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Abstract: Gnotobiotic murine models are important to understand microbiota–host interactions.
Despite the role of bacteriophages as drivers for microbiome structure and function, there is no
information about the structure and function of the gut virome in gnotobiotic models and the link be-
tween bacterial and bacteriophage/prophage diversity. We studied the virome of gnotobiotic murine
Oligo-MM12 (12 bacterial species) and reduced Altered Schaedler Flora (ASF, three bacterial species).
As reference, the virome of Specific Pathogen-Free (SPF) mice was investigated. A metagenomic
approach was used to assess prophages and bacteriophages in the guts of 6-week-old female mice.
We identified a positive correlation between bacteria diversity, and bacteriophages and prophages.
Caudoviricetes (82.4%) were the most prominent class of phages in all samples with differing relative
abundance. However, the host specificity of bacteriophages belonging to class Caudoviricetes differed
depending on model bacterial diversity. We further studied the role of bacteriophages in horizontal
gene transfer and microbial adaptation to the host’s environment. Analysis of mobile genetic elements
showed the contribution of bacteriophages to the adaptation of bacterial amino acid metabolism.
Overall, our results implicate virome “dark matter” and interactions with the host system as factors
for microbial community structure and function which determine host health. Taking the importance
of the virome in the microbiome diversity and horizontal gene transfer, reductions in the virome
might be an important factor driving losses of microbial biodiversity and the subsequent dysbiosis of
the gut microbiome.

Keywords: murine models; virome; prophages; bacteriophages; metagenomics; auxiliary metabolic
genes (AMGs)

1. Introduction

The growing interest to study the role and dynamics of the human gut microbiome in
health has triggered the development of suitable animal models [1,2]. Murine models are
widely accepted due to their high similarities to the human genome (about 90% of genes
and their functions are the same in humans), resulting in a comparable physiology and
anatomical structure, particularly of the gastrointestinal tract [1]. Furthermore, subjects in
murine models are simple to maintain, and fast to breed, and genetic modifications can be
introduced easily. Finally, the microbiomes of the murine and human gut are comparable
(at least on the phyla level) and are dominated by Firmicutes and Bacteriodetes [2,3].
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Therefore, the development of gnotobiotic mouse models based on defined microbial
consortia can provide insight into how combinations of thoroughly characterized microbes
influence the host and subsequently health and disease [2]. One of the most used microbial
consortia for gnotobiotic mice is the Altered Schaedler flora (ASF) developed for intestinal
studies in the 1970s [3]. This consortium is stable and of low diversity, comprising eight
anaerobic bacterial species that represent the most abundant phyla of the murine gut mi-
crobiota [3]. Though they have been criticized for their low complexity, gnotobiotic murine
models inoculated with ASF have been successfully used to demonstrate that microbial
antigens are necessary for the homeostatic development of mucosal T cells in the colonic
lamina propria [4]. Recently, it became possible to establish several additional microbial
consortia in the murine gut in a stable manner. Among those consortia, the Oligo-mouse
microbiota consortium (Oligo-MM12), made up of a defined cultivable bacterial community
of 12 species (representing the five most prevalent murine intestine bacterial phyla), has
become of high interest as it offers long-term colonization stability across multiple genera-
tions [5–7]. In addition, Oligo-MM12 mounts significant resistance against the colonization
of pathogenic Salmonella typhimurium [7], potentially out-competing invasive species for
the ecological niche and/or due to interactions of the introduced microbial consortia with
host cells.

Although the use of artificial microbial consortia in gnotobiotic murine models has
been well established in human microbiome research, there is limited knowledge regarding
the diversity of viruses, particularly bacteriophages in these models. These viruses may
significantly influence the effects of the introduced microbiota, impacting their abundance,
phenotype, and genome structure [8]. The virome is primarily composed of bacterio-
phages, prophages, rarer eukaryotic viruses, and endogenous retroviruses [9]. Studies have
reported that the virome community shape the dynamics and diversity of the bacterial
population through lytic interaction, horizontal gene transfer, encoded virulence proteins,
and metabolic genes [8,10–13].

In this study, we investigated the virome of two well-established gnotobiotic murine
models, namely Oligo-MM12 (12 bacterial species) and reduced Altered Schaedler Flora
(ASF, three bacterial species) and compared the results to the virome of specific pathogen-
free (SPF) wild-type mice. We further analyzed the potential impact of different virome
structures on the dynamics of horizontal gene transfer amongst bacteria via transduction.
We hypothesize that prophages (integrated viruses), and bacteriophages (viruses capable
of infecting bacteria) are present in the gnotobiotic mouse models, and their diversity is
associated with the complexity of the introduced microbial communities. Virome anal-
ysis was conducted using whole-genome sequencing followed by bioinformatics-based
reconstruction of the various virome components.

2. Materials and Methods
2.1. Mouse Models and Sampling

All procedures involving animals were performed according to local ethical and regula-
tory guidelines, which complied with the EU regulations regarding research on experimen-
tal animals. The animal study was reviewed and approved by the Regierung von Oberbay-
ern, Germany (Regierung von Oberbayern; approval number 55.2-1-54-2532-192-2016). All
mice models studied in the frame of this publication were inoculated with their respective
bacterial inoculum in the lab of our collaborators (see Acknowledgement).

We used C57BL/6J-derived female mice harboring the Oligo-MM12 bacterial commu-
nity (Table S1) with twelve bacterial species [7], and the reduced Altered Schaedler Flora
(ASF), with three bacterial species (Table S1), respectively [7,14]. For comparison, C57BL/6J
female wild-type SPF mice were used. The gnotobiotic and SPF mice were born with their
respective microbiota. During rearing, the different mice of each model were kept sep-
arately in germ–free isolators to prevent cross-contamination. Wood chips were used as
bedding and mice were fed a sterile regular chow diet and delivered ddH2O orally with
a 0.22 µm sterile syringe [5]. Four mice per group were used for each microbial condition.
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After six weeks, the animals were sacrificed by cervical dislocation, and the tissue and lu-
men contents of the ileum and colon of each mouse were obtained resulting in 48 samples
(3 murine models × 2 gut compartments × 2 fractions per gut compartment × 4 replicates),
which were snap-frozen at −80 ◦C for further analysis. To further increase DNA concentra-
tions for metagenomic sequencing, replicates were pooled, resulting in 12 samples.

2.2. DNA Extraction

Total genomic DNA was extracted from each sample using a phenol–chloroform-based
co-extraction protocol with slight modifications [15]. In brief, 0.1 g material was homog-
enized using a precelleys24 homogenizer (Bertin Technologies, Montigny-le-Bretonneux,
France) in 120 mM sodium phosphate (NaPO4) pH 8.0 and TNS pH 8.0 buffer; 500 mM
Tris-HCL pH 8.0, 100 mM sodium chloride and 10% sodium dodecyl sulfate (w/v) buffer
for 30 s at 5.5 m/s and centrifuged for 10 min at 16,000× g. The supernatant was transferred
into an RNase-free tube and nucleic acids were stepwise purified. First, an equal amount of
phenol/chloroform/isoamyl alcohol solution (25:24:1, pH 8.0) was added. Second, chloro-
form/isoamyl alcohol (24:1 (vol/vol)) was added. Each step was followed by vortexing,
centrifugation (5 min at 16,000× g) and transferring the upper phase to fresh tubes. DNA
was precipitated by adding 2 volumes of a 10% (w/v) polyethylene glycol and 1.2 M NaCl
solution and incubated for 2 h on ice. After centrifugation (16,000× g, 10 min, 4 ◦C), the
pellet was washed in 500 µL ice-cold DNase/RNase free 70% EtOH, centrifuged again
(16,000× g, 10 min, 4 ◦C), air-dried, and eluted in 50 µL of DEPC-treated (0.1% v/v) milliQ
water. The eluted co-extracted nucleic acids were quantified on a Qubit 4 Fluorometer
using the Qubit dsDNA/RNA BR Assay Kit (ThermoFisher Scientific, Waltham, MA, USA)
according to the manufacturer’s instructions. The purity was assessed by measuring the
A260 nm/A280 nm and A260 nm/A230 nm ratios using a NanoDrop 1000 spectropho-
tometer (ThermoFisher Scientific, MA, USA). Two (2 µg) of the nucleic acid extracts were
digested using the RNase I kit (Invitrogen, Waltham, CA, USA) to degrade the RNA. The
pure DNA was then quantified with the Qubit BR assay kit and stored at −20 ◦C until
further processing.

