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The pattern graph framework solves a wide range of missing data problems
with nonignorable mechanisms. However, it faces two challenges of assessabil-
ity and interpretability, particularly important in safety-critical problems such
as clinical diagnosis: (i) How can one assess the validity of the framework’s
a priori assumption and make necessary adjustments to accommodate known
information about the problem? (ii) How can one interpret the process of expo-
nential tilting used for sensitivity analysis in the pattern graph framework and
choose the tilt perturbations based on meaningful real-world quantities? In this
paper, we introduce Informed Sensitivity Analysis, an extension of the pattern
graph framework that enables us to incorporate substantive knowledge about
the missingness mechanism into the pattern graph framework. Our extension
allows us to examine the validity of assumptions underlying pattern graphs and
interpret sensitivity analysis results in terms of realistic problem characteris-
tics. We apply our method to a prevalent nonignorable missing data scenario in
clinical research. We validate and compare our method’s results of our method
with a number of widely-used missing data methods, including Unweighted
CCA, KNN Imputer, MICE, and MissForest. The validation is done using both
boot-strapped simulated experiments as well as real-world clinical observations
in the MIMIC-III public dataset.
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1 INTRODUCTION

Pattern graphs1 provide an effective framework for missing data problems with nonignorable mechanisms. The frame-
work graphically models information about how patterns of missingness evolve across the timeline of observations. It
makes the key a priori assumption that the “conditional odds of a [missingness] pattern against its parents depend only on
the observed entries”.1 Associated with the framework is a sensitivity analysis scheme based on the concept of exponential

Abbreviations: CCA, complete case analysis; DAG, directed acyclic graph; ISA, informed sensitivity analysis; KNN, k-nearest neighbors;
MIMIC, medical information mart for intensive care.
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tilting, where an exponential factor captures departures from the aforementioned assumption. Subsequently, sensitivity
analysis is done by varying the exponential factor in a chosen range.

The pattern graph framework assumption covers missingness problems with ignorable mechanisms as well as a wide
range of ones with nonignorable mechanisms. However, like many other counterparts, it faces two challenges of assess-
ability and interpretability: (i) How can one assess the validity of its key assumption in a given problem, and how should
the framework’s result be adjusted if some aspects of the problem are known to violate the assumption? (ii) How can one
interpret the process of exponential tilting in sensitivity analysis, that is, how does one unit of tilt correspond to mean-
ingful real-world quantities? Does the tilting perturbation comply with the realistic characteristics of the problem? These
challenges become particularly important in safety-critical areas such as clinical diagnosis, where an unnoticed departure
from assumptions can lead to catastrophic results, and sensitivity analyses need to be calibrated accordingly.

In this paper, we introduce an extension for the pattern graph framework which enables us to incorporate substantive
available knowledge about the missingness mechanism, encoded in m-graph causal models for missing data. Our exten-
sion, which we refer to as Informed Sensitivity Analysis (ISA), allows us to examine the validity of the pattern graph’s prior
assumption, and if necessary, correct for potential biases. It makes a connection between the sensitivity analysis parame-
ters and parameters of an assumed missingness model. As these parameters often have a clear interpretation in terms of
prior knowledge, we achieve interpretability of the results in addition to their assessability. As a prerequisite, we modify
the pattern graph assumption to a new form, which we name edge-wise identifiability assumption.

Our study is inspired by the clinical sequential observations problem, a prevalent and potentially nonignorable missing
data scenario in clinical research. Examples can be found in almost all diagnostic routines, where physicians collect
additional evidence gradually, to conclude a final diagnosis for patients. For its unique nature, this problem admits pattern
graph modeling, but at the same time, bears more information that can be leveraged to modify and adjust the framework’s
solution; this is the objective of ISA. In Sections 1.1 and 4, we further introduce and study the problem in detail.

The main contributions of this paper are as follows:

1. We develop a new and more effective identifiability assumption for pattern graphs. Accordingly, We propose a modifi-
cation to the pattern graph framework (our ISA method) and demonstrate how both assessability and interpretability
are achieved within the ISA extension.

2. By accounting for structured missingness mechanisms, we demonstrate that ISA enables pattern graphs to cover more
nonignorable scenarios, ones that otherwise would violate the framework’s assumption.

3. We demonstrate how a prevalent clinical scenario that cannot be solved correctly by conventional methods may be
formulated and solved by ISA method.

4. We compare and evaluate our method against widely-used missing data methods, using both simulated data as well
as real-world clinical data.

5. As a more theoretical contribution to missing data analysis’s body of work, ISA is the result of the first attempt (to the
best of our knowledge) to study the confluence of two missing data models, namely pattern graphs and m-graphs.

The rest of the paper is organized as follows. The motivating medical problem for this paper is introduced in
Section 1.1. Section 2 provides a brief overview of related works. We introduce our approach of Informed Sensitivity Anal-
ysis in Section 3. The results of simulation and empirical studies are presented in Section 4. Concluding remarks are made
in Section 5.

1.1 The clinical sequential observations process

Bickley and Szilagyi2 describe the process of clinical semiology as a sequential step-by-step process of observing signs
and symptoms. During this process, the physician first performs primary tests such as blood pressure or heart rate mea-
surements. Based on the findings, more specific secondary tests such as MRI scanning or genetic tests are performed.
These tests are secondary due to their potential harm, availability, or cost. The process, which we call clinical sequen-
tial observations*, is highly selective with regard to a pool of possible medical tests. It often continues for several steps
and results in sets of observations that differ in number and type of features. As we show later in the paper, the result-
ing missingness problem may be nonignorable. A formulation of this scenario, as well as the underlying assumptions,
are presented in Section 4.
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Clinical sequential observations is a unique process from a missing data analysis point of view; it often bears infor-
mation about both the mechanism and pattern of missingness that can be leveraged for inference. In particular, the
knowledge of the order of observations is attributed to medical diagnostics flowcharts and standards of clinical semiol-
ogy.4-6 Within these standards, the final missingness pattern gives us enough information to recreate (probabilistically)
the underlying observation process. Likewise, the process bears information regarding the reasons of acquisition of a
particular variable. The primary reason for acquisition is physicians’ clinical judgments, supported again by diagnostics
flowcharts: Based on the normal and abnormal values of primary tests, physicians decide to observe (or skip) later vari-
ables. In addition, unplanned reasons such as waiting queues, patients’ reluctance to perform specific tests, insurance
coverage policies, or missing hospital visits can induce more missingness in the data, all of which are often recorded in
electronic health records. All together, these are considered elements in the mechanism model of missingness.

As an example of a clinical sequential observation process, Figure 1 presents a subpart of the flowchart for thalassemia
carrier identification for differential diagnoses (DDx) of a set of related diagnoses such as 𝛽-thalassemia (and other tha-
lassemia variants), iron deficiency, and Hbs (associated with Sickle cell disease), based on the following lab tests: Mean
Corpuscular Volume (MCV), Mean Corpuscular Hemoglobin (MCH), Hb pattern, iron level (IL) and a number of genetic
tests.4 The first three tests are included in the Hematology category of the blood test. Based on the readings, clinicians
then become suspicious of iron deficiency as a root cause and, therefore, decide to order Zinc protoporphyrin (ZnPP)
or/and IL tests which are items of the Chemistry category of the blood test. Finally, low values of IL (or high values of
ZnPP) convince clinicians to diagnose iron deficiency. In general, hematology category tests are ordered more frequently,
while ZnPP and IL tests are more specific and decisive, and considered as the main diagnostic test for iron deficiency. As
a conclusion, one can consider the IL test as the secondary test, and the set of MCV/MCH/Hemoglobin A2 (HbA2) items
as the primary.

This paper discusses why the pattern graph framework suits the clinical sequential observation process, why it is
possible and necessary to adjust the framework, and how our proposed ISA method makes such adjustments. In Section 4,
this flowchart will serve as a case study for ISA.

F I G U R E 1 The iron deficiency branch in the thalassemia carrier DDx flowchart.4
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2 RELATED WORK

2.1 Missingness problem formulation

Consider a n × d dataset comprised of n i.i.d. realizations of a d-dimensional random vector L ∈ Rd whose i-th component
we denote by Li. Define the missingness indicator R ∈ {0, 1}d as a binary random vector such that Li is missing if Ri = 0.7
A realization of the missingness indicator, denoted by r, is called a missingness pattern, and the conditional probabilities
of the patterns p(r|l) ≡ p(R = r|L = l) describe the missingness mechanism. Given two patterns r and s, we write s > r if
the observed components under r are also observed under s, while there exists at least one component which is observed
under s but missing under r. We denote the difference between two patterns by s − r. Finally, we use the notation |r| =

∑
j rj

to denote the number of observed components in pattern r.

2.2 Missingness mechanism assumptions

Missing data problems with nonignorable missingness mechanisms cannot be solved using methods that effectively
ignore the mechanism. Therefore, further modeling assumptions are needed to proceed.7 Examples of ‘nonignorable mod-
els’ can be found in studies by Robins et al,8 Robins,9 Zhou et al10 and Mohan et al.11 In these works, assumptions are
formulated as conditional independence statements about the variables and missingness indicators. Mohan et al,11 Mohan
and Pearl12 and Shpitser et al13 suggest that one can consider these assumptions as a factorization of a target distribution
with respect to a causal directed acyclic graph (DAG). This way, identifiability in missing data problems is tackled as a
causal identification problem. The associated causal DAG for the missing data problem is called m-graph. Nabi et al14

further study the completeness of the identification methods for m-graphs.
In general, m-graphs model the mechanism of missing data and view the missingness patterns only as realizations of

the model; in other words, under m-graphs, a missingness pattern (eg, R = 1101) is viewed as a realized set of missingness
indicators, and is studied by factorization of (R1, … ,Ri) distribution with respect to the m-graph. Under this view, the
order of the acquisitions is ignored. In Section 3, we study in details, the m-graph assumptions and properties which are
related to the current paper.

2.3 Pattern graphs

Chen1 introduces the pattern graph framework for missing data problems. A pattern graph is a DAG whose nodes are
the missingness patterns seen in the data, and whose directed edges represent “possible hidden scenarios that gener-
ate a response pattern”.1 Unlike m-graphs, pattern graphs directly model the emerging missingness patterns via the
transition probabilities from one pattern to another. These probabilities are assigned to edges. Rather than adopting the
m-graph’s set-view on patterns, pattern graphs leverage the prior knowledge about the chronology of observations of the
data components, for example, if a component has been missed/observed systematically after missing/observing another
component.

Pattern graphs allow for an imputation algorithm, applied row-wise on incomplete data to impute the missing values,
through the following steps (The related algorithms are presented in Appendix H).

