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Abstract

This dissertation encapsulates the research papers I authored during my tenure as a Ph.D. candidate at the

Technical University of Munich, providing a comprehensive contextualization of their significance. My pri-

mary contributions revolve around the application of machine learning methodologies, particularly neural

networks, to tackle both forward and inverse problems.

The focal point of my work lies within the realm of addressing numerically intricate scenarios, particularly

those involving simulations of partial differential equations, such as the Navier-Stokes equations governing

incompressible fluids.

In order to conduct the numerical experiments essential to these studies, I devised a software library tailored

for differentiable simulations, known as ΦFlow, which will be elaborated upon herein. The utilization of ΦFlow

is ubiquitous across all the publications enumerated in the subsequent pages, and it has garnered attention

from independent researchers who have subsequently employed it in their own diverse publications.

The primary publications are reproduced at the end of this document.

Zusammenfassung

Diese Dissertation fasst die Forschungsarbeiten zusammen, die ich während meiner Zeit als Doktorand an

der Technischen Universität München verfasst habe, und stellt eine umfassende Kontextualisierung ihrer

Bedeutung dar. Meine primären Beiträge drehen sich um die Anwendung von Methoden des maschinellen

Lernens, insbesondere von neuronalen Netzen, um sowohl Vorwärts als auch inverse Probleme zu lösen.

Der Schwerpunkt meiner Arbeit liegt im Bereich der Behandlung numerisch schwieriger Szenarien, insbeson-

dere der Simulation partieller Differentialgleichungen, wie der Navier-Stokes-Gleichungen für inkompressible

Fluide.

Um die für diese Studien erforderlichen numerischen Experimente durchzuführen, habe ich eine Software-

Bibliothek ΦFlow entwickelt, die auf differenzierbare Simulationen spezialisiert ist. Die Verwendung von ΦFlow

ist in allen auf den folgenden Seiten aufgezählten Publikationen allgegenwärtig und hat die Aufmerksamkeit

unabhängiger Forscher auf sich gezogen, die es anschließend in ihren eigenen Publikationen eingesetzt haben.

Die wichtigsten Veröffentlichungen sind am Ende dieses Dokuments abgedruckt.
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1
Introduction

This dissertation summarizes and contextualizes the various publications and contributions I have made

during my work as a doctoral student at the Technical University of Munich. These broadly revolve around

employing deep learning and differentiable physics for forward and inverse problems in science. This chapter

introduces the general topic and outlines my contributions to the field.

1.1 Machine Learning in Science and Engineering

In recent years, the integration of machine learning techniques into scientific and engineering disciplines has

revolutionized the way we approach complex problems, driving innovation and discovery across a spectrum

of fields [LBH15]. From deciphering intricate biological mechanisms to optimizing manufacturing processes,

the application of machine learning algorithms has become increasingly pervasive, offering unprecedented in-

sights and efficiencies [JM15]. This dissertation delves into the profound impact of machine learning method-

ologies for problem solving in science and engineering, highlighting my own contributions along the way and

examining existing challenges and opportunities.

The convergence of machine learning and traditional scientific and engineering practices has ushered in a

new era of exploration and problem-solving. By leveraging vast datasets and powerful computational tools,

researchers have been able to unravel intricate patterns, predict behaviors, and uncover hidden relationships

within complex systems [GHV17]. Whether it be in the realms of materials science, environmental engi-

neering, or biomedical research, machine learning algorithms have demonstrated remarkable capabilities in

accelerating the pace of discovery and innovation.

However, despite the remarkable progress achieved, significant challenges persist. The interpretability of

machine learning models and the robustness of algorithms in the face of uncertainty are but a few of the

pressing issues that demand careful consideration [Lip18]. Moreover, the interdisciplinary nature of many

scientific and engineering problems necessitates a holistic approach that bridges the gap between domain

expertise and computational proficiency [Car+15].
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1 INTRODUCTION

This dissertation seeks to address these challenges and provide a comprehensive overview of the current state-

of-the-art in machine learning for science and engineering. Through a synthesis of theoretical frameworks,

practical case studies, and critical analysis, it aims to shed light on both the promise and the pitfalls of

integrating machine learning techniques into traditional research methodologies. By examining real-world

applications across diverse domains, it endeavors to uncover best practices, identify areas for improvement,

and chart a course towards the responsible and effective utilization of machine learning in pursuit of scientific

and engineering advancements.

As we stand on the cusp of a new era defined by unprecedented technological capabilities, the exploration of

machine learning for science and engineering represents not only a scientific endeavor but also a philosophical

and societal one. By embracing the potential of these transformative technologies while remaining vigilant

to their limitations and implications, we can forge a path towards a future where innovation is empowered

by intelligence, and progress is driven by knowledge.

1.2 My contributions

I will begin by reviewing the necessary background required to understand my research. Chapter 2 includes

an overview of current machine learning methods as well as partial differential equations (PDEs) which

govern the evolution of physical systems.

A large part of my time as a doctoral student was spent developing tools for simulating complex PDEs in a

differentiable way to enable advanced machine learning methods. This effort has resulted in the software

libraries ΦFlow and ΦML which I will introduce in chapter 3.

With access to differentiable simulations, my colleagues and I have trained neural networks on various tasks

which can broadly be categorized into two types, forward problems and inverse problems. In this context,

forward problems refer to solving PDEs given the initial and boundary conditions. Deep learning can be used

for forward problems in various ways, and we have made three separate contributions to this field, which are

explained in chapter 4. First, we have trained neural networks to act as surrogates for a particle-based liquid

simulator (4.2). Second, we have trained correctors to reproduce the behavior of higher-resolution solvers by

learning the evolution differences over many time steps (4.3). Third, we have explored using neural networks

to approximate a smoothed version of physics-based objective functions to improve optimization (4.4).

Applying machine learning techniques to inverse problems poses a different set of challenges, and I have made

multiple contributions to this area as well. Chapter 5.1 presents my work on the advantages of optimizing

inverse problems with neural networks compared to traditional optimizers. Then in 5.2, I present my work

on controlling dynamical systems as a practical application of this approach. In performing these studies,

we have identified some fundamental limitations in traditional machine learning methods, which have led

to two improvements for neural network training involving the principle of update inversion. Chapter 5.4

explains my work on inverting the physics, and chapter 5.5 summarizes related work I have contributed to,

which inverts the gradients.
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2
Background and Preliminaries

This chapter introduces machine learning as a whole as well as partial differential equations (PDEs) and

traditional methods of solving them. Chapter 3 then investigates the interface between these two, which

naturally leads to differentiable physics and the ΦFlow library I implemented.

2.1 Deep learning and its applications

Deep learning, a subfield of artificial intelligence (AI), has emerged as a transformative force in modern

science and technology [Goo16]. It represents a class of machine learning algorithms that enable computers

to learn complex representations of data through the use of deep neural networks, inspired by the structure

and function of the human brain [LBH15]. The evolution of deep learning has revolutionized various scientific

disciplines, offering unprecedented capabilities in data analysis, pattern recognition, and decision-making

processes [Sch15].

Historically, the roots of deep learning can be traced back to the development of artificial neural networks

(ANNs) in the 1940s and 1950s [MP43; Ros58]. However, it wasn’t until the 1980s and 1990s that signif-

icant advancements were made in training deep neural networks with the introduction of backpropagation

and other optimization techniques [RHW86]. Despite these advancements, deep learning faced significant

challenges due to limited computational power and insufficient amounts of labeled data [HOT06].

The breakthroughs in deep learning can be largely attributed to the convergence of several factors, including

the exponential growth of computational resources, the proliferation of big data, and innovative algorithmic

developments. The resurgence of deep learning began in the mid-2000s, with the introduction of deep con-

volutional neural networks (CNNs) by Hinton et al., which demonstrated remarkable performance in image

classification tasks. Subsequently, deep learning techniques have been extended and applied to a wide range

of scientific domains, including but not limited to:
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2 BACKGROUND AND PRELIMINARIES

1. Biomedical Imaging: Deep learning has shown exceptional promise in medical image analysis, facili-

tating tasks such as disease diagnosis, tumor detection, and organ segmentation. For instance, CNNs

have been employed to interpret radiological images with high accuracy, aiding clinicians in making

more informed decisions [KSH12].
2. Genomics and Proteomics: In genomics, deep learning techniques have been utilized to analyze DNA

sequences, predict gene functions, and identify genetic variations associated with diseases. Similarly,

in proteomics, deep learning models have been applied to protein structure prediction and drug dis-

covery [Ang+16].
3. Drug Discovery and Development: Deep learning has the potential to revolutionize drug discovery

pipelines by accelerating the process of drug screening, lead optimization, and target identification.

Deep learning models can learn complex relationships between chemical structures and biological ac-

tivities, leading to the design of novel therapeutics [GHS16].
4. Climate Science: Deep learning techniques have been employed to analyze climate data, predict ex-

treme weather events, and model climate patterns. By leveraging deep neural networks, researchers

can extract valuable insights from large-scale climate datasets, contributing to our understanding of

climate dynamics and informing mitigation strategies [RPG18].
5. Neuroscience: Deep learning plays a crucial role in analyzing neuroimaging data, deciphering brain

connectivity networks, and understanding neural activity patterns. These insights are instrumental in

advancing our understanding of brain function and neurological disorders [Sch+17].

Furthermore, deep learning finds application in engineering [Alz+21; And+23], computer vision [Vas+17],
speech recognition [Hin+12], medical imaging [Lit+17], autonomous vehicles [Boj+16], recommender sys-

tems [CAS16], financial services [BYR17], drug discovery [GHV17], gaming [Mni+13a], robotics [Lev+16],
cybersecurity [SB15], agriculture [KP18], retail [Tan+18], energy [Hos+17; Li+24], among others.

Overall, deep learning represents a paradigm shift in scientific research, empowering scientists and re-

searchers to tackle complex problems across various disciplines. With ongoing advancements in hardware

capabilities, algorithmic innovations, and interdisciplinary collaborations, the potential applications of deep

learning in science continue to expand, promising transformative breakthroughs in the years to come.

2.2 Partial differential equations (PDEs)

Partial Differential Equations (PDEs) are fundamental mathematical tools used to describe various physical

phenomena and processes occurring in fields such as physics, engineering, biology, and economics [CH62;

SSS85].

Unlike ordinary differential equations (ODEs), which involve functions of a single variable, PDEs involve

functions of several variables and their partial derivatives [Eva22; Str07; Hab04].

The study of PDEs dates back to the 18th century, with seminal contributions from mathematicians such as

Leonhard Euler and Joseph-Louis Lagrange. However, their significance in modeling real-world phenomena
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2 BACKGROUND AND PRELIMINARIES

became more pronounced with the advent of modern science and technology. PDEs provide a powerful

framework for describing continuous systems and have applications ranging from fluid dynamics and heat

transfer to electromagnetism and quantum mechanics.

A generic form of a partial differential equation can be expressed as:

F

�

x1, x2, . . . , xn, u,
∂ u
∂ x1

,
∂ u
∂ x2

, . . . ,
∂ mu
∂ xm

n

�

= 0 (2.1)

where u is the unknown function of variables x1, x2, ..., xn, and F is a given function involving u and its partial

derivatives up to order m.

Most PDEs describing real systems have time t as one of their variables and these terms can usually be

separated. Higher-order temporal derivatives can further be reduced to first-order by increasing the dimen-

sionality of the dynamical system, e.g. describing the evolution of phase space. This results in the following

form:

∂ u
∂ t
= F

�

t, x1, x2, . . . , xn, u,
∂ u
∂ x1

,
∂ u
∂ x2

, . . . ,
∂ mu
∂ xm

n

�

(2.2)

PDEs are classified based on their order, linearity, and the number of independent variables. Common types

include elliptic, parabolic, and hyperbolic equations, each with distinct characteristics and solution methods.

Elliptic equations, such as Laplace’s equation, describe steady-state phenomena and are characterized by

smooth solutions. Parabolic equations, exemplified by the heat equation (Fig. 2.1), govern processes involving

diffusion and exhibit solutions that evolve over time. Hyperbolic equations, like the wave equation, model

wave propagation phenomena with solutions that propagate along characteristic curves.

The study of PDEs encompasses a wide range of mathematical techniques, including separation of variables,

Fourier and Laplace transforms, numerical methods, and variational principles. These tools enable the anal-

ysis and solution of complex problems arising in diverse fields of science and engineering. In the following

section, we will explore numerical schemes for solving them, before moving on to machine learning methods

in later chapters.

2.3 Traditional PDE solving methods

Solving PDEs analytically is often intractable for complex systems, necessitating the development of numerical

methods. Here we present an overview of traditional numerical techniques for solving PDEs.

Finite Difference Methods Finite Difference Methods (FDM) discretize PDEs by approximating deriva-

tives using finite difference approximations. The domain is discretized into a grid, and the PDE is solved

5



2 BACKGROUND AND PRELIMINARIES
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Figure 2.1: 1D heat convection. Initially (left edge) all values at constant temperature u = 0. The boundaries are
constrained to u= ±1. The PDE ∂ u

∂ t = 10−3 · ∇2u determines the evolution. Simulated with ΦFlow.

iteratively at grid points. Common schemes include explicit, implicit, and Crank-Nicolson methods, each

offering trade-offs between stability, accuracy, and computational efficiency [LeV07]. FDM is conceptually

simple and applicable to a wide range of PDEs, making it a foundational technique in computational physics

and engineering.

Finite Element Methods Finite Element Methods (FEM) discretize the domain into finite elements, where

the PDE is approximated by piecewise polynomial functions defined over these elements. FEM provides

flexibility in handling irregular geometries and complex boundary conditions [ZT05]. It achieves higher

accuracy compared to FDM for problems with smooth solutions but requires solving a system of algebraic

equations, making it computationally intensive.

Finite Volume Methods Finite Volume Methods (FVM) discretize PDEs by dividing the domain into control

volumes and approximating integrals over these volumes. FVM emphasizes conservation laws and fluxes

across control volume interfaces. It is widely used in fluid dynamics and heat transfer simulations due to its

robustness and conservation properties [FP02]. FVM is particularly suitable for problems with discontinuous

solutions or shocks.

Spectral Methods Spectral Methods represent solutions using basis functions such as Fourier, Chebyshev,

or Legendre polynomials. These methods provide exponential convergence rates for smooth solutions and

are well-suited for problems with periodic boundary conditions [Boy01]. However, they are less flexible for

handling complex geometries and boundary conditions compared to finite element methods.

6



2 BACKGROUND AND PRELIMINARIES

Traditional PDE solving techniques offer a diverse toolkit for approximating solutions to PDEs across various

disciplines. Each method has its strengths and weaknesses, and the choice depends on factors such as problem

characteristics, computational resources, and desired accuracy. This begs the question as to whether machine

learning approaches can improve upon the existing algorithms. As we will see, a key ingredient to enable

advanced machine learning techniques is being able to differentiate through these numerical methods in order

to obtain feedback for optimizing the learned model. In the next chapter, I will introduce ΦFlow, a software

library I developed to tightly integrate differentiable simulations with existing machine learning libraries.
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3
Differentiable Physics and ΦFlow

Differentiable physics refers to simulated processes for which we can compute derivatives. Imagine we can

simulate a process P(x |Φ), such as a weather forecast, to obtain a result y , such as the weather some days

after the initial state x . This simulation is influenced by various parameters Φ, like modelling the influence of

microphysics or turbulence [Cou+12]. Then to improve the simulation, we must find the optimal parameters

Φ to reduce the difference between forecast and recorded weather data L(x) on a set of historical weather

data D. And to find the optimal parameters, we would like to know how L is affected by each parameter,

i.e. ∂ L
∂Φ . For a squared error metric, this gradient is ∂ L

∂ y
∂P
∂Φ . Here, the second term denotes the derivative of

the simulation output w.r.t. the parameters Φ. We call a simulation differentiable, if this quantity and/or ∂P∂ x

(and optionally higher-order derivatives) can be computed efficiently, i.e. the computational cost scales sub-

linearly with the number of parameters Φ. This is typically achieved by calculating the analytical derivative

via the adjoint method, i.e. backpropagation [Goo16].

3.1 Applications of Differentiable Physics

Numerical applications involving processes can broadly be categorized into forward and inverse problems. For

a known process P(x |Φ)→ y , forward problems involve solving for y given (x ,Φ), while inverse problems

generally search for parameters from either x or Φ. In the context of PDEs, forward problems amount to

solving the initial value problem given by the specified initial state x and boundary conditions Φ. The classi-

fication into forward and backward problems is somewhat ambiguous, since it depends on the definition of

P . Furthermore there are applications that require solving both forward and inverse problems.

In recent years, researchers have applied machine learning techniques to a wide variety of both forward and

inverse problems. Many of the corresponding applications are made possible by differentiable physics or can

strongly benefit from its usage. Fig. 3.1 categorizes a broad range of methods by the type of problem they

are designed to solve as well as their usage of machine learning and differentiable physics.

8



3 DIFFERENTIABLE PHYSICS AND ΦFLOW

ML

Differentiable Physics

Forward Problems Inverse Problems

RL

PINNs

Gradient-based
Optimization

BFGS, NLP

PDE Solvers

Learned
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Surrogate Models

Learned
Control

Joint 
Optimization

Neural
Adjoint

Smoothed
Objectives

Simulation Tools
ΦML, ΦFlow, Jax-MD, DiffTaichi

Derivative-free optimization
Genetic algs., Sim. Annealing, Bayesian

Diff. Solvers
Dolfin-adjoint, SU2, 

Figure 3.1: Overview of methods and tools used to solve forward as well as inverse problems.

The combination of deep learning and physics simulations has sparked a multitude of promising lines of

research. For applications where PDE solvers are traditionally employed, surrogate ML models have been

shown to provide significant performance improvements for certain types of problems [San+20; Tom+17]
or improve simulation accuracy for fixed resolutions [Koc+21b; Um+20]. This can come in the form of

completely replacing PDE solvers or augmenting them by providing correction terms to model unresolved

dynamics. These models can be trained without differentiable physics on single time steps, but this training

scheme is prone to instability at inference, when the models are autoregressively executed on long sequences.

Here, differentiable physics enables rolling out multiple time steps during network training. We have shown

that this reduces the risk of numerical instabilities at inference time and benefits accuracy [Um+20].

PINNs are an alternative way to of solving PDEs using neural networks. PINNs directly use the partial deriva-

tives of the governing PDE as a training objective but do not require a differentiable simulator. They will be

introduced in more detail in chapter 4.
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3 DIFFERENTIABLE PHYSICS AND ΦFLOW

In addition to these applications for forward problems, ML has also seen success for inverse problems. Most

classical inverse problems involve estimating parameters of a known modelP from observations, but learning

the optimal behavior of agents also falls into this category. There are numerous classical algorithms to solve

these problems, which can be broadly classified by whether they require the derivative of the objective func-

tion w.r.t. the unknown parameters. Derivative-free optimization can be applied to discontinuous or integer

problems as well, but for continuous and differentiable problems, making use of the gradient and possibly

higher-order derivatives via differentiable physics can significantly speed up convergencen [JOB91; Jam03].

In recent years, neural networks have been applied to inverse problems from science, engineering, robotics,

health care, video and board games, and many more. Notable breakthroughs have been achieved using rein-

forcement learning (RL), such as learning to play Atari games [Mni+13b], Go [Sil+17] and Dota [Ber+19].
RL relies on a non-differentiable model of the environment, which allows it to be applied to a vast range of

problems. On continuous problems, RL research has been working on integrating differentiable models into

the training. This branch, known as model-based RL [Moe+23], is converging with the work from the science

and engineering community on ML methods for inverse problems.

There, ML methods have been applied to inverse problems, such as controlling complex physical sys-

tems [Bie+20; HKT20], encoding physical states and sequences [RPK19], and finding conservation

laws [GDY19]. These approaches are based on the assumption that there are exploitable patterns in

the optimal solutions to similar inverse problems. Chapter 5 provides more information on ML methods for

scientific inverse problems, including my contributions to the field.

3.2 Backpropagation and the adjoint method

Differentiable simulations have long been used in classical optimization where the adjoint method is typically

employed to compute the required gradients [Ple06]. The adjoint method is also used in machine learning,

where it is known as reverse-mode differentiation or simply backpropagation. Consequently, it can also be

used to backpropagate through joint systems comprising of both neural networks and physical simulations

as long as all parts are differentiable.

Despite this deep connection between the two fields, most software frameworks focus on only one of them.

There are frameworks for differentiable simulations [TET12; MFD19] and separate frameworks for neu-

ral network optimization, such as PyTorch [Pas+19], TensorFlow [Aba+16], and Jax [Bra+18; Bab+20;

Hen+20]. Combining these frameworks is hard to achieve in practice and many researchers have instead

chosen to implement custom differentiable simulations compatible with one specific machine learning frame-

work [Tom+17; Koc+21b; Bie+20]. However, this approach results in highly specialized and low-level sim-

ulation code, preventing adoption to different projects.

A number of libraries target this problem [SC20; Hu+20] but they are either very specialized or use different

programming paradigms than the popular machine learning frameworks, making seamless integration diffi-

cult. The programming language Julia [Bez+17] offers language-level differentiation but is not compatible

10



3 DIFFERENTIABLE PHYSICS AND ΦFLOW

with most established machine learning frameworks. The difficulty in training neural networks with differ-

entiable physics has led many authors to fall back to supervised learning [San+20; RT21; TLY20; Sta+21].

3.3 ΦML and ΦFlow

ΦFlow (PhiFlow) is an open-source framework for differentiable simulations I developed during my Ph.D.

Originally developed as one project, ΦFlow is now distinct from ΦML which provides a science-oriented tensor

API and fully integrates with PyTorch, TensorFlow, Jax and NumPy [Har+20]. ΦFlow builds on ΦML to provide

access to geometry and physics functions and and is intended to be used for a wide variety of simulations.

It includes high-level data structures for grid-based (Eulerian) as well as particle-based (Lagrangian) simu-

lations. ΦFlow is designed to make simulation code as reusable as possible without sacrificing readability or

performance. Additionally ΦFlow aims to accelerate development iterations by promoting interactivity and

clean code.

3.4 Design Principles

Here, we lay out our goals in developing ΦML and ΦFlow. These serve as the foundation for the design as well

as the metrics for their evaluation.

Reusability Simulation code based on ΦFlow should be able to run in many different settings without modi-

fication. The dynamics of a system, e.g. governed by a partial differential equations, are often formulated in a

dimension-agnostic manner. Simulation code implementing these dynamics should also exhibit that property.

Most simulations use some form of discretization, such as particles or grids. Simulation code written for one

such discretization should be easy to port to another appropritate one.

Compatibility There are many toolkits and libraries extending machine learning frameworks with special-

ized functionality. These are generally only available for a certain framework, be it TensorFlow, PyTorch or

Jax. ΦFlow users should be free to choose whatever framework they desire without modifying their simula-

tion code. Additionally, simulations should be able to run on GPUs and CPUs and be vectorizable without

modification. ΦFlow should support Linux, Windows and Mac.

Interactivity To develop code, tune parameters or find issues quickly, it is vital to get immediate visual

feedback on what the code is doing and influence it if necessary. This requires a user interface that can

visualize physical quantities as well as statistics and provide user-specified controls to adjust parameters. It

should work for remote processes as well as locally executed scripts. Users should be able to halt execution

at any point using a debugger and visualize variable values.

11



3 DIFFERENTIABLE PHYSICS AND ΦFLOW

Usability ΦFlow should be easy to learn and use. To achieve this, the API should be intuitive with expressively

named functions matching existing frameworks where possible. User code as well as built-in simulation

functionality should be easy to read, i.e. concise and expressive.

Maintainability Users should be able to read and understand all high-level source code ofΦFlow. All relevant

framework functions should undergo continuous testing to ensure patches do not break existing code. When

installing ΦFlow, users should be able to check the installation status and get hints as to how to solve potential

issues.

Performance Simulations using ΦFlow should make use of hardware accelerators (GPUs, TPUs) where pos-

sible. During development, we prioritize rapid code iterations over execution speed but the completed code

should run as fast as if written directly against the chosen framework.

3.5 Design

We choose Python [VD95] 3.6 and newer as the main programming language for ΦML’s and ΦFlow’s API due to

its simplicity and compatibility with machine learning frameworks and operating systems. We also implement

all core functionality in Python to enable users to easily locate and understand the implementation of all

library functions. In the following, we list the major design decisions, which affect both libraries.

math

geom

field

physics

vis

Figure 3.2: Modules
of ΦFlow. The math API
is part of ΦML.

Layered Architecture ΦFlow consists of five sub-modules forming a software stack

(Fig. 3.2), each designed to minimally wrap functionality with as little intersection to

each other as possible.. The math module, now part of ΦML, manages tensor calculus

and includes BLAS, differentiation, jit-compilation and optimization functionality. The

geometry package provides classes to represent n-dimensional shapes and collections

of shapes. The module field contains various data structures to discretize continuous

physical fields, such as centered and staggered grids and point clouds. The functions

in the physics module operate on these and serve as building blocks for physics sim-

ulations. Finally, the vis module includes user interface and plotting functionality for

fields and tensors.

Uniform API for PyTorch, TensorFlow, Jax and NumPy ΦML’s math API is similar to NumPy, containing

a Tensor class and functions to operate on tensors. However, we extend the base functionality that is present

in all popular machine learning frameworks by new features to make writing reusable code easier. ΦML tensors

can be created from all supported backends – PyTorch, TensorFlow, Jax and NumPy – and act as a wrappers

for the underlying arrays which we refer to as native tensors. Since all native tensors are represented by the

same class in ΦML, code written against ΦML’s math API is backend-agnostic. Data can also be passed between

12
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backends, internally using the tensor sharing functionality of DLPack [al17] when possible. This way, an

easy-to-use PyTorch network can interact with a Jax simulation for performance but also with an identical

PyTorch simulation to facilitate debugging.

Named dimensions In ΦML and ΦFlow, dimensions are not referenced by their index but are given a name

instead, similar to pandas [McK10]. This allows code to only interact with certain dimensions while being

agnostic to the number and order of other dimensions. This is especially relevant considering PyTorch net-

works require dimensions to be laid out in the order batch, channel, spatial while TensorFlow needs

batch, spatial, channel. It also saves users from reshaping tensors because non-matching tensors can

internally be reshaped to match, adding missing dimensions as needed.

Element names along dimensions Like with the dimension orders described above, there are also multiple

conventions for component orders, such as storing vectors as (x , y, z) or (z, y, x). ΦML supports component-

order-agnostic code by allowing users to specify the component order explicitly. This enables extracting the

x component of a vector-valued tensor using the syntax tensor.vector[’x’] instead of the traditional

tensor[:, 0, ...] or tensor[:, -1, ...], assuming PyTorch dimension order.

Non-uniform tensors With some data structures, such as staggered grids, the number of elements along

one or multiple dimensions can be variable. We will refer to tensors holding such data as non-uniform tensors

but they are also known as ragged or nested tensors. Users will often pad the missing elements with zeros to

make the data easier to handle but this can lead to problems down the line. Instead, ΦML automatically creates

non-uniform tensors when stacking tensors with non-matching shapes. The shape attribute of a non-uniform

tensor stores its exact layout, allowing users to operate on non-uniform shapes like on regular shapes, e.g.

allocating new memory with zeros(non_uniform_shape).

Unified functional math For differentiation, just-in-time compilation and iterative solves, we adopt a

function-based approach similar to Jax. This is different from TensorFlow, where gradients are tracked

via Python context managers, and PyTorch, where gradients are attached to tensors. ΦML unifies these

different paradigms, providing unified function operations that run with all backends. For example,

math.functional_gradient(f) returns a function that computes the gradient of f and, to solve a sparse

system of linear equations, users simply supply a Python function and the desired output of that function.

Built-in simulation and learning functionality To make it as easy as possible for users to get started,

ΦML ships with many common building blocks for simulations, such as classes to represent grids and point

clouds. Built-in functions like finite-difference operators, diffusion, advection or pressure computation for

fluids allow users to quickly assemble readable and flexible physics simulations. Additionally, they facilitate

altering the physics later, e.g. switching resolution, domain size or boundary conditions. All provided classes

and functions are implemented in Python and interface only with ΦML’s math API, not any particular backend.

13



3 DIFFERENTIABLE PHYSICS AND ΦFLOW

This makes it easy for users to navigate and read their source code. ΦML also provides generic convenience

functions for setting up common neural network types, such as fully-connected networks or U-Nets [RFB15].

Dimension types Each tensor dimension in ΦML is assigned one of four types: batch, spatial, instance or

channel. Batch dimensions have no physical interpretation but serve to run operations in parallel. All math

functions treat slices along batch dimensions as independent, i.e. all operations are performed element-wise

along batch dimensions. Since all functions in ΦML’s math module adhere to this rule, user code will also

exhibit that property unless batch dimensions are referenced explicitly. This enables seamless parallelization

for efficient GPU utilization without additional functions like vmap. Spatial dimensions list data sampled at

regular intervals. They define the physical space in which spatial operations like grid sampling or the Fourier

transform operate in. Thus, a simulation written for 2D can be scaled to 3D simply by adding an additional

spatial dimension to the initial state, assuming the simulation code does not explicitly reference a specific

spatial dimension. This feature mimics the operator notation in mathematics and abstracts out the error-

prone process of porting code to new shapes. In contrast to spatial dimensions, instance dimensions list data

sampled at irregular intervals. They can be used to represent collections of points, particles, finite volumes

or elements as well as graph nodes. Lastly, channel dimensions enumerate properties of single instances or

sample points, such as the x, y and z components of a vector field.

Floating-point precision by context ΦML’s tensor operations determine the desired floating point precision

from the operation context rather than the data types of its inputs. The precision can be set globally or

specified locally via context managers and operations will automatically convert tensors of non-matching

data types if necessary. This avoids data-type-related problems and errors, as well as making user code more

concise and cohesive.

Lazy stacking Simulations often perform component-wise operations separately if there is no function

achieving the desired effect with a single call, like computing the x, y and z-component of a velocity field in

three lines. This often leads users to declare separate variables for the components to avoid repeated tensor

stacking and slicing. However, this clutters the code and prevents it from being dimension-agnostic. Instead,

ΦML performs lazy stacking by default, i.e. memory is only allocated once the stacked data is required as a

block. Consequently, functions can unstack the components, operate on them individually, and restack them,

without worrying about unnecessary memory allocations.

Just-in-time compilation While the previous features allow for concise, expressive and flexible code, the

added abstraction layer and shape tracking induces additional overhead. To avoid this in production, ΦML

supports just-in-time (JIT) compilation for PyTorch, TensorFlow and Jax. Once compiled, only the tensor

operations are executed, eliminating all Python-based overhead.
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Sparse matrices from linear functions Solving linear systems of equations is a key requirement in both

particle and grid-based simulations. Since the physical influence is typically limited to neighboring sample

points or particles, the resulting linear systems are often sparse. Constructing such sparse matrices by hand

yields code that is hard to understand and debug as well as limited to specific boundary conditions. Instead,

ΦML lets users specify linear systems with a linear Python function, like with matrix-free solvers. However,

these functions often consist of many individual operations, which makes it inefficient to call them at each

solver iteration. To avoid this overhead, ΦML can convert most linear and affine functions to sparse matrices

so that solvers can perform the matrix multiplication in a single operation. When JIT-compiling a simulation

that includes a linear solve, the matrix generation will be performed during the initial tracing of the function,

assuming the sparsity pattern is constant.

Custom CUDA Operatorions ΦML provides custom CUDA kernels for specific operations that could bot-

tleneck simulations, such as grid sampling for TensorFlow or linear solves. If available, these will be used

automatically in place of the fallback Python implementation.

Plotting recipes ΦFlow provides convenience plotting recipes for tensors and all built-in data structures,

such as grids and point clouds. These plots can be created with a single function call and can be used during

debugging, e.g. to visualize a variable. ΦFlow supports the popular plotting libraries Matplotlib [Hun07] and

Plotly [Inc15] as well as basic visualization for the command line.

Web-based user interface To provide instant feedback and enable interactivity, ΦFlow includes user inter-

faces for both Jupyter notebooks [Klu+16] and stand-alone Python scripts. The user interfaces employ the

above-mentioned plotting recipes to show selected module or notebook variables in real time. They can also

display graphs to track scalar quantities, such as learning curves. By annotating numeric, Boolean or textual

variables or functions, control components can be added to the interface, allowing users to interact with the

code, e.g. to adjust the learning rate or to tweak physical parameters in real time without restarting the

program. ΦFlow’s interface uses Jupyter interactive widgets [com15] for notebooks and Dash [Inc15] for the

web-based interface, enabling supervision and interaction with remote scripts.

3.6 Evaluation

We now test whether ΦFlow’s design fulfills the design principles. Specifically, we examine the design prin-

ciples in order and measure the degree to which they apply to ΦFlow as objectively as possible. We consider

examples implementations for three important applications of ΦFlow: running simulations, optimizing physi-

cal parameters, and training neural networks.

Running simulations without computing gradients is a common task in learning as well as science, e.g. to

generate synthetic data sets for training or validation. For this task, we set up a galaxy-like simulation,
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Table 3.1: Number of lines changed by porting the experiment code to a different setting. We break the changes down by
category: 1. executing script, 2. visualization, 3. simulation. Asterisks indicate that there are multiple options depending
on the desired outcome; the minimum is shown.

Task 2D/3D Backend Device Parallelize Boundary Precision Production

Galaxy sim. 1, 0, 0 1, 0, 0 1, 0, 0 1, 0*, 0 n/a 1, 0, 0 1, 0, 0
Bubble opt. 1*, 0, 0 1, 0, 0 1, 0, 0 1, 0*, 0 1, 1, 0 1, 0, 0* 1, 0, 0
Fluid learn. 3, 0, 0 1, 0, 0 1, 0, 0 1, 0*, 0 1, 0, 0 1, 0, 0* 1, 0, 0

Table 3.2: ΦFlow support matrix as of PyTorch 1.11.0, TensorFlow 2.8.0, Jax 0.3.1.

Operating system PyTorch TensorFlow 2 Jax NumPy (CPU)

Linux ✓ Ubuntu 16.04+ Ubuntu 16.04+ ✓
Windows Vista+ 7+ 10+ (WSL2) ✓
macOS ✓(CPU*) 10.12.6+ (CPU) 12.12+ ✓

i.e. a many-body system evolving under Newtonian gravity. In the next experiment, inspired by related

work [SC20], we consider a collection of non-overlapping spherical particles or bubbles. We define an energy

function based on the pair-wise distances between them and minimize it using the popular L-BFGS-B [LN89]
optimizer to obtain a valid configuration of the system. For the third task, we consider the movement of test

particles in an incompressible fluid and train a U-Net [RFB15] to exert control forces upon the fluid to move

the particles towards the center.

Reusability To measure reusability, we port our experiments to different settings and measure how many

lines of code are changed in the process. In particular, we port all problems to two and three-dimensional

physical settings, run them with all backends, both on the CPU and GPU and with 32 and 64 bit floating point

precision, extend them to batched settings, modify the physical boundary conditions, and switch between

production and debug mode (see Tab. 3.1).

We observe that the simulation code is compatible with all tested settings and does not require any modifica-

tion. The built-in visualization adapts to the dimensionality of the data and only requires manual tweaking

for the case of plotting particles on a periodic domain or plotting large batches of data. Remarkably, switching

between PyTorch, TensorFlow and Jax only requires a single change to the executing script in all examples

despite all tensor operations being different. Specifically, the backend is selected via the import statement,

e.g. phi.torch.flow for PyTorch and phi.tf.flow for TensorFlow. This even holds for the case of training

a 3D U-Net interacting with an incompressible fluid simulation because identical U-Net implementations are

available for all backends.