2.3. Metagenomic Library Preparation and Sequencing

DNA concentrations of all samples were adjusted to a final amount of 10 ng of DNA
for metagenomic library preparation with the NEBNext Ultra II FS DNA Library Prep Kit
and NEBNext Multiplex Oligos for Illumina (New England Biolabs, Ipswich, MA, USA).
Library preparation was performed according to the manufacturer’s instructions with a few
modifications. In brief, the DNA was fragmented using enzyme digestion (New England
Biolabs, MA, USA) for 15 min and the Illumina adapters were diluted 25-fold to 0.6 µM
to avoid the formation of primer dimers. Size selection was conducted with Agencourt
AMPure XP beads (Beckman Coulter, Brea, CA, USA), to select fragments of 250–400 bp
length, purify libraries and eliminate residual primer-dimers (1:0.6 DNA to bead ratio). The
indexing PCR was performed with 10 cycles. Library size and concentration were evaluated
using a 5200 Fragment analyzer system (Agilent, Santa Clara, CA, USA) and a DNF-473
Standard Sensitivity NGS Fragment Analysis Kit (Agilent, CA, USA). Libraries were pooled
equimolarly (final concentration of 4 nM), and 17 pM of the mixture was spiked with 1%
PhiX and sequenced on NextSeq Illumina platform (Illumina Inc., San Diego, CA, USA)
using the paired-end mode 2 × 150 bp Kit v 2.5 (Illumina Inc., CA, USA).

2.4. Bioinformatic Analysis Workflow
2.4.1. Quality Filtering and Bacterial Taxonomic Assignment

The bioinformatic analysis workflow is shown in Figure 1. The number of reads
from demultiplexed raw data was counted with FastQC version v0.11 (https://www.
bioinformatics.babraham.ac.uk/projects/fastqc/ accessed on 7 June 2022). For raw data
quality control, the guidelines from [16] were followed. Adapter sequences were removed
with AdapterRemoval v2.1.7, accessed on 8 June 2022 [17]; low-quality bases with Phred

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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quality scores lower than 30 were trimmed and reads shorter than 50 bp were discarded at
the same step. PhiX contamination was removed with DeconSeq v0.4.3, accessed on 8 June
2022 [18]. Reads identified as derived from the murine genome were removed from the
datasets by mapping against NCBI C57BL/6J mouse database reference genome (National
Centre for Biotechnology Information) using Kneaddata v0.5.1 (http://huttenhower.sph.
harvard.edu/kneaddata accessed on 14 July 2022). Next, bacterial taxonomy was assigned
by profiling the remaining non-mouse-reads with MetaPhlan v3.0 on galaxy web (https:
//usegalaxy.eu/ accessed on 6 June 2023), which is based on unique clade-specific marker
genes for bacteria [19,20]. This step was performed to analyze bacterial diversity in the
respective samples of SPF, Oligo-MM12 and ASF.
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Figure 1. Bioinformatic workflow used for prophage and bacteriophage characterization. Raw
reads from the metagenome dataset were processed by filtering the reads based on read quality and
length. The reads were de novo assembled to produce contigs that were subjected to ORF predictions,
transfer RNA (tRNA)insertion site identification and a clustering algorithm of phage-like genes to
detect prophage. The bacteriophage mechanism of identification is based on protein annotation
signatures using neural networks from non-reference-based similarity searches with Hidden Markov
Models (HMMs), as well as a unique “v-score” metric for diverse and novel virus mining. Taxonomic
composition, functional roles and putative bacterial hosts were also evaluated.

The reads obtained for tissue and content for each gut compartment and murine model
were further concatenated, due to the low number of non–mouse reads in the tissue samples.
In the next step, paired end reads were assembled for each sample with MEGAHIT v1.1.3,
with a contig minimum length set to 200 bp [21]. After assembling, non-assembled reads
were mapped back to the contigs of each colon and ileum library to calculate coverage.

2.4.2. Bacteriophage Identification and Taxonomic Classification

Bacteriophage-designated contigs were identified and annotated using VIBRANT
v1.2.1 (Virus Identification by IteRative ANnoTation) [22]. The minimum contig length was
set to 1000 bp and a minimum of four open reading frames was mandatory. VIBRANT

http://huttenhower.sph.harvard.edu/kneaddata
http://huttenhower.sph.harvard.edu/kneaddata
https://usegalaxy.eu/
https://usegalaxy.eu/
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uses the Hidden Markov Model (HMM) to screen against the protein families (Pfam),
Kyoto Encyclopedia of Genes and Genomes (KEGG), and Virus Orthologous Groups
(VOG) databases [22] to identify bacteriophages. VIBRANT also uses CheckV and virus
orthologous groups (VOGs) metrics of nucleotide replication and viral hallmark protein
calculation to estimate bacteriophage contig quality. All identified bacteriophage contigs
from the samples were clustered and dereplicated using CD-HIT-EST v4.8.1, accessed
on 19 April 2023 [23] at 99% identity to remove duplicated sequences and to allow for
the identification of bacteriophage-specific contigs. Using a homology-based matching
approach, predicted bacteriophage contigs were submitted to Kaiju v1.8.2 [24] using the
NCBI RefSeq viral-only database (version 2023.05.26) in greedy mode, with an e-value
threshold of ≤10−3 for taxonomic classification. Relative abundance was calculated using
contig coverage. Putative bacterial hosts of the identified bacteriophage contigs were
predicted with prokaryotic virus–host predictor (PHP) (http://www.computationalbiology.
cn/phageHostPredictor/home.html, accessed on 21 April 2023) [25] based on sequence
homology and the JGI IMG Viral Database of cultivated and uncultivated viruses’ version
3.0 (https://img.jgi.doe.gov/cgi-bin/vr/main.cgi) (>2,000,000 viral genome fragments,
accessed on 11 July 2021) using default settings (identity ≥ 30%, E-value ≤ 10−5). The
taxonomic classification was conducted at the family/class level according to the recently
updated viral nomenclature [26].

To identify viral auxiliary metabolic genes (AMGs), VIBRANT v1.2.1 was run on
CD-HIT-EST bacteriophage contigs. Outputs were binned into metabolic pathways by
searching the Pfam accession number of each gene in the KEGG database [22]. The po-
tential interaction pattern between the predicated bacterial hosts and bacteriophages was
calculated with relative abundance values using random network by Cytoscape.