(Step 1): A pattern graph is generated for a given dataset using the algorithm from Chen.1
(Step 2): The following identifiability assumption is made: The conditional extrapolation density given the observed data

in a missingness pattern is identical to that in the parents of the pattern, that is,

p(lr|lr,R = r)
p
(

lr|lr,R ∈ paPG(r)
) = 1, (1)

where paPG(r) denotes the set of parents of the pattern r in the pattern graph PG, while lr and lr denote the
unobserved and observed components of the realization l of the complete random vector L under the pattern
r, respectively.
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(Step 3): Let r be the pattern of the to-be-imputed row. First, we select a parent s ∈ paPG(r) based on the occurrence
frequency of the parents in the data. Then we impute the components that are different between s and r, that
is, we impute the values of Ls−r, by sampling from the distribution p(ls−r|lr,R = s) (Algorithm 1). We repeat
this step in the same row for the new pattern s, and recursively thereafter across the parent patterns until no
missing value is left (Algorithm 2).

2.4 Exponential tilting sensitivity analysis

Kim and Yu15 consider unidentifiable missingness mechanisms as departures from an identified mechanism. They sug-
gest to model this departure based on the concept of exponential tilting introduced by Scharfstein et al.16 Specifically, they
investigate the unidentifiable self-censoring non-response missingness, where in a data model (L1,L2), variable L1 is fully
observed and the response variable L2 is subjected to missingness. Based on their formulation, the observed conditional
distribution p(l2|l1,R2 = 1) deviates from the unobserved version p(l2|l1,R2 = 0) by a factor of

p(R2 = 0|l1, l2)∕p(R2 = 1|l1, l2)
p(R2 = 0|l1)∕p(R2 = 1|l1)

. (2)

In case of logistic modeling of the missingness indicator, (2) reduces to

1
C(L1)

exp (−𝜙L2), (3)

where 𝜙 parameterizes the effect of self-censoring, and C(L1) is independent of L2. The expression in (3) is interpreted
as an exponential tilt of the extrapolation density p(l2|l1,R2 = 0) from the observed distribution p(l2|l1,R2 = 1). Franks
et al17 demonstrate that, such logistic modeling results in an interpretable connection between the substantive knowledge
about the missingness mechanism and estimation of a parameter of interest. Carpenter et al18 introduce a re-weighted
multiple-imputation (MI) method to solve a bivariate self-censoring missingness problem. In their work, they use the
exponential tilt as the importance sampling’s ratio in sampling step of MI. The authors suggest that one can verify the
value of tilting parameters by domain experts.

Chen1 implements the concept of exponential tilting as described in (3) and develops a sensitivity analysis scheme
for pattern graphs. In this scheme, an exponential factor models departures from the assumption made in Equation (1)
in the following form:

p(lr|lr,R = r)
p(lr|lr,R ∈ paPG(r))

= exp (𝜔⊤lr), (4)

where 𝜔 is the tilting parameter vector of the size |r| for each pattern r and controls the amount of deviation. It is used to
correct the imputation sampling procedure via rejection sampling with the probability of

exp (𝜔⊤l†
r
)

exp (𝜔⊤ )
, (5)

where l†
r

is a candidate sampled imputation, is an upper bound on Lr, and the exponential coefficient 𝜔 parameterizes
the tilt. The rejection step is applied at the end of Algorithm 2) to correct the sampling distribution. A range of variation
of [−1,+1]|r| for all 𝜔 is suggested by Chen.1 The modified algorithm for sensitivity analysis which replaces Algorithm 2
is presented by Algorithm 3. In this paper, we call Algorithm 3, the default sensitivity analysis approach.

3 METHODS

The validity of the pattern graph’s results depends on the validity of its assumption. Also, the interpretability and practi-
cality of the framework’s sensitivity analysis rely on the possibility of providing a real-world interpretation of the tilting
parameters. We claim that pattern graphs address both if we incorporate available prior (causal) knowledge about the
missing data problem into the framework. Hence, we introduce the Informed Sensitivity Analysis (ISA) method to achieve
this goal. In ISA, we utilize the causal information of m-graphs and missingness models to identify possible structural
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F I G U R E 2 The relation between pattern graph framework, m-graphs, missingness mechanism models, and ISA method: Applying the
causal information encoded in the m-graphs and the edge-wise assumption ratios, results in local sensitivity models. The tilting parameters
of these models will be connected to explainable missingness model parameters to allow for an informed sensitivity analysis. ew, edge-wise;
id, identifiability; indep, independence; params, parameters.

departures from the pattern graph assumption. The ISA establishes a connection between the tilting parameters and
the parameters of an assumed missingness model (e.g., logistic model). Finally, by making informed guesses about the
parameters of the model, we perform sensitivity analysis where perturbations are translated into meaningful real-world
quantities. ISA utilizes a new modified identifiability assumption, which we call edge-wise identifiability assumption. In
this paper, we refer to the assumption introduced by Chen1 as the original assumption. The relations among pattern
graphs, m-graphs and ISA are depicted in Figure 2.

In this section, we start by introducing the edge-wise assumption and show how it is an effective assumption
for pattern graphs. We then introduce ISA’s modified imputation and sensitivity analysis algorithms and discuss how
assessability and interpretability are achieved.

3.1 Notations

Let G = (R,E) represent the pattern graph for a missing data problem. For a given missingness pattern (r ∈ R, r ≠ 1d),
the pattern graph imputation Algorithm 1 selects an imputation path 𝜋 ∈ ΠG by sampling iteratively on different depths
from the ancestors of r. We denote the nodes lying on the imputation path by r(k), where the first node r(0) is the current
pattern, r(1) is the selected parent of the pattern, and last node r(K) is always the fully-observed pattern, that is, r(K) = 1d.
We denote the edge from r(k) to r(k−1) by e(k) ∈ E. We index the components that are imputed during moving across the
edge e(k), namely the components in Lr(k)−r(k−1) , by the subscript Δk. Subsequently, all components in RΔk are 0 for the
child pattern, and 1 for the parent pattern, that is, R(k−1)

Δk
= 0|r(k)−r(k−1)| and R(k)Δk

= 1|r(k)−r(k−1)|. For ease of notation, we write
RΔk = 0⃗ and RΔk = 1⃗ to refer to these two values. Finally, subscript −Δk selects the remaining components other than Δk.
For every edge e(k), the missingness vector R−Δk has a constant value of

R−Δk = (0, … , 0
⏟⏟⏟

|r(k)|

, 1, … , 1
⏟⏟⏟

|r(k−1)|

).

For simplicity, we refer to this value as r−Δk . Figure 3 illustrates our notations for an arbitrary imputation path (a) as well
as an example of a path in a pattern graph (b). The values for the selected imputation path are:

nodes (patterns): r(0) = (1000), r(1) = (1110), r(2) = (1111), (6a)

edges: e(1) = (1110) → (1000), e(2) = (1111) → (1110), (6b)

pattern-indexed components: Lr(0) = (L1), Lr(1) = (L1,L2,L3), Lr(2) = (L1,L2,L3,L4), (6c)

Δk components: LΔ1 = (L2,L3), LΔ2 = (L4). (6d)
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F I G U R E 3 Illustrating examples for the introduced notation.

3.2 Edge-wise identifiability assumption and sensitivity analysis

M-graph models describe the causal relationships among individual components. In addition, the imputation Algorithm 2
recursively imputes the components in Lr along an imputation path. Therefore, in order to leverage structure of the
m-graph model in the imputation algorithm, we propose breaking the identifiability assumption into edge-wise state-
ments about components that are imputed on each edge of the pattern graph. This way, it becomes more amenable to
simplification on the basis of conditional independence relations holding in the m-graph model. Specifically, we consider
the edge-wise identifiability assumption, which requires that for all edges e(k) lying on a selected imputation path 𝜋 ∈ ΠG,
and for every imputation path,

k∏

i=1

p
(

lΔk |lr(k−1) , r(i−1))

p
(

lΔk |lr(k−1) , r(i)
) = 1. (7)

We shall emphasize that Equation (7) is stated for an edge, conditioning on the imputation path being selected. This
means that for an individual edge in a pattern graph, the associated edge-wise assumption differs when the edge belongs
to different imputation paths. An example of such an edge is 1111 → 1110 in Figure 3 (right), which belongs to two paths
1111 → 1110 → 1000 and 1111 → 1110 → 0000. Given that the subsequent discussions in this paper primarily focus on
conditioning on an imputation path being selected, we will omit the use of selected path index (𝜋) in the equations for
the sake of brevity. In case of analyzing multiple imputation paths simultaneously, we will employ appropriate clarifying
path indices for precision.

While the original pattern graph assumption is made about the entire unobserved components of a sample,
Equation (7) makes assumptions separately about components that are imputed across a single edge. In other words, the
former assumes that the imputed data in one complete round of Algorithm 2 (Lr) is sampled from the unbiased extrap-
olation density, while the latter breaks this assumption down to each turn of partial-imputation (LΔk ). Nevertheless, the
edge-wise assumption is as strong for the pattern graph as the original assumption, as each ratio in Equation (7) appears
in the original assumption, although corresponding to a different pattern. In other words, edge-wise assumption is a
reordering and regrouping version of the original assumption (with this implicit consideration that it must structurally
hold, as the equality must be true for two different ordering and grouping of a set of terms). However, as we will show
later in Subsection 3.3, edge-wise assumption proves beneficial in constructing the ISA method. In Subsection 3.4 We will
discuss the relation between two assumptions as well as the necessity of the edge-wise assumption in detail. The validity
of edge-wise assumption is discussed in Theorem 1.

Theorem 1 (Identifiability under edge-wise assumption). Let G = (R,E) be a pattern graph for a missing
data problem modeled by (L,R), and the imputation Algorithm 1 imputes the partially observed data. Under the
edge-wise assumption, sampling extrapolation densities in Algorithm 2 are correct.

Proof of Theorem 1 is provided in Appendix A.1.
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The ratio terms in Equation (7) are assumptions about the extrapolation densities. We can replace each ratio with an
equivalent assumption about the missingness mechanism.

Corollary 1. Let G = (R,E) be a pattern graph for a missing data problem modeled by (L,R). For every path
and edge selection (e ∈ 𝜋, 𝜋 ∈ ΠG), the edge-wise assumption holds iff

∏

h∈H

p
(

lΔk |lr(k−1) , r(h−1))

p
(

lΔk |lr(k−1) , r(h)
)
∏

j∈J

p
(

RΔj = 0⃗|lr(k) , r−Δj

)

p
(

RΔj = 1⃗|lr(k) , r−Δj

) = C, (8)

for any H, J s.t. H ∪ J = {1, … , k} and H ∩ J = ∅, where C is an arbitrary constant independent of LΔk .

