low-fidelity model, which is 
usually less accurate but significantly cheaper to calculate. 
In the present work, a multi-fidelity variant of EGO based 
on hierarchical kriging (HK), a multi-fidelity extension to 
kriging suggested by Han and Görtz (2012) and an infill 
criterion called variable-fidelity expected improvement (VF-
EI; Zhang et al. (2018)) is utilized. Interested readers are 
referred to previous work on multi-fidelity surrogate models 
as well as optimization for more information [e.g., Forrester 
et al. (2007); Park et al. (2016)].

Since the 1990s, different optimization approaches have 
also been applied to sheet metal forming. Ohata et al. (1998) 
optimized a two-stage deep-drawing process using three 
design variables in incremental forming simulations. Guo 
et al. (2000) utilized an inverse approach to optimize the 
blank shape for manufacturability. A surrogate-based opti-
mization approach was suggested by Jansson et al. (2005) 
for the design of drawbeads and validated with experimental 
data. Different surrogate-based schemes, including kriging, 
were used to optimize a time-dependent blankholder force 
curve by Jakumeit et al. (2005). An overview of some of 
the earlier applications of optimization schemes to sheet-
metal-forming problems is given by Wifi et al. (2007). More 
recently, a multi-fidelity optimization scheme for drawbead 
design combining both incremental high-fidelity forming 
simulations and a more efficient low-fidelity simulation has 
been proposed by Sun et al. (2010). Although the initial 
work is based on polynomial regression, the authors later 
extended the approach to other metamodels such as kriging 
using an artificial bee colony optimization algorithm (Sun 
et al. 2012).

In the present work, we apply a modern HK-based multi-
fidelity optimization approach to an exemplary problem on 
the manufacturability of a deep-drawn cross-die component. 
We compare three different objective functions, which have 
all been proposed in the literature in a similar form. There 
are two main goals when comparing the performance of 
multi-fidelity algorithms in the context of this work. First, 
the multi-fidelity approach should reduce the overall compu-
tational effort of the optimization process. Second, it should 
not lead to significantly worse results compared to optimiza-
tion using only high-fidelity simulations. We aim to estab-
lish the applicability of a modern multi-fidelity optimization 
approach to sheet metal forming and work out possible dif-
ferences between the objective functions.

The present work is structured as follows. In Sect. 2, the 
multi-fidelity optimization approach utilizing HK and VF-EI 
is introduced. In Sect. 3, the numerical example studied 
here is presented. The objective functions compared here 
are introduced in Sect. 4 along with the definition of the 
optimization problem. The performance of the algorithms 
is compared and discussed in Sect. 5. Finally, all findings 
are summarized, and an outlook into possible future work 
is given in Sect. 6.

2 � Multi‑fidelity optimization

In the following, the multi-fidelity EGO approach based 
on HK and VF-EI is introduced, which will be used in this 
work. At the top level, this surrogate-based optimization 
scheme can be divided into two parts. First, a design of 
experiments is used to generate design samples to subse-
quently fit the surrogate model. Here, HK is utilized because 
it has been shown to yield better error approximations com-
pared to other multi-fidelity kriging approaches (Han and 
Görtz 2012). Subsequently, adaptive samples are added, 
whereby their location is determined through maximiza-
tion of an infill criterion on the previously created surrogate 
model. Here, VF-EI is applied because it has been shown to 
perform very well in application problems [see, for exam-
ple, Zhang et al. (2018); Ruan et al. (2020)]. A schematic 
representation of the optimization scheme applied here is 
depicted in Fig. 1.

All steps of the outlined process are now explained in 
more detail. The first step as in any population-based opti-
mization scheme is DoE. DoE is an active field of research, 
as there is no unique ‘best’ way to distribute these initial 
samples apart from the rather vague goal of good coverage 
of the design space. Interested readers are referred to one 
of the review articles such as Garud et al. (2017) for more 
information on different DoE methods and quality criteria 
for DoE.

In the present work, an optimal Latin hypercube (OLH) 
approach is used as it shows great performance in lower-
dimensional applications. A Latin hypercube design (LHD) 
is commonly constructed as follows. When looking for N 
samples in d dimensions, each dimension of the design 
space is divided into N bins of equal probability. N cells of 
the total Nd created cells are then randomly selected so that 
each bin of each dimension only contains a single selected 
cell (McKay et al. 1979). Within each selected cell, a single 
sample is placed either in the center or randomly located 
[compare Rajabi et al. (2015)], whereby the former case is 
used here.

Initial Latin hypercube designs may still suffer from prob-
lems, such as correlations. Optimal Latin hypercube (OLH) 
provides a remedy by incrementally improving DoE quality 
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according to a space-filling criterion. In the present work, 
a simulated annealing algorithm consisting of random pair-
wise and coordinate-wise swaps is utilized. New samples are 
always accepted if they improve the space-filling criterion 
and are accepted with a certain probability if they do not 
offer an improvement (Morris and Mitchell 1995). Other 
optimization approaches for OLH include deterministic 
sample selection (Ye et al. 2000) and Enhanced Stochastic 
Evolutionary algorithm as suggested by Jin et al. (2003). An 
overview of more recent developments around OLH can also 
be found in Viana (2015).

The second step of EGO is to fit an initial HK model 
to the d-dimensional objective functions based on the cal-
culated sampling data. Readers are referred to the original 
publications (Krige 1951; Matheron 1963; Sacks et al. 1989) 
as well as more recent textbooks [such as Rasmussen and 
Williams (2005)] for more information on kriging in gen-
eral and the original publication for a detailed derivation of 
the HK predictor (Han and Görtz 2012). The idea of HK is 
to first create a kriging model for the low-fidelity function. 
Therefore, consider a random process for the low-fidelity 
(LF) function

(1)YLF(x) = �0,LF + ZLF(x),

where �0,LF is an unknown constant and ZLF(x) is a sta-
tionary random process. Furthermore, a sample dataset 
(SLF, yS,LF) consisting of mLF samples with input variable 
data SLF ∈ ℝmLF×d and the corresponding output yS,LF ∈ ℝmLF 
is required.

To predict points based on the random process and the 
sampling dataset, the correlation between sample points is 
modeled through a so-called kernel. Over the years, many 
different kernel functions with varying properties have been 
suggested. Here, a squared-exponential kernel, also called a 
Gaussian radial-basis function (RBF) kernel, is utilized due 
to its smoothness and infinite differentiability:

where �k denotes the kernel length scale that represents the 
hyperparameter(s) of the kriging surrogate model. The ker-
nel function depicted above is called anisotropic because 
there is a separate length scale parameter for each design 
space dimension. In the present work, an isotropic kernel is 
chosen, where the hyperparameter �k = � is a scalar, that is, 
independent of coordinate dimension. Other popular kernel 
function choices can be found in textbooks such as Rasmus-
sen and Williams (2005) or in popular software implemen-
tations of kriging [for example, Pedregosa et al. (2011) or 
GPy (2012)]. Given the sample dataset, the kriging model 
is fitted by running a separate optimization for the kernel 
hyperparameter � . Here, differential evolution (Storn and 
Price 1997) is used due to its simplicity and good global 
search characteristics. However, more advanced approaches 
for hyperparameter optimization have been suggested [see, 
for example, Toal et al. (2008) for more information].

With the representation of the random process, the sam-
pling data, and the kernel function, the low-fidelity predictor 
for a new point x can be written as follows:

where rLF is the correlation vector between the sample data 
and the new point, RLF ∈ ℝmLF×mLF represents the correla-
tion matrix between the sample data points and 1 ∈ ℝmLF a 
column vector filled with ones.

With the low-fidelity predictor ŷLF(x) , the hierarchical krig-
ing model can be constructed, which is based on a random 
process representing the high-fidelity function:

�0 is an unknown scaling factor applied to the low-fidelity 
predictor to represent the trend term of the model and Z(x) 

(2)R
(
x(i), x(j)

)
=

d∏
k=1

exp

(
−�k

|||x
(i)

k
− x

(j)

k

|||
2
)
,

(3)

ŷLF(x) = 𝛽0,LF + rT
LF
(x)R−1

LF
(yS,LF − 𝛽0,LF1),

with 𝛽0,LF =

(
1TR−1

LF
1
)−1

1TR−1
LF
yS,LF,

and rLF =
[
R
(
x, x(1)

)
, ...,R

(
x, x(m)

)]
∈ ℝmLF

,

(4)Y(x) = 𝛽0ŷLF(x) + Z(x).

Fig. 1   Schematic representation of the optimization scheme applied 
in the present work [adapted from Zhang et al. (2018)]
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is a stationary random process. With the high-fidelity sample 
dataset (S, yS) consisting of m samples with input variable 
data S ∈ ℝm×d and the corresponding output yS ∈ ℝm and 
the kernel function R(x(i), x(j)) as defined above, the HK pre-
dictor for the high-fidelity function is given by

Here, �0 indicates the correlation between high- and low-
fidelity models and F = [ŷLF(x

(1))...ŷLF(x
(n))]T ,∀x(i) ∈ S 

represents the low-fidelity prediction at high-fidelity sam-
ple point. r ∈ ℝm and R ∈ ℝm×d are defined as introduced 
for the low-fidelity predictor. In the HK predictor, only ŷ(x) 
and r(x) depend on the location of the new point. All other 
factors can be calculated when fitting the model.

Another important quantity that is needed in the later steps 
of the optimization process is the mean-squared error (MSE) 
of the HK prediction. It is written here with respect to �2 , the 
process variance of Z(x)

Based on the initial HK model, several iterations are per-
formed to adaptively improve it until a specific termination 
criterion is reached. The termination criteria will be covered 
below. The location of the new adaptive samples is deter-
mined by optimizing an infill criterion. When considering 
multi-fidelity optimization, there are generally two options 
regarding infill criteria: First, a ‘classic’ single-fidelity infill 
criterion can be chosen. Among them, expected improvement 
which was used by Jones et al. (1998) to introduce EGO, 
remains the most popular. However, several different criteria 
have been suggested over the years [see, for example, Jones 
(2001) or Forrester and Keane (2009) for overviews]. The 
prime disadvantage of this option is that only high-fidelity 
samples can be added adaptively. Therefore, a multi-fidel-
ity infill criterion is utilized here, called variable-fidelity 
expected improvement (Zhang et al. 2018). It is essentially 
a multi-fidelity extension of standard EI and in its formula-
tion is very similar to another criterion called augmented 
EI (Huang et al. 2006). Here, it is favored over the latter 
because it is free of empirical parameters. More discus-
sion on the comparison between these two criteria can be 
found in the original publication suggesting VF-EI. VF-EI 
is defined at location x and fidelity level L as follows:

(5)
ŷ(x) = 𝛽0ŷLF(x) + rT (x)R−1(yS − 𝛽0F)

with 𝛽0 =
(
FTR−1F

)−1
FTR−1yS.