2.4.3. Prediction and Taxonomic Classification of Prophages

To predict the taxonomy of the prophages in our murine models, we only used contigs
>2000 bp in length according to [27]. Prophages were recovered using the Phage Search
Tool Enhanced Release (PHASTER v2.0) web server (https://phaster.ca/, accessed 18
April 2023). Contigs were assigned using a custom database that combines protein and
phage sequences from the National Centre for Biotechnology Information (NCBI) and
prophage sequences using BLAST [28,29]. The identified prophages were classified as
complete (100%) and incomplete (<90%) according to the DBSCAN clustering algorithm
used by PHASTER [30]. The completeness score calculation was based on the proportion
of phage genes on the prophage designated contig, which is associated with capsid, head,
tail, coat, portal, and phage regulation genes, and integrase, transposase, terminase, and
functional genes such as lysin and bacteriocin. Using a homology-based matching approach,
predicted prophage contigs were submitted to Kaiju using the NCBI RefSeq viral-only
database (version 2023.05.26) [24] in greedy mode, with an e-value threshold of ≤10−3 [31]
for taxonomic classification. Relative abundance was calculated using prophage-designated
contig coverage. In detail, coverage was calculated by mapping the metagenomic quality-
controlled reads to prophage-assigned contigs (after filtering bacterial genes and reads
associated with the murine genome). The number of mapped reads was divided by the total
number of contigs length to obtain the fraction of reads that represent prophages (prophage
designated mapped reads/total contig length). Putative bacterial hosts were predicted by
submitting the outputted prophage-designated contigs to prokaryotic virus–host predictor
(PHP) (http://www.computationalbiology.cn/phageHostPredictor/home.html, accessed
on 1 June 2023), which is a tool based on a gaussian model that relies on differences of k-mer
frequencies and homology between virus and bacteria genomic sequences. The output is a
score which is the logarithm of the probability of being a viral host. The highest-consensus
host is then identified with the NCBI taxonomy ID of profiled phage [25]. In addition, we
assessed the original hosts of the prophages in Oligo-MM12 and ASF. Therefore, we blasted
individual contigs against available genome sequences for bacterial strains of Oligo-MM12
and ASF using BlastN [32]. The similarity percentage was set at >95% [33].

http://www.computationalbiology.cn/phageHostPredictor/home.html
http://www.computationalbiology.cn/phageHostPredictor/home.html
https://img.jgi.doe.gov/cgi-bin/vr/main.cgi
https://phaster.ca/
http://www.computationalbiology.cn/phageHostPredictor/home.html
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The host–bacteria ratio of prophage-designated contigs in the murine models were
predicted by aligning identified prophage contigs from the murine model gut compartments
to the gnotobiotic microbiota individual genome prophages. The percentage of similarity
was calculated [34]. The potential interaction pattern between the predicted bacterial hosts
and prophages was calculated with the relative abundance values using random network
by Cytoscape.

2.5. Statistical Analysis

Statistical analyses were performed in R [35]. The Shannon diversity index [34]
was calculated to estimate alpha diversity using the Vegan v2.6-4 [36] package. The
Shannon diversity of the bacterial community at the family-level taxonomic classification
was calculated on the species level by using the command line library (vegan), viralshannon
<- diversity (prophages, index = “shannon”). For prophages and bacteriophages, the family-
level taxonomic classification was used to ensure uniform comparison of the gnotobiotic
mice with SPF. Visualization was performed using the statistical software R (https://www.
r-project.org/, accessed from 2 January 2022) packages ggplot2, reshape2, and plyr for the
stacked bar plots and GraphPad Prism v5.0 for scatter plots (Graph Pad Software, La Jolla,
CA, USA). The tables were designed with Microsoft Office. Host–bacteria and phage
interaction/relatedness were calculated and visualized with Cytoscape v3.10.0 (https://
cytoscape.org/download.html, accessed on 8 August 2023) using a random layout network
of node algorithm showing a predictive interaction between the bacteriophage/prophages
and the predicted host bacteria [37].

3. Results
3.1. Sequencing Statistics

The total number of raw reads obtained from the 12 metagenomic libraries was
304,255,379 million reads and ranged between 10,159,586 and 33,212,147 million paired
end reads per sample, respectively (Table S2). As sequencing was performed without
murine host depletion, the percentage of murine genome-contaminating reads was high
(>70% in most samples; Table S2), and they were excluded during sample processing.
Merging of the gut compartment lumen and tissue reads after quality control resulted in
83,212,848 million paired-end reads in total.

The metagenomic assembly resulted in 413,974 contigs (size ranging from 200 bp
to 420,970 bp) ranging between 5457 and 304,899 contigs per sample (Table S3). Contig
length and number varied as expected based on sequencing depth and bacterial diversity.
However, all murine models followed a similar contig size distribution (Figure S1) and
reached saturation when plotting the contig index (number of contigs from longest to the
shortest) against cumulative contigs length that showed the size of an assembly and the
number of contigs in it (Figure S2).

3.2. Bacterial Diversity in the Two Gut Compartments of the Three Murine Models

While the bacterial community composition of Oligo-MM12 and ASF is well defined,
the microbiota of the SPF model used in our study was unknown and most likely triggered
by several environmental factors like animal housing, diet and age of the animals and
gender. Phylogenetic profiling was carried out on non-mouse-reads before assembly
to demonstrate that the inoculated bacterial consortia were still present in the ASF and
Oligo-MM12 gnotobiotic mice and to assess the diversity of bacteria in the used SPF mice.
On the family level, as expected bacterial diversity was higher in SPF compared to ASF
and Oligo-MM12.

In ASF, three species were used as inoculum, namely Lactobacillus murinus, Parabacteri-
odetes goldsteinii and Clostridium sp. These were all detected in the respective gut samples
but differed in their abundance in response to the investigated gut compartment. Lactobacil-
lus murinus was dominant in the ileum while Parabacteroides goldstenii prevailed in higher
relative abundance in the colon (Table S4).

https://www.r-project.org/
https://www.r-project.org/
https://cytoscape.org/download.html
https://cytoscape.org/download.html
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Ten of the twelve inoculated species were found in the Oligo-MM12 model, where their
distribution varied between the gut compartments. The most abundant species in the colon
were Akkermansia muciniphila, followed by Muribaculum intestinale and Turicimonas muris. In
contrast, Bacteriodes caecimuris dominated the ileum. Acutalibacter muris and Bifidobacterium
longum subsp. animalis YL2 were undetected in the ileum and colon, although they were
part of the inoculum used (Table S4). No overlap between ASF and Oligo-MM-12 based
murine models were found.

In SPF, two hundred and fifty-eight bacterial species belonging to thirty-one bacterial
families, respectively were profiled, and their distribution also varied between gut com-
partments (Table S5). Muribaculaceae was the most abundant, with higher dominance in the
ileum compared to the colon, followed by Bacteriodetes in the ileum and Firmicutes in the
colon (Table S6). Bacterial species that overlapped between SPF and Oligo-MM12 included
Turicimonas muris, Clostridium clostridioforme Blautia coccoide, and Bacteriodes caecimuris, while
the species that overlapped between SPF and ASF was Parabacteroides goldsteinii.

3.3. Bacteriophages and Predicted Bacterial Hosts

A total of 986 bacteriophage contigs were assembled from metagenomic reads ob-
tained from the three murine models. In ASF, 0.93% of the total reads were assigned to
bacteriophages; this number was slightly increased for Oligo-MM12 and SPF, with 2.84%,
and 4.24% of the reads, respectively (Table S7). For all models, more contigs linked to
bacteriophages were detected in the colon compared to the ileum (Figure S3). Based on
genome completeness, 0.03% of the contigs were rated as high quality, 1.72% as medium
quality, and 97.9% as low quality (Figure S3).

In our study, we observed that the diversity of bacteriophages increased with in-
creasing bacterial diversity (Figure 2a). Diversity was generally higher in colon samples
especially in SPF. The bacteriophage contigs were taxonomically assigned to nine families
and one class (Figure 2b), for some contigs, viral hallmark genes were detected, but lineages
could not be further classified. Bacteriophages belonging to class Caudoviricetes dominated
all samples with different relative abundances. In ASF, class Caudoviricetes showed a higher
relative abundance in the ileum samples compared to the colon; unclassified were more
abundant. Unknown families were only detected in colon samples with a high frequency.
In both Oligo-MM12 gut compartments, class Caudoviricetes dominated more in the colon
compared to the ileum. Contigs that could not be assigned to the family level were present
in high abundance in the colon and ileum samples. In SPF, the classes Caudoviricetes and
Steigviridae were equally abundant in the ileum. In addition, some contigs which could not
be further assigned were found. The highest diversity was found in the colon of SPF mice.
Here, Casjensviridae, Herelleviridae, Autographiviridae, Kyanoviridae, Straboviridae, Suoliviridae,
Phycodnaviridae and Microviridae were detected, but in relatively lower abundances com-
pared to class Caudoviricetes. Also, in these samples from SPF mice, some contigs could not
be further assigned to the family and class level.

