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ỹ - Measurement residual

y m Lateral position

yres m Residual of lateral position

z - Node feature vector

z - Observation vector

VII





1 Introduction

1.1 Motivation

Autonomous Vehicles (AVs) have the potential to shape a more comfortable [1], safer [2], more inclusive [3],
and more efficient [4] type of transportation. The installation of AVs corresponds to the goal of releasing
humans from their driving task. A principal feature that characterizes the driving behavior of proficient
human drivers is anticipatory driving based on driving experience [5]. The fact that the lack of experience in
interactive traffic scenarios is the major reason for fatal accidents emphasizes this statement [6]. Moreover,
the risk of accidents is increased by inexperienced drivers, which are more likely to commit errors [7, 8] and
by the missing ability to detect dangerous situations [9, 10]. Consequently, if the human driver is assumed
as the model for the AV, the question arises of how anticipatory driving through driving experience can be
algorithmically realized. A comparison of the current performance of an AV and a human driver reveals
that even though AVs are already better at some aspects like quick response times, they perform worse in
tasks of complex, difficult-to-predict scenes [11]. Hence, the task of motion prediction based on scenario
understanding, which is the algorithmic equivalent of anticipatory driving based on driving experience, has
not been solved yet.

The challenges in developing such algorithms are manifold. The first aspect is the complexity of behavior
modeling in public road traffic [12, 13]. Even though there are distinct traffic rules, marked lanes, signs, and
traffic lights, modeling driving behavior is difficult because the underlying intentions are unknown. In addition,
individual driving styles must be considered, especially in mixed traffic with human drivers. Even with the full
automation of vehicles, the behavior of cyclists and pedestrians remains difficult to predict. Another aspect
is the interaction among traffic participants in dense traffic situations, which influences their behavior [14].
Maneuvers like overtaking, merging, and yielding are influenced by interaction. Thus, the prediction problem
can not only focus on a single traffic participant. Instead, the whole scene has to be analyzed [15]. A third
issue is noisy and incomplete sensor data and occlusions [16]. Essential aspects such as turn indicators or
pedestrians’ direction of view can not be reliably detected, and occlusions exacerbate the prediction task
because they limit the available information. In addition, weather conditions negatively influence the sensor
performance. A further major challenge is the reliability of the algorithms. The AV must ensure a high level
of safety. As a rough reference, an EU regulation for the type-approval of AVs exemplarily determines an
aggregated acceptance criteria of 10−7 fatalities per hour of operation [17]. To achieve this, unexpected, rare
events such as road accidents, sudden vehicle breakdowns, and medical emergencies must be solved by the
AV [18]. Handling these edge cases is stated as the main issue preventing large-scale autonomy [19].

In summary, the high relevance of motion prediction based on scenario understanding on the one hand
and the manifold challenges to develop these two features, on the other hand, emphasize a strong need for
research in this field to enroll large-scale autonomy on public streets.
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1 Introduction

1.2 Research Objectives

Motion prediction is extensively researched, with several competitions on large datasets, and the methods
that have been developed show promising results. The proposed methods feature complex behavior models
and interaction awareness and achieve high prediction accuracy on specific metrics. However, the reliability
of these algorithms in terms of robustness under real-world conditions such as varying input data quality
and the compliance with the constraints of a specific Operational Design Domain (ODD) have been sparsely
covered yet. Both are crucial aspects for reliable real-world application. Thus, despite accurate prediction
forecasts on fixed datasets, the reliability needs to be improved. Besides that, the adaptivity of the methods
to unknown scenarios to maintain prediction accuracy is rarely investigated. Most state-of-the-art methods
are developed on one target dataset they can accurately predict, but their behavior under varying scenes and
their adjustment to these circumstances are not considered. The development of different prediction methods
for specific use cases and object types additionally indicates no consensus about a universal method [20]. It
even leads to implementing multiple independent prediction models in one software stack [21]. Thus, another
crucial point is developing an adaptive prediction, which features accurate usage on diverse scenes. Beyond
the isolated investigation of these two criteria, combining both to create a generic prediction framework is
another point of interest (Figure 1.1).

Reliability in Application

Robustness under real-world conditions

Compliance with ODD constraints

Adaptivity to Scenes

Accurate prediction in various scenes by 

adjusting the prediction behavior

Generic Motion Prediction Framework

Figure 1.1: The research objective of this thesis: The investigation of reliable and adaptive methods for motion
prediction and their combination in a generic prediction framework.

This thesis investigates these aspects of achieving reliable and adaptive prediction behavior and discusses
their combination in a generic framework. The term reliability comprises the deployment in a full AV software
stack in real-world applications. It includes handling sensor noise and perception latency and guaranteeing
to fulfill specific constraints in the target ODD. Adaptivity is given if a prediction method maintains accuracy
in diverging scenes by adjusting its behavior to current circumstances. The term prediction accuracy is
defined by a specific metric and related threshold value for the intended application, which the method
has to ensure. In addition, an important aspect of adaptivity is recognizing algorithmic limitations to avoid
erroneous predictions. A generic framework for motion prediction must incorporate both features. Reliability
in a method’s application under specific ODD conditions shall be given, but also the adaptivity to various
scenes and the handling of out-of-distribution data is desired to expand the ODD.
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1 Introduction

1.3 Structure of the Thesis

The development of reliable and adaptive prediction methods contributing to a generic prediction framework
for autonomous driving is approached as outlined in Figure 1.2. First, the related work is introduced, which
comprises sensor late fusion, object tracking, and motion prediction (Chapter 2). The first two research areas
are considered because they are essential upstream tasks to realize motion prediction. Based on these
surveys, a review is drawn, which results in the identification of the research gap and the formulation of
the research question. Five specific research items are derived, subject to investigation by the succeeding
two major research streams. The first is reliable motion prediction, investigated in the ODD of autonomous
racing (Chapter 3). Two methods are introduced, contributing to the reliable application of motion prediction
algorithms. The first is a multi-modal sensor fusion and object tracking method, which increases the accuracy
and plausibility of the detection input and compensates for its delay. The second is a physics-constrained
deep neural motion prediction method that enables reliable prediction behavior of neural networks (NNs).
The second research stream focuses on an adaptive prediction method for public road traffic (Chapter 4).
The proposed method comprises a hybrid trajectory prediction, which integrally combines multiple prediction
algorithms to enable a diverse behavior. The second part of the method is a self-evaluation algorithm.
This evaluation adjusts the prediction behavior to the current circumstances and selects the most suitable
method from the hybrid prediction model. The presented methods and results of the two research streams
are discussed in Chapter 5 by reviewing the thesis’ research items. In addition, the discussion focuses on
merging the two research streams into one generic framework for motion prediction. Afterward, the thesis’
research question is reviewed and an outlook on future work is given. The thesis terminates with a conclusion
of the presented research (Chapter 6).

6  Conclusion

2  Related Work

Sensor Late Fusion and Object Tracking Motion Prediction

Identification of the Research Gap

3  Reliable Motion Prediction in

     Autonomous Racing

Multi-Modal Sensor Fusion and Object Tracking

4  Adaptive Motion Prediction in

     Public Road Traffic

Hybrid Trajectory Prediction

Self-EvaluationPhysics-Constrained Deep Neural Motion Prediction

5  Discussion

OutlookReview of Research Question

Review of Research Items Generic Prediction Framework

Figure 1.2: Structure of the thesis.
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2 Related Work

The related work of this thesis comprises sensor late fusion, object tracking, and motion prediction. In the
current state of the art, these fields are researched separately. In contrast, this thesis investigates their
combination intending to enable a generic motion prediction based on environmental perception.

The foundation for the review of the state of the art and the methods of the thesis is established by
introducing relevant terms and definitions (Section 2.1). Subsequently, the surveys on sensor late fusion
(Subsection 2.2.1) and object tracking methods (Subsection 2.2.2) are presented. While the latter is a core
task of associating objects in consecutive frames, the focus is put on late fusion for two reasons. First,
multi-modal sensor setups are the default case of current AVs, so various sensor inputs have to be assumed.
Second, late fusion, as the most modular fusion method, is compatible with early and mid-level fusion
methods and includes single-sensor setups. Because of this, it offers the highest degree of flexibility. The
surveys close with a review of the presented late fusion and tracking methods (Subsection 2.2.3).

In Section 2.3, methods for motion prediction are presented, which comprise physics-based (Subsec-
tion 2.3.1), pattern-based (Subsection 2.3.2) and planning-based methods (Subsection 2.3.3). Besides the
related work in motion prediction, a central aspect for the generalizability of these methods is presented in
Subsection 2.3.4: The consideration of scenario understanding in the prediction task to enhance the overall
prediction performance in terms of adaptivity and awareness. Afterward, the presented related work of motion
prediction and scenario understanding is reviewed (Subsection 2.3.5).

The introduction of the related work yields the identification of the research gap and the formulation of the
research question (Section 2.4). In addition, specific research items are defined to fill the research gap.

To correctly associate the review of the state of the art and the methodical procedure, the modular AV software
stack shall be introduced at first. As outlined in Figure 2.1, the object tracking and motion prediction are
located between the perception and the planning modules. The perception comprises the tasks of localization,
mapping, and detection based on a multi-modal sensor input. The perception module provides lists of
detected objects, which are input to the tracking module. In addition, the perception outputs an environment
map and the ego state, which are used in the tracking and prediction modules. Within the tracking module,
the lists of detected objects are fused in the assumed late fusion and associated in consecutive frames.
The resulting tracks are specified by Unique Identifiers (UIDs). The output of the tracking is a unified object
list comprising the current and past object states of the surrounding objects. The prediction module uses
this unified list to estimate the future states of the objects. Depending on the overall software architecture
and planning concept, the module’s output can be represented on the behavior level or as occupancy
grids, maneuvers, or trajectories. The object predictions are used in the planning module to determine the
movement of the ego-vehicle, which is then executed by the control module.
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2 Related Work

1- 2

Modular Software Stack 

Prediction ControlTracking PlanningPerception ActuatorsSensors

Figure 2.1: Schematic overview of the modular AV software stack [22]. Input to the software is data from sensors,
which perceive the local environment and measure internal or external vehicle states. The autonomous
software stack completely fulfills the driving task and outputs the desired command signals to the vehicle
actuators. Tracking and prediction are between the perception and the planning module.

2.1 Terms and Definitions

The relevant terms and definitions in the scope of this thesis are given to establish a common understanding.
International standards are used if available. Otherwise, definitions are taken from and aligned with the state
of the art in autonomous driving and artificial intelligence.

Autonomous Vehicle:
An Autonomous Vehicle (AV) is a vehicle capable of operating without human involvement based on the
environmental perception of the sensors it is equipped with. Neither is taking over control of the vehicle by a
human nor is the presence of a human inside the vehicle required. According to the standard SAE J3016 [23],
which contains taxonomies and definitions for terms related to driving automation systems for on-road motor
vehicles, this definition corresponds to Level 4 and Level 5 of driving automation.

Operational Design Domain:
The Operational Design Domain (ODD) of an AV defines the limits within which the AV system or specific
features are designed to operate [23]. A specific set of conditions describes the ODD. These include
environmental (e. g. weather or road type), geographical (e. g. route), time-related (e. g. only weekend), and
traffic-related (e. g. no pedestrians) factors.

Scene:
A scene is a spatiotemporal setup of objects from a specified Point of View (PoV) [24] and is constructed
out of the environment, static, and dynamic objects. In addition, driving instructions can be given [25]. It
can be considered as a discrete moment, a snapshot of the environment, the surrounding objects, and the
observer’s self-representation [26].

Scenario:
A scenario is defined as a sequence of scenes and describes the temporal evolution of concatenated
scenes [26]. Thus, unlike a scene, a scenario lasts over a specific time span. In addition, actions and events
may be given to specify the temporal evolution of the scenario.

Object Tracking:
Object Tracking is defined by the association and estimation of an object’s state in consecutive frames based
on an initial specification of the object’s state. Thus, it comprises two basic steps: Creating Unique Identifiers
(UIDs) for an initial set of object detections and maintaining these UIDs across multiple frames by associating
the detected objects [27].

Motion Prediction:
Motion prediction refers to the human skill of anticipatory driving. It is defined by forecasting the future states
of an object based on tracked object states and semantic information [28, 29].
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2 Related Work

Scenario Understanding:
Scenario understanding is the equivalent of human driving experience. It is described as the algorithmic capa-
bility to encode particular scenes or entire traffic scenarios. Based on scenario understanding, assumptions
about the intentions and behavior of the surrounding objects are derived, and the criticality of the scenario
can be assessed.

Maneuver:
A maneuver is a discrete action an object can execute without a detailed movement specification, such as
’turn right’ or ’overtake left’ [30].

Trajectory:
A trajectory is a path that an object in motion follows as a function of time. In the context of AVs, these are
the two-dimensional positions over time.

Reliability:
Reliability is defined as the robust application of prediction methods in a specific ODD under real-world
conditions while ensuring compliance with given ODD constraints. Real-world conditions comprise the
aspects of deployment in a full AV software stack, fulfilling computational requirements on the target hardware
and handling varying input data quality in terms of noise and latency.

Adaptivity:
Adaptivity is defined as adjusting the prediction behavior to maintain prediction accuracy in various scenes
and recognizing algorithmic limitations to avoid erroneous predictions. Prediction accuracy refers to fulfilling
a threshold value of a specific metric.

2.2 Sensor Late Fusion and Object Tracking

Even though there are major advances in sensor technologies for AVs, multi-modal sensor setups are still
the dominant concept in the state of the art [31–35]. Fusion concepts are required to derive the maximal
information content from these setups. Besides that multi-object tracking is necessary to associate succeeding
frames to provide a consistent object motion history and to reduce sensor noise by estimation methods.

2.2.1 Sensor Late Fusion

Sensor fusion combines data from multiple sensor modalities to improve specific features of the detection
task [36]. There are three common sensor fusion levels: Early fusion at the raw-data level, mid-level fusion
at the feature level, and late fusion at the decision level [37]. The fusion of multi-modal sensor data is
required because all commonly used sensors show limitations [38, 39]. The comparison of the three fusion
approaches [40] reveals that early fusion enables the extraction of multi-modal features, but it is more
sensitive to noise and sensor outliers, which reduces the robustness. The limitation of mid-level fusion
algorithms is identifying suitable features to be fused, which requires a large amount of data. Besides, low
and mid-level fusion methods show a higher sensitivity against sensor calibration errors. In contrast, late
fusion approaches show higher robustness but lower performance in terms of mean Average Precision
(mAP) because no intermediate sensor features can be combined. In addition, late fusion is less complex but
offers worse classification performance. Early fusion is typically realized by camera-LiDAR fusion through
deep learning [41–49]. Alternatively, deep learning camera-RADAR fusion approaches exist [50, 51]. In
comparison, camera-LiDAR approaches are beneficial in terms of accuracy [52]. In the case of mid-level
fusion, merging the data of two modalities on various steps to learn the relevant levels of feature fusion is
proposed [53, 54]. Due to the modularity in combining multiple detection pipelines and robustness against

7



2 Related Work

calibration errors, sensor noise, and outliers, late fusion methods are the most suitable to fulfill the thesis’ focal
point on reliability. Thus, the focus is put on late fusion approaches in the following. For further information
and reviews of sensor fusion techniques, the reader is referred to [55–57]. An analysis of the application of
multi-sensor fusion approaches on embedded platforms is given in [58].

Late fusion is typically realized by recursive Bayesian estimation. The established filter techniques are the
linear Kalman Filter (KF) [59], the Extended Kalman Filter (EKF) [60, 61], the Unscented Kalman Filter
(UKF) [62] and Particle Filters (PFs) [63]. Instead of Bayesian filters, stochastic sampling approaches for
data fusion can be used [64]. Multiple comparisons of different Bayesian filter methods for late fusion exist.
In [65, 66], the UKF and the PF outperform the KF for a joint probabilistic camera-LiDAR data fusion with
the highest calculation effort attributed to the PF. For combined detection through clustering and tracking
of LiDAR and RADAR, the UKF shows superior performance compared to the EKF on a real-world data
evaluation regarding tracking error but has a higher computation time, and its parameter tuning is more
complex [67].

An important aspect is the adaptivity of the Bayesian filter parameters with respect to the received mea-
surement. As a function of measurement distance, angular position, and object speed, the measurement
uncertainties of the detections can be dynamically adjusted [68]. The validation on two state-of-the-art meth-
ods [66, 67] shows an improvement of 42 % on 1/10-scaled AVs equipped with camera and LiDAR sensors
compared to a fixed error model. Other approaches to improve the adaptivity are the hybrid combination of
an UKF with a NN or the implementation of a motion model ensemble, which combines multiple models [69].
Regarding the applicability, the methods’ calculation efforts must be considered.

The validation of late fusion methods in real-world applications shows the benefits compared to uni-modal
methods in terms of tracking accuracy [70]. However, the shown validation of an EKF-based method is
limited to low-speed maneuvers on a parking site. In contrast, a real-time detection and tracking system with
camera-LiDAR fusion is proposed for urban environments [71]. The system is built from two independent
detection pipelines of vision-based deep learning and LiDAR clustering, fused in a KF. A real-world evaluation
is conducted in three scenarios: lane change, stop-and-go, and overtaking. However, besides the low-speed
range below 10 m s−1, no investigation on large object distances and transient behavior is reported, which
limits the validity of the approach. The limited validation also applies for camera-LiDAR late fusion proposed
in [72]. It is only validated on low-speed stop-and-go scenarios extracted from the large-scale dataset
KITTI [73]. The approach applies a Bayesian fusion to optimize the position estimation given by the camera
and LiDAR. Again, the results reveal an improvement in terms of position accuracy compared to the non-fused
detection pipelines. Late fusion can also be realized by deep learning techniques. A proposed method for
3D data association compares multiple motion models, which are then weighted and merged by means of
a NN [69]. Regarding the deployment in an AV stack, the validation on real-word traffic data shows high
position errors.

2.2.2 Multi-Object Tracking

Methods for multi-object tracking can be distinguished in online and offline tracking. While the former uses
only current and previous frames to re-identify the detected object (real-time processing), the latter additionally
uses future frames (posterior processing). In the field of AVs, only online tracking is suitable, which is surveyed
in the following.

Deep-learning-based online tracking algorithms can be classified into deep network feature-based enhance-
ment, deep network embedding, and deep network learning [74, 75]. While these methods demonstrate
high tracking accuracy within specialized datasets, the applicability is limited to the particular ODD of the
originating data, a fixed sensor configuration, and the reliance on annotated data [76]. Besides that, there are
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substantial demands for training and computational resources and the accuracy of these approaches heavily
relies on the quality of the dataset, especially the quality of the labeling, which requires time and financial
effort. Due to these reasons and the thesis’ focus on real-world applications, they are not further considered.

Focussed on Bayesian filter methods, a central aspect of multi-object tracking is the association of new
detections to old objects with specified UIDs from previous frames. One approach is to formulate a bipartite
matching problem [77]. The bipartite graph comprises the two disjoint sets of newly detected objects and old
tracked objects. The goal is to match these two graphs (Figure 2.2). To solve this assignment problem, the
Hungarian method [78], also called Kuhn-Munkres-algorithm, can be used. The method is a combinatorial
optimization algorithm that aims to find the maximum matching in the bipartite graph. As a metric for the cost
function of a match, the Intersection over Union (IoU), the Mahalanobis distance [79, 80], or the Euclidean
distance can be used. Alternatively, affinity models are suitable for the data association.

Set of new

Detected Objects

Set of old

Tracked Objects

Figure 2.2: Bipartite matching problem between the two sets of new detected and old tracked objects. The goal is
to match these two sets by finding the maximum matching (black) from all potential assignments (gray)
based on a cost function.

A comparison of different cost functions for the data association using the Hungarian method with a KF for
state estimation on the dataset of NuScenes [81] reveals the following: In terms of the Average Multi-Object
Tracking Accuracy (AMOTA), the Mahalanobis distance in combination with a NN-based learned distance [82]
achieves a score of 0.55, which is superior to the IoU as cost function [83] with an AMOTA of 0.45. Regarding
calculation time, the IoU is beneficial, the authors report the real-time capability. Besides that, the authors
conclude that using the KF is assumed to leave room for improvement by using more advanced state
estimators. Compared to the LiDAR-only tracking approach of the two presented methods, a camera-based
tracking method achieves an AMOTA of 0.59 on the NuScenes dataset [84]. A two-stage data association
method is proposed. The first step only matches high-confident tracks with new detections. Afterward, the
second step associates the low-confident tracks with the remaining detections or high-confident tracks.
Otherwise, the respective low-confident track is discarded. The Mahalonobis distance is used to determine
the affinity between tracks and detections. The method is additionally validated on the Waymo dataset [85]
achieving an AMOTA of 0.37. The divergent results can be explained by the limited adaptivity of the algorithm
and by the different complexities of the datasets.
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2.2.3 Review of Late Fusion and Tracking Methods

Reviewing the related work of late fusion and multi-object tracking, it can be stated that deep-learning-based
methods in both fields contain several limitations. The proposed methods show a high data dependency
and training and calculation effort, limiting reliable application. Furthermore, the inherent opacity of deep
learning-based algorithms constrains their interpretability. Thus, for these methods, the usage in a full AV
stack is of high effort. In addition, the methods lack modularity for varying sensor setups and detection
pipelines.

Focussed on the methods that are validated in real-world applications, challenging scenarios are missing to
prove algorithmic limitations. The reported fusion methods’ applications are at speeds of below 10 m s−1 or
in steady-state scenarios. Transient behavior is not analyzed. The introduced tracking methods are validated
in diverse scenes but only in fixed datasets. Full-stack real-world application is missing, which implies new
issues of noisy and delayed detection input data. In addition, the demand for labeled data, which is required
to train the learnable features of some methods, restricts the modularity to change sensor setups.

In summary, the state of the art misses fusion and tracking methods that are deployed in full AV software
stacks and applied in demanding scenarios, which comprise high motion dynamics and transient situations.
Besides that, the development of reliable methods that are able to handle noise, outliers, and accumulated
latency in the detection input is required.

2.3 Motion Prediction

Motion prediction can be made on different degrees of abstraction [86]. Behavior prediction is the most
abstract level and aims to estimate an object’s intentions without details about the execution. Maneuver
prediction tries to forecast discrete actions of the object. Trajectory prediction is the most detailed level. It
can be realized unimodally that only one trajectory is predicted, or multi-modally, in the way that multiple
trajectories with according probabilities are predicted. The tracked object history of the target object and the
surrounding objects, object features, and semantic information such as road geometry and driveable areas
are used to determine a motion prediction.

Motion prediction methods can be classified based on the underlying motion model and the approach for
risk estimation [87]. Another classification distinguishes key attributes such as model architecture, training
procedure and evaluation criteria, and proposed application of the prediction models [88]. Further reviews
with a focus on deep learning [28, 89], pedestrian prediction [90, 91], motion prediction in the scope of
the safety standards [92] of ISO 26262 [93] and SOTIF [94], and general decision-making tasks [95–97]
exist. In the scope of this thesis, prediction methods are classified into physics-based, pattern-based, and
planning-based prediction models, proposed in the author’s prior work [86]. By this, the approaches are
classified based on the respective investigation methodology of the object’s motion. Table 2.1 summarizes
the three classes and guides through the following survey.
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Table 2.1: Classes of motion prediction [86]. The concepts of the prediction classes and their major methods with
descriptions and application fields are outlined.

Class Concept Methods

Physics-based Prediction Sense – Predict State Estimation:
Probabilistic trajectory prediction and uncertainty quan-
tification through kinematic models and Bayesian filters
Application: Short-term prediction, collision check
Reachable Set:
Reachability analysis of all possible states within physi-
cal constraints to determine an occupancy map as an
over-approximation of all reachable states
Application: Online verification, safety assessment

Pattern-based Prediction Sense – Learn – Predict Clustering:
Clustering of trajectories to determine prototypical tra-
jectories or maneuver clusters (k-means, agglomera-
tive clustering)
Application: Dimension reduction, determination of pro-
totypical trajectories
Classificiation:
Classification of object motion into predefined classes
to determine future maneuvers (Support Vector Ma-
chine, Hidden Markov Models, Recurrent Neural Net-
works)
Application: Maneuver prediction
Encoder-Decoder:
Extraction and compressed representation of relevant
information from input data (encoding) and derivation
of future trajectories (decoding) through deep learning
Application: Long-term prediction

Planning-based Prediction Sense – Reason – Predict Learning from Demonstration:
Learning of optimal behavior from expert demonstra-
tions by cost function estimation (Inverse Reinforce-
ment Learning) or direct policy determination (Imita-
tional Learning)
Application: Long-term prediction
Interaction-aware Planning:
Incorporation of interactions resulting from the behav-
ior of surrounding objects into ego-motion planning by
means of partially observable Markov Decision Pro-
cesses or game theoretic approaches
Application: Holistic, interaction-aware planning
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Figure 2.3 outlines the classification exemplary. The scene definition is given in Figure 2.3a. It shows two
vehicles driving behind each other on a two-lane highway. The trailing vehicle, vehicle 1, is faster than
the leading (v1 > v2) and has a yaw rate ψ̇1 > 0, while vehicle 2 has a yaw rate ψ̇2 = 0. If the three
different classes of motion prediction are applied, the following forecasts result. The physics-based model
extrapolates the current object state based on a constant velocity and yaw rate assumption (Figure 2.3b).
The extrapolation does not hold for long-term prediction as the predicted trajectory indicates that vehicle 1
will leave the road, which is improbable from an observer’s PoV. In comparison, a pattern-based model aims
to derive a motion pattern from the given scene consisting of the two vehicles, their states, distance to each
other, and the road geometry (Figure 2.3c). In this case, an overtaking pattern is determined as most suitable
and applied to forecast vehicle 1’s motion. Lastly, a planning-based model applies a cost function to the given
scene and assumes the future behavior based on the lowest costs (Figure 2.3d). The two exemplary options
are switching lanes and acceleration on the fast lane with the costs θ1 and overtaking and switching back
to the right lane with the costs θ2. Since θ1 < θ2 holds, the prediction of switching lanes and accelerating
results for vehicle 1.

𝑣1 > 𝑣2
ሶ𝜓1 > 0; ሶ𝜓2 = 0

𝑣1 𝑣2

𝑥

𝑦

1 2

(a) Scenario Definition

𝑥

𝑦

𝑣2
1 2

CTRA-Extrapolation

(b) Physics-based Prediction

Pattern: Overtaking 𝑥

𝑦

𝑣2
1 2

(c) Pattern-based Prediction

Cost 𝜽𝟏

Cost 𝜃2

𝑥

𝑦

𝑣2
1 2

𝜽𝟏 < 𝜽𝟐

(d) Planning-based Prediction

Figure 2.3: Illustration of the three prediction classes [86]. An exemplary highway scene of two vehicles in a row is
given. If a physics-based model is applied, the current state of vehicle 1 is extrapolated. A pattern-based
model derives the forecast from known motion patterns. The planning-based approach compares the
costs of the different options to determine the forecast.
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2.3.1 Physics-based Prediction

Physics-based prediction methods use equations of motion from classical mechanics to model the future
motion of an object. Dynamic or kinematic models can be used to describe the motion. The forecast can be
described as trajectory by means of state estimation models or as occupancy grids by means of reachable
sets (Table 2.1).

State Estimation

State estimation is realized by Bayesian filters, known from object tracking (Subsection 2.2.2). The filter
extrapolates the current object state to the future through a motion model. Dynamic models like bicycle
models and four-wheel models can be used to model the object’s motion. However, kinematic models are
preferred because the environment sensors can not measure the required object states to use a dynamic
model, and the level of detail of dynamic models is not required. Figure 2.4 outlines common kinematic
models and their dependencies.

𝜅 =
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𝑣
= 0

ሶ𝜓 = 0

CA

𝑎 = 0

𝑎 = 0

𝑎 = 0

𝜅 =
ሶ𝜓

𝑣
= 0

ሶ𝜓 = 0

CV

CTRACTRV

CCV CCA

Figure 2.4: Overview of kinematic models [98]. By setting a specific state variable to zero, the more sophisticated
models can be transformed into simpler ones.

The models with the lowest complexity assume linear behavior of Constant Velocity (CV) or Constant
Acceleration (CA). They are beneficial because optimal propagation of the state probability is possible but
are insufficient if rotating motion has to be modeled. The yaw rate can be considered in the state equations
to achieve this. The resulting curvilinear models assume a constant yaw rate. Constant Turn-Rate and
Velocity (CTRV) or Constant Turn-Rate and Acceleration (CTRA) motion behavior is assumed. These models’
limitation is that they do not consider the correlation between velocity and yaw rate, which can change the
yaw rate even if the vehicle does not move. To avoid this, the curvature κ can be used, which describes the
correlation between the yaw rate and the velocity. The motion models of Constant Curvature and Velocity
(CCV) and Constant Curvature and Acceleration (CCA) result. The choice of which model to use depends
on the motion behavior of the objects, available measurement features, and measurement accuracy. The
acceleration and the yaw rate are especially difficult to model because they are prone to oscillations and,
with state-of-the-art detection methods, not measurable. A study states that the best compromise between
accuracy and computational costs is achieved by the CTRA-model, even though the sensitivity to noise is
mentioned as drawback [98, 99].
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The motion models can be applied separately in state estimators like KF [100], EKF [101], UKF [102] or
PF [103, 104] but can also be combined to improve the adaptivity. The Interacting Multiple Model (IMM) [105]
is an established method [106–109] to combine multiple models. It uses a Markov Model to calculate
the probability for each kinematic model to occur and weights them accordingly to output the prediction.
To enhance the models’ plausibility, the state estimation can be extended by the Intelligent Driver Model
(IDM) [101].

Reachable Sets

An alternative approach for physics-based motion prediction is to assess all potential states an object can
reach within a specified time horizon based on predefined constraints for dynamic limits. The set of possible
states is defined as the reachable set [110–112]. The reachable set can be approximated using convex hulls
to account for errors resulting from these assumptions and to simplify its shape for subsequent processing
steps [110]. Given that the reachable set expands with the prediction horizon, occupying a substantial
amount of space, it can be represented stochastically through a probability distribution [110]. The set-based
prediction of traffic participants [113] is a dedicated tool that leverages reachable sets. It predicts future
occupancy by considering all physically feasible maneuvers and additionally incorporates traffic rules to
constrain the solution space. A drawback of considering traffic rules is the strong dependency on these rules
and road users’ compliance with them. Alternatively, to reduce the size of this set, constraints like kinematic
simplifications can be applied, or non-holonomic constraints can be taken into consideration [114].