Compatibility ΦFlow itself runs on Linux, Windows and macOS. However not all backends are available on

all operating systems, e.g. Jax has no official support for Windows. Table 3.2 shows which operating systems

are supported by which backends.
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Interactivity ΦFlow’s built-in plotting recipes include curve plots for 1D data, heatmap, vector and scatter

plots for 2D grids and points, as well as 3D density, scatter and vector plots. Composite plots can be created

by overlaying multiple plots or laying out multiple fields in a grid-like structure. Fig. 3.3 shows a selection of

basic plots, each visualizing a single field. Additionally, scalar quantities can be graphed over time.

Figure 3.3: Example plots created through plotting recipes included in ΦFlow. Each plot was set up in one line of code.

The interactive user interfaces enable fast iterations without restarting the program each time a change is

made. Instead, program and visualization code can be combined into a single interactive application, see

Fig. 3.4. This is similar in spirit to Jupyter notebooks which also let users make changes to specific pieces of

code without restarting the whole program and ΦFlow’s visualization and interaction tools are fully compatible

with Jupyter notebooks. For controlling running applications, ΦFlow currently includes check boxes, sliders,

drop-down menus, text fields and buttons. Making a variable or function accessible to the user interface

typically requires changing one line of code. Interactive controls make it possible to adjust the time increment

of a simulation in real time based on the CFL number or to switch optimizer and change the learning rate for

a neural network during training.

Usability Fig. 3.5 compares our ΦFlow implementation of the galaxy simulation against an equivalent Jax

version. Implementations for PyTorch, TensorFlow and NumPy strongly resemble the Jax version. While most

Jax operations require dimensions being passed as integers, ΦFlow uses human-readable names, such as stars,

to improve clarity and reduce the chance of mistakes. The implementations of the other two experiments

are shown in Figs. 3.6 and 3.7. They are both incredibly short and expressive considering the complex tasks

being solved. The loss function for the fluid learning experiment (Fig. 3.7), for example, consists of only

twelve lines of Python code, including function declaration and return statement. Within the ten remaining

Execute Script

View

Revise Code

Launch App

Run & View

Adjust Param.

ΦFlow Parameter IterationTraditional Iteration ΦFlow Logic Iteration

Launch App

Run & View

Revise Code

Figure 3.4: A classical workflow requires restarting the program for a parameter change while the interactive workflow
in ΦFlow enables parameter and logic changes at runtime.
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def galaxy_step(x: jnp.ndarray, v: jnp.ndarray, dt: float):
dx = jnp.expand_dims(x, -3) - jnp.expand_dims(x, -2)
denominator = jnp.sum(dx ** 2, -1, keepdims=True) ** 1.5
individual_a = jnp.expand_dims(masses_others, -1) * dx / denominator
a = - G * jnp.sum(jnp.where(denominator != 0, individual_a, 0), -2)
return x + v * dt, v + a * dt

Jax

ΦFlow

def galaxy_step(x: math.Tensor, v: math.Tensor, dt: float):
dx = x - math.rename_dims(x, 'stars', 'others')
a = - G * math.sum(math.divide_no_nan(masses_others * dx, math.vec_squared(dx) ** 1.5), 'others')
return x + v * dt, v + a * dt

Figure 3.5: Galaxy simulation function, implemented against Jax and ΦFlow.

lines, it executes the neural network to predict the control force, simulates an incompressible 3D fluid flow

for n time steps as well as the passive advection of the marker particles and computes the two loss terms for

training.

Too many lines to list here.
• space.periodic()
• space.periodic().displacement_fn()

• space.raw_transform() → space._get_free_indices()
• space.periodic().shift_fn()

• space.periodic_shift()
• energy.soft_sphere_pair() →maybe_downcast()
• energy.soft_sphere() → util.safe_mask()
• space.canonicalize_displacement_or_metric()

• space.metric()
• space.metric().lambda

• space.distance() → squared_distance(), safe_mask()
• smap.pair() → 3 nested functions, 8 distinct Jax M.D. function dependencies

Jax M.D.

ΦFlow

def energy(x: math.Tensor, boundary=PERIODIC):
dx = boundary.shortest_distance(x, math.rename_dims(x, 'spheres', 'others'), DOMAIN)
dr = math.vec_length(dx, eps=1e-8) / (RADII + math.rename_dims(RADII, 'spheres', 'others'))
return math.l2_loss(math.where((dr < 2e-4) | (dr > 1), 0, 1 - dr))

Figure 3.6: Top: Energy function for the bubble relaxation experiment, our implementation (ΦFlow), Bottom: Jax M.D.
function dependency graph for the same task.

The collection of built-in functions further improves readability by replacing common series of operations

by their proper name. Among others, ΦFlow includes functions for vector calculus (length, rotation, dot

and cross product, normalization, etc.), common training losses (L1, L2, frequency-based losses, etc.), finite

difference derivatives (gradient, Laplace, curl, divergence) as well as exact operations for periodic domains,

grid sampling (up-/down-sampling by factors of 2, arbitrary resampling), diffusion, and advection (Euler,

MacCormack, RK4 for both grids and particles). These functions serve as building blocks for users to define

complex physical simulations.
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def loss_function(v: StaggeredGrid, markers: PointCloud):
markers_grid = CenteredGrid(markers.grid_scatter(v.bounds, v.resolution, 'clamp'), v.extrapolation)
force = field.native_call(NET, field.stack([*v.at_centers().vector, markers_grid], channel('inputs')))
pressure = CenteredGrid(0, 0, force.bounds, force.resolution)
for t in range(STEPS):

v += force.time[t]
v, pressure = fluid.make_incompressible(v, (), Solve('auto', 1e-5, 1e-5, x0=pressure))
markers = advect.points(markers, v, dt=1, integrator=advect.rk4)
v = advect.mac_cormack(v, v, dt=1)

match_loss = math.l2_loss((markers.points - markers.bounds.center))
force_loss = math.l2_loss(force) * .1
return match_loss + force_loss, match_loss, force_loss, v, markers

Figure 3.7: Implementation of the loss function and simulation for the fluid control training experiment. We set STEPS=1
for the performance measurements.

Maintainability ΦFlow includes a diagnosis function that can be used to verify the installation and help in

finding both software and hardware-related problems. Most notably, it tests both availability and functionality

of all relevant dependencies as well as checking for available GPUs by backend.

math

field

vis

geom

physics

Unit tests
87%

87%
64%

82%

88%

Figure 3.8: Test coverage of ΦFlow by mod-
ule.

ΦFlow has been used in production for multiple publications [HKT20;

Um+20; HKT21] and we have validated our solvers on a variety of

standard fluid flow cases, such as the lid-driven cavity, laminar pipe

flow, Taylor-Green vortex decay, and the Backward-facing step prob-

lem (see supplemental material). Additionally, ΦFlow’s code base un-

dergoes automated unit tests and coverage reports upon each push.

Fig. 3.8 shows the coverage by module as measured by codecov.io.

Nearly all math, field and physics functions are covered by unit

tests, with most untested lines amounting to error handling code.

The vis package displays the lowest coverage at 64%. While the

plotting functionality is tested extensively, there are no automated

tests for the user interfaces as of yet.

Performance Table 3.3 shows performance measurements for the experiments described above, run with

all backends in both production and debug mode. In production mode, the JIT compilation optimizes out all

Python-based convenience functionality, such as tracking dimension names, automatic reshaping or data type

checking. Debug mode is slower across all backends but we deem this acceptable since typically only a couple

of simulation steps need to be performed to find numerical problems or bugs. We observe that Jax yields the

best performance in production across all tasks due to its advanced code optimization features. PyTorch

is faster than TensorFlow in our particle-based tests but is beaten by TensorFlow in our three-dimensional

fluid experiment. In all experiments and with all backends, production mode can be enabled by decorating

the simulation or loss function with the jit_compile decorator. This simple and unified approach is only
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Table 3.3: Mean iteration time (ms) for various tasks, standard deviations captured within one process.

GPU (GeForce RTX 3090) CPU (Intel Core i7-7700K)
Task Mode PyTorch TensorFlow Jax PyTorch TensorFlow Jax NumPy

Galaxy sim.
Prod. 18.0± 6.0 51.5± 15.0 3.6± 0.7 3, 853± 90 2, 204± 44 657± 6

5,669± 10
Debug 27.6± 6.3 53.7± 14.2 29.1± 0.9 5, 418± 38 3, 103± 9 3, 146± 30

Bubble opt.
Prod. 52.1± 11.5 736.0± 3.8 28.7± 5.9 3, 370± 25 3, 159± 74 1,813± 19

n/a
Debug 158.2± 0.9 1, 535± 8 212± 6 3, 611± 19 3, 252± 4 5, 298± 27

Fluid learn.
Prod. 3, 927± 609 545± 21 158.9± 3.2 26, 921± 496 15, 556± 184 15,899± 112

n/a
Debug 6,264± 88 3,118± 396 9, 953± 3, 558 31,940± 629 21,202± 336 29,249± 1,889

possible because ΦFlow includes workarounds for the various limitations in the underlying machine learning

libraries.

To check for other sources of computational overhead, we also implement the Galaxy simulation against the

native Jax API (Fig. 3.5) and measure (3.8 ± 0.7) ms in production and (19.2 ± 0.8) ms in debug mode.

While the variation in measured time between consecutive iterations is relatively large, the overall time of

the experiment varies only by about 0.01 ms per step, making the ΦFlow implementation with (3.6 ± 0.7)
consistently faster than the Jax version in production, if only slightly. This surprising result is not generally

true likely due to Jax being able to better optimize the ΦFlow code in this instance. Comparing the low-level

Jax representations of both versions shows that the two versions are indeed different. Despite this, we can

conclude that, in production, any additional overhead induced by ΦFlow must be negligible.

3.7 Summary and Outlook

ΦFlow improves upon existing frameworks in three major ways. First, it unifies the APIs of NumPy, PyTorch,

TensorFlow and Jax, enabling the development of framework-agnostic code bases. This allows members of

a project to collaborate on a shared code base even though they might prefer different machine learning

frameworks, as is typical outside large corporations hiring for specific frameworks. Second, ΦFlow’s live visu-

alization makes the framework easy to work with as users can get an intuitive understanding of what their

code is doing in real time. This greatly facilitates finding bugs or numerical problems with simulation, opti-

mization and training code. Monitoring a physical quantity over time requires no more than one additional

line of code. Third, the live visualization combined with the functionality to make parameters controllable

through the user interface at runtime enables much quicker iterations than with traditional frameworks. The

instant feedback makes it possible to quickly test different configurations without restarting a program, which

simplifies finding optimal settings for simulations and neural network training.

While the performance of ΦFlow already matches backend-specific implementations in production, we aim to

further improve performance, e.g. by adding specialized CUDA operators and by supporting preconditioners

for linear solves.

We hope that widespread adoption of our framework will lead to more code sharing across simulation as well

as machine learning projects. This will facilitate collaborations between different groups and give researchers
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and developers a broader code base to work with. Since libraries built on top of ΦFlow are automatically

compatible with all major Python-based machine learning frameworks, it could also lead developers working

on similar libraries for different ecosystems to combine their efforts.
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4
Learning Solutions to PDEs

Machine learning techniques for solving partial differential equations (PDEs) encompass a variety of ap-

proaches tailored to address the challenges of computational cost, accuracy, and scalability inherent in tra-

ditional numerical methods. Applications that rely on precise and fast simulations range from weather and

climate modeling to aerodynamics and biomedical simulations [TSM12; Sto+13; RC83; Joh+04]. Despite

the effectiveness of numerical methods, computational costs remain a significant challenge due to the high

resolutions required for accurate real-world simulations. Deep learning methods have garnered attention for

their potential to address components of solutions that are challenging to resolve or not well-captured by

traditional physical models [Mor+18; Bar+19; GDY19].

In this chapter, I will first give an overview of various ML-based techniques before delving deeper into three

contributions my colleagues and I made to this field.

4.1 Overview of ML approaches to solving PDEs

The property of neural networks to approximate any function has led to a range of approaches to lever-

aging their flexibility to solve PDEs. These approaches include learning simulation surrogates, where ML

models approximate PDE solutions to accelerate computations; learning correctors, which refine numerical

solutions by training ML models to correct discrepancies between approximate and true solutions; physics-

informed networks (PINNs), which integrate known physical principles into neural network architectures

to enforce governing equations and boundary conditions during training; and Lagrangian/Hamiltonian net-

works, which leverage principles from Lagrangian and Hamiltonian mechanics to model PDE dynamics in

a higher-dimensional space using neural networks, as well as various other approaches [Son+22]. These

techniques combine the flexibility of ML with the interpretability of physics-based models, offering promising

avenues for enhancing the efficiency, accuracy, and scalability of PDE solvers across diverse scientific and

engineering domains.
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Physics-informed neural networks Physics-informed neural networks (PINNs) integrate principles from

both neural networks and physics-based modeling to solve partial differential equations (PDEs) and inverse

problems. Traditional methods for solving PDEs often require discretization of the domain, which can be

computationally expensive, especially for complex geometries or high-dimensional problems. PINNs offer an

alternative approach by leveraging the expressive power of neural networks to approximate the solution of

the PDE directly, without discretizing the domain. This is achieved by training the neural network to satisfy

both the governing PDE and the boundary/initial conditions, effectively incorporating physical knowledge

into the learning process.

PINNs typically consist of two components: a neural network architecture and a loss function that enforces the

PDE and boundary/initial conditions. The neural network takes inputs corresponding to spatial or temporal

coordinates and outputs the solution of the PDE at those points. The loss function penalizes the deviation of

the neural network’s predictions from the PDE and boundary/initial conditions. Through iterative optimiza-

tion techniques such as stochastic gradient descent, the neural network learns to minimize this loss, thereby

approximating the solution of the PDE.

Several notable publications have contributed to the development and application of PINNs. Raissi et al.

introduced the concept of PINNs in their seminal work [RPK19], demonstrating their effectiveness in solving

a variety of PDEs, including Burgers’ equation and the Navier-Stokes equations. Subsequent research has

extended PINNs to tackle inverse problems, where the PDE is used to infer parameters or initial/boundary

conditions from observed data [Rac+20]. Furthermore, efforts have been made to improve the robustness

and efficiency of PINNs, such as incorporating adaptive refinement strategies [LMK21] and developing hybrid

approaches combining physics-based and data-driven modeling [Zhu+19]. These advancements continue to

broaden the scope of applications for PINNs across various scientific and engineering disciplines.

Lagrangian and Hamiltonian networks Lagrangian and Hamiltonian neural networks represent another

paradigm in physics-informed machine learning, focusing on conservational laws and symplectic structures.

These networks are tailored to emulate the dynamics of physical systems governed by Lagrangian or Hamilto-

nian mechanics, which are foundational frameworks in classical physics for describing the motion of particles

and systems.

Lagrangian neural networks are designed to learn the underlying Lagrangian function of a system directly

from data, often in the form of trajectories or observations. The Lagrangian of a dynamical system is defined

as L = T −V where T is the total kinetic energy and V is the total potential energy. Using the Euler-Lagrange

equations and techniques from variational calculus, one can then derive the evolution of the physical state

from the Lagrangian. Consequently, the neural networks allow inference of the equations of motion governing

the system’s behavior. This approach is particularly useful when explicit equations of motion are unknown

or difficult to derive analytically, as it allows for data-driven discovery of the underlying dynamics. Notable

work in this area includes methods for learning Lagrangian systems from observed trajectories [Cra+20b].

On the other hand, Hamiltonian neural networks aim to preserve the symplectic structure of Hamiltonian sys-

tems, which ensures energy conservation and long-term stability in numerical simulations. These networks
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are trained to approximate the Hamiltonian function of a system, which describes its total energy H = T +V ,

as well as the corresponding Hamiltonian dynamics. By enforcing symplecticity constraints during training,

Hamiltonian neural networks maintain the key properties of Hamiltonian systems, such as conservation of en-

ergy and phase-space volume. Research in this field has demonstrated the effectiveness of Hamiltonian neural

networks in simulating complex physical systems while preserving important conservation laws [GDY19].

Both Lagrangian and Hamiltonian neural networks offer promising avenues for physics-informed machine

learning, providing powerful tools for modeling and simulating a wide range of physical phenomena. By

incorporating principles from classical mechanics into neural network architectures, these approaches enable

more accurate and interpretable predictions, while also capturing the fundamental conservation laws that

govern the behavior of dynamical systems. Ongoing research in this area continues to advance the capabilities

of Lagrangian and Hamiltonian neural networks, with applications spanning from fundamental physics to

engineering and beyond.

4.2 Learning simulation surrogates

Learning simulation surrogates involve training ML models to approximate the solutions of PDEs based on

given input parameters and boundary conditions. This approach aims to accelerate the solution process by

replacing computationally expensive simulations with fast predictions from trained ML models. Techniques

such as neural networks, Gaussian processes, and kernel methods have been employed for building simulation

surrogates.

One such application aims to learn the behavior of liquids using a particle-based (Lagrangian) representa-

tion. Under my supervision, Jonathan Klimesch implemented a Lagrangian simulator and used it to train a

surrogate neural network with the aim of significantly reducing computation time compared to the simulator.

This section summarizes our findings which are available in full on the ArXiv [KHT22].

Previous work suggested that deep learning models can be an efficient and accurate alternative to traditional,

hand-crafted simulation approaches [San+20; He+19; Thu+18]. Graph networks in particular have become

popular in collider physics [SBV20], astrophysics [Cra+20a] or chemistry [Gil+17] and have been used to

build various data-driven simulators [Bat+16; Gil+17; Bat+18; San+18; Li+18].

Sanchez-Gonzales et al. proposed the Graph Network-based Simulators (GNS) framework, where they approx-

imate fluid dynamics by learned message-passing on particle graphs [San+20]. We replicate their results on

data from our custom fluid-Implicit-Particle (FLIP) [BR86; ZB05] simulator written in ΦFlow, and extend the

GNS framework with new training variants, investigating the impact of the random noise and the general-

ization of the trained model to different domains.

Using ΦFlow allows for rolling out multiple simulation steps during training, enabling the formulation of

an alternative training scheme where we feed the predicted next simulation state back to the network as

an input. The network can thus learn under conditions matching inference time, which makes the noise
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term superfluous. This methodology requires the use of differentiable physics in order to backpropagate the

gradients to previous time steps and would not been feasible without ΦFlow.

To apply the GNS architecture to the FLIP simulation, we first use our simulator to generate training, valida-

tion and test data from randomly placed liquid blocks and elongated obstacles.

To quantitatively compare the tested model variants, four metrics are employed. The first metric, MSE-acc

1, measures particle-wise mean-squared error for one-step acceleration predictions. The second metric, MSE

20, averages MSE across time, particles, and spatial dimensions for 20 frames, sampled every 20 steps of 400-

step rollouts. This metric provides insights into model performance across different stages of FLIP trajectories.

The third metric, MSE 400, is the average MSE across time, particles, and spatial dimensions for full 400-step

rollouts.

While MSE-acc 1 offers valuable insights, it can be misleading due to particle permutation sensitivity. Thus,

the fourth metric, Earth Mover’s Distance (EMD), computed using optimal transport (OT) principles, provides

a distributional metric invariant to particle permutations. OT seeks to minimize the cost of transporting

one particle distribution to another, employing a cost matrix (M) based on particle-wise distances. The

resulting distance, also known as EMD, measures dissimilarity between predicted and ground truth particle

distributions. Figure 4.1 depicts error trajectories for MSE 400 and EMD.

Figure 4.1: Error trajectories of the MSE 400 (MSE averaged over full rollouts) and the EMD metrics for all five model
variants. The blue line represents the mean (over the entire data set) and the shaded area indicates the range of possible
values. Source: [KHT22]

The 1-step model exhibits superior performance in MSE-acc 1 due to its specialized training for one-step

predictions. However, it struggles with EMD, potentially indicating a tendency to maintain particle positions

rather than simulating dynamic fluid behavior. Conversely, the 1-step-noise model, challenged by artificial

noise during training, achieves better EMD results but lags in MSE-acc 1. The 1-step-noise-bounded model,

removing boundary features, excels in EMD while maintaining competitiveness in MSE-acc 1 but suffers in

MSE 20 and MSE 400, possibly due to the loss of boundary information.
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Figure 4.2: Domain generalization experiment. Both left and right examples show ground truth (FLIP), predictions
from 1-step-noise and predictions from 1-step-noise-bounded at the indicated frames. The red dashed lines indicate the
original domain size. Videos available at https://git.io/JOOQn. Source: [KHT22]

.

Among the 2-step variants, the 2-step-initialized model, initialized with weights from the 1-step model, out-

performs the 2-step-scratch model across all metrics, showcasing the benefits of initialization. However, both

inherit compression tendencies, affecting fluid density during rollouts.

Importantly, training the GNS models with our multi-step loss enables the models to mitigate accumulating

errors in simulation rollouts and yields competitive results compared to models trained with the artificial

noise proposed by Sanches-Gonzales et al. [San+20].
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Furthermore, a domain generalization experiment, shown in Figure 4.2, illustrates how the models respond

to larger domains. The 1-step-noise-bounded model demonstrates improved behavior compared to the 1-

step-noise model, but still exhibits deformations in fluid blocks, suggesting the model’s sensitivity to velocity

thresholds and boundary distances. Replacing the domain-specific boundary distance features with obstacle

boundaries increases the generalization to larger domains. This indicates that the GNS does not learn the true

underlying physics but rather problem-specific correlations between input velocities and output accelerations.

This is supported by the fact that the architecture takes the previous five velocities as inputs and does not only

rely on just the previous velocity as one would expect from physical dynamics. Furthermore, most models

are unable to retain the original density of the fluid and compress the fluid particles much more than the FLIP

simulator.

Extending the GNS architecture with strong inductive biases towards physical laws and symmetries could im-

prove its physical understanding and force it to learn actual dynamics instead of problem-specific correlations.

Future work should also concentrate on examining the physical reasoning of learned simulators in more de-

tail. Transforming parts of learned simulators into symbolic models [Cra+20a; Cra+19] and extending tools

like the recently proposed GNNExplainer from Ying et al. [Yin+19] could provide further insights into the

reasoning of Graph Networks and could yield new ideas on how to improve their physical understanding.

4.3 Learning correctors with differentiable physics

Learning correctors focus on improving the accuracy of existing numerical solvers by training ML models to

correct their solutions. These correctors learn the discrepancies between approximate numerical solutions

and true solutions of PDEs, thereby enhancing the overall accuracy of the solver. Reinforcement learning,

adversarial training, and variational methods are among the techniques utilized for learning correctors.

In this context, Kiwon Um, Robert Brand, Yun Fei, Nils Thuerey and I contributed Solver-in-the-loop [Um+20],
which showed that differentiable physics can be used to unroll time sequences in order to improve correction

accuracy, similar to the purely surrogate approach discussed above.

Our study targets the identification and mitigation of numerical errors arising from PDE discretization. Our

research demonstrates that although closed-form descriptions of discretization errors are lacking, these errors

exhibit regular and repeating structures that can be learned by neural networks [Gho96; Arn12]. By training

a neural network to recognize and correct these errors, it becomes possible to improve the accuracy of PDE

solvers by reducing their numerical error.

Specifically, the study focuses on iterative PDE solving algorithms, highlighting the importance of neural

networks interacting with the solver during training to achieve optimal performance [GV12]. Leveraging

differentiable simulations enables the trained model to explore and experience the physical environment

autonomously, receiving feedback throughout solver iterations [AK17; Tou+18].

Fig. 4.3 shows the effects of correction in a 3D incompressible fluid setting. The low-resolution solver is not

accurate enough to resolve the turbulence that develops behind an obstacle. However, in combination with
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Figure 4.3: A 3D fluid problem (shown in terms of vorticity) for which the regular simulation introduces numerical errors
that deteriorate the resolved dynamics (a). Combining the same solver with a learned corrector trained via differentiable
physics (b) significantly reduces errors w.r.t. the reference (c). Source: [Um+20].

the corrector network, trained on the difference between this low-resolution solver and a high-resolution

ground truth solver, the turbulent dynamics is restored at a much lower cost than the high-resolution solver.

Our approach facilitates improved generalization capabilities of the trained models and enhances their accu-

racy in handling varying physical behaviors encountered during solution processes [Wei17]. Through empir-

ical studies across a range of canonical PDEs and solver types, including explicit, semi-implicit, and implicit

solvers, our research demonstrates the effectiveness of the proposed method in improving solution accuracy

while handling complex real-world scenarios [MW70].

Our study positions itself within the broader context of machine learning as differentiable programming, em-

phasizing the recurrent interactions between highly nonlinear PDEs and deep neural networks as a promising

avenue for future research [AK17; Tou+18; SC19; Hu+20; Inn+19; HKT20].

4.4 Learning smoothed objective functions

The previous sections considered the problem of finding solutions to PDEs given initial and boundary con-

ditions, i.e. forward problems. However, inverse problems also play a pivotal role across scientific and engi-

neering domains, with applications ranging from optimizing fluid dynamics [OBA22] and materials design

[Fun+21] to enhancing structural health monitoring [MJU17], manufacturing optimization [Wur+23], and

weather prediction [Hua+05].

These problems pose significant challenges due to the inherent complexity of reconstructing inputs from

outputs. Traditional methods like Bayesian inference [Sha+15] and quasi-Newton techniques [Rud17; Bro70]
often struggle with convergence issues in non-linear landscapes. Recent approaches employing deep neural

networks (DNNs) as surrogates show promise but face hurdles such as data limitations, overfitting risks, and
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generalization difficulties [CDP21; Cao+22; Moh21; Ant+23; GBC16]. My own contributions in the field of

inverse problems are given in the next chapter.

However, I supervised Girnar Goyal on a project training proxy networks to predict an inverse loss, quantifying

deviations from known trajectories induced by sampled parameters [Dhe+22]. Through implicit and explicit

regularization techniques, inspired by prior work, our work aims to simplify the complexity of inverse loss

landscapes during training. While the ultimate goal of this project is finding better solutions to inverse

problems, its machine learning aspect involves surrogate networks for the forward dynamics, similar to the

previous projects.

We employ a surrogate neural network, implemented as a deep proxy network, that is trained to approximate

the configuration loss function, which quantifies the influence of control parameters on the spatio-temporal

evolution of physical states. This network is designed to map pairs of inputs—consisting of the true trajectory

of system states, Y ∗, and randomly sampled control parameters, Xs—to the corresponding target configura-

tion loss values, L(Y ∗, Xs).

The training process involves minimizing a network training loss, denoted as LN , using the Adam optimizer.

The network’s parameters (θ) are adjusted iteratively to minimize the difference between the predicted con-

figuration loss values ( fθ (Y ∗, Xs)) and the ground truth configuration loss values (L(Y ∗, Xs)). This training

loss is calculated as the squared Euclidean distance between the predicted and true configuration loss values.

Mathematically, this can be expressed as:

LN = || fθ (Y ∗, Xs)−L(Y ∗, Xs)||2 (4.1)

Here, fθ (Y ∗, Xs) represents the output of the proxy network given inputs Y ∗ and Xs, while L(Y ∗, Xs) is the

ground truth configuration loss value for the given inputs.

To enhance the network’s generalization capability and control its complexity during training, we employ

various regularization techniques. These include noise regularization, loss penalty-based regularization, and

flatness regularization. Noise regularization involves training the network with noise-labeled inputs, which

helps mitigate the impact of high-frequency signals within the target configuration loss function. Loss penalty-

based regularization favors low-lying regions of the target inverse landscape, encouraging improved learning

of geometric features. Flatness regularization penalizes learning trajectories that traverse steep slopes across

the configuration loss surface, promoting smoother mappings and enhanced generalization.

These regularization techniques, with their respective hyperparameters, are incorporated into the training

process to achieve reasonable control over the complexity of the proxy network while ensuring effective

approximation of the configuration loss function. Fig. 4.4 shows the effects of regularization on a billiards

optimization problem, where the task consists of finding the optimal cue ball velocity in order to push another

ball towards the target. Due to the chaotic nature of the combined collisions, the loss landscape plotted by

angle (blue curve in Fig. 4.4b,d,f) shows discontinuous and chaotic behavior. The proxy network learns to

smooth this to yield a differentiable model of the loss function, better suited to optimization tasks.
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Figure 4.4: Effect of complexity control on proxy network predictions for configuration loss L using (a,b) noise regular-
ization; (c,d) combination of noise and loss-penalty regularization; and (e,f) flatness (gradient-based) regularization in
the billiards setup.

Our results demonstrate that complexity-controlled proxy networks enhance convergence in solving complex

inverse problems, outperforming traditional methods across scenarios including fluid dynamics, rigid body

simulations, and chaotic systems [Pfr+18; RPM20]. This research contributes to a deeper understanding of

utilizing DNNs for inverse problems and presents a novel approach to address the challenges associated with

their complexity.

The next chapter will dive deeper into the world of inverse problems and how machine learning can be used

to solve them.
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Model parameter estimation through solving inverse problems is a fundamental endeavor in various sci-

entific domains, ranging from the detection of gravitational waves [Tar05; GH18] to the manipulation of

plasma flows [Mai+19], and even in the pursuit of detecting neutrinoless double-beta decay [Ago+13;

Aal+18]. Iterative optimization techniques, exemplified by methods like limited-memory BFGS [LN89]
or Gauss-Newton [GM78], are commonly leveraged to address unconstrained parameter estimation chal-

lenges [Pre+07]. These algorithms offer notable advantages, including simplicity, versatility, rapid conver-

gence, and high precision, typically bounded solely by noise inherent in observations and floating-point arith-

metic limitations.

5.1 Solving Inverse Physics Problems Jointly

Classical optimizers face several fundamental problems that are rooted in the fact that these algorithms rely

on local information, i.e., objective values L(xk) and derivatives close to the current solution estimate xk,

such as the gradient ∂ L
∂ x |xk

and the Hessian matrix ∂ 2 L
∂ x2 |xk

. Acquiring non-local information can be done in

low-dimensional solution spaces, but the curse of dimensionality prevents this approach for high-dimensional

problems. These limitations lead to poor performance or failure in settings involving (i) local optima which

attract the optimizer in the absence of a counter-acting force. Although using a large step size or adding

momentum to the optimizer can help to traverse small local minima, local optimizers are fundamentally

unable to avoid this issue. (ii) Flat regions can cause optimizers to become trapped along one or multiple

directions. Higher-order solvers can overcome this issue when the Hessian only vanishes proportionally with

the gradient, but all local optimizers struggle in zero-gradient regions. (iii) Chaotic regions, characterized by

rapidly changing gradients, are extremely hard to optimize. Iterative optimizers typically decrease their step

size to compensate, which prevents the optimization from progressing on larger scales.
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In many practical cases, a set of observations is available, comprising many individual parameter estimation

problems, e.g., when repeating experiments multiple times or collecting data over a time frame [Car+19;

Del+18; GH18; Ago+13; MAL13] and, even in the absence of many recorded samples, synthetic data can be

generated to supplement the data set. In these cases, information from multiple examples can be pooled by

jointly optimizing a data set of inverse problems.

Neural networks have become popular tools to model physical processes, either completely replacing physics

solvers [Kim+19; San+20; Sta+21; Pat+22] or improving them [Tom+17; Um+20; Koc+21a]. This can

improve performance since network evaluations and solvers may be run at lower resolution while main-

taining stability and accuracy. Additionally, it automatically yields a differentiable forward process which

can then be used to solve inverse problems [SF18; RPM20; All+22], similar to how style transfer optimizes

images [GEB16].

Neural networks have also been used as regularizers to solve inverse tomography problems [Muk+21; Li+20]
and employed recurrently for image denoising and super-resolution [PW17]. Recent works have also explored

them for predicting solutions to inverse problems [Shm+23; Luc+18; HKT22; SHT21] or aiding in finding

solutions [Kha+17; Dai+21; AMJ18]. In this context, the inductive bias of convolutional networks has been

shown to benefit the optimization of individual inverse problems with image solution spaces [UVL18; HSG19].

Underlying many of these approaches are differentiable simulations, required to obtain gradients of the in-

verse problem. These can be used in iterative optimization or to train neural networks. Many recent software

packages have demonstrated this use of differentiable simulations, with general frameworks [Hu+20; SC20;

HKT20] and specialized simulators [Tak+21; LLK19].

Physics-informed neural networks [RPK19] encode solutions to optimization problems in the network weights

themselves. They model a continuous solution to an ODE or PDE and are trained by formulating a loss func-

tion based on the differential equation, and have been explored for a variety of directions [Yan+19; Lu+21;

Kri+21]. However, as these approaches rely on loss terms formulated with neural network derivatives, they

do not apply to general inverse problems.

The training process of neural networks themselves can also be framed as an inverse problem, and employing

learning models to aid this optimization is referred to as meta-learning [VD02]. However, due to the large

differences, meta-learning algorithms strongly differ from methods employed for inverse problems in physics.

In this context, I investigated the question Can better solutions x i to general inverse problems be found by

optimizing them jointly instead of individually, without requiring additional information about the problems?

To answer this question, we employ neural networks to formulate a joint optimization problem. Neural

networks as general function approximators are a natural way to enable joint optimization of multiple a priori

independent examples. They have been extensively used in the field of machine learning [GBC16], and a

large number of network architectures have been developed, from multilayer perceptrons (MLPs) [Hay94]
to convolutional networks (CNNs) [KSH12] to transformers [Vas+17]. Overparameterized neural network

architectures typically smoothly interpolate the training data [BHM18; BPL21], allowing them to generalize,

i.e., make predictions about data the network was not trained on. We aim to leverage this inductive bias to
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improve the convergence on general inverse problems. In particular, we propose using the training process

of a neural network as a drop-in component for traditional optimizers like BFGS without requiring additional

data, configuration, or tuning. Instead of making predictions about new data after training, our objective

is to solve a set of given inverse problems. The so-found solutions can also be combined with an iterative

optimizers to improve accuracy. Unlike related machine learning applications [Kim+19; San+20; Sta+21;

SHT21; HKT22; SF18; RPM20; All+22], where a significant goal is accelerating time-intensive computations,

we accept a higher computational demand if the resulting solutions are more accurate.

5.2 Predictor-corrector-based PDE Control

Intelligent systems operating in the physical domain necessitate capabilities to perceive, predict, and interact

with physical phenomena [BHT13]. Historically, optimal control problems concerning PDEs have been tack-

led through iterative optimization techniques. Differentiable solvers coupled with the adjoint method have

facilitated efficient optimization for high-dimensional systems [Tou+18; Avi+18; SF18]. However, direct op-

timization, particularly through gradient descent (single shooting) during test time, poses resource-intensive

challenges and may not be readily deployable in interactive settings. Although more sophisticated methods

like multiple shooting and collocation exist, they often rely on restrictive modeling assumptions, limiting their

generalizability and necessitating computationally intensive iterative optimization during testing.

The computational expense of iterative optimization methods stems from the need to iteratively refine so-

lutions from scratch, often requiring a significant number of iterations to converge to an optimal solution.

Real-world control problems frequently demand rapid decision-making in specialized environments, with

reaction times constrained to fractions of a second. Thus, there is a compelling rationale for leveraging data-

driven models, such as deep neural networks, which offer swift inference times while possessing the capacity

to construct internal representations of the environment.

Previous research has explored various approaches to enhance the solution of PDE problems or utilize PDE for-

mulations for unsupervised optimization [Lon+17; Bar+19; Hsi+19; RYK18]. Techniques such as regression

forests, graph neural networks, continuous convolutions, and MLPs have been employed to tackle challenges

in Lagrangian fluid simulation and turbulence modeling [Lad+15; Mro+18; Li+18; LKT16; Tom+17; Xie+18;

Mor+18]. Additionally, deep learning methodologies have been applied to predict chemical properties and

outcomes of chemical reactions [Gil+17; Bra+19].

Differentiable solvers have demonstrated utility across various domains, including rigid body mechanics

[Deg+19; Avi+18], manipulation planning [Tou+18], protein structure inference [Ing+19], liquid interac-

tion [SF18], soft robot control [Hu+19], and inverse problems involving cloth [LLK19]. These works leverage

the automatic differentiation capabilities of deep learning frameworks. Notably, while prior efforts have pre-

dominantly focused on Lagrangian solvers, this study addresses grid-based solvers, which are well-suited for

modeling dense, volumetric phenomena.
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Figure 5.1: Overview of three different predictor-corrector execution schemes. OP denotes observation predictor and
CFE denotes control force estimator, i.e. the corrector. Source: [HKT20].