Overall, the diversity of potential host bacteria for the identified bacteriophages was
higher in the colon than in the ileum, and bacteriophages from SPF displayed broader host
range characteristics compared to the gnotobiotic models mainly in the colon (Figure 2c,d).
Figure 2d illustrates the putative host–bacteriophage interaction pattern in the model’s gut
compartments for easier visualization.

Interestingly, the predicted hosts for the class Caudoviricetes differed in the three murine
models under investigation, attributing the differences in the bacteriophages on the genus,
species, or strain level. In ASF, Lactobacillaceae were identified as potential hosts for the class
Caudoviricetes in the ileum. In contrast, in colon samples of ASF mice, the identified hosts for
the class Caudoviricetes were mostly Clostridiaceae. In Oligo-MM12, the class Caudoviricetes
was assigned to Clostridiaceae and Lachnospiraceae in the colon; in the ileum, potential hosts
for the class Caudoviricetes were Bacteroidaceae and Akkermansiaceae. In SPF, bacteriophage
families were associated with Lachnospiraceae and Ruminococcaceae, mainly in the colon,



Microorganisms 2024, 12, 255 8 of 17

whereas in the ileum Muribaculaceae was identified as the potential host. Autographiviridae
phages in the SPF colon were assigned mostly to Ruminococcaceae.
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Figure 2. Taxonomy of bacteriophages and putative bacterial host families in ileum and colon
samples from the gnotobiotic murine models inoculated with Oligo-MM12 and ASF as well as from
SPF mice, (a) Shannon alpha diversity of bacteriophages and bacteria assessed at the family level.
(b) Community composition of bacteriophages. (c) Relative abundance of the predicted host-bacterial
families, (d) Networks between bacteria and bacteriophages depicting their interactions, displaying
bacterial phylogeny, bacteriophage families and murine models. The link line (edges) denotes
oligonucleotide homology similarity frequency used to predict the respective bacterial hosts.
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3.4. Taxonomy of Prophages and Their Predicted Bacteria Host

From the three murine models, a total of 43 prophage-designated contigs were identi-
fied, ranging from 2.8 to 53 kb in size (Table S8) with varying completeness (Figure S4). In
the ASF, 0.80% of all reads were assigned to prophages, and comparable numbers were
found for Oligo-MM12 and SPF (0.45% and 0.63%, respectively; Table S7). The highest
number of prophage-designated contigs of 29 were detected in the SPF model, particularly
in the colon region, while 10 were found in ASF and 4 in Oligo-MM12.

From the known sequence of Oligo-MM12 and ASF microbiota, a total of 50 and
19 prophage contigs with varying completeness (Table S9) were identified, respectively.

As for bacteriophages, prophage diversity increased with the increasing complexity of
the gut microbiome, except for the Oligo-MM12 colon (Figure 3a).
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Figure 3. Taxonomy of prophages and putative bacterial host families in ileum and colon samples
from the gnotobiotic murine models inoculated with Oligo-MM12 and ASF as well as from SPF
mice. (a) Shannon alpha diversity of prophages and predicted bacterial hosts at the family level;
(b) taxonomic composition of prophages; and (c) bacteria–prophage interaction network analysis
displaying the phylogeny of the bacterial host phage family linked to the investigated murine models
and the two gut compartments. The link line (edges) denotes the oligonucleotide homology similarity
frequency used to predict the host bacteria. (d) Relative abundance of the predicted host-bacteria of
prophage contigs.

Prophage contigs were taxonomically classified into 3 families and 1 class. Similar to
bacteriophages, some contigs were identified as of prophage origin but could not be further
assigned to the family level. Again, the class Caudoviricetes was the predominating class of
prophages in all three murine models (Figure 3b).

In ASF, the class Caudoviricetes showed a higher relative abundance in the colon sam-
ples compared to the ileum. The unknown family’s relative abundance increased in colon
samples. In Oligo-MM12, the class Caudoviricetes was specific to both gut compartments. In
SPF, the class Caudoviricetes was more abundant in the colon than in the ileum samples. In
addition, Steigviridae was specific to the ileum, whereas Herelleviridae and Autographiviridae
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were specific to the colon samples. Some contigs which could not be further assigned to the
family level were present in both the colon and ileum.

In ASF, predicted bacterial hosts for class Caudoviricetes were again Lactobacillaceae
classified Lactobacillus murinus in the ileum, and Clostridiaceae classified Clostridium sp. in the
colon. In Oligo-MM12, bacterial hosts for class Caudoviricetes were Lachnospiraceae classified
Clostridium innocuum and Clostridium clostridioforme in the colon, and Akkermansiaceae
classified Akkermansia muciniphila in the ileum. Like for bacteriophages, host bacteria
diversity was higher in SPF, especially in the colon. The class Caudoviricetes interacted
mainly with Lachnospiraceae and Ruminococcaceae in the colon, whereas Porphyromonadaceae
were identified as bacterial hosts for Steigviridae in the ileum (Figure 3c,d).

To identify potential host bacteria for the identified phages, bacterial genomes of
OMM12 and ASF were blasted against the generated contigs for the identified phages.
Most of the generated contigs showed similarity levels with the genome of host bacteria
from the two models used of between 80 and 92.20%, which is too varied for a robust
predication of potential host bacteria; two contigs could not at all been aligned, indicating
that during cultivation of the bacterial in the different labs for inoculation, new phage
infections took place. Only four prophages that were detected in the Oligo-MM12 colon
and ASF ileum shared 100% similarity with the respective inoculated bacteria, namely
Clostridium innocuum in Oligo-MM12 and Lactobacillus murinus in ASF (Table S10).

3.5. Auxiliary Metabolic Genes (AMGs) of Bacteriophages

The identified auxiliary metabolic genes encoded on the bacteriophage-designated
contigs were grouped into ten KEGG metabolic categories (Figure 4). The DNA cytosine
methyltransferase gene (dcm) involved in cysteine and methionine metabolism was found
in all models except ASF, with the highest count in SPF colon (Figure S5). The dcm gene
was prevalent on Caudoviricetes in SPF, and most likely derived from infections with
Ruminococcaceae and Lachnospiraceae, which correlated with the putative bacterial hosts
predicted in both SPF gut compartments (Figure 2c). In Oligo-MM12, the dcm gene found
in both the colon and ileum was linked to Bacteroidaceae, one of the probable bacterial hosts.
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The genes nadM and NAMPT, which encode for nicotinamide nucleotide adenylyl
transferase and nicotinamide phosphoribosyl transferase, respectively, are known to drive
the metabolism of cofactors and vitamins through folate biosynthesis, and nicotinate and
nicotinamide metabolism were found on contigs assigned to Caudoviricetes in the SPF colon
and ileum. These genes were likely acquired through their interaction with Ruminococcaceae
in the SPF colon; however, the uptake route in the ileum is not clear.

The only AMG found in ASF was iolU, (scyllo-inositol 2-dehydrogenase), which is
involved in carbohydrate metabolism and specific to Caudoviricetes (Figures 4 and S5). The
AMG cysH (phosphoadenosine phosphosulfate reductase) involved in sulfur metabolism
was specific to SPF and connected to Caudoviricetes in the colon and ileum, acquired through
potential interaction from Ruminococcaceae in the colon and Muribaculaceae in the ileum.
Overall, a higher count of AMGs was found in SPF, particularly in the colon over in the
gnotobiotic models, and the abundance of AMGs was linked to the increasing complexity
of the gut microbiome.