For simplicity, we call the ratio terms in first and second product terms in Equation (8), the L-sorted and R-sorted ratios
respectively. Corollary 1 states that we can replace any chosen subset of the ratios by its R-sorted counterpart. Note that
the validity of Equation (8) still depends on the imputed components across a single edge, that is, LΔk , which is included
in L(k)r . Since Equation (7) is a special case of Equation (8) with J = ∅, for the rest of the paper we refer to Equation (8) as
the edge-wise assumption.

Associated to the edge-wise assumption, we now define the edge-wise sensitivity analysis by perturbing Equation (8)
using the exponential tilting concept, as

∏

h∈H

p
(

lΔk |lr(k−1) , r(h−1))

p
(

lΔk |lr(k−1) , r(h)
)
∏

j∈J

p
(

RΔj = 0⃗|lr(k) , r−Δj

)

p
(

RΔj = 1⃗|lr(k) , r−Δj

) = C exp(𝜔⊤k lΔk ), (9)

where 𝜔k is the tilting parameter with the size of |Δk| for the edge e(k) on a selected imputation path. Three illustrating
examples for Theorem 1, Corollary 1 and Equation (9) are presented in Appendix B.

As Equation (8) makes edge-wise assumptions, we perform the rejection sampling for each partial-imputation step.
Algorithm 4 presents the modified edge-wise sensitivity analysis Algorithm. The associated rejection probability for
Algorithm 4 is obtained as

exp (𝜔⊤k l†Δk
)

exp (𝜔⊤kΔk )
. (10)

Next, we discuss how the edge-wise perspective of the new sensitivity analysis helps us formalize a way to incorporate
substantive knowledge in the framework.

3.3 Informing the edge-wise sensitivity analysis: ISA

As shown above, the edge-wise assumption in Equation (8) comprises (R-sorted) terms which relate to the missing-
ness mechanism of study. In the absence of further information, Equation (8) must be assumed for inference. However,
if mechanism information is available for a problem, some R-sorted terms can be evaluated. Consequently, the eval-
uated terms will give us an evidence for an informed choice of tilting parameter in Equation (9). As the extreme
case, the terms will be canceled out, and hence do not appear in the sensitivity analysis step. Such a practice is
carried out in our proposed method of informed sensitivity analysis (ISA). Upon such incorporation of missingness
mechanism information, the global sensitivity model of the pattern graph (what we named the original sensitiv-
ity analysis) converts to a set of local sensitivity models, each of which is utilized for imputation of the single
component.

The ISA method is built on the following setup: (i) Assume that besides the knowledge about missingness patterns,
there exists prior knowledge about causes and the corresponding causal effects of the missingness indicators. This knowl-
edge is encoded via m-graphs and the parameters of the missingness model (e.g., logistic model). (ii) In ISA, we simplify
the left-hand side of Equation (9) using the conditional independence statements of m-graph, and then (iii) bring the
remaining terms to an exponential form which consists of the parameters of the missingness model. This way, we translate
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prior knowledge directly to the range of variation for 𝜔 in the sensitivity analysis step. In summary, we instruct the ISA
method in the following steps:

1. (prerequisite) Construct the pattern graph and m-graph for a given problem;
2. Incorporating m-graph information: Extract the sufficient conditional independence statements from the m-graph

to simplify the edge-wise exponential tilting terms;
3. Decomposing global sensitivity model into local sensitivity models: Obtain the local tilting parameters as a

function of coefficients of the assumed missingness indicators’ model for each imputation component;
4. Choice of local tilting parameters: Select an informed range of variation for local tilting parameters 𝜔 based on the

prior knowledge about the aforementioned coefficients.

The structure of ISA is illustrated in Figure 2. We continue through the rest of the section by discussing details of these
steps.

3.3.1 Step 1: Incorporating m-graph information

As introduced in Subsection 2.2, m-graphs are causal DAGs for modeling the missing data problem. For a data dis-
tribution (L,R), an m-graph is defined as Gm-graph = (V,F) where V = L ∪ R and f ∈ F. An edge f = (Vi,Vj) represents
a causal effect from node Vi to Vj. The edges received by R nodes (missingness indicator) determine the missingness
mechanism in a problem. As an example, an m-graph with Rs without parents (within V) represents the ignorable
Missing-Completely-At-Random (MCAR) mechanism. In addition to the general causal DAG assumptions, m-graphs often
follow the no-direct-effect (NDE) assumption, which states that testing/measurement has no direct and unmediated effect
on the study variables.19 This implies “no R → L edge” in the m-graphs. Through the rest of the paper, we make the NDE
assumption for all inferences.

In m-graphs, conditional independence relations can be discovered via the rules of d-separation. Obviously, different
m-graphs encompass different conditional independence properties. In ISA, we seek such properties related to R nodes
to reduce their corresponding R-sorted ratios in Equation (9) up to a constant (independent of LΔk ) or into conditional
odds of individual R variables, as these could be expressed by meaningful and interpretable parameters. According to
Corollary 1, we freely split the k index set for e(k) into the H and J subsets, that is, rewrite necessary ratio terms in their
R-sorted form, such that applying the independence statements becomes possible.

As m-graph and pattern graph frameworks model two distinct types of information, scenarios with distinct m-graphs
may share a single pattern graph. This means that the extracted conditional independence statements, and hence the
simplification of ratio terms in the pattern graph assumptions, may differ case by case. Below, we discuss a sufficient con-
dition for m-graphs which leads to simplification of R-sorted ratios. In the absence of this condition, we invoke a second
sufficient condition which leads to a useful factorization for the ratios, such that incorporation of available knowledge
becomes possible.

Condition 1. The following conditional independences hold:

RΔj ⟂⟂ LΔk |Lr(k−1) ,R−Δj . (11a)

In other words, Condition 1 requires that {Lr(k−1) ,R−Δj} is a d-separation set for RΔj and LΔk in the associated m-graph.
Given Condition 1, the R-sorted ratio of the Δj index, reduces to a constant factor in the edge-wise sensitivity analysis (9)
(proof in Appendix A.3).

An m-graph which follows three restrictions, satisfies Condition 1†: (i) no path LΔk → RΔj which is not mediated by
the d-separation set (e.g., direct edge) should exist; (ii) No confounder path of the form LΔk ← L1d−r(k) → RΔj which is not
mediated by the d-separation set should exist. Recall, that the subscript 1d − r(k) selects all variables that remain missing
after the partial imputation along the edge e(k); (iii) No collider path of the form RΔj and LΔk → R−Δj ← RΔj should exist.
Figure 4 depicts an imputation path and three example m-graphs structures, demonstrating when the restrictions are met
or violated. Details of derivation of the restrictions are presented in Appendix A.3.

Among possible missingness mechanisms which conform to this condition are the ignorable MCAR and MAR
missingness mechanisms. For a detailed discussion about these mechanisms and their corresponding m-graphs, see
Appendix C.
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F I G U R E 4 Three possible m-graphs (b, c, d) for a pattern graph and an imputation path in (a) to study the restrictions of Condition 1:
Red edges highlight the violating paths: For partial imputation across e(1), in (b) the direct edge L3 → R3 violates restriction (i), and in (c) the
confounding {L1} belongs to L1d−r(1) , hence violates restriction (ii). for partial imputation across e(2) and j = 2, in (d) the node R2 is a collider
for L1 and R1, hence violates restriction (iii), whereas for j = 1, the set {L2,R2} d-separates L1 and R3. In all three examples, Condition 1 holds
if the red ‘spurious’ paths are interrupted, i.e, one removes: L3 → R3 from (b), L1 → R3 or L1 → L3 from (c), and R1 → R2 or L1 → R2 from (d).

In the absence of Condition 1, we can alternatively invoke the following

Condition 2. RΔj consists of only one component (|Δj| = 1), or we have the conditional independences

∀𝛿m ∈ Δj ∶ R𝛿m ⟂⟂ RΔj⧵𝛿m |Lr(k) ,R−Δj , (11b)

where 𝛿m enumerates the individual components of RΔj in an arbitrary order.

To explain Condition 2 further, we define the conditional odds as follows.

Definition 1 (Conditional odds). Given a set of variables Q and values q, the conditional odds for R given
Q = q is defined as

O(R|q) =
p(R = 0⃗|q)
p(R = 1⃗|q)

.

We will show in the next step of ISA that the conditional odds for individual R components (i.e., |R| = 1 in Definition 1)
may be conveniently connected to explainable and meaningful parameters in the sensitivity analysis. Thus, it is desirable if
the R-sorted ratios which have escaped Condition 1, can be factorized into conditional odds for individual R components.
Condition 2 describes the sufficient conditions for such a scenario:

First part of Condition 2 (|Δj = 1|) trivially gives the desired results. To explain the second part (when |Δj| > 1), we
factorize the R-sorted ratio following the chain rule as

p
(

RΔj = 0⃗|lr(k) , r−Δj

)

p
(

RΔj = 1⃗|lr(k) , r−Δj

) =
|Δj|∏

m=1

p
(

R𝛿m = 0|lr(k) , r−Δj ,R𝛿1∶𝛿m−1 = 0
)

p
(

R𝛿m = 1|lr(k) , r−Δj ,R𝛿1∶𝛿m−1 = 1
) , (11c)

with a slight abuse of notation for the case m = 1, as it doesn’t have the R𝛿1∶𝛿m−1 term in the conditioning set. Without
further assumptions, the crude factorization in (11c) cannot be simplified further to individual conditional odds terms.
An effective assumption for simplification is stated by the second part of Condition 2 and the conditional indepen-
dences (11b), namely, if the missingness indicators in the RΔj block are independent given {lr(k) , r−Δj}. This lets us drop
R𝛿1∶𝛿m−1 from the conditioning set of the right-hand side of (11c) and obtain

=
|Δj|∏

m=1
O
(

R𝛿m |lr(k) , r−Δj

)

, (11d)
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F I G U R E 5 Three possible m-graphs (b, c, d) which violate Condition 2 for a pattern graph and an imputation path in (a). The blue
edges highlight the edges which violate Condition 1 (thus leads us to check Condition 2), while the red edges highlight the violating paths:
For partial imputation across e(1), we have RΔ1

= {R2,R3} (dashed bounding box). In (b) the direct edge R2 → R3 violates the restriction (i); in
(c) the confounder {L1} belongs to L1d−r(1) , hence violates restriction (ii); In (d) the node R1 is a collider for R2 and R3, hence violates
restriction (iii). In all three examples, Condition 2 holds if the red spurious paths are interrupted, that is, one removes: R2 → R3 from (b),
L1 → R2 or L1 → R3 from (c), and R2 → R1 or R3 → R1 from (d).

for which the discussed case of |Δj| = 1 is a special case, where only one conditional odds term exists. Step 2 of ISA will
demonstrate how conditional odds terms in (11d) are employed further in the ISA procedure.