(6)
MSE(ŷ(x)) = 𝜎2

(
1.0 − rTR−1r

+
[
rTR−1F − ŷLF

]2(
FTR−1F

)−1)
.

where u =
ymin−ŷ(x)

s(x,L)
 and ymin is the currently best feasible 

high-fidelity function value. Φ(∙) represents the cumulative 
distribution of the standard normal distribution and �(∙) its 
probability density function. The term s(x, L) denotes the 
uncertainty of the HK model. The previously introduced 
scaling factor between fidelity levels �0 is used here to model 
the uncertainty in high-fidelity prediction caused by the low-
fidelity predictor:

MSE(ŷ(x)) and MSE(ŷLF(x)) are the MSEs of the high- and 
low-fidelity kriging predictors, respectively.

The two summands in Eq. (7) can be identified with 
exploration and exploitation. The first term 

(
ymin − ŷ(x)

)
Φ(u) 

is dominated by the improvement of the solution ŷ(x) 
and, thus, represents exploitation, while the second term 
s(x, L)�(u) represents exploration because it is dominated 
by the uncertainty of the solution s(x, L).

Due to the highly multimodal nature of the EI functions, 
differential evolution (Storn and Price 1997) is selected for 
optimization of the infill criterion in the present work.

Two different criteria are used to determine the end of 
optimization. First, a minimum allowable value is specified 
for the optimized infill criterion. Second, a maximum total 
number of (high-fidelity) objective function evaluations is 
defined. The values of the criteria are problem dependent, 
and are listed below with the definitions of the problems. 
The first criterion can be seen as convergence of the algo-
rithm to an (at least near-) optimal point with little expec-
tation of improvement from adding further samples. The 
other criterion is used to represent budget restrictions on 
optimization run time that are commonly encountered in 
application use cases.

The optimization algorithm, along with a part for DoE, 
is implemented in an in-house Python code from previous 
work by the authors (Komeilizadeh et al. 2022; Kaps et al. 
2022). HK model generation and kernel implementation are 
based on the scikit-learn library (Pedregosa et al. 2011).

3 � Numerical example

Based on the objective functions which are introduced in 
Sect. 4, two different optimization schemes are compared for 
an exemplary numerical problem introduced in the follow-
ing. Here, a cross-die deep-drawing simulation comparable 
to the one studied by Hoque and Duddeck (2021) is used as a 

(7)

EIvf (x, L) ={
s(x,L)[uΦ(u) + 𝜙(u)], if s(x, L) > 0

0, if s(x, L) = 0
,

(8)s2(x, L) =

{
𝛽2
0
⋅MSE(ŷLF(x)), L = 0 low-fid

MSE(ŷ(x)), L = 1 high-fid
.
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basis for the optimization problem. An exemplary configura-
tion of the final component is shown in Fig. 2. All tooling 
is modeled as rigid bodies while the sheet blank is made of 
steel. Coulomb friction is assumed between the blank and 
the tools. More detailed information on modeling param-
eters and numerical values can be found in Table 2 in the 
Appendix. An incremental explicit simulation in LS-Dyna 
is utilized for the high-fidelity model. An exemplary high-
fidelity simulation model at the initial time step is shown 
in Appendix Fig. 13. The simulation of deep drawing itself 
consists of multiple process steps. Initially, the punch moves 
into contact with the sheet metal blank. The blank itself is 
pressed to the die by a blankholder. Then, as the punch 
moves further, the deep drawing, i.e., the nonlinear forming 
of the blank into its desired shape, is driven by the differ-
ent contacts between the tools and the blank. Finally, when 
the punch is removed, an elastic springback of the compo-
nent occurs. This last step is not considered in the present 
work because it accounts for dimensional accuracy while 
the focus here lies on formability. For more detailed over-
views of the various details of sheet-metal-forming simula-
tion, readers are referred to the available textbooks on the 
topic, e.g., Banabic (2010). As the low-fidelity model, the 
inverse implicit one-step capability of LS-Dyna based on a 
more coarsely meshed component is utilized. The idea of 
the inverse one-step approach is to use deformation theory 
to calculate stresses, strains, and thicknesses in the formed 
component given the final geometry. A more detailed deri-
vation including the governing equations of the approach 
can be found, for example, in the original publication (Lee 
and Huh 1997). The maximum element size is set to 5 mm 
for the latter, compared to 3 mm for the high-fidelity model. 
The smallest element size after adaptive mesh refinement 
in the high-fidelity model is 0.5 mm. Simulation times for 
high- and low-fidelity simulation models are 10–20 min and 

1–2 min, respectively, when running on eight cores.1 Exact 
values vary also depending the choice of design variables.

For the optimization problem studied here, a total of six 
design variables are selected. All variables and their speci-
fied limits are summarized in Table 1. From the literature, 
the design variables in sheet-metal-forming optimization 
problems can be divided into three categories: geometry 
parameters [see, for example, Guo et al. (2000) or Kishor 
and Kumar (2002)], process parameters [for example, blank 
holding force, Obermeyer and Majlessi (1998)], and mate-
rial parameters. In the present work, the design variables are 
exemplary chosen from all three categories. As geometry 
parameters, the thickness of the initial sheet metal, the slant 
depth of the cruciform, which is equivalent to the drawing 
depth of the process, and the die radius are chosen. The 
Lankford coefficient, which represents the normal anisot-
ropy of the material, is varied as a material parameter. The 
Coulomb friction coefficient and the constant blankholder 
force (BHF) are the two remaining design variables in the 
class of process parameters.

Previous work has shown that it can be beneficial to vary 
the BHF in the forming process [e.g., Jakumeit et al. (2005)]. 
Here, it is kept constant for the sake of simplicity. For the 
same reason, all design variables in this exemplary problem 
are considered continuous, even though, for example, the 
sheet metal thickness or the Lankford coefficient might be 
more realistically treated as a discrete variable.

The design variable values in the present example are 
chosen to be very challenging in the sense that they will 
likely not yield a manufacturable component in the optimiza-
tion. The main reason is that objective functions f1 and f2 are 
not capable of distinguishing manufacturable components 
from each other. Both functions take a constant value of zero 
for manufacturable components. Therefore, manufacturable 
components in the design space would limit the comparabil-
ity between objective functions.

Fig. 2   Exemplary geometry of the cross-die component studied here. 
The definition of slant depth is indicated in white, i.e., design variable 
x
2
 , used here

Table 1   Overview of the design variables specified for the optimiza-
tion problem considered here

Symbol Name Bounds Unit

x1 Sheet thickness [0.8, 1.8] mm
x2 Slant depth [12, 35] mm
x3 Die radius [6, 9] mm
x4 Lankford coeff [0.8, 2.5] –
x5 Friction coeff [0.08, 0.12] –
x6 Blankholder force [130, 190] kN

1  The used LS-Dyna version is R12, runs are performed on an AMD 
Ryzen 9 7950X CPU with 64  GB RAM, running Ubuntu version 
22.04.
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4 � Objective functions

The three different objective functions used to assess the 
formability of a component are introduced in the follow-
ing. All functions are defined here to be minimized dur-
ing optimization. All three functions have been previously 
used, sometimes with slight variations, in the literature. 
Therefore, while the presentation here is kept brief, inter-
ested readers are referred to the various original publica-
tions for further discussion.

The first two objectives make use of the so-called form-
ing limit diagram (FLD). It includes the forming limit 
curve (FLC) representing the onset of localized necking in 
the sheet metal component, as well as a limit curve for the 
onset of wrinkling. Since their first mention in the 1960s 
(Goodwin 1968; Keeler 1968), many different variants 
of FLDs have been studied to remedy some of the initial 
shortcomings such as strain-path effects on the FLC. One 
such example is the extension of FLCs to nonlinear strain 
paths and multi-step forming process by Volk and Suh 
(2013). Readers are referred to previous works reviewing 
the topic in more detail [e.g., Paul (2013) or Obermeyer 
and Majlessi (1998)]. An exemplary FLD used in the pre-
sent work is shown in Fig. 3. Here, the major and minor 
true strains for each element of the deep-drawn sheet metal 
component are plotted against each other. The red line is 
the FLC and the pink line represents the wrinkling limit 
curve (WLC). Each dot represents an element in the simu-
lation model.

The first objective function is based on counting the ele-
ments in the different categories of the FLD. Subsequently, 

the objective function f1 is defined as the share of ‘bad’ 
elements:

where N is the total number of elements. NC , NCR , NW , NWR, 
and NTH represent the number of elements in the crack, crack 
risk, wrinkling, wrinkling tendency, and severe thinning 
categories of the FLD, respectively (compare Fig. 3). This 
approach is somewhat similar to two of the four criteria sug-
gested by Jakumeit et al. (2005).

The second objective function assessed in the present 
work is based on the average distance of bad elements to 
the respective limiting curves. A very similar approach 
has been originally suggested by Naceur et al. (2004) and 
applied in a multi-fidelity setup by Sun et al. (2010). In 
the present work, the different distances are weighed by 
the area of the respective element [compare Schenk and 
Hillmann (2004)]. The FLC and WLC are defined here as 
black-box functions. Given the values of the major and 
minor true strains of the element e, these functions return 
the points on the curves 𝝐FLC and 𝝐WLC required for the cal-
culation of the distance. For elements within the domain 
of the limiting curve, a vertical distance is calculated. The 
Euclidean distance is utilized for the remaining elements. 
Therefore, the distance function is defined as follows:

𝝐LC represents the major and minor strains of the point on 
the respective limiting curve (LC), while �LC represents the 
domain of the curve. Therefore, the second objective func-
tion is given by

Here, w is a weighting factor balancing the contributions of 
crack and wrinkling elements. It is set to w = 0.1 following 
the suggestion made in Sun et al. (2010). Initial studies were 
performed for the present application problem with different 
values of w. It was found that the value of w does not have a 
significant impact on the optimization results here; however, 

(9)
f1 =

Nbad

N
, where

Nbad = NC + NCR + NW + NWR + NTH

,

(10)d
�
𝝐
e, 𝝐LC

�
=

� �𝜖e
1
− 𝜖LC

1
�, 𝜖e

2
∈ �LC

‖𝝐e − 𝝐
LC‖2, else .

(11)

f2 = f2,C + wf2,W, where

f2,C =

⎧⎪⎨⎪⎩

∑NC
e=1

d(𝝐e,𝝐FLC)Ae

∑NC
e=1

Ae
, 𝜖e

1
> 𝜖FLC

1

0, else

f2,W =

⎧
⎪⎨⎪⎩

∑NW
e=1

d(𝝐e,𝝐WLC)Ae

∑NW
e=1

Ae
, 𝜖e

1
< 𝜖WLC

1

0, else

.

Fig. 3   Exemplary forming limit diagram for a cross-die component. 
The red line is the FLC and the pink line represents the WLC. Each 
dot represents an element of the simulation model. Blue and yellow 
colors indicate crack and wrinkling risk areas, respectively. Orange 
color shows severe thinning area. The black line marks the limit of 
strain definitions, i.e., �

1
≥ �

2
 . (Color figure online)
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the chosen value provides a nice balance between the two 
contributions. The element area is given by Ae.

The third objective function f3 is the thickness variation 
in the drawn component. This indicator has been widely 
used for many years [e.g., Guo et al. (2000); Naceur et al. 
(2001); Sattari et al. (2007)]. The definition used here is 
very similar to that given by Guo et al. (2000) for the special 
case p = 2:

N represents the number of elements, h0 is the initial con-
stant thickness of the sheet metal, and the elemental sheet 
thickness at the final simulation time step is given by he

t
 . 