4. Discussion

Bacteriophages are the most prevalent part of the virome in almost all ecosystems,
including mammal guts [38,39]. Their interactions with the microbiota shape the composi-
tion, abundance and functioning of the microbial community. For example, as a result of
antagonistic interactions and by lowering the abundance of specific bacteria through lysis,
strain-specific phages can reduce Oligo-MM12 microbiota’s capacity to resist Salmonella
typhimurium infection [40]. There are few studies involving humans, but in soil and aquatic
environments, mutual phage–host interactions can enhance host bacterial metabolic pro-
cesses and thereby improve environmental fitness, which stimulate phage replication,
particularly in stressful conditions [41,42]. However, the association between bacterial and
viral (prophage and bacteriophage) communities in the gut is not fully understood. Using
gnotobiotic murine models Oligo-MM12 and ASF, we could prove that increased bacterial
diversity is linked to increased bacteriophage/prophage diversity and higher auxiliary
gene transfer between bacteriophages and their hosts.

4.1. Gnotobiotic Oligo-MM12 and ASF Microbiota Consortia Were Detected with Differing
Relative Abundances in the Gut

Oligo-MM12 and ASF bacterial consortia were detected in the gut after 6 weeks
of rearing, except for Acutalibacter muris and Bifidobacterium longum subsp. animalis in
Oligo-MM12. These results were consistent with a previous study where the stable and
long-term colonization of inoculated consortia in Oligo-MM12 and ASF were reported [5].
The undetectability of Acutalibacter muris could be because it has been considered as a
late colonizer of the gut and consequently may be present only in low numbers in our
sample, derived from relatively young animals 6 weeks of age. In contrast, the abundance
of Bifidobacterium longum subsp. animalis YL2 was reported to rapidly decline in Oligo-
MM12 one week after inoculation, as this bacterium was described as a very early colonizer
and mainly found in the neonatal gut, where it contributes to the reduction in anaerobic
organisms [43,44]. In addition, we could prove that bacterial relative abundance varied in
the colon and ileum of all murine models [45].

4.2. Bacterial Diversity Triggers Bacteriophage and Prophage Diversity

The application of state-of-the-art bioinformatics tools led to the identification of
unique prophage- and bacteriophage-designated contigs in the gut of the gnotobiotic
models Oligo-MM12 and ASF, and wildtype SPF mice. Prophages and bacteriophages
also differed significantly across models and gut compartments, indicating a high degree
of specificity for compartment and model. This is in agreement with studies that have
shown that the virome community is specialized and dependent on many factors, where
the genetics of the host as well as the microbiome are only one of many bacterial community
similarities [12,46].
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The majority of contigs assigned to the prophage and bacteriophage belonged to the
viral class of head tailed Caudoviricetes (dsDNA), dominating in all models. This is in
agreement with other studies from murine and human guts, as well as other ecosystems.
dsDNA Caudoviricetes are ubiquitous and have a wide range of bacterial hosts [45,47–50].
Intestinal Caudoviricetes-classified bacteriophages can broaden their adaptation and host
ranges through encoded diversity-generating retro-elements [51]. This supports our finding
on bacteriophage’s broader bacterial hosts found in all models. Also, a study showed that
specific Caudoviricetes-classified phages can be a biocontrol agent against Salmonella enterica
serovar enteritidis [52]. The high proportion of unclassified viruses in samples from the
SPF mice suggests a large knowledge gap in the taxonomy of intestinal viruses, thereby
highlighting the need for more viral metagenomic studies.

The observed bacteriophage diversity increased with increasing gut microbiota bacte-
rial diversity (SPF > Oligo-MM12 > ASF), suggesting that microbiota richness is a strong
determinant of bacteriophage diversity. This trend has also been described for monozygotic
twins and healthy adults [12,53]. Given the dynamics of microbiota–phage interactions,
the precise mechanism differs in all ecosystems because these interactions are driven by
variable factors such as environmental conditions, microbiome density, host genetics and
nutrition [54–56]. Anyhow, when bacterial diversity is low, fewer species of bacteria are
accessible for phages to infect; thus, expanding microbiota richness is beneficial for bacte-
riophages because it provides a broader host pool for infection and replication to synthesize
more virions. This observation is consistent with findings from other environments. In
a study in soils, with increasing soil depth bacterial richness decreased, affecting phage
abundance and diversity [57]. In another study using soils, increases in the soil virome were
triggered by the bacterial abundance and diversity but not by growth and activity [57,58].
Furthermore, our findings support the ‘piggyback the winner’ concept. This concept states
that lysogenic association between putative bacterial hosts and temperate phages predom-
inate in a dense, rich and healthy gut environment. Low bacterial diversity causes low
phage diversity, favoring a lysogenic lifestyle [59,60]. In most lysogenic associations, the
phage integrates and multiplies vertically with the host, and gets incorporated into the next
generation [60–62].

Similarly, prophage diversity correlated with microbiota richness in all models. Prophages
are temperate phages that integrate into their hosts in a stable manner. Since lysogeny is
the primary mode of phage contact with commensal bacteria in the gut [61], their increas-
ing diversity with microbiota complexity suggests either ongoing lysogenic infection in
the murine models or could be related to an infection with prophages already before the
bacteria has reached the gut. Also, most of the profiled prophages are temperate. The
number of lysin genes, which code for enzymes that catalyze the degradation of the cell
wall of the host bacterium, facilitating the release of phage particles, was significantly
reduced. In addition, the recovery of mostly fragmented prophages could suggest a loss of
sequence, which may affect genes necessary for lytic infection [33,62]. Prophages showed
prominent interaction with the Lachnospiraceae and Ruminococcaceae families in our study.
The long-term coexistence of prophages and microbiota can induce genomic variations
and strain heterogeneity in murine models over time, which could compromise the repro-
ducibility of murine model investigations. For example, the differences between Salmonella
enterica serovars typhi and typhimurium were attributed to genetic variations induced by
prophages [63]. The predicted putative bacterial hosts of the identified prophages and
bacteriophages reflect their bacterial microbiota community in the gut of Oligo-MM12 and
ASF, indicating the expected close interaction of prophages with their bacterial host. Even
though the bacterial hosts of the prophages were similar to the bacteria microbiota, the
similarity alignment revealed disparity between Oligo-MM12 and ASF genome and pro-
filed murine prophages. This could be attributed to low sequencing coverage and probable
genetic variability. Genetic variability causes the degradation, shorten, fragmentation and
alteration of integrated viruses. This is induced by mutations, genetic rearrangements,
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massive DNA deletions and environmental selection pressure [33,64]. A study reported
the gradual loss of lambda prophage sequences in E. coli after environmental selection [64].

4.3. AMGs Are Associated with Microbiota Complexity

Phages can influence microbiota fitness and adaptation to new environmental condi-
tions through the horizontal gene transfer of auxiliary metabolic genes (AMGs) [65]. In our
study, we could also find AMG, which were encoded on contigs identified as being part of
the phage. We found that the diversity of AMGs associated with bacteriophages was again
linked to the microbial diversity of the gut microbiota (SPF > Oligo-MM12 > ASF). Since
higher microbiota diversity provides a broader pool of potential hosts for phages as well as
genes which can be horizontally transferred, this result is in line with our expectations.