In collaboration with Vladlen Koltun from Intel, I introduced a novel deep learning approach that significantly

outperforms iterative optimization techniques in terms of speed and efficiency. Our method revolves around

a hierarchical predictor-corrector scheme, which breaks down the problem temporally into manageable sub-

problems.

Fig. 5.1 shows three types of predictor-corrector execution schemes we considered. The first (a) initially runs

the predictor networks to generate a full trajectory, i.e. a plan. Then, the corrector network is used at each

time step to nudge the simulation towards the predicted plan. The second version (b) delays later predictions

and performs simulation steps immediately as soon as possible. This allows later predictions to take the actual

simulated trajectory into account, which leads to improved performance. The third version (c) goes one step

further by performing additional predictions after each simulated step. This allows predictions to always be

as close to the simulation as possible, which lead to the best accuracy of the three.

By harnessing models tailored to different time scales, we can effectively control prolonged sequences of

intricate, high-dimensional systems. Training our models involves leveraging a differentiable PDE solver,

providing the agent with real-time feedback on the consequences of its interactions at any given moment.

Consequently, our models acquire the ability to navigate solution manifolds containing myriad solutions, thus

evading the local minima pitfalls inherent in classical optimization methods.

We validated our approach through extensive evaluations across a spectrum of control tasks within systems

governed by advection-diffusion PDEs, such as the Navier-Stokes equations. Our quantitative assessments

focus on the fidelity of the resultant sequences in approximating the target state and the exerted force on

the physical system. Notably, our method demonstrates stable control over significantly extended time spans

compared to existing alternatives.

This work was the first to use ΦFlow (chapter 3.3) and critically influenced its early development.

Our methodology demonstrated the feasibility of acquiring representations of solution manifolds for optimal

control trajectories through data-driven means. Rapid inference remains crucial in time-sensitive applications

and can complement classical solvers to expedite convergence, thereby enhancing solution quality.

34



5 LEARNING TO SOLVE INVERSE PROBLEMS

5.3 The problem with Gradient Descent

In the previously introduced work, the reliance on machine learning techniques, particularly deep neural net-

works, for parameter estimation from observations has become prevalent [Car+19; Del+18; GH18; Ago+13].
Despite machine learning methods typically not achieving solutions up to machine precision, they offer sev-

eral advantages over iterative solvers. Firstly, their computational overhead for inferring solutions tends

to be substantially lower compared to iterative methods, a critical factor in time-sensitive applications like

the quest for rare events within vast datasets typical in collider physics. Secondly, learning-based approaches

eliminate the need for an initial guess to commence problem-solving, mitigating the risk of poor initial guesses

hindering convergence to a global optimum or inducing divergence. Thirdly, these methods exhibit reduced

susceptibility to getting trapped in local optima compared to iterative techniques, owing to parameter sharing

across diverse problem instances [HKT20]. The stochastic nature of the training process further aids in escap-

ing local optima, as gradients from other problems can guide predictions away from the basin of attraction

of such local optima.

Despite the significant strides in deep learning, the fundamental limitations of gradient descent endure, espe-

cially pronounced when optimizing non-linear functions such as those governing physical systems. Notably,

state-of-the-art neural networks typically rely solely on first-order information due to the computational chal-

lenges associated with evaluating the Hessian with respect to network parameters. In scenarios involving non-

linear functions, gradient magnitudes often exhibit considerable variation across examples and parameters,

exacerbating the limitations of gradient descent methods.
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Figure 5.2: Minimization with y ≡ P(x) = (x1, x2
2).

L contours in gray. Trajectories of gradient descent
(GD), Newton’s method (N), and perfect physics inver-
sion (PI) shown as lines (infinitesimal η) and circles
(10 iterations with constant η). Source: [HKT22].

This is especially true when the problems being solved

are ill-conditioned, as this leads to gradients which do

not properly align with a stable descent direction but only

with the short-term steepest descent. Fig. 5.2 shows an

example of this for a simple function. In the initial gra-

dient descent updates, the x2 direction overshadows the

x1 direction, leading to sub-optimal optimization steps.

Newton’s method performs much better in these situa-

tions, as is uses higher-order information in the form of

the inverse Hessian matrix H−1, not just first-order infor-

mation like gradient descent.

To mitigate the issue with first-order updates, momentum has been introduced into first-order optimizers

like stochastic gradient descent (SGD) and Adam [KB14], but this only moderates the issue and does not

eliminate it. In highly ill-conditioned settings, none of the traditional neural network optimizers perform

well.
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(b)

(a)

(d)

(c)

Figure 5.3: Poisson’s equation (left) and the heat equation (right). (a,c) Example from the data set: observed distribution
(y∗), inferred solutions, and ground truth solution (x∗). (b,d) Learning curves, running average over 64 mini-batches
(except for H-free). Source: [HKT22].

5.4 Learning with Physics inversion

In order to overcome the problems caused by first-order updates, I introduced a novel hybrid training scheme

that integrates inverse physics solvers into the traditional deep learning pipeline. This approach aims to

combine the rapid convergence of higher-order solvers like BFGS [Fle00] with the computational efficiency

of backpropagation for network training [Goo16].

Instead of employing the adjoint method for backpropagation through the physical process, we replace the

regular gradient with updates computed from higher-order solvers, capturing the local nonlinear behavior of

the physics. This can be done e.g. by using to Hessian matrix H in addition to the Jacobian J to compute

Newton updates −ηH−1J [GST07], where η is the step size.

These physics updates are then integrated into a traditional neural network optimizer, facilitating weight

updates via backpropagation. Our method ensures compatibility with existing acceleration and stabiliza-

tion techniques developed for training deep learning models. We present theoretical insights and conduct

an extensive empirical evaluation across various inverse problems, including the challenging Navier-Stokes

equations.

Fig. 5.3 shows the network optimization curves, i.e. the error evolution over training time, for two very

common scientific problems. The first is the Poisson problem (a,b) which is essential to electrostatics, New-

tonian gravity, and fluid dynamics [Ame14]. The second (c,d) is a diffusion problem which finds application

in almost every field of science, such as physics, chemistry, biology, medicine, environmental science, and

engineering [Bir02].

Our results demonstrate that leveraging higher-order or domain-specific solvers significantly enhances con-

vergence speed and solution quality without necessitating the evaluation of the Hessian with respect to model

parameters. We introduce Scale-Invariant Physics (SIP) training, which utilizes physics inversion to compute

scale-invariant updates in the solution space.
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SIP training exhibits provable convergence under conditions of sufficient network updates per solver evalu-

ation and demonstrates convergence with a single update for a broad spectrum of physics experiments. The

scale-invariance property enables exponential acceleration in finding solutions for numerous physics prob-

lems while maintaining relatively low computational costs.

The idea of inversion to combat ill-condition problems spawned a similar avenue of research, which my

colleague Patrick Schnell and I investigated.

5.5 Learning with Gradient inversion

From a mathematical perspective, training a neural network using a physical loss function poses challenges

inherent to both network training and physics optimization. Effective handling of flat regions within opti-

mization landscapes is crucial for obtaining satisfactory results. In conventional learning tasks, complex loss

landscapes are navigated using gradient-based optimizers with data-driven normalization techniques like

Adam [KB15]. Conversely, in physics optimization, higher-order methods such as Newton’s method [GM78]
are favored, leveraging inversion processes. However, [HKT21] discovered that these approaches struggle to

effectively manage joint optimization of network and physics. Gradient-descent-based optimizers encounter

issues like vanishing or exploding gradients, hindering convergence, while higher-order methods often strug-

gle to scale to the high-dimensional parameter spaces typical in deep learning [GBC16].

Motivated by the pivotal role of inversion in physics problems highlighted by [HKT21], we adopt an inversion-

based strategy. We propose a novel approach for simultaneous optimization of physics and network parame-

ters, termed half-inverse gradients. At its core, this method relies on partial matrix inversion derived from the

interplay between network and physics, both formally and geometrically. A key advantage of our approach is

its linear scalability with the number of network parameters. To showcase its broad applicability and practi-

cal utility, we demonstrate significant enhancements in convergence speed and final loss values compared to

existing methods. These improvements are assessed in terms of both absolute accuracy and computational

efficiency. We conduct evaluations across diverse physical systems, including the Schrödinger equation, a

nonlinear chain system, and the Poisson problem.

In conclusion, our study challenges the prevailing approach of utilizing standard gradient-based network

optimizers for training neural networks coupled with physical solvers. Through an in-depth analysis of the

transition between gradient descent and Gauss-Newton’s method, our novel approach, coined Half-Inverse

Gradients (HIGs), efficiently learns physics modes without imposing undue strain on the network via large

weight updates. This results in expedited and more precise minimization of the learning objective, as demon-

strated across a diverse array of experiments. We envision our work as a catalyst for further investigations

into enhanced learning methodologies tailored for addressing physical problems. Promising directions for

future research include devising efficient techniques for half-inverting the Jacobian matrix and extending the

application of HIGs to physical systems characterized by chaotic behavior or more intricate training setups

[BHT13; Umm+20; Pfa+20].
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As the inclusion of a physics solver significantly alters the gradient flow, our study underscores the necessity

of reevaluating conventional practices in network optimization for such scenarios. By devising a method that

seamlessly transitions from gradient descent to the Gauss-Newton algorithm, we offer a pathway to better

tackle the joint optimization problem. Compared to existing optimizers, our approach enables swifter and

more accurate convergence of learning objectives [KB15; GBC16]. We anticipate that our findings will serve

as a springboard for further exploration of advanced learning techniques tailored to address the nuances

of physical problems. Particularly intriguing avenues for future investigation involve developing efficient

strategies for inverting the Jacobian matrix within the context of HIGs and integrating unstructured solvers

into the framework [Zie+77]. The amalgamation of finite elements with graph-neural networks offers a

promising foundation for future applications of HIGs, especially in complex and dynamic physical systems

[BHT13; Umm+20; Pfa+20].
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Conclusion and Future Directions

In this concluding chapter, I reflect on the progress made in leveraging machine learning (ML) techniques for

addressing forward and inverse problems through the paradigm of differentiable simulations. This innovative

approach has garnered significant attention across various domains, offering promising avenues for enhancing

computational efficiency, accuracy, and flexibility in modeling complex systems.

State-of-the-Art Summary The integration of differentiable simulations with ML methodologies has led

to notable breakthroughs in several scientific and engineering disciplines. Researchers have successfully

employed neural networks, particularly deep learning architectures, to learn and optimize simulation models

directly from observational data. This coupling allows for the seamless incorporation of domain knowledge

into ML models while circumventing the need for explicit analytical expressions, which are often elusive or

computationally expensive in complex systems.

In the realm of forward problems, where the objective is to predict system behavior given input parameters,

differentiable simulations coupled with ML have demonstrated remarkable predictive capabilities. By training

neural networks on simulated data generated from underlying physical models, researchers have achieved

high-fidelity predictions across diverse scenarios, ranging from fluid dynamics and materials science to climate

modeling and biological systems.

Similarly, in inverse problems, where the goal is to infer model parameters or underlying system properties

from observed data, the fusion of differentiable simulations with ML techniques has revolutionized traditional

approaches. By formulating the inverse problem as an optimization task within a differentiable framework,

researchers have devised novel algorithms capable of efficiently estimating model parameters while accom-

modating uncertainties and constraints, thereby enabling robust parameter inference and model calibration.

Moreover, the synergy between differentiable simulations and ML has facilitated the exploration of novel

research avenues, such as model discovery, uncertainty quantification, and decision-making under uncer-

tainty. By harnessing the power of data-driven approaches, scientists can uncover hidden patterns, discover
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emergent phenomena, and enhance our understanding of complex systems, ultimately accelerating scientific

discovery and technological innovation.

Outlook and Future Directions Looking ahead, the field of machine learning for solving forward and

inverse problems is poised for continued growth and innovation. Several promising directions merit attention:

1. Hybrid Modeling Approaches: Future research will likely focus on integrating traditional physics-

based models with data-driven techniques, leveraging the strengths of both approaches to enhance pre-

dictive accuracy and generalization capabilities. Our Solver-in-the-loop publication [Um+20] proves

this point, and various other research is following in this vein [Koc+21b; Hei+21].
2. Uncertainty Quantification and Robustness: Addressing uncertainties inherent in simulation models

and observational data remains a critical challenge, with current focusing on Bayesian analyses [HA15;

And+23]. Future efforts will aim to develop robust uncertainty quantification techniques to improve

the reliability and trustworthiness of ML-based predictions and inferences.

3. Scaling with Increasing Compute Capability: With hardware performance increasing exponentially,

methods that are infeasible today due to performance constraints will become more relevant in the

future. This includes compute-intensive architectures like diffusion models [Yan+23] and the attention

mechanism [Vas+17] whose O(N2) compute scaling limits possible sequence lengths today.

4. Interdisciplinary Applications: The applicability of differentiable simulations and ML spans numerous

domains, including physics, engineering, biology, finance, and beyond. Interdisciplinary collaborations

will be pivotal in tackling complex real-world problems and driving innovation across diverse fields.

5. Ethical and Societal Implications: As ML-powered simulations become increasingly prevalent in

decision-making processes, such as in finance, attention to ethical considerations, transparency, and

accountability will be paramount. Research efforts will need to address potential biases, fairness con-

cerns, and ethical implications associated with the deployment of ML models in critical domains.

6. Continual Learning and Adaptive Systems: Building dynamic, adaptive systems capable of contin-

ual learning and adaptation to evolving environments represents a frontier for research. By incorpo-

rating mechanisms for self-improvement and autonomous decision-making, such systems can exhibit

enhanced resilience and performance in real-world settings.

In conclusion, the integration of machine learning with differentiable simulations holds tremendous promise

for advancing our understanding of complex systems, solving challenging forward and inverse problems, and

driving innovation across various domains. By embracing interdisciplinary collaboration, fostering ethical

practices, and pursuing novel research directions, we can unlock the full potential of this synergistic approach

and pave the way for transformative advancements in science, engineering, and beyond.
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Φ-ML: Intuitive Scientific Computing with Dimension Types for Jax,
PyTorch, TensorFlow & NumPy

Abstract of Paper ΦML is a math and neural network library designed for science applications. It enables

users to quickly evaluate many network architectures on their data sets, perform (sparse) linear and non-

linear optimization, and write differentiable simulations that scale to n dimensions. ΦML is compatible with

Jax, PyTorch, TensorFlow and NumPy, and user code can be executed on all of these backends. The project

is hosted at https://github.com/tum-pbs/PhiML under the MIT license.

Author Contributions I developed and published the software and wrote the manuscript. Various students,

fellow Ph.D. candidates, and external researchers contributed minor features and bug fixes to the project and

helped designing the software architecture. Nils Thuerey proofread the manuscript and helped testing the

code.

Copyright © 2023 The Author(s). Available under the Creative Commons Attribution 4.0 International

License, see below. Reprinted as provided by the Journal of Open Source Software. The CC-BY 4.0 license is

printed in the next chapter.
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Scale-invariant Learning by Physics Inversion

Abstract of Paper Solving inverse problems, such as parameter estimation and optimal control, is a vital

part of science. Many experiments repeatedly collect data and rely on machine learning algorithms to quickly

infer solutions to the associated inverse problems. We find that state-of-the-art training techniques are not

well-suited to many problems that involve physical processes. The highly nonlinear behavior, common in

physical processes, results in strongly varying gradients that lead first-order optimizers like SGD or Adam

to compute suboptimal optimization directions. We propose a novel hybrid training approach that combines

higher-order optimization methods with machine learning techniques. We take updates from a scale-invariant

inverse problem solver and embed them into the gradient-descent-based learning pipeline, replacing the

regular gradient of the physical process. We demonstrate the capabilities of our method on a variety of

canonical physical systems, showing that it yields significant improvements on a wide range of optimization

and learning problems.

Author Contributions I performed the experiments, generated the data, trained the neural networks, ana-

lyzed the results, plotted all diagrams and drafted the manuscript. Nils Thuerey and Vladlen Koltun took on

a supervisory role in this project, giving me continuous feedback on the ongoing work and proofreading the

manuscript.

Copyright © 2022 The Author(s). Reprinted as provided by OpenReview.net with permission from Vladlen

Koltun and Nils Thuerey.
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Learning to Control PDEs with Differentiable Physics

Abstract of Paper Predicting outcomes and planning interactions with the physical world are long-

standing goals for machine learning. A variety of such tasks involves continuous physical systems, which

can be described by partial differential equations (PDEs) with many degrees of freedom. Existing methods

that aim to control the dynamics of such systems are typically limited to relatively short time frames or a

small number of interaction parameters. We present a novel hierarchical predictor-corrector scheme which

enables neural networks to learn to understand and control complex nonlinear physical systems over long

time frames. We propose to split the problem into two distinct tasks: planning and control. To this end,

we introduce a predictor network that plans optimal trajectories and a control network that infers the

corresponding control parameters. Both stages are trained end-to-end using a differentiable PDE solver. We

demonstrate that our method successfully develops an understanding of complex physical systems and learns

to control them for tasks involving PDEs such as the incompressible Navier-Stokes equations.

Author Contributions I performed the experiments, generated the data, trained the neural networks, ana-

lyzed the results, plotted all diagrams and drafted the manuscript. Nils Thuerey and Vladlen Koltun took on

a supervisory role in this project, giving me continuous feedback on the ongoing work and proofreading the

manuscript.

Copyright © 2020 The Author(s). Reprinted as provided by OpenReview.net with permission from Vladlen

Koltun and Nils Thuerey.
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Half-Inverse Gradients for Physical Deep Learning

Abstract of Paper Recent works in deep learning have shown that integrating differentiable physics sim-

ulators into the training process can greatly improve the quality of results. Although this combination rep-

resents a more complex optimization task than supervised neural network training, the same gradient-based

optimizers are typically employed to minimize the loss function. However, the integrated physics solvers

have a profound effect on the gradient flow as manipulating scales in magnitude and direction is an inherent

property of many physical processes. Consequently, the gradient flow is often highly unbalanced and cre-

ates an environment in which existing gradient-based optimizers perform poorly. In this work, we analyze

the characteristics of both physical and neural network optimizations to derive a new method that does not

suffer from this phenomenon. Our method is based on a half-inversion of the Jacobian and combines princi-

ples of both classical network and physics optimizers to solve the combined optimization task. Compared to

state-of-the-art neural network optimizers, our method converges more quickly and yields better solutions,

which we demonstrate on three complex learning problems involving nonlinear oscillators, the Schrödinger

equation and the Poisson problem.

Author Contributions I performed one of the experiments, including data generation, network training,

analysis and visualization. Additionally, I proof-read the manuscript, contributing significantly to the final

text. Patrick Schnell performed the other experiments and drafted the main text. Nils Thuerey supervised

the project and helped with coordination.

Copyright © 2022 The Author(s). Reprinted as provided by OpenReview.net with permission from Patrick

Schnell and Nils Thuerey.
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Solver-in-the-Loop: Learning from Differentiable Physics to Interact
with Iterative PDE-Solvers

Abstract of Paper Finding accurate solutions to partial differential equations (PDEs) is a crucial task in

all scientific and engineering disciplines. It has recently been shown that machine learning methods can

improve the solution accuracy by correcting for effects not captured by the discretized PDE. We target the

problem of reducing numerical errors of iterative PDE solvers and compare different learning approaches

for finding complex correction functions. We find that previously used learning approaches are significantly

outperformed by methods that integrate the solver into the training loop and thereby allow the model to

interact with the PDE during training. This provides the model with realistic input distributions that take

previous corrections into account, yielding improvements in accuracy with stable rollouts of several hundred

recurrent evaluation steps and surpassing even tailored supervised variants. We highlight the performance of

the differentiable physics networks for a wide variety of PDEs, from non-linear advection-diffusion systems

to three-dimensional Navier-Stokes flows.

Author Contributions Kiwon Um performed most of the experiments and drafted the manuscript. I helped

performing the experiments by providing the differentiable physics software and supervised Robert Brand, a

master student who contributed experimental data. Additionally, I helped in creating the figures and proof-

read the manuscript. Nils Thuerey supervised the project and provided experimental data.

Copyright © 2020 The Author(s). Reprinted as provided by OpenReview.net.
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phiflow: A differentiable pde solving framework for deep learning via
physical simulations

Summary This workshop paper introduces differentiable physics and the first public version of ΦFlow. It

shows how differentiable physics can be used to train networks to interact with physics solvers and summa-

rizes experimental results from our previous control and correction projects.

Author Contributions I developed the software and contributed the control results. Kiwon contributed the

correction results. Nils Thuerey drafted the manuscript.
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Summary
ΦML is a math and neural network library designed for science applications. It enables users to
quickly evaluate many network architectures on their data sets, perform (sparse) linear and
non-linear optimization, and write differentiable simulations that scale to n dimensions. ΦML
is compatible with Jax, PyTorch, TensorFlow and NumPy, and user code can be executed on
all of these backends. The project is hosted at https://github.com/tum-pbs/PhiML under the
MIT license.

Statement of need
Machine learning (ML) has become an essential tool for scientific research. In recent years,
ML has been used to make significant advances in a wide range of scientific fields, including
chemistry (Butler et al., 2018), materials science (Wei et al., 2019), weather and climate
prediction (Bochenek & Ustrnul, 2022; Rolnick et al., 2022), computational fluid dynamics
(Brunton et al., 2020), drug discovery (Jumper et al., 2021; Vamathevan et al., 2019),
astrophysics (De La Calleja & Fuentes, 2004; Ntampaka et al., 2015; Petroff et al., 2020),
geology (Rodriguez-Galiano et al., 2015), and many more. The use of ML for scientific
applications is still in its early stages, but it has the potential to revolutionize the way that
science is done. ML can help researchers to make new discoveries and insights that were
previously impossible.

The availability of domain knowledge sets science applications apart from other ML fields like
computer vision or language modelling. Domain knowledge often allows for explicit modelling
of known dynamics by simulating them with handwritten algorithms, which has been shown to
improve results when training ML models (Raissi et al., 2019; Um et al., 2020). Implementing
differentiable simulations into ML frameworks requires different functions and concepts than
classical ML tasks. The major differences are:

• Data typically represent objects or signals that exist in space and time. Data dimensions
are interpretable, e.g. vector components, time series, n-dimensional lattices.

• Information transfer is usually local, resulting in sparsity in the dependency matrix
between objects (particles, elements or cells).

• A high numerical accuracy is desirable for some operations, often requiring 64-bit and
32-bit floating point calculations.

However, current machine learning frameworks have been designed for the core ML tasks which
reflects in their priorities and design choices. This can result in overly verbose code when
implementing scientific applications and may require implementing custom operators, since
many common functions like sparse-sparse matrix multiplication, periodic padding or sparse
linear solvers are not available in all libraries.
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ΦML is a scientific computing library based on Python 3 (Van Rossum & Drake, 2009) targeting
scientific applications that use machine learning methods. Its main goals are:

• Reusability. Code based on ΦML should be able to run in many settings without
modification. It should be agnostic towards the dimensionality of simulated systems and
the employed discretization. All code should be trivially vectorizable.

• Compatibility. Users should be free to choose whatever ML or third-party library they
desire without modifying their simulation code. ΦML should support Linux, Windows
and Mac.

• Usability. ΦML should be easy to learn and use, matching existing APIs where possible.
It should encourage users to write concise and expressive code.

• Maintainability. All high-level source code of ΦML should be easy to understand.
Continuous testing should be used to ensure that future updates do not break existing
code.

• Performance. ΦML should be able to make use of hardware accelerators, such as GPUs
and TPUs, where possible. During development, we prioritize rapid code iterations over
execution speed but the completed code should run as fast as if written directly against
the chosen ML library.

In the following, we explain the architecture and major features that help ΦFlow reach these
goals. ΦML consists of a high-level NumPy-like API geared towards writing easy-to-read and
scalable simulation code, as well as a neural network API designed to allow users to quickly
iterate over many network architectures and hyperparameter settings. Similar to eagerpy
(Rauber et al., 2020), ΦML integrates with Jax (Bradbury et al., 2018), PyTorch (Paszke et
al., 2019), TensorFlow (Abadi et al., 2016) and NumPy (Harris et al., 2020) and provides a
custom Tensor class. However, ΦML adds additional functionality.

• Dimension names. Tensor dimensions are always referenced by their user-defined name,
not their index. We support the syntax tensor.dim for operations like indexing or
unstacking to make using dimension names as simple as possible.

• Automatic reshaping. ΦML automatically transposes tensors and inserts singleton
dimensions to match arguments. Consequently, user code is agnostic to the dimension
order by default.

• Element names. Slices or items along dimensions can be named as well, e.g. allowing
users to specify that a dimension lists the values (x,y,z) or (r,g,b). These names can
be used in slicing, gathering and scattering operations.

• Dimension types. Tensor dimensions are grouped into five different types: batch, spatial,
instance, channel, and dual. This allows tensor-related functions to automatically select
dimensions to operate on, without requiring the user to specify individual dimensions.

• Non-uniform tensors. Stacking tensors with different dimension sizes yields non-uniform
tensors. ΦML keeps track of the resulting shape, allowing users to operate on non-uniform
tensors the same way as uniform ones.

• Floating-point precision by context. All tensor operations determine the desired floating
point precision from the operation context, not the data types of its inputs. This is
much simpler and more predictable than the systems used by other libraries.

• Lazy stacking. New memory is only allocated once stacked data is required as a block.
Consequently, functions can unstack the components, operate on them individually, and
restack them, without worrying about unnecessary memory allocations.

• Sparse matrices from linear functions. ΦML can transform linear functions into their cor-
responding sparse matrix representation. This makes solving linear systems of equations
more performant and enables computation of preconditioners.

• Compute device from Inputs. Tensor operations execute on the device on which the
tensors reside. This prevents unintentional copies and transfers, as users have to explicitly
declare them.

• Custom CUDA Operatorions. ΦML provides custom CUDA kernels for specific operations
that could bottleneck simulations, such as grid sampling for TensorFlow or linear solves.
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Research Projects
ΦML has been in development since 2019 as part of the PhiFlow (ΦFlow) project where
it originated as a unified API for TensorFlow and NumPy, used to run differentiable fluid
simulations. ΦFlow includes geometry, physics, and visualization modules, all of which use the
math API of ΦML to benefit from its reusability, compatibility, and performance.

It was first used to show that differentiable PDE simulations can be used to train neural
networks that steer the dynamics towards desired outcomes (Holl et al., 2019). Differentiable
PDEs, implemented against ΦML’s API, were later shown to benefit learning corrections for
low-resolution or incomplete physics models (Um et al., 2020). These findings were summarized
and formalized in Thuerey et al. (2022), along with many additional examples.

The library was also used in network optimization publications, such as showing that inverted
simulations can be used to train networks (Holl et al., 2022) and that gradient inversion
benefits learning the solutions to inverse problems (Schnell et al., 2021).

Simulations powered by ΦML have since been used in open data sets (Gupta & Brandstetter,
2022; Takamoto et al., 2022) and in publications from various research groups (Brandstetter
et al., 2021, 2023; Li et al., 2023; Parekh et al., 1993; Ramos et al., 2022; Sengar et al., 2021;
Wandel et al., 2020, 2021; P. Wang, 2023; R. Wang et al., 2022a, 2022b; Wu et al., 2022).
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Abstract

Solving inverse problems, such as parameter estimation and optimal control, is
a vital part of science. Many experiments repeatedly collect data and rely on
machine learning algorithms to quickly infer solutions to the associated inverse
problems. We find that state-of-the-art training techniques are not well-suited to
many problems that involve physical processes. The highly nonlinear behavior,
common in physical processes, results in strongly varying gradients that lead
first-order optimizers like SGD or Adam to compute suboptimal optimization
directions. We propose a novel hybrid training approach that combines higher-
order optimization methods with machine learning techniques. We take updates
from a scale-invariant inverse problem solver and embed them into the gradient-
descent-based learning pipeline, replacing the regular gradient of the physical
process. We demonstrate the capabilities of our method on a variety of canonical
physical systems, showing that it yields significant improvements on a wide range
of optimization and learning problems.

1 Introduction

Inverse problems that involve physical systems play a central role in computational science. This
class of problems includes parameter estimation [54] and optimal control [57]. Among others, solving
inverse problems is integral in detecting gravitational waves [22], controlling plasma flows [38],
searching for neutrinoless double-beta decay [3, 1], and testing general relativity [19, 35].

Decades of research in optimization have produced a wide range of iterative methods for solving
inverse problems [47]. Higher-order methods such as limited-memory BFGS [36] have been espe-
cially successful. Such methods compute or approximate the Hessian of the optimization function
in addition to the gradient, allowing them to locally invert the function and find stable optimization
directions. Gradient descent, in contrast, only requires the first derivative but converges more slowly,
especially in ill-conditioned settings [49].

Despite the success of iterative solvers, many of today’s experiments rely on machine learning
methods, and especially deep neural networks, to find unknown parameters given the observations [11,
15, 22, 3]. While learning methods typically cannot recover a solution up to machine precision, they
have a number of advantages over iterative solvers. First, their computational cost for inferring a
solution is usually much lower than with iterative methods. This is especially important in time-
critical applications, such as the search for rare events in data sets comprising of billions of individual
recordings for collider physics. Second, learning-based methods do not require an initial guess to
solve a problem. With iterative solvers, a poor initial guess can prevent convergence to a global
optimum or lead to divergence (see Appendix C.1). Third, learning-based solutions can be less
prone to finding local optima than iterative methods because the parameters are shared across a large
collection of problems [30]. Combined with the stochastic nature of the training process, this allows
gradients from other problems to push a prediction out of the basin of attraction of a local optimum.
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Practically all state-of-the-art neural networks are trained using only first order information, mostly
due to the computational cost of evaluating the Hessian w.r.t. the network parameters. Despite
the many breakthroughs in the field of deep learning, the fundamental shortcomings of gradient
descent persist and are especially pronounced when optimizing non-linear functions such as physical
systems. In such situations, the gradient magnitudes often vary strongly from example to example
and parameter to parameter.

In this paper, we show that inverse physics solvers can be embedded into the traditional deep learning
pipeline, resulting in a hybrid training scheme that aims to combine the fast convergence of higher-
order solvers with the low computational cost of backpropagation for network training. Instead of
using the adjoint method to backpropagate through the physical process, we replace that gradient
by the update computed from a higher-order solver which can encode the local nonlinear behavior
of the physics. These physics updates are then passed on to a traditional neural network optimizer
which computes the updates to the network weights using backpropagation. Thereby our approach
maintains compatibility with acceleration schemes [18, 33] and stabilization techniques [32, 31, 7]
developed for training deep learning models. The replacement of the physics gradient yields a
simple mathematical formulation that lends itself to straightforward integration into existing machine
learning frameworks.

In addition to a theoretical discussion, we perform an extensive empirical evaluation on a wide variety
of inverse problems including the highly challenging Navier-Stokes equations. We find that using
higher-order or domain-specific solvers can drastically improve convergence speed and solution
quality compared to traditional training without requiring the evaluation of the Hessian w.r.t. the
model parameters.

2 Scale-invariance in Optimization

We consider unconstrained inverse problems that involve a differentiable physical process P : X ⊂
Rdx → Y ⊂ Rdy which can be simulated. Here X denotes the physical parameter space and Y
the space of possible observed outcomes. Given an observed or desired output y∗ ∈ Y , the inverse
problem consists of finding optimal parameters

x∗ = argminxL(x) with L(x) =
1

2
∥P(x)− y∗∥22. (1)

Such problems are classically solved by starting with an initial guess x0 and iteratively applying
updates xk+1 = xk +∆xk. Newton’s method [5] and many related methods [10, 36, 23, 41, 46, 8,
12, 6] approximate L around xk as a parabola L̃(x) = L(xk) +

∂L(xk)
∂xk

(x− xk) +
1
2Hk(x− xk)

2

where Hk denotes the Hessian or an approximation thereof. Inverting L̃ and walking towards its
minimum with step size η yields

∆xk = −η ·H−1
k

(
∂L(xk)

∂xk

)T

. (2)

The inversion of H results in scale-invariant updates, i.e. when rescaling x or any component of x,
the optimization will behave the same way, leaving L(xk) unchanged. An important consequence of
scale-invariance is that minima will be approached equally quickly in terms of L no matter how wide
or deep they are.

Newton-type methods have one major downside, however. The inversion depends on the Hessian H
which is expensive to compute exactly, and hard to approximate in typical machine learning settings
with high-dimensional parameter spaces [25] and mini-batches [51].

Instead, practically all state-of-the-art deep learning relies on first-order information only. Setting
H to the identity in Eq. 2 yields gradient descent updates ∆x = −η ·

(
∂L
∂x

)T
which are not scale-

invariant. Rescaling x by λ also scales ∆x by λ, inducing a factor of λ2 in the first-order-accurate
loss change L(x)−L(x+∆x) = −η · (∂L∂x )2 +O(∆x2). Gradient descent prescribes small updates
to parameters that require a large change to decrease L and vice-versa, typically resulting in slower
convergence than Newton updates [56]. This behavior is the root cause of exploding or vanishing
gradients in deep neural networks. The step size η alone cannot remedy this behavior whenever ∂L

∂x

2



varies along x. Figure 1 shows the optimization trajectories for the simple problem P(x) = (x1, x
2
2)

to illustrate this problem.
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Figure 1: Minimization (Eq. 1) with y ≡ P(x) =
(x1, x

2
2). L contours in gray. Trajectories of gradient

descent (GD), Newton’s method (N), and perfect
physics inversion (PI) shown as lines (infinitesimal
η) and circles (10 iterations with constant η).

When training a neural network, the effect of
scaling-variance can be reduced through nor-
malization in intermediate layers [32, 7] and
regularization [37, 53] but this level of control
is not present in most other optimization tasks,
such as inverse problems (Eq. 1). More ad-
vanced first-order optimizers try to solve the
scaling issue by approximating higher-order
information [33, 29, 18, 39, 40, 55, 45, 50],
such as Adam where H ≈ diag

(
|∂L∂x |

)
, de-

creasing the loss scaling factor from λ2 to λ.
However, these methods lack the exact higher-
order information which limits the accuracy
of the resulting update steps when optimizing
nonlinear functions.

3 Scale-invariant Physics and Deep Learning

We are interested in finding solutions to Eq. 1 using a neural network, x∗ = NN(y∗ | θ), parameterized
by θ. Let Y∗ = {y∗i | i = 1, ..., N} denote a set of N inverse problems involving P . Then training
the network means finding

θ∗ = argminθ

N∑

i=1

1

2
∥P
(
NN(y∗i | θ)

)
− y∗i ∥22 . (3)

Assuming a large parameter space θ and the use of mini-batches, higher-order methods are difficult to
apply to this problem, as described above. Additionally, the scale-variance issue of gradient descent
is especially pronounced in this setting because only the network part of the joint problem NN ◦ P
can be properly normalized while the physical process P is fixed. Therefore, the traditional approach
of computing the gradient ∂L

∂θ using the adjoint method (backpropagation) can lead to undesired
behavior.

Consider the problem P(x) = ex with observed data y∗ ∈ (0, 1] (Appendix C.2). Due to the
exponential form of P , the curvature around the solutions x∗ = log(y∗) strongly depends on y∗.
This causes first-order network optimizers such as SGD or Adam to fail in approximating the correct
solutions for small y∗ because their gradients are overshadowed by larger y∗ (see Fig. 2). Scaling the
gradients to unit length in x drastically improves the prediction accuracy, which hints at a possible
solution: If we could employ a scale-invariant physics solver, we would be able to optimize all
examples, independent of the curvature around their respective minima.