2.3.2 Pattern-based Prediction

Pattern-based prediction methods match a scene to the most probable previously learned or implemented
pattern. The pattern description depends on the ODD and can comprise object states and features or
semantic information such as road geometry and driveable areas. The abstraction level can range from
single-trajectory to maneuver prediction. This prediction class can be divided into the three sub-categories of
clustering, classification, and encoder-decoder models (Table 2.1).

Clustering

Clustering groups trajectories to create prototypical trajectories, which are compared to the target object’s
movement to output its future motion. The prototypical trajectories are extracted from tracked data by
clustering methods. k-means [115] and agglomerative clustering [116] can be used. The similarity between
observed and prototypical trajectory is calculated by metrics like the Euclidean distance [117] or the modified
Hausdorff distance [118]. Alternatively, non-metric similarity functions like Dynamic Time Warping (DTW) [119]
or Longest Common Subsequence [120] can be used. A study comparing different approaches to determine
the trajectory similarity reveals that the modified Hausdorff distance is the most suitable metric for intersection
scenarios and highway traffic [121]. Another comparison at intersections through the k-means algorithm
between the DTW function and Euclidean distance metric recommends DTW [122]. Through DTW, a higher
distance between the cluster centers and a lower inter-cluster distance are achieved, which both correspond
to better data separation.

The inherent drawback of clustering methods is the restriction of the prediction solution space to the number
of prototypical trajectories. To counteract this, superposition can be applied. Gaussian Mixture Models, which
superpose single trajectories based on the probability of matching the observation, can be used [123, 124].
A survey on methods for trajectory clustering, distance metrics, and data processing is given in [125].
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Classification

If desired maneuvers are a priori defined and the observations are classified into them to derive the prediction,
a classification approach is given. For maneuver classification, Support Vector Machines (SVMs) [126],
Hidden Markov Models (HMMs), Dynamic Bayesian Networks (DBNs) or NN-based approaches can be used.
The SVM can be applied for lane change detection [127–129] and maneuver prediction at intersections [130].
To model sequential behavior, HMMs are beneficial, which belong to the class of discrete Markov models.
Thus, they describe a scenario with discrete states and transition probabilities. The Markov property that
only the current state is relevant for the next state transition or action applies [131]. The term hidden refers
to the fact that the current state, which is the current scene, is not completely known but estimated. HMMs
are used to predict lane changes [132] and for highway applications [133]. DBNs are applied to interactive
scenarios [134, 135]. These models estimate the object’s motion through Bayesian inference by outputting a
probability mass function over a given set of maneuvers.

Encoder-Decoder

Deep neural network encoder-decoders are currently the most performant prediction approaches in the
competitions on large-scale prediction datasets [15, 81, 136, 137]. The models consist of an encoding part,
which extracts information from the scene and transforms it into a compact representation, the latent space.
Based on this latent representation, the decoder determines the motion forecast by transforming the latent
information back to a physical representation. The latent scenario representation as a core part of these
architectures is analyzed in [138]. The results presented show that clusters can be identified in the latent
space for different maneuvers, but further analysis of the relation between given scenes, latent representation,
and resulting prediction accuracy is recommended. Despite the common structure of encoder-decoders, they
differ in the type of encoder network architectures used and the latent representation. Table 2.2 outlines the
different architectures.

Table 2.2: Classification of encoder-decoder architectures for motion prediction. The classification is between the type
of encoder network architecture used and the latent space representation [86].

Discrete Encoder-Decoder
Discrete

Variational Autoencoder
Distributional

RNN • Grid Map [139, 140] • Kinematic Constraint Layer [141]
Temporal • GAN [142–144]

• Spectral Clustering [145]
• Attention Mechanism [146]

CNN • Rasterized Grids [147–151]
Spatial • Target-based [152]

RNN-CNN, ConvLSTM • BEV-rendering [153–157] • Conditional GAN [158]
Spatiotemporal • Gabor Convolutional Networks [159] • Regression-based Adaptation [160]

• Social Tensor [161–164] • Joint Distribution [165, 166]
• Spatial Horizon Interaction [167] • Diversity Sampling [160]
• Attention Mechanism [168–170]

GNN • Heat Map [171–173] • Multi-Graph Encoding [174]
Relational • Temporal Scene Graph [175–177] • Attention Mechanism [178–180]

• Target-based [181–185] • Ego-agent conditioned [186]
• Graph Convolutional Network [187–190]
• Motion Transformer [191–197]
• Transformer GAN [198, 199]
• Mix and Match [200]
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The encoder network architectures can be classified into temporal, spatial, spatiotemporal, and relational.
The decoder is constructed out of Recurrent Neural Networks (RNNs) because of the temporal enrollment of
the object’s future. Convolutional Neural Network (CNN)-based decoders can be used to output occupancy
maps. The latent space can be represented discrete or distributional. The input is mapped into the latent
vector with specific values in the first case. Due to this fact, the models are prone to overfitting. In addition,
the latent space is not constrained. Thus, there is no continuity given between different latent scene clusters.
These issues can be compensated by using a distributional representation of the latent space, which encodes
the scene into a continuous latent representation. The latent distribution can be regulated during training to
enforce concatenating distributions. The Kullback-Leibler divergence [201] is used for the regularization. Even
though the higher generalizability argues for variational autoencoder compared to discrete encoder-decoder,
they are more difficult to train because of the regularization of the latent space [202] and show inferior
results in the state of the art. Due to these facts, they are less used (Table 2.2), and the focus is on discrete
encoder-decoders in the following.

Temporal encoding is realized by RNNs. Applications are shown for highway scenarios [139, 140]. The
presented approaches rasterize all predicted trajectories into a grid map on which the ego-motion planning is
based. To enhance the generalizability, Generative Adversarial Networks (GANs) can be used [142, 143].
Also, noise can be added to the latent representation, which improves the trajectory hypothesis coverage
and, by this, the resulting risk assessment [144]. To model interactions, a spectral clustering [145] of the
scene or Attention Mechanisms (AMs) [146] can be integrated into the input processing.

The spatial context of a scenario can be modeled by CNNs. Either static information, such as road geometry,
can be encoded, or the objects can be placed in spatial relation to each other to model their interactions.
Pure CNN-based approaches render the scene information into images and output future occupancy grids
by concatenating CNNs in the decoder [147–150]. Additional dimensions can extend the rasterized grids to
render further information [151]. To enhance the feasibility of the predicted trajectories, the network can be
conditioned to determine the endpoints first and refine the trajectory in a second step [152].

To combine the advantages of temporal and spatial encoding, hybrid network architectures of RNNs and
CNNs are proposed. Besides, ConvLSTMs, which are architectures dedicated to processing spatiotemporal
data, are presented. The benefits of combining both approaches are shown in [153, 155], which report
improvements utilizing spatiotemporal architectures compared to the spatial baseline architecture [147]. Also,
the encoding of the object history through a RNN into a Social Tensor (SOT) [161], which is processed by
CNN-layers, shows an improvement in the Root Mean Squared Error (RMSE) and Negative Log-Likelihood
(NLL) compared to a RNN-based appraoch [140]. Further improvements of the SOT-approach are the
additional encoding of the map information [163], non-spatial pooling by means of multi-head attention [162],
and the weighting of interactions based on the target object’s Field of View (FoV), which is beneficial in dense
traffic scenarios [167]. By means of Self-Supervised Learning (SSL), pre-trained models can be adjusted
during inference [164] or the training can be regulated for robustness enhancement [203]. Through AMs [204]
such as Memory Augmented Neural Networks, the latent space is elementwise addressable. This results in a
more efficient latent representation and prediction error reduction compared to the state of the art without
memory augmentation [168].

The network architectures that show the best accuracy on the leaderboards of the public prediction datasets
are Graph Neural Networks (GNNs) [205, 206], especially featured with AMs [204] and transformers [207].
They show superior performance because the constructed graphs can model non-Euclidean interactions [208],
an efficient semantic encoding can be realized [171, 179, 180] or both aspects can be combined [172, 173,
176, 181]. Map encoding through a graph and the output of a heat map of possible future driving lanes
of all objects in the scene has shown to perform best on various prediction challenges at the time of its
publication [171]. The approach was improved by adding the interactions between agents to the GNN [172].
The efficiency of a vector representation of the scene instead of a rendered image and the usage of GNNs
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is reported to reduce the computational costs while maintaining the same prediction accuracy [194]. Using
target-based Graph Neural Networks (tGNNs), semantic information can be encoded to determine the
object’s targets as a function of environment and interactions, which is shown to enhance the plausibility of
the prediction [182]. A directed spatiotemporal graph in combination with RNNs has shown to be capable
of predicting in vehicle-dominant datasets and dedicated pedestrian datasets [186]. With the abilities of
self-attention and parallel processing of sequential input data, which allows the model to focus on specific
parts and to improve efficiency, transformers show high accuracy in the task of motion prediction [209]. The
attention is achieved by assigning weights to different parts of the input. The transformer’s self-attention can
be used to model the relationship between road components and objects [194]. Additionally, it is possible to
predict the probability distribution of trajectory endpoints [183] through self-attention. Another form of GNNs
for scene encoding and motion prediction are Graph Convolution Networks (GCNs). Since this type of GNN
is used in this work (Chapter 4), its concept is introduced (Figure 2.5).

𝜑𝜑 𝜑𝜑

𝟐 𝟑

𝜑

𝟏

𝟐

𝟏

𝟑

Aggregation 𝚪 of Target Object

𝐓

Aggregation 𝚪 of Object 1 Aggregation 𝚪 of Object 2

𝜑

𝜒 𝜒

𝜑

𝐓

𝟐𝟏

𝐓𝐓

Figure 2.5: Graph representation between multiple vehicles (left) and the update process of target object’s node T by
a GCN of second order (right). Each update step comprises the message passing through the message
function ϕ, the aggregation Γ of all messages per node, and the update of the node by the function χ .

The objects in the scene are represented as nodes in a graph with connections, called edges, between
them. Based on this representation, the idea of GCNs is creating and passing messages along the edges
between the nodes [210]. The messages are passed between the nodes via the message function ϕ. The
convolutional operation takes place in the aggregation function Γ to filter the information received from the
surrounding objects. This filtered information is then processed by the update function χ to receive the
updated state of the respective node. The message and update functions are represented by NNs. The
convolutional operation is useful for road traffic prediction because it is more efficient to aggregate the local
graph structure than sequential GNNs [211]. Thus, the local interactions are combined with the relational
interactions of the graph representation. In addition, GCNs are stated to generalize to unseen data because
of the shared message and update functions [212]. Through replacing the aforementioned SOT by GCNs to
model the interaction between the road users, an improvement in the prediction accuracy on the NGSIM
dataset [208] compared to existing models is shown [187]. Additionally, a reduction of the calculation time
through GCNs compared to CNNs is reported because the interactions are individually established [188]. To
optimize the graph encoding, weighted adjacency matrices [189] or heterogenous convolutional operators
can be used [190]. The latter outperformed the state of the art at the time of its publication on the Argoverse2
dataset [137].

2.3.3 Planning-based Prediction

Planning-based prediction methods assume that every object acts as an agent with a specific intention. These
approaches are motivated by the PoV that all objects follow similar goals, and it is just the perspective that
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differs between ego-motion planning and the prediction of the surrounding objects (Table 2.1). So prediction
and planning are interpreted as a change of perspective [213]. The assumed intention is used to predict
the future movement of the agent. Reasoning about an agent’s intention and explicitly deriving the related
behavior require demonstrations to learn the behavior. Alternatively, the agent’s intention can be implicitly
considered in ego-motion planning, described as interaction-aware planning.

Learning from Demonstration

Learning from demonstration can be realized by Inverse Reinforcement Learning (IRL) and Imitation Learning
(IL). Both approaches follow the idea that expert demonstrations represent the optimal behavior. In the case
of IRL, a reward function is learned from these demonstrations, which is used during inference to derive the
object’s behavior. In contrast, IL directly learns policies from the expert demonstrations and applies them to
the target agent.

Due to the possible ambiguity of the optimal policy of IRL because of non-convex cost functions [214],
Maximum Entropy IRL [215] can be used [216–219], which resolves the ambiguity by maximizing the entropy
over the state-action distribution, i. e. creates a convex cost function. A drawback of IRL is the lack of
applicability in sparse environments and with diverse agent goals. In these cases, IL is beneficial, which
does not require any cost function but directly derives the policy. The simplest form of IL is Behavior Cloning
(BC) [220], which was already used in one of the first AVs, ALVINN [221]. Due to the fact that BC solely
imitates the expert demonstration, it features low adaptivity. To achieve a more general imitation, Generative
Adversarial Imitation Learning (GAIL) can be used, which learns a policy against a discriminator that aims to
distinguish between the expert trajectory and the learned policy. In a comparative application to highway
scenarios to predict human driving behavior, GAIL outperforms BC in terms of accuracy [222]. Compared to
IRL, GAIL is stated to be more efficient and better scalable to more complex tasks [223]. Another approach to
avoid pure behavior imitation is the consideration of penalties during the training process, which additionally
improves the adaptivity when the algorithm is applied to new scenarios [224]. Adversarial methods can also
be applied to IRL, which results in Adversarial Inverse Reinforcement Learning (AIRL). AIRL determines a
cost function to predict a trajectory that a discriminator assesses to improve the robustness [225].

Interaction-aware Planning

Algorithms that fall under the category of interaction-aware planning iteratively incorporate the prediction
of the surrounding objects in the ego-motion planning. By this, interactions between the ego action and
the reaction by the surrounding objects are modeled. The two methods used for interaction-aware planning
are the online partially observable Markov Decision Process (POMDP) [226, 227] and Game Theory (GT).
Online POMDPs are applied for lane change maneuvers [228] and in intersection scenarios [229, 230]. In
autonomous racing, an online POMDP, solved by reinforcement learning, is shown on 1/10-scaled racing
cars [231]. The algorithm adaptively adjusts risk in relation to the uncertainty given by the surrounding
opponents. In the field of GT, stochastic games are used to describe the scenarios [232]. A Stackelberg
equilibrium can be used to give an advantage to the ego vehicle if set as the leader. Cooperative formulations
are proposed, too [233]. If applied in AVs, the same game-theoretic model is applied to every object in the
traffic situation and is then iteratively solved. However, the iterative character limits the scalability, which
can be compensated by the level-k GT [234–236]. This theory individually assigns reasoning levels to the
ego and the surrounding objects, which means that the iteration is stopped at level k for the respective
object [234]. Due to the common goal to win the race, the application of non-cooperative GT to autonomous
racing is common [237–241]. A survey of these techniques and general planning methods is given in [242].
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2.3.4 Consideration of Scenario Understanding

The state of the art is focused on pure motion prediction algorithms. The aspect of scenario understanding is
neglected, even though an in-depth understanding of a scenario is essential for profound behavioral estimates
and predictions [243]. There are two focal points: The incorporation of scenario understanding to derive more
general prediction assumptions during the training process (offline) or the evaluation and adaption of the
prediction method by means of scenario understanding during inference to maintain prediction accuracy in
varying scenes (online).

A method to improve the prediction accuracy offline is to enforce an amplified consideration of semantic
information instead of focussing on the motion history as an input feature in the training process [244]. The
reported results show improved accuracy and prediction stability on the NuScenes dataset compared to the
validation without scenario understanding [81]. Heuristic scenario understanding in the form of preliminary
plausible information about the future trajectory can alternatively be added to the model to improve its
accuracy [245]. The proposed model is created out of GNNs with AMs and conducts the plausibility check
based on the object type and the road geometry, which are encoded in a latent distribution and used to
determine possible goal points based on the similarity to latent clusters.

Using scenario understanding for online evaluation and adaption can be realized by self-evaluation. It is de-
fined as the assessment of the algorithmic capabilities in relation to the current circumstances in a scene [246].
Thus, a combination of surrounding effects and internal algorithmic features is assessed. An approach for
self-evaluation is estimating the model’s accuracy and confidence through Bayesian belief networks [247].
The validation shows that ego-motion planning gets safer and more efficient with additional confidence-
awareness. Limitations of this approach are that it is only validated in the specific field of human motion
prediction in quadrocopter applications and shows high computational complexity. Another self-evaluation
approach proposes incorporating constraints into the prediction algorithm to detect its limitations [246]. Three
constraints are proposed: the time required for emergency braking, maneuver constraints such as the time
needed to complete a driving maneuver, and model constraints in dependency on the prediction horizon.
Instead of a temporal evaluation, a causal self-evaluation can be created, which establishes interpretability
and checks compliance with the traffic rules [248]. The interpretability is created by clustering the predicted
trajectories in high-level maneuvers, which are then compared to the traffic rules. It offers the advantage that
the accuracy of the trajectory predictions is maintained while the additionally created clusters are used to
evaluate the feasibility compared to the traffic situation. Alternatively, the uncertainty of the model’s prediction
can be quantified through evidential deep learning [249], which learns a Dirichlet distribution on the classified
maneuvers. The quantified confidence can be used to detect failures, which are assumed to result from high
prediction uncertainties [250]. This hypothesis is validated with different prediction algorithms, uncertainty
estimation methods, and uncertainty scores. Besides, the detection of algorithmic limitations can be realized
by anomaly detection [251]. An anomaly is detected by sampling predictions of all objects, including the
ego object, and assigning costs to these samples. Then, the costs of the ego-motion planner, which is
based on an in-parallel determined single-trajectory prediction, are compared to the cost distribution of the
samples. An anomaly is given if the costs of the actual prediction the planner uses are above the p-quantile
of the distribution. The validation of this approach shows an improvement compared to the baseline methods
without anomaly detection. Lastly, a performance monitor, which directly outputs an anomaly score to assess
the prediction for black-box trajectory prediction models, is proposed as a self-evaluation method [20]. The
score is determined by comparing the feature space of a scenario, which is its encoded object motion and
semantic information, to the feature space distribution from the training data. The closer the encoded feature
space is to the training data distribution, the lower the score. The predicted trajectory is determined in parallel
to the anomaly score by an ensemble of multiple models.
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2.3.5 Review of Prediction Methods

The related work in motion prediction reveals a trade-off between deterministic models with physics-based
approaches and complex model approaches, mainly based on the deep-learning architectures [86]. The
former can be used in safety applications such as online verification [252]. In addition, they can be applied
in steady-state scenarios and show high accuracy in pedestrian prediction [253]. However, the underlying
assumptions lead to conservative behavior or rely on distinct traffic rules in case of reachable sets. In the case
of state-estimation methods, the ability to depict transient motion patterns is not given. The more advanced
modeling approaches are able to describe these motion patterns if the amount and quality of training data
are given. While these models achieve high accuracy for specific prediction tasks, their prediction accuracy
deteriorates if applied on out-of-distribution data [254]. Additionally, the state of the art does not offer full stack
application of the top-ranked models of the public prediction competitions. The computational constraints and
the required data mining for the real-world application in a specific ODD are crucial bottlenecks to realize this.

With the focus on resolving the described trade-off between the models’ features, hybrid methods, which com-
bine approaches from different classes, are proposed. Combinations of multiple physics-based models [102,
255] or combinations of a physics-based model and a deep-learning approach [256–259] are proposed. A
common approach is a weighted combination through Gaussian Mixture Models [256] or likelihood optimiza-
tion based on the models’ uncertainties [257] (Figure 2.6). Besides that, combinations of planning-based
and pattern-based approaches exist [260, 261]. While the mix of physics-based models is still limited to their
underlying laws of physics to describe motion, the mix of physics-based models and deep learning aims to
merge the underlying principles for more comprehensive motion models. Compared to isolated pattern-based
models, these blends of principles show similar accuracy but enhanced interpretability and robustness against
unknown data by incorporating the physics-based aspect [256]. Alternatively, ensemble methods [20, 69],
which use multiple models in parallel, can be utilized to consider various prediction approaches. The drawback
of ensemble methods is that multiple models are executed in parallel, which makes them computationally
inefficient.

𝑥

𝑦

𝑣2
1 2

𝑣1 > 𝑣2
ሶ𝜓1 > 0; ሶ𝜓2 = 0

Physics-based Pattern-based Hybrid Prediction

Figure 2.6: The hybrid prediction is composed of a physics-based and a pattern-based model. Heuristics, optimization
methods, or probabilistic models are used to determine the weighted combination, which is either constant
or dynamic along the horizon.

Another limitation in the state of the art is that the incorporation of scenario understanding to enable a
more profound scene encoding is sparsely shown. The presented work of scenario understanding is based
on cautious heuristics that lead to conservative behavior or focuses on the prediction adjustment without
assessing erroneous predictions. Further methods require the ground truth for failure evaluation.

In summary, a prediction method that combines the strengths of multiple models for accurate prediction in
diverse scenarios misses in the state of the art. Beyond the scenario coverage, it is desirable to detect the
algorithmic limitations, which is crucial for safe application. Scenario understanding for self-evaluation offers
features to achieve this, but it is rarely realized in the state of the art.
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2.4 Identification of the Research Gap

Besides the isolated reviews of fusion and tracking (Subsection 2.2.3) and prediction methods (Subsec-
tion 2.3.5), it shall be discussed which specific criteria are required to realize a generic prediction framework
for motion prediction in autonomous driving and to what extend the state of the art fulfills them. The discussion
leads to identifying the research gap and formulating the research question, which builds the foundation of
this thesis. Lastly, five research items are defined, which guide through the succeeding methods.

The two proposed criteria required for the generic framework are reliability and adaptivity, both defined
in Section 2.1. The aspect of reliability is chosen because of the gap between the prediction method’s
accuracy on fixed data and the performance when deployed in a full software stack [254]. One reason
for this gap is that the vehicles’ interaction is missing on fixed datasets compared to full-stack real-world
applications. In addition, a trade-off between the computational efficiency of the prediction models and their
accuracy is identified, which motivates the investigation of reliable applications. This argument is confirmed
by experiments, which show that increasing hardware capacities correlates with the algorithmic performance
of AV software [262], while the algorithms have to run in real-time on limited computational recourses on
the AV’s hardware. Another aspect is discussed in a survey of tracking and prediction methods [263]. The
survey concludes that the determination of a consistent object history and the accurate estimate of the
object’s current state are identified as essential to base the prediction upon. It is argued that detecting
abnormal behavior and predicting surrounding objects, irrespective of traffic rules, require precise tracking
of the objects’ motions. Since this level of input data quality can not be ensured in real-world applications
to varying environmental conditions and traffic situations, the aspect of reliability to handle varying data
quality is a point of interest. Coping with the perception latency as the last criterion of reliability is motivated
by two studies. In the specific field of autonomous racing [264] and the related autonomous application of
autonomous quadrocopoters [265], it is proven that the overarching objective of enabling reliable application
is linked to the permissible latency of the system. Distinct correlations are identified between maximum
latency and vehicle performance [264] and safety guarantees [265].

The definition of the requirement for adaptivity is motivated by the decrease in the accuracy of public prediction
competitions’ top-ranked models when evaluated on unknown scenes. Two of these methods [168, 186]
have been analyzed on three different datasets [81, 266, 267] regarding their adaptivity. The datasets are
split into separate driving domains, which differ in road type, origin country, and object speed ranges. The
cross-evaluation of the methods on domains distinct from the training domain reveals an increase of the
average displacement error of up to 78 % [268]. Avoiding erroneous predictions by recognizing algorithmic
limitations is another aspect of adaptivity as defined in Section 2.1. To quantify this aspect, the rate of
mispredictions, which can be interpreted as outliers, can be used. The NuScenes prediction competition [81]
defines the MissRate2k MR2k

as:
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(2.1)

The equation states that the MissRate2k MR2k
is the share of mispredictions among all predicted objects nobj.

A misprediction is given if the deviation along the trajectory between the prediction xpred and the ground
truth xGT exceeds 2 m at any point. For each object, the k most likely predictions are taken and evaluated
for mispredictions. Since the miss rate quantifies an upper error threshold instead of determining an exact
Euclidean error, it can be used to quantify the rate of erroneous predictions. When analyzing the top-ranked
models in the prediction competition, high miss rates (> 10 %) on the test data can be observed. Since the
algorithms are optimized for low mean Euclidean errors, avoiding mispredictions is not ensured. If the related
work is classified by these two criteria, the following qualitative evaluation results (Figure 2.7).
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Figure 2.7: Qualitative evaluation of the state of the art regarding reliability and adaptivity, which are the two identified
criteria for a generic prediction framework. (∗: short-term prediction)

Prediction methods with low reliability and low adaptivity are developed and optimized on isolated datasets.
For the first prediction challenge [136], pattern-based methods based on RNNs and CNNs have been
developed. New models with more advanced deep learning methods emerged with improved generalizability
in the following years. Especially GNNs with different forms of attention mechanisms (AM) and transformers
(T), target-based GNNs (tGNN), and graph convolutional networks (GCN) exceed former architectures in
terms of generalizability [274]. The generalizability leads to improvements in both aspects. The adaptivity
is enhanced because more general patterns are learned, while the reliability is improved through higher
robustness against the input data variation. However, these methods show several limitations. Regarding
adaptivity, the previously outlined decrease in accuracy and increased miss rates if applied to unseen data
are not remedied. With a focus on reliability, the applicability is questionable because of high calculation
times. A full-stack application of these algorithms has not yet been demonstrated and is constrained by the
high efforts required in data engineering to prepare the methods for a specific ODD. In addition, the black-box
behavior of deep learning methods can lead to unpredictable failures of the motion prediction module [250].
Thus, neither adaptive behavior nor reliable application is proven.

Moving up along the vertical axis, adaptivity is enhanced through more general problem formulations such
as Inverse Reinforcement Learning (IRL) or Generative Adversarial Imitation Learning (GAIL). Alternatively,
ensembles of multiple models, such as Interacting Multiple Models (IMM), are used to achieve adaptivity.
Since these ensembles mainly consist of physics-based methods to limit the calculation effort, they only
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apply to short-term prediction. Another approach to achieving adaptivity is Self-Supervised Learning (SSL),
which follows the idea of encouraging the model to train on unlabeled data. The approach can improve
the adaptivity during the offline training process by forcing algorithms to autocomplete patterns. During the
inference, SSL can be used to optimize the model on specific behavior. This approach improves the adaptivity
in specific situations but is prone to overfitting and unstable learning behavior, which results in low reliability.
Considering scenario understanding (SU) is another pivotal feature in establishing adaptivity. Similar to the
human driving experience, scenario understanding can be used to supervise the forecast or analyze the
scenario regarding the expected prediction error. While this group of methods shows improved adaptivity,
their reliability in being deployed in a full software stack is not shown. In addition, the presented features to
adapt the algorithm are not investigated under real-world input data. Furthermore, some methods can only
detect prediction errors a posterior or make conservative assumptions, leading to frozen robots at application.

Along the horizontal axis, reliable applications of prediction methods are grouped. Maneuver-based prediction
methods such as hidden Markov models (HMM) can be seen as reliable but only in a narrow field of scenarios
because road traffic on a large scale is not graspable by a few maneuvers. Thus, the adaptivity is graded low.
Physics-based approaches such as reachable sets (RS) are assessed to show a good compromise between
adaptivity and reliability but are limited to short-term predictions. To apply reachable sets for long-term
prediction, considering traffic rules is required to shrink their size. However, if an edge case occurs, which is
an abnormal scene faced during inference, such as traffic participants violating these traffic rules, reachable
sets need additional features to cope with it. So, the reliance on traffic rules is a considerable bottleneck to
realize adaptive behavior [55]. Algorithms that fall under the field of interaction-aware planning are assessed
to show reliable behavior. Partially observable Markov decision processes (POMDP) or game-theoretic
approaches (GT) are well suited to model interactions in specific ODDs with known intentions of all objects.
Their limitation is that the rule-based character does not scale for broad autonomous applications with
unknown intentions of the objects. Reliable applications of GT-approaches are shown on 1/10-vehicles in
racing scenarios. Lastly, the full-scale applications in the racing ODD at high speeds can be seen as the
most reliable prediction application in a specific ODD. An entire AV software stack on a full-scale vehicle at
its dynamic limits requires reliable software for various reasons. For performant racing, the prediction has
to ensure compliance with the ODD to enable aggressive ego-planing behavior. Especially in interactive
scenarios, a reliable prediction is required to base the ego-motion planning on. Furthermore, computational
constraints must be met, and noise and latency in the input data must be handled. The existing approaches for
autonomous racing mainly focus on the compliance with simple race rules and assume race line following or
parallel driving of the opponents. Regarding adaptivity, these approaches are assessed to be limited because
of their focussed development for the target ODD of the race track. The transferability of the developed
prediction algorithms from the race track to public roads has not been shown yet.

Concluding the review on the state of the art, three points can be stated. First, more advanced network
architectures increase the generalizability in terms of improving reliability and adaptivity but show limitations
regarding both criteria. Second, in both directions of reliability and adaptivity, approaches and shown
applications exist that fulfill these criteria on an advanced level. Nevertheless, the complete fulfillment of
these criteria has not yet been achieved. The third conclusion is that no method combines both criteria in a
generic prediction framework. Based on these conclusions, the research gap can be identified (Figure 2.7):
No generic motion prediction method exists that is reliably applicable in a full AV software stack on arbitrary
real-world scenarios while ensuring accurate predictions. The gap leads to the research question of this
thesis:

How can reliable and adaptive prediction methods for autonomous driving be developed and
combined in a generic framework?
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To answer the research question and fill the identified research gap, the following research items are proposed
to be investigated:

RI1 How can the detection input be improved to enable reliable application?
RI2 How can black-box models be constrained to increase their reliability?
RI3 How can multiple models be combined for adaptive prediction behavior?
RI4 How can scenes be evaluated regarding the expected prediction performance?
RI5 Which factors influence inaccurate predictions?

The first two research items, RI1 and RI2, focus on the aspect of reliability. This includes optimizing the
detection input data as a crucial prerequisite for enabling a reliable motion prediction (RI1). RI2 investigates
how the reliability of black-box models, which show a comprehensive prediction behavior but are unreliable in
the application, can be improved by external constraints without losing accuracy. These two research items
are investigated in Chapter 3.

After analyzing the reliability criterion, the remaining research items focus on establishing adaptivity. One
aspect of it is combining multiple models from different prediction classes (RI3). Besides that, the feature of
self-evaluation shall be analyzed (RI4). It is crucial knowledge to scene-dependently choose the most suitable
prediction approach and correctly estimate the algorithmic limitations. The knowledge of the limitations can
be used to collect edge-case data for further algorithm improvement or to dynamically adjust the predictions.
RI5 comprises an in-depth analysis of the reasons for inaccurate predictions, which builds the baseline for
dedicated algorithmic improvements and creates a comprehensive understanding for future applications.
These three research items are examined in Chapter 4.