An m-graph which follows three restrictions, satisfies the second part of Condition 2, namely the conditional inde-
pendences in (11b): for all 𝛿m, 𝛿m′ ∈ Δj, (i) no path R𝛿m → R𝛿m′ which is not mediated by the d-separation set should exist;
(ii) No confounder path of the form R𝛿m ← L1d−r(k) → R𝛿m′ which is not mediated by the d-separation set should exist; (iii)
No collider path of the form R𝛿m → R−Δj ← R𝛿m′ should exist (the proofs follow an identical path to those of Condition 1,
presented in Appendix A.3). Figure 5 depicts an imputation path and three example m-graphs structures, demonstrating
when these restrictions are met or violated. It is worthy of note that these simplifying assumptions concern the edges of
an imputation path. It is possible, and in fact highly likely to have a mixture of simplifying cases applied to different edges
and imputation paths.

In conclusion of step 1 of ISA, we establish an important realization: in the absence of Conditions 1 and 2, ISA does
not provide a viable alternative to the default sensitivity analysis within the scope of this paper. In Section 5, we express
our anticipation of the discovery of additional conditions in future research.

3.3.2 Step 2: Decomposing global sensitivity model into local sensitivity models

In this step, we consider a working model according to our prior knowledge of the missing data problem, to bring the
remaining ratios as in (11d) to an exponential form. This way, the parameters of the working model have a direct con-
nection to the tilting parameters 𝜔k in the right-hand side of (9). In other words, we use the substantive prior knowledge
embedded in the working model, in the sensitivity analysis step.

Suppose the following logistic model for a missingness indicator Ri:

O(RΔj |lr(k) , r−Δj) = exp
(

𝛽⊤jklΔk + f (lr(k−1) , r−Δj)
)

, (12)

where 𝛽jk is the logistic coefficient forΔk (to-be-imputed) components in the Ri model, and f (.) is an arbitrary model over
the rest of remaining factors. In (12), the exponential terms are grouped into two groups of dependent and independent
factors of LΔk . We treat the second group of terms as a constant, and rewrite Equation (12) as

O(RΔj |lr(k) , r−Δj) = Cjk(𝜋) exp (𝛽⊤jklΔk ), (13)

where Cjk(𝜋) are the obtained constants for the j-th odds in J for e(k), conditioned on the path 𝜋 being selected. The
resulting exponential form in (13) matches the assumed exponential tilt in Equation (9). This means that the coefficients
𝛽 in the assumed logistic model per each R-sorted ratio, is connected to the tilting parameters 𝜔.
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After the first step of ISA, for all the irreducible R-sorted ratios which are expressed in the form of (11d), and given
the exponential model in (13), we rewrite the terms as

∏

i
O
(

Ri|lΔk , …
)
= C exp

(
∑

i
𝛽⊤ik lΔk

)

. (14)

where C = ΠiCik(𝜋), while i enumerates over all the conditional odds terms. By accepting a slight abuse of notation, we
drop the k subscript and 𝜋 argument from C to highlight the connection of Equations (14) to (9); comparing right-hand
sides of Equations (14) and (9) gives

𝜔k =
∑

i
𝛽ik. (15)

Equation (15) connects the parameters of an assumed working model for missingness indicators to the tilting parame-
ters in the pattern graphs’ sensitivity models. By associating the logistic coefficients to substantive and interpretable prior
knowledge, we have the possibility of leveraging prior knowledge in the sensitivity analysis step. This will be discussed
in the next ISA step.

3.3.3 Step 3: Informed choice of local tilting parameters

Let Ru be the missingness indicator of a single component Lu, and Ru ∈ RΔj . Consider the component Lv ∈ LΔk is one of
the components to impute across the edge e(k). Assuming a logistic model for Ru, we have a logistic coefficient 𝛽uv that
appears in the exponential tilting sensitivity analysis for imputing LΔk , that is, in (14). Let lv and l′v be two arbitrary values
for Lv. We evaluate the conditional odds of Ru at these two values (13):

O(Ru|.) = A exp (𝛽uvlv),
O(Ru|.) = A exp (𝛽uvl′v),

where A is a term including the covariates excluding Lj. Solving for 𝛽uv, we have

𝛽uv =
1

(lv − l′v)
log OR(Ru|lv ∶ l′v), (16)

where OR(Ru|lv ∶ l′v) ∶= O(Ru|lv)∕O(Ru|l′v) is the odds ratio of Ru between two levels of Lv. We can translate a piece of
prior knowledge to an informed guess for 𝛽uv if it resembles this odds ratio. Two possible cases from clinical studies are
presented below:

• If Lv is a binary variable representing the patients’ health status (1=healthy, 0=sick), and we know that “the odds of
a missing observation for healthy patients is approximately 𝜆 times greater than the respective odds for sick patients”, a
choice of 𝛽 ≈ log 𝜆 would reflect the prior knowledge/assumption.

• Concerning the test protocols and diagnostic flowcharts, likewise, we might know from the clinical protocols that the
odds of ordering test u after the occurrence of a symptom v is approximately 𝜆 times greater than if symptom v is absent,
which yields 𝛽 ≈ − log 𝜆.

The 𝜆 values associated to the odds ratio in Equation (16) give initial guesses for 𝛽 and subsequently 𝜔 parameters.
We denote this initial guess for both 𝛽 and 𝜔 by a superscript asterisk, that is, 𝛽∗, 𝜔∗. Since 𝜆 is often a guess and cannot
be inferred nor can be validated via the observations, we select a range by adding and subtracting an offset value to and
from the initial guess. We define the offset value 𝜖 such that [𝛽∗ − 𝜖, 𝛽∗ + 𝜖] is considered as the range for 𝛽 in the process
of sensitivity analysis.

In case of the default sensitivity analysis, the range of [−1,+1] (one unit of tilt toward both directions) is chosen in
the global sensitivity model of the pattern graph, thus the 𝜔 parameters of all edges are set to a common value.1 However,
using the ISA method, we obtain different ranges for local sensitivity model. Therefore, we need a procedure to perform
sensitivity analysis on different parameter ranges. For that purpose, let 𝛽1, … , 𝛽i be the coefficients used in ISA, with the
corresponding ranges i ∶= [𝛽∗i − 𝜖i, 𝛽

∗
i + 𝜖i], i = 1, … , e. One option is then to perform calculations on a grid defined
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over the space1 × · · · × e, and report the corresponding varying range of the parameter of interest. Another option is to
vary the tilting parameters simultaneously from the minimum to the maximum values of their range and in equal relative
steps. This is possible using a reference tilting parameter 𝜙 ∈ [−1,+1]which simultaneously controls the variation on all
𝛽i parameters, via

𝛽i = 𝜖i𝜙 + 𝛽∗i . (17)

Using the definition in (17), we have a way to compare the estimates from the pattern graph approach under default
sensitivity analysis with our ISA method, as we set the tilting parameter of default method 𝜔 to be equal to the reference
parameter 𝜙. This idea will be used in the comparisons in Section 4.

We established step 3 of ISA on the assumption that the missingness indicators follow a logistic model. However, the
validity of ISA method is not limited to a specific working model. For any assumed missingness mechanism model that
comprises interpretable parameters, and fits the form of rejection sampling step of the imputation algorithm, step 3 of
ISA can be re-defined and repeated. In this paper, we continue with only the logistic models as it is also considered an
effective working model for most missing data scenarios.18 Also, note that the parameters of the working model may still
be uninterpretable, not because of a lack of prior knowledge, but because of the structure of the assumed m-graph. As an
example, the R-sorted ratios for O(R3|L3, … ) and O(R1|L1, … ) in Figure 4c,d and Figure 5b,c,d respectively, cannot be
canceled out and thus appear in the local sensitivity models, while the components are not causally connected (unlike
in Figure 4b). Forming an informative choice of tilting parameter for such cases is not straightforward. With this regard,
further extensions of ISA methodology are needed. This can extend the list of sufficient conditions to apply ISA to a
missing data problem.

3.4 Relation between the original and edge-wise assumptions

In the opening of the current section, we claimed that developing the edge-wise assumption is necessary for the intro-
duction of ISA method. We break the discussion about this claim in three questions: (i) whether edge-wise assumption
makes a stronger or weaker assumption about pattern graphs than the original assumption; (ii) how it facilitates assess-
ing the identifiability assumption, and (iii) how it facilitates the interpretability of the sensitivity analysis results. In this
subsection, we discuss these three questions.

Regarding the first question, Theorem 2 states that edge-wise assumption is as strong as the original identifiability
assumption for pattern graphs.

Theorem 2 (Equivalency of original and edge-wise identifiability assumptions). Let G = (R,E) be a pattern
graph for a missing data problem modeled by (L,R). The identifiability assumption in (1) holds iff for every path,
and for every edge on the path the edge-wise assumption in (7) holds.

In order to discuss the second question, we recall the assessability process in ISA. In step 1 of ISA, we arrive at L-sorted
or R-sorted ratios which we simplify and cancel out by incorporating the m-graph conditional independence statements.
This implies the need for having such conditional odds terms in order to be able to assess the assumptions. In the original
pattern graph assumption, we have the R ∈ paPG(r) term in the denominator of the ratio. This means that at least one
missingness indicator in the denominator is marginalized over and canceled out of the condition set, while it is still
present in the conditioning set of the numerator. As an example, take a case where r = (100) and paPG(r) = {(110), (101)}.
Then, in the left-hand side of Equation (1) we have

p(l2, l3|l1,R1 = 1,R2 = 0,R3 = 0)
p(l2, l3|l1,R1 = 1)

.

This ratio cannot be factorized into similar ratio terms in the edge-wise case since R2 = 0,R3 = 0 do not have the counter-
parts in the denominator to form a conditional odds term, thus inapplicable for ISA method. This leads to a similar issue
to the absence of Conditions 1 and 2.

Subsequently, this issue propagates to step 2 of ISA, where we establish a connection between 𝜔 and 𝛽 parameters
via the conditional odds terms for individual R components. This brings us to the third question. If we do not make
any connection between these two sets of parameters, explainability is lost as well. Furthermore, we bring the readers’
attention to the fact that the tilting parameter in the default sensitivity analysis is a vector of the size |lr|, acting upon the
entire imputed components in Lr, and with equal components ranging from −1 to +1. This is due to the fact that in the
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F I G U R E 6 A schematic of the domain of applicability of ISA in missing data problems. If only pattern emergence information is
available (Left circle), then we employ the pattern graph framework with its original assumption and default sensitivity analysis. If
missingness mechanism information is available as well (intersection region), we can employ ISA. One of the scenarios for ISA is the
introduced clinical sequential observations process. iron def, iron deficiency; Miss, missingness; Seq. obs, sequential observation.

default sensitivity analysis, we assume no further knowledge or assumption helps us with choosing the tilting parameters.
In ISA, we assume that such knowledge exists, and it is encoded in the assumed m-graph, and the missingness model.
This allows us to make informed guesses about the nature of the missing data problem, and choose accordingly each
tilting component individually.