The identified AMGs were encoded by the dominant bacteriophage-classified Cau-
doviricetes, correlating with other studies [65,66]. The most common AMG present in
samples derived from Oligo-MM12 and SPF mice was dcm, which is a gene encoding for an
enzyme catalyzing cysteine and methionine degradation where it methylates the internal
C in sequence 5′CCWGG3. The dcm gene has been identified to be highly conserved in
environment such as marine sediments [22,67]. The increased abundance of dcm has been
reported in human GIT, where it mediates the degradation of organosulfur compounds
such as methionine into sulfide during infection or cell lysis [68]. This process enhances the
growth of specific organisms, increases nutrient availability for hosts and provides fitness
benefits to the phages. The synthesized sulfide can also be used for amnio acid synthesis to
provide energy source [69]. The cysH gene encodes for an enzyme involved in assimilatory
sulfate reduction pathway that incorporates sulfides into cysteine [70], and its presence
in SPF suggests viral involvement in sulfur cycling, which has implications on the health
of the gastrointestinal tract. It may alter biogeochemical processes in other environments
like water and soil [60]. In addition, studies have shown that cysH may serve as a fitness
modulator during sulfur-limiting periods in Burkholderia-phage infection and help pig
gut viruses adapt to the complex gut environment and homeostasis [71–73]. Nutrient
availability, including other factors, influences the distribution of dcm and cysH in different
ecosystems [68]. The AMGs linked to amino acid metabolism in SPF and Oligo-MM12
are capable of mediating the synthesis of SCFAs from peptides, which serves as an energy
source to improve microbiome stability [74,75].

5. Conclusions

Our study gives basic insights into the gastrointestinal virome of important gnotobiotic
murine models, host-bacterial composition and associated AMGs. Our data indicate that a
higher diversity of bacteria microbiota triggers an increased diversity of bacteriophages and
prophages. Taking the importance of the virome as a stabilizing factor for the microbiome
into account (“killing the winner”) as well as the importance for horizontal gene transfer and
adaptation, it is obvious that reductions in the virome might be an important factor driving
losses of microbial biodiversity and the subsequent dysbiosis of the gut microbiome. In our
study, we analyzed microbial models with 3 and 12 bacterial strains only and compared
them to those of wild-type SPF mice, which is important for model description but may not
mimic shifts in the gut microbiome, e.g., as a result of diet or other environmental triggers.
Here, future research is needed, also implementing data from large-scale cohorts.
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B.A.; et al. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update. Nucleic Acids
Res. 2016, 44, W3–W10. [CrossRef]

21. Li, D.; Liu, C.M.; Luo, R.; Sadakane, K.; Lam, T.W. MEGAHIT: An ultra-fast single-node solution for large and complex
metagenomics assembly via succinct ide Bruijn/i graph. Bioinformatics 2015, 31, 1674–1676. [CrossRef]

22. Kieft, K.; Zhou, Z.; Anantharaman, K. VIBRANT: Automated recovery, annotation and curation of microbial viruses, and
evaluation of viral community function from genomic sequences. Microbiome 2020, 8, 90. [CrossRef]

23. Fu, L.; Niu, B.; Zhu, Z.; Wu, S.; Li, W. CD-HIT: Accelerated for clustering the next-generation sequencing data. Bioinformatics 2012,
28, 3150–3152. [CrossRef] [PubMed]

24. Menzel, P.; Ng, K.L.; Krogh, A. Fast and sensitive taxonomic classification for metagenomics with Kaiju. Nat. Commun. 2016, 71,
11257. [CrossRef] [PubMed]

25. Lu, C.; Zhang, Z.; Cai, Z.; Zhu, Z.; Qiu, Y.; Wu, A.; Jiang, T.; Zheng, H.; Peng, Y. Prokaryotic virus host predictor: A Gaussian
model for host prediction of prokaryotic viruses in metagenomics. BMC Biol. 2021, 19, 5. [CrossRef]

26. Turner, D.; Shkoporov, A.N.; Lood, C.; Millard, A.D.; Dutilh, B.E.; Alfenas-Zerbini, P.; van Zyl, L.J.; Aziz, R.K.; Oksanen, H.M.;
Poranen, M.M.; et al. Abolishment of morphology-based taxa and change to binomial species names: 2022 taxonomy update of
the ICTV bacterial viruses subcommittee. Arch. Virol. 2023, 168, 74. [CrossRef] [PubMed]

27. Johansen, J.; Plichta, D.R.; Nissen, J.N.; Jespersen, M.L.; Shah, S.A.; Deng, L.; Stokholm, J.; Bisgaard, H.; Nielsen, D.S.; Sørensen,
S.J.; et al. Genome binning of viral entities from bulk metagenomics data. Nat. Commun. 2022, 13, 2–5. [CrossRef] [PubMed]

28. Arndt, D.; Grant, J.R.; Marcu, A.; Sajed, T.; Pon, A.; Liang, Y.; Wishart, D.S. PHASTER: A better, faster version of the PHAST
phage search tool. Nucleic Acids Res. 2016, 44, 16–21. [CrossRef] [PubMed]

29. Camacho, C.; Coulouris, G.; Avagyan, V.; Ma, N.; Papadopoulos, J.; Bealer, K.; Madden, T.L. BLAST: Architecture and applications.
BMC Bioinform. 2009, 10, 421. [CrossRef] [PubMed]

30. Gan, R.; Zhou, F.X.; Si, Y.; Yang, H.; Chen, C.; Ren, C.; Wu, J.; Zhang, F. DBSCAN-SWA: An Integrated Tool for Rapid Prophage
Detection and Annotation. Front. Genet. 2022, 13, 885048. [CrossRef]

31. Chen, P.; Zhou, H.; Huang, Y.; Xie, Z.; Zhang, M.; Wei, Y.; Li, J.; Ma, Y.; Luo, M.; Ding, W.; et al. Revealing the full biosphere
structure and versatile metabolic functions in the deepest ocean sediment of the Challenger Deep. Genome Biol. 2021, 22, 207.
[CrossRef]

32. McGinnis, S.; Madden, T.L. BLAST: At the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Res. 2004,
32, 20–25. [CrossRef]

33. Khan, A.; Wahl, L.M. Quantifying the forces that maintain prophages in bacterial genomes. Theor. Popul. Biol. 2020, 133, 168–179.
[CrossRef]

34. Vazquez-Castellanos, J.F. Diversity Analysis in Viral metagenomes. The Human Virome. Methods Mol. Biol. 2018, 1838, 203–230.
35. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria,

2013; pp. 275–286.
36. Oksanen, J.; Blanchet, F.G.; Kindt, R.; Legendre, P.; Minchin, P.R.; O’hara, R.B.; Simpson, G.L.; Solymos, P.; Stevens, M.H.; Wagner,

H. Vegan: Community Ecology Package. R Package Version 2.5-2. 2018. Available online: https://CRAN.R-project.org/package=
vegan (accessed on 12 December 2023).

37. Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A
software Environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [CrossRef]

38. Clokie, M.R.J.; Millard, A.D.; Letarov, A.V.; Heaphy, S. Phages in nature. Bacteriophage 2011, 1, 131–145. [CrossRef]
39. Lecuit, M.; Eloit, M. The viruses of the gut microbiota. In The Microbiota in Gastrointestinal Pathophysiology; Academic Press:

Cambridge, MA, USA, 2017; pp. 179–183.
40. von Strempel, A.; Weiss, A.S.; Wittmann, J.; Salvado Silva, M.; Wortmann, E.; Clavel, T.; Debarbieux, L.; Kleigrewe, K.; Stecher, B.