3.1 Derivation

If P has a unique inverse and is sufficiently well-behaved, we can split the joint optimization problem
(Eq. 3) into two stages. First, solve all inverse problems individually, constructing a set of unique
solutions X sv = {xsv

i = P−1(y∗i )} where P−1 denotes the inverse problem solver. Second, use X sv

as labels for supervised training

θ∗ = argminθ

N∑

i=1

1

2
∥NN(y∗i | θ)− xsv

i ∥22. (4)

This enables scale-invariant physics (SIP) inversion while a fast first-order method can be used to train
the network which can be constructed to be normalized using state-of-the-art procedures [32, 7, 53].

Unfortunately, this two-stage approach is not applicable in multimodal settings, where xsv depends
on the initial guess x0 used in the first stage. This would cause the network to interpolate between
possible solutions, leading to subpar convergence and generalization performance. To avoid these
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problems, we alter the training procedure from Eq. 4 in two ways. First, we reintroduce P−1 into the
training loop, yielding

θ∗ = argminθ

N∑

i=1

1

2
∥NN(y∗i | θ)− P−1(y∗i )∥22 . (5)

Next, we condition P−1 on the neural network prediction by using it as an initial guess, P−1(y∗)→
P−1(y∗ |NN(y∗ | θ)). This makes training in multimodal settings possible because the embedded
solver P−1 searches for minima close to the prediction of the NN. Therefore θ can exit the basin of
attraction of other minima and does not need to interpolate between possible solutions. Also, since all
inverse problems from Y∗ are optimized jointly, this reduces the likelihood of any individual solution
getting stuck in a local minimum, as discussed earlier.
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Figure 2: Networks trained according to
Eq. 3 with P(x) = ex. Stochastic gradient
descent (SGD) and Adam fail to approxi-
mate solutions for small values due to scale
variance. Normalizing the gradient in x
space (Rescaled) improves solution accu-
racy by decreasing scale variance.

The obvious downside to this approach is that P−1

must be run for each training step. When P−1 is an iter-
ative solver, we can write it as P−1(y∗ |NN(y∗ | θ)) =
NN(y∗ | θ) + ∆x0 + ... + ∆xn. We denote the first
update ∆x0 ≡ U(y∗ | θ).
Instead of computing all updates ∆x, we approximate
P−1 with its first update U . Inserting this into Eq. 5
with (◦) ≡ (y∗i | θ) yields

θ∗ = argminθ

N∑

i=1

1

2
∥NN(y∗i | θ)−(NN(◦) + U(◦)) ∥22.

(6)
This can be further simplified to

∑N
i=1

1
2∥U(y∗i | θ)∥22

but this form is hard to optimize directly as is requires
backpropagation through U . In addition, its minimiza-
tion is not sufficient, because all fixed points of U , such
as maxima or saddle points of L, can act as attractors.

Instead, we make the assumption ∂P−1

∂y = 0 to remove
the (◦) dependencies in Eq. 6, treating them as constant.
This results in a simple L2 loss for the network output.
As we will show, this avoids both issues. It also allows us to factor the optimization into a network
and a physics graph (see Fig. 3), so that all necessary derivative computations only require data from
one of them.

3.2 Update Rule

The factorization described above results in the following update rule for training with SIP updates,
shown in Fig. 3:

1. Pass the network prediction x0 to the physics graph and compute ∆x0 ≡ U(y∗i |x0) for all
examples in the mini-batch.

2. Send x̃ ≡ x0 +∆x0 back and compute the network loss L̃ = 1
2 ||x0 − x̃||22.

3. Update θ using any neural network optimizer, such as SGD or Adam, treating x̃ as a constant.

Figure 3: Neural network (NN) training procedure with embedded inverse physics solver (U).

4



To see what updates ∆θ result from this algorithm, we compute the gradient w.r.t. θ,

∂L̃

∂θ
=

N∑

i=1

U(y∗ |x0) ·
∂NN

∂θ
(7)

Comparing this to the gradient resulting from optimizing the joint problem NN ◦ P with a single
optimizer (Eq. 3),

∂L

∂θ
= ∆yi ·

∂P
∂x

∂NN

∂θ
(8)

where ∆yi = P
(
NN(y∗i | θ)

)
− y∗i , we see that U takes the place of ∆yi · ∂P∂x , the adjoint vector that

would otherwise be computed by backpropagation. Unlike the adjoint vector, however, x̃ = x0 + U
encodes an actual physical configuration. Since x̃ can stem from a higher-order solver, the resulting
updates ∆θ can also encode non-linear information about the physics without computing the Hessian
w.r.t. θ.

3.3 Convergence

It is a priori not clear whether SIP training will converge, given that ∂P−1

∂y is not computed. We
start by proving convergence for two special choices of the inverse solver P−1 before considering
the general case. We assume that NN is expressive enough to fit our problem and that it is able to
converge to every point x for all examples using gradient descent:

∃η > 0 : ∀i ∀x ∀ϵ > 0 ∃n ∈ N : ||NNθn − x||2 ≤ ϵ (9)

where θn is the sequence of gradient descent steps

θn+1 = θn − η

(
∂NN

∂θ

)T

(NNθn − x) (10)

with η > 0. Large enough networks fulfill this property under certain assumptions [17] and the
universal approximation theorem guarantees that such a configuration exists [13].

In the first special case, U(x) ≡ U(y∗ |x) points directly towards a solution x∗. This models the
case of a known ground truth solution in a unimodal setting. For brevity, we will drop the example
indices and the dependencies on y∗.
Theorem 1. If ∀x ∃λ ∈ (0, 1] : U(x) = λ(x∗ − x), then the gradient descent sequence NNθn with
θn+1 = θn + η

(
∂NN
∂θ

)T
U(x) converges to x∗.

Proof. Rewriting U(x) = − ∂
∂x

(
λ
2 ||x− x∗||22

)
yields the update θn+1 − θn = −η

(
∂L̂
∂x

∂NN
∂θ

)T

where L̂ = λ
2 ||x− x∗||22. This describes gradient descent towards x∗ with the gradients scaled by λ.

Since λ ∈ (0, 1], the convergence proof of gradient descent applies.

The second special case has U(x) pointing in the direction of steepest gradient descent in x space.

Theorem 2. If ∀x ∃λ ∈ (0, 1] : U(x) = −λ
(
∂L
∂x

)T
, then the gradient descent sequence NNθn with

θn+1 = θn + η
(
∂NN
∂θ

)T
U(x) converges to minima of L.

Proof. This is equivalent to gradient descent in L(θ) ≡ (NN ◦ L)(θ). Rewriting the update yields
θn+1 − θn = −ηλ

(
∂L
∂x

∂NN
∂θ

)T
which is the gradient descent update scaled by λ.

Next, we consider the general case of an arbitrary P−1 and U . We require that U decreases L by a
minimum relative amount specified by τ ,

∃τ > 0 : ∀x : L(x)− L(x+ U(x)) ≥ τ (L(x)− L(x∗)) . (11)

To guarantee convergence to a region, we also require

∃K > 0 : ∀x : ||U(x)|| ≤ K(L(x)− L(x∗)). (12)
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Theorem 3. There exists an update strategy θn+1 = S(θn) based on a single evaluation of U for
which L(NNθn(y)) converges to a minimum x∗ or minimum region of L for all examples.

Proof. We denote x̃n ≡ xn + U(xn) and ∆L∗ = L(xn) − L(x∗). Let I2 denote the open set
of all x for which L(x) − L(xn) > τ

2∆L∗. Eq. 11 provides that x̃n ∈ I2. Since I2 is open,
∃ϵ > 0 : ∀x ∈ Bϵ(x̃n) : L(xn)− L(x) > τ

2∆L∗ where Bϵ(x) denotes the open set containing all
x′ ∈ Rd for which ||x′ − x||2 < ϵ, i.e. there exists a small ball around x̃n which is fully contained in
I2 (see sketch in Fig. 4).

Using Eq. 9, we can find a finite n ∈ N for which NNθn ∈ Bϵ(x̃n) and therefore L(xn)−L(NNθn) >
τ
2∆L∗. We can thus use the following strategy S for minimizing L: First, compute x̃n = xn+U(xn).
Then perform gradient descent steps in θ with the effective objective function 1

2 ||NNθ − x̃n||22 until
L(xn) − L(NNθ) ≥ τ

2∆L∗. Each application of S reduces the loss to ∆L∗
n+1 ≤ (1 − τ

2 )∆L∗
n

so any value of L > L(x∗) can be reached within a finite number of steps. Eq. 12 ensures that
||U(x)|| → 0 as the optimization progresses which guarantees that the optimization converges to a
minimum region.

෦𝑥𝑛

𝑥∗

𝑥𝑛

𝐵𝜖

−
𝜕𝐿 𝑥𝑛
𝜕𝑥

𝑇

𝐼2 𝐼

Figure 4: Convergence visualization for the proof
of theorem 3. All shown objects are visualized in
x space for one example i.

While this theorem guarantees convergence, it
requires potentially many gradient descent steps
in θ for each physics update U . This can be ad-
vantageous in special circumstances, e.g. when
U is more expensive to compute than an up-
date in θ, or when θ is far away from a solution.
However, in many cases, we want to re-evaluate
U after each update to θ. Without additional
assumptions about U and NNθ, there is no guar-
antee that L will decrease every iteration, even
for infinitesimally small step sizes. Despite this,
there is good reason to assume that the optimiza-
tion will decrease L over time. This can be seen
visually in Fig. 4 where the next prediction xn+1

is guaranteed to lie within the blue circle. The
region of increasing loss is shaded orange and
always fills less than half of the volume of the
circle, assuming we choose a sufficiently small
step size. We formalize this argument in appendix A.2.

Remarks and lemmas We considered the case that U ≡ ∆x0. This can be trivially extended to
the case that U ≡ ∆x0 + ...+∆xm for any m ∈ N. When we let the solver run to convergence, i.e.
m large enough, theorem 1 guarantees convergence if P−1 consistently converges to the same x∗

i .
Also note that any minimum θ∗ found with SIP training fulfills U = 0 for all examples, i.e. we are
implicitly minimizing

∑N
i=1

1
2∥U(y∗i | θ)∥22.

3.4 Experimental Characterization

We first investigate the convergence behavior of SIP training depending on characteristics of P . We
construct the synthetic two-dimensional inverse process

P(x) = (sin(x̂1)/ξ, x̂2 · ξ) with x̂ = γ ·Rϕ · x,
where Rϕ ∈ SO(2) denotes a rotation matrix and γ > 0. The parameters ξ and ϕ allow us to
continuously change the characteristics of the system. The value of ξ determines the conditioning
of P with large ξ representing ill-conditioned problems while ϕ describes the coupling of x1 and
x2. When ϕ = 0, the off-diagonal elements of the Hessian vanish and the problem factors into two
independent problems. Fig. 5a shows one example loss landscape.

We train a fully-connected neural network to invert this problem (Eq. 3), comparing SIP training
using a saddle-free Newton solver [14] to various state-of-the-art network optimizers. We select
the best learning rate for each optimizer independently. For ξ = 0, when the problem is perfectly
conditioned, all network optimizers converge, with Adam converging the quickest (Fig. 5b). Note
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Figure 5: (a) Example loss landscape with y∗ = (0.3,−0.5), ξ = 1, ϕ = 15◦. (b,c) Learning curves
with ϕ = π

4 , averaged over 256 min-batches. For (b) ξ = 1, and (c) ξ = 32. (d) Dependence on
problem conditioning ξ (with ϕ = 0). (e) Dependence on parameter coupling ϕ (with ξ = 32).

that the relatively slow convergence of SIP mostly stems from it taking significantly more time per
iteration than the other methods, on average 3 times as long as Adam. As we have spent little time
in eliminating computational overheads, SIP performance could likely be significantly improved to
near-Adam performance.

When increasing ξ with ϕ = 0 fixed (Fig. 5d), the accuracy of all traditional network optimizers
decreases because the gradients scale with (1/ξ, ξ) in x, elongating in x2, the direction that requires
more precise values. SIP training uses the Hessian to invert the scaling behavior, producing updates
that align with the flat direction in x to avoid this issue. This allows SIP training to retain its relative
accuracy over a wide range of ξ. At ξ = 32, only SIP and Adam succeed in optimizing the network
to a significant degree (Fig. 5c).

Varying ϕ with ξ = 32 fixed (Fig. 5e) sheds light on how Adam manages to learn in ill-conditioned
settings. Its diagonal approximation of the Hessian reduces the scaling effect when x1 and x2 lie on
different scales, but when the parameters are coupled, the lack of off-diagonal terms prevents this.
SIP training has no problem with coupled parameters since its updates are based on the full-rank
Hessian ∂2L

∂x2 .

3.5 Application to High-dimensional Problems

Explicitly evaluating the Hessian is not feasible for high-dimensional problems. However, scale-
invariant updates can still be computed, e.g. by inverting the gradient or via domain knowledge.
We test SIP training on three high-dimensional physical systems described by partial differential
equations: Poisson’s equation, the heat equation, and the Navier-Stokes equations. This selection
covers ubiquitous physical processes with diffusion, transport, and strongly non-local effects, featuring
both explicit and implicit solvers. All code required to reproduce our results is available at https:
//github.com/tum-pbs/SIP. A detailed description of all experiments along with additional
visualizations and performance measurements can be found in appendix B.

Poisson’s equation Poisson’s equation, P(x) = ∇−2x, plays an important role in electrostatics,
Newtonian gravity, and fluid dynamics [4]. It has the property that local changes in x can affect P(x)
globally. Here we consider a two-dimensional system and train a U-net [48] to solve inverse problems
(Eq. 1) on pseudo-randomly generated y∗. We compare SIP training to SGD with momentum, Adam,
AdaHessian [55], Fourier neural operators (FNO) [34] and Hessian-free optimization (H-free) [39].
Fig. 6b shows the learning curves. The training with SGD, Adam and AdaHessian drastically slows
within the first 300 iterations. FNO and H-free both improve upon this behavior, reaching twice the
accuracy before slowing. For SIP, we construct scale-invariant ∆x based on the analytic inverse of
Poisson’s equation and use Adam to compute ∆θ. The curve closely resembles an exponential curve,
which indicates linear convergence, the ideal case for first-order methods optimizing an L2 objective.
During all of training, the SIP variant converges exponentially faster than the traditional optimizers,
its relative performance difference compared to Adam continually increasing from a factor of 3 at
iteration 60 to a full order of magnitude after 5k iterations. This difference can be seen in the inferred
solutions (Fig. 6a) which are noticeably more detailed.

Heat equation Next, we consider a system with fundamentally non-invertible dynamics. The
heat equation, ∂u

∂t = ν · ∇2u, models heat flow in solids but also plays a part in many diffusive
systems [16]. It gradually destroys information as the temperature equilibrium is approached [26],
causing∇P to become near-singular. Inspired by heat conduction in microprocessors, we generate
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Figure 6: Poisson’s equation (left) and the heat equation (right). (a,c) Example from the data set:
observed distribution (y∗), inferred solutions, and ground truth solution (x∗). (b,d) Learning curves,
running average over 64 mini-batches (except for H-free).

examples xGT by randomly scattering four to ten heat generating rectangular regions on a plane and
simulating the heat profile y∗ = P(xGT) as observed from outside a heat-conducting casing. The
learning curves for the corresponding inverse problem are shown in Fig. 6d.

When training with SGD, Adam or AdaHessian, we observe that the distance to the solution starts
rapidly decreasing before decelerating between iterations 30 and 40 to a slow but mostly stable
convergence. The sudden deceleration is rooted in the adjoint problem, which is also a diffusion
problem. Backpropagation through P removes detail from the gradients, which makes it hard for
first-order methods to recover the solution. H-free initially finds better solutions but then stagnates
with the solution quality slowly deteriorating. FNO performs poorly on this task, likely due to the
sharp edges in x∗.

The information loss in P prevents direct numerical inversion of the gradient or Hessian. Instead,
we add a dampening term to derive a numerically stable scale-invariant solver which we use for SIP
training. Unlike SGD and Adam, the convergence of SIP training does not decelerate as early as the
other methods, resulting in an exponentially faster convergence. At iteration 100, the predictions
are around 34% more accurate compared to Adam, and the difference increases to 130% after 10k
iterations, making the reconstructions noticeably sharper than with traditional training methods
(Fig. 6c). To test the dependence of SIP on hyperparameters like batch size or learning rate, we
perform this experiment with a range of values (see appendix B.3). Our results indicate that SIP
training and Adam are impacted the same way by non-optimal hyperparameter configurations.

Navier-Stokes equations Fluids and turbulence are among the most challenging and least un-
derstood areas of physics due to their highly nonlinear behavior and chaotic nature [21]. We
consider a two-dimensional system governed by the incompressible Navier-Stokes equations:
∂v
∂t = ν∇2v − v · ∇v −∇p, ∇ · v = 0, where p denotes pressure and ν the viscosity. At t = 0, a
region of the fluid is randomly marked with a massless colorant m0 that passively moves with the
fluid, ∂m

∂t = −v · ∇m. After time t, the marker is observed again to obtain mt. The fluid motion
is initialized as a superposition of linear motion, a large vortex and small-scale perturbations. An
example observation pair y∗ = {m0,mt} is shown in Fig. 7a. The task is to find an initial fluid
velocity x ≡ v0 such that the fluid simulation P matches mt at time t. Since P is deterministic,
x encodes the complete fluid flow from 0 to t. We define the objective in frequency space with
lower frequencies being weighted more strongly. This definition considers the match of the marker
distribution on all scales, from the coarse global match to fine details, and is compatible with the
definition in Eq. 1. We train a U-net [48] to solve these inverse problems; the learning curves are
shown in Fig. 7b.

When training with Adam, the error decreases for the first 100 iterations while the network learns to
infer velocities that lead to an approximate match. The error then proceeds to decline at a much lower
rate, nearly coming to a standstill. This is caused by an overshoot in terms of vorticity, as visible in
Fig. 7a right. While the resulting dynamics can roughly approximate the shape of the observed mt,
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Figure 7: Incompressible fluid flow reconstruction. (a) Example from the data set: initial marker
distribution (m0); simulated marker distribution after time t using ground-truth velocity (y∗) and
network predictions (y◦); predicted initial velocities (x◦); ground truth velocity (x∗). (b) Learning
curves, running average over 64 mini-batches.

they fail to match its detailed structure. Moving from this local optimum to the global optimum is
very hard for the network as the distance in x space is large and the gradients become very noisy due
to the highly non-linear physics. A similar behavior can also be seen when optimizing single inverse
problems with gradient descent where it takes more than 20k iterations for GD to converge on single
problems.

For SIP training, we run the simulation in reverse, starting with mt, to estimate the translation and
vortex of x in a scale-invariant manner. When used for network training, we observe vastly improved
convergence behavior compared to first-order training. The error rapidly decreases during the first
200 iterations, at which point the inferred solutions are more accurate than pure Adam training by a
factor of 2.3. The error then continues to improve at a slower but still exponentially faster rate than
first-order training, reaching a relative accuracy advantage of 5x after 20k iterations. To match the
network trained with pure Adam for 20k iterations, the SIP variant only requires 55 iterations. This
improvement is possible because the inverse-physics solver and associated SIP updates do not suffer
from the strongly-varying gradient magnitudes and directions, which drown the first-order signal in
noise. Instead, the SIP updates behave much more smoothly, both in magnitude and direction.

Table 1: Time to reach equal solution quality in
the fluid experiment, measured as MAE in x space.
The inference time is given per example in batch
mode, followed by the number of iterations in
parentheses.

Method Training time Inference time
NN 17.6 h (15.6 k) 0.11 ms
P−1
NS n/a 2.2 s (7)

GD n/a > 4h (20k)

Comparing the inferred solutions from the net-
work to an iterative approach shows a large dif-
ference in inference time (table 1). To reach
the same solution quality as the neural network
prediction, P−1

NS needs 7 iterations on average,
which takes more than 10,000 times as long, and
gradient descent (GD) does not reach the same
quality even after 20k iterations. This difference
is caused by P−1

NS having to run the full forward
and backward simulation for each iteration. This
cost is also required for each training iteration
of the network but once converged, its inference is extremely fast, solving around 9000 problems per
second in batch mode. For both iterative solver and network, we used a batch size of 64 and divide
the total time by the batch size.

3.6 Limitations and Discussion

While SIP training manages to find vastly more accurate solutions for the examples above, there are
some caveats to consider. First, an approximately scale-invariant physics solver is required. While in
low-dimensional x spaces Newton’s method is a good candidate, high-dimensional spaces require
another form of inversion. Some equations can locally be inverted analytically but for complex
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problems, domain-specific knowledge may be required. However, this is a widely studied field and
many specialized solvers have been developed [9].

Second, SIP uses traditional first-order optimizers to determine ∆θ. As discussed, these solvers
behave poorly in ill-conditioned settings which can also affect SIP performance when the network
outputs lie on different scales. Some recent works address this issue and have proposed network
optimization based on inversion [39, 40, 20].

Third, while SIP training generally leads to more accurate solutions, measured in x space, the same is
not always true for the loss L =

∑
i Li. SIP training weighs all examples equally, independent of the

curvature |∂2L
∂x2 | near a chosen solution. This can cause small errors in examples with large curvatures

to dominate L. In these cases, or when the accuracy in x space is not important, like in some control
tasks, traditional training methods may perform better than SIP training.

4 Conclusions

We have introduced scale-invariant physics (SIP) training, a novel neural network training scheme for
learning solutions to nonlinear inverse problems. SIP training leverages physics inversion to compute
scale-invariant updates in the solution space. It provably converges assuming enough network updates
∆θ are performed per solver evaluation and we have shown that it converges with a single ∆θ update
for a wide range of physics experiments. The scale-invariance allows it to find solutions exponentially
faster than traditional learning methods for many physics problems while keeping the computational
cost relatively low. While this work targets physical processes, SIP training could also be applied to
other coupled nonlinear optimization problems, such as differentiable rendering or training invertible
neural networks.

Scale-invariant optimizers, such as Newton’s method, avoid many of the problems that plague deep
learning at the moment. While their application to high-dimensional parameter spaces is currently
limited, we hope that our method will help establish them as commonplace tools for training neural
networks in the future.
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LEARNING TO CONTROL PDES
WITH DIFFERENTIABLE PHYSICS
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Nils Thuerey
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ABSTRACT

Predicting outcomes and planning interactions with the physical world are long-
standing goals for machine learning. A variety of such tasks involves contin-
uous physical systems, which can be described by partial differential equations
(PDEs) with many degrees of freedom. Existing methods that aim to control the
dynamics of such systems are typically limited to relatively short time frames or a
small number of interaction parameters. We present a novel hierarchical predictor-
corrector scheme which enables neural networks to learn to understand and control
complex nonlinear physical systems over long time frames. We propose to split
the problem into two distinct tasks: planning and control. To this end, we intro-
duce a predictor network that plans optimal trajectories and a control network that
infers the corresponding control parameters. Both stages are trained end-to-end
using a differentiable PDE solver. We demonstrate that our method successfully
develops an understanding of complex physical systems and learns to control them
for tasks involving PDEs such as the incompressible Navier-Stokes equations.

1 INTRODUCTION

Intelligent systems that operate in the physical world must be able to perceive, predict, and interact
with physical phenomena (Battaglia et al., 2013). In this work, we consider physical systems that
can be characterized by partial differential equations (PDEs). PDEs constitute the most fundamen-
tal description of evolving systems and are used to describe every physical theory, from quantum
mechanics and general relativity to turbulent flows (Courant & Hilbert, 1962; Smith, 1985). We
aim to endow artificial intelligent agents with the ability to direct the evolution of such systems via
continuous controls.

Such optimal control problems have typically been addressed via iterative optimization. Differ-
entiable solvers and the adjoint method enable efficient optimization of high-dimensional sys-
tems (Toussaint et al., 2018; de Avila Belbute-Peres et al., 2018; Schenck & Fox, 2018). However,
direct optimization through gradient descent (single shooting) at test time is resource-intensive and
may be difficult to deploy in interactive settings. More advanced methods exist, such as multiple
shooting and collocation, but they commonly rely on modeling assumptions that limit their applica-
bility, and still require computationally intensive iterative optimization at test time.

Iterative optimization methods are expensive because they have to start optimizing from scratch and
typically require a large number of iterations to reach an optimum. In many real-world control prob-
lems, however, agents have to repeatedly make decisions in specialized environments, and reaction
times are limited to a fraction of a second. This motivates the use of data-driven models such as
deep neural networks, which combine short inference times with the capacity to build an internal
representation of the environment.

We present a novel deep learning approach that can learn to represent solution manifolds for a given
physical environment, and is orders of magnitude faster than iterative optimization techniques. The
core of our method is a hierarchical predictor-corrector scheme that temporally divides the problem
into easier subproblems. This enables us to combine models specialized to different time scales in
order to control long sequences of complex high-dimensional systems. We train our models using a
differentiable PDE solver that can provide the agent with feedback of how interactions at any point

1

ar
X

iv
:2

00
1.

07
45

7v
1 

 [
cs

.L
G

] 
 2

1 
Ja

n 
20

20



Published as a conference paper at ICLR 2020

in time affect the outcome. Our models learn to represent manifolds containing a large number of
solutions, and can thereby avoid local minima that can trap classic optimization techniques.

We evaluate our method on a variety of control tasks in systems governed by advection-diffusion
PDEs such as the Navier-Stokes equations. We quantitatively evaluate the resulting sequences on
how well they approximate the target state and how much force was exerted on the physical system.
Our method yields stable control for significantly longer time spans than alternative approaches.

2 BACKGROUND

Physical problems commonly involve nonlinear PDEs, often with many degrees of freedom. In this
context, several works have proposed methods for improving the solution of PDE problems (Long
et al., 2018; Bar-Sinai et al., 2019; Hsieh et al., 2019) or used PDE formulations for unsupervised
optimization (Raissi et al., 2018). Lagrangian fluid simulation has been tackled with regression
forests (Ladicky et al., 2015), graph neural networks (Mrowca et al., 2018; Li et al., 2019), and con-
tinuous convolutions (Ummenhofer et al., 2020). Data-driven turbulence models were trained with
MLPs (Ling et al., 2016). Fully-convolutional networks were trained for pressure inference (Tomp-
son et al., 2017) and advection components were used in adversarial settings (Xie et al., 2018).
Temporal updates in reduced spaces were learned via the Koopman operator (Morton et al., 2018).
In a related area, deep networks have been used to predict chemical properties and the outcome of
chemical reactions (Gilmer et al., 2017; Bradshaw et al., 2019).

Differentiable solvers have been shown to be useful in a variety of settings. Degrave et al. (2019)
and de Avila Belbute-Peres et al. (2018) developed differentiable simulators for rigid body me-
chanics. (See Popovic et al. (2000) for earlier work in computer graphics.) Toussaint et al. (2018)
applied related techniques to manipulation planning. Specialized solvers were developed to infer
protein structures (Ingraham et al., 2019), interact with liquids (Schenck & Fox, 2018), control soft
robots (Hu et al., 2019), and solve inverse problems that involve cloth (Liang et al., 2019). Like ours,
these works typically leverage the automatic differentiation of deep learning pipelines (Griewank
& Walther, 2008; Maclaurin et al., 2015; Amos & Kolter, 2017; Mensch & Blondel, 2018; van
Merriënboer et al., 2018; Chen et al., 2018; Bradbury et al., 2018; Paszke et al., 2019; Tokui et al.,
2019). However, while the works above target Lagrangian solvers, i.e. reference frames moving
with the simulated material, we address grid-based solvers, which are particularly appropriate for
dense, volumetric phenomena.

The adjoint method (Lions, 1971; Pironneau, 1974; Jameson, 1988; Giles & Pierce, 2000; Bewley,
2001; McNamara et al., 2004) is used by most machine learning frameworks, where it is commonly
known as reverse mode differentiation (Werbos, 2006; Chen et al., 2018). While a variety of spe-
cialized adjoint solvers exist (Griewank et al., 1996; Fournier et al., 2012; Farrell et al., 2013), these
packages do not interface with production machine learning frameworks. A supporting contribu-
tion of our work is a differentiable PDE solver called ΦFlow that integrates with TensorFlow (Abadi
et al., 2016) and PyTorch (Paszke et al., 2019). It is publicly available at https://github.com/tum-
pbs/PhiFlow.

3 PROBLEM

Consider a physical system u(x, t) whose natural evolution is described by the PDE

∂u

∂t
= P

(
u,
∂u

∂x
,
∂2u

∂x2
, ...,y(t)

)
, (1)

where P models the physical behavior of the system and y(t) denotes external factors that can
influence the system. We now introduce an agent that can interact with the system by controlling
certain parameters of the dynamics. This could be the rotation of a motor or fine-grained control
over a field. We factor out this influence into a force term F , yielding

∂u

∂t
= P

(
u,
∂u

∂x
,
∂2u

∂x2
, ...

)
+ F (t). (2)

The agent can now be modelled as a function that computes F (t). As solutions of nonlinear PDEs
were shown to yield low-dimensional manifolds (Foias et al., 1988; Titi, 1990), we target solution
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manifolds of F (t) for a given choice of P with suitable boundary conditions. This motivates our
choice to employ deep networks for our agents.

In most real-world scenarios, it is not possible to observe the full state of a physical system. When
considering a cloud of smoke, for example, the smoke density may be observable while the velocity
field may not be seen directly. We model the imperfect information by defining the observable state
of u as o(u). The observable state is problem dependent, and our agent is conditioned only on these
observations, i.e. it does not have access to the full state u.

Using the above notation, we define the control task as follows. An initial observable state o0 of the
PDE as well as a target state o∗ are given (Figure 1a). We are interested in a reconstructed trajectory
u(t) that matches these states at t0 and t∗, i.e. o0 = o(u(t0)),o∗ = o(u(t∗)), and minimizes the
amount of force applied within the simulation domain D (Figure 1b):

LF [u(t)] =

∫ t∗

t0

∫

D
|Fu(t)|2 dx dt. (3)
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Figure 1: Illustration of possible trajectories. The
grey lines represent the unperturbed evolution of
the physical system. The amount of applied force
corresponds to how far the trajectory deviates
from the natural evolution.

Taking discrete time steps ∆t, the reconstructed
trajectory u is a sequence of n = (t∗ − t0)/∆t
states.

When an observable dimension cannot be con-
trolled directly, there may not exist any trajec-
tory u(t) that matches both o0 and o∗. This
can stem from either physical constraints or nu-
merical limitations. In these cases, we settle for
an approximation of o∗. To measure the quality
of the approximation of the target, we define an
observation loss L∗o. The form of this loss can
be chosen to fit the problem. We combine Eq. 3
and the observation loss into the objective func-
tion

L[u(t)] = α · LF [u(t)] + L∗o(u(t∗)), (4)

with α > 0. We use square brackets to denote functionals, i.e. functions depending on fields or
series rather than single values.

4 PRELIMINARIES

Differentiable solvers. Let u(x, t) be described by a PDE as in Eq. 1. A regular solver can move
the system forward in time via Euler steps:

u(ti+1) = Solver[u(ti),y(ti)] = u(ti) + ∆t · P (u(ti), ...,y(ti)) . (5)

Each step moves the system forward by a time increment ∆t. Repeated execution produces a tra-
jectory u(t) that approximates a solution to the PDE. This functionality for time advancement by
itself is not well-suited to solve optimization problems, since gradients can only be approximated
by finite differencing. For high-dimensional or continuous systems, this method becomes computa-
tionally expensive because a full trajectory needs to be computed for each optimizable parameter.

Differentiable solvers resolve this issue by solving the adjoint problem (Pontryagin, 1962) via ana-
lytic derivatives. The adjoint problem computes the same mathematical expressions while working
with lower-dimensional vectors. A differentiable solver can efficiently compute the derivatives with
respect to any of its inputs, i.e. ∂u(ti+1)/∂u(ti) and ∂u(ti+1)/∂y(ti). This allows for gradient-
based optimization of inputs or control parameters over an arbitrary number of time steps.

Iterative trajectory optimization. Many techniques exist that try to find optimal trajectories by
starting with an initial guess for F (t) and slightly changing it until reaching an optimum. The sim-
plest of these is known as single shooting. In one optimization step, it simulates the full dynamics,
then backpropagates the loss through the whole sequence to optimize the controls (Kraft, 1985;
Leineweber et al., 2003). Replacing F (t) with an agent F (t|ot, o∗), which can be parameterized by
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a deep network, yields a simple training method. For a sequence of n frames, this setup contains n
linked copies of the agent and is depicted in Figure 2. We refer to such an agent as a control force
estimator (CFE).

Optimizing such a chain of CFEs is both computationally expensive and causes gradients to pass
through a potentially long sequence of highly nonlinear simulation steps. When the reconstruction
u is close to an optimal trajectory, this is not a problem because the gradients ∆u are small and
the operations executed by the solver are differentiable by construction. The solver can therefore be
locally approximated by a first-order polynomial and the gradients can be safely backpropagated.
For large ∆u, e.g. at the beginning of an optimization, this approximation breaks down, causing
the gradients to become unstable while passing through the chain. This instability in the training
process can prevent single-shooting approaches from converging and deep networks from learning
unless they are initialized near an optimum.

Alternatives to single shooting exist, promising better and more efficient convergence. Multi-
ple shooting (Bock & Plitt, 1984) splits the trajectory into segments with additional defect con-
straints. Depending on the physical system, this method may have to be adjusted for specific prob-
lems (Treuille et al., 2003). Collocation schemes (Hargraves & Paris, 1987) model trajectories with
splines. While this works well for particle trajectories, it is poorly suited for Eulerian solvers where
the evolution of individual points does not reflect the overall motion. Model reduction can be used
to reduce the dimensionality or nonlinearity of the problem, but generally requires domain-specific
knowledge. When applicable, these methods can converge faster or in a more stable manner than
single shooting. However, as we are focusing on a general optimization scheme in this work, we
will use single shooting and its variants as baseline comparisons.

Supervised and differentiable physics losses. One of the key ingredients in training a machine
learning model is the choice of loss function. For many tasks, supervised losses are used, i.e. losses
that directly compare the output of the model for a specific input with the desired ground truth.
While supervised losses can be employed for trajectory optimization, far better loss functions are
possible when a differentiable solver is available. We will refer to these as differentiable physics loss
functions. In this work, we employ a combination of supervised and differentiable physics losses,
as both come with advantages and disadvantages.

One key limitation of supervised losses is that they can only measure the error of a single time step.
Therefore, an agent cannot get any measure of how its output would influence future time steps.
Another problem arises from the form of supervised training data which comprises input-output
pairs, which may be obtained directly from data generation or through iterative optimization. Since
optimal control problems are generally not unimodal, there can exist multiple possible outputs for
one input. This ambiguity in the supervised training process will lead to suboptimal predictions as
the network will try to find a compromise between all possible outputs instead of picking one of
them.

Differentiable physics losses solve these problems by allowing the agent to be directly optimized
for the desired objective (Eq. 4). Unlike supervised losses, differentiable physics losses require a
differentiable solver to backpropagate the gradients through the simulation. Multiple time steps can
be chained together, which is a key requirement since the objective (Eq. 4) explicitly depends on all

Solver𝐶𝐹𝐸Solver𝐶𝐹𝐸 Solver𝐶𝐹𝐸 𝒐(𝒖𝑟)…

𝑡0 𝑡𝑛−1 𝑡𝑛𝑡1

Δ𝒖r

𝐿 𝒐∗

Adjoint

Δ𝒘

𝐶𝐹𝐸∗…Adjoint𝐶𝐹𝐸∗Adjoint𝐶𝐹𝐸∗

Δ𝒘Δ𝒘 + + … +

(a) Forward pass

(b) Backward pass

(c) Weight update

Figure 2: Single-shooting optimization with a control force estimator (CFE). (a) The forward pass
simulates the full sequence. (b) Backpropagation computes the adjoint problem. (c) Weight updates
are accumulated and applied to the CFE.
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time steps through LF [u(t)] (Eq. 3). As with iterative solvers, one optimization step for a sequence
of n frames then invokes the agent n times before computing the loss, each invocation followed by
a solver step. The employed differentiable solver backpropagates the gradients through the whole
sequence, which gives the model feedback on (i) how its decisions change the future trajectory and
(ii) how to handle states as input that were reached because of its previous decisions. Since no
ground truth needs to be provided, multi-modal problems naturally converge towards one solution.