After the investigation of the five proposed research items, they are reviewed regarding their fulfillment
(Section 5.1). Since these items focus on developing either reliable or adaptive motion prediction methods,
combining them in a generic framework for motion prediction is discussed in Section 5.2. Finally, the research
question is reviewed (Section 5.3) and an outlook on future research is given (Section 5.4).
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Reliable real-world application of motion prediction methods is a sparsely investigated issue in the state of the
art. While there are promising results in simulation environments or on replayed data, the full-stack real-world
application of developed algorithms to prove reliability is neglected. The following chapter addresses this
issue by proposing a reliable motion prediction method for real-world applications, focussing on the research
items RI1 and RI2 (Section 2.4). The methods are developed for and investigated in the inaugural events of
the Indy Autonomous Challenge (IAC) and Autonomous Challenge at CES (AC@CES). They are deployed in
the software stack of TUM autonomous motorsport [275, 276].

The two events’ autonomous racing ODD offers a challenging high-speed environment to test developed
methods in a full-stack autonomous car without risk for humans [277]. With the focus on tracking and
prediction, three reasons can be named, which show the advantages of using this ODD to prove reliability.
The high relative speeds between the ego vehicle, the environment, and the surrounding objects generate
motion distortion in the sensors’ inputs due to their rolling shutter, which leads to deteriorated detection
performance in position estimation and an increased False-Positive (FP)-rate. In addition, the vehicles’
high dynamic limits enable more volatile motion patterns, which must be tracked and predicted. Lastly, the
non-cooperative character of the race can lead to aggressive and unexpected driving behavior, which has to
be encoded to ensure an accurate motion prediction.

At first, the testbed and race format of the autonomous racing ODD are introduced (Section 3.1). Then, a
multi-modal late fusion and object tracking method is presented (Section 3.2). It is revealed, to be an essential
module to close the gap between detection algorithms, which only output single frames and are limited
to the sensor measurements, and the prediction algorithms, which expect full object histories containing
equidistantly sampled object states. Thus, tracking is crucial to enable reliable motion prediction. The late
fusion approach is chosen to enhance the modularity of the stack. Further detection pipelines can be directly
added, which is beneficial for the parallel development of independent pipelines. Since the events were the
first autonomous head-to-head races, the required data quality to develop integral early fusion approaches
was not given. Besides that, late fusion approaches are more robust against noise and less dependent on
the sensor setup configuration. After introducing the proposed method, it is validated on real-world data from
the race day at the AC@CES 2022.

A physics-constrained prediction method is presented in Section 3.3. It has two contrary goals to fulfill. On the
one hand, there is the requirement to develop a sophisticated model that is able to predict a broad range of
trajectories. On the other hand, quality constraints of kinematic feasibility and plausibility of the trajectory and
a long-term prediction of 5 s have to be fulfilled, which are essential for stable ego-motion planning at high
speeds [278, 279]. The model should additionally feature robustness against noisy input data. So, a reliable
method for motion prediction with low data dependency for development and training but still sophisticated
prediction behavior has to be implemented. Similar to introducing the fusion and tracking approach, the
method and its respective validation are presented in this section.
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The two introduced methods for a reliable prediction in autonomous racing are discussed in Section 3.4. The
discussion focuses on reviewing the methods for the ODD of autonomous racing and transferring them to
new ODDs on public roads.

The proposed multi-modal late fusion and tracking method is published by the author [280]. The related
software [281] and data [282] are provided open-source. The physics-constrained prediction is presented in
the author’s publication [283] with the software [284] and data [285] made publicly available.

3.1 Testbed and Race Format

The testbed for developing and evaluating the proposed methods comprises three elements: The autonomous
race car, the race tracks, and the Hardware-in-the-Loop (HiL)-simulator. In addition, the race formats are
introduced.

The autonomous race car AV-21 is based on the Dallara IL-15, used in the Indy Lights Series, and equipped
with a multi-modal sensor setup (Figure 3.1a). The car’s sensor setup consists of three Luminar H3 LiDARs,
which cover 360° FoV, three RADAR sensors by Aptiv to cover the front (model: MRR) and side (model:
ESR 2.5) area, and six Mako G319C cameras by Allied Vision to cover the full view around the vehicle
(Figure 3.1b). Further details about the hardware setup of the race car can be found in [276].

(a) The AV-21 on the Las Vegas Motor Speedway. Image Credits:
Indy Autonomous Challenge

LiDAR RADARCamera

(b) Field of View of the AV-21’s multi-modal sensor setup [39].

Figure 3.1: The autonomous race car AV-21 and its sensor setup used to develop and evaluate the methods.

The methods are validated in two competitions. The first competition is the IAC 2021 on the Indianapolis
Motor Speedway (IMS) (Figure 3.2a), which comprised a simulation race and the final real-world race. The
oval race track of the IMS has a length of 4023 m with a banking of 9° throughout the turns. While the final
event was held as a single-vehicle competition due to the high complexity of developing a full AV software
stack for the inaugural edition, the simulation race was held as a multi-vehicle competition with interactive
overtaking maneuvers. The second competition is the AC@CES 2022 at the Las Vegas Motor Speedway
(LVMS) (Figure 3.2b). Its track length is 2410 m with varying banking angle between 9° and 22° along the
track. A head-to-head overtaking competition between two race cars was held at that event [286]. Both
cars had to show a successful overtaking maneuver at each target speed step to continue the race. The
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(a) Map of the Indianapolis Motor Speedway. (b) Map of the Las Vegas Motor Speedway.

Figure 3.2: Maps of the race tracks on which the two competitions were held [276].

target speed increased by specific steps until one of the competitors was not able to overtake anymore. The
overtaking procedure was orchestrated in a way that the leading car had to maintain the target speed while
the trailing car had to complete the overtaking maneuver within a specific area along the race track. Then,
the roles switched. The cars ran completely autonomously during the overtaking competition; the only signals
they received were the current target speed and the race flag, which defined the cars’ roles.

Due to the limited testing time on the race tracks, simulation was a crucial tool to develop and test the
proposed methods. For that reason, a HiL-simulator is built upon which multiple software stacks can race
against each other [275]. The HiL-simulator can simulate the entire autonomous software stack for up to ten
agents in real-time, employing the same interfaces and callback functions as those on the real vehicle. All
agents run on identical hardware, and their parameterization can vary individually. The only limitation is that
the perception input is simplified to reduce computational load. A synthetic object list emulator, which serves
as input to the tracking module, is implemented to achieve this. This generator is equipped with various
features to mimic realistic perception behavior, including restricted sensor ranges, limited FoVs, the addition
of Gaussian noise, variations in measured object states, and the simulation of FPs and False-Negatives
(FNs). The object emulator tool, implemented by the author, is additionally used for the automated end-to-end
optimization pipeline [287] and the full-stack latency analysis [264] of the software.

3.2 Multi-Modal Sensor Fusion and Object Tracking

Object fusion and tracking for autonomous racing have to fulfill two goals. At first, the information of
heterogeneous detection pipelines has to be fused to maximize the information about the surrounding
objects’ states. The states shall be tracked over multiple time steps to establish a consistent object history.
Second, the overall software delay, which correlates with the performance of the AV [264], has to be reduced.
Thus, besides the required real-time capability of the module itself, the perception software delay shall be
considered. A crucial constraint for developing the method is that no labeled data is given. Based on these
requirements and the review of the state of the art (Subsection 2.2.3), the late-fusion and object tracking
method shown in Figure 3.3 is proposed.
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Figure 3.3: Interfaces (black) and structure of the multi-modal sensor fusion (orange) and object tracking (blue)
method [280].

The multi-modal late fusion can handle input from multiple heterogeneous detection inputs. The raw input
is first transformed into a global coordinate system before it is filtered for FPs. Two filters are applied. The
first one filters for out-of-track objects based on the provided map. The second filter clusters multi-detections
per object. Then, distance-based matching associates the filtered object lists with the currently tracked
objects in chronological order. These multi-modal late fusion features are presented in Subsection 3.2.1.
The object tracking is realized by an EKF with a kinematic motion model. The updated object states are
added to the object storage. A central feature of the tracking method is the delay compensation. Using this
feature, the delay from sensor recording to the receipt of the detected object list is considered. By this,
motion prediction and ego-motion planning receive updated, optimized tracks of the surrounding objects. The
tracking procedure is introduced in Subsection 3.2.2.

Based on the introduction of the method, the data used for the evaluation is analyzed in Subsection 3.2.3.
The method’s evaluation is presented in Subsection 3.2.4. The full parameterization of the fusion and tracking
model is given in the Appendix A.1. The method and results presented in this section are based on the
author’s publication [280].

3.2.1 Multi-Modal Late Fusion

The detection input is passed through multiple input processing steps before the actual fusion by matching old
tracked and newly detected objects. This input data processing comprising the transformation and FP-filters
and the succeeding object matching are described in the following.

Input Processing

The proposed method expects the input of the ego vehicle’s dynamic state, a map detailing the track
boundaries, and object lists from the detection pipelines (Figure 3.3). The number of detection pipelines m
is flexible and can be modularly extended, with no restriction on the type of sensors used. They can vary
regarding detected object features, detection sensitivity, and cycle times. By this, heterogeneous sensor
modalities can be merged to optimize the information about the surrounding objects. Each object in the
object list Li is characterized by the detection pipeline-dependent measured or estimated features and
the respective uncertainties. In addition to the object list, the sensor time stamp Ti is part of the detection
input. It is the time stamp of the sensor recording, so the whole perception delay of signal processing
and algorithmic calculations is included. These detection input data in the form of the tuples (Li ,Ti) are
processed in chronological order, starting with the oldest.
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After receiving the detection input, a coordinate transformation is applied to convert the local, vehicle-based
coordinates to the global world coordinate system. The required ego state is received from the ego state
estimation module. The received ego state is low-pass filtered to mitigate the high-frequency noise from
internal state sensors such as the inertial measurement unit because ego and surrounding object state
estimation have different time constants.

While FNs in the form of missing object detections in single inputs can be bridged by the matching procedure,
additional filters of the transformed object list are implemented to reduce FPs. The reduction of FPs is crucial
to avoid emergency maneuvers and is important to safely use sensitive sensor modalities. Two plausibility
checks to filter FPs are applied. First, objects located outside the track boundaries are removed using the
provided HD map, a valid assumption for the closed race track ODD. Second, a check is conducted to identify
overlapping detections within the object list from one modality. A k − d tree clustering [288] with a fixed
distance threshold is implemented for this purpose.

Object Matching

After processing the detection inputs, object matching occurs. The Hungarian method [78] is used to solve
the assignment problem between newly detected and old tracked objects. The Euclidean distance is used as
cost function, which is revealed to be the most robust and calculation-efficient option. The investigation of
further options showed that the IoU and the NLL are less robust, require higher calculation time, and need
further state variables [289]. Only with idealized, low-noise data the more complex cost functions showed
an improvement. The association problem to obtain the overall minimum distance costs between ntrack old
tracked and nin new detected objects can result in three cases:

1. New Unmatched Object
In cases where the detection object list contains more elements than currently tracked objects
(nin > ntrack) or the inter-object distance exceeds the maximum match distance, new objects
are initialized. This includes assigning an UID, setting up an object-specific status counter,
and initializing the new object’s state estimation.

2. Old Matched Object
A successful match is given if a newly detected object is assigned to an old tracked object and
the inter-object distance is below the maximum match distance. In this case, the current state
estimation and object history are updated by the received detection, and the object-specific
status counter is incremented by the detection pipeline-specific match value. The corrected
posterior state is saved in the object storage.

3. Old Unmatched Object
If there are more old tracked objects than the detection object list contains (ntrack > nin) or the
inter-object distance is above the maximum match distance, old unmatched objects remain.
In this case, the predicted object state (prior estimate) is stored in the object storage without
a measurement update. Also, the status counter of the object is decreased. If it reaches zero,
the object is removed from the storage.

The mentioned match distance and status counter specify the matching behavior and the handling of FNs.
The former variable defines the distance threshold to match the detected and tracked object. A higher
distance reduces the FP-rate, avoiding multiple tracks of one object. However, in the case of wheel-to-wheel
racing, it can lead to incorrect merges of two adjacent objects. In contrast, a low match distance results in a
higher probability of multiple tracks for one object since the detected and tracked positions must lie closer
to each other. The status counter bridges FNs, which are inputs with missing detections of existing objects.
It represents the number of unsuccessful matches until the object is discarded and not tracked anymore.
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Thus, it symbolizes the trust in an object’s existence. It is initialized for each new object by a positive integer
(case 1) and increased by the detection pipeline-specific match counter if a successful match occurs (case
2). The counter is always decreased by 1 if an unsuccessful match takes place (case 3). Thus, it defines
how many detection inputs without successful matches are left until a tracked object is discarded. The status
counter is limited to an upper threshold. By this, the deletion of objects is secured within a specific number of
unsuccessful detections.

3.2.2 Object Tracking

Based on the introduced fusion, the actual object tracking through the state estimation is performed. Besides
the state estimation, the object storage, filter parameterization, and novel perception delay compensation are
presented.

State Estimation

The state estimation is conducted by the EKF. The EKF is selected due to its capability to approximate non-
linear models compared to the linear KF. In addition, it offers the advantage of low calculation effort compared
to the UKF and the PF because the computationally efficient recursive update from the KF is maintained
and the determination of the first-order partial derivatives is of small effort for the given low-dimensional
system. Moreover, from the application’s perspective, the EKF allows for interpretable parameter optimization
in scenarios where large data is unavailable in contrast to the UKF [290]. The EKF builds on the following
state-space model:

x t = f (x t−1, ut) + wt (3.1)

zt = h(x t) + vt (3.2)

x t represents the object’s state vector at the time t . It is derived from the state transition model f (x t−1, ut),
which gets the old object state x t−1 and the control vector ut as input. By means of the observation
model h(x t), the observation states in the vector zt are calculated. The filter model assumes zero-mean
multivariate Gaussian noise, which is quantified by the process noise wt and observation noise vt . Based on
this state-space model, the state estimation is conducted alternating between the prior estimation (Predict)
and the posterior correction (Update) [291]:

Predict

x̂ t|t−1 = f (x̂ t−1|t−1, ut) (3.3)

Pt|t−1 = Ft Pt−1|t−1F⊤t +Qt (3.4)

Ft =
∂ f
∂ x

�

�

�

�

x̂ t−1|t−1,ut

(3.5)
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Update

ỹt = zt − h(x̂ t|t−1) (3.6)

St = Ht Pt|t−1H⊤t +Rt (3.7)

Ht =
∂ h
∂ x

�

�

�

�

x̂ t|t−1

(3.8)

K t = Pt|t−1H⊤t S−1
t (3.9)

x̂ t|t = x̂ t|t−1 + K t ỹt (3.10)

Pt|t = (I − K t Ht)Pt|t−1 (3.11)

The predict step at time t comprises the prior estimation of the object’s state x̂ t|t−1 (Equation (3.3)) and
the related estimation uncertainty (Equation (3.4)). The state estimation results from the state transition
of the former posterior estimate to the current time step. The uncertainty of the prior state estimation is
given by the covariance matrix Pt|t−1. It is the sum of the posterior covariance matrix of the former time
step Pt−1|t−1 multiplied by the state transition matrix Ft and the covariance matrix of the process noise Qt .
As Equation (3.5) shows, the state transition matrix is the first-order partial derivative of the state transition
model evaluated at the former posterior estimate (x̂ t−1|t−1, ut), i. e. a local linearization is performed. The
update step uses a measurement input to update object state and uncertainty estimations. To achieve this,
the measurement residual ỹt between the received measurement zt and the measurement prediction based
on the prior state h(x̂ t|t−1) is calculated (Equation (3.6)). The uncertainty of the measurement residual is
given by the residual covariance St , which is calculated by the covariance matrix of the observation noise Rt ,
the prior covariance matrix Pt|t−1 and the observation matrix Ht (Equation (3.7)). The latter is the first-order
partial derivation of the observation model around the current prior estimate (Equation (3.8)). To perform
the update step, the Kalman gain K t is needed, which is derived from the prior covariance matrix, the
observation matrix, and the residual covariance (Equation (3.9)). Then, the updates of object state x̂ t|t and
related covariance matrix Pt|t are calculated (Equation (3.10) and (3.11)). The Kalman gain specifies the
weighting of the update step. The magnitude of the Kalman gain can be interpreted as the trust in the new
measurement compared to the prior estimation.

A kinematic, point-mass model is used for the state transition model. A CTRV-model is selected. The selection
is based on two assumptions. First, the yaw rate shall be incorporated to model the objects’ movement in
turns accurately. Second, the acceleration shall be neglected to avoid oscillating speed estimation because
of the additional integration part from a non-measured variable. Except for standing start situations where
high accelerations occur, the acceleration is of low magnitude compared to the average object speed on oval
race tracks, which additionally justifies the assumption of constant speed. The resulting model equations of
the CTRV-model are:
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x and y denote the longitudinal and lateral position of the object. ψ and ψ̇ are the object’s yaw angle
and its derivative, while v represents the object’s speed. ∆t is the size of the time step. By default, it is
set to ∆t = 1/ fEKF with fEKF = 100 Hz. The small step size reduces the approximation error of the state
estimation model (Equation (3.12)) and the linearization error of the EKF (Equation (3.5) and (3.8)). It’s
important to mention that the time step ∆t used for the state estimation is not influenced by the module’s
callback frequency or the detection pipelines’ frequency. As a consequence, the prediction step of the state
estimation is constantly executed to iteratively estimate the state of the tracked objects, and the update step
of the filter is only called when a successful match occurs (case 2). This approach ensures that the object
states are equidistantly sampled. In addition, this design enhances the module’s capability to handle missing
detection inputs.

Object Storage

The object states, either predicted or updated by a received measurement, are stored in a double-ended
fixed-length queue. Its length is determined by the EKF update frequency and the desired temporal object
history. The default setting is a 3 s object history, which implies together with the sampling frequency of
fEKF = 100 Hz a storage length of 300.

Parameterization

The initialization of the estimated object state plays a crucial role in the transition when a new object is
initialized. Although the measured features from the respective detection pipelines serve as the basis for
state initialization, additional assumptions are made to enhance the accuracy of the initial state estimation.
The first assumption is that all detected vehicles move around the race track in the same direction. Thus, the
orientation of the track’s centerline is used as an initial estimate for the object’s yaw angle if the detection
pipeline does not measure it. The second assumption involves the object’s speed, which is assumed to be
of a similar magnitude as the ego vehicle’s speed. In the case that the object’s speed is not given in the
measurement vector, the ego speed multiplied with an empirical scalar factor kv is used to initialize the
object’s speed estimate. Both estimations are made with high measurement uncertainties, which results
in small Kalman gains. Thus, in a few steps, the EKF can correct these variables based on the kinematic
dependencies. The yaw angle assumption is additionally applied to every measurement input, which does
not include this variable. It was revealed to enhance the overall stability of the estimation.

The covariance matrix of the process noise Qt is parameterized based on the expected deviation of the
tracked objects from the CTRV-behavior. Assumptions are made on how much the race car can change
its state within its dynamic limits in a time step ∆t. Based on these assumptions, the process noise is
parameterized, representing the error between the CTRV-model and the ground truth movement. The
covariance matrix of the measurement noise Rt is individually parameterized per detection pipeline. Low
measurement uncertainties for the position measurement of the LiDAR detection and low uncertainties for the
speed measurement of the RADAR are assumed. A relevant fact regarding the tuning of the measurement
noise matrix is the fact that the output of the detection algorithms is used as measurement variables in
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contrast to direct sensor measurements. Thus, the measurement noise relies on the properties of the
detection algorithm, such as reduced position accuracy with higher object distance because of the limited
sensor resolution. To cope with this issue, adaptive measurement matrices in dependency of the object
distance have been investigated [292, 293]. However, the missing data availability prevented appropriate
tuning to achieve improvements in real-world applications.

Delay Compensation

The proposed method incorporates a feature for functional delay compensation. The functionality is designed
to compensate for the accumulated delay from the sensor trigger until the detection input is received in the
fusion and tracking module. This delay compensation through backward-forward integration (Figure 3.4)
allows for the output of an updated, high-frequency sampled tracked state while accounting for delayed
detection inputs.

𝑡rel = 𝑡 − 𝒯0 in s

0 0.01

𝒯𝑖 − 𝒯0

Prior Storage

Posterior Storage

Detection Input ℒ𝑖

II Match I Backward Search

III Forward Integration

Updated States

Figure 3.4: Temporal representation of the delay compensation. A backward search in the object storage is conducted
to match the past object state to the detection input. The updated past object state is used for the forward
integration to update all succeeding states.

The compensation processes the chronologically sorted detection inputs, starting with the oldest. The time
stamp of the received sensor data Ti is used in the backward step to search the observation storage for
all past object states corresponding to that time stamp. These past object states are utilized to match the
respective detection input Li . In cases of a successful match, the update step of the EKF is applied to the
matched past object state (Equation (3.6) - (3.11)). The optimized past object state is then used to correct all
subsequent states. This correction is accomplished through iterative prediction steps (Equation (3.3) - (3.5)).
Thus, the state transition model and the state uncertainty are forward integrated based on the optimized past
object state. The correction is conducted either up to the time stamp of the next detection input or, if only
one detection input is available, up to the current tracking time stamp. In the first case, the object matching
function is called again to associate the next detection input with the corrected object storage entries in the
past. Then, the forward integration is continued.

An exemplary scene is depicted in Figure 3.5. Before processing the received detection input, the tracked
object state is synchronized with the ego time stamp through forward integration (gray cross, Equation (3.3) -
(3.5)). The only detection within the track boundaries originates from the LiDAR (orange-black star & box) with
a delay of 211 ms, which corresponds to 13.7 m movement of the object at 233 km h−1. The implemented
delay compensation considers the delay from sensor triggering to detection input receipt and performs a
backward search within the object storage (gray dotted). The object state entry with the smallest temporal
difference from the detection time stamp is selected to perform the object matching (gray bold dot). In
this case, the temporal difference is only 1.1 ms. Any inaccuracies resulting from equidistant sampling are
negligible, given the high sampling frequency of 100 Hz. The past object state matches with the LiDAR
detection (case 2), so the update step of the EKF (Equation (3.6) - (3.11)) can be executed. The updated
object state (orange bold dot) is used to correct the entries in the object storage by iteratively executing the
prediction step of the EKF to forward integrate the estimated state and related uncertainty (orange dotted).
An updated object history (orange dots) and current state (orange cross) result.
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Figure 3.5: Exemplary high-speed real-world scene at AC@CES 2022 [280]. The ego speed is 255 km h−1, the object
speed is 233 km h−1. The FPs of the RADAR are out of track (gray area) and removed by the out-of-track
filter. The LiDAR’s perception delay of 211 ms is compensated by the backward-forward integration, which
corresponds to 13.7 m distance compensation.

3.2.3 Data Analysis

The evaluation data is analyzed to put the presented results in the context of the investigated scenarios.
The data are recorded by the perception software stack on the AV-21. Two detection pipelines are used: A
LiDAR and a RADAR detection algorithm [276]. The data contain high-speed overtaking maneuvers against
two different opponents in the semifinal and final runs of the AC@CES 2022. They comprise overtaking
maneuvers between 35 m s−1 and 75 m s−1. The data is unlabeled. Thus, just the raw object list as outputted
by the perception algorithms and the respective time stamps are given. In total, 11 052 detection input
samples of the LiDAR algorithm and 4723 samples of the RADAR algorithm are recorded. These detection
input samples stem from 28 valid objects detected by the LiDAR pipeline and from 26 valid detected objects
by the RADAR pipeline. The difference can be explained by the diverging FoVs (Figure 3.1b). In the scope
of this evaluation, an object is defined as valid if it is identified at least three times without being discarded.
The high total numbers of valid objects result from the fact that during the races, the opposing car left the
FoV of the ego car after every maneuver. Thus, the opposing car is reinitialized in the tracking for every
overtaking maneuver. The data is available open-source [282] and analyzed in the following over various
metrics (Figure 3.6).

The first violin plot shows the distribution of the object speed vobj. Peaks at the target speed stages can be
seen. The object speed primarily influences the transition when a new object is initialized until it is stably
tracked. Higher speed leads to a higher difference in the position between frames to match the object,
exacerbating reliable tracking. The second violin plot shows the relative speed between the target and the
ego object vrel. The peak at 0 m s−1 represents scenarios where both cars drive behind each other before
an overtaking maneuver is started. The peaks at −8 m s−1 and 8 m s−1 are the speed difference during the
overtakes. The relative speed between the ego and the surrounding object is of high relevance because
it correlates with distortions of the sensor input due to the sensors’ rolling shutter. The effect leads to a
deteriorated position estimation and an increase of the FP-rate in the detection input. The third distribution
contains the object distance dobj. It ranges from below 10 m up to 105 m as the maximum detection range
for the RADAR, and up to 98 m for LiDAR detections. The peaks of this distribution are within a distance
of 30 m to 50 m, which is the characteristic position the cars have before an overtake. The object distance
influences the detection accuracy, especially the position measurement. If the object distance is converted
in the ego object’s coordinate frame, the local longitudinal position xloc can be analyzed, which is given in
the fourth plot. Since the RADAR has no rear view, its detection is only in the front of the car. The LiDAR
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Figure 3.6: Data analysis of the recorded real-world data at the AC@CES 2022 [280]. The data distribution of raw
object lists from the LiDAR and the RADAR detection algorithms is shown. Distributions over the object
speed vobj, relative speed vrel, object distance dobj, the object’s local longitudinal position xloc and the
number of detections per track ndet are given.

algorithm detects objects in the rear up to 57 m. The lower detection range to the rear can be explained by
the occlusions and reflections caused by the rear wing of the race car. The number of detections per tracked
object visualized in the last violin plot ndet ranges from three measurements up to 800 successfully matched
detections, which corresponds to more than 40 s of consecutive tracking.

3.2.4 Results

The validation of the proposed method is performed on the introduced real-world data. At first, the overall
tracking performance is evaluated. Next, a sensitivity analysis is conducted to analyze the performance under
varying parameter settings. Afterward, the delay compensation approach is analyzed. The last part of the
validation is the method’s transient behavior.

Tracking Perfomance

The tracking performance comprises two indicators: the measurement residual (Equation (3.6)) and the
precision. The measurement residual is an established metric for assessing state estimation methods,
particularly in cases where ground truth data regarding the exact position of objects is unavailable. For the
given method, the residuals of the longitudinal and lateral position, the yaw angle, and the velocity (RADAR
only) are evaluated. The target behavior of the residuals is a zero-mean Gaussian distribution with the same
standard deviation as assumed in the observation noise [294]. This ensures effective measurement noise
reduction by the EKF. The second criterium of precision is defined as:

Precision=
TP

FP+ TP
(3.13)

TP represents True-Positives (TPs), which are correctly identified objects, FP represents False-Positives
(FPs), which are incorrectly detected ghost-objects. The determination of TP-objects is done manually for the
given data. TP-objects are all objects within a sensor’s range with at least three consecutive detections. Each
TP-object receives a UID while it remains within the detectable area. FPs are ghost objects with assigned
UIDs or real objects that are briefly tracked and then discarded by the algorithm. It is important to mention
that this definition of TP and FP differs from the one used in common detection benchmarks. In contrast to
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their conventional frame-by-frame approach, the entire scenario is considered to evaluate the algorithm’s
precision in the given case. This scenario-based definition is more appropriate for evaluating the fusion and
tracking methods because it considers the method’s consistency in keeping a tracked object. The tracking
performance of the EKF in combination with a CTRV-model is compared against the kinematic models of CV
and CTRA (Table 3.1, Row 1− 3).

Table 3.1: Tracking performance and sensitivity analysis of the measurement residuals (mean µ, standard deviationσ)
and precision [280]. The precision’s absolute (abs.) and relative (rel.) values compared to the default setup
of EKF with CTRV are given.

xloc in m yloc in m ψ in ◦ v in m s−1 Precision
µ σ µ σ µ σ µ σ abs. rel.

EKF, CTRV −0.08 0.73 0.03 0.38 −0.11 2.58 −0.21 2.76 0.5 −
EKF, CV −0.10 0.72 0.63 0.56 3.15 2.89 −0.13 2.94 0.37 −0.26
EKF, CTRA −0.06 0.58 0.03 0.38 −0.13 2.59 −0.12 2.69 0.5 0.0

Node frequency
fnode in Hz

10 −0.03 0.80 0.02 0.35 −0.07 2.69 −0.24 3.30 0.42 −0.15
20 −0.02 0.72 0.01 0.33 −0.10 2.65 −0.20 3.31 0.53 0.06
100 −0.09 0.74 0.03 0.38 −0.12 2.58 −0.23 2.96 0.5 0.0

Bounds filter
dOBF,out in m

0 −0.08 0.74 0.03 0.40 −0.12 2.55 −0.23 3.38 0.42 −0.15
0.75 −0.09 0.73 0.03 0.38 −0.12 2.64 −0.22 2.87 0.5 0.0

Match distance
dMTC in m

1 −0.06 0.32 0.03 0.24 −0.16 2.63 0.02 1.39 0.13 −0.74
2 −0.04 0.50 0.03 0.30 −0.11 2.56 −0.04 2.02 0.23 −0.54
7 −0.08 0.80 0.03 0.40 −0.11 2.55 −0.29 3.60 0.53 0.06

Match counter
threshold tMTC

6 −0.07 0.71 0.03 0.35 −0.11 2.56 −0.17 2.81 0.38 −0.24
12 −0.08 0.73 0.03 0.37 −0.09 2.59 −0.21 2.82 0.46 −0.08
37 −0.08 0.74 0.03 0.38 −0.11 2.58 −0.23 2.96 0.5 0.0

Filter frequency
fEKF in Hz

10 −0.06 1.51 0.02 0.33 −0.42 2.62 −0.22 3.34 0.31 −0.38
50 −0.06 0.74 0.03 0.36 −0.15 2.55 −0.20 2.98 0.53 0.06
200 −0.08 0.81 0.03 0.41 −0.08 2.64 −0.24 2.74 0.52 0.03

Merge distance
dMRG in m

1.7 −0.08 0.69 0.03 0.37 −0.12 2.60 −0.14 2.73 0.36 −0.28
3.4 −0.09 0.72 0.03 0.37 −0.12 2.58 −0.20 2.93 0.46 −0.08
7.2 −0.06 0.71 0.03 0.38 −0.10 2.60 −0.19 2.61 0.53 0.06

Sensor modality
L 0.00 0.61 0.00 0.22 −0.07 2.55 − − 0.59 0.17
R −0.20 1.18 −0.03 0.97 −0.27 3.57 −0.08 2.30 0.32 −0.36

The combination EKF with CTRV shows a low biased longitudinal residual. It can be explained by the negative
bias on the speed estimation. The same correlation can be seen in the longitudinal residual’s standard
deviation of 0.73 m, which results from the speed standard deviation of 2.76 m s−1. Compared to the ego-
object distance (Figure 3.6), this deviation is assessed to be sufficiently low to ensure performant ego-motion
behavior. In the lateral direction, the majority of residuals fall within ±1 m, following the 3σ-rule applied to
the standard deviation of 0.38 m. It is of special interest to adjust the wheel-to-wheel racing behavior and
lateral safety distance of the ego vehicle. The heading residual has a standard deviation of 2.58°. It results
from deriving the object’s heading from the track centerline’s orientation. The velocity residuals reflect the
deviation between the RADAR’s measurement and the CTRV-model because it is the only detection pipeline
that measures this variable. The method shows a low precision of 0.5. The values can be explained by an
analysis of TP- and FP-objects in the validation data. In the used data, FPs are mainly objects tracked briefly
at the edge of the sensor range that are discarded because of missing rematches due to inconsistent object
detections. Thus, multiple UIDs are set up for the same object before it fully enters the sensors’ FoVs and is
detected and tracked consistently. The design decision to initialize an object after three matches is however
reasonable because FPs at the edge of the sensors’ FoVs do not influence the ego behavior because of the
high distance. At the same time, the design allows for early initialization of objects when they finally enter the
sensors’ FoVs, which is then of high relevance for the ego behavior if the object comes closer.
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In comparison, the change to the CV-model results in an equal longitudinal but increased lateral residuals. It
highlights the impact of the turn rate to adequately model the object’s behavior in turns. The positive lateral
bias shows the inability to model the object’s motion into the left turns. In correlation with the lateral residual,
the heading residuals increase due to the constant yaw angle assumption. The speed estimation remains
equal. Regarding the precision, the simplified motion model decreases by −26 %. If the acceleration is
considered (CTRA), the longitudinal position and speed residuals improve. A positive influence of acceleration
modeling can be observed. However, a qualitative evaluation of transient scenarios such as overtaking with
longitudinal acceleration revealed that the CTRA-model is prone to longitudinal oscillations, especially when
the speed is not measured. Thus, there is a trade-off for real-world application, and the necessity of using
the less robust CTRA must be analyzed regarding the expected object behavior. The precision remains
unchanged between the CTRV- and CTRA-model.