This function is intuitive because a decrease in thickness 
during the simulation can lead to necking, while an increase 
in thickness may be correlated with wrinkling. These are the 
two main failure modes in sheet metal forming. In contrast 
to the first two objective functions, this function also allows 
for the comparison of components considered as manufac-
turable. Objective functions f1 and f2 are always zero when 
a component is considered formable, whereas function f3 
is not.

Defining the lower and upper bounds of the j-th design 
variable as x

j
 and x̄j , respectively, (compare Table 1) and 

considering the three objective functions fi(x) introduced 
above, the three optimization problems considered here can 
be formulated as follows:

Here, i will take the values 1, 2, or 3, depending on 
the objective function considered. The formulation fi(x) 
includes the whole simulation workflow, where depend-
ing on the fidelity level and design variable values either a 
high-fidelity or a low-fidelity simulation model is generated, 
evaluated, and the resulting strain field used to calculate the 
respective objective function value.

Termination criteria for this problem are set to 10−5 for 
the infill criterion threshold and 100 for the maximum num-
ber of iterative evaluations of the objective function.

5 � Results

In the following, the optimization results of the optimization 
scheme proposed by Zhang et al. (2018) for the three differ-
ent objective functions on the given deep-drawing problem 

(12)f3 =

(
1

N

N∑
e=1

(he
t
− h0)

2

) 1

2

.

(13a)min
x

fi(x),

(13b)where x
j
≤ xj ≤ x̄j, j = 1, 2, 3, 4, 5, 6 .

are presented separately, discussed, and finally compared. As 
a reference, a single-fidelity optimization technique based 
on kriging, EI, and the high-fidelity simulation model is uti-
lized. The latter is referred to as HF in the following, while 
the multi-fidelity scheme is called MF.

In general, both techniques are evaluated for the quality, 
consistency, and computational requirements of the results. 
Two points are the focus of the present work. First, we assess 
how each objective function performs in the optimizations 
and how the optimization results between different objec-
tive functions differ. Second, we establish whether the pre-
sented multi-fidelity optimization approach shows potential 
for sheet-metal-forming problems.

All high- and low-fidelity simulations are performed on 
the same computer using FE software LS-Dyna distributed 
across eight cores. Each optimization run is repeated ten 
times to ensure the reliability of the assessment. Unless 
explicitly stated otherwise, all objective function values 
listed below are based on the high-fidelity model. For com-
pleteness, the average number of simulation model calls for 
both fidelity level and all objective functions is listed in the 
Appendix Table 3.

5.1 � Objective function f
1

As a first step in assessing the results for objective function 
f1 , convergence and termination criteria are checked. Only 
seven out of the total of 20 optimization runs here terminate 
due to reaching the threshold infill criterion, whereas all 
others run into the maximum number of allowed iterations. 
Three and four of these seven runs occur with the HF and 
MF techniques, respectively. A convergence plot showing 
the best current objective function value over the high-fidel-
ity evaluations is shown in Fig. 4. Each gray curve represents 
repetitions of MF, and each black curve represents HF. The 
diagram shows generally good convergence behavior, indi-
cating that the different termination criteria encountered may 
not be problematic per se. However, it should be noted that 
there are quite a lot of differences between repetitions of 
the same optimization technique. Possible reasons for these 
differences are discussed in the following, after presenting 
the actual optimization results.

The results of the optimization of objective function f1 , 
which is based on counting the share of bad elements in 
the FLD are shown in a parallel coordinates plot in Fig. 5. 
The two techniques HF and MF are compared. Each curve 
represents the optimized result of a single optimization run. 
The color scale indicates the value of the objective function. 
Different design variables are listed on the x-axis and their 
normalized ranges on the y-axis. The values of the objective 
function here are mostly in the range between 0.38 and 0.40 
with a total of six exceptions above or below that (see, for 
example, the dark blue curve for HF or the yellow curve for 
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MF). The average best for the objective function is slightly 
lower for HF compared to MF. As this difference is smaller 
than the variation between repetitions of the same technique, 
it is not considered significant here. Interestingly, the values 
of the design variables do not reflect the consistency of the 
objective function results. In fact, x3 is the only variable 
for which a consistent optimal value of around 6.45 mm is 
found. Intuitively, a higher value for the die radius x3 should 
be beneficial to prevent cracks during the drawing process. 
Here, it is lower, because there is a high number of elements 
in the wrinkling range where a lower radius can be better. 
All other design variables vary significantly between differ-
ent repetitions for both optimization techniques.

The fact that both the convergence plot and the results 
show significant variations between repetitions across both 
optimization approaches indicates that the objective function 
itself might be the problem. Recall that the approach for this 
objective was to determine the share of ‘bad’ elements in 
the FLD. This rather naive approach is tempting because it 
is very easy to implement and understand. However, it has 
a number of downsides that could contribute to the incon-
sistent results reported here. First, counting the categorized 
elements neglects the degree to which an element violates, 
for example, the forming limit. In reality, it could make a 
big difference if an element lies barely above the FLC or is 
far beyond. Second, the intermediate categorization of ele-
ments reduces the influence that design variables have on 
the objective function. To illustrate this point, imagine an 
element slightly above the FLC (i.e., in the group of cracked 
elements) in the basis configuration. Now imagine that this 
element is experiencing an increased major strain due to, 
for example, an increase in the blankholder force. Ideally, 
this worsening state should be reflected in some way in the 
value of the objective function. However, for f1 the objective 
value would not change because the element was already in 
the group of cracked elements before. This reduced influence 
of design variables makes any attempt at optimization sig-
nificantly harder. We believe that this insufficient definition 
of f1 is responsible for the inconsistent results reported here. 
It also leads to ‘optimized’ designs which are quite different 
from those found with the other two objective functions, 
which will be presented below.

For completeness, it should be mentioned that the MF 
approach yields on average a time reduction of around 50% 
for optimization compared to HF. The exact numbers can be 
found in Table 4 in the Appendix.

Fig. 4   Objective function f
1
 : Convergence plot for ten repetitions 

of the two optimization methods. Mean of the single-fidelity runs is 
shown as solid black line, multi-fidelity runs as dashed green line. 
The colored areas represent upper and lower bounds. The first 50 and 
20 evaluations are part of the initial design of experiments for HF and 
MF, respectively. (Color figure online)

Fig. 5   Objective function f
1
 : 

Parallel coordinates plot com-
paring ten repetitions of the two 
optimization methods. Design 
variable values on the y-axis are 
normalized, actual boundaries 
can be found in Table 1. The 
color scale indicates objective 
function values of the respective 
results (lower is better). (Color 
figure online)
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For the objective function f1 , it can be concluded that 
the optimization technique MF is capable of significantly 
speeding up the optimization process for the present example 
problem without reducing the quality of the results. How-
ever, the objective function itself is not ideally defined for 
optimization because the influence of the design variables 
on the objective function is limited. This leads to very incon-
sistent optimization results, regardless of the technique used.

5.2 � Objective function f
2

The discussion of objective function f2 which is defined 
as the weighted average distance of cracked and wrinkle 
elements to FLC and WLC in the FLD respectively is also 

started with checking termination conditions and conver-
gence. Here, all MF runs and seven of the ten HF runs ter-
minate due to the threshold infill criterion indicating good 
convergence. The remaining three optimizations are termi-
nated after reaching the maximum number of iterations. A 
convergence plot for this objective function in the same style 
as above is shown in Fig. 6. Here, repetitions of the same 
algorithm converge to similar values fairly consistently. In 
addition, the algorithm reaches values close to the final opti-
mum in very few adaptive high-fidelity evaluations. Just to 
recall, the adaptive phase starts after 50 and 20 high-fidelity 
evaluations for HF and MF, respectively.

A comparison of the optimization results between HF and 
MF is shown in Fig. 7. The optimal values of the objective 
function here are consistently between 0.34 and 0.38, with 
only one overall worse value in MF. Optimal objective func-
tion values can also be linked to certain design variable val-
ues. x1 and x2 are at or close to their lower bounds of 0.8 mm 
and 12 mm, respectively. x3 is either at its upper limit 9 mm 
or around 7.5 mm, x4 is consistently at its upper limit 2.5, 
while x5 and x6 vary across their entire range between opti-
mizations. The variation in the latter variables indicates that 
their influence on the objective function is limited. For the 
Coulomb friction coefficient x5 this is less surprising as its 
range was also defined pretty narrowly. For the blankholder 
force x6 , it can be observed that most of the results are in 
the lower half of its range, so the best explanation is that its 
influence diminishes below a certain threshold. Overall, the 
quality of the results between the two optimization methods 
is very similar, although there is slightly more variation with 
MF.

To illustrate the progress made during optimization, two 
designs evaluated during a MF optimization run are cho-
sen representatively. The first is the initial evaluation of the 

Fig. 6   Objective function f
2
 : Convergence plot for ten repetitions 

of the two optimization methods. Mean of the single-fidelity runs is 
shown as solid black line, multi-fidelity runs as dashed green line. 
The colored areas represent upper and lower bounds. The first 50 and 
20 evaluations are part of the initial design of experiments for HF and 
MF, respectively. (Color figure online)

Fig. 7   Objective function f
2
 : 

Parallel coordinates plot com-
paring ten repetitions of the two 
optimization methods. Design 
variable values on the y-axis are 
normalized, actual boundaries 
can be found in Table 1. The 
color scale indicates objective 
function values of the respective 
results (lower is better). (Color 
figure online)
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optimization that produces an objective function value of 
2.49 and the second is the optimized evaluation of the same 
optimization with the objective function value 0.35. FLDs 
for these two simulations are depicted in Fig. 8. Significant 
improvements can be seen, particularly with cracked ele-
ments, but also in the wrinkling regime. It should be noted 
here that the optimized result is nevertheless not considered 
manufacturable, which is expected from the definition of 
design variable limits (compare Sect. 3).

For computational requirements, MF runs on average 
need around 46% less time to terminate than HF. Detailed 
numbers are listed in Appendix Table 4. These results match 
fairly well with previously reported time savings of multi-
fidelity optimization schemes in structural optimization 
problems. Compare, for example, Acar et al. (2020) or Kaps 
et al. (2022) where the authors used multi-fidelity schemes 
in automotive crashworthiness examples.

In conclusion, MF can produce results of comparable 
quality to HF, although they show slightly more variation, 
while significantly reducing the optimization time using the 
objective function f2 in the present example problem. The 
results with this objective are also significantly more con-
sistent than with f1 , indicating that this is a more suitable 
objective function for this type of problem.

5.3 � Objective function f
3

The results of the thickness reduction objective function f3 
are shown in Fig. 9. Here, good values of the objective func-
tion below 0.05 appear to depend on variables x1 , x2 , x5 , and 
x6 being close to their respective lower bounds, while x4 is 
at its upper bound of 2.5 and x3 is in the middle between 
values of 7.5 and 8 mm. We believe that these results are as 
expected when considering the average thickness reduction 
of the component over the deep-drawing process. The values 
of the design variable are also remarkably similar to those 
observed for f2 . The only exception is the friction coeffi-
cient x5 , which is significantly more consistent in its optimal 
values close to its lower boundary for the present objective 
function. Interestingly, for this objective function, the MF 
approach yields better and more consistent results than HF.