5 METHOD

In order to optimally interact with a physical system, an agent has to (i) build an internal repre-
sentation of an optimal observable trajectory o(u(t)) and (ii) learn what actions to take to move
the system along the desired trajectory. These two steps strongly resemble the predictor-corrector
method (Press et al., 2007). Given o(t), a predictor-corrector method computes o(t + ∆t) in two
steps. First, a prediction step approximates the next state, yielding op(t+ ∆t). Then, the correction
uses op(t + ∆t) to refine the initial approximation and obtain o(t + ∆t). Each step can, to some
degree, be learned independently.

This motivates splitting the agent into two neural networks: an observation predictor (OP) network
that infers intermediate states op(ti), i ∈ {1, 2, ...n − 1}, planning out a trajectory, and a corrector
network (CFE) that estimates the control force F (ti|o(ui),o

p
i+1) to follow that trajectory as closely

as possible. This splitting has the added benefit of exposing the planned trajectory, which would
otherwise be inaccessible. As we will demonstrate, it is crucial for the prediction stage to incorporate
knowledge about longer time spans. We address this by modelling the prediction as a temporally
hierarchical process, recursively dividing the problem into smaller subproblems.

To achieve this, we let the OP not directly infer op(ti+1 |o(ui),o
∗) but instead model it to predict

the optimal center point between two states at times ti, tj , with i, j ∈ {1, 2, ...n − 1}, j > i, i.e.
op((ti + tj)/2 |oi,oj). This function is much more general than predicting the state of the next
time step since two arbitrary states can be passed as arguments. Recursive OP evaluations can then
partition the sequence until a prediction op(ti) for every time step ti has been made.

This scheme naturally enables scaling to arbitrary time frames or arbitrary temporal resolutions,
assuming that the OP can correctly anticipate the physical behavior. Since physical systems often
exhibit different behaviors on different time scales and the OP can be called with states separated by
arbitrary time spans, we condition the OP on the time scale it is evaluated on by instantiating and
training a unique version of the model for every time scale. This simplifies training and does not
significantly increase the model complexity as we use factors of two for the time scales, and hence
the number of required models scales with O(log2 n). We will refer to one instance of an OPn by
the time span between its input states, measured in the number of frames n = (tj − ti)/∆t.
Execution order. With the CFE and OPn as building blocks, many algorithms for
solving the control problem, i.e. for computing F (t), can be assembled and trained.

(a) Prediction first (b) Staggered (c) Refined
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Figure 3: Overview of the different execution schemes.

We compared a variety of algorithms and
found that a scheme we will refer to as
prediction refinement produces the best re-
sults. It is based on the following prin-
ciples: (i) always use the finest scale OP
possible to make a prediction, (ii) execute
the CFE followed by a solver step as soon
as possible, (iii) refine predictions after the
solver has computed the next state. The al-
gorithm that realizes these goals is shown
in Appendix B with an example for n = 8.
To understand the algorithm and resulting
execution orders, it is helpful to consider
simpler algorithms first.

The simplest combination of CFE and OPn invocations that solves the full trajectory, shown in Fig-
ure 3a, can be described as follows. Initially, all intermediate states are predicted hierarchically. The
first prediction is the half-way point op(tn/2 |o0,o∗), generated by the OPn. Using that as input to
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an OPn/2 results in new predictions at tn/4, t3n/4. Continuing with this scheme, a prediction can
be made for each ti, i ∈ 1, ..., n− 1. Next, the actual trajectory is evaluated step by step. For each
step ti, the CFE computes the control force F (ti) conditioned on the state at ti and the prediction
op(ti+1). Once F (ti) is known, the solver can step the simulation to the next state at ti+1. This al-
gorithm finds a trajectory in timeO(n) since n CFE calls and n−1 OP calls are required in total (see
Appendix B). However, there are inherent problems with this algorithm. The physical constraints
of the PDE and potential approximation errors of the CFE can result in observations that are only
matched partially. This can result in the reconstructed trajectory exhibiting undesirable oscillations,
often visible as jittering. When subsequent predictions do not line up perfectly, large forces may be
applied by the CFE or the reconstructed trajectory might stop following the predictions altogether.

This problem can be alleviated by changing the execution order of the two-stage algorithm described
above. The resulting algorithm is shown in Figure 3b and will be referred to as staggered execution.
In this setup, the simulation is advanced as soon as a prediction for the next observable state exists
and OPs are only executed when their state at time ti is available. This staggered execution scheme
allows future predictions to take deviations from the predicted trajectory into account, preventing a
divergence of the actual evolution o(u(t)) from the prediction op(t).

While the staggered execution allows most predictions to correct for deviations from the predicted
trajectory op, this scheme leaves several predictions unmodified. Most notably, the prediction
op(tn/2), which is inferred from just the initial state and the desired target, remains unchanged.
This prediction must therefore be able to guide the reconstruction in the right direction without
knowing about deviations in the system that occurred up to tn/2−1. As a practical consequence, a
network trained with this scheme typically learns to average over the deviations, resulting in blurred
predictions (see Appendix D.2).

Algorithm 1: Recursive algorithm computing the prediction refinement. The algorithm is called via
Reconstruct[o0,o∗, absent] to reconstruct a full trajectory from o0 to o∗.
function Reconstruct[o(u0),on,o2n];
Input : Initial observation o(u0), observation on, optional observation o2n
Output: Observation of the reconstructed state o(un)
if n = 1 then

F ← CFE[o(u0),o1]
u1 ← Solver[u0,F ]
return o(u1)

else
on/2 ← OP[o(u0),on]
o(un/2)← Reconstruct[o(u0),on/2,on]
if o2n present then

o3n/2 ← OP[on,o2n]
on ← OP[o(un/2),o3n/2]

else
o3n/2 ← absent

end
o(un)← Reconstruct[o(un/2),on,o3n/2]
return o(un)

end

The prediction refinement scheme, listed in Algorithm 1 and illustrated in Figure 3c, solves this
problem by re-evaluating existing predictions whenever the simulation progesses in time. Not all
predictions need to be updated, though, and an update to a prediction at a finer time scale can
depend on a sequence of other predictions. The prediction refinement algorithm that achieves this in
an optimal form is listed in Appendix B. While the resulting execution order is difficult to follow for
longer sequences with more than n = 8 frames, we give an overview of the algorithm by considering
the prediction for time tn/2. After the first center-frame prediction op(tn/2) of the n-frame sequence
is made by OPn, the prediction refinement algorithm calls itself recursively until all frames up to
frame n/4 are reconstructed from the CFE and the solver. The center prediction is then updated
using OPn/2 for the next smaller time scale compared to the previous prediction. The call of OPn/2
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Figure 4: Trajectories for an example control task using Burger’s equation. Initial and target states
are plotted with thick dashed lines in red and blue, respectively. Inferred states are shown as solid
lines. (a) Natural evolution. (b) Reconstruction using a CFE chain. (c,d) Reconstructions using our
hierarchical predictor-corrector scheme. (e) Ground-truth trajectory generated with constant force.

also depends on op(t3n/4), which was predicted using OPn/2. After half of the remaining distance
to the center is reconstructed by the solver, the center prediction at tn/2 is updated again, this time by
the OPn/4, including all prediction dependencies. Hence, the center prediction is continually refined
every time the temporal distance between the latest reconstruction and the prediction halves, until
the reconstruction reaches that frame. This way, all final predictions op(ti) are conditioned on the
reconstruction of the previous state u(ti−1) and can therefore account for all previous deviations.

The prediction refinement scheme requires the same number of force inferences but an increased
number of OP evaluations compared to the simpler algorithms. With a total of 3n − 2 log2(n) − 3
OP evaluations (see Appendix B), it is of the same complexity, O(n). In practice, this refinement
scheme incurs only a small overhead in terms of computation, which is outweighed by the significant
gains in quality of the learned control function.

6 RESULTS

We evaluate the capabilities of our method to learn to control physical PDEs in three different test
environments of increasing complexity. We first target a simple but nonlinear 1D equation, for
which we present an ablation study to quantify accuracy. We then study two-dimensional problems:
an incompressible fluid and a fluid with complex boundaries and indirect control. Full details are
given in Appendix D. Supplemental material containing additional sequences for all of the tests can
be downloaded from https://ge.in.tum.de/publications/2020-iclr-holl.

Burger’s equation. Burger’s equation is a nonlinear PDE that describes the time evolution of a
single field, u (LeVeque, 1992). Using Eq. 1, it can be written as

P
(
u,
∂u

∂x
,
∂2u

∂x2

)
= −u · ∂u

∂x
+ ν

∂2u

∂x2
. (6)

Examples of the unperturbed evolution are shown in Figure 4a. We let the whole state be observable
and controllable, i.e. o(t) = u(t), which implies that o∗ can always be reached exactly.

The results of our ablation study with this equation are shown in Table 1. The table compares the
resulting forces applied by differently trained models when reconstructing a ground-truth sequence
(Figure 4e). The variant denoted by CFE chain uses a neural network to infer the force without any
intermediate predictions. With a supervised loss, this method learns to approximate a single step
well. However, for longer sequences, results quickly deviate from an ideal trajectory and diverge
because the network never learned to account for errors made in previous steps (Figure 4b). Training
the network with the objective loss (Eq. 4) using the differentiable solver greatly increases the quality
of the reconstructions. On average, it applies only 34% of the force used by the supervised model
as it learns to correct the temporal evolution of the PDE model.

Next, we evaluate variants of our predictor-corrector approach, which hierarchically predicts in-
termediate states. Here, the CFE is implemented as F (ti) = (op(ti+1) − u(ti))/∆t. Unlike the
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Table 1: Quantitative reconstruction evaluation using Burger’s equation, avg. for 100 examples.
Execution scheme Training loss Force

∫
|F | dt Inference time (ms)

CFE chain Supervised 83.4± 2.0 0.024± 0.013
CFE chain Diff. Physics 28.8± 0.8 0.024± 0.013
Staggered Supervised 34.3± 1.1 1.15± 0.19
Staggered Diff. Physics 15.3± 0.7 1.15± 0.19
Refined Diff. Physics 14.2± 0.7 3.05± 0.37

Iterative optim. (60 iter.) Diff. Physics 15.3± 1.6 52.7± 2.1
Iterative optim. (300 iter.) Diff. Physics 10.2± 1.9 264.0± 3.0

Table 2: A comparison of methods in terms of final cost for (a) the natural flow setup and (b) the
shape transitions. The initial distribution is sampled randomly and evolved to the target state.

Execution Loss a) Force LF a) Obs. L∗
o b) Force LF b) Obs. L∗

o

Staggered Supervised 243± 11 1.53± 0.23 n/a n/a
Staggered Diff. Physics 22.6± 1.1 0.64± 0.08 89± 6 0.331± 0.134
Refined Diff. Physics 11.7± 0.6 0.88± 0.11 75± 4 0.126± 0.010

simple CFE chain above, training with the supervised loss and staggered execution produces stable
(albeit jittering) trajectories that successfully converge to the target state (Figure 4c). Surprisingly,
this supervised method reaches almost the same accuracy as the differentiable CFE, despite not hav-
ing access to physics-based gradients. However, employing the differentiable physics loss greatly
improves the reconstruction quality, producing solutions that are hard to distinguish from ideal tra-
jectories (Figure 4d). The prediction refinement scheme further improves the accuracy, but the
differences to the staggered execution are relatively small as the predictions of the latter are already
very accurate.

Table 1 also lists the results of classic shooting-based optimization applied to this problem. To match
the quality of the staggered execution scheme, the shooting method requires around 60 optimization
steps. These steps are significantly more expensive to compute, despite the fast convergence. After
around 300 iterations, the classic optimization reaches an optimal value of 10.2 and the loss stops
decreasing. Starting the iterative optimization with our method as an initial guess pushes the opti-
mum slightly lower to 10.1. Thus, even this relatively simple problem shows the advantages of our
learned approach.

Incompressible fluid flow. Next, we apply our algorithm to two-dimensional fluid dynamics
problems, which are challenging due to the complexities of the governing Navier-Stokes equa-
tions (Batchelor, 1967). For a velocity field v, these can be written as

P(v,∇v) = −v · ∇v + ν∇2v −∇p, (7)

subject to the hard constraints∇·v = 0 and∇×p = 0, where p denotes pressure and ν the viscosity.
In addition, we consider a passive density ρ that moves with the fluid via ∂ρ/∂t = −v · ∇ρ. We set
v to be hidden and ρ to be observable, and allow forces to be applied to all of v.

We run our tests on a 1282 grid, resulting in more than 16,000 effective continuous control param-
eters. We train the OP and CFE networks for two different tasks: reconstruction of natural fluid
flows and controlled shape transitions. Example sequences are shown in Figure 5 and a quantita-
tive evaluation, averaged over 100 examples, is given in Table 2. While all methods manage to
approximate the target state well, there are considerable differences in the amount of force applied.
The supervised technique exerts significantly more force than the methods based on the differen-
tiable solver, resulting in jittering reconstructions. The prediction refinement scheme produces the
smoothest transitions, converging to about half the loss of the staggered, non-refined variant.

We compare our method to classic shooting algorithms for this incompressible flow problem. While
a direct shooting method fails to converge, a more advanced multi-scale shooting approach still re-
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Figure 5: Example reconstructed trajectory from (a) the natural flow test set and (b) the shape test
set. The target state o∗ is shown on the right.

Figure 6: Indirect control sequence. Obstacles are marked white, control regions light blue. The
white arrows indicate the velocity field. The domain is enclosed in a solid box with an open top.

quires 1500 iterations to obtain a level of accuracy that our model achieves almost instantly. In
addition, our model successfully learns a solution manifold, while iterative optimization techniques
essentially start from scratch every time. This global view leads our model to more intuitive solu-
tions and decreases the likelihood of convergence to undesirable local minima. The solutions of our
method can also be used as initial guesses for iterative solvers, as illustrated in Appendix D.4. We
find that the iterative optimizer with an initial guess converges to solutions that require only 57.4%
of the force achieved by the iterative optimizer with default initialization. This illustrates how the
more global view of the learned solution manifold can improve the solutions of regular optimization
runs.

Splitting the task into prediction and correction ensures that intermediate predicted states are phys-
ically plausible and allows us to generalize to new tasks. For example, we can infer transitions
involving multiple shapes, despite training only on individual shapes. This is demonstrated in Ap-
pendix D.2.

Incompressible fluid with indirect control. The next experiment increases the complexity of the
fluid control problem by adding obstacles to the simulated domain and limiting the area that can be
controlled by the network. An example sequence in this setting is shown in Figure 6. As before,
only the density ρ is observable. Here, the goal is to move the smoke from its initial position
near the center into one of the three “buckets” at the top. Control forces can only be applied in
the peripheral regions, which are outside the visible smoke distribution. Only by synchronizing the
5000 continuous control parameters can a directed velocity field be constructed in the central region.

We first infer trajectories using a trained CFE network and predictions that move the smoke into the
desired bucket in a straight line. This baseline manages to transfer 89%±2.6% of the smoke into the
target bucket. Next we enable the hierarchical predictions and train the OPs. This version manages
to maneuver 99.22%± 0.15% of the smoke into the desired buckets while requiring 19.1%± 1.0%
less force.

For comparison, Table 3 also lists success rate and execution time for a direct optimization. Despite
only obtaining a low success rate of 82%, the shooting method requires several orders of magnitude
longer than evaluating our trained model. Since all optimizations are independent of each other,
some find better solutions than others, reflected in the higher standard deviation. The increased
number of free parameters and complexity of the fluid dynamics to be controlled make this problem
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Table 3: Comparison of different methods on the task of moving a distribution of smoke into the
target region by applying forces outside the region.

Method Optimized quantity Inside target (%) Inference time (ms)

Straight trajectory CFE 89.5± 2.6 31.46± 0.20
Staggered predictions CFE, OPn 99.22± 0.15 67.40± 0.20

Iterative optim. Control velocity 82.1± 7.3 266.5 · 103

intractable for the shooting method, while our model can leverage the learned representation to infer
a solution very quickly. Further details are given in Appendix D.3.

7 CONCLUSIONS

We have demonstrated that deep learning models in conjunction with a differentiable physics solver
can successfully predict the behavior of complex physical systems and learn to control them. The in-
troduction of a hierarchical predictor-corrector architecture allowed the model to learn to reconstruct
long sequences by treating the physical behavior on different time scales separately.

We have shown that using a differentiable solver greatly benefits the quality of solutions since the
networks can learn how their decisions will affect the future. In our experiments, hierarchical infer-
ence schemes outperform traditional sequential agents because they can easily learn to plan ahead.

To model realistic environments, we have introduced observations to our pipeline which restrict the
information available to the learning agent. While the PDE solver still requires full state information
to run the simulation, this restriction does not apply when the agent is deployed.

While we do not believe that learning approaches will replace iterative optimization, our method
shows that it is possible to learn representations of solution manifolds for optimal control trajectories
using data-driven approaches. Fast inference is vital in time-critical applications and can also be
used in conjunction with classical solvers to speed up convergence and ultimately produce better
solutions.
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A IMPLEMENTATION DETAILS OF THE DIFFERENTIABLE PDE SOLVER

Our solver is publicly available at https://github.com/tum-pbs/PhiFlow, licensed as MIT. It is imple-
mented via existing machine learning frameworks to benefit from the built-in automatic differentia-
tion and to enable tight integration with neural networks.

For the experiments shown here we used the popular machine learning framework Tensor-
Flow (Abadi et al., 2016). However, our solver is written in a framework-independent way and
also supports PyTorch (Paszke et al., 2019). Both frameworks allow for a low-level NumPy-like
implementation which is well suited for basic PDE building blocks. The following paragraphs out-
line how we implemented these building blocks and how they can be put together to solve the PDEs
shown in Section 6.

Staggered grids. Many of the experiments presented in Section 6 use PDEs which track velocities.
We adopt the marker-and-cell method (Harlow & Welch, 1965), storing densities in a regular grid
and velocity in a staggered grid. Unlike regular grids, where all components are sampled at the cen-
ters of grid cells, staggered grids sample vector fields in a staggered form. Each vector component
is sampled in the center of the cell face perpendicular to that direction. This sampling allows for
an exact formulation of the divergence of a staggered vector field, decreasing discretization errors
in many cases. On the other hand, it complicates operations that combine vector fields with regular
fields such as transport or density-dependent forces.

We use staggered grids for the velocities in all of our experiments. The buoyancy operation, which
applies an upward force proportional to the smoke density, interpolates the density to the staggered
grid. For the transport, also called advection, of regular or staggered fields, we interpolate the
staggered field to grid cell centers or face centers, respectively. These interpolations are implemented
in TensorFlow using basic tensor operations, similar to the differential operators. We implemented
all differential operators that act on vector fields to support staggered grids as well.

Differential operators. For the experiments outlined in this paper, we have implemented the fol-
lowing differential operators:

• Gradient of scalar fields in any number of dimensions,∇x
• Divergence of regular and staggered vector fields in any number of dimensions,∇ · x
• Curl of staggered vector fields in 2D and 3D,∇× x
• Laplace of scalar fields in any number of dimensions,∇2x

All differential operators are local operations, i.e. they only act on a small neighbourhood of grid
points. In the context of machine learning, this suggests implementing them as convolution opera-
tions with a fixed kernel. Indeed, all differential operators can be expressed this way and we have
implemented some low-dimensional versions of them using this method.

This method does, however, scale poorly with the dimensionality of the physical system as the
convolutional kernels pick up a large number of zeros, thus wasting computations. Therefore, we
express n-dimensional differential operators using basic mathematical tensor operations.

Consider the gradient computation in 1D, which results in a staggered grid. Each resulting value is

(∇x)i = xi − xi−1,
assuming the result is staggered at the lower faces of each grid cell. This operation can be imple-
mented as a 1D convolution with kernel (−1, 1) or as a vector operation which subtracts the array
from itself, shifted by one element.

In a low-dimensional setting, the convolution operation will be faster as it is highly optimized and
can be executed on GPUs with one call. In higher dimensions, however, the vector-based version
is faster and more practical because it avoids unnecessary computations and can be coded in a
dimension-independent fashion. Both convolutions and basic mathematical operations are supported
by all common machine learning frameworks, eliminating the need to implement custom gradient
functions.

Advection. PDEs containing material derivatives can be solved using an advection step

f ← Advect[f,v]
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which moves each value of a field f in the direction specified by a vector field v. We implement the
advection with semi-Lagrangian step (Stam, 1999) that looks back in time and supports regular and
staggered vector fields.

To determine the advected value of a grid cell or face xtarget, first v is interpolated to that point. Then
the origin location is determined by following the vector backwards in time,

xorigin = xtarget −∆t · v(xtarget).

The final value is determined by linearly interpolating between the neighbouring grid cells around
xorigin. All of these operations are, again, implemented using basic mathematical operations. Hence,
gradients can be provided by the framework.

Poisson problems. Incompressible fluids, governed by the Navier-Stokes equations, are subject to
the hard constraints∇ · v = 0 and∇× p = 0 where p denotes the pressure. A numerical solver can
achieve this by finding a p such that these constraints are satisfied. This step is often called Chorin
Projection, or Helmholtz decomposition, and is closely related to the fundamental theorem of vector
calculus (von Helmholtz, 1858; Chorin, 1967). On a grid, solving for p is equal to solving a Poisson
problem, i.e. a system of N linear equations,Ap = ∇ · u where N is the total number of grid cells.
The (N ·N) matrix A is sparse and its entries are located at predictable indices.

We numerically solve this Poisson problem with a conjugate gradient (CG) algorithm (Golub &
Van Loan, 2012) that iteratively approximates p. Since hundreds of CG steps typically need to be
performed for each Poisson solve, it is unfeasible to unroll this chain of iterations, and store all
intermediate results in memory.

To ensure that the automatic differentiation chain is not broken, we instead solve the adjoint problem.
For the pressure solve operation, the matrix A is symmetric and positive-definite. This causes the
adjoint problem to have the same mathematical form (McNamara et al., 2004) as the original prob-
lem. Therefore we implement the gradient for the pressure solve by performing a pressure solve
on the gradient. We believe that this is a good example of leveraging the methodology of adjoint
method optimizations (Giles & Pierce, 2000; Treuille et al., 2006; Pontryagin, 1962) within deep
learning. With this formalism we arrive at a differentiable solver framework that closely integrates
numerical methods for forward problems with support for inverse problems such as deep learning
via the adjoint method.

Solving Burger’s equation and the Navier-Stokes equations. Using the basic building blocks out-
lined above, solving the PDEs becomes relatively simple. Burger’s equation involves an advection
and a diffusion term which we evaluate independently.

Solver[u] = Diffuse[Advect[u, u]]

where we explicitly compute Diffuse[u] = u + ν∇2u with viscosity ν. The advection is semi-
Lagrangian with back-tracing as described above.

Solving the Navier-Stokes equations, typically comprises of the following steps:

• Transporting the density, ρ← Advect[ρ,v]

• Transporting the velocity, v ← Advect[v,v]

• Applying diffusion if the viscosity is ν > 0.

• Applying buoyancy force, v ← v − β · ρ with buoyancy direction β

• Enforcing incompressibility by solving for the pressure, p ← Solve[Ap = ∇ · v], then
v ← v −∇p

These steps are executed in this order to advance the simulation forward in time.

B COMPLEXITY OF EXECUTION SCHEMES

The staggered execution scheme recursively splits a sequence of length n into smaller sequences, as
depicted in Fig. 3b and Fig. 7a for n = 8. With each level of recursion depth, the sequence length
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Figure 7: OP and CFE+Solver (Sol) executions for a sequence of length 8 performed by (a) the
staggered execution scheme, (b) the prediction refinement scheme. The execution order is from top
to bottom.

is cut in half and twice as many predictions need to be performed. The maximum depth depends on
the sequence length tn − t0 and the time steps ∆t performed by the solver,

dmax = log2

(
tn − t0

∆t

)
− 1.

Therefore, the total number of predictions, equal to the number of OP evaluations, is

NOP = 1 + 2 + 4 + ...+ n/2 =

dmax∑

k=0

2k = n− 1.

The prediction refinement scheme performs more predictions, as can be seen in Fig. 7b.
To understand the number of OP evaluations, we need to consider the recursive algorithm
Reconstruct[u0,on,o2n], listed in Alg 1, that reconstructs a sequence or partial sequence of n
frames. For the first invocation, the last parameter o2n is absent, but for subsequences, that is not
necessarily the case. Each invocation performs one OP evaluation if o2n is absent, otherwise three.
By counting the sequences for which this condition is fulfilled, we can compute the total number of
network evaluations to be

NOP = 3

dmax∑

k=0

2k − 2 log2(n) = 3n− 2 log2(n)− 3.

C NETWORK ARCHITECTURES AND TRAINING

All neural networks used in this work are based on a modified U-net architecture (Ronneberger
et al., 2015). The U-net represents a typical multi-level convolutional network architecture with
skip connections, which we modify by using residual blocks (He et al., 2016) instead of regular
convolutions for each level. We slightly modify this basic layout for some experiments.

The network used for predicting observations for the fluid example is detailed in Tab. 4. The input
to the network are two feature maps containing the current state and the target state. Zero-padding is
applied to the input, so that all strided convolutions do not require padding. Next, five residual blocks
are executed in order, each decreasing the resolution (1/2, 1/4, 1/8, 1/16, 1/32) while increasing the
number of feature maps (4, 8, 16, 16, 16). Each block performs a convolution with kernel size 2
and stride 2, followed by two residual blocks with kernel size 3 and symmetric padding. Inside each
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Table 4: Layers comprising the observation predictor network used in the direct fluid control exper-
iment.

Layer Resolution Feature Maps

Input 128 2
Pad 159 2
Strided convolution + 2x Residual block 79 4
Strided convolution + 2x Residual block 39 8
Strided convolution + 2x Residual block 19 16
Strided convolution + 2x Residual block 9 16
Strided convolution + 2x Residual block 4 16
3x Residual block 4 16
Upsample + Concatenate 8 32
Convolution + 2x Residual block 8 16
Upsample + Concatenate 16 32
Convolution + 2x Residual block 16 16
Upsample + Concatenate 32 24
Convolution + 2x Residual block 32 16
Upsample + Concatenate 64 20
Convolution + 2x Residual block 64 16
Upsample + Concatenate 128 18
Convolution 128 1

block, the number of feature maps stays constant. Three more residual blocks are executed on the
lowest resolution of the bowtie structure, after which the decoder part of the network commences,
translating features into spatial content.

The decoder works as follows: Starting with the lowest resolution, the feature maps are upsampled
with linear interpolation. The upsampled maps and the output of the previous block of same reso-
lution are then concatenated. Next, a convolution with 16 filters, a kernel size of 2 and symmetric
padding, followed by two more residual blocks, is executed. When the original resolution is reached,
only one feature map is produced instead of 16, forming the output of the network.

Depending on the dimensionality of the problem, either 1D or 2D convolutions are used. The net-
work used for the indirect control task is modified in the following ways: (i) It produces two output
feature maps, representing the velocity (vx, vy). (ii) Four feature maps of the lowest resolution (4x4)
are fed into a dense layer producing four output feature maps. These and the other feature maps are
concatenated before moving to the upsampling stage. This modification ensures that the receptive
field of the network is the whole domain.

All networks were implemented in TensorFlow (Abadi et al., 2016) and trained using the ADAM
optimizer on an Nvidia GTX 1080 Ti. We use batch sizes ranging from 4 to 16. Supervised training
of all networks converges within a few minutes, for which we iteratively decrease the learning rate
from 10−3 to 10−5. We stop supervised training after a few epochs, comprising between 2000 and
10.000 iterations, as the networks usually converge within a fraction of the first epoch.

For training with the differentiable solver, we start with a decreased learning rate of 10−4 since
the backpropagation through long chains is more challenging than training with a supervised loss.
Optimization steps are also considerably more expensive since the whole chain needs to be executed,
which includes a forward and backward simulation pass. For the fluid examples, an optimization
step takes 1-2 seconds to complete for the 2D fluid problems. We let the networks run about 100.000
iterations, which takes between one and two days for the shown examples.

D DETAILED DESCRIPTION AND ANALYSIS OF THE EXPERIMENTS

In the following paragraphs, we give further details on the experiments of Section 6.
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Figure 8: Trajectories for example control tasks using Burger’s equation. The initial state is plot-
ted in red, the target state in blue. (a) Natural evolution, (b) Ground truth trajectory generated
with constant force, (c) CFE with supervised loss, (d) CFE with differentiable physics loss, (e) Re-
construction with supervised loss, (f) Reconstruction with differentiable physics loss and staggered
execution, (g) Reconstruction with differentiable physics loss and prediction refinement.

D.1 BURGER’S EQUATION

For this experiment, we simulate Burger’s equation (Eq. 6) on a one-dimensional grid with 32 sam-
ples over a course of 32 time steps. The typical behavior of Burger’s equation in 1D exhibits shock
waves that move in +x or −x direction for u(x) > 0 or u(x) < 0, respectively. When opposing
waves clash, they both weaken until only the stronger wave survives and keeps moving. Examples
are shown in Figs. 4a and 8a.

All 32 samples are observable and controllable, i.e. o(t) = u(t). Thus, we can enforce that all
trajectories reach the target state exactly by choosing the force for the last step to be

F (tn−1) =
o∗ − u(tn−1)

∆t
.

To measure the quality of a solution, it is therefore sufficient to consider the applied force∫ t∗
t0
|F (t)| dt which is detailed for the tested methods in Table 1.

Network training. Both for the CFE chains as well as for the observation prediction models, we use
the same network architecture, described in Appendix C. We train the networks on 3600 randomly
generated scenes with constant driving forces, F (t) = const. The examples are initialized with two
Gaussian waves of random amplitude, size and position, set to clash in the center. In each time
step, a constant Gaussian force with the same randomized parameters is applied to the system to
steer it away from its natural evolution. Constant forces have a larger impact on the evolution than
temporally varying forces since the effects of temporally varying forces can partly cancel out over
time. The ground truth sequence can therefore be regarded as a near-perfect but not necessarily
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optimal trajectory. Figs. 4d and 8b display such examples. The same trajectories, without any forces
applied, are shown in sub-figures (a) for comparison.

We pretrain all networks (OPs or CFE, depending on the method) with a supervised observation
loss,

Lsup
o =

∣∣∣∣OP[o(ti), o(tj)]− uGT
(
ti + tj

2

)∣∣∣∣
2

. (8)

The resulting trajectory after supervised training for the CFE chain is shown in Figure 4b and Fig-
ure 8c. For the observation prediction models, the trajectories are shown in Figure 4c and Figure 8e.

After pretraining, we train all OP networks end-to-end with our objective loss function (see Eq. 4),
making use of the differentiable solver. For this experiment, we choose the mean squared difference
for the observation loss function:

L∗o = |o(u(t∗))− o∗|2 . (9)

We test both the staggered execution scheme and the prediction refinement scheme, shown in Fig-
ure 8f and Figure 8g.

Results. Table 1 compares the resulting forces inferred by different methods. The results are aver-
aged over a set of 100 examples from the test set which is sampled from the same distribution as the
training set. The CFE chains both fail to converge to o∗. While the differentiable physics version
manages to produce a un−1 that resembles o∗, the supervised version completely deviates from an
optimal trajectory. This shows that learning to infer the control force F (ti) only from u(ti), o∗ and
t is very difficult as the model needs to learn to anticipate the physical behavior over any length of
time.

Compared to the CFE chains, the hierarchical models require much less force and learn to converge
towards o∗. Still, the supervised training applies much more force to the system than required, the
reasons for which become obvious when inspecting Figure 4b and Fig. 8e. While each state seems
close to the ground truth individually, the control oscillates undesirably, requiring counter-actions
later in time.

The methods using the differentiable solver significantly outperform their supervised counterparts
and exhibit an excellent performance that is very close the ground truth solutions in terms of required
forces. On many examples, they even reach the target state with less force than was applied by the
ground truth simulation. This would not be possible with the supervised loss alone, but by having
access to the gradient-based feedback from the differentiable solver, they can learn to find more
efficient trajectories with respect to the objective loss. This allows the networks to learn applying
forces in different locations that make the system approach the target state with less force.

Figure 4e and Fig.8f,g show examples of this. The ground truth applies the same force in each step,
thereby continuously increasing the first sample u(x = 0), and the supervised method tries to imitate
this behavior. The governing equation then slowly propagates u(x = 0) in positive x direction since
u(x = 0) > 0. The learning methods that use a differentiable solver make use of this fact by
applying much more force F (x = 0) > 0 at this point than the ground truth, even overshooting
the target state. Later, when this value had time to propagate to the right, the model corrects this
overshoot by applying a negative force F (x = 0) < 0. Using this trick, these models reach the
target state with up to 13% less force than the ground truth on the sequence shown in Figure 4.

Figure 9 analyzes the variance of inferred forces. The supervised methods often fail to properly
converge to the target state, resulting in large forces in the last step, visible as a second peak in the
supervised CFE chain. The formulation of the loss (Eq. 3) suppresses force spikes. In the solutions
inferred by our method, the likelihood of large forces falls off multi-exponentially as a consequence.
This means that large forces are exponentially rare, which is the expected behavior given the L2
regularizer from Eq. 3.

We also compare our results to a single-shooting baseline which is able to find near-optimal solutions
at the cost of higher computation times. The classic optimization uses the ADAM optimizer with a
learning rate of 0.01 and converges after around 300 iterations. To reach the quality of the staggered
prediction scheme, it requires only around 60 iterations. This quick convergence can be explained
by the relatively simple setup that is dominated by linear effects. Therefore, the gradients are stable,
even when propagated through many frames.
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Figure 9: Histogram comparing the frequency of force strengths of different methods, summed over
100 examples from the Burger’s experiment.

The computation times, shown in Tab. 1, were recorded on a single GTX 1080 Ti. We run 100
examples in parallel to reduce the relative overhead caused by GPU instruction queuing. For the
network-based methods, we average the inference time over 100 runs. We perform 10 runs for the
optimization methods.

D.2 INCOMPRESSIBLE FLUID FLOW

The incompressible Navier-Stokes equations model dynamics of fluids such as water or air, which
can develop highly complex and chaotic behavior. The phenomenon of turbulence is generally
seen as one of the few remaining fundamental and unsolved problems of classical physics. The
challenging nature of the equations indicates that typically a very significant computational effort
and a large number of degrees of freedom are required to numerically compute solutions. Here,
we target an incompressible two-dimensional gas with viscosity ν, described by the Navier-Stokes
equations for the velocity field v. We assume a constant fluid density throughout the simulation,
setting ρf = const. ≡ 1. The gas velocity is controllable and, according to Eq. 1, we set

P(v,∇v) = −(v · ∇)v + ν∇2v − ∇p
ρf

subject to the hard constraints ∇ · v = 0 and ∇ × p = 0. For our experiments, we target fluids
with low viscosities, such as air, and set ν = 0 in the equation above as the transport steps implicitly
apply numerical diffusion that is on average higher than the targeted one. For fluids with a larger
viscosity, the Poisson solver outlined above for computing p could be used to implicitly solve a
vector-valued diffusion equation for v.

However, incorporating a significant amount of viscosity would make the control problem easier to
solve for most cases, as viscosity suppresses small scale structures in the motion. Hence, in order
to create a challenging environment for training our networks, we have but a minimal amount of
diffusion in the physical model.

In addition to the velocity field v, we consider a smoke density distribution ρ which moves passively
with the fluid. The evolution of ρ is described by the equation ∂ρ/∂t = −v·∇ρ. We treat the velocity
field as hidden from observation, letting only the smoke density be observed, i.e. o(t) = ρ(t). We
stack the two fields as u = (v, ρ) to write the system as one PDE, compatible with Eq. 1.
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(c) Diff. Physics, prediction refinement

(b) Diff. Physics, staggered execution

(a) Supervised, staggered execution

Figure 10: Reconstruction of an example natural flow sequence from the test set. The predictions
op are plotted above the reconstructions u. The target state o∗ is shown in the last column of the
predictions.