Bacteriophages targeting protective commensals impair resistance against Salmonella typhimurium infection in gnotobiotic mice.
PLoS Pathog. 2023, 19, e1011600. [CrossRef]

41. Zimmerman, A.E.; Howard-Varona, C.; Needham, D.M.; John, S.G.; Worden, A.Z.; Sullivan, M.B.; Waldbauer, J.R.; Coleman,
M.L. Metabolic and biogeochemical consequences of viral infection in aquatic ecosystems. Nat. Rev. Microbiol. 2020, 18, 21–34.
[CrossRef] [PubMed]

42. Huang, D.; Yu, P.; Ye, M.; Schwarz, C.; Jiang, X.; Alvarez, P.J.J. Enhanced mutualistic symbiosis between soil phages and bacteria
with elevated chromium-induced environmental stress. Microbiome 2021, 9, 150. [CrossRef] [PubMed]

43. Friedman, E.S.; Bittinger, K.; Esipova, T.V.; Hou, L.; Chau, L.; Jiang, J.; Mesaros, C.; Lund, P.J.; Liang, X.; FitzGerald, G.A.; et al.
Microbes vs. chemistry in the origin of the anaerobic gut lumen. Proc. Natl. Acad. Sci. USA 2018, 115, 4170–4175. [CrossRef]
[PubMed]

https://doi.org/10.1371/journal.pone.0017288
https://doi.org/10.7554/eLife.65088
https://doi.org/10.1093/nar/gkw343
https://doi.org/10.1093/bioinformatics/btv033
https://doi.org/10.1186/s40168-020-00867-0
https://doi.org/10.1093/bioinformatics/bts565
https://www.ncbi.nlm.nih.gov/pubmed/23060610
https://doi.org/10.1038/ncomms11257
https://www.ncbi.nlm.nih.gov/pubmed/27071849
https://doi.org/10.1186/s12915-020-00938-6
https://doi.org/10.1007/s00705-022-05694-2
https://www.ncbi.nlm.nih.gov/pubmed/36683075
https://doi.org/10.1038/s41467-022-28581-5
https://www.ncbi.nlm.nih.gov/pubmed/35181661
https://doi.org/10.1093/nar/gkw387
https://www.ncbi.nlm.nih.gov/pubmed/27141966
https://doi.org/10.1186/1471-2105-10-421
https://www.ncbi.nlm.nih.gov/pubmed/20003500
https://doi.org/10.3389/fgene.2022.885048
https://doi.org/10.1186/s13059-021-02408-w
https://doi.org/10.1093/nar/gkh435
https://doi.org/10.1016/j.tpb.2019.11.003
https://CRAN.R-project.org/package=vegan
https://CRAN.R-project.org/package=vegan
https://doi.org/10.1101/gr.1239303
https://doi.org/10.4161/bact.1.1.14942
https://doi.org/10.1371/journal.ppat.1011600
https://doi.org/10.1038/s41579-019-0270-x
https://www.ncbi.nlm.nih.gov/pubmed/31690825
https://doi.org/10.1186/s40168-021-01074-1
https://www.ncbi.nlm.nih.gov/pubmed/34183048
https://doi.org/10.1073/pnas.1718635115
https://www.ncbi.nlm.nih.gov/pubmed/29610310


Microorganisms 2024, 12, 255 16 of 17

44. Reese, A.T.; Cho, E.H.; Klitzman, B.; Nichols, S.P.; Wisniewski, N.A.; Villa, M.M.; Durand, H.K.; Jiang, S.; Midani, F.S.;
Nimmagadda, S.N.; et al. Antibiotic-induced changes in the microbiota disrupt redox dynamics in the gut. Nature 2018,
19, e35987. [CrossRef]

45. Blackmer-Raynolds, L.D.; Sampson, T.R. The gut-brain axis goes viral. Cell Host Microbe 2022, 30, 283–285. [CrossRef]
46. Reyes, A.; Haynes, M.; Hanson, N.; Angly, F.E.; Heath, A.C.; Rohwer, F.; Gordon, J.I. Viruses in the faecal microbiota of

monozygotic twins and their mothers. Nature 2010, 466, 334–338. [CrossRef]
47. Cao, M.M.; Liu, S.Y.; Bi, L.; Chen, S.J.; Wu, H.Y.; Ge, Y.; Han, B.; Zhang, L.; He, J.; Han, L. Distribution Characteristics of Soil

Viruses Under Different Precipitation Gradients on the Qinghai-Tibet Plateau. Front. Microbiol. 2022, 13, 848305. [CrossRef]
[PubMed]

48. Kuzyakov, Y.; Mason-Jones, K. Viruses in soil: Nano-scale undead drivers of microbial life, biogeochemical turnover and
ecosystem functions. Soil Biol. Biochem. 2018, 1, 305–317. [CrossRef]

49. Cao, Z.; Sugimura, N.; Burgermeister, E.; Ebert, M.P.; Zuo, T.; Lan, P. The gut virome: A new microbiome component in health
and disease. EBioMedicine 2022, 81, 104113. [CrossRef] [PubMed]

50. Nayfach, S.; Páez-Espino, D.; Call, L.; Low, S.J.; Sberro, H.; Ivanova, N.N.; Proal, A.D.; Fischbach, M.A.; Bhatt, A.S.; Hugenholtz,
P.; et al. Metagenomic compendium of 189,680 DNA viruses from the human gut microbiome. Nat. Microbiol. 2021, 6, 960–970.
[CrossRef] [PubMed]

51. Hedžet, S.; Rupnik, M.; Accetto, T. Novel Siphoviridae bacteriophages infecting Bacteroides uniformis contain diversity generating
retroelement. Microorganisms 2021, 9, 892. [CrossRef]

52. Chen, Y.; Sun, E.; Song, J.; Tong, Y.; Wu, B. Three Salmonella enterica serovar Enteritidis bacteriophages from the Siphoviridae family
are promising candidates for phage therapy. Can. J. Microbiol. 2018, 64, 865–875. [CrossRef]

53. Minot, S.; Bryson, A.; Chehoud, C.; Wu, G.D.; Lewis, J.D.; Bushman, F.D. Rapid evolution of the human gut virome. Proc. Natl.
Acad. Sci. USA 2013, 110, 12450–12455. [CrossRef]

54. Minot, S.; Sinha, R.; Chen, J.; Li, H.; Keilbaugh, S.A.; Wu, G.D.; Lewis, J.D.; Bushman, F.D. The human gut virome: Inter-individual
variation and dynamic response to diet. Genome Res. 2011, 21, 1616–1625. [CrossRef]

55. Mirzaei, M.K.; Maurice, C.F. Ménage à trois in the human gut: Interactions between host, bacteria and phages. Nat. Rev. Microbiol.
2017, 15, 397–408. [CrossRef]

56. Turnbaugh, P.J.; Bäckhed, F.; Fulton, L.; Gordon, J.I. Diet-Induced Obesity Is Linked to Marked but Reversible Alterations in the
Mouse Distal Gut Microbiome. Cell Host Microbe 2008, 3, 213–223. [CrossRef]

57. Liang, X.; Zhang, Y.; Wommack, K.E.; Wilhelm, S.W.; Debruyn, J.M.; Sherfy, A.C.; Zhuang, J.; Radosevich, M. Lysogenic
reproductive strategies of viral communities vary with soil depth and are correlated with bacterial diversity. Soil Biol. Biochem.
2020, 144, 107767. [CrossRef]

58. Srinivasiah, S.; Lovett, J.; Ghosh, D.; Roy, K.; Fuhrmann, J.J.; Radosevich, M.; Wommack, K.E. Dynamics of autochthonous
soil viral communities parallels dynamics of host communities under nutrient stimulation. FEMS Microbiol. Ecol. 2015, 91, 63.
[CrossRef]

59. Lin, D.M.; Lin, H.C. A theoretical model of temperate phages as mediators of gut microbiome dysbiosis. F1000Research 2019, 8,
997. [CrossRef]

60. Brown, T.L.; Charity, O.J.; Adriaenssens, E.M. Ecological and functional roles of bacteriophages in contrasting environments:
Marine, terrestrial and human gut. Curr. Opin. Microbiol. 2022, 70, 102229. [CrossRef] [PubMed]

61. Kim, M.S.; Bae, J.W. Lysogeny is prevalent and widely distributed in the murine gut microbiota. ISME J. 2018, 12, 1127–1141.
[CrossRef] [PubMed]