Sensitivity Analysis

The sensitivity analysis shall give insights into the tracking performance under different parameter settings.
Seven model parameters and the two sensor modalities are varied around their default value. Table 3.1, from
row 4, provides the results of the analysis. The default setting for each variation is given by EKF + CTRV.

At first, the ROS2-node callback frequency fnode is analyzed. With a 90 %-quantile of 9.27 ms on a single
Intel i7-9850H CPU core, the frequency is varied from 10 Hz up to 100 Hz around the default frequency of
50 Hz. If the frequency is increased no improvement of the measurement residuals is achieved. It could be
interpreted that due to the delay compensation, the tracking performance is less dependent on low delays to
receive the detection input. A lower node frequency yields a deterioration of the speed residual due to missed
RADAR measurements and reduced precision because of a lower number of LiDAR and RADAR inputs.

The outer out-of-bounds filter distance dOBF,out is used to specify the distance from the track boundary
within detections are declared as FPs and removed. The default value is 0.3 m. The main influence of the
out-of-bounds filter distance is on the FP-rate. A deterioration of precision by 15 % is observed when the
out-of-bounds filter is set to 0. Thus, the majority of FPs are detected close to the outer track boundary, which
can be verified by an unchanged precision for dOBF,out =0.75 m.

The match distance dMTC specifies the threshold for a successful match. The variation around the default
value of 5.0 m reveals a trade-off. While the residuals of the longitudinal position and velocity improve
with lower match distances because only detections close to the estimation are considered, the precision
decreases because of less successful matches and more FPs. For dMTC =7.0 m, the precision shows a
small increase, which indicates that the detections are within the specified threshold to match the tracked
objects.

The upper threshold of the match counter tMTC, indicating the limit for the number of misdetections before an
object is removed from the object storage, is set to 25 by default. A reduction to 12 and 6 yields an increase
in the FP-rate because the objects are kept for less time in the storage. A match counter threshold set to 37
does not affect the FP-rate.

The prediction step of the EKF’s kinematic model is carried out at the frequency fEKF. By default, it is 100 Hz.
A small deterioration in measurement residuals is observed if the frequency is doubled. This is reasoned
by the deviating state forward integration because of the smaller step size ∆t = 1/ fEKF. Specifically, the
negative impact of the unmeasured yaw rate on the yaw estimation increases with higher frequency. In
contrast, a filter frequency lower than 50 Hz has a negative impact on measurement residuals because the
linearization error increases.

The clustering to avoid multi-detections per object, and by this, the number of FPs around one TP object
is parameterized with the merge distance dMRG. The default value of the merged distance is 5.1 m, which
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is twice the width of the race car in the competition. Lower precision confirms the effect that more objects
are initialized close to each other if the distance is reduced. Raising the merge distance increases precision.
However, it must be considered that in close wheel-to-wheel racing of multiple objects, a high merge distance
could result in the clustering of two TP objects.

Lastly, the influence of the two sensor modalities is analyzed. The LiDAR (L) algorithm accurately measures
the object’s position, as shown by the decrease in the standard deviation and shift toward a zero mean of the
longitudinal and lateral residuals. The more precise position measurement additionally improves the tracking
of the object’s heading. Moreover, the LiDAR algorithm has a lower number of FPs, which improves the
precision. Compared to the parameterization of the measurement uncertainty (Appendix A.1), the longitudinal
and yaw-angle standard deviations are too low, while the lateral standard deviation is overestimated. The
benefit of the RADAR (R) is the ability to measure the object’s speed. The single modality run reveals a
reduction in the velocity residual, even though the position and yaw residuals become worse, which degrades
the velocity prior and negatively influences the velocity residual. The precision decreases by 36 % due to
the RADAR’s FP-rate. Compared to the filter parameterization (Appendix A.1), the longitudinal, lateral, and
yaw standard deviations are modeled with higher uncertainty than the evaluation reveals. In contrast, the
assumed measurement uncertainty of the velocity is by an order of magnitude too small when compared with
real-world results.

Delay Compensation

The assessment of the delay compensation feature is presented in Figure 3.7. The distributions of all samples,
which are successfully processed by the delay compensation algorithm, are shown. The LiDAR has an
average delay of 151 ms, with a 90 %-quantile of 191 ms, while the RADAR exhibits an average delay of
62 ms, with a 90 %-quantile of 89 ms. Taking into account the ego speed, the ego object’s average traveled
distance is 6.20 m for LiDAR and 2.98 m for the RADAR sensor, with distances reaching up to 19.97 m at
maximum.
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Figure 3.7: Temporal distribution of delay from sensor time stamp to tracking subscription of LiDAR and RADAR and
related moved object distance [280].

Considering the delay-compensated detection inputs, the associated tracking performance is implicitly
reflected in the overall tracking performance since the provided real-world data includes the original sensor
time stamps. Therefore, the presence of low-biased residuals and a robust tracking accuracy provides
evidence of the effectiveness of the delay compensation method (Table 3.1).
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Transient Behavior

To investigate the transient behavior of the EKF, the residuals against the time elapsed since the initialization
of an object’s track are analyzed. Figure 3.8 outlines the residuals grouped per observation time for different
sensor setups.
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Figure 3.8: Residual error in the transition of the fused system, of the LiDAR and RADAR detection inputs [280].

In the first plot, which shows the longitudinal residuals, it can be seen that the RADAR residuals consistently
improve over the observation time. In contrast, the residuals of the fused system and the LiDAR residuals
only improve after the first second. Considering the tracking performance, it can be interpreted that the
longitudinal position estimate has not stabilized within the specified time frame. A decisive factor for the
transient behavior is the ratio of the measurement covariance compared to the process covariance. This ratio
shows the trust in a new measurement compared to the kinematic process and influences the magnitude of
the Kalman gain (Equation (3.9)). For the longitudinal position, the set standard deviations (Appendix A.1) of
xstd,L =0.3 m for the LiDAR and xstd,R =3.0 m for the RADAR result in covariances of 0.09 m2 and 9 m2. In
comparison, the longitudinal process uncertainty per second is ẋstd,Q =0.2 m s−1. If it is multiplied with the
average cycle times of 110 ms for the LiDAR and 60 ms for the RADAR and squared, process covariances
of 4.8 · 10−4 m2 for the LiDAR and 1.4 · 10−4 m2 for the RADAR result. Comparing the measurement and
process covariances a difference of multiple magnitudes can be observed. Thus a low trust is put into the
measurement input, which results in a slow adaption to the measurements and explains the low dynamic
of the transition. The choice is, however, reasonable because it offers high stability in steady-state tracking.
Thus, the trade-off is balanced toward stable tracking instead of high dynamics in transitions.

The fused residuals (black) associated with the lateral position yres and yaw angleψres experience a reduction
during the initial 3 s. Even though the balance between measurement and process covariance (Appendix A.1)
is of the same magnitude as the longitudinal direction, the residuals converge faster due to the low lateral
measurement error of the LiDAR. In the case of the yaw angle, it must be considered that it is not received
from the detection system but derived from the orientation of the race track’s centerline. Thus, the converging
behavior reflects the error between the track’s and the object’s estimation. Without real measurements, this
error is remedied by the low state uncertainties in lateral and longitudinal positions, which influence the yaw
angle estimation through the kinematic dependencies in the CTRV-model (Equation (3.12)).

The last distribution shows the transient behavior of the speed estimation. Only the RADAR sensor measures
this value. The distribution over the observation horizon continuously decreases, which indicates consistency
between measurements and estimations and the associated covariances.
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3.3 Physics-Constrained Deep Neural Motion Prediction

Specific requirements based on the intended usage for autonomous racing and the overall software concept
are given for the prediction method [295]. A long-term prediction with a horizon of 5 s is requested by
the downstream planning concept [278, 279] and necessary to enable interactive racing at speeds up to
300 km h−1. Additionally, the motion planner demands the output of a single trajectory to determine the
collision cost function. To enable real-world application, a reliable prediction behavior has to be secured.
Reliability comprises the robustness of the prediction accuracy against noisy input data and specific conditions
for the trajectory. The first condition is the trajectory’s smoothness, which is mathematically defined as a
continuously differentiable curve. Early experiments revealed that oscillating trajectories, even with low
amplitude around the ground truth, deteriorate the ego vehicle performance due to the sensitivity of the
motion planner. The second condition is the guarantee of feasibility for the predicted trajectory. Feasibility is
given if the predicted trajectory lies inside the race track and if the trajectory is driveable within the dynamic
limits. Besides the reliability, the prediction method shall be able to express various maneuvers, including
race-line following and interactive overtaking. Regarding the computational resources, deploying the full
software stack on the hardware in the race car constrains the hardware usage and execution frequency of
the method. A module frequency of > 50 Hz on a single-core CPU without GPU usage is defined. Lastly, a
limitation is that no public racing dataset is available for development. The state of the art is reviewed for
suitable methods based on these requirements (Table 3.2).

Table 3.2: Comparison of single-trajectory prediction methods based on the defined requirements for autonomous
racing. In addition, the proposed method MixNet is listed.

Physics-
based

Maneuver
Prediction

Encoder-
Decoder

Planning-
based

MixNet
(proposed)

Prediction Horizon
- + + o +

5 s time span
Prediction Variety

- - + o +
Variable object behavior
Trajectory Quality

+ + - - +
Smooth, driveable, inside track
External Constraints

+ - + o +
Low dependency on rules
Computation Effort

+ o o - +
50 Hz, single-core, no GPU
Data Requirements

+ o o - +
Low reliance on expert data

Due to the expected motion complexity of the race cars and the required long-term prediction horizon,
purely physics-based methods are discarded. Even though the assumptions of these methods are universal
and independent of external rules, they do not hold for interactive scenarios and long-term predictions.
Approaches such as reachable sets in combination with the dynamic limits of the race cars would result
in large occupancy grids and conservative ego behavior. In addition, the overall software architecture
demanded a single trajectory prediction instead of an occupancy grid. Common maneuver prediction
approaches with clustering and classification can fulfill the reliability requirement and the output of 5 s
trajectory predictions. However, the unstructured environment of autonomous racing does not offer the
necessary external information on traffic lanes, which the algorithms rely on. Additionally, it remains uncertain
if reducing the expected behavior to a discrete amount of maneuvers leads to performant racing. Encoder-
decoder models are assessed to meet the requirement of long-term prediction of manifold behavior. The
reliability of the real-world application is not given because their unconstrained behavior can not fulfill the
conditions of smoothness and feasibility. The size of state-of-the-art models must also be limited to fulfill the
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computation constraints. Lastly, planning-based algorithms like game theoretic approaches exhibit a high
complexity to implement a reliable interaction behavior. Further methods of learning from demonstration,
such as IRL, are not applicable because of the high demands of expert data to train the model. In addition,
the high computational efforts of these models exceed the requirements.

With the conclusion that none of the common architectures from the state of the art fulfills the formulated
requirements, the idea is to combine an encoder-decoder model with physical constraints to ensure a diverse
prediction behavior based on comprehensive scene encoding and reliability at application. The concept
of the physics-constrained prediction method, the MixNet, is outlined in Figure 3.9. Inputs to the method
are the object history derived from the tracking and the track map. These inputs are passed through a NN-
based encoder. In contrast to common approaches, the succeeding decoder does not output the trajectory
prediction but instead predicts superposition weights, which are used to derive a smooth and driveable path
by combining base curves received from the track map. With this approach, sophisticated patterns can be
extracted, and complex object behavior can be modeled. The drawback of NN-based encoder-decoders,
its missing reliability, is compensated by the output restriction to the base curves’ superposition. Through
the linear combination of the curves, it is secured that the prediction stays inside the track and that the
trajectory shape does not show oscillations. A plausibility check follows the base curve superposition to
ensure consistency between the object’s current position and the predicted trajectory. Lastly, an interaction
model follows to enable collision-free trajectory prediction in interactive scenarios. For the given network, an
average computation time on a single CPU core (Intel i7-4720HQ 2.6 GHz) of 9 ms is achieved, meeting the
computational requirements. The missing data issue to develop the model is solved by data mining at the
HiL-simulator and by using the data from the official simulation race of the IAC.

Base 

curves

Interaction 

Model
𝝆𝟏

𝝆𝟐 𝝆𝟑 𝝆𝟒

Map

Object Tracking

Plausibility

Check

Figure 3.9: Overview of the physics-constrained prediction method, the MixNet [283]. It combines a comprehensive
scene encoding utilizing a NN-based encoder and physics constraints through base curves derived from
the track to improve the feasibility of the predicted trajectory. Plausibility checks and an interaction model
create the final prediction output.

The prediction behavior in an exemplary scene is shown in Figure 3.10. The physics-constrained prediction
approach is compared to an unconstrained encoder-decoder and a rail-based approach. The unconstrained
approach is equipped with the same encoder architecture but determines the prediction through an LSTM-
based decoder. The rail-based approach uses the heuristic that the object continues to move in parallel to the
boundaries. To consider the fact that the objects follow the race line if no disturbance is given, the approach
is extended to shift the trajectory back to the race line at the end of the prediction horizon. Besides these
three predictions, the network input, which is the object’s history and boundary samples, and the ground
truth are visualized. The exemplary scene shows that the MixNet outputs a smooth trajectory. The predicted
trajectory does not have any oscillations. At the beginning of the prediction horizon, a shift from the current
object position to the outer bound can be seen because of the superposition curve’s offset, which is corrected
by the plausibility check. The prediction shifts to the inner side when the turn starts and is close to the
ground truth in the lateral direction. In the longitudinal direction, the prediction is too short because constant
velocity is assumed along the path, and the acceleration along the straight is neglected. In comparison, the
unconstrained benchmark model is equally accurate at the beginning of the prediction horizon but shows
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a lateral offset at the end. While the Euclidean accuracy is on a similar level, the lateral oscillations at the
end of the trajectory are a distinct drawback. The model can not guarantee a smooth output. The rail-based
prediction shows the same level of accuracy at the end of the prediction horizon, which confirms the decision
to shift the rail toward the race line. However, the approach falls short at the first half of the prediction horizon
because the lateral movement to the outer side of the race track is not depicted as the rail starts at the current
object position.
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Figure 3.10: Exemplary simulated scene at the Indianapolis Motor Speedway [283]. Based on the object’s history and
the sampled boundaries, the MixNet predicts a trajectory without oscillations and is close to the ground
truth. The unconstrained benchmark model and the rail-based prediction are shown in comparison.

The remaining section is organized as follows. In Subsection 3.3.1, the network architecture of the MixNet is
introduced. Afterward, an analysis of the used base curves is conducted (Subsection 3.3.2). The second part
of the method, the interaction model, is introduced in Subsection 3.3.3. Then, the model’s data and training
procedure (Subsection 3.3.4) and the validation regarding prediction accuracy and robustness are presented
(Subsection 3.3.5). The parameterization of the method is given in the Appendix A.2. The presented method
(Subsection 3.3.1 - Subsection 3.3.3) and data and training procedure (Subsection 3.3.4) are based on the
author’s publication [283].

3.3.1 Hybrid Network Architecture

The architecture of the MixNet is outlined in Figure 3.11. The LSTM layers within the encoder serve to
generate a latent summary by encoding the object’s history received from the tracking and the track map. The
input data for the network comprises the past 3 s of 2D positions from nobj objects sampled at a rate of 10 Hz.
Additionally, the left and right track boundaries from the current objects’ positions onwards are fed into the
network, sampled equidistantly up to a db,l = 400 m horizon with a sampling interval of db,d = 20 m, which
results in input dimension of nb = db,l/db,d. The hidden states of the encoder LSTMs are concatenated
and passed through a linear layer to produce the latent representation. Then, the nobj objects are predicted
independently from each other in the decoder. In contrast to common approaches [296, 297], the decoder
does not directly output future states through an LSTM network. Instead, it generates the trajectory forecast
in two separate steps for path and velocity. The decoupling of path and velocity enables the fulfillment of the
smoothness condition and ensures the feasibility of a curve inside the track during the path creation.

The path is constructed as a linear combination of multiple predefined base curves with weights determined
by the network via linear layers and the SoftMax activation function. Four base curves are used: the two-track
boundaries, a minimal curvature race line [298], and the track’s centerline. To obtain the superposed curve,
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Figure 3.11: The architecture of the physics-constrained prediction method MixNet [283]. The prediction is divided
into a path prediction by superposition of base curves and the prediction of initial velocity and constant
acceleration values to get a piece-wise linear velocity profile. Inputs to the network are nhist past 2D-
positions of nobj objects and the related left and right track boundaries in driving direction, sampled in nb

steps. Output is the trajectory prediction of nobj objects in 2D with a horizon of npred steps.

the following linear combination is applied:

ρsup(s) =
∑

c∈C
λcρc(s) with λc ∈ [0, 1] ∀c ∈ C and

∑

c∈C
λc = 1 (3.14)

The equation states that the superposed curve ρsup along the arc length s of the track is constructed out
of the base curves ρc by weighting them with their corresponding weight λc . The given constraint that the
weights of all base curves in the set C are between 0 and 1 and have to sum up to 1 ensures that the
superposed curve lies within the left and right boundaries. The constraint is enforced by applying the SoftMax
activation to the output of the linear layer.

The velocity profile is piecewise linear and is determined by predicting an initial velocity and five constant
acceleration values, one for each second of the prediction horizon. The initial velocity is calculated using
linear decoding and the Sigmoid output activation. The five acceleration values are determined by LSTM
decoding with the TanH output activation. The output of the activation function is multiplied by the acceleration
limits to obtain the acceleration values. Since −1< TanH< 1, it is ensured that the limits are not violated.

The final trajectory prediction is obtained by resampling the path according to the velocity profile. Depending
on the expected object behavior, replacing the velocity profile prediction with a constant velocity assumption
is possible. Alternatively, only the initial value can be replaced, while the LSTM decoder still determines the
acceleration profile. The constant velocity assumption is especially useful for oval race tracks because of the
high ratio of high-speed sections.

Since the superposition weights are constant along the prediction horizon and the model’s objective of
minimizing the prediction error over the entire prediction horizon, it is not ensured that the predicted trajectory
originates from the object’s current position (Figure 3.12). A lateral deviation between the object’s current
position and the superposition curve can occur. To avoid this, a plausibility check is applied to the prediction
output (Figure 3.9). It checks the first steps of the predicted trajectory regarding their lateral deviation
compared to the current object’s position. If it exceeds a predefined threshold, a lateral shift function is used
to transition from the current position to the superposition path. The shift function applies a linear increasing
weight factor to the lateral displacement between the current ego position and the predicted trajectory. By
this, the lateral displacement is bridged at the beginning of the prediction horizon, and continuity is ensured.
While the smoothness of the trajectory for the further horizon is not affected, a kink can occur at the end of
the lateral shift. Instead of using constant weights and the shift function, multiple superposition weights along
the prediction horizon can be determined to avoid the initial offset [299]. This approach determines piecewise
constant path segments for each second of the prediction horizon and creates the path prediction by blending
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the segments. As the reported evaluation reveals, the prediction accuracy is improved in addition to avoiding
the lateral offset. However, the approach is less robust because oscillations between path sections occur.

𝝆𝟒

𝝆1

𝝆3

𝝆2

Ground Truth Base Curves Superposition Path Lateral Shift

Figure 3.12: Lateral gap at the beginning of the superposition path resulting from constant weights (λ1 = 0.2, λ2 =
0.0, λ3 = 0.8, λ4 = 0.0) to superpose the base curves ρi . Without the plausibility check, a lateral gap
between the object’s position and the superposition path occurs. With the lateral shift function, the gap is
closed.

3.3.2 Base Curve Analysis

Per default, four base curves are specified and superposed (Equation (3.14)). To validate the choice of
the base curves, their usage by the algorithm is investigated, and an ablation study is conducted. For the
investigation, synthetic trajectories are generated by superposing the four base curves by random weights.
From these synthetic trajectories, the input object history and the ground truth to be predicted are derived.
Since the ground truth weighting of the synthetic trajectories is known, the experiment shall be used to
evaluate the usage of the base curves by the MixNet compared to the usage for their creation. The graphical
analysis of this relation is given in Figure 3.13.
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Figure 3.13: The relation between the input superposition weights of the synthetically generated trajectories λi,in

and the outputted weights of the MixNet λi,out for the four base curves of the left boundary LB, the right
boundary RB, the center line CL and the race line RL.

If the MixNet would create its prediction with the same weights, a match between input weights λc,in to λc,out

for all trajectories (blue dots) would results. In this case, all trajectories would lie on the bisectrix of both axes
(orange line). When analyzing the actual input-output distribution, varying usage of the base curves can be
observed. An overuse of the base curves for low input weights (λi,in < 0.5) can be observed, which refers to
samples with weights determined by the network higher than those of the input. The overuse vanishes for all
base curves with increasing input weights. If the usage proportions of the four base curves are compared, it
can be stated that the left boundary (LB) and the center line (CL) are used in low ratios by the network.
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The low usage of the left boundary can be explained by the fact that the race track runs counter-clockwise.
Thus the race line is close to the inner boundary in turns and can replace the left boundary in these segments.
However, while the race line is close to the inner bound in the apex of a turn, and a replacement is reasonable,
the replacement can result in a lateral deviation at the exit of the turn (Figure 3.14). In the exemplary scene,
the race line is used instead of the left boundary to approximate the object’s motion in the turn. However, at
the turn’s exit, the race line’s usage, which drifts to the outer bound for minimal curvature, leads to a lateral
deviation compared to the ground truth, which remains at the inner bound. Considering the current object
speed could prevent this effect since at low speeds, a shorter path is optimal because higher curvature is
dynamically possible.
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Figure 3.14: Exemplary scene with overuse of the race line in a turn, which leads to lateral deviation at the exit of the
turn. The driving direction is counter-clockwise.

The low usage of the centerline can be explained by the approximation of the centerline through the two
boundaries:

ρCL(s)≈ 0.5ρLB(s) + 0.5ρRB(s) (3.15)

If we assume this approximation, the weights corresponding to the centerline can be replaced by the two
boundary weights, and the following redistribution can be made:

λLB = λLB + 0.5λCL (3.16)

λRB = λRB + 0.5λCL (3.17)

If the approximation and redistribution are applied to the synthetic trajectories, the left and right boundary
weights, depicted in Figure 3.15, result. The usage of the left boundary increases but stays within the range
0.2 ≤ λLB,out ≤ 0.3 for inputs weights λLB,in < 0.7. The right boundary weights show a proportional ratio
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between input and output weight for λLB,in < 0.75. It can be interpreted that the right, outer boundary is not
replaceable because, especially in turns, it is the only base curve that moves the predicted path away from
the inner bound. Through this redistribution, the Euclidean prediction accuracy deteriorates by 2.52 % for
the synthetic trajectories samples. Thus, the assumption of Equation (3.15) can be assessed as valid for
this experiment. However, further investigation, especially in interactive scenarios, is required to validate
the assumption to replace the centerline entirely. In summary, the analysis reveals that the input-output
correlation does not show proportional behavior but all curves are used in considerable ratios, which justifies
their choice for the target ODD.
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Figure 3.15: The relation between the input weights of the synthetically generated trajectories and the output weights
of the MixNet if the weights of the centerline are redistributed to the left and right boundaries.

3.3.3 Interaction Model

The network does not consider any information about surrounding objects when predicting the target object.
Even though all objects in a scene are processed in parallel, they are predicted separately (Figure 3.11).
This design decision ensures reliable prediction of the surrounding objects in the cases of race line following.
However, explicit consideration of interaction is required in overtaking or getting overtaken maneuvers.
Furthermore, through an interaction model, it shall be ensured that the predictions of multiple objects are
collision-free to enhance the plausibility.

The approach for autonomous racing of game theoretic modelling [300] has been discarded because of the
high computing time of the iterative execution and the required amount of data with interactive scenarios.
Instead, a two-step approach is proposed to incorporate interaction awareness. At first, each vehicle’s
trajectory, including the ego vehicle’s, is predicted by the MixNet without considering surrounding objects.
Then, these independently predicted trajectories are checked for collisions based on the vehicles’ geometry
and the minimal interaction distance. If the interaction distance is ensured, no adjustment of the trajectories is
made because no relevant interaction between the objects is assumed. Otherwise, if the interaction distance
between the predicted trajectories is violated, the trajectories are adjusted through fuzzy logic.

The fuzzy logic is based on the rules of the competition [286]. The rules state that the leading vehicle must
’hold its race line.’ So, the trailing vehicle’s trajectory is adjusted respectively. The logic determines the
highest probable maneuver out of ’overtaking left,’ ’overtaking right,’ and ’staying behind.’ The probabilities
are calculated based on the position along the track, the relative position between the two vehicles, and the
speed of both vehicles. If an overtake maneuver is the most probable, the predicted trajectory is adjusted
along its lateral positions to the respective side. In the case of the maneuver ’staying behind,’ the longitudinal
positions are adjusted to predict a decelerating behavior. The procedure is continued for all the following cars
in a hierarchical manner. Since this hierarchical procedure does not guarantee collision-free predictions for
all vehicles in the end, the process can be repeated iteratively. Collisions with the ego vehicle’s trajectory
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are always prioritized and solved last. In the given setting, the iterations are limited to two, which has been
shown to solve most of the remaining collisions and does not violate the constraint of the calculation time.

3.3.4 Data and Training

The data mining and subsequent training of the proposed model are presented in the following. With the
absence of public racing datasets and the complexity of the racing ODD, data mining is a crucial part of the
development. Based on the data mining, the training process is described, including the definition of the loss
function to balance the different targets of the training process against each other.

Data Mining

The training data is obtained by emulating the software in the multi-agent simulation on the HiL-simulator
with varying parameters. In addition, data from the official simulation race of the IAC are used. Data from
this race have the advantage of containing trajectories from other AV software stacks. The recorded data
comprise the tracked object lists, which are used to reconstruct the opposing vehicles’ trajectories. These are
split in object history as input to the prediction algorithm and ground truth object future to determine the loss.

By utilizing the tracked object lists to construct the dataset, the input distribution of tracked objects and
tracking quality is aligned with the expected distribution during the actual race. In addition, the synthetic
object list emulator is applied to introduce variations in perception quality, augmenting the dataset. Zero-mean
Gaussian noise with different longitudinal and lateral variances is added. The variances are adjusted to the
real-world detection performance, which was determined during early perception-only test rides. The required
track map to complete the input to the prediction model is derived from an offline-generated HD map. In
total, 226 virtual races are mined. On average, 3.4 vehicles compete per race. A dataset of 358025 training
samples is generated from these races. For the validation of the method (Subsection 3.3.5), 10 races on the
HiL-simulator are recorded, following the same procedure but using a different parameter set. The whole
dataset is available open source [285].

Training

The loss function incorporates two terms. A path loss penalizes the superposition of the base curves, which
is related to the error in the lateral direction. In addition, a velocity loss quantifies the error of the velocity
profile, which reflects accuracy in the longitudinal direction. The path loss Lpath between the lateral deviation
of the superposed curve xpred and the ground truth xGT, is defined as:

Lpath = Lw + Lmse (3.18)

Lw =

∑nw
m=1 ∥xm,pred − xm,GT∥22

�

1+ww

�

1− m
nw

��

nw
(3.19)

Lmse =

∑npred

m=nw+1 ∥xm,pred − xm,GT∥22
npred − nw

(3.20)

with ww = 0.5, nw = 10, npred = 50 (3.21)
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To consider the higher relevance of the first prediction steps, the weighted Mean Squared Error is used for
the first nw time steps of the prediction horizon (Equation (3.19)). In addition, the weighted loss is beneficial
to reduce the lateral offset at the beginning of the prediction horizon. The weight decreases linearly from an
initial weight of 1+ww = 1.5 to 1.0 along the weighting horizon nw. The loss along the remaining prediction
horizon is determined by the Mean Squared Error (MSE) (Equation (3.20)). The MSE is also used for the
velocity loss Lvel, which is determined between the predicted velocity vpred and the ground truth vGT:

Lvel =

∑npred

m=1 ∥vm,pred − vm,GT∥22
npred

(3.22)

The overall loss function is constructed out of path and velocity loss:

L = Lpath +∆t2 Lvel (3.23)

The time step size ∆t is set to 0.1 s, according to the frequency of the input objects lists fpred =10 Hz. By
multiplying the velocity loss with the squared time step size, both terms have the same unit of m2. Bayesian
optimization with the goal of minimizing the loss L is applied to the training parameters. The parameters
depicted in Table 3.3 result from the optimization.