21



Published as a conference paper at ICLR 2020

For the OP and CFE networks, we use the 2D network architecture described in Appendix C. Instead
of directly generating the velocity update in the CFE network for this problem setup, we make use
of stream functions (Lamb, 1932). Hence, the CFE network outputs a vector potential Φ of which
the curl ∇× Φ is used as a velocity update. This setup numerically simplifies the incompressibility
condition of the Navier-Stokes equations but retains the same number of effective control parame-
ters.

Datasets. We generate training and test datasets for two distinct tasks: flow reconstruction and
shape transition. Both datasets have a resolution of 128 × 128 with the velocity fields being sam-
pled in staggered form (see Appendix A). This results in over 16.000 effective continuous control
parameters that make up the control force F (ti) for each step i.

The flow reconstruction dataset is comprised of ground-truth sequences where the initial states
(ρ0,v0) are randomly sampled and then simulated for 64 time steps. The resulting smoke density is
then taken to be the target state, o∗ ≡ ρ∗ = ρsim(t64). Since we use fully convolutional networks for
both CFE and OPs, the open domain boundary must be handled carefully. If smoke was lost from
the simulation, because it crossed the outer boundary, a neural network would see the smoke simply
vanish unless it was explicitly given the domain size as input. To avoid these problems, we run the
simulation backwards in time and remove all smoke from ρ0 that left the simulation domain.

For the shape transition dataset, we sample initial and target states ρ0 and ρ∗ by randomly choosing
a shape from a library containing ten basic geometric shapes and placing it at a random location
inside the domain. These can then be used for reconstructing sequences of any length n. For the
results on shape transition presented in section 6, we choose n = 16 because all interesting behavior
can be seen within that time frame. Due to the linear interpolation used in the advection step (see
Appendix A), both ρ and v smear out over time. This numerical limitation makes it impossible to
match target states exactly in this task as the density will become blurry over time. While we could
generate ground-truth sequences using a classical optimizer, we refrain from doing so because (i)
these trajectories are not guaranteed to be optimal and (ii) we want to see how well the model can
learn from scratch, without initialization.

Training. We pretrain the CFE on the natural flow dataset with a supervised loss,

LCFE
sup (u(t)) = |vu(t) + F (t)− v∗(t)|2

where v∗(t) denotes the velocity from ground truth sequences. This supervised training alone con-
stitutes a good loss for the CFE as it only needs to consider single-step intervals ∆t while the OPs
handle longer sequences. Nevertheless, we found that using the differentiable solver with an obser-
vation loss,

LCFE
o = |Br(o∗)−Br (Solver[u+ CFE[u,o∗]]) |2,

further improves the accuracy of the inferred force without sacrificing the ground truth match. Here
Br(x) denotes a blur function with a kernel of the form 1

1+x/r . The blur helps make the gradients
smoother and creates non-zero gradients in places where prediction and target do not overlap. During
training, we start with a large radius of r = 16 ∆x for Br and successively decrease it to r = 2 ∆x.
We choose α such that LF and L∗o are of the same magnitude when the force loss spikes (see
Fig. 15).

After the CFE is trained, we successively train the OPs starting with the smallest time scale. For
the OPs, we train different models for natural flow reconstruction and shape transition, both based
on the same CFE model. We pre-train all OPs independently with a supervised observation loss
before jointly training them end-to-end with objective loss function (Eq. 4) and the differentiable
solver to find the optimal trajectory. We use the OPs trained with the staggered execution scheme
as initialization for the prediction refinement scheme. The complexity of solving the Navier-Stokes
equations over many time steps in this example requires such a fully supervised initialization step.
Without it, this setting is so non-linear that the learning process does not converge to a good so-
lution. Hence, it illustrates the importance of combining supervised and unsupervised (requiring
differentiable physics) training for challenging learning objectives.

A comparison of the different losses is shown in Fig. 10. The predictions, shown in the top rows
of each subfigure, illustrate the differences between the three methods. The supervised predictions,
especially the long-term predictions (central images), are blurry because the network learns to aver-
age over all ground truth sequences that match the given initial and target state. The differentiable
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(b) Reconstructed trajectory

(a) Predicted trajectory

Figure 11: Reconstruction of multiple shapes using prediction refinement. The CFE is trained on the
natural flow dataset and OPs are trained on single-shape transitions. The predictions of all shapes
are added and passed to the CFE as one prediction.

physics solver largely resolves this issue. The predictions are much sharper but the long-term pre-
dictions still do not account for short-term deviations. This can be seen in the central prediction of
Fig. 10b which shows hints of the target state o∗, despite the fact that the actual reconstruction u
cannot reach that state at that time. The refined prediction, shown in subfigure (c), is closer to u
since it is conditioned on the previous reconstructed state.

In the training data, we let the network transform one shape into another at a random location. The
differentiable solver and the long-term intuition provided by our execution scheme make it possible
to train networks that can infer accurate sequences of control forces. In most cases, the target shapes
are closely matched. As our networks infer sequences over time, we refer readers to the supplemental
material (https://ge.in.tum.de/publications/2020-iclr-holl), which contains animations of additional
sequences.

Generalization to multiple shapes. Splitting the reconstruction task into prediction and correction
has the additional benefit of having full access to the intermediate predictions op. These model real
states of the system so classical processing or filter operations can be applied to them as well. We
demonstrate this by generalizing our method to m > 1 shapes that evolve within the same domain.
Figure 11 shows an example of two weakly-interacting shape transitions. We implement this by
executing the OPs independently for each transition k ∈ {1, 2, ...m} while inferring the control
force F (t) on the joint system. This is achieved by adding the predictions of the smoke density ρ
before passing it to the CFE network, õp =

∑m
k=1 o

p
k. The resulting force is then applied to all

sequences individually so that smoke from one transition does not end up in another target state.
Using this scheme, we can define start and end positions for arbitrarily many shapes and let them
evolve together.

Evaluation of force strengths The average force strengths are detailed in Tab. 2 while Figure 12
gives a more detailed analysis of the force strengths. As expected from using a L2 regularizer on
the force, large values are exponentially rare in the solutions inferred from our test set. None of
the hierarchical execution schemes exhibit large outliers. The prediction refinement requires the
least amount of force to match the target, slightly ahead of the staggered execution trained with the
same loss. The supervised training produces trajectories with reduced continuity that result in larger
forces being applied.

D.3 INCOMPRESSIBLE FLUID WITH INDIRECT CONTROL

As a fourth test environment, we target a case with increased complexity, where the network does
not have the means anymore to directly control the full fluid volume. Instead, the network can
only apply forces in the peripheral regions, with a total of more than 5000 control parameters per
step. The obstacles prevent fluid from passing through them and the domain is enclosed with solid
boundaries from the left, right and bottom. This leads to additional hard constraints and interplays
between constraints in the physical model, and as such provides an interesting and challenging test
case for our method. The domain has three target regions (buckets) separated by walls at the top of
the domain, into which a volume of smoke should be transported from any position in the center

23



Published as a conference paper at ICLR 2020

0 1 2 3 4 5 6
Force per point

101

103

105

107

Co
un

ts

Staggered execution (Supervised)
Staggered execution (Diff. Phys.)
Prediction Refinement (Diff. Phys.)

Figure 12: Histogram comparing the frequency of force strengths applied in the direct fluid control
experiment on the natural flow dataset, summed over 100 examples.

Figure 13: Two reconstructed trajectories from the test set of the indirect smoke control problem.
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Figure 14: Iterative optimization of the indirect incompressible fluid control problem. The graph
shows the fraction of smoke that ends up in the correct bucket vs number of optimization steps,
averaged over 10 examples.

part. Both initial position and the target bucket are randomized for our training set of 3600 examples
and test set of 100 examples. Each sequence consists of 16 time steps.

In this case the control is indirect since the smoke density lies outside the controlled area at all
times. Only the incompressibility condition allows the network to influence the velocity outside
the controlled area. This forces the model to consider the global context and synchronize a large
number of parameters to create a desired flow field. The requirement of complex synchronized force
fields makes generating reliable training data difficult, as manual or random sampling is unlikely
to produce a directed velocity field in the center. We therefore skip the pretraining process and
directly train the CFE using the differentiable solver, while the OP networks are trained as before
with r = 2 ∆x.

To evaluate how well the learning method performs, we measure how much of the smoke density
ends up inside the buckets and how much force was applied in total. For reference, we replace the
observation predictions with an algorithm that moves the smoke towards the bucket in a straight
line. Averaged over 100 examples from the test set, the resulting model manages to put 89%±2.6%
of the smoke into the target bucket. In contrast, the model trained with our full algorithm moves
99.22%± 0.15% of the smoke into the target buckets while requiring 19.1%± 1.0% less force.

We also compare our method to an iterative optimization which directly optimizes the control ve-
locities. We use the ADAM optimizer with a learning rate of 0.1. Despite the highly non-linear
setup, the gradients are stable enough to quickly let the smoke flow in the right direction. Fig. 14
shows how the trajectories improve during optimization. After around 60 optimization steps, the
smoke distribution starts reaching the target bucket in some examples. Over the next 600 iterations,
it converges to a a configuration in which 82.1± 7.3 of the smoke ends up in the correct bucket.

D.4 COMPARISON TO SHOOTING METHODS

We compare the sequences inferred by our trained models to classical shooting optimizations using
our differentiable physics solver to directly optimize F (t) with the objective loss L (Eq. 4) for
a single input. We make use of stream functions (Lamb, 1932), as in the second experiment, to
ensure the incompressibility condition is fulfilled. For this comparison, the velocities of all steps are
initialized with a normal distribution with µ = 0 and σ = 0.01 so that the initial trajectory does not
significantly alter the initial state, u(t) ≈ u(t0).

We first show how a simple single-shooting algorithm (Zhou et al., 1996) fares with our Navier-
Stokes setup. When solving the resulting optimization problem using single-shooting, strong ar-
tifacts in the reconstructions can be observed, as shown in Figure 17a. This undesirable behavior
stems from the nonlinearity of the Navier-Stokes equations, which causes the gradients ∆u � 0
to become noisy and unreliable when they are recurrently backpropagated through many time steps.
Unsurprisingly, the single-shooting optimizer converges to a undesirable local minimum.

As single-shooting is well known to have problems with non-trivial problem settings, we employ a
multi-scale shooting (MS) method (Hartmann et al., 2014). This solver first computes the trajectory
on a coarsely discretized version of the problem before iteratively refining the discretization. For
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(b) Force loss(a) Observation loss

Figure 15: Mean convergence curves of the adjoint method optimization for 100 shape transitions.

(b) Force loss(a) Observation loss

Figure 16: Mean convergence curves of the adjoint method optimization for 100 shape transitions,
taking the reconstruction from the refinement scheme as initial guess.

the first resolution, we use 1/16 of the original width and height which both reduces the number
of control parameters and reduces nonlinear effects from the physics model. By employing an
exponential learning rate decay, this multi-scale optimization converges reliably for all examples.
We use the ADAM optimizer to compute the control variable updates from the gradients of the
differentiable Navier-Stokes solver.

An averaged set of representative convergence curves for this setup is shown in Figure 15. The
objective loss (Eq. 4) is shown in its decomposed state as the sum of the observation loss L∗o, shown
in Figure 15a, and the force loss LF , shown in Figure 15b. Due to the initialization of all velocities
with small values, the force loss starts out small. For the first 1000 iteration steps, L∗o dominates
which causes the system to move towards the target state o∗. This trajectory is not ideal, however,
as more force than necessary is applied. Once observation loss and force loss are of the same
magnitude, the optimization refines the trajectory to use less force.

We found that the trajectories predicted by our neural network based method correspond to perform-
ing about 1500 steps with the MS optimization while requiring less tuning. Reconstructions of the
same example are compared in Figure 17. Performing the MS optimization up to this point took
131 seconds on a GTX 1080 Ti graphics card for a single 16-frame sequence while the network
inference ran for 0.5 seconds. For longer sequences, this gap grows further because the network
inference time scales with O(n). This could only be matched if the number of iterations for the MS
optimization scaled with O(1), which is not the case for most problems. These tests indicate that
our model has successfully internalized the behavior of a large class of physical behavior, and can
exert the right amount of force to reach the intended goal. The large number of iterations required
for the single-case shooting optimization highlights the complexity of the individual solutions.

Interestingly, the network also benefits from the much more difficult task to learn a whole manifold
of solutions: comparing solutions with similar observation loss for the MS algorithm and our net-
work, the former often finds solutions that are unintuitive and contain noticeable detours, e.g., not
taking a straight path for the density matching examples of Fig. 5. In such situations, our network
benefits from having to represent the solution manifold, instead of aiming for single task optimiza-
tions. As the solutions are changing relatively smoothly, the complex task effectively regularizes the
inference of new solutions and gives the network a more global view. Instead, the shooting optimiza-
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(a) Classical optimization

(b) Classical optimization with multi-resolution

(c) Diff. physics, prediction refinement

Figure 17: Example reconstruction of a shape transition. (a) Direct shooting optimization, 2300
iterations, (b) multi-scale shooting optimization, 1500 iterations, (c) output of our neural network
based method with prediction refinement. Our model infers the shown solution in a single pass, and
generalizes to a large class of inputs.

tions have to purely rely on local gradients for single-shooting or manually crafted multi-resolution
schemes for MS.

Our method can also be employed to support the MS optimization by initializing it with the velocities
inferred by the networks. In this case, shown in Figure 16, both L∗o and LF decrease right from the
beginning, similar to the behavior in Figure 15 from iteration 1500 on. The reconstructed trajectory
from the neural-network-based method is so close to the optimum that the multi-resolution approach
described above is not necessary.

D.5 ADDITIONAL RESULTS

In Fig. 18, we provide a visual overview of a sub-set of the sequences that can be found in the
supplemental materials. It contains 16 randomly selected reconstructions for each of the natural
flow, the shape transitions, and the indirect control examples. In addition, the supplemental mate-
rial, available at https://ge.in.tum.de/publications/2020-iclr-holl, highlights the differences between
unsupervised, staggered, and refined versions of our approach.
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Figure 18: Five additional sequences from the test sets of the natural flow and shape transition
setups. The first nine frames contain frames from our reconstruction. The far right image shows the
target.
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ABSTRACT

Recent works in deep learning have shown that integrating differentiable physics
simulators into the training process can greatly improve the quality of results.
Although this combination represents a more complex optimization task than
supervised neural network training, the same gradient-based optimizers are
typically employed to minimize the loss function. However, the integrated
physics solvers have a profound effect on the gradient flow as manipulating
scales in magnitude and direction is an inherent property of many physical
processes. Consequently, the gradient flow is often highly unbalanced and
creates an environment in which existing gradient-based optimizers perform
poorly. In this work, we analyze the characteristics of both physical and neural
network optimizations to derive a new method that does not suffer from this
phenomenon. Our method is based on a half-inversion of the Jacobian and
combines principles of both classical network and physics optimizers to solve
the combined optimization task. Compared to state-of-the-art neural network
optimizers, our method converges more quickly and yields better solutions,
which we demonstrate on three complex learning problems involving nonlinear
oscillators, the Schrödinger equation and the Poisson problem.

1 INTRODUCTION

The groundbreaking successes of deep learning (Krizhevsky et al., 2012; Sutskever et al., 2014;
Silver et al., 2017) have led to ongoing efforts to study the capabilities of neural networks across all
scientific disciplines. In the area of physical simulation, neural networks have been used in various
ways, such as creating accurate reduced-order models (Morton et al., 2018), inferring improved
discretization stencils (Bar-Sinai et al., 2019), or suppressing numerical errors (Um et al., 2020).
The long-term goal of these methods is to exceed classical simulations in terms of accuracy and
speed, which has been achieved, e.g., for rigid bodies (de Avila Belbute-Peres et al., 2018), physical
inverse problems (Holl et al., 2020), and two-dimensional turbulence (Kochkov et al., 2021).

The successful application of deep learning to physical systems naturally hinges on the training
setup. In recent years, the use of physical loss functions has proven beneficial for the training
procedure, yielding substantial improvements over purely supervised training approaches (Tompson
et al., 2017; Wu & Tegmark, 2019; Greydanus et al., 2019). These improvements were shown to
stem from three aspects (Battaglia et al., 2016; Holl et al., 2020): (i) Incorporating prior knowledge
from physical principles facilitates the learning process , (ii) the ambiguities of multimodal cases
are resolved naturally, and (iii) simulating the physics at training time can provide more realistic
data distributions than pre-computed data sets. Approaches for training with physical losses can
be divided into two categories. On the one hand, equation-focused approaches that introduce
physical residuals (Tompson et al., 2017; Raissi et al., 2019), and on the other hand, solver-focused
approaches that additionally integrate well-established numerical procedures into training (Um et al.,
2020; Kochkov et al., 2021).

From a mathematical point of view, training a neural network with a physical loss function bears
the difficulties of both network training and physics optimization. In order to obtain satisfying
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results, it is vital to treat flat regions of the optimization landscapes effectively. In learning,
the challenging loss landscapes are addressed using gradient-based optimizers with data-based
normalizing schemes, such as Adam (Kingma & Ba, 2015), whereas in physics, the optimizers
of choice are higher-order techniques, such as Newton’s method (Gill & Murray, 1978), which
inherently make use of inversion processes. However, Holl et al. (2021) found that these approaches
can not effectively handle the joint optimization of network and physics. Gradient-descent-based
optimizers suffer from vanishing or exploding gradients, preventing effective convergence, while
higher-order methods do not generally scale to the high-dimensional parameter spaces required by
deep learning (Goodfellow et al., 2016).

Inspired by the insight that inversion is crucial for physics problems in learning from Holl et al.
(2021), we focus on an inversion-based approach but propose a new method for joint physics and
network optimization which we refer to as half-inverse gradients. At its core lies a partial matrix
inversion, which we derive from the interaction between network and physics both formally and
geometrically. An important property of our method is that its runtime scales linearly with the
number of network parameters. To demonstrate the wide-ranging and practical applicability of our
method, we show that it yields significant improvements in terms of convergence speed and final loss
values over existing methods. These improvements are measured both in terms of absolute accuracy
as well as wall-clock time. We evaluate a diverse set of physical systems, such as the Schrödinger
equation, a nonlinear chain system and the Poisson problem.

2 GRADIENTS BASED ON HALF-INVERSE JACOBIANS

Optimization on continuous spaces can be effectively performed with derivative-based methods,
the simplest of which is gradient descent. For a target function L(θ) to be minimized of several
variables θ, using bold symbols for vector-valued quantities in this section, and learning rate η,
gradient descent proceeds by repeatedly applying updates

∆θGD(η) = −η ·
(
∂L

∂θ

)>
. (1)

For quadratic objectives, this algorithm convergences linearly with the rate of convergence
depending on the condition number λ of the Hessian matrix (Lax, 2014). In the ill-conditioned
case λ� 1, flat regions in the optimization landscape can significantly slow down the optimization
progress. This is a ubiquitous problem in non-convex optimization tasks of the generic form:

L(θ) =
∑

i

l
(
yi(θ), ŷi

)
=
∑

i

l
(
f(xi;θ), ŷi

)
(2)

Here (xi, ŷi) denotes the ith data points from a chosen set of measurements, f is a function
parametrized by θ to be optimized to model the relationship between the data points yi(θ) =
f(xi;θ), and l denotes a loss function measuring the optimization progress. In the following, we
assume the most common case of l(yi, ŷi) = 1

2 ||yi − ŷi||22 being the squared L2-loss.

Physics Optimization. Simulating a physical system consists of two steps: (i) mathematically
modeling the system by a differential equation, and (ii) discretizing its differential operators to obtain
a solver for a computer. Optimization tasks occur for instance when manipulating a physical system
through an external force to reach a given configuration, for which we have to solve an inverse
problem of form 2. In such a control task, the sum reduces to a single data point (x, ŷ) with x
being the initial state, ŷ the target state and θ the external force we want to find. The physical solver
corresponds to the function f representing time evolution y(θ) = f(x;θ). This single data point
sum still includes summation over vector components of y − ŷ in the L2-loss. Sensitive behavior
of the physical system arising from its high-frequency modes is present in the physical solver f ,
and produces small singular values in its Jacobian. This leads to an ill-conditioned Jacobian and flat
regions in the optimization landscape when minimizing 2. This is addressed by using methods that
incorporate more information than only the gradient. Prominent examples are Newton’s method or
the Gauss-Newton’s algorithm (Gill & Murray, 1978); the latter one is based on the Jacobian of f
and the loss gradient:

∆θGN = −
(
∂y

∂θ

)−1
·
(
∂L

∂y

)>
(3)
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Here the inversion of the Jacobian is calculated with the pseudoinverse. The Gauss-Newton update
maps the steepest descent direction in y-space to the parameter space θ. Therefore, to first order, the
resulting update approximates gradient descent steps in y-space, further details are given in appendix
A.2. An advantage of such higher-order methods is that the update steps in y-space are invariant
under arbitrary rescaling of the parameters θ, which cancels inherent scales in f and ensures quick
progress in the optimization landscape.

Neural Network Training. For f representing a neural network in equation 2, the optimization
matches the typical supervised learning task. In this context, the problem of flat regions in the
optimization landscape is also referred to as pathological curvature (Martens, 2010). Solving this
problem with higher-order methods is considered to be too expensive given the large number
of parameters θ. For learning tasks, popular optimizers, such as Adam, instead use gradient
information from earlier update steps, for instance in the form of momentum or adaptive learning rate
terms, thereby improving convergence speed at little additional computational cost. Furthermore,
the updates are computed on mini-batches instead of the full data set, which saves computational
resources and benefits generalization (Goodfellow et al., 2016).

Neural Network Training with Physics Objectives. For the remainder of the paper, we consider
joint optimization problems, where f denotes a composition of a neural network parameterized by
θ and a physics solver. Using classical network optimizers for minimizing equation 2 is inefficient
in this case since data normalization in the network output space is not possible and the classical
initialization schemes cannot normalize the effects of the physics solver. As such, they are unsuited
to capture the strong coupling between optimization parameters typically encountered in physics
applications. While Gauss-Newton seems promising for these cases, the involved Jacobian inversion
tends to result in large overshoots in the updates when the involved physics solver is ill-conditioned.
As we will demonstrate, this leads to oversaturation of neurons, hampering the learning capability
of the neural network.

2.1 AN ILL-CONDITIONED TOY EXAMPLE

To illustrate the argumentation so far, we consider a data set sampled from ŷ(x)=(sin(6x), cos(9x))
for x ∈ [−1, 1]: We train a neural network to describe this data set by using the loss function:

l(y, ŷ; γ) =
1

2

(
y1 − ŷ1

)2
+

1

2

(
γ · y2 − ŷ2

)2
(4)

Here, we denote vector components by superscripts. For a scale factor of γ = 1, we receive
the well-conditioned mean squared error loss. However, l becomes increasingly ill-conditioned
as γ is decreased, imitating the effects of a physics solver. For real-world physics solvers, the
situation would be even more complex since these scales usually vary strongly in direction and
magnitude across different data points and optimization steps. We use a small neural network with
a single hidden layer with 7 neurons and a tanh activation. We then compare training with the
well-conditioned γ = 1 loss against an ill-conditioned γ = 0.01 loss. In both cases, we train the
network using both Adam and Gauss-Newton as representatives of gradient-based and higher-order
optimizers, respectively. The results are shown in figure 1.

In the well-conditioned case, Adam and Gauss-Newton behave similarly, decreasing the loss by
about three orders of magnitude. However, in the ill-conditioned case, both optimizers fail to
minimize the objective beyond a certain point. To explain this observation, we first illustrate the
behavior from the physics viewpoint by considering the trajectory of the network output f(x) for a
single value x during training (figure 1, right). For γ=1, Adam optimizes the network to accurately
predict ŷ(x) while for γ=0.01, the updates neglect the second component preventing Adam to move
efficiently along the small-scale coordinate (blue curve in figure 1b, right). To illustrate the situation
from the viewpoint of the network, we consider the variance in the outputs of specific neurons
over different x (figure 1, middle). When γ = 1, all neurons process information by producing
different outcomes for different x. However, for γ = 0.01, Gauss-Newton’s inversion of the small-
scale component y2 results in large updates, leading to an oversaturation of neurons (red curve in
figure 1b, middle). These neurons stop processing information, reducing the effective capacity of
the network and preventing the network from accurately fitting ŷ. Facing these problems, a natural
questions arises: Is it possible to construct an algorithm that can successfully process the inherently
different scales of a physics solver while training a neural network at the same time?

3



Published as a conference paper at ICLR 2022

0 10 20

100

10 1

10 2

10 3

Lo
ss

Loss curve
Adam
GN
Ours

0 10 20

-0.5

0

0.5

1.0

Ne
ur

on
 v

al
ue

Neuron saturation

-2 -1 0 1

-3

-1

1

y2

Physical trajectory

0 10 20
Wall clock time [sec]

100

10 1

10 2

Lo
ss

0 10 20
Wall clock time [sec]

-1.0

-0.5

0

0.5

1.0

Ne
ur

on
 v

al
ue

-0.5 0.5 1.5
y1

-1.0

-0.5

0

y2

Start
Target

a)

W
el

l-
co

nd
iti

on
ed

b)

Il
l-

co
nd

iti
on

ed

→ GN looses all variance

→ GN & Adam do not
reach the target state

Figure 1: Results of the learning problem of section 2.1. Optimization is performed with a) a well-
conditioned loss and b) an ill-conditioned loss. Plots show loss curves over training time (left), data
set mean and standard deviation of the output of a neuron output over training time (middle), and
the training trajectory of a data point (right).

2.2 UPDATES BASED ON HALF-INVERSE JACOBIANS

We propose a novel method for optimizing neural networks with physics objectives. Since pure
physics or neural network optimization can be thought of as special cases of the joint optimization,
we analogously look for a potential method in the continuum of optimization methods between
gradient descent and Gauss-Newton. We consider both of them to be the most elementary algorithms
representing network and physics optimizers, respectively. The following equation describes
updates that lie between the two.

∆θ(η, κ) = −η ·
(
∂y

∂θ

)κ
·
(
∂L

∂y

)>
(5)

Here, the exponent κ of the Jacobian denotes the following procedure defined with the aid of the
singular value decomposition J = UΛV >:

Jκ := V ΛκU> (6)

When κ = 1, equation 5 reduces to the well-known form of gradient descent. Likewise, the case κ =
−1 yields Gauss-Newton since the result of the Jacobian exponentiation then gives the pseudoinverse
of the Jacobian. Unlike other possible interpolations between gradient descent and Gauss-Newton,
exponentiation by κ as in equation 5 significantly affects the scales inherent in the Jacobian. This is
highly important to appropriately influence physics and neural network scales.

To determine κ, we recall our goal to perform update steps which are optimal in both θ- and y-
space. However, since any update ∆θ and its corresponding effect on the solver output ∆y are
connected by the inherent scales encoded in the Jacobian, no single κ exists that normalizes both at
the same time. Instead, we distribute the burden equally between network and physics by choosing
κ = −1/2. From a geometric viewpoint, the resulting update can be regarded as a steepest descent
step when the norm to measure distance is chosen accordingly. This alternative way to approach our
method is explained in the appendix (A.2) and summarized in table 1.

For batch size b and learning rate η, we define the following update step for our method by stacking
network-solver Jacobians ∂yi

∂θ

∣∣
xi

and loss gradients ∂L
∂yi

∣∣
xi,ŷi

of different data points (xi, ŷi):
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Table 1: Optimization algorithms viewed as steepest descent algorithm w.r.t. the given L2-norms.

Optimization Method performs Steepest Descent: Norm (θ-space) Norm (y-space)
Gradient Descent in Parameter Space || · ||θ = || · ||J−1y

Gauss-Newton in Physics Space || · ||Jθ = || · ||y
Ours in Intermediate Space || · ||J3/4θ = || · ||J−1/4y

∆θHIG = −η ·




∂y1

∂θ

∣∣
x1

∂y2

∂θ

∣∣
x2

...
∂yb

∂θ

∣∣
xb




−1/2

·




∂L
∂y1

∣∣>
x1,ŷ1

∂L
∂y2

∣∣>
x2,ŷ2

...
∂L
∂yb

∣∣>
xb,ŷb




(7)

Besides batch size b and learning rate η, we specify a truncation parameter τ as an additional
hyperparameter enabling us to suppress numerical noise during the half-inversion process in
equation 6. As with the computation of the pseudoinverse via SVD, we set the result of the − 1

2 -
exponentiation of every singular value smaller than τ to 0.

The use of a half-inversion – instead of a full inversion – helps to prevent exploding updates of
network parameters while still guaranteeing substantial progress in directions of low curvature. With
the procedure outlined above, we arrived at a balanced method that combines the advantages of
optimization methods from deep learning and physics. As our method uses half-inverse Jacobians
multiplied with gradients we refer to them in short as half-inverse gradients (HIGs).

Half-inverse Gradients in the Toy Example. With the definition of HIGs, we optimize the toy
example introduced in section 2.1. The results in figure 1 show that for γ = 1, HIGs minimize
the objective as well as Adam and Gauss-Newton’s method. More interestingly, HIGs achieve a
better result than the other two methods for γ = 0.01. On the one hand, the physics trajectory
(figure 1b, right) highlights that HIGs can process information along the small-scale component y2
well and successfully progress along this direction. On the other hand, by checking neuron saturation
(figure 1b, middle), we see that HIGs – in contrast to Gauss Newton – avoid oversaturating neurons.

2.3 PRACTICAL CONSIDERATIONS

Computational Cost. A HIG update step consists of constructing the stacked Jacobian and
computing the half-inversion. The first step can be efficiently parallelized on modern GPUs, and
therefore induces a runtime cost comparable to regular backpropagation at the expense of higher
memory requirements. In situations where the computational cost of the HIG step is dominated
by the half-inversion, memory requirements can be further reduced by parallelizing the Jacobian
computation only partially. At the heart of the half-inversion lies a divide and conquer algorithm
for the singular value decomposition (Trefethen & Bau, 1997). Hence, the cost of a HIG step scales
as O(|θ|·b2·|y|2), i.e. is linear in the number of network parameters |θ|, and quadratic in the batch
size b and the dimension of the physical state |y|. Concrete numbers for memory requirements and
duration of a HIG step are listed in the appendix.

Hyperparameters. Our method depends on several hyperparameters. First, we need a suitable
choice of the learning rate. The normalizing effects of HIGs allow for larger learning rates than
commonly used gradient descent variants. We are able to use η = 1 for many of our experiments.
Second, the batch size b affects the number of data points included in the half-inversion process. It
should be noted that the way the feedback of individual data points is processed is fundamentally
different from the standard gradient optimizers: Instead of the averaging procedure of individual
gradients of a mini batch, our approach constructs an update that is optimal for the complete
batch. Consequently, the quality of updates increases with higher batch size. However, overly
large batch sizes can cause the Jacobian to become increasingly ill-conditioned and destabilize the
learning progress. In appendix C, we discuss the remaining parameters τ and κ with several ablation
experiments to illustrate their effects in detail.
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Figure 2: Nonlinear oscillator system: a) Time evolution controlled by a HIG-trained neural
network. Its inferred output is shown in blue in the background. b) Loss curves for different
optimization methods. c) Loss curves for Adam, GN, and HIG with different batch sizes b.

3 EXPERIMENTS

We evaluate our method on three physical systems: controlling nonlinear oscillators, the Poisson
problem, and the quantum dipole problem. Details of the numerical setups are given in the appendix
along with results for a broad range of hyperparameters. For a fair comparison, we show results with
the best set of hyperparameters for each of the methods below and plot the loss against wall clock
time measured in seconds. All learning curves are recorded on a previously unseen data set.

3.1 CONTROL OF NONLINEAR OSCILLATORS

First, we consider a control task for a system of coupled oscillators with a nonlinear interaction term.
This system is of practical importance in many areas of physics, such as solid state physics (Ibach
& Lüth, 2003). Its equations of motions are governed by the Hamiltonian

H(xi, pi, t) =
∑

i

(
x2i
2

+
p2i
2

+ α · (xi − xi+1)4 + u(t) · xi · ci
)
, (8)

where xi and pi denote the Hamiltonian conjugate variables of oscillator i, α the interaction strength,
and the vector c specifies how to scalar-valued control function u(t) is applied. In our setup, we
train a neural network to learn the control signal u(t) that transforms a given initial state into a
given target state with 96 time steps integrated by a 4th order Runge-Kutta scheme. We use a dense
neural network with three hidden layers totalling 2956 trainable parameters and ReLU activations.
The Mean-Squared-Error loss is used to quantify differences between predicted and target state. A
visualization of this control task is shown in figure 2a.

Optimizer comparison. The goal of our first experiments is to give a broad comparison of the
proposed HIGs with commonly used optimizers. This includes stochastic gradient descent (SGD),
Adagrad (Duchi et al., 2011), Adadelta (Zeiler, 2012), RMSprop (Hinton et al., 2012), Adam
(Kingma & Ba, 2015), and Gauss-Newton (GN) applied to mini batches. The results are shown
in figure 2b where all curves show the best runs for each optimizer with suitable hyperparameters
independently selected, as explained in the appendix. We find that the state-of-the-art optimizers
stagnate early, with Adam achieving the best result with a final loss value of 10−4. In comparison,
our method and GN converge faster, exceeding Adam’s accuracy after about three minutes. While
GN exhibits stability problems, the best stable run from our hyperparameter search reaches a loss
value of 10−6. HIGs, on the other hand, yield the best result with a loss value of 10−7. These
results clearly show the potential of our method to process different scales of the physics solver
more accurately and robustly. They also make clear that the poor result of the widely-used network
optimizers cannot be attributed to simple numerical issues as HIG converges to better levels of
accuracy with an otherwise identical setup.

Role of the batch size. We conduct multiple experiments using different values for the batch size
b as a central parameter of our method. The results are shown in figure 2c. We observe that for
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Figure 3: Poisson problem: a) Example of a source distribution ρ (bottom) and inferred potential
field (top). b) Loss curves of Adam and HIG training for different learning rates η. c) Loss curves
of Adam (η = 0.0001), and HIG (η = 0.02) pretrained with Adam.

Adam, all runs converge about equally quickly while HIGs and GN show improvements from larger
batch sizes. This illustrates an important difference between Adam and HIG: Adam uses an average
of gradients of data points in the mini batch, which approaches its expectation for large b. Further
increasing the batch size has little influence on the updates. In contrast, our method includes the
individual data point gradients without averaging. As shown in equation 7, we construct updates that
are optimized for the whole batch by solving a linear system. This gives our method the ability to hit
target states very accurately with increasing batch size. To provide further insights into the workings
of HIGs, we focus on detailed comparisons with Adam as the most popular gradient descent variant.

3.2 POISSON PROBLEM

Next we consider Poisson’s equation to illustrate advantages and current limitations of HIGs.
Poisson problems play an important role in electrostatics, Newtonian gravity, and fluid
dynamics (Ames, 2014). For a source distribution ρ(x), the goal is to find the corresponding
potential field φ(x) fulfilling the following differential equation:

∆φ = ρ (9)

Classically, Poisson problems are solved by solving the corresponding system of linear equations
on the chosen grid resolution. Instead, we train a dense neural network with three hidden layers and
41408 trainable parameters to solve the Poisson problem for a given right hand side ρ. We consider
a two-dimensional system with a spatial discretization of 8×8 degrees of freedom. An example
distribution and solution for the potential field are shown in figure 3a.