62. Wang, X.; Kim, Y.; Ma, Q.; Hong, S.H.; Pokusaeva, K.; Sturino, J.M.; Wood, T.K. Cryptic prophages help bacteria cope with
adverse environments. Nat. Commun. 2010, 1, 147–153. [CrossRef] [PubMed]

63. Canchaya, C.; Proux, C.; Fournous, G.; Bruttin, A.; Brüssow, H. Prophage Genomics. Microbiol. Mol. Biol. Rev. 2003, 67, 238–276.
[CrossRef] [PubMed]

64. Bailey, Z.M.; Igler, C.; Wendling, C.C. Prophage maintenance is determined by environment-dependent selective sweeps rather
than mutational availability. bioRxiv 2023. [CrossRef]

65. Gao, E.B.; Huang, Y.; Ning, D. Metabolic genes within cyanophage genomes: Implications for diversity and evolution. Genes 2016,
29, 80. [CrossRef] [PubMed]

66. Kieft, K.; Zhou, Z.; Anderson, R.E.; Buchan, A.; Campbell, B.J.; Hallam, S.J.; Hess, M.; Sullivan, M.B.; Walsh, D.A.; Roux, S.; et al.
Ecology of inorganic sulfur auxiliary metabolism in widespread bacteriophages. Nat. Commun. 2021, 12, 3503–3510. [CrossRef]
[PubMed]

67. Heyerhoff, B.; Engelen, B.; Bunse, C. Auxiliary Metabolic Gene Functions in Pelagic and Benthic Viruses of the Baltic Sea. Front.
Microbiol. 2022, 13, 863620. [CrossRef] [PubMed]

68. Kieft, K.; Breister, A.M.; Huss, P.; Linz, A.M.; Zanetakos, E.; Zhou, Z.; Rahlff, J.; Esser, S.P.; Probst, A.J.; Raman, S.; et al.
Virus-associated organosulfur metabolism in human and environmental systems. Cell Rep. 2021, 36, 109471. [CrossRef] [PubMed]

69. Tam, W.; Pell, L.G.; Bona, D.; Tsai, A.; Dai, X.X.; Edwards, A.M.; Hendrix, R.W.; Maxwell, K.L.; Davidson, A.L. Tail Tip Proteins
Related to Bacteriophage λ gpL Coordinate an Iron-Sulfur Cluster. J. Mol. Biol. 2013, 425, 2450–2462. [CrossRef]

70. Bick, J.; Dennis, J.J.; Zylstra, G.J.; Nowack, J.; Leustek, T. Identification of a New Class of 5-Adenylylsulfate (APS) Reductases
from Sulfate-Assimilating Bacteria. J. Bacteriol. 2000, 18, 135–142. [CrossRef]

https://doi.org/10.7554/eLife.35987
https://doi.org/10.1016/j.chom.2022.02.013
https://doi.org/10.1038/nature09199
https://doi.org/10.3389/fmicb.2022.848305
https://www.ncbi.nlm.nih.gov/pubmed/35464951
https://doi.org/10.1016/j.soilbio.2018.09.032
https://doi.org/10.1016/j.ebiom.2022.104113
https://www.ncbi.nlm.nih.gov/pubmed/35753153
https://doi.org/10.1038/s41564-021-00928-6
https://www.ncbi.nlm.nih.gov/pubmed/34168315
https://doi.org/10.3390/microorganisms9050892
https://doi.org/10.1139/cjm-2017-0740
https://doi.org/10.1073/pnas.1300833110
https://doi.org/10.1101/gr.122705.111
https://doi.org/10.1038/nrmicro.2017.30
https://doi.org/10.1016/j.chom.2008.02.015
https://doi.org/10.1016/j.soilbio.2020.107767
https://doi.org/10.1093/femsec/fiv063
https://doi.org/10.12688/f1000research.18480.1
https://doi.org/10.1016/j.mib.2022.102229
https://www.ncbi.nlm.nih.gov/pubmed/36347213
https://doi.org/10.1038/s41396-018-0061-9
https://www.ncbi.nlm.nih.gov/pubmed/29416123
https://doi.org/10.1038/ncomms1146
https://www.ncbi.nlm.nih.gov/pubmed/21266997
https://doi.org/10.1128/MMBR.67.2.238-276.2003
https://www.ncbi.nlm.nih.gov/pubmed/12794192
https://doi.org/10.1101/2023.03.21.533645
https://doi.org/10.3390/genes7100080
https://www.ncbi.nlm.nih.gov/pubmed/27690109
https://doi.org/10.1038/s41467-021-23698-5
https://www.ncbi.nlm.nih.gov/pubmed/34108477
https://doi.org/10.3389/fmicb.2022.863620
https://www.ncbi.nlm.nih.gov/pubmed/35875520
https://doi.org/10.1016/j.celrep.2021.109471
https://www.ncbi.nlm.nih.gov/pubmed/34348151
https://doi.org/10.1016/j.jmb.2013.03.032
https://doi.org/10.1128/JB.182.1.135-142.2000


Microorganisms 2024, 12, 255 17 of 17

71. Qin, J.; Ji, B.; Ma, Y.; Liu, X.; Wang, T.; Liu, G.; Li, B.; Wang, G.; Gao, P. Diversity and potential function of pig gut DNA viruses.
Heliyon 2023, 9, e14020. [CrossRef]

72. Zhao, J.; Jing, H.; Wang, Z.; Wang, L.; Jian, H.; Zhang, R.; Xiao, X.; Chen, F.; Jiao, N.; Zhang, Y. Novel Viral Communities
Potentially Assisting in Carbon, Nitrogen, and Sulfur Metabolism in the Upper Slope Sediments of Mariana Trench. mSystems
2022, 7, e0135821. [CrossRef]

73. Summer, E.J.; Gonzalez, C.F.; Bomer, M.; Carlile, T.; Embry, A.; Kucherka, A.M.; Lee, J.; Mebane, L.; Morrison, W.C.; Mark, L.;
et al. Divergence and mosaicism among virulent soil phages of the Burkholderia cepacia complex. J. Bacteriol. 2006, 188, 255–268.
[CrossRef]

74. İlhan, N. Gut Microbiota and Metabolism. Int. J. Med. Biochem. 2018, 1, 115–128. [CrossRef]
75. Davila, A.M.; Blachier, F.; Gotteland, M.; Andriamihaja, M.; Benetti, P.H.; Sanz, Y.; Tome, D. Intestinal luminal nitrogen metabolism:

Role of the gut microbiota and consequences for the host. Pharmacol. Res. 2013, 68, 95–107. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.heliyon.2023.e14020
https://doi.org/10.1128/msystems.01358-21
https://doi.org/10.1128/JB.188.1.255-268.2006
https://doi.org/10.14744/ijmb.2018.92400
https://doi.org/10.1016/j.phrs.2012.11.005
https://www.ncbi.nlm.nih.gov/pubmed/23183532

	Introduction 
	Materials and Methods 
	Mouse Models and Sampling 
	DNA Extraction 
	Metagenomic Library Preparation and Sequencing 
	Bioinformatic Analysis Workflow 
	Quality Filtering and Bacterial Taxonomic Assignment 
	Bacteriophage Identification and Taxonomic Classification 
	Prediction and Taxonomic Classification of Prophages 

	Statistical Analysis 

	Results 
	Sequencing Statistics 
	Bacterial Diversity in the Two Gut Compartments of the Three Murine Models 
	Bacteriophages and Predicted Bacterial Hosts 
	Taxonomy of Prophages and Their Predicted Bacteria Host 
	Auxiliary Metabolic Genes (AMGs) of Bacteriophages 

	Discussion 
	Gnotobiotic Oligo-MM12 and ASF Microbiota Consortia Were Detected with Differing Relative Abundances in the Gut 
	Bacterial Diversity Triggers Bacteriophage and Prophage Diversity 
	AMGs Are Associated with Microbiota Complexity 

	Conclusions 
	References