Table 3.3: Training parameters for the physics-constrained motion prediction method.

Parameter Value

Learning rate η 5 · 10−5

Learning decay factor γ 0.997
Weight decay factor ω 10−7

Batch size |B| 128

3.3.5 Results

The evaluation of the MixNet comprises three parts. At first, the overall prediction accuracy is analyzed.
Next, a sensitivity analysis is conducted to investigate the prediction behavior under varying conditions. The
evaluation terminates with an analysis of the method’s robustness against noise in the tracked object states.

The MixNet is evaluated against the unconstrained encoder-decoder architecture and the rail-based prediction
with race line shift, which extrapolates the object’s state in parallel to the track boundaries and shifts to the
race line at the end of the prediction horizon (Figure 3.10). The MixNet is parameterized to use the initial
velocity information from object tracking in combination with the piece-wise constant acceleration profile
determined by the decoder.

Prediction Accuracy

The prediction accuracy is analyzed by the RMSE in the lateral and longitudinal directions against the
prediction horizon averaged over all objects nobj, which is defined as:

RMSE=

√

√

√

∑nobj

l=1 ∥x l,pred − x l,GT∥22
nobj

(3.24)
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Figure 3.16: RMSE over the prediction horizon in lateral (left) and longitudinal (right) direction of the MixNet compared
to the unconstrained benchmark model and the rail-based prediction.

It can be split into a lateral and a longitudinal component by replacing the object state x with the longitudinal
positions x or the lateral positions y , respectively. Figure 3.16 outlines the RMSE of the MixNet, the
unconstrained benchmark model, and the rail-based prediction in the lateral and longitudinal direction.

In the lateral direction, MixNet’s error is on the same level as the benchmark model. This outcome supports
the hypothesis that the chosen base curves adequately cover the occurring object movements. In contrast,
the rail-based prediction shows higher lateral deviation. The behavior of the reducing prediction error from
2.7 s on can be explained by the data distribution of test data. There is a high ratio of interactive scenarios in
which the objects leave the race line, shift to a parallel line for overtaking, and then back to the race line after
the successful overtake. The rail-based approach can not model this behavior because it starts from the
current object’s position. Thus, it can not model the shift to a parallel line during the overtaking maneuver but
only the shift back to a minimal-curvature race line at the end of the maneuver. In the longitudinal direction,
the MixNet shows the lowest prediction error. In this direction, the comparison with the rail-based approach is
of special interest because the rail-based approach uses the constant velocity assumption in contrast to the
piecewise constant acceleration profile of the MixNet. It can be seen that the consideration of the object’s
acceleration improves the speed prediction up to a prediction horizon of 4.2 s.

The average overall RMSE on the recorded interactive scenarios is 4.10 m for the MixNet. In comparison, the
benchmark model shows a prediction error of 4.48 m, and the rail-based model with race line shift achieves
a prediction accuracy of 5.06 m.

Sensitivity Analysis

A sensitivity analysis of the RMSE against the object speed and the number of objects per scenario is
conducted. The error distribution against the object speed is depicted in Figure 3.17a. The predictions are
categorized into three bins: v < 30m s−1, 30m s−1 ≤ v ≤ 60m s−1, and 60 ms−1 < v, corresponding
to low-speed and start scenarios, mid-speed scenarios, and top-speed scenarios. While the MixNet’s
median decreases with increasing speed, the mid-speed scenarios show the highest variation, which the
higher dynamic options of lateral and longitudinal accelerations can explain. Thus, the transient scenarios
are revealed to be challenging. A high speeds, the lowest volatility can be observed. The unconstrained
benchmark model shows the highest median error and variation for low speeds. Compared to the error
distribution at high speeds, which is on the same level as the MixNet, the unconstrained model shows a
higher sensitivity. Thus, the physics constraints stabilize the network behavior to be less sensitive against
speed variations. The rail-based model’s sensitivity shows a similar behavior as the MixNet’s but the error
distribution is on a higher level overall. Hence, the two models have the same stability against object speed
variations but the MixNet is beneficial because of its higher flexibility to create trajectories.
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Figure 3.17: Error distribution against the object speed and the number of objects.

The second sensitivity analysis is against the number of objects per scenario (Figure 3.17b). The medians
for all models range between 3.6 m and 4.8 m over the number of objects. The prediction errors are on
a similar level with varying numbers of objects. This can be explained by the observation that the actual
wheel-to-wheel racing with more than two vehicles, which would result in strong lateral interaction, is only for
a short time span. Instead, scenarios with more than two vehicles primarily involve sequential overtaking
maneuvers between two vehicles. Thus, for the majority of the scenes with nobj > 1, a similar behavior is
observed as in the case of nobj = 1, and the prediction models are of similar accuracy.

Robustness

One key indicator of a reliable prediction is robustness against noise in the tracked object states. Therefore,
an additional validation with varying zero-mean Gaussian noise is conducted to assess this feature. It should
be noted that the original test data already contains noise based on the measurements derived from the
early real-world tests. In the following study, additional noise is added to these data (Table 3.4).

Table 3.4: Robustness of the unconstrained benchmark model, the rail-based model, and the MixNet against zero-
mean Gaussian noise in the lateral and longitudinal direction.

Standard Deviation Benchmark Model Rail with Race Line MixNet
− RMSE RMSE RMSE

σlon in m σlat in m abs in m rel in % abs in m rel in % abs in m rel in %

0.0 0.0 4.48 - 5.06 - 4.10 -
0.5 0.5 4.69 +4.6 5.12 +1.2 4.36 +6.5
1.0 1.0 5.43 +21.2 5.29 +4.5 4.64 +13.4
1.0 0.0 5.09 +13.6 5.18 +2.4 4.41 +4.7
0.0 1.0 4.82 +7.5 5.17 +2.2 4.49 +9.7

If noise is added in both directions simultaneously, the advantage of the MixNet compared to the benchmark
model gets visible for higher standard deviations (σlon = 1.0 m, σlat = 1.0 m). In this case, the benchmark
model loses prediction accuracy by 21.2 % compared to 13.4 % by MixNet. This observation indicates
that the constraints applied to MixNet yield the desired model behavior of increased robustness against
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input variations. In comparison with the rail-based prediction with race line consideration, the MixNet has a
higher relative increase of the RMSE error. The rail-based prediction deteriorates by less than 5 % through
all experiments. However, the variation of the object position only affects the start point of the rail-based
prediction but not the length of the prediction because the additional input variable to the rail-based method
of the object’s speed is not varied by noise.

Focusing on MixNet’s behavior, it can be observed that the noise in the lateral direction has more influence
on the prediction accuracy than the longitudinal noise, which differs from the other models. The lateral noise
especially disturbs the weight selection for the base curves, which impacts the prediction accuracy. With a
focus on the absolute RMSE errors, the MixNet shows the lowest RMSE over all experiments.

3.4 Discussion

Based on the identified research gap, the proposed methods for tracking and motion prediction focus on
reliability, validated in the ODD of autonomous racing. An approach for multi-modal fusion of heterogeneous
sensor pipelines in combination with a tracking method, including a novel delay compensation approach,
is implemented to provide low-biased and consistent object histories as necessary input to the prediction
module (Section 3.2). The reliable prediction is realized by combining data-based scene encoding with
physics constraints and rule-based interaction to ensure accurate prediction while maintaining essential
quality guarantees for the full-stack application (Section 3.3). In the following, the presented results in the
ODD of autonomous racing (Subsection 3.4.1) and their transfer to further ODDs (Subsection 3.4.2) are
discussed.

3.4.1 Validation of the Methods

The evaluation of the tracking method shows a low-biased tracking behavior of the EKF with a CTRV-model,
indicating that the parameterization is appropriate for the given detection inputs (Table 3.1). Low lateral
residuals, particularly, are crucial for the specific use case of wheel-to-wheel racing. A shortcoming is the
speed estimation, which shows volatile behavior that can lead to reduced tracking accuracy in transient
situations. The low precision mainly results from objects on the edge of the sensors’ FoVs. Besides the
CTRV-model, alternative kinematic models are analyzed. The CV-model shows decreased lateral residuals
and precision. The CTRA-model is of equal performance with a slight improvement in the longitudinal
direction but is prone to oscillations because of the non-measured acceleration state. The sensitivity analysis
(Table 3.1) reveals at first that the precision is influenced by the three variables of the match distance, the
match counter threshold, and the merge distance. The respective parameters are set to balance the trade-off
to stably match new objects, to minimize the influence of multiple detections for one object, and to discard
objects without detections after a specific period. A second finding of the analysis is that the filter frequency
directly manipulates the kinematic state’s forward propagation, degrading the precision and residuals if a
lower frequency is used. A third observation is the influence of the sensor modalities, shown by the single
sensor validations. They reveal that the measurements from the LiDAR sensor are essential to track the
objects’ positions accurately. Despite the low positional accuracy, the benefit of RADAR is the measurement
of the object’s speed. The investigation of the method’s transient behavior reveals a low dynamic in the
longitudinal direction (Figure 3.8), which results from the setting of process and measurement covariances.
An optimization of the filter parameters to balance transient behavior and stable tracking could improve
the transient behavior. To resolve the trade-off between high dynamics in transitions and stable tracking
in steady-state scenarios, adaptive values for process and measurement covariance parameters can be
implemented.
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The validation of the MixNet shows an improvement in the prediction error compared to the unconstrained
benchmark model and the rail-based approach while ensuring quality guarantees of a non-oscillating
trajectory (Figure 3.16). The results demonstrate that the constraints do not negatively influence the network’s
capabilities to model the motion behavior in the given ODD. A distinct aspect for future research is revealed
by the conducted analysis of the base curves selection and usage by the network (Subsection 3.3.2). The
qualitative study on the replacement of the centerline by the two boundaries suggests possible optimization
for the selection of the used curves. An inherent shortcoming of the method is the occurrence of lateral gaps
at the beginning of the prediction horizon because of the constant superposition. While this is remedied
by means of a correction shift, an integral solution by the algorithm itself should be intended. The idea
to use multiple superposition parameters along the prediction horizon [299] shows improved accuracy
but loses reliability. These two factors must be balanced against each other when optimizing the base
curve composition. The sensitivity analysis of the MixNet reveals a low bias against the number of objects
(Figure 3.17). The bias toward the object’s speed is assumed to be influenced by the speed distribution of
training data as there is a high ratio of high-speed scenarios in the data. In addition, the reduced accuracy in
the mid-speed range indicates that the model falls short in scenarios with an increased dynamic potential
of the objects. The sensitivity against noisy input data influences the prediction accuracy, especially in the
lateral direction (Table 3.4). However, for the intended real-world application, it is relevant to consider the
occurring noise during inference and, based on this, estimate its actual influence. Under the consideration of
the noise observed in applying the tracking method on real-world data (Table 3.1), the model can be assessed
as reliably applicable. Regarding the absolute prediction error, the MixNet outperforms unconstrained and
rail-based models when noise is added.

3.4.2 Transferability to new Operational Design Domains

While autonomous racing is suitable to validate algorithms at high speeds in real-world scenarios, the
question remains of how to transfer the developed methods for the usage in further ODDs. When the
proposed methods for autonomous racing are analyzed, the following conclusions can be drawn.

The multi-modal late fusion and tracking method’s low-biased residuals are assessed to meet the requirements
for ODDs of public road traffic. The residuals are expected to decrease with lower object speeds and distances.
A crucial element is the used kinematic model in the EKF. While the filter method is evaluated to be adaptive
with a low effort of adjusting the parametrization for new ODDs, the usage of the CTRV as the kinematic
model involves limitations. At first, the heading estimation is a crucial aspect. It has to be ensured that the
detection provides the object’s orientation. The assumption taken for the autonomous racing ODD that all
objects drive in the same direction does not generally hold. Especially when it comes to different types of
objects beyond motorized vehicles, estimating the heading based on the road map information is a safety
risk. In addition, the sensors must measure the velocity of the objects to use the model. Since the yaw rate
is a non-measured state, it must be validated if oscillations in this state occur. If this is the case, simpler
models, such as the CV-model, should be considered. Furthermore, using the CTRV-model to track other
object types, such as pedestrians and cyclists, must be validated because their motion behavior differs from
vehicles. Besides the state estimation, input processing and matching assumptions made for the racing ODD
have to be revised critically regarding the adaptivity of the method. The out-of-track filter of FPs might be
usable for vehicles in public. However, due to errors or changes in the underlying map, which specifies the
driveable area, this implies a safety risk. For pedestrians, the out-of-track filter is not useable. Besides that,
the parameterization to merge two detections has to be reviewed. In dense traffic, FNs could occur if two
close objects are merged into one. The same applies to the match distance, which could result in the wrong
association of neighboring objects to one UID. The consideration of further features, such as the object
size, is recommended to match tracked and detected objects reliably. The introduced feature of the delay
compensation is considered to be adaptive to new ODDs. It depends on using a suitable kinematic model but
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is generalizable regarding the backward-forward integration. An advantage of the method is that it does not
need labeled data to be deployed in new scenarios, which lowers the effort of integration and optimization.

The transfer of the MixNet to the ODD of public road traffic implies the following challenges. The first issue
is the selection of suitable base curves. Due to the fact that typical rides are one-way from one location
to another, the base curves have to be updated continuously. Exact map information must be given. Also,
the amount and shape of the curves have to be evaluated for specific situations. While the application on
closed highways is similar to closed race tracks, the application of superposed curves for roundabouts or
junctions must be analyzed. For these non-closed road geometries, the space between the base curves is
not necessarily a driveable area, which violates one essential quality guarantee. An example could be a
T-junction with two base curves for turning left and right, resulting in implausible superposed curves toward
the non-driveable area (Figure 3.18). Thus, further heuristics must be used to adjust the superposition
approach to open road geometries. A variation of the concept to select the most suitable base curves instead
of superposing them is discussable. The idea is similar to the presented state of the art of classifying motion
patterns into prototypical trajectories (Subsection 2.3.2) with the known drawback of being limited to the
selected curves in the output. Lastly, the interaction model, which is implemented using fuzzy logic, must
be reviewed. While the decision between ’overtaking left,’ ’overtaking right,’ and ’staying behind’ might be
suitable for highway scenarios, dense urban road traffic is assessed to require more sophisticated models.

Samples of Superpositions 

Base Curves

Figure 3.18: Application of the MixNet at a T-junction. Two base curves derived from the road network are input to the
method. Superposing these base curves results in paths that leave the driveable area. The feasibility
condition of staying inside the driveable area is violated for non-closed road geometries.
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The second identified criterion of a generic prediction framework is adaptivity (Section 2.4). Its realization
shall be investigated by the research items RI3, RI4, and RI5 in this chapter. The criterion is motivated by the
human skill of adapting driving behavior through experience. Human drivers achieve this in two steps. First, if
human drivers enter an unknown scenario, they try to adapt their behavior based on known patterns [301].
The known patterns can be referred to as driving experience. Human drivers can additionally assess if their
skills are insufficient in specific scenarios, and their safety could be impaired [302]. The second aspect of
human adaptivity is that they learn from unknown scenarios. Especially if they commit errors, they have high
competence to learn from them [303]. Thus, their driving experience grows, and by this, they are able to
solve future scenarios more confidently. Consequently, if the human drivers’ skills of adaptivity are taken as
a reference, incorporating scenario understanding into motion prediction algorithms has the following two
goals. First, through scenario understanding, the prediction method shall be scene-dependently adapted,
and the most suitable manner to predict an object’s motion shall be used. Hence, the prediction behavior
shall be adjusted in every individual scene throughout a scenario. Also, particular scenes that challenge the
AV software in predicting surrounding objects and are expected to result in erroneous predictions shall be
detected to prevent safety-critical situations. The second goal is to use these scenes as data samples to
expand the scenario understanding and prediction abilities for future applications.

This chapter focuses on the first goal: The scene-dependent adaption of the prediction behavior and the
detection of scenes that an algorithm cannot accurately predict by means of scenario understanding. To
realize this, a scene-dependent self-evaluation method is proposed (Figure 4.1). For a given scene, an
evaluation is conducted to select the most suitable trajectory prediction model, i. e. the most suitable predictor.
If none of the predictors is assessed as suitable, the scene is classified invalid. By this, the prediction is
adapted to the current circumstances if possible, and high prediction errors, which could lead to safety-critical
scenes, are a priori detected and can be prevented.

Predictor 𝟏

Predictor 𝒏𝐭𝐩

...

Invalid

Evaluation

Based on Scenario 

Understanding

Figure 4.1: Overview of the proposed method: Self-evaluation of trajectory predictors [304]. The encoded scene
comprising the objects and semantic information is input to the evaluation. The evaluation selects the best
prediction method for the given scene. If none of the prediction models is expected to predict with the
required accuracy, the scene is classified invalid to prevent high prediction errors.
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The method is validated in public road traffic, which offers the following advantages to prove adaptivity. Due
to the variety of road geometries and object types, diverse behavior and object movement must be encoded
and predicted. In addition, objects’ intentions can strongly vary among surrounding objects, and individual
driving styles complicate their understanding. It is unknown which goals the objects in a scene have, which
induces additional uncertainty. Based on observations, the prediction method has to estimate the intentions
to derive the respect motion pattern. Furthermore, manifold interactions are expected to occur due to the
varying number of traffic participants. These interactions exacerbate the prediction because concatenated
effects occur between the behavior of the objects.

The chapter is organized as follows. At first, the environment around the research vehicle EDGAR is presented,
in which the development and validation of the method takes place (Section 4.1). Section 4.2 introduces the
hybrid prediction approach that integrates multiple predictors, which is the first part of the method. The hybrid
approach combines physics-based and pattern-based prediction algorithms. The motivation for choosing
these prediction algorithms and their implementation is presented in this section. The second part of the
method is the self-evaluation (Section 4.3). It comprises a metric to evaluate scenes and a model to choose
the respective predictor based on the metric. Next, the data and training procedures of the method are
presented (Section 4.4), which build the foundation for deriving the results. The method’s validation on
the introduced data occurs in Section 4.5. It comprises the presentation of the quantitative results of the
hybrid prediction method and the selection behavior and of qualitative results to give further insights into the
method’s behavior. Besides these results, two further aspects are of interest. The first aspect is the model’s
network architecture, which is analyzed in a comprehensive ablation study (Section 4.6). Second, influencing
factors on the prediction errors are analyzed (Section 4.7). Their investigation allows insights to be used for
the integration and overall software tuning process. The chapter closes by discussing the presented method
and results (Section 4.8).

The setup of the research platform EDGAR is published as a preprint by the author [305]. The vehicle’s digital
twin is made publicly available [306]. The presented method and quantitative results are published in the
author’s prior work [304]. The related software is open-source available [307].

4.1 Research Platform EDGAR

For research in autonomous driving for public road traffic, a comprehensive development and test platform is
built up [305]. The platform’s core is the research vehicle EDGAR (Excellent Driving GARching, Figure 4.2a),
which is embedded in a holistic simulation and data environment.

Based on a Volkswagen T7 Multivan, a multi-modal sensor setup is built with the requirements to be time-
synchronized by Precision Time Protocol and ROS2 compatible. The positioning of the sensors is optimized
to balance small blind spots close to the car and large FoVs at angles and distances. Figure 4.2b outlines the
FoVs of the sensors in birds-eye-view. Six cameras of type Basler acA1920-50gc are used for mid-range
detection and teleoperation, while two further Basler cameras to the front with a focal length of 16 mm are
used for long-range detection with depth completion. For the short-range area, two additional stereo camera
setups of type RAMOS D455E are installed, which are used for gesture detection. The LiDAR setup comprises
two 360°-rotating Ouster OS1-128 for localization and near-field detection and two Innovusion Falcon for
long-range detection to the front and the rear. The setup is complemented by six Continental ARS430 RADAR
sensors with alternating FoVs. In addition, an inertial measurement unit, multiple differential global positioning
systems, and SDR-Transceivers are installed for ego-state estimation and external communication. The
hardware components are listed in Appendix B.
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(a) The research vehicle EDGAR. Image Credits: Technical University of Munich

                

                     

                  

(b) Field of View of EDGAR’s multi-modal sensor setup [305].

Figure 4.2: The research vehicle EDGAR and its sensor setup.

To enable a consistent simulation and real-world testing strategy, the vehicle’s sensor setup and dynamic
behavior are duplicated in a digital twin [306]. By this, the virtual validation process is aligned with the
real-world tests. Despite that, the digital twin facilitates the software development process on valid vehicle
and environment models.

A central element for developing and evaluating prediction and planning methods is the benchmark framework
CommonRoad [308]. CommonRoad ’s scenario library is used during the feature development process and
for reproducible evaluation of prediction and planning methods prior to integration into the full software
stack. With a mix of real-world and synthetic scenarios from different sources, it offers a wide range of road
geometries and object behaviors to benchmark the developed methods. The scenario library of CommonRoad
is also used to validate the proposed self-evaluation method.

4.2 Hybrid Trajectory Prediction

This section is based on the author’s publication [304] and introduces the hybrid prediction approach. Since
the accuracy of an individual prediction model depends on the object type and traffic scene [253], it is
assumed that an ensemble of prediction approaches from different classes with heterogeneous prediction
behavior complement each other to improve the total prediction accuracy. While pattern-based methods
dominate the prediction competitions on vehicle-focussed datasets [15, 81, 137], physics-based models
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are useful to model steady-state behavior and show the best accuracy for pedestrian prediction [253, 309].
Therefore, a combination of these two classes is proposed. Due to the superior performance of GNN-based
methods, a second pattern-based model is constructed with a Graph Convolution Network (GCN). This
specific type of GNN-network is chosen because of the discussed advantages of its computational efficiency
in aggregating features from a node’s neighbors in a single step, which is beneficial in dense graphs where
each node has many neighbors (Subsection 2.3.2). An inherent bottleneck of ensemble methods is the
computational effort required to run multiple models. To counteract this, an integrative architecture of the
proposed prediction models, which reuses particular branches of the architecture in multiple models, is
implemented (Figure 4.3). It comprises a scene image encoding and the three trajectory prediction models,
the predictors (ntp = 3):

• Constant Velocity (CV)

• Linear LSTM (L_LSTM)

• Proximity-Dependent Graph-LSTM (DG_LSTM)

L_LSTM 

Encoding

Rasterized Image
Model SelectionScene Image 

Encoding

DG_LSTM 

Decoding

L_LSTM 

Decoding

DG_LSTM 

Encoding

Prediction 

Output

Best Trajectory

or

Invalid

Metric

G_SEL

Selector Model

Object History

CV

Evaluation

Neighbors

Figure 4.3: The network architecture of the self-evaluation method for trajectory predictors comprises a scene image
encoding, three trajectory predictors (CV, L_LSTM, DG_LSTM), and the selector model [304]. Inputs are
the target and surrounding objects’ history and a rasterized image of the road network. All information is
encoded and input into the evaluation. As a result of the evaluation, the selector model (G_SEL) chooses
the best trajectory predictor for the present scene based on a specified metric, which is then executed to
output a trajectory prediction. In the case that none of the predictors achieves the required accuracy, the
prediction scene is classified invalid to avoid erroneous predictions.

The inputs to the method are a rasterized scene image of the road geometry and the objects’ history, which
are the tracked object states (x , y,ψ) of the target and the surrounding objects. The time span of the object
history is set to 3 s. Besides the objects’ history, the object class co is added to the input vector, which results
in an input feature size of din = 4. The object states are transformed into the local coordinate system of the
target object’s current pose (x0, y0,ψ0). The transformation into the local coordinate system of the target
object’s pose yields a normalized input for the prediction models. Based on these inputs, the models’ outputs
are the predicted trajectory of the target object xpred with its x-, y-positions over the prediction horizon
of 5 s. Thus, the output feature size dout is 2. Object history and future are sampled with 10 Hz, which
results in an observation length of nhist = 30 and a prediction length npred = 50. In the following, the scene
image encoding is introduced at first because it is used in multiple predictors and for the self-evaluation
(Figure 4.3). Afterward, the three individual predictors of CV, L_LSTM and DG_LSTM are described. The
models’ parameter optimization is described in Subsection 4.4.2. The parameter settings are analyzed in the
ablation study (Section 4.6).
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4.2.1 Scene Image Encoding

A scene image encoding based on [163, 164], which extracts road geometry information from a rasterized
image, is implemented to enhance semantic understanding. The input pixel image visualizes driveable areas
and center lines of the road network’s lanes in dedicated colors. The advantage of this representation is the
independence from the road geometry and the number of roads because the input size remains unchanged
compared to vector representations. For each object to be predicted, the scene image is cut in a square
around the object’s current position with a size of dmap × dmap. The extracted pixel image is processed
through CNN-layers. At first, lsc,in filters are applied to encode the semantic information. Then, the number of
filters changes to lsc,out to create the output vector. A max-pooling operator is applied after every CNN-layer
as an activation function. A latent 1D-vector results, which is used in the different decoders of the predictors
and the selector model (Figure 4.3).

4.2.2 Constant Velocity Model

A CV-model is implemented with the target to cover steady-state object behavior. It extrapolates the object’s
state with the assumption of constant speed and constant heading (Figure 2.4). Because of the transformation
into the local coordinate system, the CV-prediction simplifies to:

xm = v0 tm with m ∈ Z | 0< m≤ npred (4.1)

The equation reads that the m-th longitudinal prediction step xm is a 1D-extrapolation of the current object
speed v0 up to the prediction length npred. All lateral values in the local coordinate system yi are zero.
The advantages of the CV-model are that it does not require any labeled data, no training, and has a low
computational effort during inference. Its drawback is sensitivity to noisy input data because only the current
object state is used to determine the future motion by linear extrapolation. Especially heading oscillations
influence the lateral prediction accuracy. Figure 4.4 depicts this issue in a steady-state driving scene with a
heading deviation of ∆ψ=2.58°, which corresponds to heading residual of the presented tracking method
(Table 3.1). Therefore, the CV-model depends more on the tracking’s ability to reduce input noise than
pattern-based models.
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Object History Ground Truth CV-Prediction CV-Prediction with Δ𝜓 = 2.58° 

Figure 4.4: Scene with a heading error of ∆ψ=2.58° at an object speed of 13.74 m s−1. An increase in the RMSE
of 1.91 m and in the lateral deviation of 3.25 m at the end of the trajectory result for the noisy prediction
compared to the original prediction.

4.2.3 Linear LSTM Model

An RNN-based encoder-decoder with linear embedding is implemented to model low interactive scenarios.
Since it does not consider the surrounding objects as input, it bases its prediction only on the encoded road
geometry and object history (Figure 4.3). The encoder of the L_LSTM-model is constructed out of a linear
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embedding and LSTM-layers. The embedding transforms the input features into the embedding vector by
means of lli hidden linear dense layers of size hli in combination with the ReLU activation function and an
output layer of size hli,emb. The embedding vector is processed sequentially by the LSTM, which contains lenc

layers of size henc. The hidden state of the final LSTM layer represents the model’s latent space. This latent
space is embedded by a linear dense layer (size llat) and, concatenated with the scene image encoding, input
to the LSTM-decoder. The one-layered decoder enrolls the latent space into a temporal vector through an
LSTM, followed by a linear layer, which transforms the LSTM’s output of size hdec into the output feature size.
The LSTM-decoder is an adjusted version of the decoder used in the physics-constrained prediction method
to obtain the acceleration profile (Section 3.3). Within the L_LSTM-model, the architecture’s integrative
characteristic takes place by reusing the model’s latent space in the selector model (Figure 4.3).

4.2.4 Proximity-Dependent Graph-LSTM Model

The implementation of the DG_LSTM [310] is made to cover interactive scenarios. To achieve this, the model
considers all objects in the scene as input, which are processed into an undirected graph G =

�

N ,E
	

. Each
object is represented by a node ν ∈ N with a node feature vector z consisting of the object’s historical
positions (x , y), heading ψ, and class co. Between the nodes, the edges ε ∈ E are established. To improve
the graph’s focus on relevant interactions, only nodes with proximity below a threshold δ throughout the
sampled history and future are connected. The distance-based limitation of the graph connections has
been shown to improve the prediction behavior [156, 311]. An example of the proximity-dependent graph
representation is shown in Figure 4.5.

𝛿

Figure 4.5: Schematic depiction of the proximity-dependent graph representation for a traffic scene [304]. Only objects
with proximity below the threshold δ (orange edges) are connected and considered in the one-layered
GCN of the target object (orange dot). Alternatively, by means of a two-layered GCN, second-order
interactions are considered (orange-black edges).

The target object (orange dot) has direct connections to the three objects inside the proximity (orange edges),
which are considered in the GCN-embedding if one layer is used. If the number of GCN-layers is increased
to a value of 2, second-order connections (orange-black edges) are additionally considered. In the current
implementation, it is set to ldg,emb = 1. The constructed graph is processed by GCN-embedding. It contains
ldg layers of GCNs of hidden size hdg and output size hdg,emb. The update of the node feature vector z of an
object i at time t is formulated as follows:
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z′i,t+1 = χ
�

ϕi

�

zi,t

�

+ Γ j∈N | j ̸=i ϕ j

�

z i
j,t

��

(4.2)

The update of the node feature vector comprises three steps:

1. Transformation:
All connected node feature vectors of the surrounding objects are transformed into the target
object’s coordinate system. The modified feature vectors z i

j,t are obtained.

2. Message Passing:
The modified node feature vectors z i

j,t are processed by the common message function ϕ j .
The node feature vector of the target object zi is processed by the message function ϕi . A
linear-dense layer of size mdg with ReLU activation defines the two message functions.

3. Aggregation:
The messages from all surrounding objects are aggregated via the aggregation function Γ .
This aggregation is added to the embedded node feature vector. The sum is passed through
the update function χ , which is a linear dense layer with the output size hdg,emb.

Out of these three steps, the update node feature vector z′i,t+1 results. After the GCN-embedding, an
LSTM-based encoder-decoder, which has the same architecture as used in the L_LSTM, follows. To limit the
number of parameters of the model, the respective values of the encoder (lenc, henc) and the decoder (llat,
hdec) are the same as for the L_LSTM. The scene image encoding is fused in the latent space to consider
semantic information. By this, non-Euclidean interaction awareness and geometric map knowledge are
combined. The DG_LSTM-encoding is additionally used in the selector model for the self-evaluation.