As a concluding remark, Theorem 2 states that in the absence of any extra information other than what we utilized to
derive the pattern graph, ISA has no superiority over the default sensitivity analysis. ISA adopts the same pattern graph
framework while incorporating applicable substantive knowledge from m-graphs.

4 VALIDATION AND EXPERIMENTS

In Section 1.1, we introduced the clinical sequential observations missing data problem, in which both the pattern- and
the mechanism-related information are often available; hence, this problem can benefit from the ISA method. This may
not be the only missing data problem that ISA is able to address. In general, ISA can be used to approach all problems
modeled via both m-graph and pattern graph, for which a working model is assumed. Figure 6 illustrates the domain of
applicability of ISA method in relation to the pattern graph and m-graph frameworks, as well as the experiments for this
section.

In this section, first, we present the ISA results for the bivariate sequential observations problem. Next, we set up a sim-
ulation study and generate a synthesized dataset according to the scenario to compare our method with the following four
commonly used missing data methods: Unweighted CCA, KNN imputer, MICE, MissForest (See Appendix D for imple-
mentation details). We further compare the sensitivity analysis results with the default sensitivity analysis. Finally, we
use real-world clinical data from the MIMIC-III public dataset20 to evaluate our method. There, we estimate the cohort’s
mean iron level in the presence of missing data. We compare it with the estimated mean from the aforementioned four
missing data methods. Furthermore, we demonstrate that in the presence of extra information about the problem, how
one is able to validate the method and interpret the sensitivity analysis results.
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F I G U R E 7 The assumed m-graph (a) and pattern graph (b) for the sequential observations problem.

4.1 Case study: Clinical sequential observations

Consider a problem with two study variables L1 and L2 and the corresponding missingness indicators R1 and R2. Let the
variable L1 represent the severity of a disease (0=healthy, 1=sick) and L2 represent an associated symptom for the disease
(0=normal, 1=abnormal). To derive the m-graph and pattern graph, we explore the reasonable causal relations as well as
the most frequent missingness scenarios in the clinical settings:
Causal structure of L: We define L2 as the manifested symptom of the underlying disease L1.
Missingness scenario 1: Occurs when a patient does not show up in the hospital (missing-visit); as an example, extremely
healthy patients are less likely to visit doctors and therefore their associated variables are missing.
Missingness scenario 2: Occurs for patients with abnormal (eg, high) primary test values i.e. L2. Here, the physician
becomes suspicious about a particular disease and orders the secondary tests, that is, L1.
Missingness scenario 3: Occurs when the variable L2 is observed, but not recorded in the database, for example, when
L2 represents a symptom. Symptoms often are recorded in a non-standard textual format and extracted via text mining
and natural language processing algorithms. An error in these algorithms leads to invalid and hence missing values in
the collected dataset. On the other hand, the secondary test results are gathered by labs in a structured fashion, hence less
prone to missingness and mistakes.

Figure 7 presents the derived m-graph and pattern graph for this case study (See Appendices E.1 and E.2 for more
details about the derivation processes). In summary, the resulting pattern graph includes the following nodes, edges and
imputation paths (denoted by 𝜋):

R1∶4 = {(1, 1), (1, 0), (0, 1), (0, 0)},
E1∶4 = {r1 → r2, r1 → r3, r1 → r4, r2 → r4},

𝜋 =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

(e1) to impute r2

(e2) to impute r3

(e3) to impute r4

(e4, e1) to impute r4

. (18)

By assuming the logistic models R1 and R2 as

logit p(R1 = 0|R−1,L) = 𝛽11L1 + 𝛽12L2 + 𝛽10,

logit p(R2 = 0|R−2,L) = 𝛽21L1 + 𝛽20,
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we obtain the informed tilting parameters via the ISA method as

𝜋1 ∶ 𝜔
𝜋1
1 = 0

𝜋2 ∶ 𝜔
𝜋2
1 = 𝛽11

𝜋3 ∶ 𝜔
𝜋3
1 = (𝛽11 + 𝛽21, 𝛽12)

𝜋4 ∶ 𝜔
𝜋4
1 = 𝛽11, 𝜔

𝜋4
2 = 0. (19)

The details of ISA derivation are presented in Appendix E.3.
The obtained tilting parameters in (19) imply a need for informed guesses for the three logistic coefficients, for

example:

• The odds of missing primary and secondary test results for healthy against sick patients are approximately 𝜆21 and 𝜆11
times larger. This implies 𝛽∗11 ≈ − log 𝜆11 and 𝛽∗21 ≈ − log 𝜆21.

• The odds of ordering the secondary test for patients with abnormal primary test results is approximately 𝜆12 times
larger for patients with normal primary test results. This implies 𝛽∗12 ≈ − log 𝜆12.

Next, we use this case study in the following two validation experiments.

4.2 Validation: Simulation experiment

Our goal in this simulation step was to demonstrate that the ISA method yields unbiased results if prior knowledge is
available, and missing data assumptions are correct. We further attempt to demonstrate the successful incorporation of
prior knowledge in the ISA’s sensitivity analysis by comparing the results with the default sensitivity analysis. Throughout
the experiments, we thus utilized true assumptions, models, and parameters (ones which are used to synthesize data).
For a detailed explanation of the experiments’ setup as well as the results, see Appendix F.

Figure 8 presents the estimation bias of expected values for the designed bivariate clinical sequential observations, as
introduced in Section 4.1. The ISA method obtained better results compared to unweighted CCA, the single imputation
KNN method, and multiple imputation methods: MICE and Missforest.

For default versus edge-wise sensitivity analysis comparison, we made informed choices of tilting parameters accord-
ing to ISA steps. Figure 9 presents the results of two sensitivity analysis approaches for the simulated dataset. As depicted,
the varying range under ISA complies better with the ground truth. Improvement in estimating L1 is more significant, as

F I G U R E 8 Estimation results for the bivariate clinical sequential observations case study for a simulation round.
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F I G U R E 9 Sensitivity Analysis for estimation of E[L1],E[L2] with agnostic and informed sensitivity parameters.

it is subjected to self-censoring, implying a higher departure from the pattern graph assumption. Figure 9 demonstrates
how ISA improves the estimations if prior knowledge is valid.

4.3 Demonstration: Iron deficiency experiment

Section 1.1 introduced the diagnostics flowchart for thalassemia carrier identification. We further discussed how it can
be considered as a clinical sequential observations scenario. This section aims to estimate the true average iron level (IL)
in a hospital cohort in the presence of missing data. As a brief recall, we know, according to the flowchart (Figure 1), that
physicians diagnose iron deficiency based on the values of the following tests (if available): MCV, MCH, Hb pattern, iron
level and a number of genetic tests.4 We took the set of MCV, MCH, and Hb pattern tests as primary since all are part
of the chemistry category blood test, and IL test as secondary tests. Our dataset was the MIMIC-III public dataset (see
Appendix G for details about the dataset).

We employ the ISA’s solution for sequential observations, obtained in Section 4.1. The remaining step to take is step
3 of ISA i.e. making informed choices of the tilting parameters. According to (19), we make informed guesses for 𝛽11, 𝛽12,

and 𝛽21.

1. The odds of missing primary and secondary test results for healthy patients are approximately 𝜆21 and 𝜆11 times larger
compared to sick patients. This implies 𝛽∗11 ≈ − log 𝜆11 and 𝛽∗21 ≈ − log 𝜆21.

2. The odds of ordering the secondary test for patients with abnormal primary test results is approximately 𝜆12 times
larger for patients with normal primary test results. This implies 𝛽∗12 ≈ − log 𝜆12.

The first statement points to the epidemiological statistics of iron deficiency in the population of interest, which can be
extracted from related literature. In order to proceed, we assumed that the missing values of the study variables positively
correlate with the patients being extremely healthy (as the sick population visits the hospital to take the tests more often).
Therefore, we associated the missing follow-ups with high values of IL, MCV and MCH. To formulate our prior knowl-
edge, we assumed that: the odds of missing follow-ups (both variables) for extremely healthy patients is 𝜆11 = 𝜆21 = 2.5 times
higher compared to extremely sick patients. Using Equation (16) this assumption translates to 𝛽∗11 = 𝛽

∗
21 ≈ −0.9. We utilized

these guessed values, knowing that the domain experts are able to validate and adjust the numbers if required. Regarding
the large size of missingness for HbA2, the thalassemia flowchart4 supports this assumption that the Hematology lab tests
are performed regardless of their direct observed values, since any range and value of three items (MCV, MCH, HbA2)
are used to order further tests. This means that we can consider the missingness in HbA2 as not self-censoring. Based on
Figure 10 we modeled the missingness mechanism of HbA2 as a logistic regression model given the values of MCV and
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F I G U R E 10 MCV-MCH plot for observed and unobserved HbA2 cases.

MCH. In other words, we imputed the HbA2 variable (only for the rows with observed MCV and MCH) as a function of
MCV and MCH variables.

Second statement points to physicians’ opinions and the diagnostic flowchart associated to the iron deficiency,
formulated as

𝜆12 = OR(R1|L2 = low ∶ high). (20)

Similar to the previous item, one can make informed guesses for this item by analyzing physicians’ style of practice in a
target hospital. In the absence of such information, we estimated E[R1|L2] by assuming

p(R1 = 1|L2,R2 = 0) = p(R1 = 1|L2,R2 = 1) (MAR),

in order to make a reasonable initial guess for 𝛽∗12. We admitted that this is potentially a biased estimation (as we must
estimate E[𝜆12|L2]), but we accepted it, to take into account the potential bias later by selecting a range of variation
and doing sensitivity analysis. This gave 𝜆12 ≈ 1.35, and thus 𝛽∗12 = −log(𝜆12) ≈ −0.3 is the preliminary approximated
value obtained from (20). Apart from the MAR assumption, we made another simplifying assumption: even though L2
is continuous, we guessed a constant value for 𝛽∗12 based on the odds ratio of lowest and highest values of L2. In order to
account for the approximations and simplifying assumptions, in the sensitivity analysis step, we vary the parameter 𝛽12
from its initial guess in order to account for the potential effect of these simplifying assumptions.

As the final step, we select an offset value for 𝛽11, 𝛽21, and one for 𝛽21. With 𝜖11 = 𝜖21 = 0.3 and 𝜖21 = 0.15. According
to (17), we have

𝜙 ∈ [−1,+1],
𝛽11 = 𝛽21 = 0.3𝜙 + 0.9,

𝛽12 = 0.15𝜙 + 0.3. (21)

Subsequently, we calculated the informed tilting parameters according to Equation (19) and set the varying range for the
tilting parameter of the default sensitivity analysis method to 𝜔default = 𝜙 for future comparisons.
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F I G U R E 11 The estimated empirical distribution of IL for the entire cohort using different missing data approaches.