Before looking at the run times and more details of the 
comparison, convergence information is reported to ensure 
reliability of the results. For this objective function, all runs 
of the HF method and seven of the ten MF runs terminate 
due to the infill criterion threshold. The other three runs 
reach the maximum number of iterations. This indicates 
good convergence of the algorithms. The full convergence 
plot for all runs, which can be found in Fig. 10, confirms 
this observation.

The FLD for the best result obtained by the MF tech-
nique among all repetitions is shown in Fig. 11. As the 
differences between the repetitions are marginal here, it is 

also representative of other optimized results from the MF 
method. The component depicted here is not considered 
manufacturable (see Sect. 3). However, this FLD confirms 

Fig. 8   Objective function f
2
 : Comparison of two forming limit dia-

grams (FLD) of an early simulation and the optimized result of the 
same optimization run. For the latter, results are also shown mapped 
onto the final geometry. More details on FLDs can be found in Sect. 4
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the remarkable similarity between the results of f2 and f3 
(compare Fig. 12c).

For this objective function, optimizations performed 
with the MF technique need on average about 31% longer 
than HF (detailed values are listed in Appendix Table 4). 
Together with the better and more consistent results found 
with MF, these findings are unexpected. Usually, the aim of 
a multi-fidelity optimization scheme is to reduce computa-
tional effort while not significantly impairing result quality. 
In this case, the opposite happens, making further investiga-
tion of these findings necessary. Several observations can 
be made as to why in this case MF performs better. First, 
looking at the convergence plots (see Fig. 10), HF termi-
nates after fewer high-fidelity evaluations than MF for all 

optimization runs. Usually, the opposite would be expected 
(compare, for example, Fig. 6). Additionally, all HF runs 
terminate due to the infill criterion threshold, indicating that 
the algorithm converged and no significant improvements 

Fig. 9   Objective function f
3
 : 

Parallel coordinates plot com-
paring ten repetitions of the two 
optimization methods. Design 
variable values on the y-axis are 
normalized, actual boundaries 
can be found in Table 1. The 
color scale indicates objective 
function values of the respective 
results (lower is better). (Color 
figure online)

Fig. 10   Objective function f
3
 : Convergence plot for ten repetitions 

of the two optimization methods. Mean of the single-fidelity runs is 
shown as solid black line, multi-fidelity runs as dashed green line. 
The colored areas represent upper and lower bounds. The first 50 and 
20 evaluations are part of the initial design of experiments for HF and 
MF, respectively. (Color figure online)

Fig. 11   Objective function f
3
 : Forming limit diagram of the overall 

best result obtained with MF technique. Results are also shown on the 
component geometry
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are expected. These two observations show that the kriging 
model in HF may not be sufficiently good and that the opti-
mizer may be stuck at a local optimum. For MF, this appears 
to be less of a problem. Apparently, the additional function 
evaluations performed with the low-fidelity model, which is 
then added as a trend term into the HK surrogate model, help 
the optimizer avoid local optima by better resolving them in 
the surrogate model.

Overall, the results for this objective function are sur-
prising, as MF outperforms HF but also requires more 
computation time. The best current explanation is a higher 
quality of the surrogate model in MF avoiding local min-
ima. We believe that more detailed investigations going 
beyond the scope of the present work are necessary here. 
It should also be confirmed whether these results can be 
repeated for different components and/or design variables.

Fig. 12   Box plots comparing 
results of the different optimiza-
tion methods. Each method was 
repeated ten times per objective 
function
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5.4 � Discussion

After presenting the optimization results for all objective 
functions, some points of discussion will be given below.

Boxplots comparing optimization results for all three 
objective functions are shown in Fig. 12. The objective func-
tion f1 is found not to be well suited to optimize the example 
problem chosen here. Both f2 and f3 show good performance 
in the optimization problem. The results between the two 
are remarkably similar. However, the conclusions drawn 
are somewhat more differentiated. The objective function f2 
nicely illustrates the potential of a multi-fidelity optimization 
technique. With very little influence on the result quality, 
it speeds up the optimization by a factor of two in the pre-
sent example. The statistical Wilcoxon rank sum test shows 
that the null hypothesis of equal results for the two meth-
ods holds at a 5% significance level ( U = 51 , p = 0.97 ). For 
the objective function f3 , the same statistical test confirms 
that the null hypothesis of equal results between the two 
methods can be rejected at a 5% significance level ( U = 2 , 
p < 0.001 ). Thus, the multi-fidelity approach even outper-
forms the classic single-fidelity method for this objective, 
while also requiring more time to produce results.

The objective functions f1 and f2 are not capable of distin-
guishing manufacturable components from each other. This 
issue is avoided in the present work through the definition of 
the optimization problem. Also, it may not be so relevant in 
practical applications where the main priority is obtaining a 
manufacturable component. However, in other contexts, such as 
fitting machine learning models, it could be a challenge. Another 
possible problem that was observed here is the mesh depend-
ency, especially of objective functions f1 and f2 . The values of 
these functions change if the exact same component is meshed 
differently. In the present work, this is not a concern because 
all high-fidelity models are meshed the same way. The low-
fidelity models used for the MF approach are only utilized as a 
trend term in the HK surrogate model and, thus, are not directly 
included in comparisons. However, this should be considered 
in other applications.

6 � Conclusions

In the present work, an exemplary cross-die deep-drawing 
optimization problem is investigated with respect to different 
objective functions and the use of a multi-fidelity efficient 
global optimization technique. For the former, three different 
objective functions are defined, all of which have been pre-
viously applied in the literature at least in slightly modified 
form and primarily for single-fidelity techniques. For the 
latter, a multi-fidelity efficient global optimization scheme 
based on hierarchical kriging and variable-fidelity expected 
improvement is proposed here, which has been successfully 

used in various fields of applications such as fluid mechanics 
or automotive crashworthiness.

Two of the three objective functions are based on forming 
limit diagrams that are commonly used in sheet metal forming 
to determine the manufacturability of components. The first is 
based on naively counting elements of different classifications 
and minimizing the share of bad elements. The second function 
is defined as minimizing the average violation of the forming 
and wrinkling limit curves for critical elements. The third objec-
tive function to be minimized is the average thickness reduction 
in the component during the deep-drawing process.

The first objective function is found to be hard to consist-
ently optimize with both the multi-fidelity and a reference 
single-fidelity efficient global optimization method. The lim-
ited influence of design variables on the objective function 
is identified as one of the main reasons. The second objec-
tive function shows consistent result quality across the two 
optimization techniques and highlights the capability of the 
multi-fidelity scheme to speed up computation times by a 
factor up to two. The time gains observed here match well 
with results previously reported for multi-fidelity optimiza-
tions in other fields of application. The third objective func-
tion shows surprising results in that the multi-fidelity tech-
nique delivers better and more consistent results compared 
to the single-fidelity reference approach while also increas-
ing the computation times by a factor of approximately 1.3. 
The currently most likely explanation is the better predictive 
quality of the surrogate model due to the overall higher num-
ber of objective function evaluations in multi-fidelity com-
pared to the single-fidelity technique. However, we believe 
that these last results warrant a more detailed investigation, 
which could be interesting for future work.

In addition to that, we believe that it is interesting to fur-
ther expand the use of multi-fidelity optimization schemes in 
the field of sheet metal forming. On the basis of the results 
of the present work, we found a number of additional ideas 
that we believe to be interesting for future work.

•	 A number of improvements to the multi-fidelity approach 
used here have been suggested, which should also be 
applied to a sheet-metal-forming problem to assess their 
potential in this field of application.

•	 Similarly, a number of different multi-fidelity optimization 
techniques have been suggested which should be compared 
against other in a sheet-metal-forming problem.

•	 The results presented here should be confirmed on larger 
and more complex deep-drawing components.

•	 Objective functions based on forming limit diagrams 
cannot distinguish manufacturable components. This 
might lead to challenges for the optimizer in more real-
istic problems. An effort should be made to adapt these 
functions as they are quite intuitive and easily under-
standable for a human.
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Appendix

See Tables 2, 3, 4, and Fig. 13. 

Table 2   Cross-die deep-drawing 
problem: modeling and material 
properties used to model the 
steel component

*refers to input file keywords of the FE software LS-Dyna
HF incremental (high-fidelity) simulation, LF inverse (low-fidelity) simulation

Parameter Symbol Value

Component width 290 mm
Component depth 120 mm
Young’s modulus E 205 GPa
Poisson’s ratio � 0.3
Mass density � 7850 kg m−3

Yield strength �y 160 MPa
Lankford coefficient R Design variable
Material model (LS-Dyna) *MAT_037
1D plasticity Hockett–Sherby

�0 160 MPa
A 600 MPa
C 0.91
n 0.518

Element formulation Belytschko–Lin–Tsay (HF)
Fully integrated (LF)

Contact formulation *CONTACT_FORMING_ONE_WAY​
(LS-Dyna; HF) *CONTACT_DRAWBEAD
Coulomb friction � Design variable

Table 3   Overview of the average number of simulation model calls 
for different objective functions and optimization methods

Each optimization run is repeated ten times. The results are reported 
as mean and standard deviation (SD). The abbreviations MF and HF 
refer to the multi-fidelity and baseline single-fidelity optimization 
techniques, respectively

Obj Method High-fidelity calls Low-fidelity calls

f1 HF 144.8 (SD 10.7) –
f1 MF 85.8 (SD 41.9) 100.0 (SD 0.0)
f2 HF 101.5 (SD 33.6) –
f2 MF 47.7 (SD 24.7) 103.9 (SD 3.2)
f3 HF 58.8 (SD 4.0) –
f3 MF 88.1 (SD 26.2) 100.7 (SD 0.6)

Table 4   Overview of the optimization run times for different objec-
tive functions and optimization methods

Each optimization run is repeated ten times. The results are reported 
as mean and standard deviation (SD) of the run times in seconds, 
rounded to the nearest 100. The abbreviations MF and HF refer to 
the multi-fidelity and baseline single-fidelity optimization techniques, 
respectively

Objective Method Run time (s)

f1 HF 150,900 (SD 13,700)
f1 MF 75,900 (SD 25,900)
f2 HF 83,000 (SD 27,200)
f2 MF 44,600 (SD 19,400)
f3 HF 53,600 (SD 3000)
f3 MF 70,400 (SD 16,500)
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Abstract

In the present work, a two-stage multi-fidelity optimization scheme is proposed and investigated on
a cross-die deep drawing application problem. In the novel scheme, a global enrichment with respect
to the limit state of the objective function is performed between the initial design of experiments and
the adaptive optimization stage. To that end, we propose a multi-fidelity extension of the popular
U learning function, which is commonly used in reliability or uncertainty quantification problems. The
two-step workflow is compared to a multi-fidelity approach based on hierarchical kriging as a surrogate
model and variable-fidelity expected improvement as infill criterion as well as a single-fidelity reference.
We find that the novel approach can reduce optimization run times compared to the single-stage
approach with minor impact on result quality. Additionally, a combination of the proposed multi-
fidelity approach with a modified Latin hypercube sampling is shown to speed up optimization run
time compared to the single-fidelity reference by a factor of almost three in our application example.