4.3 Self-Evaluation

This section is based on the author’s publication [304]. It introduces the a priori self-evaluation based on
the current semantics whereby scenario understanding is incorporated into the prediction task. The self-
evaluation determines the best prediction model for each scene and detects when the available predictors
cannot handle the scene. The latter case of an invalid scene occurs if no predictor is expected to output
a trajectory prediction below a certain error threshold of a specific metric. The same metric defines the
best prediction. Thus, the metric definition and invalid-threshold are crucial factors for the evaluation. With
this specification and the given semantic information, the Selector Model (G_SEL) evaluates the scene
(Figure 4.3).

The evaluation does not include an analysis of the latent scene representation. Only the resulting error
of the predicted trajectory is the target value of the evaluation. Former studies revealed that no distinct
relation between the latent representation and the output error could be found [312]. Even though correlations
between the latent representation and the output error could be determined if the data is synthetically split in
dedicated maneuvers [313], no scalable solution was achieved. The missing correlation can be explained by
the fact that the latent representation is overdetermined in state-of-the-art models as the latent variables
correlate with each other [314]. For these reasons, the G_SEL is entirely optimized on the model’s output.
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4.3.1 Evaluation Metric

The evaluation metric used is the mean RMSE over the prediction length npred per prediction sample l, which
corresponds to the average displacement error used in prediction challenges [15, 81, 136, 137]. The RMSE
is defined between the predicted trajectory xpred and the ground truth xGT by:

RMSEl =

√

√

√

∑npred

m=1 ∥xm,l,pred − xm,l,GT∥22
npred

(4.3)

By means of this metric, the best prediction can be unambiguously defined for each scene by the lowest
RMSE. Alternatively, the final displacement error could be used, which is another common metric in the state
of the art [15, 81, 136, 137]. This metric determines the L2-distance between the endpoint of the predicted
trajectory and the ground truth. Thus, the final displacement does not reflect the course of the trajectory
along the prediction horizon compared to the RMSE, and deviations at the beginning of the prediction are not
reflected. For these reasons, it is not considered further.

The definition of an invalid scene requires the specification of an error threshold ϵ. Two variants are proposed.
One option is to set a threshold relative to the predictors’ error distribution ϵrel. During training, this threshold
is created dynamically as a percentile of the achieved prediction accuracy. This option is useful in unknown
scenes without knowledge about the required absolute prediction accuracy. The other option is to set the
threshold to an absolute RMSE-value ϵabs,RMSE. This is useful to base the ego behavior on an expected
minimum of the prediction accuracy for a defined full-stack application in known ODDs.

4.3.2 Selector Model

The second part of the evaluation is the selector model G_SEL. It uses the three encodings of the scene
image, L_LSTM, and DG_LSTM as input (Figure 4.3). Thus, all information given to the predictors is available
to the G_SEL. In addition, reusing the encoders is beneficial as the network size grows only by the selector
head. The G_SEL is constructed out of linear-dense layers and followed by a SoftMax activation function to
normalize the output for the classification task. The output is of dimension ntp + 1 = 4 as the model has
to classify between the best among the ntp predictors given and the additional option of an invalid scene if
none of the predictions models is expected to output a trajectory below the error threshold ϵ.

The execution during inference is realized modularly. At first, the input data are passed through the three
encoders. Then, the G_SEL is executed to evaluate the scene and to select the best predictor, or in case
none is suitable, to classify it invalid. In the case that one of the predictors is chosen, the respective model
(CV) or decoder (L_LSTM, DG_LSTM) is executed and the predicted trajectory is outputted. If the scene is
classified invalid, no model is executed, and no trajectory is outputted.

4.4 Data and Training

This section presents the data processing and training procedure utilized for the self-evaluation method.
Subsection 4.4.1 introduces the data used for the development and outlines the data processing. Appendix C
provides a complementary analysis of the training and test data distribution. The training and optimization
process of the model is described in Subsection 4.4.2.
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4.4.1 Data Processing

The data utilized in this study is taken from the scenario library provided by CommonRoad. The scenario list
taken from the library is first randomly split into three subsets to ensure the separation of training, validation,
and test data. By this, there are no scenes from different subsets corresponding to the same scenario. In
total, 339051 samples of prediction scenes are extracted. These samples are composed of 3 s object history
and the road map as input, along with 5 s ground truth data to be predicted. Additionally, the object history
of all surrounding objects is added to each scene to enable the usage of interaction-aware models. The
minimal scenario length is defined through the definition of object history length and prediction horizon. Thus,
short scenarios within the scenario library are not considered during the data processing. Due to this design
decision, 6.98 % of the scenarios from the library are neglected, which is expected to not influence the
method’s validity due to the adequate number of extracted prediction scenes. Since some objects do not exist
throughout the whole scenario, only the surrounding objects, which are presented during the whole history
and future of the target object, are considered for the respective scene. In contrast, surrounding objects,
which are not present during the full history and future of the target object, are not considered because it
is assumed that these objects show fewer interactions. The assumption is justified by the following. At first,
objects that are not present within the full object future are expected to show fewer interactions because they
are at the border of the scenarios. Second, objects not present within the full object history and just entered
at the edge of the scenario have less impact on the target object than objects in the scenario’s center. Lastly,
the presence of the unconsidered objects can be interpreted as additional noise in the data to augment the
learning process.

Besides the object states, the graph creation is required to model the interactions between the road users
through the DG_LSTM. Initially, no restrictions on the connections are assumed. It applies:

εi j =

(

0 for i = j

1 for i ̸= j
for i, j ∈ zN (4.4)

with εi j being the index vector from node j to node i for all nodes zN in a scene. The restriction of the
DG_LSTM to shrink the connection by means of the threshold δ (Subsection 4.2.4) is applied during inference.
By this, the distance threshold δ can be dynamically set.

4.4.2 Training and Optimization

Due to the integrative character of the self-evaluation model (Figure 4.3), which involves multiple connections
between the encoders and decoders, an adjustment of the trainable parameters becomes necessary to train
the corresponding predictors separately. A strategy is deployed to freeze certain network branches while
others are trained. Via this method, a specific optimization of the predictors is possible despite the nested
model architecture. The scene image encoding is always trained alongside the first predictor. During the
training of subsequent predictors, the CNN-layers remain frozen. The training sequence of the self-evaluation
method begins with the L_LSTM, followed by the training of the DG_LSTM. This results in an advantage
to the L_LSTM as the scene image encoding is specifically tailored to it. However, the DG_LSTM benefits
less from the scene image encoding due to its additional interaction knowledge from the GNN-embedding.
Thus, this training order is expected to result in the optimal overall performance of both predictors. The
training of the respective predictors is solely focused on minimizing their Euclidean prediction errors. Hence,
their training processes do not consider the other predictors’ existence or the G_SEL. The MSE-loss is
used for the predictors’ training. The selector model is trained last and is provided access to all the trained
encoders. During the G_SEL-training, the encoders remain static, and only the parameters of the G_SEL
itself are optimized. To address the classification problem during training, the NLL-loss function is employed
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after converting the probabilities in logarithmic representation. It was revealed to show better classification
performance than the alternative option of the cross-entropy loss.

The network architecture and training parameters are optimized through Bayesian optimization [315]. The
focus of the optimization process is multi-modal. The optimization objectives are a low overall RMSE in the
prediction model’s output and a high selection rate of the G_SEL. The selection rate is defined as the rate of
correct selections by the selector model among the three predictors and the invalid option (Figure 4.3). The
combined optimization is motivated by cases where the choice is between approximately equally accurate
predictors. In these cases, a wrong selection is considered acceptable since it results in only a minor increase
in the output’s prediction error. In contrast, when the choice is between two divergent predictors, this decision
greatly influences the overall prediction error in the output. Therefore, it becomes crucial to consider RMSE
and selection rate in the optimization goal φ:

φ =
Φ−Φmin

1−Φmin
+

RMSEtrg

RMSEval
(4.5)

The equation displays the relationship between the optimization goal φ, the selection rate of the selector
model Φ, and the RMSE of the model’s output RMSEval. The optimization objectives are balanced against
each other using the two parameters of the minimal selection rate Φmin and the target RMSE RMSEtrg. By
setting these two variables, the optimization function can be tuned. Two optimization steps are conducted:

1. Network Optimization
The networks’ parameters and the training parameters of learning rate, decay rate, and decay
step size are optimized. The tuning parameters for the optimization goal (Equation (4.5))
are set to Φmin = 0.7 and RMSEtrgt =0.3 m and a relative threshold ϵrel = 0.8 is used. It
corresponds to the 80 %-quantile of the model’s output RMSE and considers the dynamic
improvement of the predictors’ RMSE during the optimization.

2. Behavior Optimization
The learning rate, decay rate, and decay step size are optimized, the networks’ parameters
remain unchanged. Three pairs of tuning parameters (Φmin, RMSEtrg) with the goals of a high
selection rate (index: sel), a low overall RMSE (index: rmse) and a balanced behavior between
selection rate and low overall RMSE (index: bl) are defined. For this optimization step, the
RMSE-threshold for an invalid scene is set to an absolute value ϵabs,RMSE = 0.6221 m, which
is the 80 %-quantile of the best individual predictor on the test data after the first optimization
step.

The tuning parameters for the optimizations, the resulting parameters of the network from step one, and the
training parameters determined by step two are listed in Appendix A.3.

4.5 Results

The self-evaluation method is validated on the dataset derived from CommonRoad. The Wale-Net [164]
serves as a benchmark model. It is a pattern-based encoder-decoder model, using a SOT to encode
interactions among road users and incorporates the same scene image encoding as the self-evaluation
model (Table 2.2). Wale-Net’s base architecture [106] achieved the first place on the Argoverse dataset [136]
at the time of its release. For the validation, it is retrained on the same scenario split, using the parameters
from Wale-Net’s open-source repository [316]. Moreover, the three individual predictors from the hybrid
prediction architecture are employed for comparison. The scope of the quantitative validation includes the
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prediction errors (Subsection 4.5.1) and the selection behavior (Subsection 4.5.2). In addition, qualitative
results are presented to analyze the method’s behavior (Subsection 4.5.3). The presented results are derived
from the optimization with the goal of a high selection rate (Subsection 4.4.2). Subsection 4.5.1 and 4.5.2 are
based on the author’s publication [304].

4.5.1 Hybrid Prediction

The RMSE over the prediction horizon is depicted in Figure 4.6. The self-evaluation method, utilizing the
G_SEL, the three individual predictors, and the benchmark model WaLe-Net are shown. Both pattern-based
predictors surpass the benchmark model. Only the physics-based CV-model shows a worse prediction
behavior. This model maintains high accuracy for short-term horizons up to tpred = 0.3 s, but its accuracy de-
creases as the prediction horizon extends. Among the individual predictors, the L_LSTM-model demonstrates
the best performance and exceeds the DG_LSTM-model, despite not accounting for interactions between
surrounding objects. It suggests that the specialized training of the scene image encoding, in conjunction
with the L_LSTM, compensates for the lack of graph interaction knowledge inherent in the DG_LSTM. The
self-evaluation method, which incorporates the three predictors and detects invalid predictions using the
G_SEL, exceeds all individual predictors, achieving an average RMSE of 0.44 m on the subset of valid
predictions. This subset contains 28 291 of the 34 063 test samples. Thus, with the error treshold of invalid
prediction set to ϵabs,RMSE =0.6221 m, 16.95 % of the scenes are classified invalid. The final displacement
error is reduced to 1.24 m, in contrast to 5.84 m for the benchmark model. However, the proportion between
the final and mean RMSE, RMSEfinal/RMSEmean, shows only a marginal improvement to 2.43, compared
to 2.56 for the benchmark model. It indicates that the progressive increase in prediction error over the
prediction horizon remains, which is reasonable because the G_SEL selects the entire trajectory from the
single predictors and does not change its temporal expansion.
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Figure 4.6: RMSE over the prediction horizon of the benchmark model Wale-Net, the three individual predictors (CV,
L_LSTM, DG_LSTM), and the self-evaluation method by means of the selector model G_SEL [304]. The
error threshold for an invalid prediction is ϵabs,RMSE =0.6221 m.

The capability of the self-evaluation method to prevent inaccurate predictions is examined through the
analysis of the RMSE-distribution (Figure 4.7). It can be seen that the benchmark model is outperformed by
the two individual predictors. Compared to the individual predictors, the error distribution is further reduced
by the self-evaluation method with the G_SEL. The 90 %-quantile can be decreased to q90G_SEL =0.33 m
for the given error threshold ϵabs,RMSE =0.6221 m, which means a reduction of 78.8 % compared to the
benchmark model. The effectiveness of the self-evaluation method is further confirmed by the MissRate21
MR21

(k = 1, Equation (2.1)). The best predictor, the L_LSTM, achieves a value of MR21
= 14.53 %, which

is reduced to 2.00 % through the selector model. In comparison, the benchmark model’s MissRate21 is at
21.83 %.
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Figure 4.7: Box plot (median in white) of the mean RMSE over the prediction samples of the two best individual
predictors (L_LSTM, DG_LSTM) and the self-evaluation method by means of the selector model G_SEL
compared the benchmark model Wale-Net (ϵabs,RMSE = 0.6221 m) [304].

4.5.2 Selection Behavior

The G_SEL’s classification performance is analyzed using the confusion matrix (Figure 4.8). Four classes
are represented: The three predictors and an additional category for invalid predictions (ntp + 1= 4). The
columns represent the ground truth of the best selection for every scene. The rows show the actual selections
made by the model.
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Figure 4.8: Confusion matrix of the selector model (ϵabs,RMSE = 0.6221 m) [304]. The optimal selection behavior is
given in italic.

The confusion matrix reveals that every predictor has a share of more than 18 % of the most accurate
predictions. The CV has the highest share of most accurate predictions, which shows that beyond the high
prediction accuracy for pedestrians, the physics-based approach can be a valid choice for vehicle prediction.
However, it must be considered that the CV has the highest mean RMSE (Figure 4.6). Even though the
L_LSTM has the lowest mean RMSE, it has a smaller share of best predictions compared to the DG_LSTM.
Regarding the selection rate, the G_SEL achieves a value of Φ = 87.3 % of correct selections. A limitation of
the G_SEL in differentiating between the L_LSTM and the DG_LSTM, with more than 3 % incorrect selections
in both directions, can be observed. The FP-rate of valid predictions that are incorrectly classified as invalid
is 2.3 %. Conversely, the FN-rate for invalid predictions wrongly classified as valid is 13.1 %. The selector
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model demonstrates higher FP-rates toward the two pattern-based models compared to the CV-model. This
could be attributed to the complexity of trajectories predicted by these two models, posing a challenge for the
selector model in accurately understanding the scene and reliably choosing the invalid option. The tuning of
the selector model toward specificity can be adjusted during training by weighting the invalid option in the
NLL-loss.

The classification problem based on the defined evaluation metric is unambiguous. However, the extent of
the consequences arising from an incorrect selection can vary, depending on the magnitude of deviation
between the actual and the correct choice. Analyzing this aspect is crucial for understanding the model’s
selection behavior and its applicability in a full AV stack. In Figure 4.9, the sensitivity of the G_SEL toward
valid predictions with varying tolerances for the correct selection∆c% is depicted. A tolerance of∆c% implies
that a selection is considered correct if the RMSE error of the selected predictor is maximal c % above the
RMSE of the best predictor (RMSEsel/RMSEbest − 1≤∆c%). This study is performed across a spectrum of
relative error thresholds ϵrel to examine their impact on the selection process. The relative error threshold
specifies the ratio of valid predictions among the predictors’ error distribution (Subsection 4.3.1).
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Figure 4.9: Analysis of the selector model’s sensitivity toward valid predictors with varying tolerances ∆c% for the
correct selection. The analysis is conducted over the relative error threshold ϵrel [304].

The analysis indicates that an average increase of 3.4 % in the selection rate is observed across all
thresholds when a 5 % tolerance ∆5% is defined. Under the consideration that the model achieves selection
rates between 81.0 % (ϵrel = 0.95) and 87.3 % (ϵrel = 0.80), the observed increase suggest that the
discrepancy from 100 % correct selections is primarily due to unambiguous choices. The remaining samples
to 100 % show a clear difference >∆5% between the best prediction and the other predictors. This is further
accentuated when examining the selection rate increase with ∆10%. The increased tolerance leads to a
5.08 % rise in average compared to the baseline, indicating that around two-thirds of the remaining incorrect
selections exhibit a relative deviation exceeding 10 % between the best and other predictors. Along the error
threshold ϵrel, the absolute increase of the selection rate with ∆c% is constant for 0.85 ≤ ϵrel ≤ 0.95. In
contrast, for ϵrel = 0.8 and ϵrel = 1.0, the increase diminishes. In these cases, the absolute increase is less
than 2.7 % for ∆5% and smaller than 4.2 % for ∆10%. Thus, for a strict filter of invalid scenes (ϵrel = 0.80)
or the consideration of all scenes (ϵrel = 1.00), the choice is clearer compared to the filter thresholds in
between. The assumption that most evaluated scenes are an unambiguous choice for the best predictor can
be further validated by the error distribution of the predictors on test data. When analyzing this, an average
difference of 0.32 m between the best and second-best RMSE of the three predictors can be observed
(standard deviation of 0.86 m). Hence, there is a clear difference compared to the mean RMSE (Figure 4.6).

Lastly, the actual effectiveness of the self-evaluation method to enhance the accuracy of prediction outputs is
examined (Figure 4.10). The analysis compares the RMSE of the self-evaluation method across various error
thresholds with those of an optimal selector, the best individual predictor, and a random selector. Compared
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to the optimal selector (yellow), the RMSE of the G_SEL is, on average, 0.19 m higher. At thresholds of
ϵrel = 0.8 and ϵrel = 0.85, the G_SEL’s performance closely matches that of the optimal selector, but a
decline in performance is noted at higher thresholds. Relative to the best individual predictor, the G_SEL
demonstrates an improvement in the output RMSE even at a threshold of ϵrel = 1.0 with no invalid predictions
considered. Compared to a random selector, the results confirm that G_SEL method effectively identifies the
model with the lowest RMSE.
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Figure 4.10: Mean RMSE over the prediction samples for varying error thresholds of the self-evaluation method
compared to an optimal selector and a random selector [304]. In addition, the best individual predictor
without self-evaluation, the L_LSTM, is shown.

4.5.3 Qualitative Evaluation

The qualitative evaluation aims to highlight the method’s characteristics, which comprise the prediction
behavior of the individual predictors and the selection behavior, on specific scene samples.

Figure 4.11 depicts the advantages of the CV-model. The target object drives in a steady state, which can be
derived from its past states (black dotted). No objects are in front on the straight road, and the vehicles behind
drive at similar speeds. Thus, low interaction is expected. The CV-prediction (orange) extrapolates the current
state and matches the ground truth (black solid) in this scene with high accuracy. The two pattern-based
predictions of the L_LSTM (green) and the DG_LSTM (gray) fall short in the longitudinal direction and drift
to the right boundary of the road. The latter can be explained by the given road geometry, which these two
models consider through scene image encoding. The lateral drift results from the merging second lane. Thus,
the two models can not resolve that the target object stays in the lane, it currently drives on. The selector
model (blue dashed) correctly selects the CV-model as the best prediction.
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Figure 4.11: A scene with steady-state driving and the most accurate prediction by the CV-model, which is correctly
selected by the self-evaluation method. The object’s history (black dotted), future ground truth (black
solid), the three predictors (CV in orange, L_LSTM in green, DG_LSTM in gray) and the output of the
self-evaluation method (blue dashed) are shown.

68



4 Adaptive Motion Prediction in Public Road Traffic

In contrast, the CV-model (orange) fails when the object is turning (Figure 4.12). Without semantic knowledge,
the predicted trajectory is outputted straight and exits the road. Alternatively, considering the object’s turn
rate using a CTRV-model would also be unsuitable because an overshoot toward the approaching traffic
would result. The pattern-based models benefit from the input information of the full object history and the
road map. Both output trajectories have low lateral errors. The DG_LSTM (gray) overestimates the influence
of the approaching traffic and predicts larger longitudinal progress than the L_LSTM (green) for a high safety
distance between the target object and the surroundings towards the end of the prediction horizon. The
L_LSTM without interaction awareness predicts steady longitudinal progress, which matches the ground
truth (black solid). The selector model correctly identifies this trajectory as the most accurate.
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Figure 4.12: A scene with the most accuarate prediction by the L_LSTM model, correctly selected by the G_SEL.
The constant velocity assumption does not hold. The object’s history (black dotted), future ground truth
(black solid), the three predictors (CV in orange, L_LSTM in green, DG_LSTM in gray) and the output of
the self-evaluation method (blue dashed) are shown.

The scene, depicted in Figure 4.13, highlights the benefits of the interaction-aware DG_LSTM-model. The
target object is a stopping cyclist at the right road boundary. To the cyclist’s left on the same lane and in front
on the merging lane are motorcycles. Behind the target object is a convoy of cars. Since the stopping cyclist’s
speed is zero (black dotted object history not visible), the prediction of the CV is that the object remains
still. In contrast, the L_LSTM outputs a short forwarded prediction because it expects the objects to move
along the road. Since this assumption is of high uncertainty without further knowledge of the surrounding
objects, the L_LSTM’s trajectory falls short in the longitudinal direction and is noisy in the first steps with
an overshoot in the opposite direction. The DG_LSTM derives a suitable assumption from the neighboring
and trailing objects. It assumes that the target object can move forward in parallel to the motorcyclist on the
left and is obligated to do so because of the trailing traffic. The longitudinal progress matches the ground
truth. However, in the lateral direction, the prediction drifts to the lane’s centerline. This can be explained by
the second motorcyclist at the merging road from the right. Without the constraints of external traffic rules,
the DG_LSTM bases its prediction on the learned pattern that objects keep a safety distance between each
other and the shift to the centerline results. The selector model is able to determine the correct predictor. The
DG_LSTM is the best choice for this dense and transient scene.
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Figure 4.13: A scene with the most accurate prediction by the DG_LSTM model, correctly selected by the G_SEL.
Interaction-awareness benefits can be seen by the standing object being predicted forward because of
the trailing traffic. The object’s history (black dotted), future ground truth (black solid), the three predictors
(CV in orange, L_LSTM in green, DG_LSTM in gray) and the output of the self-evaluation method (blue
dashed) are shown.

Interaction awareness can also lead to conservative prediction behavior in dense traffic situations. In
Figure 4.14, the target object is driving toward a junction and hasn’t started decelerating. The GCN-based
interaction model considers in total six surrounding objects, of which five are approaching the junction. Based
on the current steady state driving, the semantic knowledge of the upcoming junction, and the approaching
objects, the DG_LSTM predicts an abrupt standstill of the target object (gray). Thus, it fails to resolve the
interactive behavior in the situation and violates the dynamic limits of the target object. However, the ground
truth movement of accelerating and turning to the left is hard to predict as there are other options of turning
to the right and stopping at the junction entry. Considering traffic rules could remedy the latter issue to
distinguish between standstill and accelerating. However, the reliance on these rules is risky in case of
incorrect behavior of the further road users. Thus, considering rules has to be balanced against the objects’
dynamic behavior. The longitudinal acceleration can not be derived from the target object’s history at this time
step because it is in a steady state. The L_LSTM outputs the best prediction by assuming a small acceleration.
The selector model chooses this model. However, in this case, the prediction should be classified as invalid
because all three predictors output trajectories above the predefined error threshold. The G_SEL fails to
understand this scene.

Another wrong classified scene is shown in Figure 4.15. The target object is on a straight road in a convoy of
vehicles with similar speeds. The G_SEL selects the L_LSTM. However, excluding the interaction model leads
to a trajectory that exceeds the ground truth in the longitudinal direction and predicts the object to yield close
to the leading object. The selector’s wrong choice can be explained by the simple road geometry, in which the
linear encoding is expected to enable an accurate prediction. The interaction-aware DG_LSTM considers the
leading vehicle and outputs a short trajectory, which matches the ground truth with high accuracy. The linear
extrapolation using the CV outputs a trajectory that is too short because the acceleration can not be modeled.

70



4 Adaptive Motion Prediction in Public Road Traffic

𝑥glob in m

𝑦
g
lo
b
in
m

Figure 4.14: A scene with dense traffic and complex road geometry. The interaction awareness fails to resolve the
scene and outputs a dynamically unfeasible trajectory (gray). None of the three predictors is able to
determine an accurate solution. The selector model wrongly classifies this scene as valid. The object’s
history (black dotted), future ground truth (black solid), the three predictors (CV in orange, L_LSTM in
green, DG_LSTM in gray) and the output of the self-evaluation method (blue dashed) are shown.
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Figure 4.15: A scene with a convoy of vehicles. The selector model wrongly chooses the L_LSTM (green) because of
the straight road geometry. Instead, the DG_LSTM (gray) is the correct choice because it considers the
leading vehicle and outputs a shorter prediction. The object’s history (black dotted), future ground truth
(black solid), the three predictors (CV in orange, L_LSTM in green, DG_LSTM in gray) and the output of
the self-evaluation method (blue dashed) are shown.
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4.6 Ablation Study

Besides the presented results with parameters obtained from the Bayesian optimization (Appendix A.3), an
ablation study on multiple parameters is conducted. At first, the parameters of the scene image encoding are
varied (Subsection 4.6.1), which both pattern-based predictors and the selector model use. Afterward, the
parameters of the L_LSTM (Subsection 4.6.2) and the DG_LSTM (Subsection 4.6.3) are permuted and the
resulting prediction accuracy is investigated. At last, the self-evaluation method under varying constitutions of
the hybrid prediction model is analyzed (Subsection 4.6.4).

4.6.1 Scene Image Encoding

The ablation study of the scene image encoder comprises the variation of the two parameters of the input
image filters lsc,in and output image filters lsc,out (Table 4.1). In addition, the case of neglecting the scene
image encoding in the trajectory predictors is analyzed. The parameter variation is evaluated by means of
the RMSE-values of the L_LSTM RMSEli and DG_LSTM RMSEdg. To consider the influence of the network’s
non-deterministic behavior due to random initialization of the weights and random shuffle of the training
samples, the default network is trained eight times with the same parameterization. From these trainings,
a standard deviation of σli = 0.03m for the L_LSTM results, which are 1.88 % deviation in relation to the
mean RMSE value of 1.76 m. In case of the DG_LSTM, a standard deviation of σdg = 0.04m around the
mean value of 1.80 m is observed, which are 2.32 %.

Table 4.1: Ablation study of the scene image encoding. Variations of the number of input image filters lsc,in and
the number of output image filters lsc,out are conducted. The default configuration is given as benchmark
(lsc,in = 32, lsc,out = 16). In addition, the prediction accuracy without a scene image encoding is examined.
The RMSEs of the L_LSTM and the DG_LSTM are investigated. Minimal values for each column are given
in bold.

Parameter Value RMSEli in m RMSEdg in m
abs rel abs rel

Default - 1.76 - 1.80 -

Number of input
image filters lsc,in

16 1.75 −0.40 % 1.81 0.17 %
48 1.78 0.97 % 1.81 0.50 %
64 1.84 4.38 % 1.87 3.72 %

Number of output
image filters lsc,out

8 1.84 4.60 % 1.94 7.77 %
24 1.75 −0.45 % 1.78 −1.11 %
32 1.65 −6.37 % 1.86 3.33 %
40 1.66 −5.51 % 1.82 0.94 %

No scene image - 2.52 43.21 % 2.65 47.22 %

The variation of the number of input image filters around the default value of 32 shows low variation in the
RMSE for values of 16 and 48. Thus, the encoding capabilities of the network are agnostic within this range.
A further increase to lsc,in = 64 results in a higher RMSE for both predictors. Besides the higher number of
network parameters correlating with higher computational effort, the prediction accuracy diminishes. Under
consideration that there is a low change in the predictors’ RMSE between 16 and 48, the deterioration at
lsc,in = 64 can be explained by overfitting due to the large network size. The large scene image encoder
overfits the low-complex task of extracting the centerlines.

The number of output filters is varied around the default value of 16. Halving the number of filters increases
the RMSE of both predictors. Thus, the network’s capability to extract map information is reduced due to
the low number of parameters. The increase of lsc,out results in a low variation of the DG_LSTM’s RMSE. It
can be interpreted that the model extracts less information from the scene image encoding. In contrast, the
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L_LSTM’s RMSE improves with a higher number of output image filters. Hence, the scene image encoding is
able to extract more relevant information for the L_LSTM.

Lastly, neglecting the scene image encoding and relying the prediction only on the extraction of the objects’
past states is investigated. While this architecture is beneficial because of the smaller amount of parameters,
the RMSEs increases by more than 43 % for both predictors. It highlights the relevance of semantic knowledge
to the prediction models.

4.6.2 Linear LSTM Model

The ablation study of the L_LSTM comprises the parameter variations of the linear encoder embedding,
LSTM encoder, latent embedding, and LSTM decoder (Table 4.2). The study is evaluated by the RMSE of
the prediction model and its miss rate MR21

. The initial analysis of the model’s variance by eight trainings
with the default configuration results in a standard deviation of σli = 0.03m. In relation to the mean RMSE
value of 1.76 m, it is a relative variation of 1.88 %.

Table 4.2: Ablation study of the L_LSTM. Variations of the linear embedding, LSTM encoder, latent embedding,
and LSTM decoder are conducted. The default configuration is given as benchmark (lli = 1, hli = 50,
hli,emb = 50, lenc = 1, henc = 50, hlat = 48, hdec = 128). The RMSE and the miss rate are investigated.
Minimal values for each column are given in bold.