Convergence and Runtime. Figure 3b shows learning curves for different learning rates when
training the network with Adam and HIGs. As we consider a two-dimensional system, this
optimization task is challenging for both methods and requires longer training runs. We find that both
Adam and HIGs are able to minimize the loss by up to three orders of magnitude. The performance
of Adam varies, and its two runs with larger η quickly slow down. In terms of absolute convergence
per time, the Adam curve with the smallest η shows advantages in this scenario. However, choosing a
log-scale for the time axis reveals that both methods have not fully converged. In particular, while the
Adam curve begins to flatten at the end, the slope of the HIG curve remains constant and decreases
with a steeper slope than Adam. The performance of Adam can be explained by two reasons. First,
the time to compute a single Adam update is much smaller than for HIGs, which requires the SVD
solve from equation 6. While these could potentially be sped up with appropriate methods (Foster
et al., 2011; Allen-Zhu & Li, 2016), the absolute convergence per iteration, shown in the appendix
in figure 7, shows how much each HIG update improves over Adam. Second, compared to the other
examples, the Poisson problem is relatively simple, requiring only a single matrix inversion. This
represents a level of difficulty which Adam is still able to handle relatively well.

HIGs with Adam Pretraining. To further investigate the potential of HIGs, we repeat the training,
this time using the best Adam model from figure 3b for network initialization. While Adam
progresses slowly, HIGs are able to quickly improve the state of the neural network, resulting in
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Figure 4: Quantum dipole: a) A transition of two quantum states in terms of probability amplitude
|Ψ(t, x)|2, controlled by a HIG-trained neural network. Its inferred output is shown in blue in the
background. b) Loss curves with Adam and HIGs for different η. c) Low-energy (LE) and high-
energy (HE) loss with Adam (η = 0.0001) and HIG (η = 0.5).

a significant drop of the loss values, followed by a faster descent than Adam. Interestingly, this
experiment indicates that the HIG updates are able to improve aspects of the solution which Adam
is agnostic to. Despite outlining the potential gains from faster SVD calculations, this example also
highlights the quality of the HIG updates for simpler PDEs.

3.3 QUANTUM DIPOLE

As a final example, we target the quantum dipole problem, a standard control task formulated on
the Schrödinger equation and highly relevant in quantum physics (Von Neumann, 2018). Given an
initial and a target state, we train a neural network to compute the temporal transition function u(t)
in an infinite-well potential V according the evolution equation of the physical state Ψ:

i∂tΨ =
(
−∆ + V + u(t) · x̂

)
Ψ (10)

We employ a modified Crank-Nicolson scheme (Winckel et al., 2009) for the discretization of spatial
and temporal derivatives. Thus, each training iteration consists of multiple implicit time integration
steps – 384 in our setup – for the forward as well as the backward pass of each mini-batch. The
control task consists of inferring a signal that converts the ground state to a given randomized linear
combination of the first and the second excited state. We use a dense neural network with three
hidden layers, 9484 trainable parameters and tanh activations. Similarity in quantum theories is
quantified with inner products; therefore, our loss function is given by L(Ψa,Ψb) = 1−|〈Ψa,Ψb〉|2.
A visualization of this control task is shown in figure 4a.

Speed and Accuracy. We observe that HIGs minimize the loss faster and reach a better final level
of accuracy than Adam (figure 4b). While the Adam run with the largest learning rate drops faster
initially, its final performance is worse than all other runs. In this example, the difference between
the final loss values is not as large as for the previous experiments. This is due to the numerical
accuracy achievable by a pure physics optimization, which for our choice of parameters is around
10−6. Hence, we can not expect to improve beyond this lower bound for derived learning problems.
Our results indicate that the partial inversion of the Jacobian successfully leads to the observed
improvements in convergence speed and accuracy.

Low and High Energy Components. The quantum control problem also serves to highlight the
weakness of gradient-based optimizers in appropriately processing different scales of the solutions.
In the initial training stage, the Adam curves stagnate at a loss value of 0.5. This is most pronounced
for η = 10−4 in dark blue. To explain this effect, we recall that our learning objective targets
transitions to combinations of the 1st and 2nd excited quantum states, and both states appear on
average with equal weight in the training data. Transitions to the energetically higher states are
more difficult and connected to smaller scales in the physics solver, causing Adam to fit the lower-
energetic component first. In contrast, our method is constructed to process small scales in the
Jacobian via the half-inversion more efficiently. As a consequence, the loss curves decrease faster
below 0.5. We support this explanation by explicitly plotting separate loss curves in figure 4c
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quantifying how well the low and high energy component of the target state was learned. Not
only does Adam prefer to minimize the low-energy loss, it also increases the same loss again before
it is able to minimize the high-energy loss. In contrast, we observe that HIGs minimize both losses
uniformly. This is another indication for the correctness of the theory outlined above of an more even
processing of different scales in joint physics and neural network objectives through our method.

4 RELATED WORK

Optimization algorithms. Optimization on continuous spaces is a huge field that offers a vast
range of techniques (Ye et al., 2019). Famous examples are gradient descent (Curry, 1944),
Gauss-Newton’s method (Gill & Murray, 1978), Conjugate Gradient (Hestenes et al., 1952), or
the limited-memory BFGS algorithm (Liu & Nocedal, 1989). In deep learning, the preferred
methods instead rely on first order information in the form of the gradient, such as SGD (Bottou,
2010) and RMSProp (Hinton et al., 2012). Several methods approximate the diagonal of the
Hessian to improve scaling behavior, such as Adagrad (Duchi et al., 2011), Adadelta (Zeiler,
2012), and most prominently, Adam (Kingma & Ba, 2015). However, due to neglecting inter-
dependencies of parameters, these methods are limited in their capabilities to handle physical
learning objectives. Despite the computational cost, higher-order methods have also been studied
in deep learning (Pascanu & Bengio, 2013) . Practical methods have been suggested by using a
Kroenecker-factorization of the Fisher matrix (Martens & Grosse, 2015), iterative linear solvers
(Martens, 2010), or by recursive approximations of the Hessian (Botev et al., 2017). To the best
of our knowledge, the only other technique specifically targeting optimization of neural networks
with physics objectives is the inversion approach from Holl et al. (2021). However, their updates
are based on inverse physics solvers, while we address the problem by treating network and solver
as an entity and half-inverting its Jacobian. Thus, we work on the level of linear approximations
while updates based on physics inversion are able to harness higher-order information provided
that an higher-order inverse solver exists. Additionally, they compute their update by averaging
gradients over different data points, in line with typical gradient-based neural network optimizers.
HIGs instead process the feedback of different data points via collective inversion.

Incorporating physics. Many works involve differentiable formulations of physical models, e.g.,
for robotics (Toussaint et al., 2018), to enable deep architectures (Chen et al., 2018), as a means
for scene understanding (Battaglia et al., 2013; Santoro et al., 2017), or the control of rigid body
environments de Avila Belbute-Peres et al. (2018). Additional works have shown the advantages of
physical loss formulations (Greydanus et al., 2019; Cranmer et al., 2020). Differentiable simulation
methods were proposed for a variety of phenomena, e.g. for fluids (Schenck & Fox, 2018), PDE
discretizations (Bar-Sinai et al., 2019), molecular dynamics (Wang et al., 2020), reducing numerical
errors (Um et al., 2020), and cloth (Liang et al., 2019; Rasheed et al., 2020). It is worth noting
that none of these works question the use of standard deep learning optimizers, such as Adam.
In addition, by now a variety of specialized software frameworks are available to realize efficient
implementations (Hu et al., 2020; Schoenholz & Cubuk, 2019; Holl et al., 2020).

5 DISCUSSION AND OUTLOOK

We have considered optimization problems of neural networks in combination with physical solvers
and questioned the current practice of using the standard gradient-based network optimizers for
training. Derived from an analysis of smooth transitions between gradient descent and Gauss-
Newton’s method, our novel method learns physics modes more efficiently without overly straining
the network through large weight updates, leading to a faster and more accurate minimization of the
learning objective. This was demonstrated with a range of experiments.

We believe that our work provides a starting point for further research into improved learning
methods for physical problems. Highly interesting avenues for future work are efficient methods for
the half-inversion of the Jacobian matrix, or applying HIGs to physical systems exhibiting chaotic
behavior or to more sophisticated training setups (Battaglia et al., 2013; Ummenhofer et al., 2020;
Pfaff et al., 2020).
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APPENDIX

A FURTHER DETAILS ON OPTIMIZATION ALGORITHMS

Our work considers optimization algorithms for functions of the form f(x;θ) = y with
θ,∆θ ∈ Rt, denoting weight vector and weight update vector, respectively, while x ∈ Rn
and y ∈ Rm denote input and output. The learning process solves the minimization problem
argminθL(f(x;θ), ŷ) via a sequence θk+1 = θk + η∆θ. Here, ŷ are the reference solutions,
and we target losses of the form L(x, ŷ;θ) =

∑
i l
(
f(xi;θ), ŷi

)
with i being an index for multiple

data points (i.e., observations). l denotes the L2-loss
∑
j ||xj − ŷj ||2 with j referencing the entries

of a mini batch of size b.

A.1 UPDATE STEP OF THE GAUSS-NEWTON ALGORITHM

Using this notation, the update step of the Gauss-Newton algorithm (Adby, 2013) for η = 1 is given
by:

∆θGN = −
((

∂y

∂θ

)T
·
(
∂y

∂θ

))−1
·
(
∂y

∂θ

)T
·
(
∂L

∂y

)>
(11)

The size of the Jacobian matrix is given by the dimensions of y- and θ-space. For a full-rank
Jacobian corresponding to non-constrained optimization, the Gauss-Newton update is equivalent to:

∆θGN = −
(
∂y

∂θ

)−1
·
(
∂L

∂y

)>
(12)

Even in a constrained setting, we can reparametrize the coordinates to obtain an unconstrained
optimization problem on the accessible manifold and rewrite ∆θGN similarly. This shortened form
of the update step is given in equation 3, and is the basis for our discussion in the main text.

A.2 GEOMETRIC INTERPRETATION AS STEEPEST DESCENT ALGORITHMS

It is well-known that the negative gradient of a function L(θ) points in the direction of steepest
descent leading to the interpretation of gradient descent as a steepest descent algorithm. However,
the notion of steepest descent requires defining a measure of distance, which is in this case the usual
L2-norm in θ. By using different metrics, we can regard Gauss-Newton and HIG steps as steepest
descent algorithms as well.

Gauss-Newton updates. The updates ∆θGN can be regarded as gradient descent in y up to first
order in the update step. This can be seen with a simple equation by considering how these updates
change y.

∆y =

(
∂y

∂θ

)
·∆θGN + o(∆θGN) = −

(
∂L

∂y

)>
+ o(∆θGN) (13)

In figure 1 of the main paper, this property is visible in the physics trajectories for the well-
conditioned case, where L(y) is a uniform L2-loss and hence, gradient descent in y produces
a straight line to the target point. The Gauss-Newton curve first shows several steps in varying
directions as the higher-order terms from the neural network cannot be neglected yet. However,
after this initial phase the curve exhibits the expected linear motion.

The behavior of GN to perform steepest descent on the y-manifold stands in contrast to gradient
descent methods, which instead perform steepest descent on the θ-manifold. This geometric view is
the basis for an alternative way to derive our method that is presented below.
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HIG updates. HIG updates can be regarded as a steepest descent algorithm, again up to first order
in the update step, when measuring distances of θ-vectors with the following semi-norm:

||θ||HIG := ||J3/4θ|| (14)

Here || · || denotes the usual L2-norm and J = ∂y
∂θ the Jacobian of network and solver. The

exponentiation is performed as explained in the main text, with J = UΛV > being the SVD, and
J3/4 given by V Λ3/4U>. Additionally, we will use the natural map between dual vector and vector
〈·, ·〉 and the loss gradient g = ∂L

∂y .

To prove the claim above, we expand the loss around an arbitrary starting point θ0:

L(y(θ0 + ∆θ)) = L(y(θ0)) + 〈g · J,∆θ〉+ o(∆θ) (15)

The first term on the right-hand side is constant and the third term is neglected according to the
assumptions of the claim. Hence, we investigate for which fixed-length ∆θ the second term
decreases the most:

arg min
||∆θ||HIG=const.

(
〈g · J,∆θ〉

)
= arg min
||θ||HIG=const.

(
〈g · J1/4, J3/4∆θ〉

)

= arg min
γ

(
cos γ · ||g · J1/4||︸ ︷︷ ︸

const.

· ||J3/4∆θ||︸ ︷︷ ︸
=const.

)

= arg min
γ

(
cos γ

)
(16)

In the first step above, we split the Jacobian J> = V ΛU> = (V Λ1/4V >)(V Λ3/4U>) = J1/4J3/4.
γ denotes the angle between J1/4g> and J3/4∆θ. This expression is minimized for γ = −π,
meaning the two vectors have to be antiparallel:

J3/4∆θ = −J1/4g> (17)

This requirement is fulfilled by the HIG update ∆θHIG = −J1/2g>, and is therefore a steepest
descent method, which concludes our proof.

This presents another approach to view HIGs as an interpolation between gradient descent and
Gauss-Newton’s method. More precisely, gradient descent performs steepest descent in the usual
L2-norm in θ-space (||θ||). Considering only terms up to linear order, Gauss-Newton performs
steepest descent in the L2-norm in y-space (||Jθ||). The HIG update (||J3/4θ||) lies between these
two methods. The quarter factors in the exponents result from the additional factor of 2 that has to
be compensated for when considering L2-norms.

A.3 STABILITY OF INVERSIONS IN THE CONTEXT OF PHYSICAL DEEP LEARNING.

In the following, we illustrate how the full inversion of GN can lead to instabilities at training time.
Interestingly, physical solvers are not the only cause of small singular values in the Jacobian. They
can also occur when applying equation 12 to a mini batch to train a neural network and are not
caused by numerical issues. Consider the simple case of two data points (x1, ŷ1) and (x2, ŷ2) and
a one-dimensional output. Let f be the neural network and J the Jacobian, which is in this case the
gradient of the network output. Then equation 12 yields:

(
Jf (x1)
Jf (x2)

)
·∆θGN =

(
f(x1)− ŷ1
f(x2)− ŷ2

)
(18)

Next, we linearly approximate the second row by using the HessianH by assuming the function to be
learned is f̂ , i.e. f̂(x1) = y1 and f̂(x2) = y2. Neglecting terms beyond the linear approximation,
we receive:
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(
Jf (x1)

Jf (x1) +Hf (x1) · (x2 − x1)

)
·∆θGN =

(
f(x1)− y1

f(x1)− y1 + (Jf (x1)− Jf̂ (x1)) · (x2 − x1)

)

(19)

Considering the case of two nearby data points, i.e. x2 −x1 being small, the two row vectors in the
stacked Jacobian on the left-hand side are similar, i.e. the angle between them is small. This leads to
a small singular value of the stacked Jacobian. In the limit of x2 = x1 both row vectors are linearly
dependant and hence, one singular value becomes zero.

Moreover, even if x2 is not close to x1, small singular values can occur if the batch size increases:
for a growing number of row vectors it becomes more and more likely that the Jacobian contains
similar or linearly dependent vectors.

After inversion, a small singular value becomes large. This leads to a large update ∆θGN when the
right-hand side of equation 19 overlaps with the corresponding singular vector.

This can easily happen if the linear approximation of the right-hand side is poor, for instance when
f̂ is a solution to an inverse physics problem. Then f̂ can have multiple modes and can, even within
a mode, exhibit highly sensitive or even singular behavior.

In turn, applying large updates to the network weights naturally can lead to the oversaturation of
neurons, as illustrated above, and diverging training runs in general.

As illustrated in the main paper, these inherent problems of GN are alleviated by the partial inversion
of the HIG. It yields a fundamentally different order of scaling via its square-root inversion, which
likewise does not guarantee that small singular values lead to overshoots (hence the truncation), but
in general strongly stabilizes the training process.

B EXPERIMENTAL DETAILS

In the following, we provide details of the physical simulations used for our experiments in section
3 of the main paper. For the different methods, we use the following abbreviations: half-inverse
gradients (HIG), Gauss-Newton’s method (GN), and stochastic gradient descent (GD). Learning
rates are denoted by η, batch sizes by b, and truncation parameters for HIG and GN by τ . All loss
results are given for the average loss over a test set with samples distinct from the training data set.

For each method, we run a hyperparameter search for every experiment, varying the learning rate
by several orders of magnitude, and the batch size in factors of two. Unless noted otherwise, the
best runs in terms of final test loss were selected and shown in the main text. The following sections
contain several examples from the hyperparameter search to illustrate how the different methods
react to the changed settings.

Runtime Measurements Runtimes for the non-linear chain and quantum dipole were measured
on a machine with Intel Xeon 6240 CPUs and NVIDIA GeForce RTX 2080 Ti GPUs. The
Poisson experiments used an Intel Xeon W-2235 CPU with NVIDIA Quadro RTX 8000 GPU. We
experimentally verified that these platforms yield an on-par performance for our implementation.
As deep learning API we used TensorFlow version 2.5. If not stated otherwise, each experiment
retained the default settings.

All runtime graphs in the main paper and appendix contain wall-clock measurements that include
all steps of a learning run, such as initialization, in addition to the evaluation time of each epoch.
However, the evaluations of the test sets to determine the performance in terms of loss are not
included. As optimizers such as Adam typically performs a larger number of update steps including
these evaluations would have put these optimizers at an unnecessary disadvantage.

B.1 TOY EXAMPLE (SECTION 2.1)

For the toy example, the target function is given by f̂(x) = (sin(6x), cos(9x)). We used a dense
neural network consisting of one hidden layer with 7 neurons and tanh activation, and an output
layer with 2 neurons and linear activation. For training, we use 1024 data points uniformly sampled
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Table 2: Hyperparameters for different optimization algorithms in figure 2b

Method Adadelta Adagrad Adam GN HIG RMSprop SGD
b 512 512 512 128 128 512 512
η 0.1 0.1 3 · 10−4 - 1 10−4 0.1
τ - - - 10−6 10−6 - -

Table 3: Nonlinear oscillators: memory requirements, update duration and duration of the Jacobian
computation for Adam and HIG

Optimizer Adam Adam Adam HIG HIG HIG
Batch size 256 512 1024 32 64 128

Memory (MB) 11.1 22.2 44.5 169 676 2640
Update duration (sec) 0.081 0.081 0.081 0.087 0.097 0.146

Jacobian duration (sec) 0.070 0.070 0.070 0.070 0.070 0.070

from the [−1, 1] interval, and a batch size of 256. For the optimizers, the following hyperparameters
were used for both the well-conditioned loss and the ill-conditioned loss: Adam η = 0.3; GN has
no learning rate (equivalent to η = 1), τ = 10−4; HIG η = 1.0, τ = 10−6.

B.2 CONTROL OF NONLINEAR OSCILLATORS (SECTION 3.1)

The Hamiltonian function given in equation 8 leads to the following equations of motions:

ẍi = −xi + 4α(xi − xi−1)3 − 4α(xi − xi+1)3 − u(t) · ci (20)

The simulations of the nonlinear oscillators were performed for two mass points and a time interval
of 12 units with a time step ∆t = 0.125. This results in 96 time steps via 4th order Runge-Kutta
per learning iteration. We generated 4096 data points for a control vector c = (0.0, 3.0), and an
interaction strength α = 1.0 with randomized conjugate variables x and p. The test set consists
of 4096 new data points. For the neural network, we set up a fully-connected network with ReLU
activations passing inputs through three hidden layers with 20 neurons in each layer before being
mapped to a 96 output layer with linear activation.

For the comparison with other optimizers (figure 2b) we performed a broad hyperparameter search
for each method, as outlined above, to determine suitable settings. The parameters for Adagrad
(Duchi et al., 2011), Adadelta (Zeiler, 2012), Adam (Kingma & Ba, 2015), RMSprop (Hinton et al.,
2012), Gauss-Newton (Gill & Murray, 1978), HIGs, and stochastic gradient descent (Curry, 1944)
are summarized in table 2. For figure 2c the following hyperparameters were used: η = 3 · 10−4 for
Adam, and η = 1.0, τ = 10−6 for HIG.

Further Experiments. Figure 5 and figure 6 contain additional runs with different
hyperparameters for the method comparison of figure 2b in the main paper. The graphs illustrate that
all five method do not change their behavior significantly for the different batch sizes in each plot,
but become noticeably unstable for larger learning rates η (plots on the right sides of each section).

Details on the memory footprint and update durations can be found in table 3. Since our simulations
were not limited by memory, we used an implementation for the Jacobian computation of HIGs,
which scales quadratically in the batch size. Should this become a bottleneck, this scaling could
potentially be made linear by exploiting that the Jacobian of the physical solver for multiple data
points is blockdiagonal.

B.3 POISSON PROBLEM (SECTION 3.2)

We discretize Poisson’s equation on a regular grid for a two-dimensional domain Ω = [0, 8]× [0, 8]
with a grid spacing of ∆x = 1. Dirichlet boundary conditions of φ = 0 are imposed on all four
sides of Ω. The Laplace operator is discretized with a finite difference stencil (Ames, 2014).
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Figure 5: Control of nonlinear oscillators: Additional experiments with (a) Adadelta, (b) Adagrad,
(c) stochastic gradient descent , and (d) RMSprop. Each showing different learning rates η and batch
sizes b.
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Figure 6: Control of nonlinear oscillators: Additional experiments with Adam for different learning
rates η and batch sizes b.

For the neural network, we set up a fully-connected network with tanh activation functions. The
8x8 inputs pass through three hidden layers with 64, 256 and 64 neurons, respectively, before being
mapped to 8x8 in the output layer. For training, source distributions ρ are sampled from random
frequencies in Fourier space, and transformed to real space via the inverse Fourier transform. The
mean value is normalized to zero. We sample data on-the-fly, resulting in an effectively infinite data
set. This makes a separate test set redundant as all training data is previously unseen.

Further Experiments. Figure 7a shows Adam and HIG runs from figure 3b over epochs. The HIG
runs converge faster per iteration, which indicates that HIGs perform qualitatively better updates.

Additionally, we use the pretrained HIG run from figure 3c as a starting point for further Adam
training. The results are shown in 7b. We observe that the network quickly looses the progress
the HIGs have made, and continues with a loss value similar to the orginal Adam run. This again
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Table 4: Poisson problem: memory requirements, update duration and duration of the Jacobian
computation for Adam and HIG

Optimizer Adam HIG
Batch size 64 64

Memory (MB) 1.3 3560
Update duration (sec) 0.011 13.8

Jacobian duration (sec) 0.010 0.0035
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Figure 7: Poisson problem: a) Loss curves for Adam and HIG per epoch for different learning
rates, b) Loss curves of Adam (η =1e-04), of HIG (η = 0.02) pretrained with Adam, and of Adam
(η =1e-04) pretrained with the HIGs.

supports our intuition that Adam, in contrast to HIGs, cannot harness the full potential of the physics
solver.

Details on the memory footprint and update durations can be found in table 4

B.4 QUANTUM DIPOLE (SECTION 3.3)

For the quantum dipole problem, we discretize the Schrödinger equation on a spatial domain Ω =
[0, 2] with a spacing of ∆x = 0.133 resulting in 16 discretization points. We simulate up to a
time of 19.2 with a time step of ∆t = 0.05, which yields 384 time steps. Spatial and temporal
discretization use a modified Crank-Nicolson scheme (Winckel et al., 2009) which is tailored to
quantum simulations. The training data set consists of 1024 randomized superpositions of the first
and second excited state, while the test set contains a new set of 1024 randomized superpositions.
For the neural network, we set up a fully-connected network with tanh activations passing the inputs
through three hidden layers with 20 neurons in each layer before being mapped to a 384 neuron
output layer with linear activation. Overall, the network contains 9484 trainable parameters.

Experimental details. For the training runs in figure 4b, Adam used b = 256, while for HIG b =
16, and τ = 10−5 were used. For the training runs in figure 4c, Adam used b = 256, η = 0.0001,
while HIGs used b = 16, τ = 10−5, and η = 0.5. Details on the memory footprint and update
durations can be found in table 5

Figure 8 and figure 9 show the performance of both methods for a broader range of τ settings for
HIGs, and η for Adam. For Adam, a trade-off between slow convergence and oscillating updates
exists. The HIGs yield high accuracy in training across a wide range of values for τ , ranging
from 10−5 to 10−3. This supports the argumentation in the main text that the truncation is not
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Figure 8: Quantum dipole: Additional experiments with Adam for different learning rates η and
batch sizes b.
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Figure 9: Quantum dipole: Additional experiments with HIGs for different learning rates η, batch
sizes b, and truncation parameters τ

overly critical for HIGs. As long as numerical noise is suppressed with τ > 10−6, and the actual
information about scaling of network parameters and physical variables is not cut off. The latter
case is visible for an overly large τ = 0.01 in the last graph on the right.

Note that many graphs in figure 9 contain a small plateau at the start of each training run. These
regions with relatively small progress per wall clock time are caused by the initialization overhead
of the underlying deep learning framework (TensorFlow in our case). As all graphs measure wall
clock time, we include the initialization overhead of TensorFlow, which causes a noticeable slow
down of the first iteration. Hence, the relatively slow convergence of the very first steps in figure 9
are not caused by conceptual issues with the HIGs themselves. Rather, they are a result of the
software frameworks and could, e.g., be alleviated with a pre-compilation of the training graphs. In
contrast, the initial convergence plateaus of Adam with smaller η in Figure 8 are of a fundamentally
different nature: they are caused by an inherent problem of non-inverting optimizers: their inability
to appropriately handle the combination of large and small scale components in the physics of the
quantum dipole setup (as outlined in section 3.3).

Table 5: Quantum dipole: memory requirements, update duration and duration of the Jacobian
computation for Adam and HIG

Optimizer Adam Adam Adam HIG HIG
Batch size 256 512 1024 8 16

Memory (MB) 460 947 2007 1064 5039
Update duration (sec) 0.40 0.50 1.33 0.42 0.60

Jacobian duration (sec) 0.39 0.49 1.32 0.40 0.53
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Figure 10: Quantum dipole with Convolutional Neural Network: Experiments with Adam for
different learning rates η and batch sizes b.
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Figure 11: Quantum dipole with Convolutional Neural Network: Experiments with HIGs for
different learning rates η, batch sizes b, and truncation parameters τ

Loss Functions. While training is evaluated in terms of the regular inner product as loss function:
L(Ψa,Ψb) = 1 − |〈Ψa,Ψb〉|2, we use the following modified losses to evaluate low- and high-
energy states for figure 4c. Let Ψ1 be the first excited state, then we define the low-energy loss
as:

L(Ψa,Ψb) = (|〈Ψa,Ψ1〉| − |〈Ψ1,Ψb〉|)2

Correspondingly, we define the high-energy loss with the second excited state Ψ2:

L(Ψa,Ψb) = (|〈Ψa,Ψ2〉| − |〈Ψ2,Ψb〉|)2

Additional Experiments with a Convolutional Neural Network. Our method is agnostic to
specific network architectures. To illustrate this, we conduct additional experiments with a
convolutional neural network. The setup is the same as before, only the fully-connected neural
network is replaced by a network with 6 hidden convolutional layers each with kernel size 3, 20
features and tanh activation, followed by an 384 neuron dense output layer with linear activation
giving the network a total of 21984 trainable parameters.

The results of these experiments are plotted in figure 10 and 11. We find that HIGs behave in line
with the fully-connected network case (figure 9). There exists a range τ -values from around 10−5 to
10−3 for which stable training is possible. Regarding optimization with Adam, we likewise observe
a faster and more accurate minimization of the loss function for the best HIG run (η = 0.7, b = 16,
τ = 10−4) compared to the best Adam run (η = 0.0002, b = 256).

20



Published as a conference paper at ICLR 2022

C ABLATION STUDY

In this last section, we investigate how the HIG-hyperparameters affect the outcome. This includes
ablation experiments with respect to κ and τ defined in section 2.2. We use the nonlinear oscillator
example as the basis for these comparisons and consider the following HIG update step:

∆θ(η, β, κ) = −η ·
(
∂y

∂θ

)<β,κ>
·
(
∂L

∂y

)>
(21)

Here, the exponent < β, κ > of the Jacobian denotes the following procedure defined with the aid
of the singular value decomposition J = UΛV > as:

J<β,κ> := max{diag(Λ)}β · V ΛκU>, (22)

Compared to the HIG update 5 in the main text, update 21 has an additional scalar prefactor with
an parameter β resulting from earlier experiments with our method. Setting β = −1 − κ yields
algorithms that rescale the largest singular value to 1, which ensures that the resulting updates cannot
produce arbitrarily large updates in y-space. This can be thought of as a weaker form of scale
invariance. Just as 5, equation 21 defines an interpolation between gradient descent (β = 0, κ = 1)
and the Gauss-Newton method (β = 0, κ =−1) as well.

Scalar prefactor term β: We test β-values between 0, no scale correction, and−0.5, which fully
normalizes the effect of the largest singular value for κ = −0.5. The results are shown in figure 12a.
Compared to the other hyperparameters, we observe that β has only little influence on the outcome,
which is why we decided to present the method without this parameter in the main text.

Exponent of the diagonal singular value matrix κ: We test κ for various values between 1.0,
stochastic gradient descent, and −1, Gauss-Newton. The results are shown in figure 12b. For
positive values, curves stagnate early, while for negative κ, the final loss values are several orders
of magnitude better. The HIG curve corresponding to β = −0.5 achieves the best result. This
supports our argumentation that a strong dependence on this parameter exists, and that a choice of
κ = −0.5 is indeed a good compromise for scale-correcting updates of reasonable size. The strong
improvement as soon as κ becomes negative indicates that the collective inversion of the feedback
of different data points of the mini-batch is an important ingredient in our method.

Truncation parameter τ : To understand the effect of this parameter, we consider the singular
value decomposition (SVD) of the network-solver Jacobian, which is determined by the SVDs of
the network Jacobian and the solver Jacobian. The singular values of a matrix product AB depend
non-trivially on the singular values of the matrices A and B. In the simplest case, the singular values
of the matrix product are received by multiplication of the individual singular values of both matrix
factors. In the general case, this depends on how the singular vectors of A and B overlap with
each other. However, it is likely that singular vectors with a small singular value of A or B overlap
significantly with singular vectors with a small singular value of AB. For this reason, it is important
not to truncate too much as this might remove the small-scale physics modes that we are ultimately
trying to preserve in order to achieve accurate results. On the other hand, less truncation leads to
large updates of network weights on a scale beyond the validation of the linear approximation by
first-order derivatives. These uncontrolled network modifications can lead to over-saturated neurons
and prevent further training progress.

From a practical point of view, we choose τ according to the accuracy of the pure physics
optimization problem without a neural network. For the quantum dipole training, this value was
set to 10−5. Trying to solve the pure physics optimization with far smaller values leads to a worse
result or no convergence at all. The network training behaves in line with this: Figure 9 shows that
the network does not learn to control the quantum system with τ -values far smaller than 10−5 . For
the nonlinear oscillator system, the pure physics optimization is stable over a large range of τ -values
with similarly good results. For the network training, we chose τ to be 10−6. We conducted further
experiments for the network training with different τ from 10−5 to 10−10 presented in figure 13,
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Figure 12: a) Ablation experiments with the β-hyperparameter, and b) with the κ-hyperparameter.
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Figure 13: Ablation experiments with the τ -hyperparameter.

which show that HIGs have a similar tolerance in τ . For a comparison, we also plotted Gauss-
Newton curves for different τ . We observe that GN curves become more unstable for smaller
truncation values τ and diverge in the case 10−9 and 10−10 while HIG curves achieve overall better
loss values and start to converge in this parameter.
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Abstract

Finding accurate solutions to partial differential equations (PDEs) is a crucial
task in all scientific and engineering disciplines. It has recently been shown that
machine learning methods can improve the solution accuracy by correcting for
effects not captured by the discretized PDE. We target the problem of reducing
numerical errors of iterative PDE solvers and compare different learning approaches
for finding complex correction functions. We find that previously used learning
approaches are significantly outperformed by methods that integrate the solver
into the training loop and thereby allow the model to interact with the PDE during
training. This provides the model with realistic input distributions that take previous
corrections into account, yielding improvements in accuracy with stable rollouts of
several hundred recurrent evaluation steps and surpassing even tailored supervised
variants. We highlight the performance of the differentiable physics networks
for a wide variety of PDEs, from non-linear advection-diffusion systems to three-
dimensional Navier-Stokes flows.

1 Introduction
Numerical methods are prevalent in science to improve the understanding of our world, with applica-
tions ranging from climate modeling [55, 53] over simulating the efficiency of airplane wings [47] to
analyzing blood flow in a human body [27]. These applications are extremely costly to compute due
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corrector trained via differentiable physics (b) significantly reduces errors w.r.t. the reference (c).



to the fine spatial and temporal resolutions required in real-world scenarios. In this context, deep
learning methods are receiving strongly growing attention [40, 4, 18] and show promise to account
for those components of the solutions that are difficult to resolve or are not well captured by our
physical models. Physical models typically come in the form of PDEs and are discretized in order to
be processed by computers. This step inevitably introduces numerical errors. Despite a vast amount
of work [15, 2] and experimental evaluations [7, 41], analytic descriptions of these errors remain
elusive for most real-world applications of simulations.

In our work, we specifically target the numerical errors that arise in the discretization of PDEs. We
show that, despite the lack of closed-form descriptions, discretization errors can be seen as functions
with regular and repeating structures and, thus, can be learned by neural networks. Once trained,
such a network can be evaluated locally to improve the solution of a PDE-solver, i.e., to reduce its
numerical error.

The core of most numerical methods contains some form of iterative process – either in the form
of repeated updates over time for explicit solvers or even within a single update step for implicit
solvers. Hence, we focus on iterative PDE solving algorithms [17]. We show that neural networks
can achieve excellent performance if they take the reaction of the solver into account. This interaction
is not possible with supervised learning on pre-computed data alone. Even small inference errors
of a supervised model can quickly accumulate over time [57, 29], leading to a data distribution that
differs from the distribution of the pre-computed data. For supervised learning methods, this causes
deteriorated inference at best and solver explosions at worst.

We demonstrate that neural networks can be successfully trained if they can interact with the
respective PDE solver during training. To achieve this, we leverage differentiable simulations [1, 58].
Differentiable simulations allow a trained model to autonomously explore and experience the physical
environment and receive directed feedback regarding its interactions throughout the solver iterations.
Hence, our work fits into the broader context of machine learning as differentiable programming, and
we specifically target recurrent interactions of highly non-linear PDEs with deep neural networks.
This combination bears particular promise: it improves generalizing capabilities of the trained models
by letting the PDE-solver handle large-scale changes to the data distribution such that the learned
model can focus on localized structures not captured by the discretization. While physical models
generalize very well, learned models often specialize in data distributions seen at training time.
However, we will show that, by combining PDE-based solvers with a learned model, we can arrive
at hybrid methods that yield improved accuracy while handling solution manifolds with significant
amounts of varying physical behavior.

We show the advantages of training via differentiable physics for explicit and implicit solvers
applied to a broad class of canonical PDEs. For explicit and semi-implicit solvers, we consider
advection-diffusion systems as well as different types of Navier-Stokes variants. We showcase
models trained with up to 128 steps of a differentiable simulator and apply our model to complex
three-dimensional (3D) flows, as shown in Fig. 1. Additionally, we present a detailed empirical study
of different approaches for training neural networks in conjunction with iterative PDE-solvers for
recurrent rollouts of several hundred time steps. On the side of implicit solvers, we consider the
Poisson problem [37], which is an essential component of many PDE models. Here, our method
outperforms existing techniques on predicting initial guesses for a conjugate gradient (CG) solver by
receiving feedback from the solver at training time. The source code for this project is available at
https://github.com/tum-pbs/Solver-in-the-Loop.

Previous Work Combining machine learning techniques with PDE models has a long history in
machine learning [13, 28, 8]. More recently, deep-learning-based methods were successfully applied
to infer stencils of advection-diffusion problems [4], to discover PDE formulations [35, 42, 52], and
to analyze families of Poisson equations [36]. While identifying governing equations represents an
interesting and challenging task, we instead focus on a general method to improve the solutions of
chosen spaces of solutions.