Keywords: Multi-fidelity optimization, Efficient global optimization, Optimization under uncertainty,
Sheet-metal forming, Deep drawing

1 Introduction

Sheet metal forming and specifically deep draw-
ing is one of the most wide spread manufacturing
processes for structural components. Its idea is
to plastically deform a thin metal sheet into
its desired shape. Developing functional deep-
drawn parts can be a highly challenging process,
because various (conflicting) requirements such as

cost reduction, manufacturability, sustainability,
or aesthetics are influenced by a variety of param-
eters. These range from the material properties of
the metal sheet to the process parameters and to
the geometry parameters of the component itself.
To support engineers, numerical methods such as
finite element (FE) methods have been in indus-
trial use for decades (Makinouchi, 1996). However,
the development of new methods has not stopped

1
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and is, in fact, part of ongoing research (Ablat and
Qattawi, 2016; Andrade-Campos et al, 2022).

With the advent of simulation models,
researchers have also begun to use optimization
algorithms in sheet metal forming applications
(Ohata et al, 1998; Guo et al, 2000). One popular
example of an algorithm designed for these expen-
sive objective functions is Efficient Global Opti-
mization (EGO; Jones et al (1998)) which utilizes
a kriging model (Krige, 1951; Matheron, 1963;
Sacks et al, 1989) and performs iterative updates
on it by internally optimizing an infill criterion
(Jones, 2001). However, in recent years, simulation
model sizes and resolutions have increased to the
point that even with these specialized techniques,
computational costs may be prohibitive. As one
remedy, multi-fidelity (MF) schemes have been
introduced. An accurate high-fidelity (HF) model
is complemented by a less accurate, yet more effi-
cient, low-fidelity (LF) model. This basic idea has
already been applied to sheet metal forming prob-
lems (Sun et al, 2010, 2012). In the present work,
a multi-fidelity surrogate model called hierarchical
kriging (HK; Han and Görtz (2012)) and an infill
criterion called variable-fidelity expected improve-
ment (VF-EI; Zhang et al (2018)) are applied
in an MF version of EGO. We have shown in a
previous work that this type of algorithm can per-
form very well in improving the manufacturability
of a deep-drawn component (Kaps et al, 2023).
Interested readers are referred to previous work
on multi-fidelity surrogate models and optimiza-
tion for more information on different available
approaches (Forrester et al, 2007; Park et al, 2016;
Zhou et al, 2023).

The aim in reliability analysis is commonly to
determine the limit state of a function and to esti-
mate the probability of failure for a given struc-
tural problem. In the context of expensive func-
tions, surrogate-based reliability analysis has also
been well established in the literature. An adap-
tively improving kriging model was suggested by
(Bichon et al, 2008) that is conceptually inspired
by the EGO optimization technique except for
the novel infill criterion called expected feasibility
function (EFF). The approach was then extended
among other things with a new infill criterion
called U learning function (Echard et al, 2011)
which is inspired by the lower confidence bound
criterion in optimization (Cox and John, 1992).
A review of existing methodology as well as the

development of a unified framework for reliabil-
ity analysis and design optimization are given
by Moustapha and Sudret (2019). More recently,
these methods and, particularly, the U learning
function were also applied in a multi-fidelity set-
ting (Chakroborty et al, 2023; Dhulipala et al,
2022).

In the present work, we aim to improve the
optimization performance of an HK-based multi-
fidelity approach. Inspired by previous work (Pei
et al, 2023) we propose a two-stage optimiza-
tion technique in which a global enrichment with
respect to the limit state of the objective func-
tion is performed between the initial design of
experiments (DoE) and the subsequent adaptive
objective function improvement. One of the main
contributions of the present work alongside the
two-stage multi-fidelity optimization technique is
the proposal of a novel multi-fidelity extension to
the popular U learning function. This function
is used here to facilitate the global enrichment.
Its use is inspired by the fact that drawabil-
ity measures have a limit state just like the one
encountered in reliability analysis, the drawabil-
ity limit. Additionally, we investigate the influence
of a modified DoE scheme on optimization per-
formance. All approaches are investigated on a
cross-die deep drawing application problem.

This paper is structured as follows. In Section
2, the cross-die deep drawing optimization prob-
lem is presented, including simulation models,
parameters, and the objective function. The basics
of the multi-fidelity optimization scheme including
HK and the relevant infill criteria are summa-
rized in Section 3. Subsequently, the proposed
optimization scheme is introduced in Section 4.
Optimization results are shown and discussed in
Section 5, followed by our conclusions and an
outlook into possible future work (Section 6).

2 Application example

The exemplary optimization problem used here to
compare different optimization algorithms is intro-
duced below. The optimization problem is based
on a cross-die deep-drawing simulation similar to
the one studied by Hoque and Duddeck (2021)
and previously utilized by the authors in Kaps
et al (2023) and Lehrer et al (2023). Initially, the
simulation model is presented in Subsection 2.1,
subsequently, the design and noise variables, as
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well as the objective function, are introduced in
Subsections 2.2 and 2.3, respectively.

2.1 Simulation models

An exemplary configuration of the component
after drawing is shown in Figure 1. The model-
ing parameters along with numerical values can
be found in Table A2 in the Appendix. As a high-
fidelity model, an incremental explicit simulation
in LS-Dyna is used. Here, all the tooling is mod-
eled as rigid, and the sheet blank is made of steel.
Coulomb friction is assumed between the blank
and the tools. A high-fidelity simulation model
with all tooling at the initial time step is depicted
in the Appendix Figure A1 for illustrative pur-
poses. The simulation of a deep drawing process
consists of many process steps which are only out-
lined here. Readers are referred to the available
textbooks on the topic for more detailed presenta-
tions of the various details (e.g., Banabic (2010)).
Initially, the blank is pressed to the die by the
blankholder while the punch moves into contact
with the blank. As the punch then moves further,
the deep drawing itself occurs, which describes
the non-linear forming of the blank into its final
shape. Finally, an elastic springback of the com-
ponent occurs when the punch is removed. This
step is not considered here due to the focus of
the present work on drawability rather than on
dimensional accuracy. The inverse implicit one-
step capability of LS-Dyna is utilized as a low-
fidelity model. The idea of an inverse one-step
approach is to apply deformation theory to derive
stresses, strains, and thicknesses in the formed
component given the final geometry of the compo-
nent. For more detailed elaborations on the inverse
approach including the governing equations, read-
ers are referred to the research articles on the
topic, such as the original publication (Guo et al,
1990).

The maximum element size is set to 5mm
for the low-fidelity model, compared to 3mm for
the high-fidelity model. The smallest element size
after adaptive mesh refinement in the high-fidelity
model is 0.5mm. Simulation times are approxi-
mately ten minutes and one minute, for high- and
low-fidelity simulation models, respectively, when

running on eight cores1. The exact run times also
vary depending on the choice of design variables.

Fig. 1: Exemplary geometry of the cross-die com-
ponent studied here (adapted from Kaps et al
(2023)).

2.2 Parameters

Four design variables and two uncertain noise vari-
ables are selected for the problem studied here.
All design variables and their specified limits are
summarized in Table 1. Noise variables and their
assumed distributions are listed in Table 2.

Table 1: Overview of the design variables speci-
fied for the optimization problem considered here.

Symbol Name Bounds Unit

x1 sheet thickness [0.8, 1.8] mm
x2 die radius [6, 9] mm
x3 Lankford coeff. [0.8, 2.5] -
x4 blankholder force [130, 190] kN

In the present work, the design variables are
chosen as examples from the three categories
of variables found in sheet metal forming appli-
cations: geometry parameters (see, for example,
Guo et al (2000) or Kishor and Kumar (2002)),
process parameters (for example, blank holding
force, Obermeyer and Majlessi (1998)), and mate-
rial parameters. The thickness of the initial sheet
metal and the die radius are chosen as geom-
etry parameters. As a process parameter, the

1The used LS-Dyna version is R12, runs are performed on
an Intel Core i9-10900 CPU with 64GB RAM, running Ubuntu
version 20.04.
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Table 2: Overview of the noise variables specified
for the present optimization problem. The nota-
tion N (µ, σ2) refers to a normal distribution with
mean µ and standard deviation σ.

Symbol Name Distribution Unit

x5 yield strength N (160, 6.672) MPa
x6 static frict. coeff. N (0.1, 0.00672) -

blankholder force is chosen. The Lankford coeffi-
cient, which represents the normal anisotropy of
the material, is varied as a material parameter.

Yield strength and friction coefficient are
defined as noise variables to represent commonly
encountered uncertainties in material and pro-
cess parameters, respectively. Noise variables are
assumed to not be directly controllable here and
defined to follow a normal distribution around
an expected value. Previous work on optimization
under uncertainty in deep drawing applications
such as by Nguyen and Reiter (2015) or Merten
et al (2021) was used as orientation in the defini-
tion of noise variable distributions.

Some of the design variables such as sheet
metal thickness or material parameters would be
treated as discrete in a more realistic application.
Here, they are considered continuous for the sake
of simplicity.

The sizes of the initial DoEs used with the dif-
ferent optimization techniques in this example are
listed in the Appendix Table A1 .

2.3 Objective function

The objective function utilized here is based on
the forming limit diagram (FLD). It was initially
suggested in a similar form by Naceur et al (2004)
and applied in a multi-fidelity setup by Sun et al
(2010). The authors used it previously in Kaps
et al (2023) and extended it in Lehrer et al (2023)
to be able to distinguish drawable parts from
each other. The latter extended form is used in
the present work and is briefly introduced in the
following.

Initially defined in the 1960s (Goodwin, 1968;
Keeler, 1968) an FLD defines two material-
dependent curves for the limits of the sheet metal
component. The forming limit curve (FLC) rep-
resents the onset of localized necking in the com-
ponent, while the wrinkling limit curve (WLC)

represents the onset of wrinkling. Over the years,
many improvements and variations of FLDs have
been suggested, and readers are referred to pre-
vious publications that review the topic in more
detail (such as Obermeyer and Majlessi (1998) or
Paul (2013)).

An exemplary FLD in the definition used in
the present work is shown in Figure 2. The red and
pink lines represent FLC and WLC, respectively.
The major and minor true strains in each element
of the final deep-drawn sheet metal component are
plotted against each other.

Fig. 2: Exemplary forming limit diagram for a
cross-die component. The red line is the FLC and
the pink line represents the WLC. Each dot rep-
resents an element of the simulation model. The
black line marks the limit of strain definitions, i.e.
ϵ1 ≥ ϵ2.