Parameter Value RMSE in m MR21
in %

abs rel abs rel

Default - 1.76 - 14.30 -

Number of linear
hidden layers lli

2 1.73 −1.82 % 14.13 −1.19 %
3 1.79 1.53 % 16.08 12.45 %
4 1.79 1.53 % 14.00 −2.1 %

Size of linear
hidden layers hli

30 1.70 −3.47 % 14.09 −1.47 %
40 1.83 4.32 % 15.19 6.22 %
60 1.72 −1.99 % 13.36 −6.57 %
70 1.82 3.24 % 16.20 13.29 %

Size of linear
input embedding hli,emb

30 1.67 −5.00 % 15.67 9.58 %
40 1.73 −1.53 % 14.41 0.77 %
60 1.78 1.08 % 14.61 2.17 %
70 1.72 −2.16 % 16.26 13.71 %

Number of hidden layers
in LSTM encoder lenc

2 1.69 −4.21 % 13.72 −4.06 %
3 1.72 −1.99 % 14.41 0.77 %
4 1.72 −2.39 % 14.15 −1.05 %

Size hidden layers
in LSTM encoder henc

30 1.74 −1.31 % 15.72 9.93 %
40 1.74 −0.97 % 14.45 1.05 %
60 1.81 2.96 % 15.63 9.3 %
70 1.74 −1.25 % 13.78 −3.64 %

Size of latent
embedding hlat

16 1.76 −0.11 % 14.87 3.99 %
32 1.80 2.44 % 14.18 −0.84 %
64 1.72 −2.33 % 16.12 12.73 %
80 1.73 −1.76 % 15.64 9.37 %

Size hidden layers
in LSTM decoder hdec

32 1.86 5.63 % 15.83 10.7 %
64 1.78 1.31 % 15.46 8.11 %

196 1.79 2.05 % 16.33 14.2 %

The first varied parameter is the number of hidden layers in the linear input embedding lli. Increasing this
value from the default setting of lli = 1 up to 4 results in RMSE-changes, which are within the variation of the
model due to non-deterministic behavior. Thus, no significant changes can be observed. Regarding the miss
rate, an increase by 12.45 % can be observed for lli = 3. However, this trend can not be confirmed for the
other values, and no distinct tendency can be derived regarding the model behavior.
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Varying the size of linear embedding’s hidden layers hli from 30 to 70 (default value: 50) shows a volatile
behavior of the RMSE. The miss rate shows the same direction of improvement as the related RMSE.
However, there is no proportional correlation between the value pairs. With hli = 60, the lowest miss rate of
all samples is achieved. Since the related RMSE is around the model’s training variance, the conclusion that
the model’s prediction capabilities and reliability improve can not be drawn.

The variation of the linear input embedding size hli,emb achieves the best RMSE for hli,emb = 30. Since the
miss rate increases by 9.58 % for this sample, the overall improvement of the prediction model is not proven.
Between hli,emb = 40 and hli,emb = 70, the RMSE varies within the magnitude of 1σli, thus no clear change
of the prediction accuracy can be observed. A remarkable result is that the miss rates increase by more
than 9 % for hli,emb = 30 and hli,emb = 70 while the related RMSEs decrease by more than 2 %. Hence, a
qualitatively inverse correlation between the RMSE and the miss rate can be observed.

The variation of the LSTM encoder’s hidden layers reveals a decrease for all samples with lenc > 1 but stay
within ±3σli range. Despite the model’s accuracy improvement, the growth of the total network size by 10 %
per additional layer additionally opts against additional hidden layers. Besides the number of the encoder
layers, their size henc is varied around the default value of 50. An inverse correlation between the RMSE and
the miss rate can be seen for henc < 50. Increasing the layer size above 50 results in ambiguous behavior of
the prediction accuracy.

The encoded object states are embedded to prepare the latent space for the enrollment of the object’s future
motion in the decoder. The increase of the size of the linear latent embedding hlat > 48 displays a decrease
of the RMSE but an increase in the miss rate. Thus, an overall improvement in the prediction performance
can not be identified.

Lastly, the size of the one-layered decoder hdec is analyzed. The variation of this parameter around the
default value of 128 results in a deterioration of the RMSE and the miss rate for all investigated parameter
ranges. Hence, within the examined parameters, the setting of hdec = 128 is the best choice.

4.6.3 Proximity-Dependent Graph-LSTM Model

The ablation study of the DG_LSTM’s prediction behavior is focussed on the GNN-embedding and the decoder
(Table 4.3). Eight trainings with the default setting are conducted to put the study in the context of the model’s
variance. Around the mean value of 1.80 m, a standard deviation of σdg = 0.04 m results, which are 2.32 %
in relation to the mean value.

The first investigated value is the distance threshold δ, which limits the graph connections between surround-
ing objects (Figure 4.5). An increase δ > 20 reveals a continuous RMSE-decrease up to a threshold of
δ = 40. However, this trend is stopped for δ = 50 with an RMSE close to the default ones. In addition, the
clear increase in the miss rate for δ = 50 indicates that the range between 20 and 40 suits best the given
model validation.

The message passing between the nodes in the graph is realized by a linear dense layer of size mdg.
The variation around the default value of 64 exhibits that the RMSE’s deviation is smaller than 2σdg for
32≤ mdg ≤ 80. Thus, no correlation between the RMSE and the message size could be found in this range.
A further increase of the message size to mdg = 96 leads to a deterioration of the RMSE and the miss rate,
which is expected to result from overfitting due to the larger message size.

The number of hidden layers in the graph defines the order of connections between surrounding objects
(Figure 2.5). For the default setting of ldg,emb = 1, first-order connections result. Due to the high sensitivity to
vanishing gradients of GCNs, a low number of layers is recommended [317]. This statement can be confirmed
for the given variation. For ldg > 1, an increase in the miss rate can be monitored. While the RMSE stays
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Table 4.3: Ablation study of the DG_LSTM. Variations of the GCN-features (distance, message size, embedding size,
hidden layers), latent embedding, and LSTM decoder are conducted. The default configuration is given as
benchmark (δ = 20, mdg = 64, ldg = 1, hdg = 48, hdg,emb = 128, hlat = 48, hdec = 128). The RMSE and
the miss rate are investigated. Minimal values for each column are given in bold.

Parameter Value RMSE in m MR21
in %

abs rel abs rel

Default - 1.80 - 14.28 -

Distance threshold δ

10 1.83 1.78 % 16.03 12.25 %
30 1.71 −5.11 % 13.77 −3.57 %
40 1.66 −7.61 % 13.92 −2.52 %
50 1.78 −1.17 % 16.59 16.18 %

Size of graph
node message mdg

32 1.83 1.44 % 16.64 16.53 %
48 1.84 2.22 % 17.03 19.26 %
80 1.76 −2.44 % 15.23 6.65 %
96 2.06 14.1 % 18.06 26.47 %

Number of graph
hidden layers ldg

2 1.86 3.22 % 17.58 23.11 %
3 1.79 −0.44 % 16.41 14.92 %
4 3.08 70.74 % 30.59 114.22 %

Size of graph
hidden layers hdg

16 1.79 −0.56 % 16.90 18.35 %
32 1.82 1.17 % 16.88 18.21 %
64 1.86 3.11 % 17.17 20.24 %
80 1.81 0.39 % 16.58 16.11 %

Size of graph
embedding hdg,emb

32 1.84 2.0 % 16.58 16.11 %
64 1.96 8.88 % 17.41 21.92 %

196 1.84 2.0 % 16.43 15.06 %

Size of latent
embedding hlat

16 1.78 −1.39 % 15.58 9.10 %
32 1.82 1.17 % 14.79 3.57 %
64 1.84 2.33 % 16.28 14.01 %
80 1.86 3.28 % 15.89 11.27 %

Size of LSTM decoder
hidden layers hdec

32 1.85 2.83 % 17.96 25.77 %
64 1.87 3.94 % 16.43 15.06 %

196 1.86 3.11 % 15.93 11.55 %

within 2σdg for ldg < 4, it worsens by more than 70 % for ldg = 4. The size of the hidden layers is the
second parameter to adjust the aggregation function besides the number of hidden layers (Equation (4.2)).
Similar to the previously investigated values of mdg and ldg,emb, an increase in the miss rate for all analyzed
parameters can be seen. In addition, the RMSE shows no improvement.

The ablation studies on the latent embedding size hlat and the LSTM decoder size hdec reveal variations of
the RMSE smaller than 2σdg. Deteriorations of the miss rate up to 25 % can be observed, which suggests
that the default setting (hlat = 48, hdec = 128) is a valid choice on the investigated data.

4.6.4 Hybrid Prediction

Beyond optimizing the particular predictors, combining multiple predictors for the best prediction behavior of
the self-evaluation method is of interest. The term best, in this case, refers to multiple objectives. Primarily,
a low average Euclidean prediction error, quantified by the RMSE, is desired. However, an optimization
of the mean error value does not ensure the prevention of particular mispredictions. For that reason, the
MissRate21 MR21

must be evaluated. Another aspect is the method’s selection behavior. Thus, two further
metrics are of interest. The selection rate is considered to reflect the self-evaluation method’s capability to
select the correct option in a given scene. This rate indicates a reliable understanding of traffic scenes to
adjust the prediction behavior to the given circumstances. In addition, the rate of invalid predictions is of
interest. It is desired to have a low number of invalid predictions, indicating a high generalizability of the
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method because many scenes can be accurately predicted. The variation of the hybrid prediction composition
is analyzed by these four metrics (Table 4.4). The listed RMSEs and the miss rates are the values for the valid
classified predictions. The denoted invalid rates correspond to the ground truth of the evaluation to not induce
a bias by the model’s selection capabilities. An invalid prediction is defined by the absolute RMSE threshold
ϵabs,RMSE = 0.6221 m. The study’s benchmarks are the three conducted optimization runs of a high selection
rate (index: sel), a low overall RMSE (index: rmse), and the balanced setup (index: bl) (Subsection 4.4.2).
The latter one is used to calculate the relative changes (Table 4.4). The varied network configurations are
trained with the parameters from the balanced setup (Appendix A.3).

Table 4.4: Ablation study of the hybrid network configuration. The composition of the hybrid prediction model is
varied between the three models of CV, L_LSTM and DG_LSTM. The procedure is repeated with a
reduced selector model, whose encoder branches are limited to the given ones from the predictors (’red.’).
The default configuration (CV + L_LSTM + DG_LSTM with the full selector model) with three different
optimization goals is given as a benchmark. The RMSE, the miss rate MR21

, the rate of invalid predictions
with ϵabs,RMSE =0.6221 m, and the rate of correct selections Φ are investigated. The best values, direction
indicated by the arrow, for each column are given in bold.

Parameter RMSE in m ↓ MR21
in % ↓ Invalid in % ↓ Φ in % ↑

abs rel abs rel abs rel abs rel

Balanced bl 0.38 - 1.72 - 16.64 - 83.50 -
High selection sel 0.44 14.62 % 2.00 16.28 % 16.95 1.86 % 87.34 4.60 %
Low RMSE rmse 0.28 −25.84 % 1.32 −23.25 % 17.76 6.73 % 84.35 1.02 %

CV + L_LSTM 0.34 −9.92 % 1.52 −11.63 % 17.93 7.78 % 93.18 11.53 %
CV + DG_LSTM 0.41 6.01 % 1.52 −11.63 % 18.55 11.49 % 92.46 10.66 %
L_LSTM + DG_LSTM 0.39 1.83 % 1.77 2.91 % 17.77 6.81 % 80.99 −3.06 %

CV 0.36 −6.01 % 1.56 −9.3 % 37.91 127.88 % 98.17 17.50 %
L_LSTM 0.32 −16.19 % 1.59 −7.56 % 18.64 12.07 % 95.40 14.18 %
DG_LSTM 0.40 4.96 % 1.41 −18.02 % 21.46 29.01 % 95.64 14.47 %

CV + L_LSTM, red. 0.32 −17.23 % 1.56 −9.3 % 19.47 17.03 % 93.62 12.05 %
CV + DG_LSTM, red. 0.42 9.14 % 1.56 −9.3 % 19.23 15.6 % 91.90 9.99 %

CV, red. 0.62 62.37 % 2.07 20.35 % 37.91 127.88 % 95.10 13.89 %
L_LSTM, red. 0.35 −7.31 % 1.77 2.91 % 18.90 13.62 % 95.16 13.9 %
DG_LSTM, red. 0.40 5.48 % 1.70 −1.16 % 21.60 29.8 % 95.43 14.22 %

Within the three variations of the default configuration (CV + L_LSTM + DG_LSTM with the selector model), it
can be seen that with different optimization goals, the RMSE and miss rate can be influenced. The balanced
setup achieves the lowest invalid rate indicating the highest degree of finding valid solutions for a scene,
while the selection rate Φ is the worst among the three optimizations. The high-selection optimization fulfills
its goal with a selection rate Φ=87.34 %. Since the RMSE is less prioritized, it increases by 14.62 %. The
low-RMSE optimization reduces the RMSE by 25.84 % but shows an increase of invalid predictions. Thus,
the improvement is in parts achieved by excluding more scenes.

The next three variations comprise the usage of two predictors while maintaining all three encoders of the
scene image, L_LSTM and DG_LSTM available to the selector model (Figure 4.3). The combination of CV
+ L_LSTM shows an improvement in RMSE and miss rate. In addition, the selection rate Φ improves to
93.18 %. However, the rate of invalid prediction increases. Thus, the model loses its ability to adjust to
various scenes. The increase in the selection rate and rate of invalid predictions can also be observed for the
combination CV + DG_LSTM. In comparison to the combination of L_LSTM + DG_LSTM with a selection rate
of 80.99 %, it can be concluded that a physics-based and a pattern-based model are easier to distinguish.
The selection rate is additionally negatively influenced because combining two pattern-based models yields
a worse differentiation between valid and invalid predictions since the two models are less interpretable
regarding their prediction behavior in a scene.
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The correlation between the available prediction models, rate of invalid predictions, and selection rate also
applies to the next three variations, which use one predictor in combination with the full selector model.
In these configurations, the selector model’s task is distinguishing between valid and invalid. If only the
CV-model is used, the highest selection rate of 98.17 % is achieved. The selector model is able to differentiate
between steady-state driving and transient scenes. However, the rate of invalid predictions is more than twice
as much compared to the balanced setting. It can be seen that using only the CV-model is insufficient to
cover the motion patterns in the data. The usage of only one pattern-based model results in similar behavior.
The RMSE and miss rate can be kept low by an increase of invalid predictions compared to the setups with
multiple predictors. The selection rates of these configurations are above 95 %.

In the remaining studies, the variations of reducing the number of predictors to two and one are repeated
with the difference that the encoders of the discarded predictors are also removed. Exemplary, in case of the
combination CV + L_LSTM, red. the entire DG_LSTM model is deleted, and the selector model uses only the
available encoders of the scene image and the L_LSTM (Figure 4.3). This procedure enables estimating
the available encoders’ influence on the selection behavior. Compared to the non-reduced cases, it can be
observed that the selection rates for the dual- and single-model setups achieve similar scores above 91 %.
Hence, the selector model can also with fewer encoders available distinguish between physics-based and
pattern-based prediction scenes and the invalid case. The model is additionally able to determine invalid
predictions without the encoding of any object movement only through the scene image encoding, which is
the case for CV, red.

4.7 Analysis of Prediction Errors

For a reliable application, the knowledge about the prediction error in dependency on semantic features is
relevant. In the following, the influence of the object-specific features of type and speed and the number of
surrounding objects on the miss rate is analyzed. Out of special interest is additionally the miss rate over
the prediction horizon because a direct adjustment can be made to a shorter horizon if a scene is classified
invalid.

The relative distribution of the miss rate over the object types for the three individual predictors and the G_SEL
is depicted in Figure 4.16. In comparison with the total ratio of object types in the test dataset (Figure C.1),
the CV’s miss rate distribution is similar to the total data distribution. The model does not consider the object
type. No bias is induced. The pattern-based models (L_LSTM, DG_LSTM) have a share of 79.76 % and
80.23 % of miss rates by predicting cars, which is more than 10 % less than the occurrence of cars in the
test dataset. This implies that for the remaining object types of truck, bus, bicycle, and motorcycle, their share
is doubled, and by this, their object-specific probability of a miss rate is around twice their average miss rate.
This bias toward minor road users is amplified for the fusion model G_SEL. While the share of miss rates for
motorcycles remains at the same level as for the pattern-based predictors, the shares of miss rates for trucks,
buses, and bicycles are around three times bigger than their share in the total dataset. Thus, the probability
of a miss rate of these objects is three times higher than the average miss rate over all objects.
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Figure 4.16: Miss rate distribution over the object types of the three predictors (CV, L_LSTM, DG_LSTM) and the
combined self-evaluation method (G_SEL).

Figure 4.17 depicts the relative distribution of miss rates over the target object’s speed. The CV-model
shows a peak at 6 m s−1, which is the average speed of the objects in the dataset (Figure C.2). Besides, the
CV-model’s miss rate distribution shows the share of objects that are at a standstill but accelerate during
the future prediction horizon, which is not predictable by this model. This particular motion behavior has the
highest share of miss rates for the three remaining models. In case of the G_SEL, the share of miss rates at
vobj = 0 is 56.31 %. Thus, the selector model is not able to understand these scenes correctly. In addition, it
can be concluded that the selector model shows high scenario understanding in the further speed range.
It can be seen that the distribution of the G_SEL between 3 m s−1 and 18 m s−1 is below the ones of the
individual predictors, except the peak at 5 m s−1. Hence, the limitations of the three predictors are detected
in this speed range by the G_SEL.
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Figure 4.17: Miss rate distribution over the target object’s speed of the three predictors (CV, L_LSTM, DG_LSTM) and
the combined self-evaluation method (G_SEL).

The analysis of the misprediction distribution over the number of objects is visualized in Figure 4.18. Under
consideration of the object distribution in the dataset (Figure C.2), no bias can be determined for the CV-model.
In contrast, the pattern-based models and the fusion model have their maxima at nobj = 61. Together with
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the further peaks in the range of 25≤ nobj ≤ 60, the analysis reveals that the models show higher rates of
mispredictions in dense traffic scenarios compared to the majority of scenes with nobj ≤ 10.
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Figure 4.18: Miss rate distribution over the number of objects of the three predictors (CV, L_LSTM, DG_LSTM) and
the combined self-evaluation method (G_SEL).

Lastly, the miss rate over the prediction horizon is investigated (Figure 4.19). Since the RMSE correlates with
the prediction horizon because of the error summation (Equation (4.3)), the previous definition of an invalid
through a fixed error threshold ϵabs,RMSE is not suitable for varying prediction horizons. Instead, the miss rate
MR21

is used for the analysis. Except the range of tpred < 1 s, the CV-model’s miss rate increases by a factor
between 6.3 s−1 and 10.80 s−1. It can be seen that this model is on a similar level as the pattern-based
model for short-term (tpred < 1s) but diverges for longer prediction horizons. The L_LSTM’s curve has an
average incline of 3.38 s−1 while the DG_LSTM’s incline is 3.22 s−1 in average. The G_SEL’s curve shows
the most progressive behavior over the prediction horizon. Thus, reducing the prediction horizon is most
effective for this model. Exemplary, the restriction of the prediction horizon to tpred = 4s would reduce the
miss rate to 1.25 %, which is a relative decrease of 37.30 %.
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Figure 4.19: Miss rate distribution against the prediction horizon of the three predictors (CV, L_LSTM, DG_LSTM) and
the combined self-evaluation method (G_SEL). The G_SEL’s miss rate is scaled by factor 10.
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4.8 Discussion

The presented self-evaluation method aims to create a scene-dependent prediction behavior by the composi-
tion of multiple predictors. In addition, the method evaluates its algorithmic limitations and detects scenes
that the predictors are not capable of accurately predicting. In the following, the validation of the results
(Subsection 4.8.1), a weighted summation instead of the selection approach (Subsection 4.8.2) and the
integration in a full AV software stack (Subsection 4.8.3) are discussed.

4.8.1 Validation of the Method

Reviewing the quantitative results, the benchmark model and all individual predictors are outperformed
by the self-evaluation method in terms of RMSE and final displacement error (Figure 4.6). In addition, a
reduction of the miss rate to 2.00 % is achieved compared to the benchmark model’s miss rate of 21.83 %.
This is accomplished by the selection rate of Φ = 87.3 % and specificity of 97.7 % by the selector model
(Figure 4.8). Thus, invalid predictions are detected at a high rate, erroneous predictions are avoided. Besides,
the analyzed selection behavior indicates that each of the three predictors is used in a relevant ratio to
output the best predictions, validating the choice of the individual models. An analysis of the sensitivity
in selecting valid predictors reveals that choosing the correct predictor is a clear task (Figure 4.9). Only
minor improvements in the selection rate are observed with an increased tolerance for the correct selection.
Furthermore, the method’s impact on the overall RMSE shows near-optimal selection behavior at error
thresholds of ϵrel = 0.8 and ϵrel = 0.85 (Figure 4.10). Additionally, it is observed that even without specifying
invalid predictions, the prediction accuracy is improved, proving the hybrid prediction approach’s benefit. The
two studies on the selection sensitivity (Figure 4.9) and the selection effectiveness (Figure 4.10) additionally
reveal the relation between the selection rate and the specified error threshold. A continuous decline in the
selection rate Φ from ϵrel = 0.8 to ϵrel = 0.95 and an increased gap to the optimal RMSE is observed.
It needs further investigation to validate this observation since the shown results are conducted with the
model’s parameters optimized with a threshold of ϵrel = 0.8.

The presented qualitative results illustrate the prediction behavior of the individual predictors and the
composed self-evaluation method (Subsection 4.5.3). Regarding the CV-model, its effectiveness in simple
steady-state scenarios but limitations in complex, non-linear scenarios are depicted. This observation is
confirmed by the model having the highest share of best predictions in the test dataset (Figure 4.8) but
exhibiting the highest mean RMSE (Figure 4.6). The impact of interaction awareness is two-fold. On the
one hand, considering surrounding road users enables a more comprehensive trajectory generation, which
can surpass missing dynamic patterns in the object’s motion history. On the other hand, the knowledge
about surrounding objects leads to more conservative prediction behavior in dense traffic scenarios. In the
quantitive evaluation, the interaction-aware DG_LSTM has a lower RMSE than the L_LSTM but a higher
share of best predictions. Exemplary scenes in traffic convoys show that the selector model falls short in
resolving the complexity of the scenes and distinguishing between the pattern-based predictors. This finding
is confirmed by the confusion matrix, which shows a FP-rate of 18.78 % and 17.15 % if just the 2× 2-matrix
between these two models is analyzed (Figure 4.8).

The ablation study shows at first the importance of considering semantic encoding (Subsection 4.6.1).
Despite the simple creation of the map in rastering the centerline of the road network around the target object,
including this information improves the prediction performance. The study on the networks’ parameters of
the L_LSTM (Subsection 4.6.2) and the DG_LSTM (Subsection 4.6.3) reveal that the given parameterization,
resulting from an optimization process, is suitable. The results demonstrate improvements by the variation
of distinct layers, but no specific parameterization bottleneck is identified. Especially considering both the
improvement of the RMSE and the miss rate has shown to be difficult because there is no consistent
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correlation between the two metrics. The occurrence of a negative correlation between these metrics could
even be interpreted as a trade-off between a balanced prediction behavior with low miss rates or a more
specific setup with lower RMSE in average but higher miss rates overall. A key finding for the DG_LSTM
(Subsection 4.6.3) is the influence of the distance threshold δ, which defines the upper limit for considering
surrounding objects in the interaction model. Up to a distance of δ = 40, an improvement in the prediction
accuracy can be observed. The ablation study on the hybrid prediction configuration focuses on the network
composition and the encoders available to the selection model (Subsection 4.6.4). In addition, the variation
of the self-evaluation method’s optimization goal emphasizes its individual adjustment possibilities. Focus
points can either be set on the minimization of the RMSE, which implies an increase in the rate of invalid
predictions, or on optimizing the selection rate, which results in an increase of the RMSE. The reduction of
the number of used predictors yields an improved selection rate. The highest selection rate can be achieved
by using only one predictor. In this case, the selector model has to distinguish solely whether the scene is
valid or not. However, using only one model induces an increase in the invalid rate. It can be concluded that
the adaptivity diminishes when attempting to predict large data accurately. To analyze the influence of the
encoding branches on the selector model, a further study is conducted, in which the removal of a predictor
implies the removal of its encoder to be used for the selection process. It reveals that the selector model is
still able to fulfill its task. Thus, distinguishing two different prediction classes and detecting invalid scenes
can be achieved with less encoded information. A limitation of the ablation study is the uni-modal variation.
Dependencies by varying multiple parameters simultaneously are not depicted. In the multi-dimensional
solution space, the movement is just along one axis, respectively. Thus, multi-dimensional gradients can not
be found, which leaves room for further optimization.

Lastly, an analysis of the prediction error is realized (Section 4.7). A distinct bias of the pattern-based
predictors and the fusion model toward lower-represented objects can be seen. Data augmentation and
specific training constraints could remedy the bias against these object types. Regarding the application, the
ego-motion behavior can be adjusted through this knowledge if these object types occur. In this context, it
must be noted that the prediction behavior on object types not given in the data is not analyzed. In particular,
the prediction behavior on pedestrians, which are not given in the dataset (Figure C.1), is of interest for the
application in urban environments. Another influencing factor on the miss rate is the target object’s speed.
The analysis reveals a bias toward stillstanding objects, especially in the case of the G_SEL. While their
future intention is not determinable by their motion history, semantic features must be included to determine
the future movement. The analysis of the miss rates against the number of objects shows shortcomings for
scenes with nobj > 10. Thus, even though an interaction-aware model is considered, and employing the
proximity threshold, the interaction is focussed on a few objects, the method fails to prevent miss rates in
dense traffic scenes. The final analysis examines the correlation between the miss rate and the prediction
horizon. With the knowledge of the incline of the miss rate along the horizon, an adjustment can be made to
the desired average miss rate. The progressive shape of the G_SEL’s curve enables an effective reduction of
the miss rate if the prediction horizon is decreased.

4.8.2 Weighted Summation

The proposed method exclusively takes the maximum of the selector model’s output to select a model to
predict the object’s future motion. This differs from ensemble methods, which combine multiple models by a
weighted sum. It also differs from the introduced MixNet (Section 3.3), which uses a weighted sum of base
curves, enabling reliable prediction on closed road geometries.

An argument that supports a weighted summation instead of an exclusive selection is an increase in the
temporal consistency of the prediction because no intermediate switches between the predictors occur.
Furthermore, the comparison of multiple prediction models can be used to increase reliability. The divergence
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between multiple models can be evaluated as an indicator of high motion uncertainty. Thus, the models can
be used to validate each other. However, the inversion that the output of three similar predictions yields an
accurate prediction might not hold in complex scenes where all used predictors fail to encode the object’s
movement.

A drawback of ensemble methods is the calculation effort because multiple models must be executed. So the
number of models or their complexity must be restricted. IMMs commonly use physics-based models for
low calculation effort but are limited to short-term prediction. Computation times of ensemble methods with
pattern-based models [20, 69] are not reported.

An ambiguous issue is the influence of a weighted summation of multiple predictors on the prediction accuracy.
The merge of multiple models could enable a higher degree of adaptivity and motion behavior being modeled
compared to the exclusive selection of one predictor. However, compared to MixNet’s concept to define a set
of base curves for a closed road geometry, which results in a convex solution space for the prediction output,
the combination of multiple models and the application to open road geometries do not allow this quality
guarantee (Figure 3.18). In addition, the predictors’ behavior can strongly vary in contrast to the usage of
base curves. Thus, the weighting of individual predictors does not guarantee a common motion behavior
for an object. The variation of the predictors’ behavior can be reduced by training specialized models for
dedicated motion patterns or by the usage of base curves derived from the road geometry. However, in
both cases, the summation does not necessarily yield a prediction within the driveable area of junctions or
roundabouts (Figure 4.20). Also, the assumption that the prediction lies within the spanned solution space of
the predictors does not hold for these road geometries.

In summary, the increased calculation effort and the ambiguous effect of merging multiple models are points
of further investigation for the usage of a weighted sum approach.
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Figure 4.20: Synthetic modification of a scene with dense traffic and complex road geometry. The three predictors
(CV in orange, L_LSTM in green, DG_LSTM in gray) show diverse behavior at the junction. All models
show low accuracy in predicting the ground truth (black solid).
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4.8.3 Full-Stack Integration

The developed method is validated in the benchmark framework CommonRoad, which is part of the introduced
research environment (Section 4.1). The intended full-stack integration and real-world application of the
self-evaluation method on EDGAR shall be discussed in the following.

The first point of discussion are the used predictors under the consideration of the target ODD. The used
predictors must be tailored to the expected motion behavior, object types, data and semantic information
availability, and degree of interactive and transient scenes. Alternatively, the same prediction method could
be used multiple times, and specialized predictors could be implemented to cover the solution space. For
example, multiple pattern-based models could be selected and trained on specific data clusters of the ODD.

Besides that, the selector model’s classification behavior, particularly its specificity and sensitivity, and the
error threshold must be fine-tuned in conjunction with the ego-motion planner. The FN-rate must align with
the ego-motion planner behavior to compensate for undetected invalid predictions. In addition, understanding
the planning performance enables setting an absolute error threshold for invalid predictions, ensuring the
necessary prediction accuracy for safe ego-motion behavior.

A third aspect is handling invalid predictions when encountered during inference in real-world traffic scenarios.
Selecting an invalid option does not necessarily trigger an emergency state. By detecting an invalid prediction,
the AV software can adaptively adjust its strategy to prevent hazardous situations. For instance, deploying a
different set of planner parameters for invalid prediction scenes, switching to a shorter prediction horizon, or
applying deterministic approaches like reachable sets can be considered. This adaptive motion prediction
and planning strategy can be likened to human drivers’ natural reactions in unfamiliar scenarios, such as
reducing speed.

Lastly, the full-stack integration comprises the consideration of varying input data quality and computational
requirements. The first aspect must be analyzed on respective datasets and recorded data after the method is
trained for this ODD. The aspect of the computational requirements is outlined in Figure 4.21. The calculation
time for preprocessing and model execution over the number of objects on an exemplary hardware setup is
depicted. For each bin, 30 runs are conducted. The preprocessing comprises the graph generation between
the tracked objects and the transfer of the batches to the GPU. It can be seen that the preprocessing’s
calculation time correlates with the number of objects. It increases from 0.74 ms for n ≤ 10 objects to
10.10 ms for n> 50 objects. In contrast, the model execution does not correlate with the number of objects
and stays around 60 ms with a standard deviation below 5 ms for all investigated numbers of objects. Thus,
executing the objects in one batch makes the calculation time approximately constant. The usage of the
VRAM on the GPU is kept below 1 GB for all investigated object numbers. Thus, there is no bottleneck in the
storage to process that number of objects with state-of-the-art GPUs. In total, the calculation time ranges
between 61 ms and 69 ms for the given hardware. An additional analysis of the calculation time on the
successor generation of GPU architectures, the Nvidia A100, and an AMD EPYC 9474F CPU with 4.10 GHz
results in an average model execution of 27 ms and a preprocessing time below 7 ms for the given range of
object numbers. For real-world applications, the target latency of the software, the required update frequency
from the succeeding planning module, and the available hardware resources must be considered to deploy
the method with the respective calculation times.
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Figure 4.21: Calculation time of the object list processing and the model execution over the number of objects (CPU:
Intel Xeon Gold 6148 2.40 GHz, 380 GB; GPU: Nvidia Tesla V100, 16GB).
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In the following chapter, the presented methods contributing to the establishment of the generic framework
are discussed. The discussion is based on the identified research gap (Section 2.4). The related research
items are analyzed in Section 5.1. Next, the combination of the two research streams of reliability and
adaptivity and their application in a specific ODD are discussed (Section 5.2). Finally, the research question,
to which the research items contribute, is reviewed in Section 5.3. The chapter closes with an outlook on
future work based on this research (Section 5.4).