T A B L E 1 The estimated mean and standard deviation of the IL in the entire cohort using different missing data approaches.

Method Mean STD

Unweighted CCA 45.32 32.30

KNN 46.49 27.15

MICE 41.70 22.74

MissForest 46.62 34.72

ISA 54.89 25.65

As explained throughout the paper, the choices in (21) are not solid inferred values but rather only guesses based on
assumed available prior knowledge. What we achieved in the ISA method, however, was assessability (as clinical experts
are able to verify and adjust above statements) and also interpretability of the results (as the sensitivity analysis results
has a clear mapping to the selected values).

Figure 11 and Table 1 presents the estimated distribution of IL for the entire cohort using different methods. We
imputed the partially-observed IL variable using unweighted CCA, KNN (K=33) imputation, MICE, MissForest, and ISA
methods. We performed ISA using the initial guesses for tilting parameters, presented in (21).

Sensitivity analysis results for ISA and default approach are ÊISA[iron] ∈ [42.51, 65.20] and Êdefault[iron] ∈
[29.22, 55.90] for the default approach. While the difference in estimated ranges are significant, we cannot claim that
the measured difference implies any superiority of a particular approach. An advantage of our method, however, is that
one has the possibility of discussing and validating the edge-wise assumptions, encoded scenario, and the tilting parame-
ters, by the medical experts. Furthermore, ISA results are interpretable, as the obtained range corresponds to meaningful
quantities.

5 DISCUSSION AND FUTURE WORK

In this paper, we introduced a new identifiability assumption for pattern graphs and, subsequently the ISA method
for incorporating available prior knowledge about the missingness mechanism. ISA method allowed us to validate the



5438 ZAMANIAN et al.

framework’s assumption in a given problem and correct the bias accordingly (assessability). It also allowed us to make
an interpretable connection between domain-expert knowledge and the sensitivity analysis results (interpretability). We
concluded that ISA method enables the use of pattern graphs in a broader range of nonignorable missingness problems
which otherwise would violate the framework’s assumption.

We demonstrated how the causal independence statements from m-graphs are used to simplify the pattern graph
assumptions. We also introduced examples of prior knowledge statements and how they relate to the parameters of the
missingness model.

We implemented the ISA method to solve the bivariate sequential observations clinical case study, which involved non-
ignorable missingness, violating the pattern graph assumption. We assessed the edge-wise assumptions and calculated
the corresponding tilting parameters. We identified two pieces of prior knowledge to make informed guesses for the logis-
tic coefficients: information about rate of hospital visit for health and sick patients, and protocols of ordering a test based
on primary findings. We compared the performance of our method with widely-used missing data methods (including
original pattern graph) in a simulation study. We studied a routine real-world clinical data and compared our results with
other methods.

One may adopt the methods presented in Section 3 for other missing data scenarios. The adoptation includes the cal-
culation of tilting parameters and identifying interpretable prior knowledge for those scenarios. We considered using the
logistic model for missingness indicators. There are other working models suggested in the literature, such as the Gaus-
sian model.21 One may investigate the use of such models in the ISA framework. Furthermore, we introduced sufficient
conditions for incorporation of m-graph information in the pattern graph framework. This list can be extended consider-
ing more real-world scenarios. In particular, one may investigate the sensitivity models with irreducible conditional odds
with no immediate interpretable missingness model coefficients despite available causal prior knowledge.
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APPENDIX A. PROOFS

A.1 Proof of Theorem 1
Assume an imputation path, as illustrated in Figure 3, which starts from r(0), ends at r(K) = 1d, and goes over edges e(1) to
e(K). The goal is to sample imputations for the components in Lr(0) from the following density

p(lr(0) |lr(0) ,R = r(0)).

Algorithm 1 breaks this sampling into K steps of partial-imputations across K edges. Therefore, at each edge the goal is
to sample from the density

p(lΔk |lr(k−1) ,R = r(0)).

However, the algorithm samples the imputation from the parent of the edge, namely r(k). Thus, the imputation is correct
if these two densities are equal, that is, the following ratio holds:

p(lΔk |lr(k−1) ,R = r(0))
p(lΔk |lr(k−1) ,R = r(k))

= 1.

By the chain rule, we re-write the assumption as

p(lΔk |lr(k−1) ,R = r(0))
p(lΔk |lr(k−1) ,R = r(k))

=
p(lΔk |lr(k−1) ,R = r(0))
p(lΔk |lr(k−1) ,R = r(1))

p(lΔk |lr(k−1) ,R = r(1))
p(lΔk |lr(k−1) ,R = r(2))

…
p(lΔk |lr(k−1) ,R = r(K−1))
p(lΔk |lr(k−1) ,R = r(K))

=
K∏

i=1

p(lΔk |lr(k−1) ,R = r(i−1))
p(lΔk |lr(k−1) ,R = r(i))

.

□
A.2 Proof of Corollary 1
We reorder an L-sorted ratio as the following:

p(lΔk |lr(k−1) ,R = r(i−1))
p(lΔk |lr(k−1) ,R = r(i))

=
p(lr(k) , r(i−1))
p(lr(k) , r(i))

p(lr(k−1) , r(i))
p(lr(k−1) , r(i−1))

.

The second ratio is independent of LΔk , which we replace by a constant called A. We factorize the numerator and
denominator of the first ratio with respect to the components which are different between r(i−1) and r(i); namely RΔi :

=
p
(

r(i−1)
Δi

|lr(k) , r
(i−1)
−Δi

)

p
(

lr(k) , r
(i−1)
−Δi

)

p
(

r(i)Δi
|lr(k) , r

(i)
−Δi

)

p
(

lr(k) , r
(i)
−Δi

) A

By definition, the components other than RΔi are the same between the parent and child patterns; namely R(i−1)
−Δi

= R(i)−Δi
.

Therefore the second term from numerator and denominator is cancelled out. Moreover, we know that R(i−1)
Δi

= 0⃗ and
R(i)Δi

= 1⃗. Thus, we rewrite the ratio as

=
p
(

RΔi = 0⃗|lr(k) , r
(i−1)
−Δi

)

p
(

RΔi = 1⃗|lr(k) , r
(i)
−Δi

) A.

By choosing the index set J from the L-sorted ratios to do such reordering and leaving the rest of the ratios, that is, the
ratios in the index set H, we rewrite Equation (7) as

∏

h∈H

p
(

lΔk |lr(k−1) , r(h−1))

p
(

lΔk |lr(k−1) , r(h)
)
∏

j∈J

p
(

RΔj = 0⃗|lr(k) , r−Δj

)

p
(

RΔj = 1⃗|lr(k) , r−Δj

) = C,

where C =
∏

j∈J A−1
j the constant terms of each R-sorted ratio. □
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As this ratio is going to be utilized either in the rejection probability of the rejection sampling method, or the impor-
tance ratio of the importance sampling method, any term C independent of the sampled imputation will be cancelled out
(by being cancelled out from the numerator and the denominator of the rejection probability or via normalization of the
weights of each sample in the weighted-averaging step, respectively). Thus it is valid to have the R-sorted ratios up to a
normalizing constant.

A.3 Proof of conditional independence (11a) and derivation of the three m-graph restrictions
Starting with the independence statement (11a), we recall an R-sorted ratio is written as

p
(

RΔj = 0⃗|lr(k) , r−Δj

)

p
(

RΔj = 1⃗|lr(k) , r−Δj

) .

By definition, we have Lr(k) = {LΔk ,Lr(k−1) }. Hence, we rewrite the conditioning set as {LΔk ,Lr(k−1) ,R−Δj}. Consequently, if
the second and third term of the conditioning set, that is, {Lr(k−1) ,R−Δj} d-separates RΔj and LΔk , the latter is removed from
the conditioning set, thus the R-sorted ratio reduces to a constant (hence, (11a)).

By the rules of d-separation, a set C is a d-separation set for A,B if A and B do not have a direct causal edge, C blocks
all the confounder paths, and no variable in C opens a collider path:

1. Restriction i represents the ‘no direct edge’ rule.
2. Restriction ii represents the ‘no confounder’ rule. The only component which is left out of the R-sorted conditioning

set is L1d−r(k) , that is, the upstream components on the imputation path of the pattern graph. As this component does
not appear in the conditioning set, any unmediated confounder path cannot be blocked by {Lr(k−1) ,R−Δj}.

3. Restriction iii represents the ‘no collider’ rule. Since we assumed NDE (see Section 3.3), no L variable can be a collider
for Rs, hence only the R−Δj component needs to be mentioned in the restriction.

A.4 Proof of Theorem 2
After the imputation Algorithm 1 selects a parent r(k) to impute the pattern r(k−1) (not necessarily at the beginning of the
imputation; r(k−1) can be any intermediate node for imputation of a lower pattern), the right-hand side of the original
pattern graph assumption is stated as

p(lr(k−1) |lr(k−1) ,R = r(k−1))
p(lr(k−1) |lr(k−1) ,R = r(k))

.

We factorize the components in Lr(k−1) with respect to the ancestors of the current child, as we expect it to be imputed:

=
p
(

lΔk |lr(k−1) ,R = r(k−1))

p
(

lΔk |lr(k−1) ,R = r(k)
)

p
(

lΔk+1 |lr(k−1) ,R = r(k−1))

p
(

lΔk+1 |lr(k−1) ,R = r(k)
) …

p
(

lΔK |lr(k−1) ,R = r(k−1))

p
(

lΔK |lr(k−1) ,R = r(k)
)

=
K−k∏

i=0

p
(

lΔk+i |lr(k−1) ,R = r(k−1))

p
(

lΔk+i |lr(k−1) ,R = r(k)
)

Each ratio term written for LΔk+i corresponds to a ratio term in the edge-wise assumption in (7) where Δk+i ∶= Δk and
r(k−1) ∶=; in other words, if we factorize the original assumption for all patterns, and write the edge-wise assumption for
all edges, every term in one, is found in the other. This means that the set of all terms, the product of which must be
equal to one is shared between two assumptions, but with a different order. In theory we consider a case where each term
in an assumption statement is not one, but the product of all terms are. However, this is an arbitrary case that might or
might not occur in a problem. In order for the assumptions to structurally hold, we should have all the terms being equal
to one. □

As an example, assume a simple pattern graph with three missingness patterns of

R = {(111), (110), (100)}
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and two imputation paths

𝜋 = {(111) → (110), (111)→ (110)→ (100)}

We write two pattern graph assumptions for two incomplete patterns:

p(l2, l3|l1,R = (100))
p(l2|l1,R = (110))

=
p(l2|l1,R = (100))
p(l2|l1,R = (110))

p(l3|l1, l2,R = (100))
p(l3|l1, l2,R = (110))

= 1,

p(l3|l1, l2,R = (110))
p(l3|l1, l2,R = (111))

= 1.