The calculation process of the objective func-
tion introduced in the following is also summa-
rized as Algorithm 1 in the Appendix for clarity.
The calculation of the objective function starts
by calculating the average distance of ‘bad’ ele-
ments from their respective limit curve (LC).
Here, the FLC and WLC are assumed to be black-
box functions. Given the major and minor true
strain values ϵe of an element e, they return the
closest points on the respective curves ϵ̂FLC and
ϵ̂WLC . These are subsequently used for distance
calculation as

d
(
ϵe, ϵ̂LC

)
= ∥ϵe − ϵ̂LC∥2. (1)

The non-drawable factor of the objective func-
tion fnd is then defined as the weighted average of
these distances
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fnd = fc + wwfw,where

fc =





∑Nc
e=1 d(ϵe,ϵ̂FLC)Ae

∑Nc
e=1 Ae

, ϵe1 > ϵFLC
1

0 , else
,

fw =





∑Nw
e=1 d(ϵe,ϵ̂WLC)Ae

∑Nw
e=1 Ae

, ϵe1 < ϵWLC
1

0 , else
.

(2)

Here, Ae is the element area utilized as weight.
Nc and Nw represent the number of cracked and
wrinkling elements, respectively. ww is a weighting
factor that balances the contributions of crack and
wrinkling elements. It is set to ww = 0.1 following
previous experiences of the authors with very sim-
ilar cross-die deep drawing examples (Kaps et al,
2023; Lehrer et al, 2023).

The function fnd is not able to distinguish
drawable components from each other because
it only considers cracked and wrinkle elements.
Therefore, it is extended with a drawable factor
fd that represents the average distance of good
elements to the two LCs and is defined as follows:

fd = −wg

Ng∑

e=1

Ae d
(
ϵe, ϵ̂FLC

)
+ wwd

(
ϵe, ϵ̂WLC

)

1 + ww
.

(3)
The weighting factor wg that is introduced to

balance the magnitudes of fd and fnd is set to
wg = 0.2 following the suggestion of Lehrer et al
(2023).

The complete objective function f is then
defined as

f =

{
fnd , if fnd > fthr

fd , else
, (4)

where fthr = 0.005 is a threshold value to
account for components with only minor wrinkling
in non-critical regions that could be considered
drawable.

Given the objective function f , as well as
the design and noise variables introduced in the
previous subsection, the optimization problem dis-
cussed here is defined as

min
x

f(x), (5a)

where xi ≤ xi ≤ x̄i, i = 1, 2, 3, 4, (5b)

subject to xj ∼ N (µj , σ
2
j ), j = 5, 6. (5c)

The formulation f(x) includes the entire sim-
ulation workflow, where, depending on the fidelity
level and design variable values, a high-fidelity or
low-fidelity simulation model is generated, eval-
uated, and the resulting strain field is used to
calculate the objective function value. Here, xi and
x̄i represent the lower and upper limits of the four
design variables introduced in Table 1. µj and σj

are the mean and standard deviation of the Gaus-
sian distributions of the two noise variables, as
shown in Table 2.
The noise variables in this work are included in
the surrogate model by extending the design space
with a ±3σ interval around their mean value (see
also Section 4 below). The surrogate model is
then used in the optimization phase of the algo-
rithm to provide an estimation of the optimized
results being non-drawable under the influence of
the noise variables. To that end, 104 Monte Carlo
samples drawn from the distributions of the noise
variables are evaluated on the respective surrogate
model.

3 Multi-fidelity optimization

The multi-fidelity EGO approach which is based
on HK and VF-EI and used as a baseline is intro-
duced below. The extended approach proposed
here is presented in Section 4. The optimization
scheme consists of two major parts. Initially, a sur-
rogate model is fitted from a set of design samples,
which is generated using design of experiments.
Kriging is commonly used in single-fidelity appli-
cations. Here, HK is employed due to its ability to
provide superior error approximations compared
to other multi-fidelity kriging methods (Han and
Görtz, 2012). Subsequently, this surrogate model
is iteratively updated using an infill criterion to
determine the location of new samples. In the
present work, VF-EI is utilized, because it has
been shown to work well in the metal forming
application (Kaps et al, 2023).

DoE is the first step in this optimization
scheme. As there is no unique best way to dis-
tribute samples, it is still an active field of
research (Garud et al, 2017). Here, an optimal
Latin hypercube (OLH) method is used because
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it generally performs well in these types of lower-
dimensional applications. In OLH, an initial Latin
hypercube design (LHD) is adaptively improved
following a so-called space-filling criterion (Mor-
ris and Mitchell, 1995; Ye et al, 2000; Jin et al,
2005). Here, the method suggested by Morris and
Mitchell (1995) is applied. An LHD itself is con-
structed as follows to draw N samples from a
d-dimensional design space. Each dimension of the
design space is divided into N bins of equal proba-
bility. N cells of the total Nd created cells are then
randomly selected so that each bin in each dimen-
sion only contains a single selected cell (McKay
et al, 1979).

In the present work, we compare an OLH
approach with a modified version of the DoE
scheme called optimal isovolumetric Latin hyper-
cube (OIVLH; Komeilizadeh et al (2022)). The
idea of this variant is to transform Latin hyber-
cube samples depending on the number of design
space dimensions and pushing samples closer to
design space boundaries while maintaining LHS
properties. Specifically, assuming a uniform proba-
bility distribution, the bin boundaries pi and sizes
aj are defined as

pi =





0.5

(
1−

(
Nv+1−i

Nv

)1/d)
, i ∈ [1, Nv]

0.5

(
1 +

(
i−(Nv+1)

Nv

)1/d)
, i ∈ (Nv, N + 1]

(6)

aj = pj+1 − pj , j ∈ [1, N ] (7)

instead of the usual pi = i
N and aj = 1

N .

Here, Nv = N
2 is defined for convenience of

notation. The only previously published applica-
tion of OIVLH is the successful integration into
the multi-fidelity optimization of an automotive
crashworthiness problem (Kaps et al, 2022).

After generating the DoE, the initial HKmodel
is fitted to the objective functions based on the
sampling data. HK is a multi-fidelity extension to
the kriging model (Krige, 1951; Matheron, 1963;
Sacks et al, 1989) which has been extensively
discussed in the literature (e.g., Rasmussen and
Williams (2005)). A more detailed derivation of
the HK predictor can be found in the original
publication (Han and Görtz, 2012). In HK, the
trend term of the multi-fidelity predictor is the

low-fidelity predictor. To determine the latter, we
assume an LF sample data set (SLF ,yS,LF ) con-
sisting of mLF samples with input variable data
SLF ∈ RmLF×d and the corresponding output
yS,LF ∈ RmLF . Additionally, a so-called kernel
modeling the correlation between sample points
has to be defined. Here, a squared-exponential ker-
nel, also called a Gaussian radial-basis function
(RBF) kernel, is utilized due to its smoothness and
infinite differentiability:

R(x(i),x(j)) =

d∏

k=1

exp
(
−θk|x(i)

k − x
(j)
k |2

)
, (8)

where θk denotes the kernel length scale that
represents the hyperparameter(s) of the kriging
/ HK model. The kernel utilized here is called
anisotropic because there is a separate param-
eter for each dimension of the design space.
Over the years, a wide variety of different ker-
nel functions has been suggested (Rasmussen and
Williams, 2005) and implemented in popular soft-
ware libraries (for example, Pedregosa et al (2011);
GPy (since 2012)). With the sample data set from
above, the respective model is fitted by running
an optimization for the kernel hyperparameters
θk. Differential evolution (DE; Storn and Price
(1997)) is used here due to its effectiveness and
ease of use. More advanced methods of optimiz-
ing hyperparameters have been suggested (Toal
et al, 2008). Given the sampling data and the ker-
nel function, the low-fidelity predictor for a new
design point x is defined as

ŷLF (x) = β0,LF + rTLF (x)R
−1
LF (yS,LF − β0,LF1),

with β0,LF = (1TR−1
LF1)

−11TR−1
LFyS,LF ,

and rLF = [R(x,x(1)), ..., R(x,x(m))] ∈ RmLF ,

(9)

where rLF is the correlation vector between
the sample data and the new point, RLF ∈
RmLF×mLF represents the correlation matrix
between the sample data points and 1 ∈ RmLF a
column vector filled with ones.

Combining the low-fidelity predictor ŷLF (x) as
a trend term with the high-fidelity sample data set
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(S, yS) consisting of m samples with input vari-
able data S ∈ Rm×d and the corresponding output
yS ∈ Rm, the HK predictor is given by

ŷ(x) = β0ŷLF (x) + rT (x)R−1(yS − β0F )

with β0 = (F TR−1F )−1F TR−1yS .
(10)

Here, β0 indicates the correlation between
high- and low-fidelity models. r ∈ Rm and R ∈
Rm×d are defined as introduced for the low-
fidelity predictor using the same kernel function
R(x(i),x(j)). The low-fidelity prediction at high-
fidelity sample points is represented by F =
[ŷLF (x

(1))...ŷLF (x
(n))]T ,∀x(i) ∈ S. All factors in

the above equation except for ŷ(x) and r(x) can
be calculated at model fitting time as they do not
depend on the location of the new point.

The mean squared error (MSE) of the HK pre-
diction that is required for the adaptive stage of
the optimization can be written with respect to
the process variance σ2 of the underlying random
process as

MSE(ŷ(x)) = σ2(1.0− rTR−1r

+
[
rTR−1F − ŷLF

]2 (
F TR−1F

)−1
).

(11)
After fitting the initial HK model, several iter-

ations are performed to adaptively improve it until
the specified termination criterion is reached. The
latter is discussed in Section 4. Each new adaptive
sample is determined by internally optimizing an
infill criterion. More general overviews on adaptive
improvement methods for surrogate models can
be found in one of the available overview works
(e.g., Liu et al (2017); Fuhg et al (2020)). In the
present work, two classes of infill criteria are intro-
duced based on their aim. First, there are the
more classic infill criteria used in optimization.
Among them, expected improvement (EI; Jones
et al (1998)) remains the most popular, but several
other criteria have been suggested (see, for exam-
ple, Jones (2001) or Forrester and Keane (2009)
for an overview). In the present work, a multi-
fidelity extension to EI called variable-fidelity
expected improvement (Zhang et al, 2018) is uti-
lized, as it allows adaptive sampling of low- and
high-fidelity instead of just high-fidelity samples.
Here, it is favored over other multi-fidelity infill

criteria because it has been successfully applied in
challenging structural applications by Kaps et al
(2022, 2023).

VF-EI is defined at location x and fidelity level
L as

EIvf (x, L) ={
s(x, L) [uΦ (u) + ϕ (u)] , if s(x, L) > 0

0, if s(x, L) = 0,

(12)

where u = ymin−ŷ(x)
s(x,L) and ymin is the best feasi-

ble high-fidelity function value currently available.
Φ(•) and ϕ(•) represent the cumulative distri-
bution and probability density functions of the
standard normal distribution, respectively. The
term s(x, L) denotes the uncertainty of the HK
model. As suggested in the original publication,
the scaling factor β0 that was previously intro-
duced can be used to model the uncertainty in the
high-fidelity prediction caused by the low-fidelity
predictor

s2(x, L) =
{
β2
0 ·MSE(ŷLF (x)), L = 0 low-fid.

MSE(ŷ(x)), L = 1 high-fid.
.

(13)

MSE(ŷ(x)) and MSE(ŷLF (x)) are the MSEs
of the high- and low-fidelity kriging predictors,
respectively.