5.1 Review of Research Items

The five proposed research items result from the formulation of the thesis’ research question as identified
topics to be investigated (Section 2.4). In the following, the research items are reviewed regarding their
fulfillment by the proposed methods.

5.1.1 Detection Input Optimization

The first research item is formulated as follows:

RI1 How can the detection input be improved to enable reliable application?

This investigation takes place in the scope of autonomous racing, a challenging real-world application because
of high ego and relative speeds. In Section 3.2, a multi-modal sensor fusion and object tracking method is
introduced, which targets this research item. Two features are proposed to improve the detection input. At
first, a modular late fusion algorithm is implemented, which is able to fuse heterogeneous detection input
with differences in measured features, frequency, and measurement accuracy. It allows the modular creation
of multiple parallel perception pipelines and the derivation of optimized information about the surrounding
objects’ states. Second, an EKF with incorporated delay compensation is presented. Besides estimating
the objects’ states by the filter, implementing a backward-forward integration to consider delayed detection
input but still output an updated object list is a key feature to reduce the overall software latency. While this
feature is essential for performant high-speed racing, it is also a safety feature for public road traffic. The
related results show a low-biased tracking behavior on real-world data and consistent compensation for delay
in updating the object states. The research item is assessed as successfully addressed by the proposed
method.

5.1.2 Constrained Black-Box Models

The second research item is identified as follows:

RI2 How can black-box models be constrained to increase their reliability?
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The method addressing this item is a combination of physics constraints and a NN-based scene encoding and
developed for the ODD of autonomous racing (Section 3.3). The proposed method ensures a non-oscillating
trajectory by superpositioning smooth base curves. The superposition additionally ensures that the trajectory
stays inside the driveable area, improving the feasibility. Despite these constraints, the validation of the
method shows that it is able to surpass the accuracy of the unconstrained method. The method successfully
addresses the research item within the context of autonomous racing. The transfer to further ODDs is
discussed in Section 3.4 with the conclusion that the transfer to a closed-road environment such as a highway
is possible while the shift to urban environments requires further research effort to adjust the base curve
selection to open road geometries.

5.1.3 Combination of Multiple Methods

The research item, which targets the aspect of hybrid prediction methods, is specified as:

RI3 How can multiple models be combined for adaptive prediction behavior?

This research item targets the adaptivity of motion prediction methods. The item is motivated by the review of
the state of the art (Subsection 2.3.5), which outlines that there is no census about a universal prediction
method that fits all ODDs. Based on this review, a hybrid prediction method is proposed to enable adaptive
behavior (Section 4.2). It combines multiple prediction models from different classes. The models are fused
in an integrative approach to ensure computational efficiency and are scene-dependently applied to output
an adjusted trajectory prediction. The validation of the method shows that each prediction model has shares
of the most accurate predictions and that the combination of multiple methods is able to generate a more
general and scene-adaptive prediction behavior (Subsection 4.5.2). The related ablation study (Section 4.6)
offers further insights into the relation between the used prediction model to create the hybrid prediction
method and the achieved accuracy. Summarising this research item, the hybrid prediction model and the
feature to adaptively select the most suitable are assessed to fulfill this research item.

5.1.4 Evaluation of Prediction Performance

The evaluation of the prediction performance is incorporated in the fourth research item, which states:

RI4 How can scenes be evaluated regarding the expected prediction performance?

It is the second research item that focuses on the aspect of adaptivity. Based on the hybrid prediction method,
which defines the available predictors to use, a selector model is implemented to evaluate scenes based on
a predefined metric. Besides the selection of the scene-dependent best predictor, the evaluation identifies
the predictors’ limitations. This evaluation involves detecting non-predictable, invalid scenes. In these scenes,
it is expected that none of the existing prediction models can achieve the required accuracy. Hence, scenes
are binary evaluated either as valid, which means that a prediction is determined, or as invalid if a specified
prediction performance is not reached. The evaluation of scenes and their rating as invalid builds an essential
foundation for future, edge-case-driven improvement of the prediction models. Under the assumption that the
prediction performance is assessed by the specified metric of the RMSE, the research item is fulfilled by the
proposed method.

5.1.5 Factors for Inaccurate Predictions

The last research item is focused on understanding the influencing factors of prediction errors:

RI5 Which factors influence inaccurate predictions?
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From the system application’s PoV, the reasons for the inaccuracy of the predictions are of interest to handle
and prevent them. To fulfill this research item, an analysis of the correlation between the semantics in a
scene and the prediction performance is conducted (Section 4.7). The results show a bias toward specific
object types, speed ranges, and number of objects. This knowledge is essential to base future research
on and adjust the ego behavior in case these features occur during application. The analysis additionally
shows the influence of the prediction horizon, which is an intermediate option to constrain the prediction.
Through the analysis, the research item is addressed regarding these specific features. However, further
investigations, such as details about road geometries and multi-modal variations, are required to extend the
understanding of erroneous predictions.

5.2 Combination in a Generic Prediction Framework

Developing a reliable and adaptive prediction method is identified as a research gap. However, the proposed
research items focus on one of the features respectively. Beyond the isolated development of these, the
research question points to the combination of these features in one generic framework (Section 2.4). The
following section focuses on this and discusses the incorporation of reliability and adaptivity in one framework.
A concept of combining these features is analyzed in Subsection 5.2.1. Based on this concept, the specific
integration of the methods proposed in this thesis and application in an ODD is discussed (Subsection 5.2.2).

5.2.1 Concept

The concept of the generic prediction framework based on the modular software stack (Figure 2.1) is depicted
in Figure 5.1. The tracking is incorporated as an integral part because the handling of varying data quality
of the detection input shall be covered. It is an essential prerequisite to enable motion prediction [263] and
enhances the reliability. In a straightforward way, one prediction method outputs forecasted trajectories for all
tracked objects based on their object history.
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The Generic Motion Prediction Framework

Figure 5.1: Concept of the generic framework for motion prediction in autonomous driving. The two aspects of
reliability, realized in autonomous racing, and adaptivity, shown for public road traffic, are embedded into
the framework.
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While the concept of tracking and one fixed prediction method is suitable for specific ODDs with a limited
set of scenes, adaptivity is required when it comes to more diverse scenes with varying road geometries,
object types, and intentions. For this purpose, a scene evaluation and a continuous learning method are
proposed. The evaluation’s task is to assess the scene and available predictors and determine the most
suitable prediction approach to ensure accurate forecasts. The continuous learning method is incorporated
based on the assumption that the available data during development can not cover all scenes occurring during
the application. The idea is that the evaluation detects scenes that would result in erroneous prediction, and
the prediction models are optimized through continuous learning from these scenes. By this, the prediction
models constantly improve based on detected mispredictions.

5.2.2 Integration of the Proposed Methods

The two research streams of this thesis for reliability in autonomous racing and adaptivity in public road traffic
are embedded into the framework as symbolized by the vehicles of the AV-21 and EDGAR (Figure 5.1).

Since the preceding tracking module is unidirectional and does not interact with the prediction algorithms, the
proposed late fusion and tracking method (Section 3.2) is integrable into the framework. It does not depend on
the number of predictors or usage of the evaluation method. It is rather the case that the required input quality
for the prediction algorithms must be ensured or the other way around that the prediction algorithms have
to be tuned to base their output on the given tracking accuracy. The physics-constrained prediction model
(Section 3.3) is also integrable into the framework. The only dependency regarding the evaluation method
is the share of the encoded scene. The encoder-decoder architecture of the MixNet (Subsection 3.3.1) is
suitable for this purpose.

The crucial point of these two methods for generic usage is the ODD they are developed for and the made
assumptions. The specific discussion on transferring the two methods to further ODDs is conducted in Sub-
section 3.4.2. Regarding the tracking method, the filters to merge two objects and for out-of-track detections
and the assumptions that all objects have the same driving direction are distinct limitations. However, the
state estimation with delay compensation and the modular late fusion of the detection pipelines are features
that are beneficial for various ODDs. Reviewing the made assumptions for the physics-constrained prediction
method and their transferability to public road traffic, the main issue is choosing suitable base curves to
create a superposed path prediction. In contrast to closed race tracks, the existence of junctions, multi-lane
roads, and one-way routes prevent an intermediate transfer to ODDs in public road traffic. Nevertheless, the
basic idea of constraining a neural network’s output to given semantic geometries is valuable for public road
traffic. The concept can enhance reliability by introducing constraints through external knowledge about the
limits of an object’s behavior and possible driving options.

The additional usage of the evaluation method does not imply requirements for the used prediction models.
As shown in the conducted ablation study (Subsection 4.6.4), the selector model can be based on various
encoders. In addition, the type and number of used predictors combined in the evaluation method are
flexible and not limited to the proposed ones within this thesis. Regarding the usage in a specific ODD, the
self-evaluation is applicable because it does not rely on ODD-specific assumptions. A crucial constraint,
however, is the data availability to train and optimize the predictors and the selector model. Integrating the
self-evaluation method in the framework for the usage in the ODD of autonomous racing is also realizable.
The combination of one predictor and the selector model could be used to evaluate whether a scene is
predictable by the model or not. This could be beneficial when the track or race format is changed, and there
is not enough ODD-specific data to train the predictor on. In this case, the self-evaluation method could
be used to avoid inaccurate mispredictions. The usage of multiple predictors for the racing ODD should be
considered when it comes to more advanced motion patterns with multiple vehicles, less strict rules, and
more complex track geometries.
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To conclude the discussion, the following can be stated: The overall bottleneck for the creation of a generic
framework for accurate motion prediction is the realization of adaptivity while maintaining reliability. The
two investigated research streams reveal this trade-off. On the one hand, reliable methods for the ODD of
autonomous racing with known object types, a closed road geometry, and defined race rules are achieved.
While the reliability is achieved by including assumptions derived from ODD-specific knowledge, it implies
limited adaptivity. On the other hand, an adaptive method is proposed, which selects the scene-dependent
most suitable prediction method but is not proven reliable. Additionally, the predictors used in the current
implementation of the evaluation method are unconstrained, which limits their reliability.

5.3 Review of Research Question

Based on the preceding discussions, the focus shall shift to the review of the research question, which is
formulated as:

How can reliable and adaptive prediction methods for autonomous driving be developed and
combined in a generic framework?

It comprises two focal points. The first one is the development of reliable and adaptive prediction methods,
which is detailed in the research items. To relate the proposed methods to the state of the art, Figure 5.2
reveals the graphical classification along these two axes.
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Figure 5.2: Categorization of the thesis’ research along the two axes of reliability and adaptivity.
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The proposed reliable prediction method is assessed to be placed on the far right along the reliability axis
(Chapter 3). Both modules of tracking and prediction are integrated into the full software stack of TUM
autonomous motorsport, satisfying the computational requirements to run on the target hardware with the
respective run time [264]. Beyond the presented results on real-world data (Subsection 3.2.4) with low-
biased tracking errors and successful compensation of the perception delay, the reliability of the tracking
method is confirmed through its usage at the events of the AC@CES in Las Vegas from 2022 – 2024. The
method is deployed with continuously increasing speeds, fewer constraints regarding overtaking maneuvers,
and varying detection pipelines used since the team’s software stack constantly grows. It was an essential
component for the fastest autonomous overtakes at the time of its publication at 270 km h−1. The constrained
prediction method’s reliability is shown by the presented results on interactive high-speed data featuring
quality guarantees besides accurate prediction behavior (Subsection 3.3.5). The real-world application of
the method was not achieved because of the cancellation of the multi-vehicle race at the inaugural event
of the IAC in Indianapolis in October 2021. For the later event at the AC@CES in Las Vegas in January
2022, the method could not be deployed due to missing data for the specific race track, which differs from
the one in Indianapolis by its size and shape (Figure 3.2). The rail-based prediction, which is presented in
Section 3.3 as a benchmark, was used. However, MixNet’s superior performance on the multi-vehicle HiL
and on the simulation race data justifies the proposed classification of the framework. In terms of adaptivity,
the transfer to further ODDs (Subsection 3.4.2) and the integration in the concept of the generic framework
are analyzed (Subsection 5.2.2). While fundamentals of the methods such as the delay compensation and
EKF-based tracking or the concept to superpose base curves are adaptive, the development has its focus on
the autonomous racing ODD with distinct assumptions. Thus, the classification for adaptivity is in the lower
part of the plot.

The proposed self-evaluation method for adaptive prediction behavior is classified at the top along the
vertical axis. The grading can be justified by the validated ability to adaptively select the scene-dependent
most suitable prediction method and the idea of an integral hybrid prediction composition. The evaluation is
realized by semantic encoding to create scenario understanding, which selects the most suitable prediction
approach for the current scene-dependent circumstances. A hybrid prediction model provides diverse
prediction approaches. The ODD of public road traffic is chosen because varying behavior of object types,
road geometry, and motion patterns are expected, which all require adaptive prediction. In addition, the
self-evaluation method is capable of detecting scenes in which high prediction errors occur. The feature to
detect the algorithmic limitations and the conducted study about the reasons for prediction errors (Section 4.7)
can be used to adjust the prediction behavior dynamically. Thus, the respective scenes can be handled, e. g
through an adjustment of the prediction horizon. Regarding reliability, the method does not fulfill specific ODD
constraints, nor is it applied in a full software stack on real-world data. A discussion to realize this is given in
Subsection 4.8.3. In summary, low reliability is assessed.

The second focal point of the research question is the integration of the methods into one generic framework.
A concept to combine the given methods is discussed (Section 5.2), which fulfills all requirements of reliability
and adaptivity, defined in Section 2.1, justifying its placement at the top right of the graphical classification
(Figure 5.2). Varying input data quality and latency is handled by the tracking module. A constrained prediction
method can ensure compliance with the ODD. An evaluation can switch between several predictors and
detect algorithmic limitations. Additionally, continuous learning is proposed for extended adaptivity to optimize
the predictors based on mispredictions. The crucial point of this concept is its validation, including real-world
application in a specific ODD. The two specific issues of the method’s extended adaptivity and validation are
discussed as an outlook of this work (Subsection 5.4.2 and 5.4.3).

In summary, the research question can be assessed as fulfilled in terms of developing reliable and adaptive
methods. Regarding the combination of these methods, a fulfillment on a conceptual level is given, which
must be validated through its implementation.
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5.4 Outlook

In the following, an outlook on future research directions shall be given. At first, developing a more com-
prehensive evaluation metric, a central element in assessing scenarios, is discussed (Subsection 5.4.1).
In Subsection 5.4.2, continuous learning to expand the adaption capabilities and to complete the generic
prediction framework is analyzed. Lastly, the validation of the discussed generic prediction framework is
outlined (Subsection 5.4.3).

5.4.1 Evaluation Metric

The first future research direction is a comprehensive metric to quantify the performance of motion prediction
methods. Within the scope of this work, metrics from the state of the art of mean Euclidean distance errors
are used to quantify the methods’ accuracy. The criticism of the existing metrics is two-fold. At first, current
metrics are not able to evaluate the performance of prediction methods for the integration in a full AV
software stack. Especially, the overall driving performance and behavior of the ego-motion planning based
on the motion prediction method can not be evaluated with current metrics [318, 319]. Aspects of temporal
consistency and estimation of uncertainty must be considered. While the latter aspects can be quantified
through the NLL, the quantification of the former aspect, temporal consistency, needs to be investigated. It
focuses on the deviations of predictions of the same object in two successive scenes. It is required to allow
stable ego-motion planning without abrupt changes. The proposed self-evaluation benefits from a metric that
considers the impact on the ego-motion planner in advance. In contrast to the current assumption that high
Euclidean prediction errors negatively impact ego-motion behavior, the evaluation would be more efficient in
preventing critical situations if the metric reflects the full impact of the prediction on the driving performance.

The second point of criticism is the gap between datasets and real-world scenarios [254]. The metrics do not
consider the robustness of the algorithms against noisy observation. Besides the gap in data quality, the
prediction behavior must be considered when facing arbitrary object behavior during real-world application,
which the dataset does not contain. In the scope of this thesis, the qualitative rating of the two features of
reliability and adaptivity is used to cover these aspects and to get a more comprehensive evaluation of a
prediction method’s behavior. However, quantifying these features and their balancing in combination with
a method’s accuracy is subject to future research. A holistic metric to evaluate motion prediction methods,
which covers and quantifies the discussed aspects, is desired.

5.4.2 Extended Adaptivity

The second aspect of future work is further progress regarding adaptivity. Besides a scene evaluation,
continuous learning to constantly improve the predictors is proposed as part of a generic prediction framework
(Figure 5.1). It is expected that due to deteriorated input data, abnormal object behavior, or to continuously
extend the ODD, new scenes occur, which the framework has to cope with. To apply continuous learning to
learn from new occurring scenes, several points of investigation exist.

The first issue is the training strategy. The amount of required data to retrain the algorithms has to be
determined. Online learning is possible after just one or a few samples up to the collection of samples by
a fleet and the creation of an edge case dataset. It must be analyzed how the amount of data to retrain
the methods influences the overall prediction accuracy compared to the ability to adapt to edge cases.
Besides the amount of data, their imbalance is a crucial aspect. Under the assumption that the scene
evaluation specifically detects scenes that the predictors are not capable of handling, a data bias emerges.
In combination with aggressive learning strategies, a loss of generalizability is expected. The blend of edge
case data with training data is a possible remedy but could lead to missing adaptation to the edge case data.
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A second point of investigation is the method’s scalability. It must be analyzed how many new ODDs and
edge cases can be covered with the learning process. While the process of offline training, ODD test rides,
identification of edge cases, and retraining might be possible once, an iteration through multiple ODDs is
questionable with existing methods in the field of artificial intelligence.

Third, the missing stability of current state-of-the-art methods hinders the usage. In the scope of AVs,
the required level of safety does not allow an unstable behavior. Particular data augmentation strategies,
self-supervised, and one-shot learning to realize continuous learning are the subject of ongoing research.
These advances must be analyzed to realize the missing piece of the framework.

Lastly, with a focus on automotive safety standards, new safeguarding methods are required because current
methods are not able to consider adaptive behavior [320]. The potentially unsafe behavior resulting from
continuous learning cannot be caught with the existing methods. Thus, there is a requirement for new safety
standards to be developed to deploy these kinds of adaptive methods.

5.4.3 Validation of the Framework

Following the discussion about a concept for a generic prediction framework and the integration of the
proposed methods (Subsection 5.2.2), its validation is a central point of interest for future research. Besides
the interaction between the different parts of the framework, its deployment allows further insights into its
behavior because of the dependencies on the adjacent modules of perception and planning and the necessity
of handling real-world input data.

The usage in the racing ODD should comprise the usage of one predictor and the evaluation method in the
form of a supervisor, which distinguishes between valid and invalid scenes. As a first step, data from past
races can be used and complemented by simulation data for diverse object behavior causing invalid scenes
to validate the evaluation capabilities.

To achieve real-world application with EDGAR, data of the target ODD (Figure 5.3) are an essential pre-
requisite for the usage of pattern-based predictors and the self-evaluation method. Prior training on public
datasets [73, 81, 137] is recommended to reduce the efforts in data mining. With the knowledge of the specific
ODD, it should be reviewed which predictors are deployed to optimize the calculation efforts. In addition, the
specific tuning of the planning algorithm and the handling of invalid predictions must be conducted as dis-
cussed in Subsection 4.8.3. The identified limitations of the two methods of tracking and physics-constrained
prediction if used in an urban ODD must be considered, too (Subsection 3.4.2). The made assumptions to
achieve reliable behavior must be adjusted to the new ODD.

Figure 5.3: TUM’s research vehicle EDGAR in the city of Munich.
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6 Conclusion

This thesis investigates the development of reliable and adaptive prediction methods and their combination in
a generic framework for motion prediction in autonomous driving. The initial motivation is the proficient human
driver who has anticipatory driving skills based on driving experience to solve interactive traffic scenarios.
The transfer of these skills into the AV software stacks requires implementing methods for motion prediction,
which features scenario understanding to handle diverse scenarios and to provide holistic prediction behavior.

The survey of the state of the art (Chapter 2) reveals that the field of motion prediction is actively researched
and accurate methods exist. A review of these methods, however, identifies their shortcomings. None of them
reliably predicts the motion of surrounding vehicles and is capable of adapting the prediction behavior to
diverse scenes. This research gap is investigated by five research items that focus on reliable or adaptive
prediction methods, contributing to the formulated research question to establish a generic prediction
framework.

The feature of reliability is investigated in the ODD of autonomous racing, which offers a full-stack application
at high speeds, dynamic object behavior, and interaction between the opponents. A finding from this
application is that the input data received from the perception must be optimized, and consistent object tracks
are crucial to enable profound motion prediction. To tackle this aspect, a modular multi-modal late fusion
and object-tracking method with delay compensation is developed (Section 3.2). Its quantitative validation
on real-world data and achievement of the fastest autonomous overtake at the time of its publication at
the AC@CES 2022 prove the reliability. Another essential factor for reliable prediction is the guarantee of
quality constraints. Performant ego-motion planning requires non-oscillating trajectories and low prediction
errors. Thus, a model is demanded that ensures these constraints and offers profound scene encoding to
achieve accurate prediction behavior. The trade-off is solved by proposing a physics-constrained deep neural
motion prediction method, which achieves both a low prediction error and the assurance of quality guarantees
(Section 3.3).

A method for adaptive prediction behavior is researched within the diverse ODD of public road traffic
(Chapter 4). Adaptivity is achieved by a hybrid prediction model and a self-evaluation of the present scene
based on semantic information. The hybrid prediction model combines trajectory prediction approaches
from multiple classes to cover various motion patterns. The evaluation is realized by a selector model,
which determines based on a predefined metric, the best out of the available prediction approaches for a
given scene. In addition, the evaluation considers the case that no model can accurately predict the scene
and high prediction errors are expected. By this, an adaptive prediction behavior is realized and scene-
dependent algorithmic limitations are detected. The method’s validation, conducted on the comprehensive
scenario library CommonRoad, shows a decrease of the Euclidean prediction error by 81.0 % and a 90.8 %
reduction in mispredictions compared to the benchmark model. The results additionally reveal the benefits of
using different prediction classes that complement each other. Besides, the variation of the hybrid network
composition indicates that tailored configurations for specific use cases can be realized.

The discussion (Chapter 5) highlights that the proposed methods for autonomous racing and autonomous
driving in public road traffic successfully address the five proposed research items. Focussing on the overall
research question to achieve a generic prediction framework, it is discussed how the research streams of
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6 Conclusion

reliability and adaptivity can be combined. A concept is discussed, which needs to be implemented and
applied in order to validate it. In addition, the discussion reveals ODD-specific assumptions that must be
solved and outlines how to realize a merge of the presented methods to be used in one ODD. A central
finding of the discussion is the trade-off between reliability by incorporating additional constraints and
adaptivity through the adjustment of the prediction behavior. The discussion closes with naming future
research directions contributing to the realization of the generic framework. These are the definition of a
comprehensive metric to evaluate a model’s behavior and its impact on the overall driving performance and
the extension of adaptivity by methods for continuous learning. Besides that, the validation of the generic
framework is named as a future research direction.
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A Model Parameterization

A.1 Multi-Modal Late Fusion and Tracking

Table A.1: Parameterization of the multi-modal late fusion and tracking method [280].

Parameter Value Unit Description

fnode 50 Hz ROS2-node frequency
zL (x , y,ψ) - Measured values LiDAR

xstd,L 0.3 m Longitudinal measurement uncertainty LiDAR
ystd,L 0.3 m Lateral measurement uncertainty LiDAR
ψstd,L 0.35 rad Yaw angle measurement uncertainty LiDAR

zR (x , y,ψ, v) - Measured values RADAR
xstd,R 3.0 m Longitudinal measurement uncertainty RADAR
ystd,R 3.0 m Lateral measurement uncertainty RADAR
ψstd,R 0.35 rad Yaw measurement uncertainty RADAR
vstd,R 0.2 ms−1 Velocity measurement uncertainty RADAR
fEKF 100 Hz Filter frequency
xstd,P 0.01 m Longitudinal initial state standard deviation
ystd,P 0.01 m Lateral initial state standard deviation
ψstd,P 0.3 rad Yaw angle initial state standard deviation
vstd,P 4.00 ms−1 Velocity initial state standard deviation
ψ̇std,P 0.3 rad s−1 Yaw rate initial state standard deviation

kv 0.8 - Ego speed factor
ẋstd,Q 0.2 ms−1 Longitudinal process standard deviation per second
ẏstd,Q 0.2 ms−1 Lateral process standard deviation per second
ψstd,Q 0.3 rad s−1 Yaw process standard deviation per second
v̇std,Q 1.0 ms−2 Velocity process standard deviation per second
ψ̈std,Q 0.5 rad s−2 Yaw rate process standard deviation per second
dMRG 5.1 m Merge distance

dOBF,out 0.3 m Buffer distance out-of-bounds-filter, outside
dOBF,in 0.3 m Buffer distance out-of-bounds-filter, inside
dMTC 5.0 m Match distance
tMTC 25 - Match threshold
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A Model Parameterization

A.2 Physics-Constrained Deep Neural Motion Prediction

Table A.2: Parameterization of the physics-constrained deep neural network prediction method [283].

Parameter Value Unit / Type Description

η 5 · 10−5 float Initial learning rate
γ 0.997 float Learning rate decay factor
ω 1 · 10−7 float Weight decay factor

nhist 30 int Number of object history steps
db,d 20 m Discretization length along boundary
db,l 400 m Sampling length along boundary
tpred 5.0 m Prediction horizon
fpred 10.0 Hz Prediction frequency

dint,lat 1.5 m Lateral interaction distance
dint,long 1.5 m Longitudinal interaction distance

nacc 5 int Number of acceleration sections
lli 1 int Number of hidden layers of linear input embedding
hli 16 int Size of hidden layers of linear input embedding

lenc,h 1 int Number of LSTM hidden layers in history encoder
henc,h 64 int Size of LSTM hidden layers in history encoder
lenc,b 1 int Number of LSTM hidden layers in boundary encoder
henc,b 64 int Size of LSTM hidden layers in boundary encoder
hlat 16 int Size of latent embedding

hdec,path (256, 256, 32) tuple(int) Size of hidden layers of path decoder
hdec,path,out 4 int Output size of hidden layers of path decoder

hdec,vel 32 int Size of hidden layers of velocity decoder
hdec,vel,out 1 int Output of hidden layers of velocity decoder
hdec,acc 32 int Size of LSTM hidden layers in decoder
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A Model Parameterization

A.3 Self-Evaluation of Trajectory Predictors

Table A.3: Parameterization of the self-evaluation method for trajectory predictors [304].

Parameter Value Unit / Type Description

Φmin,rmse 0.0 float Minimal selection rate, low-RMSE optimization
RMSEtrgt,rmse 0.2 m Target RMSE, low-RMSE optimization
ηrmse 5 · 10−4 float Initial learning rate, low-RMSE optimization
γrmse 0.9 float Learning rate decay factor, low-RMSE optimization
αrmse 20 int Learning rate decay step size, low-RMSE optimization
Φmin,sel 0.7 float Minimal selection rate, high selection optimization

RMSEtrgt,sel 0.3 m Target RMSE, high selection optimization
ηsel 5 · 10−3 float Initial learning rate, high selection optimization
γsel 0.5 float Learning rate decay factor, high selection optimization
αsel 15 int Learning rate decay step size, high selection optimization
Φmin,bl 0.5 float Minimal selection rate, balanced optimization

RMSEtrgt,bl 0.3 m Target RMSE, balanced optimization
ηbl 1 · 10−3 float Initial learning rate, balanced optimization
γbl 0.1 float Learning rate decay factor, balanced optimization
αbl 20 int Learning rate decay step size, balanced optimization
din 4 int Number of input features to the network per object
dout 2 int Number of output features to the network per object
fpred 10.0 Hz Prediction frequency
lsc,in 32 int Number of input filters for scene image encoding

hsc,out 16 int Size of output filters for scene image encoding
lli 1 int Number of hidden layers of linear input embedding
hli 50 int Size of hidden layers of linear input embedding

hli,emb 50 int Size of linear input embedding
lenc 1 int Number of LSTM hidden layers in encoder
henc 50 int Size of LSTM hidden layers in encoder
δ 20 m Threshold for proximity-dependent GNN

mdg 64 int Message size of GNN embedding
ldg 1 int Number of hidden layers of GNN embedding
hdg 48 int Size of hidden layers of GNN embedding

hdg,emb 128 int Size of GNN input embedding
hlat 48 int Size of latent embedding
hdec 128 int Size of LSTM hidden layers in decoder

xxxvii





B Components of the Research Vehicle EDGAR

Table B.1: Hardware components of the research vehicle EDGAR [305].

Component Producer Model

Series vehicle Volkswagen T7 Multivan 1.4 eHybrid
Mono camera Basler acA1920-50gc
Stereo camera Framos D455e
Mid-range LiDAR Ouster Ouster OS1-128
Long-range LiDAR Innovusion Falcon Gen-2
RADAR Continental Continental ARS430
GPS-IMU Novatel PwrPak7D-E2
Microphone Infineon A2B Eval Kit
x86 HPC InoNet Mayflower B17
ARM HPC ADLINK AVA AP1
Network Switch Netgear M4250-40G8XF-PoE+
PTP Grandmaster Masterclock GMR5000
SDR Transceiver Ettus USRP B210 SDR Kit 2x2
V2X System Cohda MK5 OBU
5G Router Milesight UR75-500GL-G-P-W
MIMO Antenna Panorama LGMQM4-6-60-24-58 4x4
LED BTF lighting WS2815
LED controller Strip Studio SPI Matrix
Visualization PC Spo-comm RUGGED GTX 1050 Ti
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C Data Analysis for the Self-Evaluation Method
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Figure C.1: Ratio of object types in training and test data.
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Figure C.2: Data distribution of training and test data. The distribution of the objects’ average speeds vobj and the
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ψobj between target objects and surrounding objects are given.
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C Data Analysis for the Self-Evaluation Method
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Figure C.3: Spectral distribution of the target objects’ neighbors in the training data (top, blue) and the test data
(bottom, orange). The radial distance and orientations are given relative to the target object, which is at
rdist = 0, ψort = 0. The objects are grouped in angular bins of ∆ψort =30°. The bins’ lower and upper
limits are the 10 %- and 90 %-quantile of the bin’s distance distribution. The colors of the bins represent
the relative share of objects per bin.
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