We write the edge-wise assumption for three edges (one for imputation of (110), two for imputation of (100):

p(l2|l1,R = (100))
p(l2|l1,R = (110))

= 1,
p(l3|l1, l2,R = (100))
p(l3|l1, l2,R = (110))

p(l3|l1, l2,R = (110))
p(l3|l1, l2,R = (111))

= 1,

p (l3|l1, l2,R = (110))
p(l3|l1, l2,R = (111))

= 1.

It has been shown that three L-sorted ratios are shared between the two assumptions.

APPENDIX B. EXAMPLES OF EDGE-WISE ASSUMPTION

We provide three examples related to Figure 3 which better describe Theorem 1, Corollary 1 and the sensitivity model in
Equation (9).

Example 1 (Edge-wise assumption). The pattern (1000) in Figure 3 is imputed according to the selected
path by first imputing (L2,L3), and then L4 across two edges in (6b). Edge-wise assumptions are as follows:

e(1) ∶
p (l2, l3|l1,R = (1000))
p (l2, l3|l1,R = (1110))

= 1,

e(2) ∶
p (l4|l1, l2, l3,R = (1000))
p (l4|l1, l2, l3,R = (1110))

p (l4|l1, l2, l3,R = (1110))
p (l4|l1, l2, l3,R = (1111))

= 1.

Example 2 (Edge-wise assumption with L- and R-sorted ratios). We rewrite the edge-wise assumption for
e(2) in Example 1 using L-sorted and R-sorted ratios. In Equation (8), let H = {1} and J = {2}, that is, second
ratio must be written in its R-sorted form. Then the edge-wise assumption for e(2) is expressed as

e(2) ∶
p (l4|l1, l2, l3,R = (1000))
p (l4|l1, l2, l3,R = (1110))

p (R4 = 0|L,R1∶3 = (111))
p (R4 = 1|L,R1∶3 = (111))

= C.

Example 3 (Edge-wise local sensitivity model). Continuing Example 2, we write the local sensitivity model
for e(2) based on Equation (9) as

e(2) ∶
p (l4|l1, l2, l3,R = (1000))
p (l4|l1, l2, l3,R = (1110))

p (R4 = 0|L,R1∶3 = (111))
p (R4 = 1|L,R1∶3 = (111))

= C exp(𝜔2l4).

where 𝜔2 is the tilting parameter for e(2) on the selected imputation path.

APPENDIX C. MCAR AND MAR MISSINGNESS IN ISA

MCAR missingness mechanism is defined by the independence assumption R ⟂⟂ L. In the corresponding m-graph, Rs
accept no incoming edges from the L nodes. With a slight abuse of terminology, we assign the name “MCAR” to an
individual R node of the same condition in an m-graph, that is, Ri ⟂⟂ L,R−i (receiving no edge from other R nodes as well).
In this case, all three restrictions of Condition 1 holds, and hence the corresponding R-sorted ratio is cancelled out. In
an extreme case, if all R nodes are of MCAR type, all partial imputations on all imputation paths are free of the need for
sensitivity analysis.
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Likewise, MAR missingness mechanism is defined by the independence assumption R ⟂⟂ Lmiss|Lobs where the index
set obs selects the fully-observed variables, and miss, the remaining ones. In the corresponding m-graph, Rs are restricted
to have incoming edges only from the fully-observed nodes. Similar to the MCAR case, we assign the name “MAR”
to an individual R node of the same condition in an m-graph. Condition 1 holds for MAR R nodes as well, as the
component Lr(k−1) (including observed variables) is a sufficient d-separation set. Condition 1 holds also for the weaker
“non-monotone MAR” mechanism, where the subscript obs selects the observed entries for a sample. Obviously, this is a
weaker assumption since Lobs may include the partially-observed variables which are observed for that particular sample.
Nevertheless, the observed entries are still included in Lr(k−1) , hence a similar discussion as for MAR is valid.

APPENDIX D. SELECTED MISSING DATA METHODS FOR COMPARISON

Table D1 introduces the missing data methods for comparison in our experiments.

T A B L E D1 Missing data methods for comparison with informed sensitivity analysis pattern graph.

Method Details

Unweighted CCA By calculating the expected value of the variables using the complete cases.

KNN imputer Scikit-learn27 implementation with K=13.

MICE Scikit-learn implementation (estimator: Bayesian Ridge Regression).

MissForest Scikit-learn implementation of random forest (n_trees=15, min_sample_leaf=2,
min_samples_split=2, max_iter=10).

APPENDIX E. DETAILS OF ISA METHOD FOR SEQUENTIAL OBSERVATIONS PROBLEM

E.1 Pattern graph
Chen1 claims that generation of the correct pattern graph for a scenario is intrinsically an open problem. Nevertheless, a
pattern graph structure selection procedure has been introduced by the author which is summarized as follows:

The general idea of the procedure is to have in mind a scenario of step-wise data collection, be it the order of questions
in a questionnaire or the chronological order of lab tests through time which matches the reality of the scenario. We
start from when it is not yet determined whether the study variables are missing, for example, at the beginning of the
questionnaire or first admission day. From that point, we specify, step-by-step, the possibilities of observing/missing a
variable in the process. For that purpose, in addition to 0 and 1 values for r, we use also a placeholder value “−”. The
placeholder implies that the observation of a variable has not yet been decided upon.

As an example, imagine a case of 3 lab tests, the first two of which are taken simultaneously while the third one is
performed the next day. We start with the pattern s0 = (−,−,−). Patients may either miss or take the first two tests on the
first day, therefore we arrive at two new patterns s1 = (1, 1,−) and s2 = (0, 0,−). For s1 the third test might or might not
be performed, therefore two new patterns emerge from s1 which are s3 = (1, 1, 1) and s4 = (1, 1, 0). Moreover, suppose we
know by the clinic protocols, that the third test must be performed if the first two are missing. Therefore only one pattern
s5 = (0, 0, 1) is resulted from s2.

To finish the process, we replace all the placeholders with the value 1. Finally, the emerging patterns and the
in-between edges are used to form the pattern graph, with this consideration that a self-looping edge are dropped, and
duplicated edges are presented once. For the example at hand, we arrive at the following graph:

V = {1d = (1, 1, 1), r1 = (1, 1, 0), r2 = (0, 0, 1)},
E = {(1d → r2), (1d → r1)}.

For our case study, considering the procedure explained above, we construct the pattern graph as follows:

• We start from the initial step s0 = (−,−). A patient may be absent from the site, therefore no observations will be
made for (z1, z2), which represents the pattern s1 = (0, 0). For a present patient, the symptom z2 might or might not be
recorded which represents s2 = (−, 1) and s3 = (−, 0).
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• Based on the value of z2, the test z1 might or might not be taken disregarding whether or not z2 is recorded. These
represent s4 = (1, 1), s5 = (0, 1) for the next step of s2, and s6 = (1, 0) and s7 = (0, 0) for the next step of s3.

• Replacing the placeholders with the value 1, we arrive at four different patterns r0 = 1d = (1, 1), r1 = (1, 0), r2 = (0, 1)
and r3 = (0, 0) and the edges are 1d → r1, r2, r3 and r1 → r3

Figure E1 depicts the process of choosing the pattern graph and the final result.

F I G U R E E1 The corresponding pattern graph for the case study. (a): Encoding the data gathering process. (b): The constructed pattern
graph

E.2 M-graph
To generate the m-graph, we introduced a causal relation as well as three missingness scenarios in Section 4.1. Here we
discuss what those statements imply about the m-graph:

• Causal structure of L: It implies the causal edge L1 → L2 in the m-graph.
• Missingness scenario 1 This scenario implies L1 → R1 and L1 → R2 edges in the m-graph.
• Missingness scenario 2 This scenario implies the edge L2 → R1.
• Missingness scenario 3 This scenario points to an external cause of R2 missingness, that is, other than L1 and L2 and

therefore does not imply any explicit edge in the m-graph.

In the constructed m-graph (Figure 7), the variable L1 is subjected to self-censoring (L1 → R1). By subtracting the
self-censoring edge, the m-graph becomes a subgraph of the block-parallel model.11 Also, note that the missingness in
both variables depends on the unobserved data.

E.3 Deriving informed tilting parameters via ISA
We describe the first two steps of ISA to derive the informed tilting parameters for the sequential observations problem.

Step 1: Simplifying the edge-wise assumption ratios
Given the information in Equation (18), we have 1 assumption for imputing r2, 1 assumption for imputing r3, and 3
assumptions on 2 imputation paths for imputating r4:

1. 𝜋1: e1 edge for imputing r2: the L-sorted ratio for the edge-wise assumption is p (l2|l1,R = (10)) ∕p (l2|l1,R = (11)).
This is an identifiable case, as presented by (11a), since L1 ∈ pam-graph(L2); therefore, no sensitivity analysis is needed:

𝜔
𝜋1
1 = 0 (E1a)

2. 𝜋2: e2 edge for imputing r3: the R-sorted exponential tilt for this edge, according to Equation (11b), is

O(R1|l1l2) = exp
(
𝜔
𝜋2
2 l1

)
. (E1b)
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Note that the condition term R2 = 1 is removed from the terms since R1 ⟂⟂ R2|L.
3. 𝜋3: e3 edge for imputing r4: In this case the number of components for imputation is more than 1 (L1,L2), and

according to the m-graph, missingness indicators of the components have no direct causal edges. Therefore Condition 2
is met. We use (11d) to write the R-sorted exponential tilting terms

O(R1|L)O(R2|L) = exp
(
𝜔
𝜋3
3 L

)
(E1c)

4. 𝜋4: e4 edge for imputing r4: This is the first edge of the 𝜋4 imputation path for R4, where L1 is being imputed. similar
to 𝜋2, we have

O(R1|l1) = exp
(
𝜔
𝜋4
4 l1

)
(E1d)

5. 𝜋4: e1 edge for imputing r4: This is the second edge of 𝜋4 to complete the partially-imputed r4 by sampling L2. Similar
to 𝜋1, the variable L2 is in the condition set of the L-sorted ratio for this edge, and therefore this case is identifiable:

𝜔
𝜋4
1 = 0 (E1e)

Step 2: Obtaining the tilting parameters
Assuming the logistic model, we obtain the tilting parameters via Equation (16):

• Equations (E1a) and (E1e) directly give 𝜔𝜋1
1 = 0 and 𝜔𝜋4

1 = 0.
• In both Equations (E1b) and (E1d), we have the conditional odds of R1 in the process of imputing L1. It gives 𝜔𝜋2

2 =
𝜔
𝜋4
4 = 𝛽11.