The second class of criteria discussed here is
typically used in reliability analysis rather than
optimization. Here, the aim is to improve the
prediction of the limit state of a function by adap-
tively sampling close to it. This type of infill
criterion in combination with a kriging model
is also known as active learning kriging. One of
the more popular functions of the category is
the so-called U learning function (Echard et al,
2011). The motivation for using this particular
infill criterion for the adaptive improvement of the
surrogate model is twofold. First, it is observed
from the problem definition in Subsection 2.3 that
the objective function of the present application
problem has an obvious limit state, the drawabil-
ity limit. Therefore, while the problem considered
here is not directly related to reliability analy-
sis, this class of criteria is still applicable and
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the idea is that adaptive sampling around the
limit state will help guide the following optimiza-
tion and increase convergence speeds. Second, the
noise variables included in the optimization prob-
lem allow for the calculation of a probability of
non-drawability to components predicted to be
drawable in the mean state. Here, the improve-
ment of the surrogate model around the limit
state enables the surrogate-based estimation of
this probability as described in Subsection 2.3.
Therefore, the U learning function is used here as
a basis instead of one of the many other avail-
able infill criteria. It is defined for a single-fidelity
predictor ŷSF (x) and the corresponding MSE as

U(x) =
|ŷSF (x)|√

MSE(ŷSF (x))
. (14)

In the present work, we propose a new multi-
fidelity extension of the U learning function
inspired by the VF-EI infill criterion which uses
the correlation factor β0 to estimate the uncer-
tainty in the high-fidelity prediction due to the
low-fidelity prediction. Our multi-fidelity U learn-
ing function is defined depending on the design
space location x and the fidelity level L as

UMF (x, L) =
|ŷ(x)|
s(x, L)

. (15)

Here, s(x, L) is defined as in Equation (13)
and ŷ(x) is the HK predictor from Equation (10).
Due to the typically highly multimodal nature of
the infill criteria, DE (Storn and Price, 1997) is
selected for optimization of all infill criteria in the
present work.

4 Proposed Approach

In the present work, a two-stage multi-fidelity
optimization approach inspired by previous work
in the literature (Pei et al, 2023) is proposed.
Its target is twofold. First, it aims to increase
the convergence speed of the algorithm in opti-
mization problems by better resolving the rele-
vant regions of the objective function. Second, it
enables straightforward inclusion of input param-
eter uncertainties into the optimization process.

A schematic overview of the proposed multi-
fidelity scheme is depicted in Figure 3. Initially,
the design space is extended with sensible inter-
vals for the noise variables (here: ±3σ around
their mean value). A DoE using OLH or OIVLH

Fig. 3: Schematic overview of the proposed opti-
mization scheme. The difference to the original
multi-fidelity scheme (Zhang et al, 2018) is the
possible inclusion of noise variables and the global
enrichment phase. The different design of experi-
ment methods are not shown. Termination criteria
for the phases are discussed in Section 4.
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sampling is created to fit an HK surrogate model
on the extended design space including design
and noise variables. Then, the global enrichment
phase is started whereby an infill criterion (Eq.
(15)) is optimized on the extended design space
to add new samples to the surrogate model and
subsequently refit it. In this phase, the aim is
to improve the resolution of the limit state in
the objective function (or a possible failure con-
straint). After a termination criterion is reached
for the enrichment phase, the algorithm moves to
the global optimization of the objective function.
Details on termination criteria for both enrich-
ment and optimization phases are discussed in the
upcoming paragraph below. For the optimization,
the surrogate model is restricted to design vari-
ables only. The previously included noise variables
may be used, for example, to enforce failure con-
straints or simply to estimate the probability of
failure of a given design point. The treatment of
noise variables in the present work is explained in
Subsection 2.3 where the exemplary application
problem is introduced. The adaptive optimiza-
tion itself consists of iteratively running DE on
the infill criterion (here: VF-EI), calculating the
determined design sample, and finally refitting the
surrogate model(s). The algorithm finishes once a
termination criterion is reached.

Three different termination criteria are utilized
in the optimization process. They are indepen-
dently defined for the global enrichment phase,
where applicable, and the adaptive optimization
phase. First, a threshold value is specified for the
optimized infill criterion. Second, the number of
adaptive objective function evaluations is limited.
Third, the number of adaptive high-fidelity objec-
tive function evaluations is also limited for multi-
fidelity techniques. The former criterion indicates
convergence of the algorithm. The latter two crite-
ria represent a budget restriction on optimization
run time. For the adaptive optimization phase in
all the investigated methods, the threshold value
of (VF)EI is set to 10−5 and the number of total
adaptive samples to 100, while the third criterion
is not enforced here. The criteria applied for the
global enrichment phase are listed in Table 3.

In the present work, a total of six different opti-
mization techniques are compared. An overview of
them is given in Table 4. In the following, they are
referred to by the respective abbreviations given
in the first column of the table.

Table 3: Overview of the termination criteria
applied for the global enrichment phase of the
optimization process. Methods are named accord-
ing to Table 4.

Method name ICth Max. it. Max. HF it.

HF - - -
HF + U 2 10 -
MF - - -
MF(IV) - - -
MF + MFU 2 60 10
MF(IV) + MFU 2 60 10

Table 4: Overview of different optimization
schemes applied in the following deep drawing
example. All techniques are referred to by the
abbreviation given in the first column.

method surr. DoE enrich. infill
name model method crit. crit.

HF kriging OLH - EI
HF + U kriging OLH U EI
MF HK OLH - VF-EI
MF(IV) HK OIVLH - VF-EI
MF + MFU HK OLH MFU VF-EI
MF(IV) + MFU HK OIVLH MFU VF-EI

The optimization algorithm, along with a
part for DoE, is implemented in an in-house
Python code from previous work by the authors
(Komeilizadeh et al, 2022; Kaps et al, 2022, 2023).
The generation of HKmodels and the implementa-
tion of kernels are based on the scikit-learn library
(Pedregosa et al, 2011).

5 Results

A total of six optimization schemes are compared
in the optimization problem introduced in Section
2. They are referred to below by the abbreviations
introduced in Table 4. All techniques are evaluated
here for result quality, computational costs, and
result consistency. Specifically, we establish which
of the methods can benefit from the inclusion of an
enrichment phase into the optimization. To ensure
reliability of the assessment, all simulations are
performed on the same PC running LS-Dyna on
eight cores. Additionally, each optimization run is
repeated ten times. Unless explicitly stated oth-
erwise, all objective function values given in the
following refer to the high-fidelity model.
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As a first step, the convergence of the algo-
rithms and the respective termination criteria are
checked to ensure comparability of the results.
Convergence plots for all techniques are shown in
Figure 4. Bold lines indicate the respective mean
values, while the shaded areas represent the upper
and lower bounds. All graphs include the com-
plete optimization workflow including the initial
DoE and, if applicable, enrichment phase. The
diagrams indicate that all methods show very con-
sistent convergence behavior and tend to very
similar final results of the optimization.

(a) Single-fidelity methods.

(b) Multi-fidelity methods.

Fig. 4: Convergence plots for ten repetitions of
the six optimization methods. The mean of the
respective runs is shown as a bold line. Areas of
the same color represent upper and lower bounds.
Plots include the initial design of experiments (see
Table A1 in the Appendix) and, where applicable,
the enrichment phase.

The enrichment phase is included in three of
the six techniques, namely HF+U,MF+MFU and

MF(IV)+MFU. It is terminated in all HF+U runs
due to the iteration limit. In the multi-fidelity
cases, seven runs reach the high-fidelity iteration
limit and 13 runs the limit for adaptive HF sam-
ples. For HF+U, this is likely due to the definition
of the threshold value, which is a common value
used in reliability applications without optimiza-
tion. Here, a more relaxed threshold value such as
in (Pei et al, 2023) may have been beneficial. For
the MF+MFU and MF(IV)+MFU techniques,
the additional LF samples are likely to lead to
a reduction in HK prediction uncertainty. This
increases the MFU values to the point of termi-
nation of the enrichment phase. The impact on
optimization results is discussed in more detail in
the following.

The termination of the optimization phase
shows a remarkable difference between HF and
MF as well. For the former, only eight of the total
20 single-fidelity runs terminate due to the EI
threshold value. All remaining runs reach the max-
imum number of iterations. On the other hand,
only one run from MF(IV)+MFU of the total
40 multi-fidelity runs terminates due to reaching
the iteration limit while all other reach the VF-
EI threshold. The findings here together with the
convergence plots above indicate, that a modifica-
tion of the number of allowed adaptive samples,
i.e., the second and/or third termination criterion,
would not significantly change overall results. The
explanation for the observed difference is proba-
bly the same as that for the enrichment phase.
The additional LF samples reduce the prediction
uncertainties of the HK model, thus reducing the
VF-EI values. Implications are discussed below
after a more detailed coverage of the optimization
results.

A number of boxplots comparing the results of
the optimization for the different techniques are
shown in Figure 5. Given the scaling of the y-axis,
all objective function results are very close to each
other between values of −0.064 and −0.074. How-
ever, a pure visual comparison indicates that HF
produces the best and most consistent results.MF,
MF(IV) and HF+U are slightly less consistent but
show the same median value, whileMF+MFU and
MF(IV)+MFU additionally have a slightly worse
median value in the results. To check whether any
of the observed differences with HF are statis-
tically significant, each of the other five sets of
results is individually tested against HF using a
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Wilcoxon rank sum test. The null hypothesis of
equal results is found to hold at a 5% significance
level for all tests. For completeness, the test statis-
tics and p-values of all tests performed are listed
in Table 5.

Fig. 5: Boxplots comparing optimization results
for different techniques. Each method was
repeated ten times. The red lines indicate median
values and the boxes show the range between
first and third quartile (interquartile range). The
whiskers extend to the furthest point within 1.5
times the interquartile range and the dots repre-
sent outliers.

Table 5: Wilcoxon rank sum test statistics per-
formed to check differences in the quality of objec-
tive function results at a 5% significance level.
Each method is tested against HF results.

Method name U p

HF + U 45 0.73
MF 50 1.00
MF(IV) 49 0.96
MF + MFU 66 0.24
MF(IV) + MFU 73.5 0.08

Given the optimized objective function values,
a look is taken at the respective design variable
values corresponding to the results. Therefore, six
parallel coordinate plots comparing the different
techniques are depicted in Figure 6. Each curve
represents the optimized results of an optimiza-
tion run. The color map indicates the values of the
objective function. Different design variables are
listed on the x-axis and their normalized ranges
on the y-axis.

It is observed that optimized results appear
to correspond to x1, x2 and x3 at or somewhat
close to their respective upper bounds 1.8mm,
9mm and 2.5. Most of the runs find the optimal
value for x4 very close to its lower bound 130 kN.
However, in this case there are also a significant
number of runs with different results throughout
the design range of x4. The larger variation in x4

likely means that the variable is somewhat lim-
ited in its influence on the objective function, at
least compared to the other variables. Apart from
that, the results are as expected when considering
cracks and wrinkles as the main modes of failure in
deep drawing. Furthermore, they match very well
with the results found in Kaps et al (2023) for a
very similar application problem. The same obser-
vations regarding the quality and consistency of
the results that are made above for the boxplot in
Figure 5 apply here also. HF, MF, MF(IV) and
HF+U show consistent and very similar results,
while for MF+MFU and MF(IV)+MFU, there is
slightly more variation and a total of three outliers
among the two techniques for which the algorithm
terminates with worse results.