Other studies have investigated the similarities of dynamical systems and deep learning methods
[65] and employed conservation laws to learn systems described by Hamiltonian mechanics [18, 12].
Existing studies have also identified discontinuities in finite-difference solutions with deep learning
[46] and focused on improving the iterative behavior of linear solvers [24]. So-called Koopman
operators likewise represent an interesting opportunity for deep learning algorithms [40, 32]. While
these methods replace the PDE-based time integration with a learned version, our models rely on and
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interact with a PDE-solver that provides a coarse approximation to the problem. Hence, our models
always alternate between inference via an artificial neural network (ANN) and a solver step. This
distinguishes our work from studies of recurrent ANN architectures [11, 54, 62] as the PDE-solver
can introduce significant non-linearities in-between evaluations of the ANN.

We focus on chaotic systems for which fluid flow represents an exciting and challenging problem
domain that is highly relevant for industrial applications. Deep learning methods have received
significant amounts of attention in this area [31]. For example, both steady [19] and unsteady [40], as
well as multi-phase flows [16] have been investigated with deep learning based approaches. Turbu-
lence closure modeling has been an area of particular focus [59, 38, 6]. Additionally, convolutional
neural networks (CNNs) were studied for stochastic sub-grid modeling [60], airfoil flow problems
[56, 67], and as part of generative networks to leverage the fast inference of pre-trained models
[10, 66, 29]. Other studies have targeted the unsupervised learning of divergence-free corrections [57]
or incorporated PDE-based loss functions to represent individual flow solutions via ANNs [43, 52].
In addition to temporal predictions of turbulent flows [39], similar algorithms were more recently
also employed for classification problems [20]. However, to the best of our knowledge, the existing
methods do not let ANNs interact with solver in a recurrent manner. As we will demonstrate below,
this combination yields significant improvements in terms of inference accuracy.

While we focus on Eulerian, i.e., grid-based discretizations, the Lagrangian viewpoint is a popular
alternative. While a variety of studies has investigated graph-based simulators, e.g., for rigid-body
physics in the context of human reasoning [5, 64, 3] or weather predictions [51], particles are also a
popular basis for fluid flow problems [33, 61, 48]. Despite our Eulerian focus, Lagrangian methods
could likewise benefit from incorporating differentiable solvers into the training process.

Our work shares the motivation of previous work to use differentiable components at training time
[1, 14, 58, 9] and frameworks for differentiable programming [50, 25, 26, 23]. Differentiable physics
solvers were proposed for inverse problems in the context of liquids [49], cloth [34], soft robots
[25], and molecular dynamics [63]. While these studies typically focus on optimization problems or
replace solvers with learned components, we focus on the interaction between the two. Hence, in
contrast to previous work, we always rely on a PDE-solver to yield a coarse approximate solution
and improve its performance via a trained ANN.

2 Learning to Reduce Numerical Errors
Numerical methods yield approximations of a smooth function u in a discrete setting and invariably
introduce errors. These errors can be measured in terms of the deviation from the exact analytical
solution. For discrete simulations of PDEs, they are typically expressed as a function of the truncation,
O(∆tk). Higher-order methods, with large k, are preferable but difficult to arrive at in practice. For
practical schemes, no closed-form expression exists for truncation errors, and the errors often grow
exponentially as solutions are integrated over time. We investigate methods that solve a discretized
PDE P by performing discrete time steps ∆t. Each subsequent step can depend on any number of
previous steps, u(x, t+ ∆t) = P(u(x, t),u(x, t−∆t), ...), where x ∈ Ω ⊆ Rd for the domain Ω
in d dimensions, and t ∈ R+.

Problem Statement: We consider two different discrete versions of the same PDE P , with PR

denoting a more accurate discretization with solutions r ∈ R from the reference manifold, and an
approximate version Ps with solutions s ∈ S from the source manifold. We consider r and s to be
states at a certain instance in time, i.e., they represent phase space points, and evolutions over time
are given by a trajectory in each solution manifold. As we focus on the discrete setting, a solution
over time consists of a reference sequence {rt, rt+∆t, · · · , rt+k∆t} in the solution manifold R, and
correspondingly, a more coarsely approximated source sequence {st, st+∆t, · · · , st+k∆t} exists in
the solution manifold S . We also employ a mapping operator T that transforms a phase space point
from one solution manifold to a suitable point in the other manifold, e.g., for the initial conditions of
the sequences above, we typically choose st = T rt. We discuss the choice of T in more detail in the
appendix, but in the simplest case, it can be obtained via filtering and re-sampling operations.

By evaluating PR for R, we can compute the points of the phase space sequences, e.g., rt+∆t =
PR(rt) for an update scheme that only depends on time t. Without loss of generality, we assume
a fixed ∆t and denote a state rt+k∆t after k steps of size ∆t with rt+k. Due to the inherently
different numerical approximations, Ps(T rt) 6= T rt+1 for the vast majority of states. In chaotic
systems, such differences typically grow exponentially over time until they saturate at the level
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of mean difference between solutions in the two manifolds. We use an L2-norm in the following
to quantify the deviations, i.e., L(st, T rt) = ‖st − T rt‖2. Our learning goal is to arrive at a
correction operator C(s) such that a solution to which the correction is applied has a lower error
than an unmodified solution: L(Ps(C(T rt0)), T rt1) < L(Ps(T rt0), T rt1). The correction function
C(s|θ) is represented as a deep neural network with weights θ and receives the state s to infer an
additive correction field with the same dimension. To distinguish the original phase states s from
corrected ones, we denote the latter with s̃, and we use an exponential notation to indicate a recursive
application of a function, i.e.,

st+n = Ps(Ps(· · · Ps(T rt) · · · )) = Pn
s (T rt) . (1)
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Figure 2: Transformed solutions of the reference sequence
computed on R (blue) differ from solutions computed on
the source manifold S (orange). A correction function C
(green) updates the state after each iteration to more closely
match the projected reference trajectory on S .

Within this setting, any type of learn-
ing method naturally needs to com-
pare states from the source domain
with the reference domain in order to
bridge the gap between the two solu-
tion manifolds. How the evolution in
the source manifold at training time
is computed, i.e., if and how the cor-
rector interacts with the PDE, has a
profound impact on the learning pro-
cess and the achievable final accuracy.
We distinguish three cases: no interac-
tion, a pre-computed form of interac-
tion, and a tight coupling via a differ-
entiable solver in the training loop.

• Non-interacting (NON): The learning task purely uses the unaltered PDE trajectories, i.e.,
st+n = Pn

s (T rt) with n evaluations of Ps. These trajectories are fully contained in the source
manifold S . Learning from these states means that a model will not see any states that deviate
from the original solutions. As a consequence, models trained in this way can exhibit undesirably
strong error accumulations over time. This corresponds to learning from the difference between
the orange and blue trajectories in Fig. 2, and most commonly applied supervised approaches use
this variant.

• Pre-computed interaction (PRE): To let an algorithm learn from states that are closer to those
targeted by the correction, i.e., the reference states, a pre-computed or analytic correction is
applied. Hence, the training process can make use of phase space states that deviate from those in
S , as shown in green in Fig. 2, to improve inference accuracy and stability. This approach can
be formulated as st+n = (PsCpre)

n(T rt) with a pre-computed correction function Cpre. In this
setting, the states s are corrected without employing a neural network, but they should ideally
resemble the states achievable via the learned correction later on. As the modified states s are not
influenced by the learning process, the training data can be pre-computed. A correction model
C(s|θ) is trained via s̃ that replaces Cpre at inference time.

• Solver-in-the-loop (SOL): By integrating the learned function into a differentiable physics
pipeline, the corrections can interact with the physical system, alter the states, and receive
gradients about the future performance of these modifications. The learned function C now
depends on states that are modified and evolved through P for one or more iterations. A trajectory
for n evaluations of Ps is given by s̃t+n = (PsC)n(T rt), with C(s̃|θ). The key difference with
this approach is that C is trained via s̃, i.e., states that were affected by previous evaluations of C,
and it affects s̃ in the following iterations. As for (PRE), this learning setup results in a trajectory
like the green one shown in Fig. 2, however, in contrast to before, the learned correction itself
influences the evolution of the trajectory, preventing a gap for the data distribution of the inputs.

In addition to these three types of interaction, a second central parameter is the look-ahead tra-
jectory per iteration and mini-batch of the optimizer during learning. A subscript n denotes the
number of steps over which the future evolution is recursively evaluated, e.g., SOLn. The objective
function, and hence the quality of the correction, is evaluated with the training goal to minimize∑t+n

i=t L(si, ri). Below, we will analyze a variety of learning methodologies that are categorized via
learning methodology (NON, PRE or SOL) and look-ahead horizon n.
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3 Experiments
We now provide a summary and discussion of our experiments with the different types of PDE
interactions for a selection of physical models. Full details of boundary conditions, parameters, and
discretizations of all five PDE scenarios are given in App. B.

3.1 Model Equations and Data Generation
We investigate a diverse set of constrained advection-diffusion models of which the general form is

∂u/∂t = −u · ∇u + ν∇ · ∇u + g subject to Mu = 0, (2)

where u is the velocity, ν denotes the diffusion coefficient (i.e., viscosity), and g denotes external
forces. The constraint matrix M contains an additional set of equality constraints imposed on u.
In total, we target four scenarios: pure non-linear advection-diffusion (Burger’s equation), two-
dimensional Navier-Stokes flow, Navier-Stokes coupled with a second advection-diffusion equation
for a buoyancy-driven flow, and a 3D Navier-Stokes case. Also, we discuss CG solvers in the context
of differentiable operators below.

For each of the five scenarios, we implement the non-interacting evaluation (NON) by pre-computing
a large-scale data set that captures a representative and non-trivial space of solutions in S . The
reference solutions from R are typically computed with the same numerical method using a finer
discretization (4x in our setting, with effective resolutions of 1282 and higher). The PDEs are
parametrized such that the change of discretization leads to substantial differences when integrated
over time. For several of the 2D scenarios, we additionally train models with data sets of trajectories
that have been corrected with other pre-computated correction functions. For these PRE variants, we
use a time-regularized, constrained least-squares corrector [21] to obtain corrected phase state points.
For the SOL variants, we employ a differentiable PDE-solver that runs mini-batches of simulations
and provides gradients for all operations of the solving process within the deep learning framework.
This allows gradients to freely propagate through the PDE-solver and coupled neural networks via
automatic differentiation. For n > 1, i.e., PDE-based look-ahead at training time, the gradients are
back-propagated through the solver n− 1 times, and the difference w.r.t. a pre-computed reference
solution is evaluated for all intermediate results.

3.2 Training Procedure
The neural network component F (s | θ) of the correction function is realized with a fully convolu-
tional architecture. As our focus lies on the methodology for incorporating PDE models into the
training, the architectures are intentionally kept simple. However, they were chosen to yield high
accuracy across all variants. Our networks typically consist of 10 convolutional layers with 16 features
each, interspresed with ReLU activation functions using kernel sizes of 3d and 5d. The networks
parameters θ are optimized with a fixed number of steps with an ADAM optimizer [30] and a learning
rate of 10−4. For validation, we use data sets generated from the same parameter distribution as the
training sets. All results presented in the following use test data sets whose parameter distributions
differ from the ones of the training data set.

We quantify the performance of the trained models by computing the mean absolute error between a
computed solution and the corresponding projected reference for n consecutive steps of a simulation.
We report absolute error values for different models in comparison to an unmodified source trajectory
from S . Additionally, relative improvements are given w.r.t. the difference between unmodified
source and reference solutions. An improvement by 100% would mean that the projected reference is
reproduced perfectly, while negative values indicate that the modified solution deviates more from
the reference than the original source trajectory.

4 Results
Our experiments show that learned correction functions can achieve substantial gains in accuracy
over a regular simulation. When training the correction functions with differentiable physics, this
additionally yields further improvements of more than 70% over supervised and pre-computed
approaches from previous work. A visual overview of the different tests is given in Fig. 3, and a
summary of the full evaluation from the appendix is provided in Fig. 4 and Table 1. In the appendix,
we also provide error measurements w.r.t. physical quantities such as kinetic energy and frequency
content. The source code of our experiments and analysis will be published upon acceptance.
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Figure 3: Our PDE scenarios cover a wide range of behavior including (a) vortex shedding, (b)
complex buoyancy effects, and (c) advection-diffusion systems. Shown are different time steps (l.t.r.)
in terms of vorticity for (a), transported density for (b), and angle of velocity direction for (c).

Unsteady Wake Flow The PDE scenario for unsteady wake flows represents a standard benchmark
case for fluids [44, 40] and involves a continuous inflow with a fixed, circular obstacle, which induces
downstream vortex shedding with distinct frequencies depending on the Reynolds number. For coarse
discretizations, the approximation errors distort the flow leading to deteriorated motions or suppressed
vortex shedding altogether. An example flow configuration is shown in Fig. 3a. In this scenario, the
simplest method (NON) yields stable training and a model that already reduces the mean absolute
error (MAE) from 0.146 for a regular simulation without correction (SRC) to an MAE of 0.049 when
applying the learned correction. The pre-computed correction (PRE) improves on this behavior via its
time regularization with an error of 0.031. A SOL32 model trained with a differentiable physics solver
for 32 time steps in each iteration of ADAM yields a significantly lower error of 0.013. This means,
the numerical errors of the source simulation w.r.t. the reference were reduced by more than a factor
of 10. Despite the same architecture and weight count for all three models, the overall performance
varies strongly, with the SOL32 version outperforming the simpler variants by 73% and more. An
example of the further evaluations provided in the appendix is given in Fig. 4h.

Buoyancy-driven Flow We evaluate buoyancy-driven flows as a scenario with increased complex-
ity. In addition to an incompressible fluid, a second, non-uniform marker quantity is advected with
the flow that exerts a buoyancy force. This coupled system of equations leads to interesting and
complex swirling behavior over time. We additionally use this setup to highlight that the reference
solutions can be obtained with different discretization schemes. We use a higher-order advection
scheme in addition to a 4× finer spatial discretization to compute the reference data.

Interestingly, the correction functions benefit from particularly long rollouts at training time in this
scenario. Models with simple pre-computed or unaltered trajectories yield mean errors of 1.37 and
1.07 compared to an error of 1.59 for the source simulation, respectively. Instead, a model trained with
differentiable physics with 128 steps (SOL128) successfully reduces the error to 0.62, an improvement
of more than 59% compared to the unmodified simulation.

Forced Advection-Diffusion A third scenario employs Burger’s equation as a physical model. We
mimic the setup from previous work [4] to inject energy into the system via a forcing term with a
spectrum of sine waves. This forcing prevents the system from dissipating to relatively static and
slowly moving configurations. While the PRE and NON versions yield clear improvements, the SOL
versions do not significantly outperform the simpler baselines. This illustrates a limitation of long
rollouts via differentiable physics: Learned correction functions need to be able to anticipate future
behavior to make high-quality corrections. The randomized forcing in this example severely limits
the number of future steps that can accurately be predicted given one state. This behavior contrasts
with other physical systems without external disturbances, where a single state uniquely determines
its evolution. We show in the appendix that the SOL models with an increased number of interaction
steps pay off when the external disturbances are absent.

Conjugate Gradient Solver We turn to iterative solvers for linear systems of equations to illustrate
another aspect of learning from differentiable physics: its importance for the propagation of boundary
condition effects. As our learning objective, we target the inference of initial guesses for CG solvers
[22]. Following previous work [57], we target Poisson problems of the form ∇ · ∇p = ∇ · u, which
arise for projections of a velocity u to a divergence-free state. Instead of fully relying on an ANN
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Figure 4: (a)-(e) Numerical approximation error w.r.t. reference solution for unaltered simulations
(SRC) and with learned corrections. The models trained with differentiable physics and look-ahead
achieve significant gains over the other models. (f,g) Relative improvement over varying look-ahead
horizons. (h) A frequency-based evaluation for the unsteady wake flow scenario.

to produce the pressure field p, we instead target the learning objective to produce an initial guess,
which is improved by a regular CG solver until a given accuracy threshold is reached.

This goal can be reached by directly minimizing the right-hand side term ∇ · u, similar to physics-
based loss terms proposed in a variety of studies [43, 52]. Alternatively, we can employ a differentiable
CG solver and formulate the learning goal as minimizing the same residual after n steps of the CG
solver (similar to the SOLn models above). While the physics-based loss version reduces the initial
divergence more successfully, it fares badly when interacting with the CG solver: compared to the
SOL version, it requires 63% more steps to reach a desired accuracy. Inspecting the inferred solutions
reveals that the former model leads to comparatively large errors near boundaries, which are small for
each grid cell but significantly influence the solution on a large scale. The SOL version immediately
receives feedback about this behavior via the differentiable solver iterations. I.e., the differentiable
solver provides a look-ahead of how different parts of the solution affect future states. In this way, it
can anticipate problems such as those in the vicinity of boundary conditions.

Three-dimensional Fluid Flow Lastly, we investigate a 3D case of incompressible flow. The
overall setup is similar to the unsteady wake flow in two dimensions outlined above, but the third
dimension extends the axes of rotation in the fluid from one to three, yielding a very significant
increase in complexity. As a result, the flow behind the cylindrical obstacle quickly becomes chaotic
and forms partially turbulent eddies, as shown in Fig. 1. This scenario requires significantly larger
models to learn a correction function, and the NON version does not manage to stabilize the flow
consistently. Instead, the SOL16 version achieves stable rollouts for several hundred time steps and
successfully corrects the numerical inaccuracies of the coarse discretization, improving the numerical
accuracy of the source (SRC) simulation by more than 22% across a wide range of configurations.

5 Ablations and Discussion
We performed an analysis of the proposed training via differentiable physics to highlight which
hyperparameters most strongly influence results. Specifically, we evaluate varying look-ahead
horizons, different model architectures, training via perturbations, and pre-computed variants.

Future Look-Ahead For systems with deterministic behavior, long rollouts via differentiable
physics at training time yield significant improvements, as shown in Fig. 4f and 4g. While training
with a few (1 to 4) steps yields improvements of up to 40% for the buoyancy-driven flow scenario,
this number can be raised significantly by increasing the look-ahead at training time. A performance
of more than 54% can be achieved by 64 recurrent solver iterations, while raising the look-ahead to
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Table 1: A summary of the quantitative evaluation for the five PDE scenarios. SOLs denotes a variant
with shorter look-ahead compared to SOL. (∗ For the CG solver scenario, iterations to reach an
accuracy of 0.001 are given. Here, SOLs denotes the physics-based loss version.)

Exp. Mean absolute error of velocity Rel. improvement

SRC PRE NON SOLs SOL PRE NON SOLs SOL

Wake Flow 0.146±0.004 0.031±0.010 0.049±0.012 0.041±0.009 0.013±0.003 79% 67% 72% 91%
Buoyancy 1.590±1.033 1.373±0.985 1.080±0.658 0.944±0.614 0.620±0.390 19% 29% 41% 60%
Adv.-diff. 0.248±0.019 0.218±0.017 0.159±0.015 0.152±0.015 0.158±0.017 12% 36% 39% 36%

∗CG Solver 121.6±13.44 - - 79.03±10.02 29.59±14.83 - - 35% 76%
3D Wake 0.167±0.061 - 0.144±0.074 - 0.130±0.058 - 14% - 22%

128 yields average improvements of 60%. Our tests consistently show that, without changing the
number of weights or the architecture of a network, the gradients provided by the longer rollout times
allow the network to anticipate the behavior of the physical system better and react to it. Throughout
our tests, similar performances could not be obtained by other means.

Generalization The buoyancy scenario also highlights the very good generalizing capabilities of
the resulting models. All test simulations were generated with an out-of-distribution parametrization
of the initial conditions, leading to substantially different structures, and velocity ranges over time.

Training with Noise An interesting variant to stabilize physical predictions in the context of Graph
Network-based Simulators was proposed by Sanchez et al. [48]. They report that perturbations
of input features with noise lead to more stable long-term rollouts. We mimic this setup in our
Eulerian setting by perturbing the inputs to the neural networks with N (0, σ) for varying strengths
σ. While a sweet spot with improvements of 34.5% seems to exist around σ = 10−4, the increase
in performance is small compared to a model with less perturbations (30.6%), as training with an
increased look-ahead for the SOL models gives improvements up to 60.0%.

Training Stability The physical models we employ introduce a large amount of complexity into
the training loop. Especially during the early stages of training, an inferred correction can overly
distort the physical state. Performing time integration via the PDE then typically leads to exponential
increases of existing oscillations and a diverging calculation. Hence, we found it important to pre-train
networks with small look-aheads (we usually use SOL2 models), and then continue training with
longer recurrent iterations for the look-ahead. While this scheme can be applied hierarchically, we
saw no specific gains from, e.g., starting a SOL32 training with a SOL2 model versus a SOL16 model.

Runtime Performance The training via differentiable physics incurs an increased computational
cost at training time, as the PDE model has to be evaluated for n steps for each learning iteration, and
the calculation of the gradients is typically of similar complexity as the evaluation of the PDE itself.
However, this incurs only moderate costs in our tests. For example, for the buoyancy-driven flow, the
training time increases from 0.21 seconds per iteration on average for SOL2 to 0.42s for SOL4, and
1.25s for SOL16. The look-ahead additionally provides n times more gradients at training time, and
the inference time of the resulting models is not affected. Hence, the training cost can quickly pay off
in practical scenarios by yielding more accurate results without any increase in cost at inference time.

Computing solutions with the resulting hybrid method which alternates PDE evaluations and ANN
inference also provides benefits in terms of evaluation performance: A pre-trained, fully convolutional
CNN has an O(n) cost for n degrees of freedom, in contrast to many PDE-solvers with a super-linear
complexity. For example, a simulation as shown in Fig. 1 involving the trained model took 13.3s on
average for 100 time steps, whereas a CPU-based reference simulation required 913.2s. A speed-up
of more than 68×.

6 Conclusions
We have demonstrated how to achieve significant reductions of numerical errors in PDE-solvers by
training ANNs with long look-ahead rollouts and differentiable physics solvers. The resulting models
yield substantially lower errors than models trained with pre-computed data. We have additionally
provided a first thorough evaluation of different methodologies for letting PDE-solvers interact with
recurrent ANN evaluations.
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Identical networks yield significantly better results purely by having the solver in the learning loop.
This indicates that the numerical errors have regular structures that can be learned and corrected
via learned representations. The resulting networks likewise improve generalization for out-of-
distribution samples and provide stable, long-term recurrent predictions. Our results have the
potential to enhance learning physical priors for a variety of deep learning tasks. Beyond engineering
applications and medical simulations, a particularly interesting application of our approach is weather
prediction [45], where a simple differentiable solver could be augmented with a learned correction
function to recover the costly predictions of operational forecasting systems.

Overall, we hope that the demonstrated gains in accuracy will help to establish trained neural networks
as components in the numerical toolbox of computational science.

Broader Impact

PDE-based models are very commonly used and can be applied to a wide range of applications,
including weather and climate, epidemics, civil engineering, manufacturing processes, and medical
applications. Our work has the potential to improve how these PDEs are solved. As PDE-solvers
have a long history, there is a wide range of established tools, some of which still use COBOL and
FORTRAN. Hence, it will not be easy to integrate deep learning methods into the existing solving
pipelines, but in the long run, our method could yield solvers that compute more accurate solutions
with a given amount of computational resources.

Due to the wide range of applications of PDEs, our methods could also be used in the development of
military equipment (machines and weapons) or other harmful systems. However, our method shares
this danger with all numerical methods. For the discipline of computational science as a whole, we
see more positive aspects when computer simulations become more powerful. Nonetheless, we will
encourage users of our method likewise to consider ethical implications when employing PDE-solvers
with learning via differentiable physics.
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1 Introduction

Understanding physical environments is a key requirement for machine learning applications such as
autonomous agents and robots [8, 1]. It is typically of vital importance to not only understand the
unperturbed physical behavior but also anticipate how the environment reacts to an agent interacting
with it [15, 6]. We consider partial differential equations (PDEs) as the most fundamental description
of physical systems. The language of PDEs is general enough to describe every physical theory, from
quantum mechanics and general relativity to turbulent flows [14]. Existing machine learning methods
that deal with agents learning to interact with their environments have often focused on reinforcement
learning [11, 5], but for high-dimensional environments, the computational cost of exploring the state
space puts severe limits on the number of interaction parameters with which the agent can influence
the physical system [9].

Meanwhile, progress has been made in utilizing differentiable solvers to find solutions to high-
dimensional optimization problems [15, 4, 13]. Yet existing methods are still computationally
expensive and thus limited to short time frames. We combine differentiable physics with deep
learning to represent solution manifolds rather than computing single solutions via optimization. In
this way, trained models can interact with a physical environment using a large number of interaction
parameters, and inference times are orders of magnitude faster than with classic optimization algo-
rithms. Here the use of differentiable physics is key for a robust learning of the complex spaces of
behavior encoded by the model PDEs.

In this context, we present phiflow (https://github.com/tum-pbs/PhiFlow), a fully differen-
tiable Eulerian PDE framework that provides operators and solvers for a large class of PDEs with
analytic gradients. By fully integrating the numerical solver into the training process, neural networks
(NNs) can, e.g., learn to reduce numerical errors of PDE solvers, and to optimally control a physical
system given an initial state and a target state. We show the capabilities of phiflow with a wide range
of correction and control tasks for various advection-diffusion type PDEs, and demonstrate that long
time frames can be handled via a specialized architecture and evaluation scheme that separates the
learning of physical behavior for different time scales.

2 Differentiable PDE solvers

Let u(x, t) be described by a PDE that can be explicitly solved forward in time, i.e. time and space
derivatives do not mix. The PDE can then be written as

∂u

∂t
= P

(
u,
∂u

∂x
,
∂2u

∂x2
, ...,y(t)

)
(1)

where P models the physical behavior of the system and y(t) denotes any external factors that can
influence the system. A classic solver can move the system forward in time via Euler steps:

u(ti+1) = Solver[u(ti),y(ti)] = u(ti) + ∆t · P (u(ti), ...,y(ti)) (2)
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The square brackets indicate that Solver is a functional rather than a function, i.e. it takes full fields
as input. Each step moves the system forward by a time increment ∆t. Repeated execution produces
a trajectory u(t) that is a solution to the PDE.

When discretizing this formulation for time advancement directly it is not well-suited to solve op-
timization problems, since gradients can only be approximated by finite differencing in a regular
forward solver. For high-dimensional or continuous systems, this method becomes computationally
expensive because a full trajectory needs to be computed for each optimizable parameter. Differen-
tiable solvers resolve this issue by solving the adjoint problem [12, 10] via analytic derivatives. The
adjoint problem computes the same mathematical expressions while working with lower-dimensional
vectors. A differentiable solver can efficiently compute the derivatives with respect to any of its
inputs, i.e. ∂u(ti+1)/∂u(ti) and ∂u(ti+1)/∂y(ti). This allows for gradient-based optimization of
inputs or control parameters of the simulation over an arbitrary number of time steps. The adjoint
method is also used by most machine learning frameworks, where it is more commonly known as
reverse mode differentiation [16, 3].

We make use of this analogy to realize phiflow, a differentiable PDE solver as a set of mathematical
operations within a deep learning framework. We focus on Eulerian rather than Lagrangian methods
since they are widely used for a large class of PDEs [14]. All solver operations are implemented
in a differentiable manner, i.e. the automatic differentiation tools can chain the derivatives of these
operations with built-in machine learning operations to build analytic derivatives for any combination
of operations, thus enabling end-to-end training. This toolkit of operations enables the solver to
handle a large class of PDEs, including the incompressible Navier-Stokes equations.

3 Learning solver interactions

Assuming the physical behavior P is described by a PDE as in Eq. (1), we add a force term F (t),
which can be seen as a ”correction” or ”control” that allows the model to interact with the system:

∂u

∂t
= P

(
u,
∂u

∂x
,
∂2u

∂x2
, ...

)
+ F (t) (3)

While the evolution of the complete state u is determined by the above equation, we allow some
parts of u to be hidden for the forcing. This restriction reflects the fact that it is often not possible to
observe the full state of a physical system. When considering a cloud of smoke, for example, the
smoke density might be observable while the velocity field cannot be seen directly. Mathematically,
we model this restriction by decomposing u into an observable part o and a hidden part h with
u = o(u) ⊗ h(u). Here, ⊗ denotes the tensor product, adding all components of the states. The
hidden part can include spatial regions of some fields as well as entire fields.

Using the above notation, we define the control task as follows. An initial observable state o0 of
the PDE as well as a target state o∗ are given. We are interested in a reconstructed trajectory ur(t)
that matches these states at t0 and t∗, i.e. o0 = o(ur(t0)),o∗ = o(ur(t∗)), and requires the least
amount of effort over the whole time span. I.e., we aim for minimizing the forces to be applied in
terms of their magnitude with:

LF [u(t)] =

∫ t∗

t0

|Fu(t)|2 dt (4)
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Figure 1: Possible trajectories.

Taking discrete time steps ∆t, the reconstructed trajectory
ur is a sequence of n = (t∗−t0)/∆t states. This problem
definition is portrayed in Fig. 1. An initial observation o0

and target observation o∗ are given (a). The goal is to
reconstruct a trajectory ur that moves from o0 to o∗ in
the state space and requires as little force as possible, as
shown in (b). The grey lines represent the unperturbed
evolution of the physical system. The amount of applied
force corresponds to how far the trajectory deviates from
the natural evolution in this picture.

When an observable dimension cannot be controlled directly, there may not exist any trajectory u(t)
that matches both o0 and o∗. This can stem from either physical constraints or numerical limitations.
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In these cases, we settle for an approximation of o∗. To measure the quality of the approximation of
the target, we define an observation loss L∗

o. The form of this loss can be chosen to fit the problem.
For our experiments we use the filtered L2 distance between target and reconstruction:

L∗
o(u(t∗)) = |Br(o∗)−Br (o(u(t∗))) |2 (5)

where Br denotes a spatial blur function with a fixed, problem-dependent radius r ≥ 0. We combine
Eqs. 4 and 5 into the objective loss function

L[u(t)] = α · LF [u(t)] + β · L∗
o(u(t∗)), (6)

with α, β > 0. Since our solver is differentiable, L can be used directly to optimize a machine
learning model such as a neural network that models ur(t),o∗, t→ F (t) with weights w. We call
this network the control force estimator (CFE).

For a sequence of n frames, L[u(t)] depends on all n states of the trajectory u(t). Thus, for recurrent
end-to-end training, n linked copies of the network need to be chained together. When inferring
the force, this results in a CFE chain, shown in Fig. 2, that alternates between network and solver
execution. When using a CFE chain, the complete sequence needs to be run forward and backward
for each optimization step of the model. This is not only slow, it also means that gradients are passed
through a potentially long chain of highly non-linear simulation steps. When the reconstruction ur
is close to an optimal trajectory, this is not a problem since the gradients ∆ur are small and the
operations executed by the solver are differentiable by construction. The solver can therefore be
locally approximated by a first-order polynomial and the gradients can be safely backpropagated.
For large ∆ur, such as at the beginning of training, this approximation breaks down, causing the
gradients to become highly unstable while passing through the chain. In some cases below, we
employ a second model, which predicts the observable state op ((ti + tj)/2) given two observations.
We refer to this model as the observation predictor (OP) [7].

Note that while some existing approaches rely on a continuous time formulation, e.g. for incorporating
ODEs [3], we instead make use of a given time discretziation with a chosen temporal step size. While
this requires storing the intermediate states of the simulated system, it allows for using numerical
methods that are suitable to handle the specifics of a PDE under consideration. E.g., tailored time
stepping schemes or specialized and efficient solvers can be integrated into the learning process in
this way. E.g., we make use of these capabilities for the pressure calculation within a Navier-Stokes
solver.

As this workshop paper can only provide a very brief summary of the different phiflow applications,
the de-anonmyized version is this paper will refer to the phiflow source code and corresponding full
papers.

4 Results

Here, we focus on phiflow applications in terms of two-dimensional fluid dynamic problems, which
are highly challenging due to the complexities on the governing Navier-Stokes equations [2] for the
velocity field v,

P(v,∇v) = −v · ∇v + ν∇2v +∇p, (7)

Solver𝐶𝐹𝐸Solver𝐶𝐹𝐸 Solver𝐶𝐹𝐸 𝒐(𝒖𝑟)…

𝑡0 𝑡𝑛−1 𝑡𝑛𝑡1

Δ𝒖r

𝐿 𝒐∗

Adjoint

Δ𝒘

𝐶𝐹𝐸∗…Adjoint𝐶𝐹𝐸∗Adjoint𝐶𝐹𝐸∗

Δ𝒘Δ𝒘 + + … +

(a) Forward pass

(b) Backward pass

(c) Weight update

Figure 2: A chained force prediction network: (a) The forward pass reconstructs a trajectory by
alternating between force estimation and solver execution. (b) For backpropagation, the adjoint
problem is computed. (c) Weight updates are accumulated and applied to the model.
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Figure 3: Example reconstructed trajectory from (a) the natural flow test set and (b) the shape test set.
The initial state is shown on the far left, the target state o∗ is shown on the right. The optimization
goal for the NN is to reach the target state given the constraints of the physical model with forces for
a wide range of randomized source and target states.

Table 1: A comparison of methods in terms of final cost for (a) a natural flow setup and (b) shape
transitions from Fig. 3. The initial distribution is sampled randomly and evolved to the target state.

Execution Loss a) Force LF a) Obs. L∗
o b) Force LF b) Obs. L∗

o

Regular Supervised 243± 11 1.53± 0.23 n/a n/a
Regular phiflow 22.6± 1.1 0.64± 0.08 89± 6 0.331± 0.134
Refined phiflow 11.7± 0.6 0.88± 0.11 75± 4 0.126± 0.010

subject to the hard constraints∇·v = 0 and∇×p = 0, where p denotes pressure and ν the viscosity.
In addition, we consider a passive density ρ which moves with the fluid via ∂ρ/∂t = −v · ∇ρ. We
set v to be hidden and ρ to be observable and allow forces to be applied to all of v.

Example sequences for the control task on 128× 128 domains are shown in Fig. 3 and a quantitative
evaluation, averaged over 100 examples, is given in Tab. 1. While all divide-and-conquer methods
manage to approximate the target state well, there are considerable differences in the amount of
force applied. The supervised technique, denoted as regular, exerts significantly more force than the
differentiable solver based methods, resulting in jittering reconstructions. A prediction refinement
scheme (denoted as refined) re-evaluates predictions over the course of a sequence. This version
produces the smoothest transitions, converging to about half the loss of the regular, non-refined
variant. For comparison, we run a classic optimization with hierarchical shooting that computes
solutions for single cases, and find that it requires 1500 iterations to compute a control function that
our trained model infers almost instantly. In the accompanying publications, we also demonstrate
that more indirect forms of control of systems such as a Navier-Stokes environments are possible.

Additionally, combining differentiable PDE solvers and deep learning can be leveraged to reduce
numerical errors, by omitting the OP network, and prediciton a correction for each step of a sequence
via a CFE network. This is demonstrated for a 3D case of incompressible unsteady wake flow
in 4. While a traditional, supervised version fares poorly and becomes unstable (not shown), the
SOL16 version (trained with 16 steps of differentiable physics) achieves stable rollouts for several
hundred time steps and successfully corrects the numerical inaccuracies of the coarse discretization.
It improves the numerical accuracy of the source (SRC) simulation by more than 22% across a wide
range of configurations. This case also highlights the gains in performance that can be achieved with
our method: while the deep learning-based hybrid solver with SOL16 took 13.3s on average for 100
time steps, a CPU-based reference simulation required 913.2s. A speed-up of more than 68×.

5 Conclusions

We have introduced the phiflow framework with a summary of selected results. They show that
deep learning models in conjunction with a differentiable physics solver can successfully predict
the behavior of complex physical models and learn to control and correct them. We believe that
learning differentiable physics has significant potential to provide physical intuition for a wide range
of systems that understand and interact with the real world.
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Figure 4: A 3D fluid problem, shown in terms of vorticity. From top to bottom: a) regular simulation,
b) reference, c) regular simulation with learned corrector.
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