• In Equation (E1b), we have two conditional odds of R1 and R2 in the process of imputing L1 and L2. The odds of R1
gives 𝛽11 for L1 and 𝛽12 for L2, while odds of R2 gives 𝛽21 for L2 only. The result is the tilting vector 𝜔𝜋3

3 = (𝛽11 + 𝛽21, 𝛽12).

E.4 MI Sampling
To estimate the probability densities p̂(Ls−r|Lr,R = s) in Algorithm 4, we categorize the estimation task in two classes:

1. when Lr ≠ ∅ that is, the target is a conditional density. We can utilize probabilistic models such as Gaussian process
or Bayesian neural network. For larger datasets, more scalable models such as neural linear model (NLM) are used.23

Assuming linearity, one may also implement Bayesian linear regression for binary/categorical or the generalized linear
model for continuous variables.

2. when Lr = ∅. For example, in a dataset with three variables L = (L1,L2,L3), to impute a row Li = (?, ?, ?) with the
missingness indicator Ri = r0 = (0, 0, 0)where s → r0 and s = (1, 1, 0), the target is p̂(l1, l2|R1 = 1,R2 = 1,R3 = 0). This
is the problem of density estimation, an unsupervised machine learning task where the goal is to establish an approach
to sample from an unknown distribution from which the observations (in case of the above example (L1,L2)) have
been drawn. In case of a univariate distribution with a large enough sample size, the most straightforward solution is
based on the empirical cumulative distribution function (eCDF) and the universality of the uniform theorem.24 The
eCDF approach is equivalent to sampling with replacement from a realization vector. However, this solution is not
feasible for high-dimensional data or for sparse and continuous variables. Dinh et al25 summarize the following more
advanced approaches:

• Maximum likelihood models such as Restricted Boltzmann Machines or Deep Boltzmann Machines described by
probabilistic undirected graphs, and Variational Autoencoders described by directed graphical models.

• Adverserial models such as GAN, and the novel real-valued non-volume preserving transformations (real NVP)
method proposed by Dinh et al.25

Finally, If the conditional distribution models are available for a set of variables, Gibbs sampling26 can also be used
for both aforementioned cases of conditional and marginal distributions.

In this study we chose GLM and eCDF approaches.
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APPENDIX F. SIMULATION SETUP

The simulation steps are as follows:

1. For L1, sample n independent realizations l(1)1 , … , l(n)1 ∼ Beta(a, b).‡.
2. Calculate L2 as l(i)2 = 𝜃2l(i)21 + 𝜃1l(i)1 + 𝜃0 + 𝜖i, where 𝜖i ∼ (0, 𝜎𝜖) are independent Gaussian additive noise terms.
3. Calculate success probabilities P1 and P2 via the sigmoid functions p(i)1 = 𝜎

(

𝛽11l(i)1 + 𝛽12l(i)2 + 𝛽10

)

and p(i)2 =

𝜎

(

𝛽21l(i)1 + 𝛽20

)

.

4. sample missingness indicators independently as R(i)1 ∼ Bern
(

p(i)1

)

and R(i)2 ∼ Bern
(

p(i)2

)

.

The simulation parameters are a, b parameters of the L1 distribution, 𝜃 = [𝜃0, 𝜃1, 𝜃2], 𝜎𝜖 parameters of the structural
equation of L2, and 𝛽 parameters of the missingness mechanisms. Figure F1 depicts an example of generated distribution
in this simulation scenario.

First, we ran the simulations for the sample size N = 1000 with the set of parameters presented in Table F1. Table F2
and Figure 8 present the comparison results between different methods. The unweighted CCA gave the highest bias in
the estimations. Also, MICE and MissForest (the MI methods) outperformed the single imputation KNN method. The
ISA method obtained the best results. To showcase the process of making informed guesses based on prior knowledge, we
considered two assumptions on the missingness model according to step 3 of ISA, corresponding to values 𝛽11, 𝛽21 ≈ −0.7,
and 𝛽12 ≈ −0.4. We used the reference parameter 𝜙, as explained in (17), to compare ISA with the default sensitivity
analysis.

To validate the results in a broader range of possibilities (According to Table F3 with a restriction that the missingness
indicators satisfy E[R1] ≥ 0.5 and E[R2] ≥ 0.5 ), we ran the same simulation scenario 50 times with different simulation
parameters. Similar to the previous scenario, we assumed that the missingness mechanism is known for ISA method.
Results in Figure F2 show smaller differences among models in this round of simulation compared to the first run. This
may be due to the fact that we intentionally devised the first scenario to showcase an extreme case where conventional
methods such as MICE and MissForest would fail, while in the second run parameters were chosen randomly.

F I G U R E F1 The full data distribution for the first simulation run with the parameters presented in Table F1. Fully-observed and
missing (either L1, L2 or both) samples are presented with green and purple dots respectively. The plot exhibits the deviation of the regression
line slope of the extrapolation density from that of the observed density.
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F I G U R E F2 Box plot visualization for the results of different simulation runs using Table F3.

T A B L E F1 The simulation parameters of the first round of simulation.

Parameter Value

𝛼, 𝛽 5, 3

(𝜃0, 𝜃1, 𝜃2) (0.3, 1.8, 0.8)

𝜎𝜖 0.2

(𝛽11, 𝛽21, 𝛽12, 𝛽10, 𝛽20) (−0.6,−0.6,−0.3, 0.6, 0.3)

T A B L E F2 The mean estimation bias, and STD of bias in the first simulation for the study variables L1,L2. for n = 1000, number of
iterations = 50, and simulation parameters according to Table F1.

Method E[L1] (bias ± std) E[L2] (bias ± std)

CCA 0.143 ± 0.010 0.100 ± 0.008

KNN 0.065 ± 0.003 0.019 ± 0.003

MICE 0.052 ± 0.004 0.011 ± 0.004

MissForest 0.013 ± 0.016 0.014 ± 0.015

ISA 0.004 ± 0.002 0.006 ± 0.003

T A B L E F3 The simulation parameters for the first round of simulation.

Parameter Value ranges

𝛼 [1, 10]

𝛽 [1, 10]

(𝜃0, 𝜃1, 𝜃2) [0, 2]3

𝜎𝜖 [0.1, 0.8]

(𝛽11, 𝛽21, 𝛽12) [−1,−0.3]3

(𝛽10, 𝛽20) [0.3, 1]2
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APPENDIX G. MIMIC-III DATASET

MIMIC-III public database20 is a comprehensive longitudinal database collected from over 40,000 patients who stayed in
critical care units of the Beth Israel Deaconess Medical Center between 2001 and 2012. Table G1 and Figure G1 provide
the summary statistics and distributions of the variables MCH, MCV, HbA2 and IL for 38,542 patients (whose ages are
higher than 10 years). For each patient, we averaged over multiple readings of each variable to obtain one value per patient.
Apart from the missing values, we also considered the error codes, for example, ERROR as missingness. The result for the

T A B L E G1 Summary statistics for three study variables in MIMIC-III database.20

Variable #-Miss. Range Mean (STD)

MCV 3858 57–141.4 89.65 (5.97)

MCH 3858 16.58–45.76 30.24 (2.27)

HbA2 38,465 0–5.4 2.64 (1.00)

Note: Range, mean and standard deviation values are calculated for observed cases.

F I G U R E G1 Distribution of MCV, MCH, IL and HbA2 in MIMIC-III database20 for the cohort with age > 10.
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percentages of missingness was 10.01% jointly for MCV and MCH, 89.83% for HbA2, and 76.74% for IL. Finally, we used
the binary interpretation of HbA2, as suggested by the flowchart in Figure 1, based on the threshold of 3.6%.

APPENDIX H. IMPUTATION ALGORITHMS

The original pattern graph imputation is presented in Algorithm 2, with the partial imputation Algorithm 1. Modified
imputation algorithm in the default sensitivity analysis is presented in Algorithm 3. The partial imputation algorithm
is modified under edge-wise sensitivity analysis (in ISA) as in Algorithm 4. This modified partial imputation algorithm
shall be utilized with the original imputation Algorithm 2.

Algorithm 1. Partial-imputation algorithm for pattern graphs1

Inputs: variables lr; the pattern r is determined by the input l
Sample a random pattern S from the pattern set paPG(r) with probability

p(S = s) =
p̂(lr|R = s)ns

∑
𝜏∈paPG(r)

p̂(lr|R = 𝜏)n𝜏
,

where ns =
∑n

i=1 I(Ri = s).
Impute the components in s − r by sampling from the conditional density:

L†s−r ∼ p̂(l|Lr = lr,R = s).

Return Ls = (Ls−r,Lr)

Algorithm 2. Pattern graph algorithm for imputing the entire data 1

1: Requires estimators p̂(lr|R = r); a regular pattern graph 
2: for i = 1,… ,n do
3: Set Lnow = Li,Ri and Rnow = Ri.
4: Execute Algorithm 1 with inputs Lnow and Rnow.
5: Update Lnow,Rnow to be the return of the previous step.
6: if Rnow ≠ 1d then
7: return to 2.
8: else
9: update Li = Lnow.

10: end if
11: end for
12: Return imputed L̂.



5450 ZAMANIAN et al.

Algorithm 3. Pattern graph imputation algorithm with rejection sampling step 1

1: Requires estimators p̂(lr|R = r); a regular pattern graph 
2: for i = 1,… ,n do
3: Set Lnow = Li,Ri and Rnow = Ri.
4: Execute Algorithm 1 with inputs Lnow and Rnow.
5: Update Lnow,Rnow to be the return of the previous step.
6: if Rnow ≠ 1d then
7: return to 2.
8: else
9: draw V ∼ Unif(0, 1)

10: if V ≤ exp (𝜔⊤r̄ Lnow,r)
exp (𝜔⊤r̄ r

then
11: update Li = Lnow;
12: else
13: return to 3
14: end if
15: end if
16: end for
17: Return imputed L̂.

Algorithm 4. Partial-imputation algorithm with edge-wise sensitivity analysis

1: Inputs: variables lr; the pattern r is determined by the input l; the tilting parameters 𝜔 for edges r ← paPG(r)
2: Sample a random pattern S from the pattern set paPG(r) with probability

p(S = s) =
p̂(lr|R = s)ns

∑
𝜏∈paPG(r)

p̂(lr|R = 𝜏)n𝜏
,

where ns =
∑n

i=1 I(Ri = s).
3: Impute the components in s − r by sampling from the conditional density:

L†s−r ∼ p̂(ls−r|Lr = lr,R = s).

4: draw V ∼ Unif(0, 1)
5: if V ≤ exp (𝜔⊤s L†s−r)

exp (𝜔⊤s s−r
then

6: update Ls−r = L†s−r;
7: else
8: return to 3
9: end if

10: Return Ls−r
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