To illustrate the progress made during an opti-
mization run, a representative initial design and
the respective optimal design from one run of
HF+U are depicted in Figure 7. The respective
FLDs are mapped onto the final geometry of
the manufactured component to show the loca-
tion of the remaining bad elements. The initial
design produces an objective function value of
0.756, the optimized result −0.0744. The latter
is the best objective function value found across
all techniques and repetitions. Notably, the opti-
mized result still contains a few bad elements.
This stems from the definition of the objective
function (Eq. (4)) where small violations, e.g.
due to minor wrinkling, are still considered man-
ufacturable. However, all cracked elements are
removed here.

In a final step, the computational require-
ments of the different methods are compared by
the average total optimization run time shown
in Figure 8. Average run times in seconds are
depicted as bars together with their standard devi-
ations. The inclusion of the enrichment phase
using the (MF)U learning function is found to
result in about 15% and 33% faster run times for
HF+U and MF+MFU compared to their respec-
tive counterparts HF and MF. The difference is
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Fig. 6: Parallel coordinates plot comparing ten repetitions of the six optimization methods. Design
variable values on the y-axis are normalized, actual boundaries can be found in Table 1. The color scale
indicates objective function values of the respective results (lower is better).

the smallest for MF(IV)+MFU where the aver-
age run time is approximately 12% less than for
MF(IV). However, both of these methods pro-
duce very good results, as they save approximately
58% and 64% optimization run time for MF(IV)
and MF(IV)+MFU, respectively compared to the
baseline HF technique. The best explanation for
the run time differences throughout lies in the
different termination criteria for the algorithms,
which was shown above. Additionally, the intro-
duction of an enrichment phase results in a lower
average number of overall calculated samples prior
to termination of the algorithm (compare also
Table A3 in the Appendix).

In the introduction of the application prob-
lem, two noise variables are defined in addition
to the four design variables. In this work, the
noise variables are only used to give an estimation
of the probability of non-drawability of the opti-
mized drawable components using Monte Carlo
sampling. Here, the probability is negligible in
all runs, indicating that the components are con-
sidered drawable also under the influence of the
noise variables. We believe it could be interest-
ing to extend the treatment of noise variables in
future work, for example, by defining a failure con-
straint that is enforced by the surrogate model
predictions in the optimization phase.

It is shown that the inclusion of a global enrich-
ment phase into the optimization workflow by
itself already benefits the algorithm performance
by reducing average run times with little compro-
mise on the result quality. In the example pre-
sented here, theMF+MFU technique utilizing the
newly proposed MFU enrichment criterion saves
a third of run time compared to the multi-fidelity
reference. The example problem investigated has
a clear limit state in the objective function. We
believe that the proposed approach is applicable to
arbitrary objective functions as long as some infor-
mation on the range of objective function values is
available. However, this remains to be investigated
further in future work.

6 Conclusions

In the present work, a novel two-stage multi-
fidelity optimization scheme is proposed and inves-
tigated on a cross-die deep drawing problem.
The workflow of an efficient global optimization
scheme is extended by a global enrichment stage in
between the initial surrogate model fitting and the
actual adaptive optimization stage. To that end,
a novel multi-fidelity extension of the popular U
learning function is proposed that aims at improv-
ing the surrogate model quality at a limit state of
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(a) Representative initial design.

(b) Optimal design.

Fig. 7: FLDs of an early simulation and the
optimized result mapped onto the respective final
component geometry. Green, red and pink colors
represent good, cracked and wrinkling elements,
respectively (see Figure 2).

Fig. 8: Average run times of the compared
optimization techniques in seconds. Error bars
indicate the standard deviation out of the ten rep-
etitions.

the function. The two-stage workflow is compared

to a multi-fidelity approach based on hierarchical
kriging as a surrogate model and variable-fidelity
expected improvement as an infill criterion. A
single-fidelity EGO method is used for refer-
ence. To illustrate the benefits of the two-stage
approach, a single-fidelity two-stage approach is
also extended with an enrichment phase using the
U learning function as infill criterion. In addition,
a modified sampling approach, which was recently
proposed and successfully applied by our group, is
investigated in this multi-fidelity context.

The application problem here aims at improv-
ing the manufacturability of a cross-die com-
ponent. The high-fidelity simulation model is
an explicit incremental formation simulation,
whereas the low-fidelity model is an inverse one-
step simulation. A drawability measure based on
the forming limit diagram is used to determine
manufacturability. For illustrative purposes, two
noise variables are included in the problem.

It is found that all of the optimization
approaches investigated yield very similar results,
although there is a slightly higher variation in
result quality compared to the single-fidelity ref-
erence approach. The inclusion of the enrichment
stage into the optimization scheme saves between
12% and 33% in optimization run time compared
to the respective single-stage optimization tech-
niques. Particularly, the multi-fidelity approach
using isovolumetric sampling performed well in
our example. A speed-up factor in run time of
more than two was observed for the classic single-
stage approach and the novel two-stage approach,
with the latter yielding a speed-up of approxi-
mately 2.7. All observed run time benefits are best
explained by faster algorithm convergence due to
lower uncertainty in surrogate model predictions.

On the basis of the promising results of the
presented work, we have identified a number of
ideas that we believe to be interesting for future
work.

• Include a failure constraint into the optimiza-
tion problem or enforce the sampling of manu-
facturable components in the adaptive phase.

• Apply the suggested optimization technique to
a larger, possibly more realistic deep drawing
component.

• Compare some of the various different multi-
fidelity optimization techniques that have been
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suggested in recent years against each other in
a sheet metal forming problem.
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Appendix A

Table A1: Overview of the initial design of exper-
iments (OLH / OIVLH) used for the optimiza-
tion techniques. Methods are named according to
Table 4.

Method name HF samples LF samples

HF 50 -
HF + U 40 -
MF 30 100
MF(IV) 30 100
MF + MFU 20 100
MF(IV) + MFU 20 100

Table A2: Cross-die simulation model: Geomet-
rical and material properties used to model the
steel component. HF : Incremental (high-fidelity)
simulation; LF : Inverse (low-fidelity) simulation.

Parameter Symbol Value

component width 290mm
component depth 120mm
component height (excl. radii) 12mm
die radius design variable
Young’s modulus E 205GPa
Poisson’s ratio ν 0.3

mass density ρ 7850 kg
m3

yield strength σy noise variable
Lankford coefficient R design variable
material model *MAT 037
1D plasticity Hockett-Sherby

σ0 noise variable
σs 600MPa
C 0.91
n 0.518

element formulation Belytschko-Lin-Tsay (HF )
fully integrated (LF )

contact formulation *CONTACT FORMING ONE WAY
(LS-Dyna; HF ) *CONTACT DRAWBEAD
Coulomb friction µ noise variable

Fig. A1: Exemplary zoom into a high-fidelity sim-
ulation model at the initial time step, cut open in
the middle. Shown in brown is the punch which
moves down to form the component and in light
green the die. The blank which is formed into the
desired shape is shown in dark green and held in
place by a blank holder depicted here in olive.
(Kaps et al, 2023)
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Algorithm 1 Calculation of the objective func-
tion

Require:
d
(
ϵe, ϵ̂LC

)
: Distance function (see Eq. (1))

Ng, Nc, Nw: Number of good, cracked and
wrinkled elements, respectively
fthr ← 0.005
wg ← 0.2
ww ← 0.1
fnd ← Eq.(2)
if fnd <= fthr then

f ← fnd
else

f ← Eq.(3)
end if

Table A3: Overview of the average number of
simulation model calls for different objective func-
tions and optimization methods. Each optimiza-
tion run is repeated ten times. The results are
reported as mean and standard deviation (SD).
Abbreviations follow the nomenclature introduced
in Table 4.

Method High-fidelity calls Low-fidelity calls

HF 129.2 (SD 32.7) -
HF + U 119.2 (SD 35.0) -
MF 69.5 (SD 25.6) 100.0 (SD 0.0)
MF(IV) 52.9 (SD 20.3) 100.0 (SD 0.0)
MF + MFU 47.0 (SD 22.7) 109.3 (SD 7.5)
MF(IV) + MFU 48.5 (SD 36.1) 105.5 (SD 5.2)
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Appendix B

Summaries of supervised theses

B.1 Master’s thesis I (Wang, 2022)

When performing MF surrogate modeling or MF surrogate-based optimization, it seems very

useful to consider the MF context already in the initial DoE and determine sample locations

accordingly. As these MF-DoE methods are not commonly applied in MF optimization liter-

ature, they are evaluated in this Master’s thesis utilizing HK surrogate models and the same

MF optimization technique based on HK and VFEI that is used in the appended publications

(Kaps et al., 2022, 2023, 2024). Based on a literature study on previously proposed MF-DoE

techniques, three approaches are identified and studied more closely. An investigation of mul-

tiple influence parameters on HK model quality is carried out using two common analytical test

functions. These include the question of how to distribute the sampling budget between LF

and HF samples. Subsequently, the optimization performance is studied on the same ana-

lytical test functions as well as a lateral impact application example (the same one studied in

appended publication I (Kaps et al., 2022)). In addition, the IV sampling modification is applied

to the MF-DoE approaches to check its influence.

The findings of this work can be summarized in the following points. First, the allocation of

the sampling budget to the LF and HF levels can be optimized if prior information is available

about the correlation between the models. That is, if the two are highly correlated, more LF

samples should be used. Without prior knowledge, a balanced approach has to be taken

to avoid deterioration of the quality of the surrogate model. Second, it is found that here, IV

sampling does not improve the global surrogate model quality measures and does not improve

the optimization performance in the studied examples when using MF-DoE. Finally, it is found

that the use of an MF-DoE technique does not significantly improve optimization performance

in the study example problems compared to creating separate DoEs for the fidelity levels.

B.2 Master’s thesis II (Krivacic, 2023)

In this Master’s thesis, different MF optimization techniques are compared. Specifically, the

approach based on HK and VFEI is compared with a cokriging-based approach as well as two

different infill criteria, namely MES (maximum value entropy search) and upper confidence

bound. The different methods are evaluated using two analytical test functions and the same
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lateral impact example considered in appended publication I (Kaps et al., 2022) and in the

previous Master’s thesis (Wang, 2022).

One finding is that in the investigated examples, the difference between cokriging and HK

as the underlying MF surrogate model is minimal. The infill criteria have a somewhat larger

influence on optimization performance, and it is found that MES performs best in the analytical

test cases. For the impact example, the results between all surrogate models and infill criteria

are quite similar to previous findings from the analytical functions. However, the optima are

found to vary significantly from previously reported results in Kaps et al. (2022) and Wang

(2022). Therefore, results cannot be compared between works. Also, the optimization run

times cannot be compared on the basis of the results in this Master’s thesis.
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